JP2015178920A - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP2015178920A
JP2015178920A JP2014055975A JP2014055975A JP2015178920A JP 2015178920 A JP2015178920 A JP 2015178920A JP 2014055975 A JP2014055975 A JP 2014055975A JP 2014055975 A JP2014055975 A JP 2014055975A JP 2015178920 A JP2015178920 A JP 2015178920A
Authority
JP
Japan
Prior art keywords
stage
refrigerant
low
refrigerant circuit
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014055975A
Other languages
English (en)
Other versions
JP2015178920A5 (ja
Inventor
孝輔 宮城
Kosuke MIYAGI
孝輔 宮城
須田 淳一
Junichi Suda
淳一 須田
昌敬 早川
Masataka HAYAKAWA
昌敬 早川
裕亮 臂
Hiroaki Hiji
裕亮 臂
和宏 表
Kazuhiro OMOTE
和宏 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2014055975A priority Critical patent/JP2015178920A/ja
Publication of JP2015178920A publication Critical patent/JP2015178920A/ja
Publication of JP2015178920A5 publication Critical patent/JP2015178920A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】低段側冷媒回路の高圧側冷媒を的確に過冷却することができる冷凍装置を比較的安価で提供する。【解決手段】高段側冷媒回路4と、複数の低段側冷媒回路6A、6Bと、高段側冷媒回路の冷媒を蒸発させて各低段側冷媒回路の高圧側冷媒をそれぞれ冷却する複数のカスケード熱交換器43A、43Bとを備え、各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置1において、高段側冷媒回路は、並列に接続された複数の高段側ガスクーラ11A、11Bと、各高段側ガスクーラ11A、11Bの出口にそれぞれ接続された複数の高段側膨張弁13A、13Bと、各高段側膨張弁の出口にそれぞれ接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器16A、16Bを備えた。【選択図】図1

Description

本発明は、高段側冷媒回路と低段側冷媒回路とをカスケード接続し、各冷媒回路には冷媒として二酸化炭素を封入して成る冷凍装置に関するものである。
従来より、例えばコンビニエンスストアやスーパーマーケット等の店舗には、陳列室内にて商品を冷却しながら陳列販売するショーケースが複数台設置されている。各ショーケースには陳列室内を冷却するための蒸発器が設置され、この蒸発器には店外等に設置された冷凍機ユニットから冷媒が供給される構成とされていた。
また、近年の地球環境問題からこの種ショーケースにおいても二酸化炭素が冷媒として使用されるようになってきているが、この二酸化炭素を圧縮するためには比較的大型の圧縮機が必要となる。そこで、それぞれ独立した冷媒閉回路を構成する高段側冷媒回路と低段側冷媒回路とをカスケード接続し、高段側冷媒回路の冷媒を蒸発させて低段側冷媒回路の高圧側冷媒を過冷却することにより、低段側冷媒回路の蒸発器で所要の冷凍能力を得る冷凍装置が開発されている(例えば、特許文献1、特許文献2参照)。
ここで、図6は係る冷凍装置の低段側冷媒回路のp−h線図を例示している。図中縦軸は低段側冷媒回路の高圧側圧力、L1は飽和液線、L2は飽和蒸気線、L3は+40℃の等温線、L4は+100℃〜+120℃の等温線をそれぞれ示している。また、図中X1は低段側冷媒回路の高圧側圧力が9MPaのときに+100℃〜+120℃の冷媒を+40℃まで冷却したときの比エンタルピの差を示し、X2は低段側冷媒回路の高圧側圧力が7.5MPaのときに+100℃〜+120℃の冷媒を+40℃まで冷却したときの比エンタルピの差を示している。
二酸化炭素冷媒はガスクーラにて超臨界状態で冷却されるため、顕熱変化となる。そして、図6からも明らかな如く、低段側冷媒回路の高圧側圧力が高い9MPaのときの方が、7.5MPaのときよりも比エンタルピの差が大きく、その分、冷凍能力が高くなることが分かる。
また、図7は低段側冷媒回路の高圧側圧力と各熱交換器の能力(図6とは条件が異なる夏期高温38℃)の関係を示している。また、図中菱形は低段側ガスクーラ、四角は高段側ガスクーラ、三角はカスケード熱交換器、丸はCOPをそれぞれ示している。この図からも明らかな如く、図中X3で示す領域、即ち、低段側冷媒回路の高圧側圧力が高い領域で効率COPが改善されることが分かる。例えば、この例の冷凍装置の場合、外気温度が+38℃の環境下では、低段側冷媒回路の高圧側圧力が10.5MPa程であるときに効率COPが最大となることが分かる。
特開2001−91074号公報 特開2000−205672号公報
前記特許文献2では単一の高段側冷媒回路に対して複数の低段側冷媒回路がカスケード接続されているが、高段側の単一の凝縮器にて冷却された高圧側冷媒を各カスケード熱交換器に分流しているため、各低段側冷媒回路の高圧側冷媒を的確に過冷却することが難しかった。
一方、各カスケード熱交換器にはそれぞれ高段側の膨張弁を設けていたため、構成が複雑化し、コストも高騰していた。
本発明は、係る従来の技術的課題を解決するために成されたものであり、低段側冷媒回路の高圧側冷媒を的確に過冷却することができる冷凍装置を比較的安価で提供するものである。
