WO2016080275A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2016080275A1
WO2016080275A1 PCT/JP2015/081840 JP2015081840W WO2016080275A1 WO 2016080275 A1 WO2016080275 A1 WO 2016080275A1 JP 2015081840 W JP2015081840 W JP 2015081840W WO 2016080275 A1 WO2016080275 A1 WO 2016080275A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
low
refrigerant
temperature
evaporator
Prior art date
Application number
PCT/JP2015/081840
Other languages
English (en)
French (fr)
Inventor
裕亮 臂
孝輔 宮城
正 宮沢
高山 信幸
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to EP15861606.0A priority Critical patent/EP3249316A4/en
Publication of WO2016080275A1 publication Critical patent/WO2016080275A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F3/00Show cases or show cabinets
    • A47F3/04Show cases or show cabinets air-conditioned, refrigerated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present invention relates to a refrigeration apparatus in which a display room of a showcase is cooled by the evaporator of a refrigerant circuit including a compressor, a radiator, an expansion valve, and an evaporator.
  • a plurality of showcases for displaying and selling products while being cooled in a display room are installed.
  • Each showcase is provided with an evaporator for cooling the display room, and refrigerant is distributed and supplied to the evaporator from the compressor of the refrigerator unit installed outside the store via an expansion valve. It had been.
  • the compressor was controlled based on the pressure on the low pressure side, and the valve opening degree of the expansion valve on the evaporator inlet side of the showcase was controlled based on the degree of refrigerant superheat in the evaporator.
  • the expansion valve control based on the degree of refrigerant superheat is performed so that the compressor does not suck liquid refrigerant (so-called liquid back prevention), and a tank called an accumulator is provided on the suction side of the compressor. This liquid back was blocked.
  • an electromagnetic valve (open / close valve) is provided on the outlet side of each showcase, and when the internal temperature drops to the target internal temperature, the electromagnetic valve is closed. And when all the solenoid valves were closed and the pressure on the low pressure side decreased, the compressor was controlled to be stopped.
  • the solenoid valve when the solenoid valve is closed at the internal temperature as in the prior art, the refrigerant pressure changes greatly. In particular, when carbon dioxide is used as a refrigerant, this becomes conspicuous. Therefore, unless the accumulator is increased in size, a safety device such as a high-pressure cut works to cause the compressor to be forcibly stopped.
  • a solenoid valve when such a solenoid valve is not used, it is necessary to control the internal temperature with the expansion valve. Conventionally, the expansion valve is controlled by the degree of refrigerant superheating in the evaporator, so the internal temperature is the target. Cooling continues even when the temperature is lower than the inside temperature.
  • valve opening degree of the expansion valve is controlled based on the internal temperature, for example, when a plurality of showcases are connected to the compressor, there is a possibility that the flow of the refrigerant may be biased. Causes liquid back. Further, when frost is formed in the evaporator, the heat exchange efficiency is lowered. Therefore, when the expansion valve is controlled at the internal temperature, the expansion valve is controlled to flow more refrigerant into the evaporator. Thereby, since the frost formation of the evaporator is in the direction of further growth, there is a risk of causing excessive frost formation in the evaporator.
  • the present invention has been made to solve the above-described conventional technical problems, and is capable of supercooling the interior of a showcase, excessive frosting on an evaporator, and a compressor with relatively simple control of an expansion valve. It is an object of the present invention to provide a refrigeration apparatus capable of preventing liquid back to the inside and reducing the number of times the compressor is started / stopped.
  • the refrigeration apparatus of the present invention has a refrigerant circuit including a compressor, a radiator, an expansion valve, and an evaporator, and cools the display chamber of the showcase by the evaporator.
  • In-compartment temperature detection means for detecting the interior temperature that is the temperature in the display room
  • refrigerant inlet temperature detection means for detecting the refrigerant inlet temperature of the evaporator
  • refrigerant outlet temperature detection means for detecting the refrigerant outlet temperature of the evaporator
  • a control device that controls the expansion valve based on the output of each temperature detection means, and this control device calculates the degree of refrigerant superheat in the evaporator from the refrigerant outlet temperature and refrigerant inlet temperature of the evaporator,
  • the valve opening degree of the expansion valve is selectively controlled based on either the degree of superheat or the internal temperature.
  • the control device when the internal temperature is equal to or higher than the predetermined first temperature, the control device is configured so that the refrigerant superheat degree is a predetermined target superheat based on the refrigerant superheat degree in the evaporator.
  • the expansion valve is controlled so as to be at a temperature, and when the internal temperature becomes lower than the first temperature, the expansion valve is controlled based on the internal temperature so that the internal temperature becomes a predetermined target internal temperature. It is characterized by that.
  • the control device controls the expansion valve based on the internal temperature, and the internal temperature is equal to or higher than a predetermined second temperature higher than the first temperature.
  • the control returns to the expansion valve control based on the degree of refrigerant superheating in the evaporator.
  • the refrigeration apparatus of the invention of claim 4 is characterized in that, in the above invention, the second temperature is a target internal temperature.
  • the control device controls the expansion valve based on the internal temperature so that the internal temperature becomes the predetermined target internal temperature, and the internal temperature Rises above a predetermined third temperature higher than the target internal temperature and the refrigerant superheat degree in the evaporator falls below a predetermined first refrigerant superheat degree, based on the refrigerant superheat degree in the evaporator
  • the expansion valve is controlled so that the refrigerant superheat degree becomes a predetermined target superheat degree.
  • the refrigeration apparatus of the invention of claim 6 is characterized in that, in the above invention, the control device returns to the control of the expansion valve based on the internal temperature after the defrosting operation of the evaporator.
  • the refrigeration apparatus of the invention of claim 7 is characterized in that, in each of the above inventions, the refrigerant circuit includes an accumulator connected to the refrigerant suction side of the compressor.
  • the refrigerant circuit includes a series circuit of a plurality of expansion valves and an evaporator connected in parallel to each other, and each series circuit is provided in each of a plurality of showcases, The refrigerant is supplied from the compressor to each evaporator through an expansion valve.
  • an opening / closing valve is provided on the outlet side of each evaporator, and the controller is configured to reduce the internal temperature to a predetermined fourth temperature lower than the first temperature. When it falls, the on-off valve is closed.
  • a refrigeration apparatus includes a low-stage refrigerant circuit that is the refrigerant circuit in each of the above-described inventions, and a high-stage refrigerant circuit that is independent of the low-stage refrigerant circuit.
  • the high pressure side refrigerant of the low stage side refrigerant circuit is cooled by the evaporator.
  • the refrigeration apparatus of the invention of claim 11 is characterized in that, in each of the above inventions, the refrigerant circuit uses carbon dioxide as a refrigerant.
  • a refrigeration apparatus having a refrigerant circuit including a compressor, a radiator, an expansion valve, and an evaporator, and cooling the display room of the showcase by the evaporator, the internal temperature that is the temperature in the display room
  • the refrigerant inlet temperature detecting means for detecting the refrigerant inlet temperature of the evaporator
  • the refrigerant outlet temperature detecting means for detecting the refrigerant outlet temperature of the evaporator
  • a control device for controlling the expansion valve, and the control device calculates the refrigerant superheat degree in the evaporator from the refrigerant outlet temperature and the refrigerant inlet temperature of the evaporator, and calculates the refrigerant superheat degree or the internal temperature of the refrigerator.
  • valve opening degree of the expansion valve is selectively controlled based on any of the above, for example, when the controller temperature as in the invention of claim 2 is equal to or higher than the predetermined first temperature, Based on refrigerant superheat in evaporator By the refrigerant superheating degree to control the expansion valve to be a predetermined target superheating degree, it is possible to prevent excessive frost on the liquid back and the evaporator to the compressor.
  • the display chamber is supercooled by controlling the expansion valve so that the internal temperature becomes a predetermined target internal temperature based on the internal temperature. Can be prevented.
  • the internal temperature has risen to a predetermined second temperature higher than the first temperature.
  • the second temperature is set to the target internal temperature as in the invention of claim 4
  • the display chamber can be smoothly controlled to the target internal temperature.
  • control device controls the expansion valve based on the inside temperature so that the inside temperature becomes a predetermined target inside temperature. It is possible to prevent overcooling of the compressor and reduce the number of start / stop times of the compressor.
  • the refrigerant circuit as in the invention of claim 8 includes a series circuit of a plurality of expansion valves and an evaporator connected in parallel to each other, and each series circuit is provided in each of a plurality of showcases. This is particularly effective in a refrigeration apparatus that supplies refrigerant to each evaporator via an expansion valve.
  • an opening / closing valve is provided on the outlet side of each evaporator, and the control device When the on-off valve is closed when the temperature falls below a predetermined fourth temperature lower than the first temperature, the pressure fluctuation in the refrigerant circuit can be further suppressed.
  • the present invention it is possible to prevent or suppress the liquid back of the compressor, the excessive frosting of the evaporator, the overcooling of the display chamber, and the pressure fluctuation of the refrigerant circuit by switching the control of the expansion valve. It is also possible to eliminate the solenoid valve as in the ninth invention.
  • FIG. 3 is a timing chart for explaining valve opening degree control of a low stage side expansion valve by the control device of the refrigeration apparatus of FIG. 1 (Example 1). It is a figure explaining the control at the time of switching to the all hot of the conventional hot and cold type showcase. It is a figure explaining an example of the control at the time of switching to the all-hot of the hot and cold type showcase of the refrigeration apparatus of FIG. It is a figure explaining the other example of the control at the time of switching to the all hot of the hot and cold type showcase of the refrigeration apparatus of FIG.
  • FIG. 1 is a refrigerant circuit diagram of a refrigerating apparatus 1 according to an embodiment to which the present invention is applied.
  • the refrigeration apparatus 1 includes a refrigerator unit 3 installed outside a store in a plurality of showcases 2 (2A, 2B. In the embodiment, a total of four) installed in a store such as a convenience store or a supermarket.
  • the high-stage refrigerant circuit 4 and a plurality of (two systems in the embodiment) low-stage refrigerant circuits are independent from the high-stage refrigerant circuit 4. Circuit) 6A and 6B.
  • the high-stage refrigerant circuit 4 of this embodiment is connected to a high-stage compressor 7 composed of a scroll compressor and branch pipes 9A and 9B branched from the discharge pipe 8 of the high-stage compressor 7 respectively.
  • a high stage side expansion valve 13 connected downstream of the junction with the pipe 12B, and a first high stage side evaporator connected to the outlet pipe 59 of the high stage side expansion valve 13 (evaporator of the present invention).
  • the high-stage refrigerant circuit 4 is filled with a predetermined amount of carbon dioxide as a refrigerant.
  • 58 is a temperature sensor which detects the temperature of the refrigerant
  • both of the low-stage refrigerant circuits 6A and 6B have the same configuration. That is, the low-stage refrigerant circuit 6A of the embodiment (the same applies to the low-stage refrigerant circuit 6B) includes a low-stage compressor (the compressor of the present invention) 21 that is also a scroll compressor, and the low-stage compression.
  • the first low-stage gas cooler (radiator of the present invention) 23 connected to the discharge pipe 22 of the machine 21 and the first low-stage gas cooler 23 downstream of the refrigerant connected to the outlet pipe 24 thereof.
  • each series circuit has two (plural) showcases 2 (2A, 2B). It is installed in each.
  • the solenoid valve (opening-closing valve of this invention) 37 is each connected to the exit side of the low stage side evaporator 36 in each showcase 2 (2A, 2B), and the outlet piping 38 of each solenoid valve 37 joins. Then, it connects to the accumulator 39 via the inlet piping 42, and the exit side of this accumulator 39 is connected to the suction piping 41 of the low stage side compressor 21, and the refrigerating cycle is comprised.
  • the accumulator 39 is a tank having a predetermined capacity.
  • Each low stage refrigerant circuit 6A, 6B is also filled with a predetermined amount of carbon dioxide as a refrigerant.
  • the first high-stage evaporator 16A of the high-stage refrigerant circuit 4 and the supercooling heat exchanger 28 of the low-stage refrigerant circuit 6A are provided in a heat exchange relationship, and the first cascade heat exchanger 43A.
  • the second high-stage side evaporator circuit 16B of the high-stage side refrigerant circuit 4 and the supercooling heat exchanger 28 of the low-stage side refrigerant circuit 6B are provided in a heat exchange relationship to provide a second cascade heat exchange.
  • a device 43B is configured.
  • the branch pipes 33A and 33B and the outlet pipe 38 are pipes extending from the refrigerator unit 3 to the showcases 2 (2A and 2B).
  • 44 is a pressure sensor attached to the discharge pipe 22 of the low-stage compressor 21 of each low-stage refrigerant circuit 6A, 6B, and the pressure of the high-pressure refrigerant discharged from the low-stage compressor 21 is shown.
  • 56 is a pressure sensor which is attached to the discharge pipe 8 of the high stage compressor 7 and detects the discharge pressure of the high stage compressor 7 (the high pressure side pressure of the high stage refrigerant circuit 4). It is a pressure sensor that is attached to the outlet pipe 17B and detects the suction pressure of the high stage side compressor 7 (low pressure side pressure of the high stage side refrigerant circuit 4).
  • reference numerals 51 and 52 denote first and second gas cooler blowers.
  • the first gas cooler blower 51 ventilates each of the high-stage gas coolers 11A and 11B and the first low-stage gas cooler 23 to air-cool them.
  • the second gas cooler blower 52 ventilates the second low-stage gas cooler 26 and cools it by air.
  • reference numeral 53 denotes a temperature sensor for detecting the outside air temperature.
  • 48 is a control device on the refrigerator unit 3 side, and the operation frequency and high frequency of the high stage compressor 7 of the high stage side refrigerant circuit 4 are determined based on the outputs of the sensors 44, 53, 56, 58, etc.
  • the valve opening degree of the stage side expansion valve 13 the operating frequency of the low stage side compressor 21 of the low stage side refrigerant circuits 6A and 6B, the valve opening degree of the expansion valve 31 for pressure adjustment, and the operation of the blowers 51 and 52 for each gas cooler. Control.
  • Each showcase 2 (2A, 2B) is also provided with a showcase-side control device (control device 57 of the present invention). Further, a refrigerant inlet temperature sensor (refrigerant inlet temperature detecting means) 46 for detecting the refrigerant inlet temperature of the low stage side evaporator 36 is provided on the refrigerant inlet side of the low stage side evaporator 36 of the showcase 2 (2A, 2B). And a refrigerant outlet temperature sensor (refrigerant outlet temperature detecting means) 47 for detecting the refrigerant outlet temperature of the low stage evaporator 36 is attached to the refrigerant outlet side of the low stage evaporator 36.
  • 61 is an internal temperature sensor (internal temperature detection means) for detecting the internal temperature, which is the temperature in the display room of showcase 2 (2A, 2B).
  • 62 is a cool air circulation blower for circulating the cool air exchanged with the low-stage evaporator 36 into the display chamber of each showcase 2 (2A, 2B), and the control device 57 has these sensors 46, 47. , 61 and the like, the opening degree of the low stage side expansion valve 34, the opening and closing of the electromagnetic valve 37, and the operation of the blower 62 for circulating cold air are controlled.
  • the showcase indicated by 2A in the figure is a so-called hot and cold type showcase that can switch between a state in which the display room is cooled and used in the embodiment and a state in which the display room is heated and used.
  • An electric heater 63 that heats the display chamber is provided on a shelf or the like that is erected.
  • the showcase indicated by 2B is a so-called week-in type showcase in which an operator enters and works in a stock room formed on the rear side of the display room when goods are delivered. Is provided with a switch 64 for controlling the walk-in timer. These electric heaters 63 are controlled by the control device 57 of the showcase 2A, and the switch 64 is connected to the control device 57 of the showcase 2B.
  • control device 57 on the showcase 2 side and the control device 48 of the refrigerator unit 3 are centrally controlled by an integrated control device SM (shown in FIG. 10) provided in the store, and operate in cooperation with each other.
  • integrated control device SM shown in FIG. 10
  • the control device 48 controls the high stage compressor 7 of the high stage refrigerant circuit 4 and the low stage compressor 21 of the low stage refrigerant circuits 6A and 6B.
  • the high-temperature and high-pressure refrigerant (carbon dioxide) compressed by the high-stage compressor 7 is discharged to the discharge pipe 8 and divided into the branch pipes 9A and 9B, It flows into each high stage side gas cooler 11A, 11B.
  • the refrigerant that has flowed into the high-stage gas coolers 11A and 11B is cooled in a supercritical state by the gas cooler blower 51, and the temperature decreases.
  • the refrigerant cooled by the first high-stage gas cooler 11A and the second high-stage gas cooler 11B merges through the outlet pipes 12A and 12B the refrigerant flows into the high-stage expansion valve 13 and is throttled there. (Decompression) flows into the first high-stage evaporator 16A constituting the first cascade heat exchanger 43A, evaporates, and flows through the supercooling heat exchanger 28 of the first low-stage refrigerant circuit 6A. Cool the refrigerant (supercooling).