上記課題を解決するために請求項1の発明は、高段側冷媒回路と、複数の低段側冷媒回路と、高段側冷媒回路の冷媒を蒸発させて各低段側冷媒回路の高圧側冷媒をそれぞれ冷却する複数のカスケード熱交換器とを備え、各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置において、高段側冷媒回路は、並列に接続された複数の高段側ガスクーラと、各高段側ガスクーラの出口にそれぞれ接続された複数の高段側膨張弁と、各高段側膨張弁の出口にそれぞれ接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を備えたことを特徴とする。
請求項2の発明は、高段側冷媒回路と、複数の低段側冷媒回路と、高段側冷媒回路の冷媒を蒸発させて各低段側冷媒回路の高圧側冷媒をそれぞれ冷却する複数のカスケード熱交換器とを備え、各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置において、高段側冷媒回路は、高段側ガスクーラと、この高段側ガスクーラの出口に接続された高段側膨張弁と、この高段側膨張弁の出口に並列に接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を備えたことを特徴とする。
請求項3の発明は、高段側冷媒回路と、複数の低段側冷媒回路と、高段側冷媒回路の冷媒を蒸発させて各低段側冷媒回路の高圧側冷媒をそれぞれ冷却する複数のカスケード熱交換器とを備え、各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置において、高段側冷媒回路は、高段側ガスクーラと、この高段側ガスクーラの出口に接続された高段側膨張弁と、この高段側膨張弁の出口に直列に接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を備えたことを特徴とする。
請求項4の発明は、上記各発明において高段側蒸発器を出た冷媒を、高段側冷媒回路の高圧側冷媒と熱交換させること無く、高段側冷媒回路の高段側圧縮機に吸い込ませることを特徴とする。
請求項1の発明によれば、高段側冷媒回路と、複数の低段側冷媒回路と、高段側冷媒回路の冷媒を蒸発させて各低段側冷媒回路の高圧側冷媒をそれぞれ冷却する複数のカスケード熱交換器とを備え、各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置において、高段側冷媒回路は、並列に接続された複数の高段側ガスクーラと、各高段側ガスクーラの出口にそれぞれ接続された複数の高段側膨張弁と、各高段側膨張弁の出口にそれぞれ接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を備えているので、一つの高段側冷媒回路にて複数の低段側冷媒回路の高圧側冷媒を過冷却することができるようになる。
この場合、高段側冷媒回路は、並列に接続された複数の高段側ガスクーラと、各高段側ガスクーラの出口にそれぞれ接続された複数の高段側膨張弁と、各高段側膨張弁の出口にそれぞれ接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を有しているので、低段側冷媒回路を複数用いる場合にも、各カスケード熱交換器により各低段側冷媒回路の高圧側冷媒を的確に過冷却することができるようになる。
請求項2の発明によれば、高段側冷媒回路と、複数の低段側冷媒回路と、高段側冷媒回路の冷媒を蒸発させて各低段側冷媒回路の高圧側冷媒をそれぞれ冷却する複数のカスケード熱交換器とを備え、各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置において、高段側冷媒回路は、高段側ガスクーラと、この高段側ガスクーラの出口に接続された高段側膨張弁と、この高段側膨張弁の出口に並列に接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を備えているので、同様に一つの高段側冷媒回路にて複数の低段側冷媒回路の高圧側冷媒を過冷却することができるようになる。
この場合、高段側冷媒回路は、高段側ガスクーラと、この高段側ガスクーラの出口に接続された高段側膨張弁と、この高段側膨張弁の出口に並列に接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を備えているので、一つの高段側膨張弁から複数の高段側蒸発器へ冷媒を流すことができるようになり、制御が簡素化されると共に、コストの低減も図ることが可能となる。
請求項3の発明によれば、高段側冷媒回路と、複数の低段側冷媒回路と、高段側冷媒回路の冷媒を蒸発させて各低段側冷媒回路の高圧側冷媒をそれぞれ冷却する複数のカスケード熱交換器とを備え、各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置において、高段側冷媒回路は、高段側ガスクーラと、この高段側ガスクーラの出口に接続された高段側膨張弁と、この高段側膨張弁の出口に直列に接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を備えているので、同様に一つの高段側冷媒回路にて複数の低段側冷媒回路の高圧側冷媒を過冷却することができるようになる。
この場合、高段側冷媒回路は、高段側ガスクーラと、この高段側ガスクーラの出口に接続された高段側膨張弁と、この高段側膨張弁の出口に直列に接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を有しているので、何れかの低段側冷媒回路の運転が停止したときに、高段側冷媒回路の高段側圧縮機に液バックが発生する不都合を防止することが可能となるものである。
これらにおいて、請求項4の発明の如く高段側蒸発器を出た冷媒を、高段側冷媒回路の高圧側冷媒と熱交換させること無く、高段側冷媒回路の高段側圧縮機に吸い込ませるようにしたので、特に外気温度が高くなる夏期等に、高段側冷媒回路の高圧側圧力の異常上昇を防止することができるようになる。また、高段側圧縮機に密度の濃い冷媒を吸い込ませることができるので、効率も向上することになる。