  • the refrigerant that has exited the first high-stage evaporator 16A flows into the second high-stage evaporator 16B that constitutes the second cascade heat exchanger 43B via the outlet pipe 17A and evaporates.
  • the refrigerant flowing through the subcooling heat exchanger 28 of the lower stage refrigerant circuit 6B is cooled (supercooling).
  • coolant which came out of this 2nd high stage side evaporator 16B repeats the circulation sucked into the high stage side compressor 7 from the suction piping 18 through the exit piping 17B.
  • FIG. 2 shows the pressure distribution of each part of the high-stage refrigerant circuit 4 concerned.
  • the diamonds in the figure indicate the target value of the suction pressure Ps (low pressure side pressure) of the high stage compressor 7 detected by the pressure sensor 58, and the squares indicate the discharge pressure Pd (high pressure) of the high stage compressor 7 detected by the pressure sensor 56. Side pressure), the triangle indicates the compression ratio of the high-stage compressor 7, and the circle indicates the amount of refrigerant sealed in the high-stage refrigerant circuit 4.
  • the target value of the low-pressure side pressure of the high-stage side refrigerant circuit 4 (the suction pressure Ps of the high-stage side compressor 7) is fixed at, for example, 4 MPa, and the operating frequency of the high-stage side compressor 7 is set to this target value. Therefore, it was affected by the optimum refrigerant filling amount that fluctuates with changes in the outside air temperature.
  • the high stage side refrigerant circuit 4 of the embodiment is not provided with an accumulator on the refrigerant suction side of the high stage side compressor 7, this influence is remarkable, and the high stage side compressor 7 has an optimum compression ratio condition. The car was unable to drive and the efficiency deteriorated.
  • the control device 48 appropriately sets the target value of the low-pressure side pressure of the high-stage refrigerant circuit 4 (target value of the suction pressure Ps of the high-stage compressor 7) according to the outside air temperature Ta detected by the temperature sensor 53. Then, the high stage compressor 7 is controlled.
  • the specific control method will be described below.
  • FIG. 3 shows a flowchart of the control device 48 relating to the control of the high-stage compressor 7 of the high-stage refrigerant circuit 4.
  • the control device 48 operates the low-stage compressor 21 of the low-stage refrigerant circuit 6A or 6B in step S1 of FIG. 3, the operation frequency is equal to or higher than a predetermined value (for example, 40 Hz), and the temperature sensor It is determined whether or not the outside air temperature Ta detected by 53 is equal to or higher than a predetermined temperature (for example, + 15 ° C.).
  • a predetermined value for example, 40 Hz
  • the operating frequency of the low-stage compressor 21 of any of the low-stage refrigerant circuits 6A and 6B is equal to or higher than a predetermined value (40 Hz), and the outside air temperature Ta detected by the temperature sensor 53 is + 15 ° C.
  • the high stage side expansion valve 13 is set to the opening at the time of starting.
  • the first gas cooler blower 51 is started in step S3, waits for a predetermined time (for example, 2 minutes), and after 2 minutes, the outside air temperature Ta is detected by the temperature sensor 53 in step S4. Based on Ta, the operating frequency at the time of starting the high stage compressor 7 is calculated.
  • the control device 48 sets the operation frequency when starting the high stage compressor 7 to 75 Hz, and when 35 ° C.> Ta ⁇ 30 ° C., 65 Hz, 30 ° C.> Ta ⁇ 25 ° C for 55Hz, 25 ° C> Ta ⁇ 20 ° C for 45Hz, 20 ° C> Ta ⁇ 15 ° C for 35Hz, etc.
  • Higher side compressor in a direction to increase the higher the outside air temperature Ta. 7 is calculated at the time of start-up.
  • step S5 the high-stage compressor 7 is started, and the operation frequency is increased to the operation frequency at the start calculated in step S4. And it waits for predetermined time (for example, 5 minutes) by step S6, and the target value (target value of the suction pressure Ps of the high stage side compressor 7) of the low pressure side pressure of the high stage side refrigerant circuit 4 is set by step S7. .
  • the control device 48 holds in advance information indicating the relationship between the outside air temperature Ta detected by the temperature sensor 53 in step S4 and the optimum low-pressure side pressure of the high-stage refrigerant circuit 4 at that time.
  • the optimum value of the low pressure side pressure of the high stage side refrigerant circuit 4 is the value (2.1 to 2.2) where the compression ratio of the high stage side compressor 7 in FIG. This means the low pressure side pressure of the high stage side refrigerant circuit 4.
  • the horizontal axis (x) in FIG. 4 is the outside air temperature
  • the controller 48 uses this approximate expression in step S7, calculates the optimum low pressure side pressure (the optimum value of the low pressure side pressure) of the high stage refrigerant circuit 4 at that time from the outside air temperature Ta, and calculates the calculated low pressure side.
  • Set the pressure as the target value For example, the target value (optimal low pressure side pressure) when the outside air temperature Ta is + 20 ° C. is about 3.7 MPa, and the target value when + 30 ° C. is about 4.2 MPa as described above.
  • the control device 48 fixes the target value to 3.5 MPa when the outside air temperature Ta is + 15 ° C. or lower, and fixes it to 4.7 MPa when it is + 35 ° C. or higher. Then, the control of the low pressure side pressure of the high stage side refrigerant circuit 4 is started.
  • the control device 48 first determines whether the high-stage compressor 7 is stopped in step S8.
  • This stop determination procedure is as follows. That is, (Condition 1) The state in which the high-stage compressor 7 is at the minimum operating frequency continues for a predetermined time (for example, 10 minutes), and the temperatures of the first and second high-stage gas coolers 11A and 11B ( It is detected by a separate temperature sensor. Alternatively, it can be substituted by outside temperature) is a predetermined temperature (for example, + 10 ° C.) or less, (Condition 2) Both low-stage compressors 21 are stopped, (Condition 3 ) When any of the conditions is satisfied during defrosting of the low-stage evaporator 36 of each showcase 2 (2A, 2B), the control device 48 stops the high-stage compressor 7 Is determined.
  • step S8 If it is determined in step S8 that the high-stage compressor 7 is to be stopped, the control device 48 proceeds to step S9 and enters a predetermined stopping process. And after waiting for predetermined time (for example, 10 minutes) by step S10, it returns to a start. Thereafter, in step S1, the outside air temperature Ta again becomes equal to or higher than a predetermined temperature (for example, + 15 ° C.), and the low-stage compressor 21 of any one of the low-stage refrigerant circuits 6 and 6A is operated so that the operation frequency is predetermined. When the value becomes equal to or greater than (for example, 40 Hz), the control device 48 proceeds to step S2 and subsequent steps to restart the high-stage compressor 7.
  • a predetermined temperature for example, + 15 ° C.
  • step S8 the control device 48 proceeds to step S11 and detects the low pressure side pressure of the high stage refrigerant circuit 4 by the pressure sensor 58. . Then, the target value of the low-pressure side pressure set in step S7 and the current low-pressure side pressure detected in step S11 are compared in step S12, and the absolute value of the difference (target value-current value) is a predetermined small value (for example, it is determined whether it is within 0.1 MPa). And if a difference is less than 0.1, it will progress to step S13 and will make no change instruction
  • step S14 it is determined whether or not the current low-pressure side pressure (current value) is lower than the target value. If the current low-pressure side pressure (current value) is lower than the target value set in step S7, the process proceeds to step S15. The operating frequency of the high stage compressor 7 is decreased by a predetermined step. Conversely, if the current low pressure (current value) is greater than or equal to the target value in step S14, the process proceeds to step S16 to increase the operating frequency of the high stage compressor 7 by a predetermined step.
  • step S12 to step S16 is realized by PID control based on the deviation between the target value of the low pressure side pressure and the current value.
  • the control device 48 controls the low pressure side pressure of the high stage side refrigerant circuit 4 to the target value set in step S7.
  • step S17 the control device 48 proceeds to step S17 and waits for a predetermined time (for example, 30 seconds). Thereafter, the outside temperature Ta is detected by the temperature sensor 53 in step S18, the outside temperature Ta when the target value of the low pressure side pressure of the high stage side refrigerant circuit 4 is set in step S7, and the outside temperature detected in step S18 (
  • step S19 it is determined whether or not the absolute value of the difference from (current outside air temperature) (set outside air temperature ⁇ current outside air temperature) is within a predetermined small value (for example, 2K). If the absolute value of the difference is within 2K, the process proceeds to step S20, the target value of the low-pressure side pressure of the high stage side refrigerant circuit 4 is maintained at the current value (maintenance is maintained), and the process returns to step S8.
  • step S19 If the absolute value of the difference is larger than 2K in step S19, the control device 48 proceeds to step S21 and updates the target value of the low pressure side pressure of the high stage refrigerant circuit 4. Also in this case, the control device 48 calculates the optimum low-pressure side pressure (optimum value of the low-pressure side pressure) of the high-stage refrigerant circuit 4 at that time from the outside air temperature Ta detected in step S18 using the approximate expression of FIG. Then, the calculated low-pressure side pressure is set as a target value (update), and the process returns to step S8.
  • optimum low-pressure side pressure optimum value of the low-pressure side pressure
  • the target value of the low pressure side pressure of the high stage side refrigerant circuit 4 (the suction pressure Ps of the high stage side compressor 7) is appropriately set according to the outside air temperature Ta, and the high stage is set so as to be the target value. Since the operation frequency of the side compressor 7 is controlled, the influence of the optimum refrigerant filling amount that fluctuates with changes in the outside air temperature is eliminated, and even when no accumulator is provided as in the embodiment, a high stage The high stage compressor 7 of the side refrigerant circuit 4 can be operated and controlled with high efficiency.
  • the refrigerant that has flowed into the second low-stage gas cooler 26 is cooled in a supercritical state by the gas cooler blower 52 and, after the temperature has further decreased, passes through the outlet pipe 27 and passes through the first cascade heat exchanger 43A (second In the case of the lower stage refrigerant circuit 6B, the refrigerant flows into the supercooling heat exchanger 28 constituting the second cascade heat exchanger 43B).
  • the refrigerant flowing into the supercooling heat exchanger 28 evaporates in the first high-stage evaporator 16A (in the case of the second low-stage refrigerant circuit 6B, the second high-stage evaporator 16B). After being cooled (supercooled) by the refrigerant of the high-stage side refrigerant circuit 4 and further lowered in temperature, it reaches the pressure adjusting expansion valve 31 through the outlet pipe 29.
  • the high pressure side refrigerant of the low stage side refrigerant circuit 6A (6B) is throttled by the pressure adjusting expansion valve 31, and is branched to the branch pipes 33A and 33B via the outlet pipe 32, and then exits from the refrigerator unit 3 to each showcase 2 Enter (2A, 2B).
  • the refrigerant flowing through the branch pipes 33A and 33B reaches the low stage side expansion valve 34 of each showcase 2 (2A and 2B), and after being throttled there, flows into the low stage side evaporator 36 and evaporates.
  • the display chamber of each showcase 2 (2A, 2B) is cooled to a predetermined temperature by the endothermic action at this time.
  • the control device 48 determines the valve opening degree of the expansion valve 13 based on the high-pressure side pressure of the high-stage refrigerant circuit 4 detected by the pressure sensor 56, and controls the pressure adjustment expansion valve 31 of the low-stage refrigerant circuits 6A and 6B. By controlling similarly to the control, the high pressure side pressure of the high stage side refrigerant circuit 4 is controlled to an appropriate value (target value of the high pressure side pressure of the high stage side refrigerant circuit 4).
  • the refrigerant in the high-stage side refrigerant circuit 4 is evaporated in the high-stage side evaporators 16A and 16B of the cascade heat exchangers 43A and 43B, and the low-stage side refrigerant circuits 6A flowing through the supercooling heat exchanger 28.
  • a relatively large (high capacity) compressor is used as the compressor 7, 21 of each refrigerant circuit 4, 6A, 6B. Without use, it becomes possible to obtain a required cooling capacity in the low-stage evaporator 36 of each showcase 2 (2A, 2B).
  • the refrigerant that has exited the low-stage evaporator 36 of the low-stage refrigerant circuits 6A and 6B does not exchange heat with the high-pressure refrigerant of the low-stage refrigerant circuits 6A and 6B, and the low-stage refrigerant circuit 6A, Since it is configured to be sucked into the low-stage compressor 21 of 6B, it is possible to prevent an abnormal increase in the high-pressure side pressure of the low-stage refrigerant circuits 6A and 6B, especially in summer when the outside air temperature becomes high. At the same time, since the high-density refrigerant can be sucked into the low-stage compressor 21, the efficiency is also improved.
  • the cascade heat exchangers 43A and 43B supercool the refrigerant that has exited the low-stage gas cooler 26, the carbon dioxide refrigerant of the low-stage refrigerant circuits 6A and 6B cooled by the low-stage gas coolers 24 and 26 is used. Further cooling is performed by the cascade heat exchangers 43A and 43B, and further cooling capacity can be improved.
  • one The high-stage side refrigerant circuit 4 can supercool the high-pressure side refrigerants of the two systems (plurality) of the low-stage refrigerant circuits 6A and 6B.
  • the refrigerant that has exited each of the high-stage evaporators 16A and 16B of the high-stage refrigerant circuit 4 does not exchange heat with the high-pressure refrigerant of the high-stage refrigerant circuit 4, and thus the high-stage refrigerant circuit 4 Since the suction is performed by the stage-side compressor 7, an abnormal increase in the high-pressure side pressure of the high-stage refrigerant circuit 4 can be prevented particularly in summer when the outside air temperature becomes high. Moreover, since a high-density refrigerant can be sucked into the high stage side compressor 7, efficiency is also improved.
  • the control device 48 calculates the optimum high-pressure side pressure of the low-stage refrigerant circuits 6A and 6B based on the outside air temperature, and controls the valve opening degree of each pressure adjusting expansion valve 31 using this as a target value. . That is, the control device 48 sets the opening degree of the pressure adjusting expansion valve 31 to a predetermined opening degree at step S22 in the flowchart of FIG.
  • step S23 the low-stage compressor 21 is started in step S23, and a predetermined time (for example, 10 minutes) is waited for in step S24.
  • step S25 the outside air temperature Ta detected by the temperature sensor 53 is detected, and in step S26, a target value for the high-pressure side pressure of the low-stage refrigerant circuit 6A (6B) is set based on the outside air temperature Ta.
  • the control device 48 holds in advance information indicating the relationship between the outside air temperature Ta and the optimum high-pressure side pressure of the low-stage refrigerant circuit 6A (6B) at that time.
  • the optimum value of the high-pressure side pressure means the high-pressure side pressure of the low-stage refrigerant circuit 6A (6B) at which the efficiency COP is maximized or close to that value.
  • the horizontal axis (x) is the outside air temperature
  • the vertical axis (y) is the high pressure side pressure of the low stage refrigerant circuit 6A (6B) of the refrigeration apparatus 1 (the high pressure side refrigerant discharged from the low stage compressor 21).
  • step S26 the control device 48 uses this approximate expression to calculate the optimum high-pressure side pressure (the optimum value of the high-pressure side pressure) from the outside air temperature Ta, and sets the calculated high-pressure side pressure as the target value.
  • the target value (optimum high-pressure side pressure) at the outside air temperature + 20 ° C. is about 8.1 MPa
  • the target value at + 30 ° C. is about 9.5 MPa.
  • the control device 48 fixes the target value to 6.5 MPa when the outside air temperature Ta is + 8 ° C. or less (to prevent scroll rollover), and fixes it to 10.8 MPa when it is + 40 ° C. or more.
  • the high pressure side Lower the target pressure value by 0.1 MPa.
  • the control device 48 detects the current high-pressure side pressure detected by the pressure sensor 44 in step S27.
  • step S28 the absolute value (abs) of the difference (target value-current value) between the target value (optimal high-pressure side pressure) and the current high-pressure side pressure (current value) is a predetermined value (for example, 0.1 MPa). ) It is determined whether or not the difference is less than or equal to a predetermined value (there is no difference or is small), the process proceeds to step S29 and the instruction to change the valve opening of the pressure adjusting expansion valve 31 is not given. (The valve opening degree of the pressure adjusting expansion valve 31 is maintained).
  • step S30 After waiting for a predetermined time (for example, 30 seconds) in step S30, the outside air temperature Ta detected by the temperature sensor 53 is detected again in step S31. Then, the difference between the outside air temperature when the target value is set in step S32 (outside air temperature in step S25; the set outside temperature) and the current outside temperature Ta (the current outside temperature detected in step S31) (the set outside temperature). -Determine whether the current outside air temperature is within a range of a predetermined value (eg plus or minus 2K). If the difference is within the predetermined value (plus or minus 2K), the target value of the high pressure side pressure is maintained in step S33, and the process returns to step S27.
  • a predetermined time for example, 30 seconds
  • step S32 If the difference (set outside air temperature ⁇ current outside air temperature) is not within the predetermined value in step S32, the control device 48 proceeds to step S34 and uses the approximate expression of FIG. ) Is calculated, and the calculated high pressure side pressure is set (updated) as a target value. Then, the process returns to step S27. In this way, the control device 48 updates the target value of the high-pressure side pressure of the low-stage refrigerant circuit 6A (6B) following the change in the outside air temperature Ta.
  • step S28 determines whether or not the difference (target value ⁇ current value) is larger than a predetermined value (for example, 0.1 MPa).
  • step S36 If the current high-pressure side pressure (current value) is low and the difference (target value ⁇ current value) is greater than the predetermined value (0.1 MPa), the control device 48 proceeds to step S36 and the pressure adjusting expansion valve 31 is set.
  • the valve opening is closed by a predetermined pulse (xxpls).
  • xxpls a predetermined pulse
  • the high-pressure side refrigerant in the low-stage refrigerant circuit 6A (6B) is more blocked when it exits the supercooling heat exchanger 28 of the cascade heat exchanger 43A (43B).
  • the high pressure side pressure of the refrigerant circuit 6A (6B) increases.
  • the control device 48 performs step. Proceeding to S37, the valve opening degree of the pressure adjusting expansion valve 31 is opened by a predetermined pulse (xxpls). As a result, the high-pressure side refrigerant of the low-stage side refrigerant circuit 6A (6B) that has exited the supercooling heat exchanger 28 of the cascade heat exchanger 43A (43B) becomes easier to flow, so the low-stage side refrigerant circuit 6A ( The high pressure side pressure of 6B) decreases.
  • the control device 48 controls the high pressure side pressure of the low stage side refrigerant circuit 6A (6B) to an optimum value by the pressure adjusting expansion valve 31. That is, a pressure adjusting expansion valve 31 for adjusting the high pressure side pressure of the low stage side refrigerant circuits 6A, 6B is provided, and the control unit 48 determines the optimum relevant pressure based on the high pressure side pressure of the low stage side refrigerant circuits 6A, 6B. Since the pressure adjusting expansion valve 31 is controlled with the high pressure side pressure as a target value, the specific enthalpy difference between the high pressure side refrigerants in the low stage side refrigerant circuits 6A and 6B is secured to improve the cooling capacity and the efficiency. It becomes possible to plan.
  • the pressure adjusting expansion valve 31 can smoothly control the high pressure side pressure of the low stage side refrigerant circuits 6A and 6B to an optimum value.
  • FIG. 7 is a timing chart showing the state of control of the low-stage side expansion valve 34 by the control device 57.
  • the uppermost stage is the display room detected by the interior temperature sensor 61 of the showcase 2 (the same applies to the showcases 2A and 2B).
  • the second stage from the top is the refrigerant superheat degree PSH in the low stage side evaporator 36
  • the third stage from the top is the valve opening of the low stage side expansion valve 34
  • the bottom stage is the electromagnetic The open / closed state of the valve 37 is shown.
  • the control device 57 determines the difference between the refrigerant outlet temperature of the lower stage evaporator 36 detected by the refrigerant outlet temperature sensor 47 and the refrigerant inlet temperature of the lower stage evaporator 36 detected by the refrigerant inlet temperature sensor 46 (refrigerant).
  • the present refrigerant superheat degree PSH which is outlet temperature ⁇ refrigerant inlet temperature
  • the control device 57 is set with a target internal temperature ST (for example, + 5 ° C., the second temperature in the present invention), which is a target value of the internal temperature of each showcase 2 (2A, 2B).
  • a temperature (differential) 1K lower than the target internal temperature ST is set as the first temperature T1
  • a temperature 4K lower is set as the thermo-off temperature TOFF (fourth temperature).
  • a target superheat degree SSH for example, 5K
  • the control device 57 calculates the current refrigerant superheat degree in the low-stage evaporator 36 as calculated above.
  • the valve opening degree of the low stage side expansion valve 34 is controlled based on the PSH and the target superheat degree SSH.
  • the control device 57 controls the valve opening degree (control of the low stage side expansion valve 34 so that the refrigerant superheat degree PSH becomes the target superheat degree SSH by PID control based on the deviation e between the target superheat degree SSH and the refrigerant superheat degree PSH. Control).
  • bag to the low stage side compressor 21 is prevented.
  • the control device 57 determines the low stage side expansion valve based on the internal temperature PT detected by the internal temperature sensor 61. It switches to the state which controls the valve opening of 34. In this case, the control device 57 controls the valve of the low stage side expansion valve 34 so that the internal temperature PT becomes the target internal temperature ST by PID control based on the deviation e between the target internal temperature ST and the current internal temperature PT. Controls the opening (control amount).
  • the control device 57 closes the electromagnetic valve 37 to prevent the product in the display room from freezing when the internal temperature PT decreases to the above-described thermo-off temperature TOFF. Since switching to the control of the low-stage side expansion valve 34 based on the internal temperature PT and the target internal temperature ST from the time when the temperature falls below the first temperature T1, inconvenience that the display chamber is overcooled is prevented, and electromagnetic The situation in which the valve 37 is closed is also suppressed (not closed in the embodiment).
  • the valve opening degree of the low stage side expansion valve 34 is gradually reduced (squeezed). As a result, the amount of refrigerant flowing into the low-stage evaporator 36 decreases, so the internal temperature PT rises and eventually rises to the target internal temperature ST.
  • the control device 57 controls the valve opening degree of the low stage side expansion valve 34 based on the refrigerant superheat degree in the low stage side evaporator 36.
  • the control device 57 of each showcase 2 (2A, 2B) when the internal temperature PT is equal to or higher than the first temperature T1, based on the refrigerant superheat degree PSH in the low-stage evaporator 36, Since the low stage side expansion valve 34 is controlled so that the superheat degree PSH becomes the target superheat degree SSH, the liquid back to the low stage side compressor 21 and the excessive frost formation to the low stage side evaporator 36 can be prevented. .
  • the low stage side expansion valve 34 is controlled based on the internal temperature PT so that the internal temperature PT becomes the target internal temperature ST. Therefore, the display chamber can be prevented from being overcooled.
  • the control device 57 controls the low-stage side expansion valve 34 based on the internal temperature PT, and the internal temperature PT is a predetermined second temperature higher than the target internal temperature ST (the first temperature T1).
  • the control returns to the control of the low-stage expansion valve 34 based on the refrigerant superheat degree PSH in the low-stage evaporator 36. It becomes possible to smoothly return to the control by the refrigerant superheat degree PSH in the side evaporator 36.
  • the return temperature (second temperature) is set to the target chamber temperature ST, the display chamber can be smoothly controlled to the target chamber temperature ST.
  • the showcase 2A is a hot and cold type showcase provided with the electric heater 63, and is used by heating the display chamber by operating the changeover switch 66 (FIG. 8 and others).
  • the control device 57 of the showcase 2A closes the low-stage expansion valve 34 and the electromagnetic valve 37, stops the supply of refrigerant to the low-stage evaporator 36, and turns off the electric heater 63.
  • the display chamber is heated (heated) by generating heat.
  • (3-2) High-pressure cut prevention control 2 In this case, as shown in FIG. 10, when the changeover switch 66 is switched to the all-hot use state, the control device 57 of the showcase 2A transmits information to the integrated control device SM, and the integrated control device SM transmits the refrigerator. Switching information related to the control device 48 of the unit 3 may be transmitted. If the controller 48 reduces the rotational speed of the low-stage compressor 21 of the low-stage refrigerant circuit 6B from the time when the switching information is received, the rotational speed can be reduced from an earlier time. Therefore, it becomes possible to further suppress the pressure fluctuation of the refrigerant in the low stage side refrigerant circuit 6B.
  • FIG. 11 shows still another example of the high-pressure cut prevention control of the low-stage compressor 21 of the low-stage refrigerant circuit 6B.
  • the control device 57 of the showcase 2A determines the valve opening degree of the low stage side expansion valve 34 from that time. The opening is fixed to. Further, the electromagnetic valve 37 is not closed and stands by.
  • the control device 57 of the showcase 2A transmits information to the integrated control device SM in the same manner as described above.
  • the switching information related to the control device 48 is transmitted.
  • the control device 48 gradually decreases the rotational speed of the low-stage compressor 21 of the low-stage refrigerant circuit 6B from the time when the switching information is received, and stops.
  • the stop information of the low-stage compressor 21 is transmitted from the control device 48 to the control device 57 of the showcase 2A via the integrated control device SM. Then, after receiving this stop information, the control device 57 fully closes the low stage expansion valve 34 of the showcase 2A and closes the electromagnetic valve 37 as well. That is, the closing of the solenoid valve 37 is delayed until the low-stage compressor 21 is stopped.
  • control device 48 restarts the low-stage compressor 21 of the low-stage refrigerant circuit 6B. According to such control, the forced stop of the low-stage compressor 21 due to the refrigerant pressure fluctuation in the low-stage refrigerant circuit 6B when the showcase 2A is switched to the all-hot use state can be surely eliminated. .
  • the changeover switch 66 is switched to all-hot, and at that time, the low stage side expansion valve 34 is switched.
  • the solenoid valve 37 is closed and the solenoid valve 37 is closed, the showcase 2B has excessive capacity and the evaporation temperature of the low-stage evaporator 36 decreases. It becomes. Therefore, the low pressure side pressure in the low stage side refrigerant circuit 6B decreases, and the high pressure side pressure rapidly increases.
  • the rotational speed reduction control of the low-stage compressor 34 is not in time as described above, and the low-stage compressor 21 is forcibly stopped by a safety device such as a high-pressure cut, resulting in an overcurrent abnormality in the low-stage compressor 21. There was a risk of occurrence.
  • the electromagnetic valve 37C of the stopped showcase 2C is forcibly opened.
  • the opening degree of the low stage side expansion valve 34B of the showcase 2B is also fixed to a predetermined large opening degree.
  • the switching information is transmitted from the control device 57 of the showcase 2A to the control devices 57 of the showcases 2B and 2C via the integrated control device SM.
  • the switching information related to the control device 48 of the refrigerator unit 3 is transmitted from the integrated control device SM. If the controller 48 reduces the rotational speed of the low-stage compressor 21 of the low-stage refrigerant circuit 6B from the time when the switching information is received, the pressure fluctuation of the refrigerant in the low-stage refrigerant circuit 6B is accelerated. It becomes possible to suppress more effectively from the time.
  • thermo-off temperature TOFF a temperature 2K lower than the target internal temperature ST is set as the thermo-off temperature TOFF.
  • the electromagnetic valve 37 of the showcase 2 (2A, 2B) is closed (the current state on the left side in FIG. 15).
  • the capacity of the accumulator 39 is relatively small, the pressure fluctuation due to closing the solenoid valve 37 is large.
  • carbon dioxide is used, the high-pressure cut works as described above, and the low-stage refrigerant circuit 6A, There was a problem that the 6B low-stage compressor 21 was forcibly stopped.
  • the control device 57 of the showcase 2 (2A, 2B) has a predetermined lower limit TL (for example, 1K higher than the thermo-off temperature TOFF) in which the internal temperature PT detected by the internal temperature sensor 61 is higher than the thermo-off temperature TOFF.
  • TL for example, 1K higher than the thermo-off temperature TOFF
  • the operating frequency of the low-stage compressor 21 that supplies the refrigerant to the showcase 2 (2A, 2B) is decreased.
  • the right side of FIG. 15 shows the state of this control.
  • the low-stage compressor 21 of each low-stage refrigerant circuit 6A, 6B is always operated at a predetermined operation frequency.
  • the internal temperature PT of one showcase 2 of the low-stage refrigerant circuit 6A is lower than the target internal temperature ST, and is 1K lower than the target internal temperature ST (1K higher than the thermo-off temperature TOFF) to the lower limit TL.
  • the control device 57 gradually decreases the operating frequency of the low-stage compressor 21 of the low-stage refrigerant circuit 6A by a predetermined step, for example, to a control lower limit value. Thereby, the internal temperature PT starts to rise.
  • the control device 57 increases the operating frequency of the low-stage compressor 21 again to return it to the initial value.
  • the electromagnetic valve 37 is closed by reducing the operating frequency of the low-stage compressor 21 before the internal temperature PT is lowered to the thermo-off temperature TOFF (temperature at which the electromagnetic valve 37 is closed). It will be lost. As a result, it is possible to avoid the occurrence of a forced stop of the low-stage compressor 21 due to the closing of the electromagnetic valve 37.
  • the control device 57 of the showcase 2 (2A, 2B) receives the start / stop information of the low-stage compressor 21 from the control device 48 of the refrigerator unit 3 via the integrated control device SM described above. .
  • the valve opening degree of the low stage side expansion valve 34 at the time when the low stage side compressor 21 is stopped is a predetermined small value (minimum opening degree or a value close thereto)
  • the low stage side compressor 21 is During the stand-by that is stopped, the valve opening of the low stage side expansion valve 34 is increased to a medium value (medium opening: standby opening) larger than the minimum opening, for example.
  • the valve opening degree of the low stage side expansion valve 34 is expanded to a middle opening degree (opening degree at the time of starting).
  • the showcase 2B is a so-called week-in type showcase in which an operator enters and works in a stock room formed on the rear side of the display room when delivering goods.
  • the showcase 2B is provided with a switch 64 for controlling the walk-in timer. When the worker enters the stock room, the switch 64 is pressed (operation).
  • the control device 57 of the conventional showcase 2B closes the electromagnetic valve 37 of the showcase 2B and stops the cooler circulation blower 62.
  • the control device 57 opens the electromagnetic valve 37 and starts the blower 62 for circulating cold air.
  • the control device 57 of this example closes the electromagnetic valve 37 and stops the cool air circulation blower 62 as in the prior art, but within a predetermined time (for example, 5 minutes) from this point. Even if the switch 64 is pressed again, the solenoid valve 37 is kept open without being opened. Then, after a predetermined time has elapsed, the electromagnetic valve 37 is opened. Thereby, the forced stop and step-out of the low stage compressor 21 can be avoided in advance.
  • the controller 57 starts the operation of the blower 62 for circulating cold air. This eliminates the problem that the operator misunderstands that the showcase 2B is out of order.
  • the internal temperature PT rises to a third temperature T3 (FIG. 7) higher than a target internal temperature ST by a predetermined value (for example, 1K), and the refrigerant is overheated in the low-stage evaporator 36 at that time.
  • a predetermined value for example, 1K
  • the control device 57 causes the refrigerant in the low-stage evaporator 36 to The process proceeds to the valve opening degree control of the low stage side expansion valve 34 based on the degree of superheat PSH.
  • the valve opening control in this case is also executed by PID control based on the deviation e between the target superheat degree SSH and the current refrigerant superheat degree PSH, and the control device 57 is low so that the refrigerant superheat degree PSH becomes the target superheat degree SSH.
  • the valve opening degree of the stage side expansion valve 34 is controlled.
  • a plurality of showcases 2 (2A, 2B) are connected to the low stage side compressor 21 as in the embodiment.
  • the flow of refrigerant to the low-stage evaporator 36 of each showcase 2 (2A, 2B) is biased, and the low-stage compressor 21 is changed from the low-stage evaporator 36 where the flow is excessive.
  • There is a risk of liquid back (particularly when the capacity of the accumulator 39 is relatively small).
  • the internal temperature PT rises to a third temperature T3 higher than the target internal temperature ST, and the refrigerant superheat degree PSH in the low stage evaporator 36 at that time is higher than the target superheat degree SSH.
  • the low first refrigerant superheat degree SH ⁇ b> 1 is lowered, it can be determined that frost formation has occurred in the low-stage evaporator 36.
  • the control device 57 shifts to the valve opening degree control of the low stage side expansion valve 34 based on the refrigerant superheat degree PSH in the low stage side evaporator 36.
  • frost formation in the low-stage evaporator 36 due to the valve opening degree control of the stage-side expansion valve 34 the heat exchange efficiency is lowered and the internal temperature PT is increased, but the low-stage evaporator 36.
  • the control device 57 of the showcase 2 (2A, 2B) periodically closes the electromagnetic valve 37 and / or closes the low-stage expansion valve 34 to perform the defrosting operation of the low-stage evaporator 36.
  • the control device 57 returns to the valve opening degree control of the low stage side expansion valve 34 based on the internal temperature PT after the defrosting operation of the low stage side evaporator 36 is completed. Thereby, after defrosting of the low stage side evaporator 36, it becomes possible to smoothly return to the valve opening degree control state of the low stage side expansion valve 34 based on the inside temperature PT.
  • the present invention has been described with a refrigeration apparatus in which the high-stage refrigerant circuit 4 and the low-stage refrigerant circuits 6A and 6B are cascade-connected.
  • the invention other than claim 10 is not limited thereto, and The present invention is also effective for a refrigeration apparatus having a so-called single-stage refrigerant circuit having only the stage-side refrigerant circuit 6A (6B).
  • the refrigerant circuit (low-stage refrigerant circuit 6A, etc.) for supplying the refrigerant from one low-stage compressor 21 to the plurality of showcases 2 has been described.
  • the present invention is also effective for a refrigeration apparatus having a refrigerant circuit that cools a so-called built-in case that includes a compressor and an evaporator in a showcase and supplies refrigerant from the compressor to the evaporator.
  • Refrigeration apparatus 2A, 2B Showcase 3 Refrigerator unit 4 High stage side refrigerant circuit 6A, 6B Low stage side refrigerant circuit (refrigerant circuit) 7 High-stage compressor 11A, 11B High-stage gas cooler 13 High-stage expansion valve 16A, 16B High-stage evaporator 21 Low-stage compressor (compressor) 23, 26 Low stage gas cooler (heat radiator) 28 Supercooling heat exchanger 31 Expansion valve for pressure adjustment 34 Low stage expansion valve (expansion valve) 36 Low stage evaporator (evaporator) 37 Solenoid valve 39 Accumulator 48, 57 Control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Freezers Or Refrigerated Showcases (AREA)