本発明を適用した一実施例の冷凍装置の冷媒回路図である(実施例1)。 図1の冷凍装置の制御装置による圧力調整用膨張弁の制御フローチャートである。 図1の冷凍装置の制御装置による低段側冷媒回路の高圧側圧力の目標値の算出動作を説明するための図である。 本発明を適用した他の実施例の冷凍装置の冷媒回路図である(実施例2)。 本発明を適用したもう一つの他の実施例の冷凍装置の冷媒回路図である(実施例3)。 この種冷凍装置の低段側冷媒回路のp−h線図である。 この種冷凍装置の低段側冷媒回路の高圧側圧力と各熱交換器の能力の関係を示す図である。
以下、本発明の実施の形態について、詳細に説明する。
図1は本発明を適用した一実施例の冷凍装置1の冷媒回路図である。実施例の冷凍装置1は、コンビニエンスストアやスーパーマーケット等の店舗に設置された複数台のショーケース2(実施例では四台)に、店外に設置された冷凍機ユニット3から冷媒を供給するものであり、一台の高段側冷媒回路4と、複数(実施例では二系統)の低段側冷媒回路6A、6Bとから構成されている。
この実施例の高段側冷媒回路4は、スクロール圧縮機から成る高段側圧縮機7と、この高段側圧縮機7の吐出配管8から分岐した分岐配管9A、9Bにそれぞれ接続されて相互に並列となる第1及び第2の(複数の)高段側ガスクーラ11A、11Bと、第1の高段側ガスクーラ11Aの出口配管12Aに接続された第1の高段側膨張弁13Aと、第2の高段側ガスクーラ11Bの出口配管12Bに接続された第2の高段側膨張弁13Bと、第1の高段側膨張弁13Aの出口配管14Aに接続された第1の高段側蒸発器16Aと、第2の高段側膨張弁13Bの出口配管14Bに接続された第2の高段側蒸発器16Bとを備えており、これら第1及び第2の高段側蒸発器16A、16Bの出口配管17A、17Bが合流され、高段側圧縮機7の吸込配管18に接続されて冷凍サイクルが構成されている。この高段側冷媒回路4には、二酸化炭素が冷媒として所定量封入されている。
一方、低段側冷媒回路6A、6Bは何れも同一の構成である。即ち、実施例の低段側冷媒回路6A(低段側冷媒回路6Bも同様)は、これもスクロール圧縮機から成る低段側圧縮機21と、この低段側圧縮機21の吐出配管22に接続された第1の低段側ガスクーラ23と、その出口配管24に接続されて第1の低段側ガスクーラ23の冷媒下流側となる第2の低段側ガスクーラ26と、この第2の低段側ガスクーラ26の出口配管27に接続された過冷却用熱交換器28と、この過冷却用熱交換器28の出口配管29に接続された圧力調整用膨張弁31と、この圧力調整用膨張弁31の出口配管32から分岐した分岐配管33A、33Bにそれぞれ接続された低段側膨張弁34、34と、各低段側膨張弁34、34の出口側にそれぞれ接続された低段側蒸発器36、36とを備えている。
これら低段側膨張弁34及び低段側蒸発器36が二台のショーケース2内にそれぞれ設置されるものである。そして、各ショーケース2内の低段側蒸発器36の出口側にはそれぞれ電磁弁37が接続され、各電磁弁37の出口配管38が合流された後、入口配管42を経てアキュムレータ39に接続され、このアキュムレータ39の出口側が低段側圧縮機21の吸込配管41に接続されて冷凍サイクルが構成されている。アキュムレータ39は所定容量を有するタンクである。また、各低段側冷媒回路6A、6Bには、二酸化炭素が冷媒として所定量封入されている。
そして、高段側冷媒回路4の第1の高段側蒸発器16Aと低段側冷媒回路6Aの過冷却用熱交換器28とが熱交換関係に設けられて第1のカスケード熱交換器43Aが構成され、高段側冷媒回路4の第2の高段側蒸発器16Bと低段側冷媒回路6Bの過冷却用熱交換器28とが熱交換関係に設けられて第2のカスケード熱交換器43Bが構成されている。また、上記分岐配管33A、33Bと出口配管38が冷凍機ユニット3から各ショーケース2に渡る配管となる。
図中、44は各低段側冷媒回路6A、6Bの低段側圧縮機21の吐出配管22に取り付けられた圧力センサであり、低段側圧縮機21から吐出された高圧側冷媒の圧力を検出する。また、46、47は各低段側冷媒回路6A、6Bの出口配管27及び29にそれぞれ取り付けられた温度センサであり、温度センサ46は過冷却用熱交換器28に流入する冷媒の温度を、温度センサ47は過冷却用熱交換器28から流出する冷媒の温度をそれぞれ検出する。
図中51、52は第1及び第2のガスクーラ用送風機であり、第1のガスクーラ用送風機51は各高段側ガスクーラ11A、11Bと第1の低段側ガスクーラ23に通風してそれらを空冷し、第2のガスクーラ用送風機52は第2の低段側ガスクーラ26に通風して空冷する。また、図中53は外気温度を検出する温度センサである。更に、図中48は冷凍機ユニット3側の制御装置であり、各センサ44、46、47、53等の出力に基づいて高段側冷媒回路4の高段側圧縮機7の運転周波数、各高段側膨張弁13A、13Bの弁開度、低段側冷媒回路6A、6Bの低段側圧縮機21の運転周波数、圧力調整用膨張弁31の弁開度、各ガスクーラ用送風機51、52の運転を制御する。
尚、ショーケース2側の低段側膨張弁34や電磁弁37は各ショーケース2の制御装置により陳列室内に温度やそこに吹き出される冷気の温度等に基づいて制御されるものであるが、ショーケース2の制御装置と冷凍機ユニット3の制御装置48は店舗に設けられる統合制御装置により集中制御され、互いに連携して動作するものである。
以上の構成で、制御装置48により高段側冷媒回路4の高段側圧縮機7、低段側冷媒回路6A、6Bの低段側圧縮機21、各ガスクーラ用送風機51、52が運転されると、高段側圧縮機7で圧縮された高温高圧の冷媒(二酸化炭素)が吐出配管8に吐出され、分岐配管9A、9Bに分流された後、各高段側ガスクーラ11A、11Bに流入する。各高段側ガスクーラ11A、11Bに流入した冷媒は、ガスクーラ用送風機51により超臨界状態で冷却され、温度が低下する。