Abstract

【課題】膨張弁の比較的簡単な制御でショーケースの庫内の過冷却や蒸発器への過着霜及び圧縮機への液バック防止、圧縮機の起動/停止回数の低減などを実現することができる冷凍装置を提供する。 【解決手段】低段側圧縮機21、低段側ガスクーラ23、低段側膨張弁34、低段側蒸発器36を備えた低段側冷媒回路6A、6Bを備える。低段側膨張弁34を制御する制御装置57を備える。この制御装置57は、低段側蒸発器36の冷媒出口温度と冷媒入口温度から当該低段側蒸発器36における冷媒過熱度を算出し、この冷媒過熱度、又は、庫内温度の何れかに基づき、選択的に低段側膨張弁の弁開度を制御する。

Description

冷凍装置
 本発明は、圧縮機、放熱器、膨張弁及び蒸発器を備えた冷媒回路の前記蒸発器により、ショーケースの陳列室内を冷却して成る冷凍装置に関するものである。
 従来より、例えばコンビニエンスストアやスーパーマーケット等の店舗には、陳列室内にて商品を冷却しながら陳列販売するショーケースが複数台設置されている。各ショーケースには陳列室内を冷却するための蒸発器が設置され、この蒸発器には店外等に設置された冷凍機ユニットの圧縮機から冷媒が膨張弁を介して分配供給される構成とされていた。
 この場合、圧縮機の制御は低圧側の圧力に基づいて行われ、ショーケースの蒸発器入口側の膨張弁の弁開度は、蒸発器における冷媒過熱度に基づいて制御されていた。この冷媒過熱度による膨張弁の制御は、圧縮機が液冷媒を吸い込まないように行われるものであり(所謂液バック防止)、更に圧縮機の吸込側にはアキュムレータと称されるタンクを設けて、この液バックを阻止していた。
 また、各ショーケースの蒸発器出口側には電磁弁(開閉弁)が設けられ、庫内温度が目標とする庫内温度まで低下した場合、この電磁弁を閉じる。そして、全ての電磁弁が閉じられて低圧側の圧力が低下したとき、圧縮機は停止される制御とされていた。
 また、近年の地球環境問題からこの種ショーケースにおいても二酸化炭素が冷媒として使用されるようになってきているが、この二酸化炭素を圧縮するためには比較的大型の圧縮機が必要となる。そこで、それぞれ独立した冷媒閉回路を構成する高段側冷媒回路と低段側冷媒回路とをカスケード接続し、高段側冷媒回路の冷媒を蒸発させて低段側冷媒回路の高圧側冷媒を過冷却することにより、低段側冷媒回路の蒸発器で所要の冷凍能力を得る冷凍装置も開発されている(例えば、特許文献1、特許文献2参照)。
特開2001-91074号公報 特開2000-205672号公報 特開平11-281222号公報
 ここで、従来の如く庫内温度で電磁弁を閉じた場合、冷媒圧力が大きく変化する。特に、二酸化炭素を冷媒として使用する場合にはこれが顕著となるため、アキュムレータを大型化しない限り、高圧カットなどの安全装置が働いて圧縮機が強制停止に陥ると云う問題があった。一方、係る電磁弁を使用しない場合には、膨張弁で庫内温度を制御する必要があるが、従来では蒸発器における冷媒過熱度で膨張弁は制御されていたため、庫内温度が目標とする庫内温度以下になっても冷却を継続してしまう。
 そこで、庫内温度に基づいて膨張弁の弁開度を制御すると、例えば複数のショーケースが圧縮機に接続される場合、冷媒の流れに偏りが生じてしまう可能性があり、圧縮機への液バックの原因となる。また、蒸発器に着霜が生じた場合は熱交換効率が低下するため、庫内温度で膨張弁を制御すると、膨張弁はより冷媒を蒸発器に流す方向に制御されることになる。それにより、蒸発器の着霜は更に成長する方向となるため、蒸発器に過着霜が生じる原因となる危険性があった。
 他方、前記特許文献3の如く庫内温度と蒸発器における冷媒過熱度の双方を加味して膨張弁の制御を行うと、制御が極めて複雑になると共に、庫内の過冷却と圧縮機の液バック、蒸発器への過着霜などの問題を解決する制御を実現することは、現実的には極めて困難であった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、膨張弁の比較的簡単な制御でショーケースの庫内の過冷却や蒸発器への過着霜及び圧縮機への液バック防止、圧縮機の起動/停止回数の低減などを実現することができる冷凍装置を提供するものである。
 上記課題を解決するために本発明の冷凍装置は、圧縮機、放熱器、膨張弁及び蒸発器を備えた冷媒回路を有し、蒸発器によりショーケースの陳列室内を冷却するものであって、陳列室内の温度である庫内温度を検出する庫内温度検出手段と、蒸発器の冷媒入口温度を検出する冷媒入口温度検出手段と、蒸発器の冷媒出口温度を検出する冷媒出口温度検出手段と、各温度検出手段の出力に基づき、膨張弁を制御する制御装置とを備え、この制御装置は、蒸発器の冷媒出口温度と冷媒入口温度から当該蒸発器における冷媒過熱度を算出し、この冷媒過熱度、又は、庫内温度の何れかに基づき、選択的に膨張弁の弁開度を制御することを特徴とする。
 請求項2の発明の冷凍装置は、上記発明において制御装置は、庫内温度が所定の第1の温度以上である場合、蒸発器における冷媒過熱度に基づき、当該冷媒過熱度が所定の目標過熱度となるよう膨張弁を制御すると共に、庫内温度が第1の温度より低くなった場合、庫内温度に基づき、当該庫内温度が所定の目標庫内温度となるよう膨張弁を制御することを特徴とする。
 請求項3の発明の冷凍装置は、上記発明において制御装置は、庫内温度に基づいて膨張弁を制御している状態で、庫内温度が第1の温度より高い所定の第2の温度以上に上昇した場合、蒸発器における冷媒過熱度に基づく膨張弁の制御に復帰することを特徴とする。
 請求項4の発明の冷凍装置は、上記発明において第2の温度は、目標庫内温度であることを特徴とする。
 請求項5の発明の冷凍装置は、請求項1の発明において制御装置は、庫内温度に基づき、当該庫内温度が所定の目標庫内温度となるよう膨張弁を制御すると共に、庫内温度が目標庫内温度より高い所定の第3の温度以上に上昇し、且つ、蒸発器における冷媒過熱度が所定の第1の冷媒過熱度以下に低下した場合、当該蒸発器における冷媒過熱度に基づき、この冷媒過熱度が所定の目標過熱度となるよう膨張弁を制御することを特徴とする。
 請求項6の発明の冷凍装置は、上記発明において制御装置は、蒸発器の除霜運転終了後、庫内温度に基づく膨張弁の制御に復帰することを特徴とする。
 請求項7の発明の冷凍装置は、上記各発明において冷媒回路は、圧縮機の冷媒吸込側に接続されたアキュムレータを備えることを特徴とする。
 請求項8の発明の冷凍装置は、上記各発明において冷媒回路は、相互に並列接続された複数の膨張弁及び蒸発器の直列回路を備え、各直列回路が複数のショーケースにそれぞれ設けられ、圧縮機から各蒸発器にそれぞれ膨張弁を介して冷媒を供給することを特徴とする。
 請求項9の発明の冷凍装置は、上記発明において各蒸発器の出口側にはそれぞれ開閉弁が設けられ、制御装置は、庫内温度が第1の温度より低い所定の第4の温度以下に低下した場合、開閉弁を閉じることを特徴とする。
 請求項10の発明の冷凍装置は、上記各発明において前記冷媒回路である低段側冷媒回路と、この低段側冷媒回路とは独立した高段側冷媒回路とを備え、高段側冷媒回路の蒸発器により、低段側冷媒回路の高圧側冷媒を冷却することを特徴とする。
 請求項11の発明の冷凍装置は、上記各発明において冷媒回路は、冷媒として二酸化炭素を使用することを特徴とする。
 本発明によれば、圧縮機、放熱器、膨張弁及び蒸発器を備えた冷媒回路を有し、蒸発器によりショーケースの陳列室内を冷却する冷凍装置において、陳列室内の温度である庫内温度を検出する庫内温度検出手段と、蒸発器の冷媒入口温度を検出する冷媒入口温度検出手段と、蒸発器の冷媒出口温度を検出する冷媒出口温度検出手段と、各温度検出手段の出力に基づき、膨張弁を制御する制御装置とを備え、この制御装置が、蒸発器の冷媒出口温度と冷媒入口温度から当該蒸発器における冷媒過熱度を算出し、この冷媒過熱度、又は、庫内温度の何れかに基づき、選択的に膨張弁の弁開度を制御するようにしたので、例えば、請求項2の発明の如く制御装置が、庫内温度が所定の第1の温度以上である場合、蒸発器における冷媒過熱度に基づき、当該冷媒過熱度が所定の目標過熱度となるよう膨張弁を制御することにより、圧縮機への液バックや蒸発器への過着霜を防止することができる。一方、庫内温度が第1の温度より低くなった場合は、庫内温度に基づいて当該庫内温度が所定の目標庫内温度となるよう膨張弁を制御することにより、陳列室が過冷却されることを防止することができる。
 即ち、本発明によれば係る簡単な制御の切り換えにより、圧縮機への液バックと蒸発器の過着霜、陳列室内の過冷却の全てを円滑に解消することができるようになる。また、陳列室内の過冷却が膨張弁により解消されることで、従来の如く蒸発器への冷媒供給を遮断する電磁弁の開閉による冷媒回路の圧力変動を回避することができるようになり、例えば請求項7の発明の如く設けられたアキュムレータの容量が小さく、請求項11の如く二酸化炭素を冷媒として使用する場合にも、圧縮機の起動・停止回数を削減して安定した陳列室内の冷却を実現することができるようになるものである。
 この場合、請求項3の発明の如く制御装置が、庫内温度に基づいて膨張弁を制御している状態で、庫内温度が第1の温度より高い所定の第2の温度以上に上昇した場合、蒸発器における冷媒過熱度に基づく膨張弁の制御に復帰するようにすれば、陳列室内の過冷却の危険性が解消した段階で蒸発器における冷媒過熱度による制御に円滑に復帰できるようになる。特に、請求項4の発明の如く第2の温度を、目標庫内温度とすれば、陳列室内を目標庫内温度に円滑に制御することが可能となる。
 他方、請求項1の発明において請求項5の発明の如く制御装置が庫内温度に基づき、当該庫内温度が所定の目標庫内温度となるよう膨張弁を制御することで、同様に陳列室内の過冷却の防止と圧縮機の起動・停止回数の削減を図ることができるようになる。その状態で、庫内温度が目標庫内温度より高い所定の第3の温度以上に上昇し、且つ、蒸発器における冷媒過熱度が所定の第1の冷媒過熱度以下に低下した場合は、当該蒸発器における冷媒過熱度に基づき、この冷媒過熱度が所定の目標過熱度となるよう膨張弁を制御するようにすれば、庫内温度による膨張弁の制御で蒸発器に着霜が生じ、熱交換効率が低下して庫内温度が上昇しているにも拘わらず、蒸発器における冷媒過熱度が低下していることで蒸発器に着霜したことを的確に判定し、以後は蒸発器における冷媒過熱度に基づいた膨張弁の制御に移行できるようになる。
 これにより、比較的簡単な制御の切り換えで蒸発器への過着霜と庫内温度の更なる上昇を抑制することが可能となる。この場合、請求項6の発明の如く制御装置が、蒸発器の除霜運転終了後、庫内温度に基づく膨張弁の制御に復帰するようにすれば、蒸発器の除霜後に円滑に庫内温度に基づく膨張弁の制御状態に復帰することができるようになる。
 以上のことは請求項8の発明の如く冷媒回路が、相互に並列接続された複数の膨張弁及び蒸発器の直列回路を備え、各直列回路が複数のショーケースにそれぞれ設けられ、圧縮機から各蒸発器にそれぞれ膨張弁を介して冷媒を供給する冷凍装置において特に有効であり、請求項9の発明の如く各蒸発器の出口側にはそれぞれ開閉弁が設けられ、制御装置が、庫内温度が第1の温度より低い所定の第4の温度以下に低下した場合に開閉弁を閉じるときに、冷媒回路のより一層冷媒回路内の圧力変動を抑制することができるようになる。
 特に、本発明によれば膨張弁の制御の切り換えで圧縮機の液バックや蒸発器の過着霜、陳列室内の過冷却や冷媒回路の圧力変動を防止若しくは抑制することができるので、請求項9の発明の如き電磁弁を廃止することも可能となる。
 また、特に請求項11の発明の如く二酸化炭素を冷媒として使用する場合に、請求項10の発明の如き所謂二段冷凍装置の低段側冷媒回路に本発明を提供することで、極めて有効なものとなる。
本発明を適用した一実施例の冷凍装置の冷媒回路図である。 図1の冷凍装置の高段側冷媒回路の各部の圧力分布を示す図である。 図1の冷凍装置の高段側冷媒回路の高段側圧縮機の制御に係る制御装置のフローチャートである。 図1の冷凍装置の制御装置による高段側冷媒回路の低圧側圧力の目標値の算出動作を説明するための図である。 図1の冷凍装置の制御装置による低段側冷媒回路の圧力調整用膨張弁の制御フローチャートである。 図1の冷凍装置の制御装置による低段側冷媒回路の高圧側圧力の目標値の算出動作を説明するための図である。 図1の冷凍装置の制御装置による低段側膨張弁の弁開度制御を説明するタイミングチャートである(実施例1)。 従来のホットアンドコールドタイプのショーケースのオールホットへの切換時の制御を説明する図である。 図1の冷凍装置のホットアンドコールドタイプのショーケースのオールホットへの切換時の制御の一例を説明する図である。 図1の冷凍装置のホットアンドコールドタイプのショーケースのオールホットへの切換時の制御の他の例を説明する図である。 図1の冷凍装置のホットアンドコールドタイプのショーケースのオールホットへの切換時の制御のもう一つの他の例を説明する図である。 もう一つの従来のホットアンドコールドタイプのショーケースのオールホットへの切換時の制御を説明する図である。 図1の冷凍装置のホットアンドコールドタイプのショーケースのオールホットへの切換時の制御の更にもう一つの他の例を説明する図である。 図1の冷凍装置のホットアンドコールドタイプのショーケースのオールホットへの切換時の制御の更にもう一つの他の例を説明する図である。 図1の冷凍装置の低段側圧縮機の制御の他の例を説明するタイミングチャートである。
 以下、本発明の実施の形態について、詳細に説明する。図1は本発明を適用した一実施例の冷凍装置1の冷媒回路図である。
 実施例の冷凍装置1は、コンビニエンスストアやスーパーマーケット等の店舗に設置された複数台のショーケース2(2A、2B。実施例では全部で四台)に、店外に設置された冷凍機ユニット3から冷媒を供給するものであり、一台の高段側冷媒回路4と、この高段側冷媒回路4とは独立した複数(実施例では二系統)の低段側冷媒回路(本発明の冷媒回路)6A、6Bとから構成されている。
 この実施例の高段側冷媒回路4は、スクロール圧縮機から成る高段側圧縮機7と、この高段側圧縮機7の吐出配管8から分岐した分岐配管9A、9Bにそれぞれ接続されて相互に並列となる第1及び第2の(複数の)高段側ガスクーラ(放熱器)11A、11Bと、第1の高段側ガスクーラ11Aの出口配管12Aと第2の高段側ガスクーラ11Bの出口配管12Bとの合流点の下流に接続された高段側膨張弁13と、この高段側膨張弁13の出口配管59に接続された第1の高段側蒸発器(本発明の蒸発器)16Aと、この第1の高段側蒸発器16Aの出口配管17Aに接続された第2の高段側蒸発器(本発明の蒸発器)16Bとを備えており、この第2の高段側蒸発器16Bの出口配管17Bが高段側圧縮機7の吸込配管18に接続されて冷凍サイクルが構成されている。この高段側冷媒回路4には、二酸化炭素が冷媒として所定量封入されている。尚、58は、出口配管17Bに取り付けられて第2の高段側蒸発器16Bを出た冷媒の温度を検出する温度センサである。
 一方、低段側冷媒回路6A、6Bは何れも同一の構成である。即ち、実施例の低段側冷媒回路6A(低段側冷媒回路6Bも同様)は、これもスクロール圧縮機から成る低段側圧縮機(本発明の圧縮機)21と、この低段側圧縮機21の吐出配管22に接続された第1の低段側ガスクーラ(本発明の放熱器)23と、その出口配管24に接続されて第1の低段側ガスクーラ23の冷媒下流側となる第2の低段側ガスクーラ(本発明の放熱器)26と、この第2の低段側ガスクーラ26の出口配管27に接続された過冷却用熱交換器28と、この過冷却用熱交換器28の出口配管29に接続された圧力調整用膨張弁31と、この圧力調整用膨張弁31の出口配管32から分岐した分岐配管33A、33Bにそれぞれ接続された低段側膨張弁(本発明の膨張弁)34、34と、各低段側膨張弁34、34の出口側にそれぞれ接続された低段側蒸発器(本発明の蒸発器)36、36とを備えている。