第1の高段側ガスクーラ11Aで冷却された冷媒は、出口配管12Aを経て第1の高段側膨張弁13Aに流入し、そこで絞られた後(減圧)、出口配管14Aから第1のカスケード熱交換器43Aを構成する第1の高段側蒸発器16Aに流入して蒸発し、第1の低段側冷媒回路6Aの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。また、第2の高段側ガスクーラ11Bで冷却された冷媒は、出口配管12Bを経て第2の高段側膨張弁13Bに流入し、そこで減圧された後、出口配管14Bから第2のカスケード熱交換器43Bを構成する第2の高段側蒸発器16Bに流入して蒸発し、第2の低段側冷媒回路6Bの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。
そして、これら第1及び第2の高段側蒸発器16A、16Bを出た冷媒は、出口配管17A、17Bを経て合流し、吸込配管18から高段側圧縮機7に吸い込まれる循環を繰り返す。
一方、第1の低段側冷媒回路6A(第2の低段側冷媒回路6Bも同様)の低段側圧縮機21で圧縮された高温高圧の冷媒(二酸化炭素)は吐出配管22に吐出され、第1の低段側ガスクーラ23に流入する。この第1の低段側ガスクーラ23に流入した冷媒は、ガスクーラ用送風機51により超臨界状態で冷却され、温度が低下した後、出口配管24を経て次に第2の低段側ガスクーラ26に流入する。この第2の低段側ガスクーラ26に流入した冷媒は、ガスクーラ用送風機52により超臨界状態で冷却され、温度が更に低下した後、出口配管27を経て第1のカスケード熱交換器43A(第2の低段側冷媒回路6Bの場合は第2のカスケード熱交換器43B)を構成する過冷却用熱交換器28に流入する。
この過冷却用熱交換器28に流入した冷媒は、第1の高段側蒸発器16A(第2の低段側冷媒回路6Bの場合は第2の高段側蒸発器16B)内で蒸発する高段側冷媒回路4の冷媒により冷却(過冷却)されて更に温度が低下した後、出口配管29を経て圧力調整用膨張弁31に至る。
この圧力調整用膨張弁31で低段側冷媒回路6A(6B)の高圧側冷媒は絞られ、出口配管32を経て分岐配管33A、33Bに分流し、冷凍機ユニット3から出て各ショーケース2に入る。分岐配管33A、33Bを流れる冷媒は各ショーケース2の低段側膨張弁34に至り、そこで絞られた後、低段側蒸発器36に流入して蒸発する。このときの吸熱作用で各ショーケース2の陳列室内は所定の温度に冷却される。
そして、これらショーケース2の低段側蒸発器36を出た冷媒は、電磁弁37(ショーケース2を冷却する場合、電磁弁37は開放されているものとする)、出口配管38を経て合流し、入口配管42からアキュムレータ39に流入する。アキュムレータ39に流入した冷媒はそこで気液分離され、ガス冷媒が吸込配管41を経て低段側圧縮機21に吸い込まれる循環を繰り返す。
制御装置48は、各低段側冷媒回路6A、6Bに設けられた温度センサ46が検出する過冷却用熱交換器28に流入する冷媒の温度と、温度センサ47が検出する過冷却用熱交換器28から流出する冷媒の温度に基づき(例えば、それらの差に基づき)、各過冷却用熱交換器28において低段側冷媒回路6A、6Bの高圧側冷媒が適切に過冷却されるように各高段側膨張弁13A、13Bの弁開度をそれぞれ独立して制御する。これにより、各カスケード熱交換器43A、43Bによって各低段側冷媒回路6A、6Bの高圧側冷媒をそれぞれ的確に過冷却する。
このように、各カスケード熱交換器43A、43Bの高段側蒸発器16A、16Bにおいて高段側冷媒回路4の冷媒を蒸発させ、過冷却用熱交換器28を流れる各低段側冷媒回路6A、6Bの高圧側冷媒を過冷却することにより、二酸化炭素を冷媒として使用する場合にも、各冷媒回路4、6A、6Bの圧縮機7、21として比較的大型(大能力)の圧縮機を使用すること無く、各ショーケース2の低段側蒸発器36において所要の冷却能力を得ることが可能となる。
また、低段側冷媒回路6A、6Bの低段側蒸発器36を出た冷媒は、当該低段側冷媒回路6A、6Bの高圧側冷媒と熱交換すること無く、低段側冷媒回路6A、6Bの低段側圧縮機21に吸い込まれる構成とされているので、特に外気温度が高くなる夏期等に、低段側冷媒回路6A、6Bの高圧側圧力の異常上昇を防止することができるようになると共に、低段側圧縮機21に密度の濃い冷媒を吸い込ませることができるので、効率も向上することになる。
この場合、低段側圧縮機21の吸込側にはアキュムレータ39が設けられているので、低段側圧縮機21への液バックは防止される。また、アキュムレータ39は液溜めとして機能するので、低段側冷媒回路6A、6Bに十分な量の二酸化炭素冷媒を封入することが可能となる。
また、カスケード熱交換器43A、43Bは、低段側ガスクーラ26を出た冷媒を過冷却するので、低段側ガスクーラ24、26で冷却された低段側冷媒回路6A、6Bの二酸化炭素冷媒をカスケード熱交換器43A、43Bにて更に過冷却することになり、更なる冷却能力を改善を図ることができるようになる。
更に、この実施例では二系統の低段側冷媒回路6A、6Bと、各低段側冷媒回路6A、6Bにそれぞれ設けられた二つのカスケード熱交換器43A、43Bを備えているので、一つの高段側冷媒回路4にて二系統(複数)の低段側冷媒回路6A、6Bの高圧側冷媒を過冷却することができるようになる。
この場合、高段側冷媒回路4は、並列に接続された二つ(複数)の高段側ガスクーラ11A、11Bと、各高段側ガスクーラ11A、11Bの出口にそれぞれ接続された二つ(複数)の高段側膨張弁13A、13Bと、各高段側膨張弁13A、13Bの出口にそれぞれ接続されて各カスケード熱交換器43A、43Bをそれぞれ構成する二つ(複数)の高段側蒸発器16A、16Bを有しているので、実施例のように二系統の低段側冷媒回路6A、6Bを用いる場合にも、各カスケード熱交換器43A、43Bにより各低段側冷媒回路6A、6Bの高圧側冷媒を、それぞれ独立して的確に過冷却することができるようになる。
また、高段側冷媒回路4の各高段側蒸発器16A、16Bを出た冷媒を、当該高段側冷媒回路4の高圧側冷媒と熱交換させること無く、高段側冷媒回路4の高段側圧縮機7に吸い込ませているので、特に外気温度が高くなる夏期等に、高段側冷媒回路4の高圧側圧力の異常上昇を防止することができるようになる。また、高段側圧縮機7に密度の濃い冷媒を吸い込ませることができるので、効率も向上する。