 これら低段側膨張弁34及び低段側蒸発器36の直列回路が実施例では二つ相互に並列に接続されており、各直列回路が二台(複数)のショーケース2(2A、2B)内にそれぞれ設置されるものである。そして、各ショーケース2(2A、2B)内の低段側蒸発器36の出口側にはそれぞれ電磁弁(本発明の開閉弁)37が接続され、各電磁弁37の出口配管38が合流された後、入口配管42を経てアキュムレータ39に接続され、このアキュムレータ39の出口側が低段側圧縮機21の吸込配管41に接続されて冷凍サイクルが構成されている。アキュムレータ39は所定容量を有するタンクである。また、各低段側冷媒回路6A、6Bにも、二酸化炭素が冷媒として所定量封入されている。
 そして、高段側冷媒回路4の第1の高段側蒸発器16Aと低段側冷媒回路6Aの過冷却用熱交換器28とが熱交換関係に設けられて第1のカスケード熱交換器43Aが構成され、高段側冷媒回路4の第2の高段側蒸発器16Bと低段側冷媒回路6Bの過冷却用熱交換器28とが熱交換関係に設けられて第2のカスケード熱交換器43Bが構成されている。これにより、高段側冷媒回路4の第1の高段側蒸発器16A及び第2の高段側蒸発器16Bにより、低段側冷媒回路6A、6Bの過冷却用熱交換器28を流れる高圧側冷媒を冷却する。また、上記分岐配管33A、33Bと出口配管38が冷凍機ユニット3から各ショーケース2(2A、2B)に渡る配管となる。
 図中、44は各低段側冷媒回路6A、6Bの低段側圧縮機21の吐出配管22に取り付けられた圧力センサであり、低段側圧縮機21から吐出された高圧側冷媒の圧力を検出する。図中56は、高段側圧縮機7の吐出配管8に取り付けられて高段側圧縮機7の吐出圧力(高段側冷媒回路4の高圧側圧力)を検出する圧力センサであり、58は出口配管17Bに取り付けられて高段側圧縮機7の吸込圧力(高段側冷媒回路4の低圧側圧力)を検出する圧力センサである。
 図中51、52は第1及び第2のガスクーラ用送風機であり、第1のガスクーラ用送風機51は各高段側ガスクーラ11A、11Bと第1の低段側ガスクーラ23に通風してそれらを空冷し、第2のガスクーラ用送風機52は第2の低段側ガスクーラ26に通風して空冷する。また、図中53は外気温度を検出する温度センサである。
 更に、図中48は冷凍機ユニット3側の制御装置であり、各センサ44、53、56、58等の出力に基づいて高段側冷媒回路4の高段側圧縮機7の運転周波数、高段側膨張弁13の弁開度、低段側冷媒回路6A、6Bの低段側圧縮機21の運転周波数、圧力調整用膨張弁31の弁開度、各ガスクーラ用送風機51、52の運転を制御する。
 また、各ショーケース2(2A、2B)にもショーケース側の制御装置(本発明の制御装置)57が設けられている。更に、ショーケース2(2A、2B)の低段側蒸発器36の冷媒入口側には、この低段側蒸発器36の冷媒入口温度を検出する冷媒入口温度センサ(冷媒入口温度検出手段)46が取り付けられ、低段側蒸発器36の冷媒出口側には、この低段側蒸発器36の冷媒出口温度を検出する冷媒出口温度センサ(冷媒出口温度検出手段)47が取り付けられている。
 図中61はショーケース2(2A、2B)の陳列室内の温度である庫内温度を検出する庫内温度センサ(庫内温度検出手段)である。図中62は低段側蒸発器36と熱交換した冷気を各ショーケース2(2A、2B)の陳列室内に循環するための冷気循環用送風機であり、制御装置57はこれら各センサ46、47、61等の出力に基づいて低段側膨張弁34の弁開度、電磁弁37の開閉、冷気循環用送風機62の運転を制御する。
 ここで、図中2Aで示すショーケースは、実施例では陳列室内を冷却して使用する状態と、加熱して使用する状態を切り換えることができる所謂ホットアンドコールドタイプのショーケースであり、陳列室内に架設された棚等に当該陳列室内を加熱する電気ヒータ63が設けられている。更に、2Bで示すショーケースは、商品の納出の際に作業者が陳列室の後側に構成されたストックルームに入って作業する所謂ウィークインタイプのショーケースであり、このショーケース2Bにはウォークインタイマを制御するためのスイッチ64が設けられている。そして、これら電気ヒータ63はショーケース2Aの制御装置57で制御され、スイッチ64はショーケース2Bの制御装置57に接続されている。
 尚、ショーケース2側の制御装置57と冷凍機ユニット3の制御装置48は、店舗に設けられる統合制御装置SM(図10に示す)により集中制御され、互いに連携して動作するものである。
 (1)高段側冷媒回路4の動作
 以上の構成で、制御装置48により高段側冷媒回路4の高段側圧縮機7、低段側冷媒回路6A、6Bの低段側圧縮機21、各ガスクーラ用送風機51、52が運転されると、高段側圧縮機7で圧縮された高温高圧の冷媒(二酸化炭素)が吐出配管8に吐出され、分岐配管9A、9Bに分流された後、各高段側ガスクーラ11A、11Bに流入する。各高段側ガスクーラ11A、11Bに流入した冷媒は、ガスクーラ用送風機51により超臨界状態で冷却され、温度が低下する。
 第1の高段側ガスクーラ11A及び第2の高段側ガスクーラ11Bで冷却された冷媒は、出口配管12A、12Bを経て合流した後、高段側膨張弁13に流入し、そこで絞られた後(減圧)、第1のカスケード熱交換器43Aを構成する第1の高段側蒸発器16Aに流入して蒸発し、第1の低段側冷媒回路6Aの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。
 この第1の高段側蒸発器16Aを出た冷媒は、出口配管17Aを経て第2のカスケード熱交換器43Bを構成する第2の高段側蒸発器16Bに流入して蒸発し、第2の低段側冷媒回路6Bの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。そして、この第2の高段側蒸発器16Bを出た冷媒は、出口配管17Bを経て吸込配管18から高段側圧縮機7に吸い込まれる循環を繰り返す。
 ここで、図2は係る高段側冷媒回路4の各部の圧力分布を示している。図中の菱形は圧力センサ58が検出する高段側圧縮機7の吸込圧力Ps(低圧側圧力)の目標値、四角は圧力センサ56が検出する高段側圧縮機7の吐出圧力Pd(高圧側圧力)の目標値、三角は高段側圧縮機7の圧縮比、丸は高段側冷媒回路4に封入された冷媒量を示している。
 従来高段側冷媒回路4の低圧側圧力(高段側圧縮機7の吸込圧力Ps)の目標値は、例えば4MPa固定としており、この目標値となるように高段側圧縮機7の運転周波数を制御していたため、外気温度の変化に伴って変動する最適冷媒封入量の影響を受けていた。特に、実施例の高段側冷媒回路4には高段側圧縮機7の冷媒吸込側にアキュムレータを設けていないので、この影響は顕著であり、高段側圧縮機7が最適な圧縮比条件で運転できなくなり、効率が悪化していた。
 一方、図2のように高段側圧縮機7の吸込圧力Ps(低圧側圧力)の目標値を外気温度に応じて適正に設定することで、高段側圧縮機7の圧縮機を最適な比率(2.1~2.2)に維持することができることが分かる。そこで、制御装置48は温度センサ53が検出する外気温度Taに応じて高段側冷媒回路4の低圧側圧力の目標値(高段側圧縮機7の吸込圧力Psの目標値)を適切に設定して高段側圧縮機7を制御する。以下にその具体的な制御方法を説明する。
 (1-1)高段側圧縮機7の制御
 図3は高段側冷媒回路4の高段側圧縮機7の制御に係る制御装置48のフローチャートを示している。制御装置48は図3のステップS1で低段側冷媒回路6A又は6Bの低段側圧縮機21が運転され、その運転周波数が所定の値(例えば40Hz)以上となっており、且つ、温度センサ53が検出する外気温度Taが所定の温度(例えば+15℃)以上であるか否か判断する。そして、何れかの低段側冷媒回路6A、6Bの低段側圧縮機21の運転周波数が所定の値(40Hz)以上となっており、且つ、温度センサ53が検出する外気温度Taが+15℃以上である場合、ステップS2で高段側膨張弁13を起動時の開度に設定する。
 次に、ステップS3で第1のガスクーラ用送風機51を起動し、所定時間(例えば2分)待ち、2分経過後、ステップS4で温度センサ53により外気温度Taを検知し、そのときの外気温度Taに基づいて高段側圧縮機7の起動時の運転周波数を演算する。この場合制御装置48は、例えば外気温度Taが35℃以上の場合、高段側圧縮機7の起動時の運転周波数を75Hzとし、35℃>Ta≧30℃の場合は65Hz、30℃>Ta≧25℃の場合は55Hz、25℃>Ta≧20℃の場合は45Hz、20℃>Ta≧15℃の場合は35Hzという具合に、外気温度Taが高い程高くする方向で高段側圧縮機7の起動時の運転周波数を算出する。
 そして、ステップS5で高段側圧縮機7を起動し、ステップS4で演算した起動時の運転周波数まで運転周波数を上昇させる。そして、ステップS6で所定時間(例えば5分)待機し、ステップS7で高段側冷媒回路4の低圧側圧力の目標値(高段側圧縮機7の吸込圧力Psの目標値)の設定を行う。
 この場合、制御装置48はステップS4で温度センサ53により検知した外気温度Taとそのときの高段側冷媒回路4の最適な低圧側圧力との関係を示す情報を予め保有している。ここで、本発明において高段側冷媒回路4の低圧側圧力の最適値とは、前述した図2において高段側圧縮機7の圧縮比が最適な値(2.1~2.2)となる高段側冷媒回路4の低圧側圧力を意味する。図4の近似式(y=0.0525x+2.6155。R2(決定係数)=0.9994)はこの高段側冷媒回路4の最適な低圧側圧力と外気温度との関係を示す情報である。図4の横軸(x)は外気温度、縦軸(y)は高段側冷媒回路4の低圧側圧力(高段側圧縮機7の吸込圧力)の最適値であり、この近似式は予め実験により求めておく。例えば、外気温度(x)=+30℃の環境では、低圧側圧力の最適値(y)=4.2MPa程となることが分かる。
 制御装置48はステップS7でこの近似式を用い、外気温度Taからそのときの高段側冷媒回路4の最適な低圧側圧力(低圧側圧力の最適値)を算出して、当該算出した低圧側圧力を目標値として設定する。例えば、外気温度Taが+20℃のときの目標値(最適な低圧側圧力)は3.7MPa程となり、+30℃のときの目標値は前述した4.2MPa程となる。但し、制御装置48は外気温度Taが+15℃以下のときは目標値を3.5MPaに固定し、+35℃以上のときは4.7MPaに固定する。そして、高段側冷媒回路4の低圧側圧力の制御を開始する。
 この場合制御装置48は、ステップS8で先ず高段側圧縮機7の停止判定を行う。この停止判定の手順は以下の通りである。即ち、(条件1)高段側圧縮機7が最低運転周波数である状態が所定時間(例えば10分)継続しており、且つ、第1及び第2の高段側ガスクーラ11A、11Bの温度(別途温度センサで検出する。外気温度でも代用可能)が所定の温度(例えば+10℃)以下であること、(条件2)低段側圧縮機21が2台共停止していること、(条件3)各ショーケース2(2A、2B)の低段側蒸発器36の除霜時、のうちの何れかの条件が成立している場合、制御装置48は高段側圧縮機7を停止させるものと判定する。
 ステップS8で高段側圧縮機7を停止させると判定した場合、制御装置48はステップS9に進み、所定の停止工程に入る。そして、ステップS10で所定時間(例えば10分)待機した後、スタートに戻る。以後、ステップS1で再び外気温度Taが所定の温度(例えば+15℃)以上となり、且つ、何れかの低段側冷媒回路6、6Aの低段側圧縮機21が運転されてその運転周波数が所定の値(例えば40Hz)以上となった場合、制御装置48はステップS2以降に進んで高段側圧縮機7を再起動させることになる。
 一方、ステップS8で高段側圧縮機7を停止させる判定条件が成立していない場合、制御装置48はステップS11に進んで圧力センサ58により、高段側冷媒回路4の低圧側圧力を検知する。そして、ステップS7で設定した低圧側圧力の目標値とステップS11で検知した現在の低圧側圧力をステップS12で比較し、それらの差(目標値-現在値)の絶対値が所定の小さい値(例えば0.1MPa)以内であるか否か判断する。そして、差が0.1以内であればステップS13に進み、高段側圧縮機7の運転周波数の変更指示無しとする(運転周波数を変更しない)。
 一方、低圧側圧力の目標値と現在の低圧側圧力との差の絶対値が0.1より大きい場合、制御装置48はステップS12からステップS14に進む。このステップS14では、現在の低圧側圧力(現在値)が目標値より低いか否か判断し、現在の低圧側圧力(現在値)がステップS7で設定した目標値より低い場合、ステップS15に進んで高段側圧縮機7の運転周波数を所定ステップ減少させる。逆に、ステップS14で現在の低圧側圧力(現在値)が目標値以上である場合、ステップS16に進んで高段側圧縮機7の運転周波数を所定ステップ増加させる。
 以上のステップS12~ステップS16までの処理は低圧側圧力の目標値と現在値との偏差に基づくPID制御で実現される。このようにして制御装置48は、高段側冷媒回路4の低圧側圧力をステップS7で設定した目標値に制御する。
 次に、制御装置48はステップS17に進み、所定時間(例えば30sec)待機する。その後、ステップS18で温度センサ53により外気温度Taを検知し、ステップS7で高段側冷媒回路4の低圧側圧力の目標値を設定したときの外気温度Taと、ステップS18で検知した外気温度(現行外気温度)との差(設定外気温度-現行外気温度)の絶対値が所定の小さい値(例えば、2K)以内か否かをステップS19で判断する。そして、差の絶対値が2K以内であった場合、ステップS20に進んで高段側冷媒回路4の低圧側圧力の目標値を現在の値に維持し(現状維持)、ステップS8に戻る。
 ステップS19で差の絶対値が2Kより大きかった場合、制御装置48はステップS21に進み、高段側冷媒回路4の低圧側圧力の目標値を更新する。この場合も制御装置48は、図4の近似式を用い、ステップS18で検知した外気温度Taからそのときの高段側冷媒回路4の最適な低圧側圧力(低圧側圧力の最適値)を算出して、当該算出した低圧側圧力を目標値として設定し(更新)、ステップS8に戻る。
 このように、外気温度Taに応じて高段側冷媒回路4の低圧側圧力(高段側圧縮機7の吸込圧力Ps)の目標値を適切に設定し、係る目標値となるように高段側圧縮機7の運転周波数を制御するようにしたので、外気温度の変化に伴って変動する最適冷媒封入量の影響を排除し、実施例のようにアキュムレータを設けていない場合にも、高段側冷媒回路4の高段側圧縮機7を高効率で運転制御することができるようになる。
 (2)低段側冷媒回路6A、6Bの動作
 一方、第1の低段側冷媒回路6A(第2の低段側冷媒回路6Bも同様)の低段側圧縮機21で圧縮された高温高圧の冷媒(二酸化炭素)は吐出配管22に吐出され、第1の低段側ガスクーラ23に流入する。この第1の低段側ガスクーラ23に流入した冷媒は、ガスクーラ用送風機51により超臨界状態で冷却され、温度が低下した後、出口配管24を経て次に第2の低段側ガスクーラ26に流入する。この第2の低段側ガスクーラ26に流入した冷媒は、ガスクーラ用送風機52により超臨界状態で冷却され、温度が更に低下した後、出口配管27を経て第1のカスケード熱交換器43A(第2の低段側冷媒回路6Bの場合は第2のカスケード熱交換器43B)を構成する過冷却用熱交換器28に流入する。
 この過冷却用熱交換器28に流入した冷媒は、第1の高段側蒸発器16A(第2の低段側冷媒回路6Bの場合は第2の高段側蒸発器16B)内で蒸発する高段側冷媒回路4の冷媒により冷却(過冷却)されて更に温度が低下した後、出口配管29を経て圧力調整用膨張弁31に至る。
 この圧力調整用膨張弁31で低段側冷媒回路6A(6B)の高圧側冷媒は絞られ、出口配管32を経て分岐配管33A、33Bに分流し、冷凍機ユニット3から出て各ショーケース2(2A、2B)に入る。分岐配管33A、33Bを流れる冷媒は各ショーケース2(2A、2B)の低段側膨張弁34に至り、そこで絞られた後、低段側蒸発器36に流入して蒸発する。このときの吸熱作用で各ショーケース2(2A、2B)の陳列室内は所定の温度に冷却される。