次に、図2及び図3を参照しながら、制御装置48による各低段側冷媒回路6A、6Bの圧力調整用膨張弁31の弁開度制御について説明する。実施例で制御装置48は、外気温度に基づいて低段側冷媒回路6A、6Bの最適な高圧側圧力を算出し、それを目標値として各圧力調整用膨張弁31の弁開度を制御する。即ち、制御装置48は図2のフローチャートのステップS1で、温度センサ53が検出する外気温度を検知する。次に、ステップS2でこの外気温度に基づき、低段側冷媒回路6A(6B)の高圧側圧力の目標値を設定する。
この場合、制御装置48は外気温度とそのときの低段側冷媒回路6A(6B)の最適な高圧側圧力との関係を示す情報を予め保有している。ここで、本発明において高圧側圧力の最適値とは、前述した図7において効率COPが最大、若しくは、それに近い値となる低段側冷媒回路6A(6B)の高圧側圧力を意味する。図3中の近似式(y=0.1347x+5.4132)はこの低段側冷媒回路6A(6B)の最適な高圧側圧力と外気温度との関係を示す情報である。図3の横軸(x)は外気温度、縦軸(y)は当該冷凍装置1の低段側冷媒回路6A(6B)の高圧側圧力(低段側圧縮機21の吐出された高圧側冷媒の圧力)の最適値であり、この近似式は予め実験により求めておく。例えば、前述した図7がこの冷凍装置1の例であるものとすると、外気温度(x)=+38℃の環境では、高圧側圧力の最適値(y)=10.5MPaとなることが分かる。
制御装置48はステップS2でこの近似式を用い、外気温度からそのときの最適な高圧側圧力(高圧側圧力の最適値)を算出して、当該算出した高圧側圧力を目標値として設定する。例えば、外気温度+20℃のときの目標値(最適な高圧側圧力)は8.1MPa程となり、+30℃のときの目標値は9.5MPa程となる。次に、制御装置48はステップS3で圧力調整用膨張弁31の初期化開度を設定して、開度を初期化する。そして、ステップS4で圧力調整用膨張弁31による低段側冷媒回路6A(6B)の高圧側圧力の制御を開始する。
制御装置48は先ずステップS5で所定時間(例えば10分)待機した後、ステップS6で圧力センサ44が検出する現在の高圧側圧力を検知する。次に、ステップS7で前記目標値(最適な高圧側圧力)と現在の高圧側圧力(現在値)との差(目標値−現在値)の絶対値(abs)が所定値(例えば0.1MPa)以下か否か判断し、差が所定値以下である(差が無いか、小さい)場合には、ステップS8に進んで圧力調整用膨張弁31の弁開度の変更する指示を行わないこととする(圧力調整用膨張弁31の弁開度は維持される)。
次に、ステップS9で所定時間(例えば、30秒)待機した後、ステップS10で再度温度センサ53が検出する外気温度を検知する。そして、ステップS11で前記目標値を設定したときの外気温度(ステップS1における外気温度。設定外気温度)と、現在の外気温度(現行外気温度)との差(設定外気温度−現行外気温度)が所定値(例えば、プラスマイナス2K)の範囲以内か否か判断する。そして、差が所定値(プラスマイナス2K)以内である場合は、ステップS12で高圧側圧力の目標値を維持し、ステップS6に戻る。
ステップS11で差(設定外気温度−現行外気温度)が所定値以内では無かった場合、制御装置48はステップS13に進んで図3の近似式を用い、再度そのときの外気温度(現行外気温度)における最適な高圧側圧力を算出し、当該算出した高圧側圧力を目標値として設定(更新)する。そして、ステップS6に戻る。このようにして制御装置48は外気温度の変化に追従して低段側冷媒回路6A(6B)の高圧側圧力の目標値を更新していく。
一方、ステップS7で前記目標値と現在の高圧側圧力(現在値)との差(目標値−現在値)の絶対値が所定値(0.1MPa)以下では無かった場合(差が大きい)、制御装置48はステップS14に進んで、差(目標値−現在値)が所定値(例えば、0.1MPa)より大きいか否か判断する。
そして、現在の高圧側圧力(現在値)が低く、差(目標値−現在値)が所定値(0.1MPa)より大きい場合、制御装置48はステップS15に進んで圧力調整用膨張弁31の弁開度を所定パルス(xxpls)閉める。これにより、低段側冷媒回路6A(6B)の高圧側冷媒は、カスケード熱交換器43A(43B)の過冷却用熱交換器28を出たところでより堰き止められるかたちとなるので、低段側冷媒回路6A(6B)の高圧側圧力は上昇する。
一方、現在の低段側冷媒回路6A(6B)の高圧側圧力(現在値)が高く、差(目標値−現在値)が所定値(0.1MPa)以下である場合、制御装置48はステップS16に進んで圧力調整用膨張弁31の弁開度を所定パルス(xxpls)開く。これにより、カスケード熱交換器43A(43B)の過冷却用熱交換器28を出た低段側冷媒回路6A(6B)の高圧側冷媒は、より流れ易くなるので、低段側冷媒回路6A(6B)の高圧側圧力は低下する。
以上を繰り返して制御装置48は圧力調整用膨張弁31により低段側冷媒回路6A(6B)の高圧側圧力を最適な値に制御する。即ち、低段側冷媒回路6A、6Bの高圧側圧力を調整するための圧力調整用膨張弁31を設け、制御装置48により低段側冷媒回路6A、6Bの高圧側圧力に基づき、最適な当該高圧側圧力を目標値として圧力調整用膨張弁31を制御するようにしたので、低段側冷媒回路6A、6Bの高圧側冷媒の比エンタルピ差を確保し、冷却能力の向上と効率の改善を図ることができるようになる。
特に、制御装置48に外気温度とそのときの最適な高圧側圧力との関係を示す情報(近似式)を予め保有させておき、外気温度に基づいて高圧側圧力の目標値を算出するようにしたので、圧力調整用膨張弁31により円滑に低段側冷媒回路6A、6Bの高圧側圧力を最適な値に制御することが可能となる。
次に、図4を参照しながら本発明の冷凍装置1の他の実施例を説明する。尚、この図において、図1と同一符号で示すものは同一若しくは同様の機能を奏するものとする。この実施例でも低段側冷媒回路6A、6Bの回路構成は実施例1の場合と同様である。この場合、高段側冷媒回路4の第1の高段側ガスクーラ11Aの出口配管12Aと第2の高段側ガスクーラ11Bの出口配管12Bは合流されて一つの高段側膨張弁13の入口に接続されている。即ち、各高段側ガスクーラ11A、11Bは高段側圧縮機7と高段側膨張弁13の間に並列に接続されたかたちとなる。
また、この高段側膨張弁13の出口は分岐配管54A、54Bに分岐し、一方の分岐配管54Aが第1の高段側蒸発器16Aの入口に接続され、他方の分岐配管54Bが第2の高段側蒸発器16Bの入口に接続されている。即ち、各高段側蒸発器16A、16Bは高段側膨張弁13の出口に並列に接続されたかたちとなる。
図中56は、高段側圧縮機7の吐出配管8に取り付けられて高段側冷媒回路4の高圧側圧力を検出する圧力センサであり、図中57は、出口配管17Aに取り付けられて第1の高段側蒸発器16Aを出た冷媒の温度を検出する温度センサ、58は、出口配管17Bに取り付けられて第2の高段側蒸発器16Bを出た冷媒の温度を検出する温度センサである。また、実施例1の温度センサ46、47は設けられていない。その他の構成は実施例1の場合と同様である。
この場合の冷凍装置1において、制御装置48により高段側冷媒回路4の高段側圧縮機7、低段側冷媒回路6A、6Bの低段側圧縮機21、各ガスクーラ用送風機51、52が運転されると、高段側圧縮機7で圧縮された高温高圧の冷媒(二酸化炭素)が吐出配管8に吐出され、分岐配管9A、9Bに分流された後、各高段側ガスクーラ11A、11Bに流入する。各高段側ガスクーラ11A、11Bに流入した冷媒は、ガスクーラ用送風機51により超臨界状態で冷却され、温度が低下する。
そして、各高段側ガスクーラ11A、11Bで冷却された冷媒は、出口配管12A、12Bを経て合流した後、高段側膨張弁13に流入し、そこで絞られた後(減圧)、分岐配管54A、54Bに分流する。分岐配管54Aに流入した冷媒は、第1のカスケード熱交換器43Aを構成する第1の高段側蒸発器16Aに流入して蒸発し、第1の低段側冷媒回路6Aの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。また、分岐配管54Bに流入した冷媒は、第2のカスケード熱交換器43Bを構成する第2の高段側蒸発器16Bに流入して蒸発し、第2の低段側冷媒回路6Bの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。
そして、これら第1及び第2の高段側蒸発器16A、16Bを出た冷媒は、出口配管17A、17Bを経て合流し、吸込配管18から高段側圧縮機7に吸い込まれる循環を繰り返す。
また、この場合の制御装置48は、温度センサ57、58が検出する各高段側蒸発器16A、16Bを出た冷媒の温度の例えば平均値に基づいて高段側圧縮機7の運転周波数を制御する。このとき、制御装置48は、各カスケード熱交換器43A、43Bにおいて低段側冷媒回路6A、6Bの高圧側冷媒の所要の過冷却がとれるように高段側圧縮機7の運転周波数を制御する。
更に、制御装置48は、圧力センサ56が検出する高段側冷媒回路4の高圧側圧力に基づいて膨張弁13の弁開度を前述した低段側冷媒回路6A、6Bの圧力調整用膨張弁31と同様に制御することにより、高段側冷媒回路4の高圧側圧力を前述同様の適正な値(高段側冷媒回路4の高圧側圧力の目標値)に制御する。尚、低段側冷媒回路6A、6Bの運転及びそれらに関する制御装置48の制御は実施例1と同様である。
この実施例においても二系統(複数)の低段側冷媒回路6A、6Bと、各低段側冷媒回路6A、6Bにそれぞれ設けられた二つ(複数)のカスケード熱交換器43A、43Bを備えているので、同様に一つの高段側冷媒回路4にて二系統(複数)の低段側冷媒回路6A、6Bの高圧側冷媒を過冷却することができるようになる。特に、この実施例の場合、高段側冷媒回路4は、第1、第2の高段側ガスクーラ11A、11Bと、これら高段側ガスクーラ11A、11Bの出口に接続された単一の高段側膨張弁13と、この高段側膨張弁13の出口に並列に接続されて各カスケード熱交換器43A、43Bをそれぞれ構成する二つ(複数)の高段側蒸発器16A、16Bを有しているので、一つの高段側膨張弁13から二つ(複数)の高段側蒸発器16A、16Bへ冷媒を流すことができるようになり、制御が簡素化されると共に、コストの削減も図ることができるようになる効果がある。
次に、図5を参照しながら本発明の冷凍装置1のもう一つ他の実施例を説明する。尚、この図において、図1、図4と同一符号で示すものは同一若しくは同様の機能を奏するものとする。この実施例でも低段側冷媒回路6A、6Bの回路構成は実施例1の場合と同様である。この場合も高段側冷媒回路4の第1の高段側ガスクーラ11Aの出口配管12Aと第2の高段側ガスクーラ11Bの出口配管12Bは合流されて一つの高段側膨張弁13の入口に接続されている。即ち、各高段側ガスクーラ11A、11Bは高段側圧縮機7と高段側膨張弁13の間に並列に接続されたかたちとなる。
但し、この高段側膨張弁13の出口は出口配管59を経て第1の高段側蒸発器16Aの入口に接続されている。そして、この第1の高段側蒸発器16Aの出口配管17Aが第2の高段側蒸発器16Bの入口に接続され、この高段側蒸発器16Bの出口配管17Bが高段側圧縮機7の吸込配管18に接続されている。即ち、各高段側蒸発器16A、16Bは高段側膨張弁13の出口に直列に接続されたかたちとなる。
また、前記実施例2の温度センサ57は設けられておらず、温度センサ58が出口配管17Bに取り付けられて第2の高段側蒸発器16Bを出た冷媒の温度を検出する。また、この場合も実施例1の温度センサ46、47は設けられていない。その他の構成は実施例1、或いは、実施例2の場合と同様である。
この場合の冷凍装置1において、制御装置48により高段側冷媒回路4の高段側圧縮機7、低段側冷媒回路6A、6Bの低段側圧縮機21、各ガスクーラ用送風機51、52が運転されると、高段側圧縮機7で圧縮された高温高圧の冷媒(二酸化炭素)が吐出配管8に吐出され、分岐配管9A、9Bに分流された後、各高段側ガスクーラ11A、11Bに流入する。各高段側ガスクーラ11A、11Bに流入した冷媒は、ガスクーラ用送風機51により超臨界状態で冷却され、温度が低下する。
そして、各高段側ガスクーラ11A、11Bで冷却された冷媒は、出口配管12A、12Bを経て合流した後、高段側膨張弁13に流入し、そこで絞られた後(減圧)、出口配管59を経て先ず第1のカスケード熱交換器43Aを構成する第1の高段側蒸発器16Aに流入して蒸発し、第1の低段側冷媒回路6Aの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。この第1の高段側蒸発器16Aを出た冷媒は、出口配管17Aを経て次に第2のカスケード熱交換器43Bを構成する第2の高段側蒸発器16Bに流入して蒸発し、第2の低段側冷媒回路6Bの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。
そして、この第2の高段側蒸発器16Bを出た冷媒は、出口配管17Bを経て吸込配管18から高段側圧縮機7に吸い込まれる循環を繰り返す。
また、この場合の制御装置48は、温度センサ58が検出する第2の高段側蒸発器16Bを出た冷媒の温度に基づいて高段側圧縮機7の運転周波数を制御する。このとき、制御装置48は、各カスケード熱交換器43A、43Bにおいて低段側冷媒回路6A、6Bの高圧側冷媒の所要の過冷却がとれるように高段側圧縮機7の運転周波数を制御する。
更に、制御装置48は、実施例2の場合と同様に圧力センサ56が検出する高段側冷媒回路4の高圧側圧力に基づいて膨張弁13の弁開度を前述した低段側冷媒回路6A、6Bの圧力調整用膨張弁31と同様に制御することにより、高段側冷媒回路4の高圧側圧力を前述同様の適正な値(高段側冷媒回路4の高圧側圧力の目標値)に制御する。尚、低段側冷媒回路6A、6Bの運転及びそれらに関する制御装置48の制御は実施例1と同様である。
この実施例においても二系統(複数)の低段側冷媒回路6A、6Bと、各低段側冷媒回路6A、6Bにそれぞれ設けられた二つ(複数)のカスケード熱交換器43A、43Bを備えているので、同様に一つの高段側冷媒回路4にて二系統(複数)の低段側冷媒回路6A、6Bの高圧側冷媒を過冷却することができるようになる。
ここで、実施例2の場合には何れかの低段側冷媒回路6A、又は、6Bの運転が停止したときに、高段側冷媒回路4の高段側圧縮機7に液バックが発生する危険性があるが、この実施例では高段側冷媒回路4は、高段側ガスクーラ11A、11Bの出口に接続された高段側膨張弁13の出口に直列に各カスケード熱交換器をそれぞれ構成する二つ(複数)の高段側蒸発器16A、16Bを接続しており、下流側の第2の高段側蒸発器16Bを出た冷媒の温度で高段側圧縮機7の運転周波数を制御しているので、係る不都合は解消される。
但し、この実施例の場合には、第1の高段側蒸発器16Aが上流側、第2の高段側蒸発器16Bが下流側となる関係上、プルダウン時にはどうしても第1のカスケード熱交換器43Aで冷却される低段側冷媒回路6Aの冷媒の過冷却が低段側冷媒回路6Bよりも優先されるかたちとなる。そのため、低段側冷媒回路6Aはより負荷が大きくなるショーケース2の冷却を分担する構成とするとよい。
尚、実施例では単一の高段側冷媒回路と二系統の低段側冷媒回路をカスケード接続したが、それに限らず、三系統以上の低段側冷媒回路を高段側冷媒回路にカスケード接続した冷凍装置にも本発明は有効である。また、実施例ではショーケースを冷却する冷凍装置に本発明を適用したが、それに限らず、自動販売機等を冷却する冷凍装置にも本発明は有効である。
1 冷凍装置
2 ショーケース
3 冷凍機ユニット
4 高段側冷媒回路
6A、6B 低段側冷媒回路
7 高段側圧縮機
11A、11B 高段側ガスクーラ
13A、13B、13 高段側膨張弁
16A、16B 高段側蒸発器
21 低段側圧縮機
23、26 低段側ガスクーラ
28 過冷却熱交換器
31 圧力調整用膨張弁
34 低段側膨張弁
36 低段側蒸発器
39 アキュムレータ
48 制御装置
51、52 ガスクーラ用送風機

Claims (4)

  1. 高段側冷媒回路と、複数の低段側冷媒回路と、前記高段側冷媒回路の冷媒を蒸発させて前記各低段側冷媒回路の高圧側冷媒をそれぞれ冷却する複数のカスケード熱交換器とを備え、前記各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置において、
    前記高段側冷媒回路は、並列に接続された複数の高段側ガスクーラと、各高段側ガスクーラの出口にそれぞれ接続された複数の高段側膨張弁と、各高段側膨張弁の出口にそれぞれ接続されて前記各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を備えたことを特徴とする冷凍装置。
  2. 高段側冷媒回路と、複数の低段側冷媒回路と、前記高段側冷媒回路の冷媒を蒸発させて前記各低段側冷媒回路の高圧側冷媒をそれぞれ冷却する複数のカスケード熱交換器とを備え、前記各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置において、
    前記高段側冷媒回路は、高段側ガスクーラと、該高段側ガスクーラの出口に接続された高段側膨張弁と、該高段側膨張弁の出口に並列に接続されて前記各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を備えたことを特徴とする冷凍装置。
  3. 高段側冷媒回路と、複数の低段側冷媒回路と、前記高段側冷媒回路の冷媒を蒸発させて前記各低段側冷媒回路の高圧側冷媒をそれぞれ冷却する複数のカスケード熱交換器とを備え、前記各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置において、
    前記高段側冷媒回路は、高段側ガスクーラと、該高段側ガスクーラの出口に接続された高段側膨張弁と、該高段側膨張弁の出口に直列に接続されて前記各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を備えたことを特徴とする冷凍装置。
  4. 前記高段側蒸発器を出た冷媒を、前記高段側冷媒回路の高圧側冷媒と熱交換させること無く、前記高段側冷媒回路の高段側圧縮機に吸い込ませることを特徴とする請求項1乃至請求項3のうちの何れかに記載の冷凍装置。
JP2014055975A 2014-03-19 2014-03-19 冷凍装置 Pending JP2015178920A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014055975A JP2015178920A (ja) 2014-03-19 2014-03-19 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014055975A JP2015178920A (ja) 2014-03-19 2014-03-19 冷凍装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018038156A Division JP2018087693A (ja) 2018-03-05 2018-03-05 冷凍装置

Publications (2)

Publication Number Publication Date
JP2015178920A true JP2015178920A (ja) 2015-10-08
JP2015178920A5 JP2015178920A5 (ja) 2016-09-15

Family

ID=54263083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055975A Pending JP2015178920A (ja) 2014-03-19 2014-03-19 冷凍装置

Country Status (1)

Country Link
JP (1) JP2015178920A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019090595A (ja) * 2017-11-17 2019-06-13 富士電機株式会社 冷却装置
US11339995B2 (en) 2018-01-11 2022-05-24 Vilter Manufacturing Llc Dual cascade heat exchanger refrigeration system and related method of operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128058U (ja) * 1981-02-04 1982-08-10
JP2000205672A (ja) * 1999-01-08 2000-07-28 Daikin Ind Ltd 冷凍装置
JP2001147052A (ja) * 1999-11-19 2001-05-29 Fujitsu General Ltd 空気調和機
JP2012097993A (ja) * 2010-11-04 2012-05-24 Sanden Corp ヒートポンプ式暖房装置
JP2014031981A (ja) * 2012-08-06 2014-02-20 Mitsubishi Electric Corp 二元冷凍装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128058U (ja) * 1981-02-04 1982-08-10
JP2000205672A (ja) * 1999-01-08 2000-07-28 Daikin Ind Ltd 冷凍装置
JP2001147052A (ja) * 1999-11-19 2001-05-29 Fujitsu General Ltd 空気調和機
JP2012097993A (ja) * 2010-11-04 2012-05-24 Sanden Corp ヒートポンプ式暖房装置
JP2014031981A (ja) * 2012-08-06 2014-02-20 Mitsubishi Electric Corp 二元冷凍装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019090595A (ja) * 2017-11-17 2019-06-13 富士電機株式会社 冷却装置
JP7059582B2 (ja) 2017-11-17 2022-04-26 富士電機株式会社 冷却装置
US11339995B2 (en) 2018-01-11 2022-05-24 Vilter Manufacturing Llc Dual cascade heat exchanger refrigeration system and related method of operation

Similar Documents

Publication Publication Date Title
WO2015141633A1 (ja) 冷凍装置
WO2012066763A1 (ja) 冷凍装置
EP3680565B1 (en) Air conditioning device
US10247440B2 (en) Air-conditioning apparatus with control of expansion valve to maintain desired degree of subcooling
EP2910872B1 (en) Freezing device
JPWO2018008139A1 (ja) 冷凍サイクル装置およびそれを備えた空気調和装置
WO2016080275A1 (ja) 冷凍装置
JP5523296B2 (ja) 空気調和装置
JP2010101552A (ja) ガスインジェクション冷凍システム
JP4999530B2 (ja) 空気調和装置
JP2005233559A (ja) 空調・冷蔵・冷凍設備及びその運転方法
WO2017138058A1 (ja) 冷凍装置
US11512880B2 (en) Refrigeration cycle device
JP2005180815A (ja) 冷却装置
JP2015178920A (ja) 冷凍装置
JP2020046157A (ja) 冷凍装置
JP2018087693A (ja) 冷凍装置
JP6536061B2 (ja) 冷却装置
WO2017006723A1 (ja) 冷凍装置
JP5195302B2 (ja) 冷凍空調装置
JP6573723B2 (ja) 空気調和装置
WO2018074370A1 (ja) 冷凍システムおよび室内ユニット
JP6291684B2 (ja) 冷凍装置
JP2009115336A (ja) 冷凍装置
JP2017020675A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180821