 そして、これらショーケース2(2A、2B)の低段側蒸発器36を出た冷媒は、電磁弁37(ショーケース2(2A、2B)を冷却する場合、電磁弁37は開放されているものとする)、出口配管38を経て合流し、入口配管42からアキュムレータ39に流入する。アキュムレータ39に流入した冷媒はそこで気液分離され、ガス冷媒が吸込配管41を経て低段側圧縮機21に吸い込まれる循環を繰り返す。
 制御装置48は、圧力センサ56が検出する高段側冷媒回路4の高圧側圧力に基づいて膨張弁13の弁開度を後述する低段側冷媒回路6A、6Bの圧力調整用膨張弁31の制御と同様に制御することにより、高段側冷媒回路4の高圧側圧力を適正な値(高段側冷媒回路4の高圧側圧力の目標値)に制御する。
 このように、各カスケード熱交換器43A、43Bの高段側蒸発器16A、16Bにおいて高段側冷媒回路4の冷媒を蒸発させ、過冷却用熱交換器28を流れる各低段側冷媒回路6A、6Bの高圧側冷媒を過冷却することにより、二酸化炭素を冷媒として使用する場合にも、各冷媒回路4、6A、6Bの圧縮機7、21として比較的大型(大能力)の圧縮機を使用すること無く、各ショーケース2(2A、2B)の低段側蒸発器36において所要の冷却能力を得ることが可能となる。
 また、低段側冷媒回路6A、6Bの低段側蒸発器36を出た冷媒は、当該低段側冷媒回路6A、6Bの高圧側冷媒と熱交換すること無く、低段側冷媒回路6A、6Bの低段側圧縮機21に吸い込まれる構成とされているので、特に外気温度が高くなる夏期等に、低段側冷媒回路6A、6Bの高圧側圧力の異常上昇を防止することができるようになると共に、低段側圧縮機21に密度の濃い冷媒を吸い込ませることができるので、効率も向上することになる。
 この場合、低段側圧縮機21の吸込側にはアキュムレータ39が設けられているので、低段側圧縮機21への液バックは防止される。また、アキュムレータ39は液溜めとして機能するので、低段側冷媒回路6A、6Bに十分な量の二酸化炭素冷媒を封入することが可能となる。
 また、カスケード熱交換器43A、43Bは、低段側ガスクーラ26を出た冷媒を過冷却するので、低段側ガスクーラ24、26で冷却された低段側冷媒回路6A、6Bの二酸化炭素冷媒をカスケード熱交換器43A、43Bにて更に過冷却することになり、更なる冷却能力を改善を図ることができるようになる。
 更に、この実施例では二系統の低段側冷媒回路6A、6Bと、各低段側冷媒回路6A、6Bにそれぞれ設けられた二つのカスケード熱交換器43A、43Bを備えているので、一つの高段側冷媒回路4にて二系統(複数)の低段側冷媒回路6A、6Bの高圧側冷媒を過冷却することができるようになる。
 また、高段側冷媒回路4の各高段側蒸発器16A、16Bを出た冷媒を、当該高段側冷媒回路4の高圧側冷媒と熱交換させること無く、高段側冷媒回路4の高段側圧縮機7に吸い込ませているので、特に外気温度が高くなる夏期等に、高段側冷媒回路4の高圧側圧力の異常上昇を防止することができるようになる。また、高段側圧縮機7に密度の濃い冷媒を吸い込ませることができるので、効率も向上する。
 (2-1)圧力調整用膨張弁31の制御
 次に、図5及び図6を参照しながら、制御装置48による各低段側冷媒回路6A、6Bの圧力調整用膨張弁31の弁開度制御について説明する。尚、前述した如く高段側冷媒回路4の制御装置48も、圧力センサ56が検出する高段側冷媒回路4の高圧側圧力に基づいて膨張弁13の弁開度を、ここで説明する低段側冷媒回路6A、6Bの圧力調整用膨張弁31の制御と同様に制御することにより、高段側冷媒回路4の高圧側圧力を適正な値(高段側冷媒回路4の高圧側圧力の目標値)に制御するものとする。実施例で制御装置48は、外気温度に基づいて低段側冷媒回路6A、6Bの最適な高圧側圧力を算出し、それを目標値として各圧力調整用膨張弁31の弁開度を制御する。即ち、制御装置48は図5のフローチャートのステップS22で圧力調整用膨張弁31の弁開度を所定の起動時開度に設定する。次に、ステップS23で低段側圧縮機21を起動し、ステップS24で所定時間(例えば10分)待機する。次に、ステップS25で、温度センサ53が検出する外気温度Taを検知し、ステップS26でこの外気温度Taに基づき、低段側冷媒回路6A(6B)の高圧側圧力の目標値を設定する。
 この場合、制御装置48は外気温度Taとそのときの低段側冷媒回路6A(6B)の最適な高圧側圧力との関係を示す情報を予め保有している。ここで、本発明において高圧側圧力の最適値とは、効率COPが最大、若しくは、それに近い値となる低段側冷媒回路6A(6B)の高圧側圧力を意味する。図6中の近似式(y=0.1347x+5.4132。R2(決定係数)=0.9846)はこの低段側冷媒回路6A(6B)の最適な高圧側圧力と外気温度との関係を示す情報である。図6の横軸(x)は外気温度、縦軸(y)は当該冷凍装置1の低段側冷媒回路6A(6B)の高圧側圧力(低段側圧縮機21の吐出された高圧側冷媒の圧力)の最適値であり、この近似式は予め実験により求めておく。例えば、外気温度(x)=+38℃の環境では、高圧側圧力の最適値(y)=10.5MPaとなることが分かる。
 制御装置48はステップS26でこの近似式を用い、外気温度Taからそのときの最適な高圧側圧力(高圧側圧力の最適値)を算出して、当該算出した高圧側圧力を目標値として設定する。例えば、外気温度+20℃のときの目標値(最適な高圧側圧力)は8.1MPa程となり、+30℃のときの目標値は9.5MPa程となる。但し、制御装置48は外気温度Taが+8℃以下のときは目標値を6.5MPaに固定し(スクロールの転覆防止の為)、+40℃以上のときは10.8MPaに固定する。また、低段側圧縮機21の吐出温度(別途温度センサで検出する)が所定の高い値(例えば118℃)以上に上昇し、その状態が所定時間(例えば3分)継続した場合、高圧側圧力の目標値を0.1MPa下げる。
 次に、制御装置48はステップS27で圧力センサ44が検出する現在の高圧側圧力を検知する。次に、ステップS28で前記目標値(最適な高圧側圧力)と現在の高圧側圧力(現在値)との差(目標値-現在値)の絶対値(abs)が所定値(例えば0.1MPa)以下か否か判断し、差が所定値以下である(差が無いか、小さい)場合には、ステップS29に進んで圧力調整用膨張弁31の弁開度の変更する指示を行わないこととする(圧力調整用膨張弁31の弁開度は維持される)。
 次に、ステップS30で所定時間(例えば、30秒)待機した後、ステップS31で再度温度センサ53が検出する外気温度Taを検知する。そして、ステップS32で前記目標値を設定したときの外気温度(ステップS25における外気温度。設定外気温度)と、現在の外気温度Ta(ステップS31で検知した現行外気温度)との差(設定外気温度-現行外気温度)が所定値(例えば、プラスマイナス2K)の範囲以内か否か判断する。そして、差が所定値(プラスマイナス2K)以内である場合は、ステップS33で高圧側圧力の目標値を維持し、ステップS27に戻る。
 ステップS32で差(設定外気温度-現行外気温度)が所定値以内では無かった場合、制御装置48はステップS34に進んで図6の近似式を用い、再度そのときの外気温度Ta(現行外気温度)における最適な高圧側圧力を算出し、当該算出した高圧側圧力を目標値として設定(更新)する。そして、ステップS27に戻る。このようにして制御装置48は外気温度Taの変化に追従して低段側冷媒回路6A(6B)の高圧側圧力の目標値を更新していく。
 一方、ステップS28で前記目標値と現在の高圧側圧力(現在値)との差(目標値-現在値)の絶対値が所定値(0.1MPa)以下では無かった場合(差が大きい)、制御装置48はステップS35に進んで、差(目標値-現在値)が所定値(例えば、0.1MPa)より大きいか否か判断する。
 そして、現在の高圧側圧力(現在値)が低く、差(目標値-現在値)が所定値(0.1MPa)より大きい場合、制御装置48はステップS36に進んで圧力調整用膨張弁31の弁開度を所定パルス(xxpls)閉める。これにより、低段側冷媒回路6A(6B)の高圧側冷媒は、カスケード熱交換器43A(43B)の過冷却用熱交換器28を出たところでより堰き止められるかたちとなるので、低段側冷媒回路6A(6B)の高圧側圧力は上昇する。
 一方、現在の低段側冷媒回路6A(6B)の高圧側圧力(現在値)が高く、差(目標値-現在値)が所定値(0.1MPa)以下である場合、制御装置48はステップS37に進んで圧力調整用膨張弁31の弁開度を所定パルス(xxpls)開く。これにより、カスケード熱交換器43A(43B)の過冷却用熱交換器28を出た低段側冷媒回路6A(6B)の高圧側冷媒は、より流れ易くなるので、低段側冷媒回路6A(6B)の高圧側圧力は低下する。
 以上を繰り返して制御装置48は圧力調整用膨張弁31により低段側冷媒回路6A(6B)の高圧側圧力を最適な値に制御する。即ち、低段側冷媒回路6A、6Bの高圧側圧力を調整するための圧力調整用膨張弁31を設け、制御装置48により低段側冷媒回路6A、6Bの高圧側圧力に基づき、最適な当該高圧側圧力を目標値として圧力調整用膨張弁31を制御するようにしたので、低段側冷媒回路6A、6Bの高圧側冷媒の比エンタルピ差を確保し、冷却能力の向上と効率の改善を図ることができるようになる。
 特に、制御装置48に外気温度Taとそのときの最適な高圧側圧力との関係を示す情報(近似式)を予め保有させておき、外気温度に基づいて高圧側圧力の目標値を算出するようにしたので、圧力調整用膨張弁31により円滑に低段側冷媒回路6A、6Bの高圧側圧力を最適な値に制御することが可能となる。
 (2-2)低段側膨張弁34の制御
 次に、図7を参照しながら、制御装置57による各ショーケース2(2A、2B)の低段側膨張弁34の弁開度制御について説明する。図7は制御装置57による低段側膨張弁34の制御の様子を示すタイミングチャートであり、最上段はショーケース2(ショーケース2A、2Bも同様)の庫内温度センサ61が検出する陳列室内の温度である現在の庫内温度PT、上から二段目は低段側蒸発器36における冷媒過熱度PSH、上から三段目は低段側膨張弁34の弁開度、最下段は電磁弁37の開閉状態をそれぞれ示している。
 尚、制御装置57は冷媒出口温度センサ47が検出する低段側蒸発器36の冷媒出口温度と冷媒入口温度センサ46が検出する低段側蒸発器36の冷媒入口温度から、それらの差(冷媒出口温度-冷媒入口温度)である現在の冷媒過熱度PSHを算出する。また、制御装置57には各ショーケース2(2A、2B)の庫内温度の目標値である目標庫内温度ST(例えば+5℃。本発明における第2の温度)が設定されており、更に実施例では目標庫内温度STより1K低い温度(ディファレンシャル)を第1の温度T1、4K低い温度をサーモオフ温度TOFF(第4の温度)として設定している。また、低段側蒸発器36における冷媒過熱度の目標値である目標過熱度SSH(例えば5K)も設定されているものとする。
 今、庫内温度センサ61が検出する庫内温度PTが目標庫内温度STより高い状態であるものとすると、制御装置57は前述の如く算出した低段側蒸発器36における現在の冷媒過熱度PSHと目標過熱度SSHに基づいて低段側膨張弁34の弁開度を制御する。この場合、制御装置57は目標過熱度SSHと冷媒過熱度PSHとの偏差eに基づくPID制御によって冷媒過熱度PSHが目標過熱度SSHとなるように低段側膨張弁34の弁開度(制御量)を制御する。これにより、低段側圧縮機21への液バックが防止される。
 この状態から庫内温度PTが低下していき、前述した第1の温度T1より低くなった場合、制御装置57は庫内温度センサ61が検出する庫内温度PTに基づいて低段側膨張弁34の弁開度を制御する状態に切り換える。この場合、制御装置57は目標庫内温度STと現在の庫内温度PTとの偏差eに基づくPID制御によって庫内温度PTが目標庫内温度STとなるように低段側膨張弁34の弁開度(制御量)を制御する。
 これにより、庫内温度PTは上昇に転じる。尚、制御装置57は庫内温度PTが前述したサーモオフ温度TOFFまで低下した場合、電磁弁37を閉じて陳列室内の商品の凍結を防止するものであるが、制御装置57は庫内温度PTが第1の温度T1を下回った時点から庫内温度PTと目標庫内温度STに基づく低段側膨張弁34の制御に切り換えるので、陳列室内が過冷却されてしまう不都合が防止されると共に、電磁弁37が閉じられる状況も抑制されることになる(実施例では閉じられない)。
 この庫内温度PTと目標庫内温度STに基づく制御では、低段側膨張弁34の弁開度は徐々に低下(絞る)していくことになる。それにより、低段側蒸発器36に流入する冷媒量は減少するので、庫内温度PTは上昇していき、やがて目標庫内温度STまで上昇する。制御装置57は庫内温度PTが目標庫内温度ST以上に上昇した時点で、低段側膨張弁34の弁開度を、低段側蒸発器36における冷媒過熱度に基づいて制御する状態に復帰する。
 このように、各ショーケース2(2A、2B)の制御装置57は、庫内温度PTが第1の温度T1以上である場合、低段側蒸発器36における冷媒過熱度PSHに基づき、当該冷媒過熱度PSHが目標過熱度SSHとなるよう低段側膨張弁34を制御するので、低段側圧縮機21への液バックや低段側蒸発器36への過着霜を防止することができる。一方、庫内温度PTが第1の温度T1より低くなった場合は、庫内温度PTに基づいて当該庫内温度PTが目標庫内温度STとなるよう低段側膨張弁34を制御するので、陳列室が過冷却されることを防止することができる。
 即ち、係る簡単な制御の切り換えにより、低段側圧縮機21への液バックと低段側蒸発器36の過着霜、陳列室内の過冷却の全てを円滑に解消することができるようになる。また、陳列室内の過冷却が低段側膨張弁34により解消されることで、電磁弁37の開閉による低段側冷媒回路6A、6Bの圧力変動を回避することができるようになる。これにより、アキュムレータ39の容量が小さく、二酸化炭素を冷媒として使用する場合にも、低段側圧縮機21が高圧カットなどの安全装置(図示せず)によって強制停止されてしまう不都合を抑制し、低段側圧縮機21の起動・停止回数を削減して安定した陳列室内の冷却を実現することができるようになる。
 この場合、制御装置57は庫内温度PTに基づいて低段側膨張弁34を制御している状態で、庫内温度PTが目標庫内温度ST(第1の温度T1より高い所定の第2の温度)以上に上昇した場合、低段側蒸発器36における冷媒過熱度PSHに基づく低段側膨張弁34の制御に復帰するので、陳列室内の過冷却の危険性が解消した段階で低段側蒸発器36における冷媒過熱度PSHによる制御に円滑に復帰できるようになる。特に、この復帰温度(第2の温度)を目標庫内温度STにしているので、陳列室内を目標庫内温度STに円滑に制御することが可能となる。
 (3)ショーケース2Aの制御
 前述した如くショーケース2Aは電気ヒータ63を備えたホットアンドコールドタイプのショーケースであり、切替スイッチ66(図8他)の操作によって陳列室内を加熱して使用する状態(オールホット)に切り替えられた場合、ショーケース2Aの制御装置57は低段側膨張弁34及び電磁弁37を閉じて低段側蒸発器36への冷媒供給を停止し、電気ヒータ63を発熱させて陳列室内を加熱(加温)することになる。
 しかしながら、従来では図8の如く切替スイッチ66がオールホットに切り替えられた時点で低段側膨張弁34の弁開度を低下させ、電磁弁37を閉じていたため、低段側冷媒回路6B内の低圧側圧力の変動が大きくなる。そのため、アキュムレータ39の容量が小さい場合には、高圧側圧力が急激に上昇し、低段側圧縮機34の回転数低減制御が間に合わなくなって、高圧カットなどの安全装置により低段側圧縮機21が強制停止される。低段側圧縮機21が強制的に停止されると過電流異常などが発生する危険性があった。
 (3-1)高圧カット防止制御1
 そこで、この実施例では図9に示す如く切換スイッチ66の操作でショーケース2Aがオールホットの使用状態に切り替えられた場合、ショーケース2Aの制御装置57は、その時点から低段側膨張弁34の弁開度を低下させていき、所定の開度(例えば制御上の最低開度)に所定時間固定した後、全閉とする。また、電磁弁37についても直ぐには閉じず、低段側膨張弁34を全閉とするタイミングまで遅延させた後、閉じる。
 これにより、低段側冷媒回路6B内の冷媒の圧力変動が抑制されるので、ショーケース2Bの電磁弁37が開いている限り、低段側圧縮機21は引き続き通常の動作範囲で運転を継続されることになる(実際には回転数が低下することになる)。
 (3-2)高圧カット防止制御2
 この場合、図10に示す如く切替スイッチ66がオールホットの使用状態に切り替えられた時点で、ショーケース2Aの制御装置57が統合制御装置SMに情報を送信し、この統合制御装置SMから冷凍機ユニット3の制御装置48に係る切り替えの情報を送信してもよい。制御装置48は切り替えの情報を受信した時点から低段側冷媒回路6Bの低段側圧縮機21の回転数を低減するようにすれば、より早い時点から回転数を低減することができるようになるので、低段側冷媒回路6B内の冷媒の圧力変動をより一層抑制することが可能となる。
 (3-3)高圧カット防止制御3
 次に、図11は低段側冷媒回路6Bの低段側圧縮機21の高圧カット防止制御の更に他の例を示している。この例の場合、切換スイッチ66の操作でショーケース2Aがオールホットの使用状態に切り替えられた場合、ショーケース2Aの制御装置57は、その時点から低段側膨張弁34の弁開度を所定の開度に固定する。また、電磁弁37も閉じないで待機する。
 一方、切替スイッチ66がオールホットの使用状態に切り替えられた時点で、ショーケース2Aの制御装置57は前述同様に統合制御装置SMに情報を送信し、この統合制御装置SMから冷凍機ユニット3の制御装置48に係る切り替えの情報を送信する。制御装置48は切り替えの情報を受信した時点から低段側冷媒回路6Bの低段側圧縮機21の回転数を徐々に低下させていき、停止する。
 この低段側圧縮機21の停止情報は制御装置48から統合制御装置SM経由でショーケース2Aの制御装置57に送信する。そして、制御装置57はこの停止情報を受信した後、ショーケース2Aの低段側膨張弁34を全閉とし、電磁弁37も閉じる。即ち、低段側圧縮機21が停止するまで電磁弁37の閉鎖を遅延する。
 その後、制御装置48は低段側冷媒回路6Bの低段側圧縮機21を再起動する。係る制御によれば、ショーケース2Aをオールホットの使用状態に切り替えるときの低段側冷媒回路6Bの冷媒の圧力変動による低段側圧縮機21の強制停止を確実に解消することが可能となる。
 (3-4)高圧カット防止制御4
 次に、図12及び図13を用いて低段側冷媒回路6Bに三台のショーケース2A、2B、2C(図示せず)が接続されている場合の低段側冷媒回路6Bの低段側圧縮機21の高圧カット防止制御の一例を説明する。各図において34A及び37Aはホットアンドコールドタイプのショーケース2Aの低段側膨張弁及び電磁弁を示し、34Bは二台目のショーケース2Bの低段側膨張弁を示し、37Cは三台目のショーケース2Cの電磁弁37Cであるものとする。
 今、ショーケース2Aと2Bが運転中で、ショーケース2Cが停止(従って電磁弁37Cは閉)している状態で、切替スイッチ66がオールホットに切り替えられ、その時点で低段側膨張弁34の弁開度を低下させ、電磁弁37を閉じた場合、ショーケース2Bは能力過剰で低段側蒸発器36の蒸発温度が低下するため、低段側膨張弁34Bの弁開度は絞り方向となる。そのため、低段側冷媒回路6B内の低圧側圧力が低下し、高圧側圧力が急激に上昇する。それにより、前述同様に低段側圧縮機34の回転数低減制御が間に合わなくなって、高圧カットなどの安全装置により低段側圧縮機21が強制停止され、低段側圧縮機21の過電流異常が発生する危険性があった。
 そこで、図13に示す如くショーケース2Aの切換スイッチ66がオールホットの使用状態に切り替えられた時点で、停止しているショーケース2Cの電磁弁37Cを強制的に開く。また、ショーケース2Bの低段側膨張弁34Bの弁開度も所定の大きい開度に固定とする。この場合の切り替え情報の送信はショーケース2Aの制御装置57から統合制御装置SMを介して各ショーケース2B、2Cの制御装置57に行われる。
 更に、前述同様に切替スイッチ66がオールホットの使用状態に切り替えられた時点で、統合制御装置SMから冷凍機ユニット3の制御装置48にも係る切り替えの情報を送信するようにする。制御装置48は切り替えの情報を受信した時点から低段側冷媒回路6Bの低段側圧縮機21の回転数を低減するようにすれば、低段側冷媒回路6B内の冷媒の圧力変動を早い時点からより一層効果的に抑制することが可能となる。
 (3-5)高圧カット防止制御5
 この場合、図14に示す如くショーケース2Aの切替スイッチ66がオールホットの使用状態に切り替えられた時点で、制御装置57がショーケース2Aの低段側膨張弁34Aの弁開度を徐々に低減させるようにしてもよい。その場合、電磁弁37Aは低段側膨張弁34Aが全閉となってから閉じる。また、停止しているショーケース2Cについては同様に電磁弁37Cを開ける。
 このようにすれば、低段側冷媒回路6Bの低段側圧縮機21の回転数も緩やかに低減されるかたちとなるので、圧力変動による高圧カットはより一層効果的に解消されることになる。
 (4)低段側圧縮機21の制御
 次に、図15を参照しながら低段側冷媒回路6A、6Bの低段側圧縮機21の制御の他の例を説明する。尚、この図15の例では目標庫内温度STより2K低い温度をサーモオフ温度TOFFとしている。従来では庫内温度センサ61が検出する庫内温度PTがこのサーモオフ温度TOFFまで低下した場合、当該ショーケース2(2A、2B)の電磁弁37を閉じていた(図15左側の現状)。しかしながら、特にアキュムレータ39の容量が比較的小さい場合、電磁弁37を閉じることによる圧力変動が大きく、二酸化炭素を使用した場合には前述同様に高圧カットが働いて、当該低段側冷媒回路6A、6Bの低段側圧縮機21が強制停止されてしまう問題があった。
 そこで、この制御例ではショーケース2(2A、2B)の制御装置57は、庫内温度センサ61が検出する庫内温度PTがサーモオフ温度TOFFより高い所定の下限値TL(例えばサーモオフ温度TOFFより1K高い値)を設定し、庫内温度PTがこの下限値TLまで低下した場合、当該ショーケース2(2A、2B)に冷媒を供給する低段側圧縮機21の運転周波数を低下させる。
 図15の右側(本案)はこの制御の様子を示している。各低段側冷媒回路6A、6Bの低段側圧縮機21は、常には所定の運転周波数で運転されている。そして、例えば低段側冷媒回路6Aの一方のショーケース2の庫内温度PTが目標庫内温度STを下回り、この目標庫内温度STより1K低い(サーモオフ温度TOFFより1K高い)下限値TLまで低下した場合、制御装置57は低段側冷媒回路6Aの低段側圧縮機21の運転周波数を所定ステップずつ、例えば制御下限値まで徐々に低下させていく。これにより、庫内温度PTは上昇に転ずる。
 その後、庫内温度PTが目標庫内温度STまで上昇した時点で、制御装置57は低段側圧縮機21の運転周波数を再び上昇させて初期の値に復帰させる。このように、庫内温度PTがサーモオフ温度TOFF(電磁弁37が閉じられる温度)まで低下する以前に、低段側圧縮機21の運転周波数を低下させるようにしたことにより、電磁弁37が閉じられることが無くなる。これにより、電磁弁37の閉鎖に伴う低段側圧縮機21の強制停止の発生を未然に回避することが可能となる。
 (5)低段側圧縮機21の停止/起動時の低段側膨張弁34の制御
 次に、低段側冷媒回路6A、6Bの低段側圧縮機21の停止時や起動時における低段側膨張弁34の制御例について説明する。例えば、低段側圧縮機21を停止した時点で、低段側膨張弁34の弁開度が制御上の最小開度であった場合、従来では低段側圧縮機21の停止中、低段側膨張弁34の弁開度はこの最小開度に維持されていた。そのため、低段側圧縮機21を起動した際、低段側冷媒回路6A、6B内の高圧側圧力が急速に上昇し、高圧カットで低段側圧縮機21が強制停止される場合があり、これはアキュムレータ39の容量が比較的小さい場合に顕著であった。
 そこで、ショーケース2(2A、2B)の制御装置57は、前述した統合制御装置SMを経由して冷凍機ユニット3の制御装置48から低段側圧縮機21の起動/停止の情報を受信する。そして、低段側圧縮機21が停止した時点での低段側膨張弁34の弁開度が所定の小さい値(最小開度又はそれに近い値)であった場合、低段側圧縮機21が停止している待機中に、低段側膨張弁34の弁開度を最小開度より大きい例えば中程度の値(中開度:待機開度)に拡大する。若しくは、低段側膨張弁34が再起動されるとき、低段側膨張弁34の弁開度を中開度(起動時開度)に拡大する。
 これにより、低段側圧縮機21の再起動時における低段側冷媒回路6A、6Bの高圧側圧力が異常に上昇して低段側圧縮機21が強制停止される不都合を未然に回避することができるようになる。
 (6)ショーケース2Bの制御
 次に、ショーケース2Bの制御について説明する。前述した如くショーケース2Bは、商品の納出の際に作業者が陳列室の後側に構成されたストックルームに入って作業する所謂ウィークインタイプのショーケースである。そのためにショーケース2Bにはウォークインタイマを制御するためのスイッチ64が設けられている。そして、作業者がストックルームに入る際、このスイッチ64を押す(操作)。
 従来のショーケース2Bの制御装置57は、スイッチ64が押された場合、当該ショーケース2Bの電磁弁37を閉じ、冷気循環用送風機62を停止させる。そして、再度スイッチ64が押された場合、制御装置57は電磁弁37を開き、冷気循環用送風機62を起動させるものであった。
 このとき、スイッチ64が最初に押された後、短時間のうちに再度スイッチ64が押されると、電磁弁37が短時間のうちに閉/開されるために低段側冷媒回路6Bの低圧側圧力が急激に低下し、所謂低圧カットの保護装置が作動して低段側圧縮機21が強制停止されるか、低段側圧縮機21が脱調してしまう問題があった。
 そこで、この例の制御装置57は、最初にスイッチ64が押された場合、従来同様に電磁弁37を閉じ、冷気循環用送風機62を停止するが、この時点から所定時間(例えば5分)以内に再度スイッチ64が押されても、電磁弁37を開放しないで閉じた状態を保持する。そして、所定時間が経過した後、電磁弁37を開放する。これにより、係る低段側圧縮機21の強制停止や脱調を未然に回避することができるようになる。
 但し、制御装置57は所定時間以内に再度スイッチ64が押された場合、その時点から冷気循環用送風機62の運転は開始する。これにより、作業者がショーケース2Bが故障しているとの誤解を生じる問題が無くなる。
 (7)低段側膨張弁34の制御の他の実施例
 次に、低段側冷媒回路6A、6Bの低段側膨張弁34の弁開度制御に関する他の例について説明する。この実施例では各ショーケース2(2A、2B)の制御装置57は、常には庫内温度センサ61が検出する庫内温度PTに基づき、庫内温度PTが図7の目標庫内温度STとなるように低段側膨張弁34の弁開度を制御する。この場合の弁開度制御も、目標庫内温度STと現行の庫内温度PTとの偏差eに基づくPID制御で実行される。係る制御により、陳列室内の過冷却の防止と低段側圧縮機21の起動・停止回数の削減を図ることができる。
 係る状態で、庫内温度PTが目標庫内温度STより所定値(例えば1K)高い第3の温度T3(図7)以上に上昇し、且つ、そのときの低段側蒸発器36における冷媒過熱度PSHが目標過熱度SSH(図7)より所定値(例えば1K)低い第1の冷媒過熱度SH1(図7)以下に低下している場合、制御装置57は低段側蒸発器36における冷媒過熱度PSHに基づく低段側膨張弁34の弁開度制御に移行する。
 この場合の弁開度制御も、目標過熱度SSHと現行の冷媒過熱度PSHとの偏差eに基づくPID制御で実行され、制御装置57は冷媒過熱度PSHが目標過熱度SSHとなるように低段側膨張弁34の弁開度を制御する。
 ここで、庫内温度PTに基づいて低段側膨張弁34の弁開度を制御していると、実施例の如く複数台のショーケース2(2A、2B)が低段側圧縮機21に接続されている場合、各ショーケース2(2A、2B)の低段側蒸発器36への冷媒の流れに偏りが生じ、流れが過多となる低段側蒸発器36から低段側圧縮機21に液バックしてしまう危険性がある(特にアキュムレータ39の容量が比較的小さい場合)。
 また、低段側蒸発器36に着霜が生じると熱交換効率が低下するため、庫内温度PTで低段側膨張弁34の弁開度を制御していると、制御装置57は低段側膨張弁34により、更に冷媒を低段側蒸発器36に流すように制御することになるので、低段側蒸発器36の着霜は更に成長する方向となる。そのため、低段側蒸発器36に過着霜が生じて陳列室内の冷却性能が悪化してしまう。
 一方、例えば上述した如く庫内温度PTが目標庫内温度STより高い第3の温度T3以上に上昇し、且つ、そのときの低段側蒸発器36における冷媒過熱度PSHが目標過熱度SSHより低い第1の冷媒過熱度SH1以下に低下している場合、低段側蒸発器36に着霜が生じていると判断することができる。
 この実施例では係る条件が成立した場合、制御装置57が低段側蒸発器36における冷媒過熱度PSHに基づく低段側膨張弁34の弁開度制御に移行するので、庫内温度PTによる低段側膨張弁34の弁開度制御で低段側蒸発器36に着霜が生じ、熱交換効率が低下して庫内温度PTが上昇しているにも拘わらず、低段側蒸発器36における冷媒過熱度PSHが低下していることで低段側蒸発器36に着霜したことを的確に判定し、以後は低段側蒸発器36における冷媒過熱度PSHと目標過熱度SSHに基づいた低段側膨張弁34の制御に移行できるようになる。これにより、比較的簡単な制御の切り換えで低段側蒸発器36への過着霜と庫内温度PTの更なる上昇を抑制することが可能となる。
 尚、ショーケース2(2A、2B)の制御装置57は、定期的に電磁弁37を閉じ、及び/又は、低段側膨張弁34を全閉として低段側蒸発器36の除霜運転を行うが、この実施例の場合には、制御装置57は係る低段側蒸発器36の除霜運転終了後、庫内温度PTに基づく低段側膨張弁34の弁開度制御に復帰する。これにより、低段側蒸発器36の除霜後に円滑に庫内温度PTに基づく低段側膨張弁34の弁開度制御状態に復帰することができるようになる。
 また、実施例では高段側冷媒回路4と低段側冷媒回路6A、6Bとをカスケード接続した冷凍装置で本発明を説明したが、請求項10以外の発明ではそれに限らず、実施例の低段側冷媒回路6A(6B)のみの所謂単段の冷媒回路を備えた冷凍装置にも本発明は有効である。更に実施例では一台の低段側圧縮機21から複数台のショーケース2に冷媒を供給する冷媒回路(低段側冷媒回路6A等)で説明したが、請求項8、請求項9以外の発明では、ショーケースに圧縮機と蒸発器を備えて当該圧縮機から蒸発器に冷媒を供給する所謂内蔵型ケースを冷却する冷媒回路を備えた冷凍装置にも本発明は有効である。
 1 冷凍装置
 2、2A、2B ショーケース
 3 冷凍機ユニット
 4 高段側冷媒回路
 6A、6B 低段側冷媒回路(冷媒回路)
 7 高段側圧縮機
 11A、11B 高段側ガスクーラ
 13 高段側膨張弁
 16A、16B 高段側蒸発器
 21 低段側圧縮機(圧縮機)
 23、26 低段側ガスクーラ(放熱器)
 28 過冷却熱交換器
 31 圧力調整用膨張弁
 34 低段側膨張弁(膨張弁)
 36 低段側蒸発器(蒸発器)
 37 電磁弁
 39 アキュムレータ
 48、57 制御装置

Claims (11)

  1.  圧縮機、放熱器、膨張弁及び蒸発器を備えた冷媒回路を有し、前記蒸発器によりショーケースの陳列室内を冷却する冷凍装置において、
     前記陳列室内の温度である庫内温度を検出する庫内温度検出手段と、
     前記蒸発器の冷媒入口温度を検出する冷媒入口温度検出手段と、
     前記蒸発器の冷媒出口温度を検出する冷媒出口温度検出手段と、
     前記各温度検出手段の出力に基づき、前記膨張弁を制御する制御装置とを備え、
     該制御装置は、前記蒸発器の冷媒出口温度と冷媒入口温度から当該蒸発器における冷媒過熱度を算出し、該冷媒過熱度、又は、前記庫内温度の何れかに基づき、選択的に前記膨張弁の弁開度を制御することを特徴とする冷凍装置。
  2.  前記制御装置は、
     前記庫内温度が所定の第1の温度以上である場合、前記蒸発器における冷媒過熱度に基づき、当該冷媒過熱度が所定の目標過熱度となるよう前記膨張弁を制御すると共に、
     前記庫内温度が前記第1の温度より低くなった場合、前記庫内温度に基づき、当該庫内温度が所定の目標庫内温度となるよう前記膨張弁を制御することを特徴とする請求項1に記載の冷凍装置。
  3.  前記制御装置は、前記庫内温度に基づいて前記膨張弁を制御している状態で、前記庫内温度が前記第1の温度より高い所定の第2の温度以上に上昇した場合、前記蒸発器における冷媒過熱度に基づく前記膨張弁の制御に復帰することを特徴とする請求項2に記載の冷凍装置。
  4.  前記第2の温度は、前記目標庫内温度であることを特徴とする請求項3に記載の冷凍装置。
  5.  前記制御装置は、
     前記庫内温度に基づき、当該庫内温度が所定の目標庫内温度となるよう前記膨張弁を制御すると共に、
     前記庫内温度が前記目標庫内温度より高い所定の第3の温度以上に上昇し、且つ、前記蒸発器における冷媒過熱度が所定の第1の冷媒過熱度以下に低下した場合、当該蒸発器における冷媒過熱度に基づき、該冷媒過熱度が所定の目標過熱度となるよう前記膨張弁を制御することを特徴とする請求項1に記載の冷凍装置。
  6.  前記制御装置は、前記蒸発器の除霜運転終了後、前記庫内温度に基づく前記膨張弁の制御に復帰することを特徴とする請求項5に記載の冷凍装置。
  7.  前記冷媒回路は、前記圧縮機の冷媒吸込側に接続されたアキュムレータを備えることを特徴とする請求項1乃至請求項6のうちの何れかに記載の冷凍装置。
  8.  前記冷媒回路は、相互に並列接続された複数の前記膨張弁及び前記蒸発器の直列回路を備え、各直列回路が複数の前記ショーケースにそれぞれ設けられ、前記圧縮機から前記各蒸発器にそれぞれ前記膨張弁を介して冷媒を供給することを特徴とする請求項1乃至請求項7のうちの何れかに記載の冷凍装置。
  9.  前記各蒸発器の出口側にはそれぞれ開閉弁が設けられ、
     前記制御装置は、前記庫内温度が前記第1の温度より低い所定の第4の温度以下に低下した場合、前記開閉弁を閉じることを特徴とする請求項8に記載の冷凍装置。
  10.  前記冷媒回路である低段側冷媒回路と、該低段側冷媒回路とは独立した高段側冷媒回路とを備え、前記高段側冷媒回路の蒸発器により、前記低段側冷媒回路の高圧側冷媒を冷却することを特徴とする請求項1乃至請求項9のうちの何れかに記載の冷凍装置。
  11.  前記冷媒回路は、冷媒として二酸化炭素を使用することを特徴とする請求項1乃至請求項10のうちの何れかに記載の冷凍装置。
PCT/JP2015/081840 2014-11-18 2015-11-12 冷凍装置 WO2016080275A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15861606.0A EP3249316A4 (en) 2014-11-18 2015-11-12 Refrigeration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014233466A JP2016099013A (ja) 2014-11-18 2014-11-18 冷凍装置
JP2014-233466 2014-11-18

Publications (1)

Publication Number Publication Date
WO2016080275A1 true WO2016080275A1 (ja) 2016-05-26

Family

ID=56013817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081840 WO2016080275A1 (ja) 2014-11-18 2015-11-12 冷凍装置

Country Status (3)

Country Link
EP (1) EP3249316A4 (ja)
JP (1) JP2016099013A (ja)
WO (1) WO2016080275A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091494A (ja) * 2016-11-30 2018-06-14 株式会社鷺宮製作所 冷却庫の制御装置、冷却庫、及び冷却庫の制御方法
CN110500825A (zh) * 2019-09-24 2019-11-26 珠海格力电器股份有限公司 电子膨胀阀故障诊断方法和装置、空调和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106907876A (zh) * 2017-02-21 2017-06-30 广东美的暖通设备有限公司 空调系统及其蒸发温度控制方法
JP6902729B2 (ja) * 2017-10-31 2021-07-14 パナソニックIpマネジメント株式会社 カスケード式冷凍装置
KR102459591B1 (ko) * 2017-11-16 2022-10-26 엘지전자 주식회사 공기조화기의 제어방법
JP2020128853A (ja) * 2019-02-08 2020-08-27 サンデン・リテールシステム株式会社 冷却システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205958A (ja) * 1997-01-14 1998-08-04 Toshiba Corp マルチエバポレータ冷蔵庫
JPH11281221A (ja) * 1998-03-31 1999-10-15 Nippon Kentetsu Co Ltd オープンショーケースの冷却装置
JP2005030679A (ja) * 2003-07-14 2005-02-03 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調装置の制御方法
JP2010255993A (ja) * 2009-04-28 2010-11-11 Okamura Corp 電子式膨張弁の制御システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9459029B2 (en) * 2009-01-19 2016-10-04 Fujikoki Corporation Valve controller, valve controlling method, refrigeration and cold storage system, device and method for controlling the system
JP6040041B2 (ja) * 2013-02-12 2016-12-07 サンデンホールディングス株式会社 ショーケース冷却装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205958A (ja) * 1997-01-14 1998-08-04 Toshiba Corp マルチエバポレータ冷蔵庫
JPH11281221A (ja) * 1998-03-31 1999-10-15 Nippon Kentetsu Co Ltd オープンショーケースの冷却装置
JP2005030679A (ja) * 2003-07-14 2005-02-03 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調装置の制御方法
JP2010255993A (ja) * 2009-04-28 2010-11-11 Okamura Corp 電子式膨張弁の制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3249316A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091494A (ja) * 2016-11-30 2018-06-14 株式会社鷺宮製作所 冷却庫の制御装置、冷却庫、及び冷却庫の制御方法
CN110500825A (zh) * 2019-09-24 2019-11-26 珠海格力电器股份有限公司 电子膨胀阀故障诊断方法和装置、空调和存储介质

Also Published As

Publication number Publication date
JP2016099013A (ja) 2016-05-30
EP3249316A4 (en) 2018-07-25
EP3249316A1 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
WO2016080275A1 (ja) 冷凍装置
JP6478544B2 (ja) 自動販売機
JP5595245B2 (ja) 冷凍装置
EP2417406B1 (en) Refrigerant vapor compression system with hot gas bypass
JP2007139225A (ja) 冷凍装置
JP5641875B2 (ja) 冷凍装置
US10180269B2 (en) Refrigeration device
EP2869004B1 (en) Refrigerator and method for controlling the same
EP2910872B1 (en) Freezing device
JP4497915B2 (ja) 冷却装置
WO2017138058A1 (ja) 冷凍装置
WO2017006723A1 (ja) 冷凍装置
JP4346473B2 (ja) 空調冷凍装置
JP5901775B2 (ja) 冷凍装置
JP2020046157A (ja) 冷凍装置
KR102303804B1 (ko) 냉장 및 냉동 공조 시스템
JP6094859B2 (ja) 冷凍装置
JP6206787B2 (ja) 冷凍装置
TW201901101A (zh) 冷凍裝置及溫度控制裝置
JP2015178920A (ja) 冷凍装置
JP2008032265A (ja) 冷凍装置
JP2018087693A (ja) 冷凍装置
KR101672625B1 (ko) 사방밸브를 이용한 쇼케이스 냉동고용 역사이클 제상장치와 역사이클 제상장치가 설치된 쇼케이스 냉동고
JP2005282869A (ja) 複合型冷凍サイクル設備及びその運転方法
JP4488767B2 (ja) 空調冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861606

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015861606

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE