WO2015141633A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2015141633A1
WO2015141633A1 PCT/JP2015/057718 JP2015057718W WO2015141633A1 WO 2015141633 A1 WO2015141633 A1 WO 2015141633A1 JP 2015057718 W JP2015057718 W JP 2015057718W WO 2015141633 A1 WO2015141633 A1 WO 2015141633A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
low
refrigerant
pressure
refrigerant circuit
Prior art date
Application number
PCT/JP2015/057718
Other languages
English (en)
French (fr)
Inventor
孝輔 宮城
須田 淳一
裕亮 臂
昌敬 早川
和宏 表
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to EP15765394.0A priority Critical patent/EP3106779A4/en
Priority to US15/126,845 priority patent/US10180269B2/en
Publication of WO2015141633A1 publication Critical patent/WO2015141633A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present invention relates to a refrigeration apparatus in which a high-stage refrigerant circuit and a low-stage refrigerant circuit are cascade-connected, and each refrigerant circuit is filled with carbon dioxide as a refrigerant.
  • each showcase is provided with an evaporator for cooling the display room, and the evaporator is configured to be supplied with a refrigerant from a refrigerator unit installed outside the store.
  • FIG. 6 illustrates a ph diagram of the low-stage refrigerant circuit of the refrigeration apparatus.
  • the vertical axis indicates the high-pressure side pressure of the low-stage refrigerant circuit
  • L1 is the saturated liquid line
  • L2 is the saturated vapor line
  • L3 is the + 40 ° C isotherm
  • L4 is the + 100 ° C to + 120 ° C isotherm.
  • X1 indicates the difference in specific enthalpy when the + 100 ° C. to + 120 ° C. refrigerant is cooled to + 40 ° C. when the high-pressure side pressure of the low-stage refrigerant circuit is 9 MPa
  • X2 indicates the low-stage refrigerant circuit.
  • the graph shows the difference in specific enthalpy when a + 100 ° C. to + 120 ° C. refrigerant is cooled to + 40 ° C. when the high pressure side pressure is 7.5 MPa.
  • FIG. 7 shows the relationship between the high-pressure side pressure of the low-stage refrigerant circuit and the capacity of each heat exchanger (the summer high temperature is 38 ° C. under different conditions from FIG. 6).
  • the rhombus indicates the low-stage gas cooler
  • the square indicates the high-stage gas cooler
  • the triangle indicates the cascade heat exchanger
  • the circle indicates the COP.
  • the efficiency COP is improved in the region indicated by X3 in the drawing, that is, in the region where the high pressure side pressure of the low stage side refrigerant circuit is high.
  • the efficiency COP is maximized when the high pressure side pressure of the low stage side refrigerant circuit is about 10.5 MPa.
  • the optimum value (10.5 MPa at the above-mentioned outside air temperature + 38 ° C.) for the high-pressure side pressure of the low-stage side refrigerant circuit in terms of refrigeration capacity and efficiency.
  • the pressure on the high-pressure side of the low-stage side refrigerant circuit has conventionally depended on the throttle condition of the expansion valve provided in the showcase, so the high-pressure side of the low-stage side refrigerant circuit The pressure could not be controlled to an optimum value.
  • the high pressure side pressure of the low stage side refrigerant circuit is monitored so that it does not cause a cut error due to abnormal high pressure, and when it rises, the operating frequency of the low stage side compressor is lowered. It is necessary to prevent the high pressure from rising abnormally.
  • an internal heat exchanger for exchanging heat between the high-pressure side refrigerant of the low-stage side refrigerant circuit and the refrigerant discharged from the low-stage side evaporator of the low-stage side refrigerant circuit is sometimes provided for the purpose of improving the refrigerating capacity.
  • the present invention has been made to solve the conventional technical problem, and can control the high-pressure side pressure of the low-stage refrigerant circuit to an optimum value to improve the cooling capacity and efficiency.
  • a refrigeration apparatus is provided.
  • the present invention provides a cascade heat that evaporates the refrigerant in the high-stage refrigerant circuit, the low-stage refrigerant circuit, and the high-stage refrigerant circuit to cool the high-pressure refrigerant in the low-stage refrigerant circuit.
  • a pressure adjusting expansion valve for adjusting the high pressure side pressure of the low stage refrigerant circuit is provided.
  • a refrigeration apparatus comprising a control device for controlling the pressure adjusting expansion valve in the above invention, wherein the control device is configured to obtain an optimum high pressure side pressure based on the high pressure side pressure of the low stage side refrigerant circuit.
  • the expansion valve for pressure adjustment is controlled as a target value.
  • the control device holds in advance information indicating the relationship between the outside air temperature and the optimum high pressure side pressure at that time, and the high pressure side pressure is determined based on the outside air temperature. A target value is calculated.
  • a refrigeration apparatus in which the refrigerant that has exited the low-stage evaporator of the low-stage refrigerant circuit in each of the above-described inventions is heat-exchanged with the high-pressure refrigerant of the low-stage refrigerant circuit.
  • the low-stage compressor of the side refrigerant circuit is sucked, and an accumulator is provided on the suction side of the low-stage compressor.
  • the refrigeration apparatus according to each of the above-mentioned inventions, wherein the low-stage refrigerant circuit has a low-stage compressor and a low-stage gas cooler, and the cascade heat exchanger is a refrigerant that has exited the low-stage gas cooler. Is supercooled.
  • the refrigeration apparatus of the invention of claim 6 includes a plurality of low-stage refrigerant circuits and a plurality of cascade heat exchangers respectively provided in each low-stage refrigerant circuit in each of the above-described inventions, A plurality of high-stage gas coolers connected in parallel; a plurality of high-stage expansion valves connected to the outlets of the respective high-stage gas coolers; and a cascade connected to the outlets of the respective high-stage expansion valves. It has a plurality of high stage side evaporators which constitute each heat exchanger.
  • a refrigeration apparatus includes the plurality of low-stage refrigerant circuits and the plurality of cascade heat exchangers respectively provided in the respective low-stage refrigerant circuits in the inventions of the first to fifth aspects
  • the high stage side refrigerant circuit includes a high stage side gas cooler, a high stage side expansion valve connected to the outlet of the high stage side gas cooler, and each cascade heat exchanger connected in parallel to the outlet of the high stage side expansion valve. It is characterized by having a plurality of high stage side evaporators which respectively constitute.
  • a refrigeration apparatus includes the plurality of low-stage refrigerant circuits according to the first to fifth inventions, and a plurality of cascade heat exchangers respectively provided in each low-stage refrigerant circuit
  • the high stage side refrigerant circuit includes a high stage side gas cooler, a high stage side expansion valve connected to the outlet of the high stage side gas cooler, and each cascade heat exchanger connected in series to the outlet of the high stage side expansion valve. It is characterized by having a plurality of high stage side evaporators which respectively constitute.
  • a high-stage refrigerant circuit a low-stage refrigerant circuit, and a cascade heat exchanger that evaporates the refrigerant in the high-stage refrigerant circuit and cools the high-pressure refrigerant in the low-stage refrigerant circuit.
  • a pressure adjusting expansion valve for adjusting the high pressure side pressure of the low stage side refrigerant circuit is provided.
  • the control device for controlling the pressure adjustment expansion valve as described above By controlling the expansion valve for pressure adjustment with the optimal high pressure side pressure as a target value based on the high pressure side pressure of the low stage side refrigerant circuit by the control device for controlling the pressure adjustment expansion valve as described above, The specific enthalpy difference of the high-pressure side refrigerant in the refrigerant circuit can be ensured, and the cooling capacity can be improved and the efficiency can be improved.
  • the control device holds in advance information indicating the relationship between the outside air temperature and the optimum high pressure side pressure at that time, and sets the target value of the high pressure side pressure based on the outside air temperature. If calculated, the high pressure side pressure of the low stage side refrigerant circuit can be smoothly controlled to an optimum value by the pressure adjusting expansion valve.
  • the refrigerant exiting the low stage side evaporator of the low stage side refrigerant circuit as in the invention of claim 4 can be reduced in the low stage side refrigerant circuit without exchanging heat with the high pressure side refrigerant of the low stage side refrigerant circuit. If the suction is performed by the stage side compressor, it becomes possible to prevent an abnormal increase in the high pressure side pressure of the low stage side refrigerant circuit, especially in the summer when the outside air temperature becomes high, and the optimum high pressure side pressure is achieved. It is also possible to perform the control smoothly. Further, since the refrigerant having a high density can be sucked into the low stage side compressor, the efficiency is also improved.
  • the low stage side refrigerant circuit has a low stage side compressor and a low stage side gas cooler, and the cascade heat exchanger outputs the low stage side gas cooler. Since the refrigerant in the low stage side refrigerant circuit cooled by the low stage side gas cooler can be further supercooled by the cascade heat exchanger, further cooling capacity can be improved. It will be possible to improve.
  • the invention of claim 6 in addition to the above-described inventions, it includes a plurality of low-stage refrigerant circuits and a plurality of cascade heat exchangers respectively provided in each low-stage refrigerant circuit.
  • One high stage refrigerant circuit can supercool the high pressure side refrigerants of the plurality of low stage refrigerant circuits.
  • the high-stage refrigerant circuit includes a plurality of high-stage gas coolers connected in parallel, a plurality of high-stage expansion valves respectively connected to the outlets of the high-stage gas coolers, and each high-stage expansion valve Since the plurality of high-stage evaporators respectively connected to the outlets of the respective stages constitute the cascade heat exchangers, each cascade heat exchanger can The high-pressure side refrigerant in the stage-side refrigerant circuit can be accurately subcooled.
  • a plurality of low-stage refrigerant circuits, and a plurality of cascade heat exchangers respectively provided in each low-stage refrigerant circuit Therefore, it becomes possible to supercool the high pressure side refrigerants of the plurality of low stage side refrigerant circuits in the same manner, using a single high stage side refrigerant circuit.
  • the high stage side refrigerant circuit is connected in parallel to the high stage side gas cooler, the high stage side expansion valve connected to the outlet of the high stage side gas cooler, and the outlet of the high stage side expansion valve. Since it has multiple high-stage evaporators that make up each heat exchanger, it is possible to flow refrigerant from one high-stage expansion valve to multiple high-stage evaporators, and control is simple In addition, the cost can be reduced.
  • the high stage side refrigerant circuit is connected in series to the high stage side gas cooler, the high stage side expansion valve connected to the outlet of the high stage side gas cooler, and the outlet of the high stage side expansion valve.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus 1 according to an embodiment to which the present invention is applied.
  • the refrigeration apparatus 1 in the embodiment supplies refrigerant from a refrigerator unit 3 installed outside the store to a plurality of showcases 2 (four in the embodiment) installed in a store such as a convenience store or a supermarket. It is composed of one high-stage refrigerant circuit 4 and a plurality of (two systems in the embodiment) low-stage refrigerant circuits 6A and 6B.
  • the high-stage refrigerant circuit 4 of this embodiment is connected to a high-stage compressor 7 composed of a scroll compressor and branch pipes 9A and 9B branched from the discharge pipe 8 of the high-stage compressor 7 respectively.
  • a high-stage compressor 7 composed of a scroll compressor and branch pipes 9A and 9B branched from the discharge pipe 8 of the high-stage compressor 7 respectively.
  • the second high stage side expansion valve 13B connected to the outlet pipe 12B of the second high stage side gas cooler 11B, and the first high stage side connected to the outlet pipe 14A of the first high stage side expansion valve 13A.
  • An evaporator 16A and a second high-stage evaporator 16B connected to the outlet pipe 14B of the second high-stage expansion valve 13B are provided, and these first and second high-stage evaporators 16A are provided.
  • 16B outlet pipes 17A and 17B are joined together to form a high stage compressor 7 Connected to the refrigeration cycle to the suction pipe 18 is configured.
  • the high-stage refrigerant circuit 4 is filled with a predetermined amount of carbon dioxide as a refrigerant.
  • both of the low-stage refrigerant circuits 6A and 6B have the same configuration. That is, the low-stage refrigerant circuit 6A of the embodiment (the same applies to the low-stage refrigerant circuit 6B) includes a low-stage compressor 21 that is also a scroll compressor, and a discharge pipe 22 of the low-stage compressor 21.
  • the first low-stage gas cooler 23 connected, the second low-stage gas cooler 26 connected to the outlet pipe 24 and downstream of the refrigerant of the first low-stage gas cooler 23, and the second low-stage gas cooler 26
  • the supercooling heat exchanger 28 connected to the outlet pipe 27 of the stage side gas cooler 26, the pressure adjusting expansion valve 31 connected to the outlet pipe 29 of the supercooling heat exchanger 28, and the pressure adjusting expansion Low-stage side expansion valves 34 and 34 connected to branch pipes 33A and 33B branched from the outlet pipe 32 of the valve 31, respectively, and low-stage side evaporation connected to the outlet side of the low-stage side expansion valves 34 and 34, respectively.
  • 36, 36 36.
  • low stage side expansion valve 34 and low stage side evaporator 36 are respectively installed in the two showcases 2. Then, an electromagnetic valve 37 is connected to the outlet side of the low-stage evaporator 36 in each showcase 2, and the outlet pipe 38 of each electromagnetic valve 37 is joined, and then connected to the accumulator 39 via the inlet pipe 42. Then, the outlet side of the accumulator 39 is connected to the suction pipe 41 of the low-stage compressor 21 to constitute a refrigeration cycle.
  • the accumulator 39 is a tank having a predetermined capacity.
  • Each low stage refrigerant circuit 6A, 6B is filled with a predetermined amount of carbon dioxide as a refrigerant.
  • the first high-stage evaporator 16A of the high-stage refrigerant circuit 4 and the supercooling heat exchanger 28 of the low-stage refrigerant circuit 6A are provided in a heat exchange relationship, and the first cascade heat exchanger 43A.
  • the second high-stage side evaporator circuit 16B of the high-stage side refrigerant circuit 4 and the supercooling heat exchanger 28 of the low-stage side refrigerant circuit 6B are provided in a heat exchange relationship to provide a second cascade heat exchange.
  • a device 43B is configured.
  • the branch pipes 33 ⁇ / b> A and 33 ⁇ / b> B and the outlet pipe 38 are pipes extending from the refrigerator unit 3 to each showcase 2.
  • 44 is a pressure sensor attached to the discharge pipe 22 of the low-stage compressor 21 of each low-stage refrigerant circuit 6A, 6B, and the pressure of the high-pressure refrigerant discharged from the low-stage compressor 21 is shown.
  • Reference numerals 46 and 47 denote temperature sensors attached to the outlet pipes 27 and 29 of the low-stage refrigerant circuits 6A and 6B, respectively.
  • the temperature sensor 46 indicates the temperature of the refrigerant flowing into the supercooling heat exchanger 28,
  • the temperature sensor 47 detects the temperature of the refrigerant flowing out of the supercooling heat exchanger 28, respectively.
  • reference numerals 51 and 52 denote first and second gas cooler blowers.
  • the first gas cooler blower 51 ventilates each of the high-stage gas coolers 11A and 11B and the first low-stage gas cooler 23 to air-cool them.
  • the second gas cooler blower 52 ventilates the second low-stage gas cooler 26 and cools it by air.
  • reference numeral 53 denotes a temperature sensor for detecting the outside air temperature.
  • 48 is a control device on the refrigerator unit 3 side, and the operating frequency of the high stage compressor 7 of the high stage side refrigerant circuit 4 based on the output of each sensor 44, 46, 47, 53, etc.
  • the low-stage expansion valve 34 and the electromagnetic valve 37 on the showcase 2 side are controlled by the control device of each showcase 2 based on the temperature in the display room, the temperature of the cold air blown out there, and the like.
  • the control device of the showcase 2 and the control device 48 of the refrigerator unit 3 are centrally controlled by an integrated control device provided in the store, and operate in cooperation with each other.
  • the control device 48 operates the high stage compressor 7 of the high stage refrigerant circuit 4, the low stage compressor 21 of the low stage refrigerant circuits 6A and 6B, and the gas cooler fans 51 and 52. Then, the high-temperature and high-pressure refrigerant (carbon dioxide) compressed by the high-stage compressor 7 is discharged to the discharge pipe 8 and divided into the branch pipes 9A and 9B, and then flows into the high-stage gas coolers 11A and 11B. . The refrigerant that has flowed into the high-stage gas coolers 11A and 11B is cooled in a supercritical state by the gas cooler blower 51, and the temperature decreases.
  • the refrigerant cooled by the first high-stage gas cooler 11A flows into the first high-stage expansion valve 13A via the outlet pipe 12A, and is throttled (decompressed) there, and then the first cascade from the outlet pipe 14A.
  • the refrigerant flows into the first high-stage evaporator 16A constituting the heat exchanger 43A, evaporates, and cools the refrigerant flowing through the supercooling heat exchanger 28 of the first low-stage refrigerant circuit 6A (supercooling). .
  • the refrigerant cooled by the second high stage side gas cooler 11B flows into the second high stage side expansion valve 13B via the outlet pipe 12B, and is decompressed there, and then the second cascade heat from the outlet pipe 14B.
  • the refrigerant flows into the second high-stage evaporator 16B constituting the exchanger 43B, evaporates, and cools the refrigerant flowing through the supercooling heat exchanger 28 of the second low-stage refrigerant circuit 6B (supercooling).
  • the refrigerant that has exited the first and second high-stage evaporators 16A and 16B merges through the outlet pipes 17A and 17B, and repeats circulation that is sucked into the high-stage compressor 7 from the suction pipe 18.
  • the high-temperature and high-pressure refrigerant (carbon dioxide) compressed by the low-stage compressor 21 of the first low-stage refrigerant circuit 6A (as well as the second low-stage refrigerant circuit 6B) is discharged to the discharge pipe 22.
  • the first low-stage gas cooler 23 Flows into the first low-stage gas cooler 23.
  • the refrigerant that has flowed into the first low-stage side gas cooler 23 is cooled in a supercritical state by the gas cooler blower 51, and after the temperature has decreased, it flows into the second low-stage side gas cooler 26 through the outlet pipe 24. To do.
  • the refrigerant that has flowed into the second low-stage gas cooler 26 is cooled in a supercritical state by the gas cooler blower 52 and, after the temperature has further decreased, passes through the outlet pipe 27 and passes through the first cascade heat exchanger 43A (second In the case of the lower stage refrigerant circuit 6B, the refrigerant flows into the supercooling heat exchanger 28 constituting the second cascade heat exchanger 43B).
  • the refrigerant flowing into the supercooling heat exchanger 28 evaporates in the first high-stage evaporator 16A (in the case of the second low-stage refrigerant circuit 6B, the second high-stage evaporator 16B). After being cooled (supercooled) by the refrigerant of the high-stage side refrigerant circuit 4 and further lowered in temperature, it reaches the pressure adjusting expansion valve 31 through the outlet pipe 29.
  • the high pressure side refrigerant of the low stage side refrigerant circuit 6A (6B) is throttled by the pressure adjusting expansion valve 31, and is branched to the branch pipes 33A and 33B via the outlet pipe 32, and then exits from the refrigerator unit 3 to each showcase 2 to go into.
  • the refrigerant flowing through the branch pipes 33A and 33B reaches the low-stage expansion valve 34 of each showcase 2 and is throttled there, and then flows into the low-stage evaporator 36 and evaporates.
  • the display chamber of each showcase 2 is cooled to a predetermined temperature by the endothermic action at this time.
  • the refrigerant exiting the low-stage evaporator 36 of the showcase 2 merges through an electromagnetic valve 37 (when the showcase 2 is cooled, the electromagnetic valve 37 is open) and an outlet pipe 38. Then, it flows into the accumulator 39 from the inlet pipe 42.
  • the refrigerant that has flowed into the accumulator 39 is gas-liquid separated there, and the circulation of the gas refrigerant that is sucked into the low-stage compressor 21 through the suction pipe 41 is repeated.
  • the control device 48 detects the temperature of the refrigerant flowing into the supercooling heat exchanger 28 detected by the temperature sensor 46 provided in each of the low-stage refrigerant circuits 6A and 6B, and the supercooling heat exchange detected by the temperature sensor 47. Based on the temperature of the refrigerant flowing out from the vessel 28 (for example, based on the difference between them), the high-pressure side refrigerant in the low-stage side refrigerant circuits 6A and 6B is appropriately subcooled in each supercooling heat exchanger 28.
  • the valve opening degree of each high stage side expansion valve 13A, 13B is controlled independently. Thereby, the high pressure side refrigerant
  • the refrigerant in the high-stage side refrigerant circuit 4 is evaporated in the high-stage side evaporators 16A and 16B of the cascade heat exchangers 43A and 43B, and the low-stage side refrigerant circuits 6A flowing through the supercooling heat exchanger 28.
  • a relatively large (high capacity) compressor is used as the compressor 7, 21 of each refrigerant circuit 4, 6A, 6B. Without using it, it becomes possible to obtain the required cooling capacity in the low-stage evaporator 36 of each showcase 2.
  • the refrigerant that has exited the low-stage evaporator 36 of the low-stage refrigerant circuits 6A and 6B does not exchange heat with the high-pressure refrigerant of the low-stage refrigerant circuits 6A and 6B, and the low-stage refrigerant circuit 6A, Since it is configured to be sucked into the low-stage compressor 21 of 6B, it is possible to prevent an abnormal increase in the high-pressure side pressure of the low-stage refrigerant circuits 6A and 6B, especially in summer when the outside air temperature becomes high. At the same time, since the high-density refrigerant can be sucked into the low-stage compressor 21, the efficiency is also improved.
  • the cascade heat exchangers 43A and 43B supercool the refrigerant that has exited the low-stage gas cooler 26, the carbon dioxide refrigerant of the low-stage refrigerant circuits 6A and 6B cooled by the low-stage gas coolers 24 and 26 is used. Further cooling is performed by the cascade heat exchangers 43A and 43B, and further cooling capacity can be improved.
  • one The high-stage side refrigerant circuit 4 can supercool the high-pressure side refrigerants of the two systems (plurality) of the low-stage refrigerant circuits 6A and 6B.
  • the high-stage refrigerant circuit 4 includes two (plural) high-stage gas coolers 11A and 11B connected in parallel and two (multiple-stage) connected to the outlets of the high-stage gas coolers 11A and 11B, respectively.
  • 16A and 16B even when two low-stage refrigerant circuits 6A and 6B are used as in the embodiment, the cascade-stage heat exchangers 43A and 43B use the low-stage refrigerant circuits 6A and 6B.
  • the 6B high-pressure refrigerant can be subcooled accurately and independently.
  • the refrigerant that has exited each of the high-stage evaporators 16A and 16B of the high-stage refrigerant circuit 4 does not exchange heat with the high-pressure refrigerant of the high-stage refrigerant circuit 4, and thus the high-stage refrigerant circuit 4 Since the suction is performed by the stage-side compressor 7, an abnormal increase in the high-pressure side pressure of the high-stage refrigerant circuit 4 can be prevented particularly in summer when the outside air temperature becomes high. Moreover, since a high-density refrigerant can be sucked into the high stage side compressor 7, efficiency is also improved.
  • the control device 48 calculates the optimum high-pressure side pressure of the low-stage refrigerant circuits 6A and 6B based on the outside air temperature, and controls the valve opening degree of each pressure adjusting expansion valve 31 using this as a target value. . That is, the control device 48 detects the outside air temperature detected by the temperature sensor 53 in step S1 of the flowchart of FIG. Next, in step S2, a target value for the high-pressure side pressure of the low-stage refrigerant circuit 6A (6B) is set based on the outside air temperature.
  • the control device 48 holds in advance information indicating the relationship between the outside air temperature and the optimum high-pressure side pressure of the low-stage refrigerant circuit 6A (6B) at that time.
  • the optimum value of the high-pressure side pressure means the high-pressure side pressure of the low-stage refrigerant circuit 6A (6B) at which the efficiency COP is maximized or close to the value in FIG.
  • the horizontal axis (x) is the outside air temperature
  • the vertical axis (y) is the high-pressure side pressure of the low-stage refrigerant circuit 6A (6B) of the refrigeration apparatus 1 (the high-pressure refrigerant discharged from the low-stage compressor 21).
  • This approximate expression is obtained in advance by experiments. For example, if FIG. 7 described above is an example of the refrigeration apparatus 1, it can be seen that the optimum value (y) of the high-pressure side pressure is 10.5 MPa in an environment where the outside air temperature (x) is + 38 ° C.
  • the control device 48 uses this approximate expression in step S2, calculates the optimum high-pressure side pressure at that time (the optimum value of the high-pressure side pressure) from the outside air temperature, and sets the calculated high-pressure side pressure as a target value.
  • the target value (optimum high-pressure side pressure) at the outside air temperature + 20 ° C. is about 8.1 MPa
  • the target value at + 30 ° C. is about 9.5 MPa.
  • step S3 the control device 48 sets an initialization opening of the pressure adjusting expansion valve 31 to initialize the opening.
  • step S4 the control of the high pressure side pressure of the low stage side refrigerant circuit 6A (6B) by the pressure adjusting expansion valve 31 is started.
  • the controller 48 first waits for a predetermined time (for example, 10 minutes) in step S5, and then detects the current high-pressure side pressure detected by the pressure sensor 44 in step S6.
  • a predetermined time for example, 10 minutes
  • the absolute value (abs) of the difference (target value-current value) between the target value (optimal high pressure side pressure) and the current high pressure side pressure (current value) is a predetermined value (for example, 0.1 MPa).
  • a predetermined value for example, 0.1 MPa.
  • step S9 After waiting for a predetermined time (for example, 30 seconds) in step S9, the outside temperature detected by the temperature sensor 53 is detected again in step S10. Then, the difference (set outside air temperature ⁇ current outside air temperature) between the outside air temperature when the target value is set in step S11 (outside air temperature in step S1; set outside air temperature) and the current outside air temperature (current outside air temperature) is It is determined whether or not the value is within a range of a predetermined value (for example, plus or minus 2K). If the difference is within the predetermined value (plus or minus 2K), the target value of the high pressure side pressure is maintained in step S12, and the process returns to step S6.
  • a predetermined time for example, 30 seconds
  • step S11 If the difference (set outside air temperature ⁇ current outside air temperature) is not within the predetermined value in step S11, the control device 48 proceeds to step S13 to use the approximate expression of FIG. 3 again, and the outside air temperature at that time (current outside air temperature) again.
  • the optimum high-pressure side pressure is calculated, and the calculated high-pressure side pressure is set (updated) as a target value. Then, the process returns to step S6. In this way, the controller 48 updates the target value of the high-pressure side pressure of the low-stage refrigerant circuit 6A (6B) following the change in the outside air temperature.
  • step S7 the absolute value of the difference (target value ⁇ current value) between the target value and the current high pressure side pressure (current value) is not less than or equal to the predetermined value (0.1 MPa) in step S7 (the difference is large).
  • the control device 48 proceeds to step S14, and determines whether or not the difference (target value ⁇ current value) is larger than a predetermined value (for example, 0.1 MPa).
  • the control device 48 proceeds to step S15 and the pressure adjusting expansion valve 31 is set.
  • the valve opening is closed by a predetermined pulse (xxpls).
  • the control device 48 performs step. Proceeding to S16, the valve opening degree of the pressure adjusting expansion valve 31 is opened by a predetermined pulse (xxpls). As a result, the high-pressure side refrigerant of the low-stage side refrigerant circuit 6A (6B) that has exited the supercooling heat exchanger 28 of the cascade heat exchanger 43A (43B) becomes easier to flow, so the low-stage side refrigerant circuit 6A ( The high pressure side pressure of 6B) decreases.
  • the control device 48 controls the high pressure side pressure of the low stage side refrigerant circuit 6A (6B) to an optimum value by the pressure adjusting expansion valve 31. That is, a pressure adjusting expansion valve 31 for adjusting the high pressure side pressure of the low stage side refrigerant circuits 6A, 6B is provided, and the control unit 48 determines the optimum relevant pressure based on the high pressure side pressure of the low stage side refrigerant circuits 6A, 6B. Since the pressure adjusting expansion valve 31 is controlled with the high pressure side pressure as a target value, the specific enthalpy difference between the high pressure side refrigerants in the low stage side refrigerant circuits 6A and 6B is secured to improve the cooling capacity and the efficiency. It becomes possible to plan.
  • the pressure adjusting expansion valve 31 can smoothly control the high pressure side pressure of the low stage side refrigerant circuits 6A and 6B to an optimum value.
  • the same reference numerals as those in FIG. 1 indicate the same or similar functions.
  • the circuit configurations of the low-stage refrigerant circuits 6A and 6B are the same as those in the first embodiment.
  • the outlet pipe 12A of the first high-stage side gas cooler 11A of the high-stage side refrigerant circuit 4 and the outlet pipe 12B of the second high-stage side gas cooler 11B are joined together to the inlet of one high-stage side expansion valve 13. It is connected. That is, the high stage side gas coolers 11A and 11B are connected in parallel between the high stage side compressor 7 and the high stage side expansion valve 13.
  • the outlet of the high stage side expansion valve 13 branches into branch pipes 54A and 54B, one branch pipe 54A is connected to the inlet of the first high stage side evaporator 16A, and the other branch pipe 54B is the second pipe. Is connected to the inlet of the higher stage evaporator 16B. That is, the high-stage evaporators 16A and 16B are connected in parallel to the outlet of the high-stage side expansion valve 13.
  • 56 is a pressure sensor which is attached to the discharge pipe 8 of the high stage side compressor 7 and detects the high pressure side pressure of the high stage side refrigerant circuit 4, and 57 in the figure is attached to the outlet pipe 17A.
  • the temperature sensor 58 detects the temperature of the refrigerant that has exited the first high-stage evaporator 16A
  • 58 is a temperature sensor that is attached to the outlet pipe 17B and detects the temperature of the refrigerant that has exited the second high-stage evaporator 16B. It is.
  • the temperature sensors 46 and 47 of the first embodiment are not provided. Other configurations are the same as those in the first embodiment.
  • the control device 48 causes the high-stage compressor 7 of the high-stage refrigerant circuit 4, the low-stage compressor 21 of the low-stage refrigerant circuits 6 ⁇ / b> A and 6 ⁇ / b> B, and the gas cooler blowers 51 and 52 to be used.
  • the high-temperature and high-pressure refrigerant (carbon dioxide) compressed by the high-stage compressor 7 is discharged to the discharge pipe 8 and divided into the branch pipes 9A and 9B, and then each of the high-stage gas coolers 11A and 11B. Flow into.
  • the refrigerant that has flowed into the high-stage gas coolers 11A and 11B is cooled in a supercritical state by the gas cooler blower 51, and the temperature decreases.
  • the refrigerant cooled by the high-stage gas coolers 11A and 11B merges through the outlet pipes 12A and 12B, and then flows into the high-stage expansion valve 13 where it is throttled (decompressed), and then the branch pipe 54A. , 54B.
  • the refrigerant that has flowed into the branch pipe 54A flows into the first high-stage evaporator 16A that constitutes the first cascade heat exchanger 43A, evaporates, and heat for supercooling the first low-stage refrigerant circuit 6A.
  • the refrigerant flowing through the exchanger 28 is cooled (supercooled).
  • the refrigerant that has flowed into the branch pipe 54B flows into the second high-stage evaporator 16B that constitutes the second cascade heat exchanger 43B, evaporates, and supercools the second low-stage refrigerant circuit 6B.
  • the refrigerant flowing through the heat exchanger 28 is cooled (supercooled).
  • the refrigerant that has exited the first and second high-stage evaporators 16A and 16B merges through the outlet pipes 17A and 17B, and repeats circulation that is sucked into the high-stage compressor 7 from the suction pipe 18.
  • control device 48 in this case sets the operating frequency of the high stage compressor 7 based on, for example, an average value of the temperature of the refrigerant that has exited the high stage evaporators 16A and 16B detected by the temperature sensors 57 and 58. Control. At this time, the control device 48 controls the operating frequency of the high-stage compressor 7 so that the required supercooling of the high-pressure refrigerant in the low-stage refrigerant circuits 6A and 6B can be obtained in the cascade heat exchangers 43A and 43B. .
  • control device 48 determines the valve opening degree of the expansion valve 13 based on the high-pressure side pressure of the high-stage refrigerant circuit 4 detected by the pressure sensor 56, and the pressure adjusting expansion valves for the low-stage refrigerant circuits 6A and 6B described above.
  • the high pressure side pressure of the high stage side refrigerant circuit 4 is controlled to an appropriate value (target value of the high pressure side pressure of the high stage side refrigerant circuit 4) as described above.
  • the operation of the low-stage refrigerant circuits 6A and 6B and the control of the control device 48 related thereto are the same as in the first embodiment.
  • This embodiment also includes two (a plurality of) low-stage refrigerant circuits 6A and 6B and two (a plurality of) cascade heat exchangers 43A and 43B provided in each of the low-stage refrigerant circuits 6A and 6B. Accordingly, similarly, the high-pressure side refrigerants of the two systems (plurality) of the low-stage refrigerant circuits 6A and 6B can be supercooled by the single high-stage refrigerant circuit 4.
  • the high stage side refrigerant circuit 4 includes the first and second high stage side gas coolers 11A and 11B and a single high stage connected to the outlets of these high stage side gas coolers 11A and 11B.
  • the refrigerant can flow from one high-stage expansion valve 13 to the two (plural) high-stage evaporators 16A and 16B, thereby simplifying the control and reducing the cost. There is an effect that can be achieved.
  • the same reference numerals as those in FIGS. 1 and 4 indicate the same or similar functions.
  • the circuit configurations of the low-stage refrigerant circuits 6A and 6B are the same as those in the first embodiment.
  • the outlet pipe 12A of the first high-stage side gas cooler 11A of the high-stage side refrigerant circuit 4 and the outlet pipe 12B of the second high-stage side gas cooler 11B are joined together to the inlet of one high-stage side expansion valve 13. It is connected. That is, the high stage side gas coolers 11A and 11B are connected in parallel between the high stage side compressor 7 and the high stage side expansion valve 13.
  • the outlet of the high stage side expansion valve 13 is connected to the inlet of the first high stage side evaporator 16A via the outlet pipe 59.
  • the outlet pipe 17A of the first high stage evaporator 16A is connected to the inlet of the second high stage evaporator 16B, and the outlet pipe 17B of the high stage evaporator 16B is connected to the high stage compressor 7.
  • the suction pipe 18 is connected. That is, the high-stage evaporators 16A and 16B are connected in series to the outlet of the high-stage side expansion valve 13.
  • the temperature sensor 57 of the second embodiment is not provided, and the temperature sensor 58 is attached to the outlet pipe 17B to detect the temperature of the refrigerant that has exited the second higher-stage evaporator 16B. Also in this case, the temperature sensors 46 and 47 of the first embodiment are not provided. Other configurations are the same as those in the first or second embodiment.
  • the control device 48 causes the high-stage compressor 7 of the high-stage refrigerant circuit 4, the low-stage compressor 21 of the low-stage refrigerant circuits 6 ⁇ / b> A and 6 ⁇ / b> B, and the gas cooler blowers 51 and 52 to be used.
  • the high-temperature and high-pressure refrigerant (carbon dioxide) compressed by the high-stage compressor 7 is discharged to the discharge pipe 8 and divided into the branch pipes 9A and 9B, and then each of the high-stage gas coolers 11A and 11B. Flow into.
  • the refrigerant that has flowed into the high-stage gas coolers 11A and 11B is cooled in a supercritical state by the gas cooler blower 51, and the temperature decreases.
  • the refrigerant cooled by the high-stage gas coolers 11A and 11B merges through the outlet pipes 12A and 12B, and then flows into the high-stage expansion valve 13 where it is throttled (decompressed), and then the outlet pipe 59.
  • the refrigerant flows into the first high-stage evaporator 16A constituting the first cascade heat exchanger 43A, evaporates, and flows through the supercooling heat exchanger 28 of the first low-stage refrigerant circuit 6A. Is cooled (supercooled).
  • the refrigerant that has exited the first high-stage evaporator 16A flows into the second high-stage evaporator 16B that constitutes the second cascade heat exchanger 43B through the outlet pipe 17A, and then evaporates.
  • the refrigerant flowing through the supercooling heat exchanger 28 of the second low-stage refrigerant circuit 6B is cooled (supercooling).
  • the refrigerant that has exited the second high-stage evaporator 16B repeats circulation that is sucked into the high-stage compressor 7 from the suction pipe 18 via the outlet pipe 17B.
  • control device 48 in this case controls the operating frequency of the high-stage compressor 7 based on the temperature of the refrigerant that has exited the second high-stage evaporator 16B detected by the temperature sensor 58. At this time, the control device 48 controls the operating frequency of the high-stage compressor 7 so that the required supercooling of the high-pressure refrigerant in the low-stage refrigerant circuits 6A and 6B can be obtained in the cascade heat exchangers 43A and 43B. .
  • control device 48 determines the valve opening degree of the expansion valve 13 based on the high pressure side pressure of the high stage side refrigerant circuit 4 detected by the pressure sensor 56 as in the case of the second embodiment. , 6B, the high pressure side pressure of the high stage side refrigerant circuit 4 is set to an appropriate value similar to the above (target value of the high pressure side pressure of the high stage side refrigerant circuit 4). Control.
  • the operation of the low-stage refrigerant circuits 6A and 6B and the control of the control device 48 related thereto are the same as in the first embodiment.
  • This embodiment also includes two (a plurality of) low-stage refrigerant circuits 6A and 6B and two (a plurality of) cascade heat exchangers 43A and 43B provided in each of the low-stage refrigerant circuits 6A and 6B. Accordingly, similarly, the high-pressure side refrigerants of the two systems (plurality) of the low-stage refrigerant circuits 6A and 6B can be supercooled by the single high-stage refrigerant circuit 4.
  • the high stage side refrigerant circuit 4 is configured in series with each cascade heat exchanger in series with the outlet of the high stage side expansion valve 13 connected to the outlets of the high stage side gas coolers 11A and 11B.
  • Two (a plurality of) high stage evaporators 16A and 16B are connected, and the operating frequency of the high stage compressor 7 is set at the temperature of the refrigerant that has exited the second high stage evaporator 16B on the downstream side. Since it is controlled, such inconvenience is solved.
  • the first high-stage evaporator 16A is upstream, and the second high-stage evaporator 16B is downstream.
  • the supercooling of the refrigerant in the low-stage refrigerant circuit 6A cooled by 43A is prioritized over the low-stage refrigerant circuit 6B. Therefore, the low stage side refrigerant circuit 6A may be configured to share cooling of the showcase 2 where the load becomes larger.
  • the present invention has been described with a refrigeration apparatus in which a single high-stage refrigerant circuit and two low-stage refrigerant circuits are cascade-connected.
  • the present invention is not limited thereto, and a single low-stage refrigerant circuit and A refrigeration apparatus in which high-stage refrigerant circuits are cascade-connected may be used, or three or more low-stage refrigerant circuits may be cascade-connected to a high-stage refrigerant circuit.
  • the present invention is applied to a refrigeration apparatus that cools a showcase.
  • the present invention is not limited thereto, and the present invention is also effective for a refrigeration apparatus that cools a vending machine or the like.
  • Refrigeration apparatus 2 Showcase 3 Refrigerator unit 4 High stage side refrigerant circuit 6A, 6B Low stage side refrigerant circuit 7 High stage side compressor 11A, 11B High stage side gas cooler 13A, 13B, 13 High stage side expansion valve 16A, 16B High-stage evaporator 21 Low-stage compressor 23, 26 Low-stage gas cooler 28 Supercooling heat exchanger 31 Pressure adjustment expansion valve 34 Low-stage expansion valve 36 Low-stage evaporator 39 Accumulator 48 Controllers 51, 52 Gas cooler blower

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】低段側冷媒回路の高圧側圧力を最適な値に制御して、冷却能力と効率を向上させることができる冷凍装置を提供する。【解決手段】高段側冷媒回路(4)と、第1、第2の低段側冷媒回路(6A、6B)と、高段側冷媒回路(4)の冷媒を蒸発させて低段側冷媒回路(6A、6B)の高圧側冷媒を冷却するカスケード熱交換器(43A、43B)とを備え、各冷媒回路(4、6A、6B)には二酸化炭素を冷媒として封入して成る冷凍装置(1)において、低段側冷媒回路(6A、6B)の高圧側圧力を調整するための圧力調整用膨張弁(31)を設けた。

Description

冷凍装置
 本発明は、高段側冷媒回路と低段側冷媒回路とをカスケード接続し、各冷媒回路には冷媒として二酸化炭素を封入して成る冷凍装置に関するものである。
 従来より、例えばコンビニエンスストアやスーパーマーケット等の店舗には、陳列室内にて商品を冷却しながら陳列販売するショーケースが複数台設置されている。各ショーケースには陳列室内を冷却するための蒸発器が設置され、この蒸発器には店外等に設置された冷凍機ユニットから冷媒が供給される構成とされていた。
 また、近年の地球環境問題からこの種ショーケースにおいても二酸化炭素が冷媒として使用されるようになってきているが、この二酸化炭素を圧縮するためには比較的大型の圧縮機が必要となる。そこで、それぞれ独立した冷媒閉回路を構成する高段側冷媒回路と低段側冷媒回路とをカスケード接続し、高段側冷媒回路の冷媒を蒸発させて低段側冷媒回路の高圧側冷媒を過冷却することにより、低段側冷媒回路の蒸発器で所要の冷凍能力を得る冷凍装置が開発されている(例えば、特許文献1、特許文献2参照)。
特開2001-91074号公報 特開2000-205672号公報
 ここで、図6は係る冷凍装置の低段側冷媒回路のp-h線図を例示している。図中縦軸は低段側冷媒回路の高圧側圧力、L1は飽和液線、L2は飽和蒸気線、L3は+40℃の等温線、L4は+100℃~+120℃の等温線をそれぞれ示している。また、図中X1は低段側冷媒回路の高圧側圧力が9MPaのときに+100℃~+120℃の冷媒を+40℃まで冷却したときの比エンタルピの差を示し、X2は低段側冷媒回路の高圧側圧力が7.5MPaのときに+100℃~+120℃の冷媒を+40℃まで冷却したときの比エンタルピの差を示している。
 二酸化炭素冷媒はガスクーラにて超臨界状態で冷却されるため、顕熱変化となる。そして、図6からも明らかな如く、低段側冷媒回路の高圧側圧力が高い9MPaのときの方が、7.5MPaのときよりも比エンタルピの差が大きく、その分、冷凍能力が高くなることが分かる。
 また、図7は低段側冷媒回路の高圧側圧力と各熱交換器の能力(図6とは条件が異なる夏期高温38℃)の関係を示している。また、図中菱形は低段側ガスクーラ、四角は高段側ガスクーラ、三角はカスケード熱交換器、丸はCOPをそれぞれ示している。この図からも明らかな如く、図中X3で示す領域、即ち、低段側冷媒回路の高圧側圧力が高い領域で効率COPが改善されることが分かる。例えば、この例の冷凍装置の場合、外気温度が+38℃の環境下では、低段側冷媒回路の高圧側圧力が10.5MPa程であるときに効率COPが最大となることが分かる。
 このように、二酸化炭素を冷媒として使用した場合、低段側冷媒回路の高圧側圧力には、冷凍能力上、及び、効率上、最適な値(前述した外気温度+38℃における10.5MPa)が存在し、それは比較的高い領域であるが、従来では低段側冷媒回路の高圧側圧力は、ショーケースに設けられた膨張弁の絞り具合に依存していたため、低段側冷媒回路の高圧側圧力を最適な値に制御することができなかった。
 また、二酸化炭素は高圧上昇が早いため、異常高圧でカットエラーとならないよう、低段側冷媒回路の高圧側圧力を監視して、上昇した際には低段側圧縮機の運転周波数を下げて高圧が異常に上昇することを抑制する必要がある。一方、従来では冷凍能力を向上させる目的で低段側冷媒回路の高圧側冷媒と低段側冷媒回路の低段側蒸発器を出た冷媒とを熱交換させる内部熱交換器を設ける場合があるが、低段側圧縮機に吸い込まれる冷媒温度が上昇するため、特に外気温度が高くなる夏期等に高圧が高くなり勝ちとなり、運転周波数の低下制御が働いて図7における9MPa当たりまでしか上がらず、これによっても高圧側圧力が最適値に上昇しないという問題があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、低段側冷媒回路の高圧側圧力を最適な値に制御して、冷却能力と効率を向上させることができる冷凍装置を提供するものである。
 上記課題を解決するために本発明は、高段側冷媒回路と、低段側冷媒回路と、高段側冷媒回路の冷媒を蒸発させて低段側冷媒回路の高圧側冷媒を冷却するカスケード熱交換器とを備え、各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置において、低段側冷媒回路の高圧側圧力を調整するための圧力調整用膨張弁を設けたことを特徴とする。
 請求項2の発明の冷凍装置は、上記発明において圧力調整用膨張弁を制御する制御装置を備え、この制御装置は、低段側冷媒回路の高圧側圧力に基づき、最適な当該高圧側圧力を目標値として圧力調整用膨張弁を制御することを特徴とする。
 請求項3の発明の冷凍装置は、上記発明において制御装置は、外気温度とそのときの最適な高圧側圧力との関係を示す情報を予め保有しており、外気温度に基づいて高圧側圧力の目標値を算出することを特徴とする。
 請求項4の発明の冷凍装置は、上記各発明において低段側冷媒回路の低段側蒸発器を出た冷媒を、当該低段側冷媒回路の高圧側冷媒と熱交換させること無く、低段側冷媒回路の低段側圧縮機に吸い込ませると共に、この低段側圧縮機の吸込側には、アキュムレータを設けたことを特徴とする。
 請求項5の発明の冷凍装置は、上記各発明において低段側冷媒回路は、低段側圧縮機と、低段側ガスクーラを有し、カスケード熱交換器は、低段側ガスクーラを出た冷媒を過冷却することを特徴とする。
 請求項6の発明の冷凍装置は、上記各発明において複数の低段側冷媒回路と、各低段側冷媒回路にそれぞれ設けられた複数のカスケード熱交換器とを備え、高段側冷媒回路は、並列に接続された複数の高段側ガスクーラと、各高段側ガスクーラの出口にそれぞれ接続された複数の高段側膨張弁と、各高段側膨張弁の出口にそれぞれ接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を有することを特徴とする。
 請求項7の発明の冷凍装置は、請求項1乃至請求項5の発明において複数の低段側冷媒回路と、各低段側冷媒回路にそれぞれ設けられた複数のカスケード熱交換器とを備え、高段側冷媒回路は、高段側ガスクーラと、この高段側ガスクーラの出口に接続された高段側膨張弁と、この高段側膨張弁の出口に並列に接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を有することを特徴とする。
 請求項8の発明の冷凍装置は、請求項1乃至請求項5の発明において複数の低段側冷媒回路と、各低段側冷媒回路にそれぞれ設けられた複数のカスケード熱交換器とを備え、高段側冷媒回路は、高段側ガスクーラと、この高段側ガスクーラの出口に接続された高段側膨張弁と、この高段側膨張弁の出口に直列に接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を有することを特徴とする。
 本発明によれば、高段側冷媒回路と、低段側冷媒回路と、高段側冷媒回路の冷媒を蒸発させて低段側冷媒回路の高圧側冷媒を冷却するカスケード熱交換器とを備え、各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置において、低段側冷媒回路の高圧側圧力を調整するための圧力調整用膨張弁を設けたので、例えば、請求項2の発明の如く圧力調整用膨張弁を制御する制御装置により、低段側冷媒回路の高圧側圧力に基づき、最適な当該高圧側圧力を目標値として圧力調整用膨張弁を制御することにより、低段側冷媒回路の高圧側冷媒の比エンタルピ差を確保し、冷却能力の向上と効率の改善を図ることができるようになる。
 この場合、請求項3の発明の如く制御装置に、外気温度とそのときの最適な高圧側圧力との関係を示す情報を予め保有させておき、外気温度に基づいて高圧側圧力の目標値を算出するようにすれば、圧力調整用膨張弁により、円滑に低段側冷媒回路の高圧側圧力を最適な値に制御することが可能となる。
 また、請求項4の発明の如く低段側冷媒回路の低段側蒸発器を出た冷媒を、当該低段側冷媒回路の高圧側冷媒と熱交換させること無く、低段側冷媒回路の低段側圧縮機に吸い込ませるようにすれば、特に外気温度が高くなる夏期等に、低段側冷媒回路の高圧側圧力の異常上昇を防止することができるようになり、最適な高圧側圧力への制御も円滑に行うことが可能となる。また、低段側圧縮機に密度の濃い冷媒を吸い込ませることができるので、効率も向上することになる。
 特にこの場合、低段側圧縮機の吸込側にはアキュムレータを設けているので、低段側圧縮機への液バックを防止することができるようになる。また、アキュムレータは液溜めとして機能するので、低段側冷媒回路に十分な量の冷媒を封入することも可能となる。
 また、請求項5の発明によれば、上記各発明に加えて低段側冷媒回路は、低段側圧縮機と低段側ガスクーラを有し、カスケード熱交換器は、低段側ガスクーラを出た冷媒を過冷却するようにしたので、低段側ガスクーラで冷却された低段側冷媒回路の冷媒を、カスケード熱交換器にて更に過冷却することができるようになり、更なる冷却能力を改善を図ることができるようになる。
 更に、請求項6の発明によれば、上記各発明に加えて複数の低段側冷媒回路と、各低段側冷媒回路にそれぞれ設けられた複数のカスケード熱交換器とを備えているので、一つの高段側冷媒回路にて複数の低段側冷媒回路の高圧側冷媒を過冷却することができるようになる。この場合、高段側冷媒回路は、並列に接続された複数の高段側ガスクーラと、各高段側ガスクーラの出口にそれぞれ接続された複数の高段側膨張弁と、各高段側膨張弁の出口にそれぞれ接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を有しているので、低段側冷媒回路を複数用いる場合にも、各カスケード熱交換器により各低段側冷媒回路の高圧側冷媒を的確に過冷却することができるようになる。
 また、請求項7の発明によれば、請求項1乃至請求項5の発明に加えて複数の低段側冷媒回路と、各低段側冷媒回路にそれぞれ設けられた複数のカスケード熱交換器とを備えているので、同様に一つの高段側冷媒回路にて複数の低段側冷媒回路の高圧側冷媒を過冷却することができるようになる。この場合、高段側冷媒回路は、高段側ガスクーラと、この高段側ガスクーラの出口に接続された高段側膨張弁と、この高段側膨張弁の出口に並列に接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を有しているので、一つの高段側膨張弁から複数の高段側蒸発器へ冷媒を流すことができるようになり、制御が簡素化されると共に、コストの低減も図ることが可能となる。
 また、請求項8の発明によれば、請求項1乃至請求項5の発明に加えて複数の低段側冷媒回路と、各低段側冷媒回路にそれぞれ設けられた複数のカスケード熱交換器とを備えているので、同様に一つの高段側冷媒回路にて複数の低段側冷媒回路の高圧側冷媒を過冷却することができるようになる。この場合、高段側冷媒回路は、高段側ガスクーラと、この高段側ガスクーラの出口に接続された高段側膨張弁と、この高段側膨張弁の出口に直列に接続されて各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を有しているので、何れかの低段側冷媒回路の運転が停止したときに、高段側冷媒回路の高段側圧縮機に液バックが発生する不都合を防止することが可能となるものである。
本発明を適用した一実施例の冷凍装置の冷媒回路図である(実施例1)。 図1の冷凍装置の制御装置による圧力調整用膨張弁の制御フローチャートである。 図1の冷凍装置の制御装置による低段側冷媒回路の高圧側圧力の目標値の算出動作を説明するための図である。 本発明を適用した他の実施例の冷凍装置の冷媒回路図である(実施例2)。 本発明を適用したもう一つの他の実施例の冷凍装置の冷媒回路図である(実施例3)。 この種冷凍装置の低段側冷媒回路のp-h線図である。 この種冷凍装置の低段側冷媒回路の高圧側圧力と各熱交換器の能力の関係を示す図である。
 以下、本発明の実施の形態について、詳細に説明する。
 図1は本発明を適用した一実施例の冷凍装置1の冷媒回路図である。実施例の冷凍装置1は、コンビニエンスストアやスーパーマーケット等の店舗に設置された複数台のショーケース2(実施例では四台)に、店外に設置された冷凍機ユニット3から冷媒を供給するものであり、一台の高段側冷媒回路4と、複数(実施例では二系統)の低段側冷媒回路6A、6Bとから構成されている。
 この実施例の高段側冷媒回路4は、スクロール圧縮機から成る高段側圧縮機7と、この高段側圧縮機7の吐出配管8から分岐した分岐配管9A、9Bにそれぞれ接続されて相互に並列となる第1及び第2の(複数の)高段側ガスクーラ11A、11Bと、第1の高段側ガスクーラ11Aの出口配管12Aに接続された第1の高段側膨張弁13Aと、第2の高段側ガスクーラ11Bの出口配管12Bに接続された第2の高段側膨張弁13Bと、第1の高段側膨張弁13Aの出口配管14Aに接続された第1の高段側蒸発器16Aと、第2の高段側膨張弁13Bの出口配管14Bに接続された第2の高段側蒸発器16Bとを備えており、これら第1及び第2の高段側蒸発器16A、16Bの出口配管17A、17Bが合流され、高段側圧縮機7の吸込配管18に接続されて冷凍サイクルが構成されている。この高段側冷媒回路4には、二酸化炭素が冷媒として所定量封入されている。
 一方、低段側冷媒回路6A、6Bは何れも同一の構成である。即ち、実施例の低段側冷媒回路6A(低段側冷媒回路6Bも同様)は、これもスクロール圧縮機から成る低段側圧縮機21と、この低段側圧縮機21の吐出配管22に接続された第1の低段側ガスクーラ23と、その出口配管24に接続されて第1の低段側ガスクーラ23の冷媒下流側となる第2の低段側ガスクーラ26と、この第2の低段側ガスクーラ26の出口配管27に接続された過冷却用熱交換器28と、この過冷却用熱交換器28の出口配管29に接続された圧力調整用膨張弁31と、この圧力調整用膨張弁31の出口配管32から分岐した分岐配管33A、33Bにそれぞれ接続された低段側膨張弁34、34と、各低段側膨張弁34、34の出口側にそれぞれ接続された低段側蒸発器36、36とを備えている。
 これら低段側膨張弁34及び低段側蒸発器36が二台のショーケース2内にそれぞれ設置されるものである。そして、各ショーケース2内の低段側蒸発器36の出口側にはそれぞれ電磁弁37が接続され、各電磁弁37の出口配管38が合流された後、入口配管42を経てアキュムレータ39に接続され、このアキュムレータ39の出口側が低段側圧縮機21の吸込配管41に接続されて冷凍サイクルが構成されている。アキュムレータ39は所定容量を有するタンクである。また、各低段側冷媒回路6A、6Bには、二酸化炭素が冷媒として所定量封入されている。
 そして、高段側冷媒回路4の第1の高段側蒸発器16Aと低段側冷媒回路6Aの過冷却用熱交換器28とが熱交換関係に設けられて第1のカスケード熱交換器43Aが構成され、高段側冷媒回路4の第2の高段側蒸発器16Bと低段側冷媒回路6Bの過冷却用熱交換器28とが熱交換関係に設けられて第2のカスケード熱交換器43Bが構成されている。また、上記分岐配管33A、33Bと出口配管38が冷凍機ユニット3から各ショーケース2に渡る配管となる。
 図中、44は各低段側冷媒回路6A、6Bの低段側圧縮機21の吐出配管22に取り付けられた圧力センサであり、低段側圧縮機21から吐出された高圧側冷媒の圧力を検出する。また、46、47は各低段側冷媒回路6A、6Bの出口配管27及び29にそれぞれ取り付けられた温度センサであり、温度センサ46は過冷却用熱交換器28に流入する冷媒の温度を、温度センサ47は過冷却用熱交換器28から流出する冷媒の温度をそれぞれ検出する。
 図中51、52は第1及び第2のガスクーラ用送風機であり、第1のガスクーラ用送風機51は各高段側ガスクーラ11A、11Bと第1の低段側ガスクーラ23に通風してそれらを空冷し、第2のガスクーラ用送風機52は第2の低段側ガスクーラ26に通風して空冷する。また、図中53は外気温度を検出する温度センサである。更に、図中48は冷凍機ユニット3側の制御装置であり、各センサ44、46、47、53等の出力に基づいて高段側冷媒回路4の高段側圧縮機7の運転周波数、各高段側膨張弁13A、13Bの弁開度、低段側冷媒回路6A、6Bの低段側圧縮機21の運転周波数、圧力調整用膨張弁31の弁開度、各ガスクーラ用送風機51、52の運転を制御する。
 尚、ショーケース2側の低段側膨張弁34や電磁弁37は各ショーケース2の制御装置により陳列室内に温度やそこに吹き出される冷気の温度等に基づいて制御されるものであるが、ショーケース2の制御装置と冷凍機ユニット3の制御装置48は店舗に設けられる統合制御装置により集中制御され、互いに連携して動作するものである。
 以上の構成で、制御装置48により高段側冷媒回路4の高段側圧縮機7、低段側冷媒回路6A、6Bの低段側圧縮機21、各ガスクーラ用送風機51、52が運転されると、高段側圧縮機7で圧縮された高温高圧の冷媒(二酸化炭素)が吐出配管8に吐出され、分岐配管9A、9Bに分流された後、各高段側ガスクーラ11A、11Bに流入する。各高段側ガスクーラ11A、11Bに流入した冷媒は、ガスクーラ用送風機51により超臨界状態で冷却され、温度が低下する。
 第1の高段側ガスクーラ11Aで冷却された冷媒は、出口配管12Aを経て第1の高段側膨張弁13Aに流入し、そこで絞られた後(減圧)、出口配管14Aから第1のカスケード熱交換器43Aを構成する第1の高段側蒸発器16Aに流入して蒸発し、第1の低段側冷媒回路6Aの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。また、第2の高段側ガスクーラ11Bで冷却された冷媒は、出口配管12Bを経て第2の高段側膨張弁13Bに流入し、そこで減圧された後、出口配管14Bから第2のカスケード熱交換器43Bを構成する第2の高段側蒸発器16Bに流入して蒸発し、第2の低段側冷媒回路6Bの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。
 そして、これら第1及び第2の高段側蒸発器16A、16Bを出た冷媒は、出口配管17A、17Bを経て合流し、吸込配管18から高段側圧縮機7に吸い込まれる循環を繰り返す。
 一方、第1の低段側冷媒回路6A(第2の低段側冷媒回路6Bも同様)の低段側圧縮機21で圧縮された高温高圧の冷媒(二酸化炭素)は吐出配管22に吐出され、第1の低段側ガスクーラ23に流入する。この第1の低段側ガスクーラ23に流入した冷媒は、ガスクーラ用送風機51により超臨界状態で冷却され、温度が低下した後、出口配管24を経て次に第2の低段側ガスクーラ26に流入する。この第2の低段側ガスクーラ26に流入した冷媒は、ガスクーラ用送風機52により超臨界状態で冷却され、温度が更に低下した後、出口配管27を経て第1のカスケード熱交換器43A(第2の低段側冷媒回路6Bの場合は第2のカスケード熱交換器43B)を構成する過冷却用熱交換器28に流入する。
 この過冷却用熱交換器28に流入した冷媒は、第1の高段側蒸発器16A(第2の低段側冷媒回路6Bの場合は第2の高段側蒸発器16B)内で蒸発する高段側冷媒回路4の冷媒により冷却(過冷却)されて更に温度が低下した後、出口配管29を経て圧力調整用膨張弁31に至る。
 この圧力調整用膨張弁31で低段側冷媒回路6A(6B)の高圧側冷媒は絞られ、出口配管32を経て分岐配管33A、33Bに分流し、冷凍機ユニット3から出て各ショーケース2に入る。分岐配管33A、33Bを流れる冷媒は各ショーケース2の低段側膨張弁34に至り、そこで絞られた後、低段側蒸発器36に流入して蒸発する。このときの吸熱作用で各ショーケース2の陳列室内は所定の温度に冷却される。
 そして、これらショーケース2の低段側蒸発器36を出た冷媒は、電磁弁37(ショーケース2を冷却する場合、電磁弁37は開放されているものとする)、出口配管38を経て合流し、入口配管42からアキュムレータ39に流入する。アキュムレータ39に流入した冷媒はそこで気液分離され、ガス冷媒が吸込配管41を経て低段側圧縮機21に吸い込まれる循環を繰り返す。
 制御装置48は、各低段側冷媒回路6A、6Bに設けられた温度センサ46が検出する過冷却用熱交換器28に流入する冷媒の温度と、温度センサ47が検出する過冷却用熱交換器28から流出する冷媒の温度に基づき(例えば、それらの差に基づき)、各過冷却用熱交換器28において低段側冷媒回路6A、6Bの高圧側冷媒が適切に過冷却されるように各高段側膨張弁13A、13Bの弁開度をそれぞれ独立して制御する。これにより、各カスケード熱交換器43A、43Bによって各低段側冷媒回路6A、6Bの高圧側冷媒をそれぞれ的確に過冷却する。
 このように、各カスケード熱交換器43A、43Bの高段側蒸発器16A、16Bにおいて高段側冷媒回路4の冷媒を蒸発させ、過冷却用熱交換器28を流れる各低段側冷媒回路6A、6Bの高圧側冷媒を過冷却することにより、二酸化炭素を冷媒として使用する場合にも、各冷媒回路4、6A、6Bの圧縮機7、21として比較的大型(大能力)の圧縮機を使用すること無く、各ショーケース2の低段側蒸発器36において所要の冷却能力を得ることが可能となる。
 また、低段側冷媒回路6A、6Bの低段側蒸発器36を出た冷媒は、当該低段側冷媒回路6A、6Bの高圧側冷媒と熱交換すること無く、低段側冷媒回路6A、6Bの低段側圧縮機21に吸い込まれる構成とされているので、特に外気温度が高くなる夏期等に、低段側冷媒回路6A、6Bの高圧側圧力の異常上昇を防止することができるようになると共に、低段側圧縮機21に密度の濃い冷媒を吸い込ませることができるので、効率も向上することになる。
 この場合、低段側圧縮機21の吸込側にはアキュムレータ39が設けられているので、低段側圧縮機21への液バックは防止される。また、アキュムレータ39は液溜めとして機能するので、低段側冷媒回路6A、6Bに十分な量の二酸化炭素冷媒を封入することが可能となる。
 また、カスケード熱交換器43A、43Bは、低段側ガスクーラ26を出た冷媒を過冷却するので、低段側ガスクーラ24、26で冷却された低段側冷媒回路6A、6Bの二酸化炭素冷媒をカスケード熱交換器43A、43Bにて更に過冷却することになり、更なる冷却能力を改善を図ることができるようになる。
 更に、この実施例では二系統の低段側冷媒回路6A、6Bと、各低段側冷媒回路6A、6Bにそれぞれ設けられた二つのカスケード熱交換器43A、43Bを備えているので、一つの高段側冷媒回路4にて二系統(複数)の低段側冷媒回路6A、6Bの高圧側冷媒を過冷却することができるようになる。
 この場合、高段側冷媒回路4は、並列に接続された二つ(複数)の高段側ガスクーラ11A、11Bと、各高段側ガスクーラ11A、11Bの出口にそれぞれ接続された二つ(複数)の高段側膨張弁13A、13Bと、各高段側膨張弁13A、13Bの出口にそれぞれ接続されて各カスケード熱交換器43A、43Bをそれぞれ構成する二つ(複数)の高段側蒸発器16A、16Bを有しているので、実施例のように二系統の低段側冷媒回路6A、6Bを用いる場合にも、各カスケード熱交換器43A、43Bにより各低段側冷媒回路6A、6Bの高圧側冷媒を、それぞれ独立して的確に過冷却することができるようになる。
 また、高段側冷媒回路4の各高段側蒸発器16A、16Bを出た冷媒を、当該高段側冷媒回路4の高圧側冷媒と熱交換させること無く、高段側冷媒回路4の高段側圧縮機7に吸い込ませているので、特に外気温度が高くなる夏期等に、高段側冷媒回路4の高圧側圧力の異常上昇を防止することができるようになる。また、高段側圧縮機7に密度の濃い冷媒を吸い込ませることができるので、効率も向上する。
 次に、図2及び図3を参照しながら、制御装置48による各低段側冷媒回路6A、6Bの圧力調整用膨張弁31の弁開度制御について説明する。実施例で制御装置48は、外気温度に基づいて低段側冷媒回路6A、6Bの最適な高圧側圧力を算出し、それを目標値として各圧力調整用膨張弁31の弁開度を制御する。即ち、制御装置48は図2のフローチャートのステップS1で、温度センサ53が検出する外気温度を検知する。次に、ステップS2でこの外気温度に基づき、低段側冷媒回路6A(6B)の高圧側圧力の目標値を設定する。
 この場合、制御装置48は外気温度とそのときの低段側冷媒回路6A(6B)の最適な高圧側圧力との関係を示す情報を予め保有している。ここで、本発明において高圧側圧力の最適値とは、前述した図7において効率COPが最大、若しくは、それに近い値となる低段側冷媒回路6A(6B)の高圧側圧力を意味する。図3中の近似式(y=0.1347x+5.4132)はこの低段側冷媒回路6A(6B)の最適な高圧側圧力と外気温度との関係を示す情報である。図3の横軸(x)は外気温度、縦軸(y)は当該冷凍装置1の低段側冷媒回路6A(6B)の高圧側圧力(低段側圧縮機21の吐出された高圧側冷媒の圧力)の最適値であり、この近似式は予め実験により求めておく。例えば、前述した図7がこの冷凍装置1の例であるものとすると、外気温度(x)=+38℃の環境では、高圧側圧力の最適値(y)=10.5MPaとなることが分かる。
 制御装置48はステップS2でこの近似式を用い、外気温度からそのときの最適な高圧側圧力(高圧側圧力の最適値)を算出して、当該算出した高圧側圧力を目標値として設定する。例えば、外気温度+20℃のときの目標値(最適な高圧側圧力)は8.1MPa程となり、+30℃のときの目標値は9.5MPa程となる。次に、制御装置48はステップS3で圧力調整用膨張弁31の初期化開度を設定して、開度を初期化する。そして、ステップS4で圧力調整用膨張弁31による低段側冷媒回路6A(6B)の高圧側圧力の制御を開始する。
 制御装置48は先ずステップS5で所定時間(例えば10分)待機した後、ステップS6で圧力センサ44が検出する現在の高圧側圧力を検知する。次に、ステップS7で前記目標値(最適な高圧側圧力)と現在の高圧側圧力(現在値)との差(目標値-現在値)の絶対値(abs)が所定値(例えば0.1MPa)以下か否か判断し、差が所定値以下である(差が無いか、小さい)場合には、ステップS8に進んで圧力調整用膨張弁31の弁開度の変更する指示を行わないこととする(圧力調整用膨張弁31の弁開度は維持される)。
 次に、ステップS9で所定時間(例えば、30秒)待機した後、ステップS10で再度温度センサ53が検出する外気温度を検知する。そして、ステップS11で前記目標値を設定したときの外気温度(ステップS1における外気温度。設定外気温度)と、現在の外気温度(現行外気温度)との差(設定外気温度-現行外気温度)が所定値(例えば、プラスマイナス2K)の範囲以内か否か判断する。そして、差が所定値(プラスマイナス2K)以内である場合は、ステップS12で高圧側圧力の目標値を維持し、ステップS6に戻る。
 ステップS11で差(設定外気温度-現行外気温度)が所定値以内では無かった場合、制御装置48はステップS13に進んで図3の近似式を用い、再度そのときの外気温度(現行外気温度)における最適な高圧側圧力を算出し、当該算出した高圧側圧力を目標値として設定(更新)する。そして、ステップS6に戻る。このようにして制御装置48は外気温度の変化に追従して低段側冷媒回路6A(6B)の高圧側圧力の目標値を更新していく。
 一方、ステップS7で前記目標値と現在の高圧側圧力(現在値)との差(目標値-現在値)の絶対値が所定値(0.1MPa)以下では無かった場合(差が大きい)、制御装置48はステップS14に進んで、差(目標値-現在値)が所定値(例えば、0.1MPa)より大きいか否か判断する。
 そして、現在の高圧側圧力(現在値)が低く、差(目標値-現在値)が所定値(0.1MPa)より大きい場合、制御装置48はステップS15に進んで圧力調整用膨張弁31の弁開度を所定パルス(xxpls)閉める。これにより、低段側冷媒回路6A(6B)の高圧側冷媒は、カスケード熱交換器43A(43B)の過冷却用熱交換器28を出たところでより堰き止められるかたちとなるので、低段側冷媒回路6A(6B)の高圧側圧力は上昇する。
 一方、現在の低段側冷媒回路6A(6B)の高圧側圧力(現在値)が高く、差(目標値-現在値)が所定値(0.1MPa)以下である場合、制御装置48はステップS16に進んで圧力調整用膨張弁31の弁開度を所定パルス(xxpls)開く。これにより、カスケード熱交換器43A(43B)の過冷却用熱交換器28を出た低段側冷媒回路6A(6B)の高圧側冷媒は、より流れ易くなるので、低段側冷媒回路6A(6B)の高圧側圧力は低下する。
 以上を繰り返して制御装置48は圧力調整用膨張弁31により低段側冷媒回路6A(6B)の高圧側圧力を最適な値に制御する。即ち、低段側冷媒回路6A、6Bの高圧側圧力を調整するための圧力調整用膨張弁31を設け、制御装置48により低段側冷媒回路6A、6Bの高圧側圧力に基づき、最適な当該高圧側圧力を目標値として圧力調整用膨張弁31を制御するようにしたので、低段側冷媒回路6A、6Bの高圧側冷媒の比エンタルピ差を確保し、冷却能力の向上と効率の改善を図ることができるようになる。
 特に、制御装置48に外気温度とそのときの最適な高圧側圧力との関係を示す情報(近似式)を予め保有させておき、外気温度に基づいて高圧側圧力の目標値を算出するようにしたので、圧力調整用膨張弁31により円滑に低段側冷媒回路6A、6Bの高圧側圧力を最適な値に制御することが可能となる。
 次に、図4を参照しながら本発明の冷凍装置1の他の実施例を説明する。尚、この図において、図1と同一符号で示すものは同一若しくは同様の機能を奏するものとする。この実施例でも低段側冷媒回路6A、6Bの回路構成は実施例1の場合と同様である。この場合、高段側冷媒回路4の第1の高段側ガスクーラ11Aの出口配管12Aと第2の高段側ガスクーラ11Bの出口配管12Bは合流されて一つの高段側膨張弁13の入口に接続されている。即ち、各高段側ガスクーラ11A、11Bは高段側圧縮機7と高段側膨張弁13の間に並列に接続されたかたちとなる。
 また、この高段側膨張弁13の出口は分岐配管54A、54Bに分岐し、一方の分岐配管54Aが第1の高段側蒸発器16Aの入口に接続され、他方の分岐配管54Bが第2の高段側蒸発器16Bの入口に接続されている。即ち、各高段側蒸発器16A、16Bは高段側膨張弁13の出口に並列に接続されたかたちとなる。
 図中56は、高段側圧縮機7の吐出配管8に取り付けられて高段側冷媒回路4の高圧側圧力を検出する圧力センサであり、図中57は、出口配管17Aに取り付けられて第1の高段側蒸発器16Aを出た冷媒の温度を検出する温度センサ、58は、出口配管17Bに取り付けられて第2の高段側蒸発器16Bを出た冷媒の温度を検出する温度センサである。また、実施例1の温度センサ46、47は設けられていない。その他の構成は実施例1の場合と同様である。
 この場合の冷凍装置1において、制御装置48により高段側冷媒回路4の高段側圧縮機7、低段側冷媒回路6A、6Bの低段側圧縮機21、各ガスクーラ用送風機51、52が運転されると、高段側圧縮機7で圧縮された高温高圧の冷媒(二酸化炭素)が吐出配管8に吐出され、分岐配管9A、9Bに分流された後、各高段側ガスクーラ11A、11Bに流入する。各高段側ガスクーラ11A、11Bに流入した冷媒は、ガスクーラ用送風機51により超臨界状態で冷却され、温度が低下する。
 そして、各高段側ガスクーラ11A、11Bで冷却された冷媒は、出口配管12A、12Bを経て合流した後、高段側膨張弁13に流入し、そこで絞られた後(減圧)、分岐配管54A、54Bに分流する。分岐配管54Aに流入した冷媒は、第1のカスケード熱交換器43Aを構成する第1の高段側蒸発器16Aに流入して蒸発し、第1の低段側冷媒回路6Aの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。また、分岐配管54Bに流入した冷媒は、第2のカスケード熱交換器43Bを構成する第2の高段側蒸発器16Bに流入して蒸発し、第2の低段側冷媒回路6Bの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。
 そして、これら第1及び第2の高段側蒸発器16A、16Bを出た冷媒は、出口配管17A、17Bを経て合流し、吸込配管18から高段側圧縮機7に吸い込まれる循環を繰り返す。
 また、この場合の制御装置48は、温度センサ57、58が検出する各高段側蒸発器16A、16Bを出た冷媒の温度の例えば平均値に基づいて高段側圧縮機7の運転周波数を制御する。このとき、制御装置48は、各カスケード熱交換器43A、43Bにおいて低段側冷媒回路6A、6Bの高圧側冷媒の所要の過冷却がとれるように高段側圧縮機7の運転周波数を制御する。
 更に、制御装置48は、圧力センサ56が検出する高段側冷媒回路4の高圧側圧力に基づいて膨張弁13の弁開度を前述した低段側冷媒回路6A、6Bの圧力調整用膨張弁31と同様に制御することにより、高段側冷媒回路4の高圧側圧力を前述同様の適正な値(高段側冷媒回路4の高圧側圧力の目標値)に制御する。尚、低段側冷媒回路6A、6Bの運転及びそれらに関する制御装置48の制御は実施例1と同様である。
 この実施例においても二系統(複数)の低段側冷媒回路6A、6Bと、各低段側冷媒回路6A、6Bにそれぞれ設けられた二つ(複数)のカスケード熱交換器43A、43Bを備えているので、同様に一つの高段側冷媒回路4にて二系統(複数)の低段側冷媒回路6A、6Bの高圧側冷媒を過冷却することができるようになる。特に、この実施例の場合、高段側冷媒回路4は、第1、第2の高段側ガスクーラ11A、11Bと、これら高段側ガスクーラ11A、11Bの出口に接続された単一の高段側膨張弁13と、この高段側膨張弁13の出口に並列に接続されて各カスケード熱交換器43A、43Bをそれぞれ構成する二つ(複数)の高段側蒸発器16A、16Bを有しているので、一つの高段側膨張弁13から二つ(複数)の高段側蒸発器16A、16Bへ冷媒を流すことができるようになり、制御が簡素化されると共に、コストの低減も図ることができる効果がある。
 次に、図5を参照しながら本発明の冷凍装置1のもう一つ他の実施例を説明する。尚、この図において、図1、図4と同一符号で示すものは同一若しくは同様の機能を奏するものとする。この実施例でも低段側冷媒回路6A、6Bの回路構成は実施例1の場合と同様である。この場合も高段側冷媒回路4の第1の高段側ガスクーラ11Aの出口配管12Aと第2の高段側ガスクーラ11Bの出口配管12Bは合流されて一つの高段側膨張弁13の入口に接続されている。即ち、各高段側ガスクーラ11A、11Bは高段側圧縮機7と高段側膨張弁13の間に並列に接続されたかたちとなる。
 但し、この高段側膨張弁13の出口は出口配管59を経て第1の高段側蒸発器16Aの入口に接続されている。そして、この第1の高段側蒸発器16Aの出口配管17Aが第2の高段側蒸発器16Bの入口に接続され、この高段側蒸発器16Bの出口配管17Bが高段側圧縮機7の吸込配管18に接続されている。即ち、各高段側蒸発器16A、16Bは高段側膨張弁13の出口に直列に接続されたかたちとなる。
 また、前記実施例2の温度センサ57は設けられておらず、温度センサ58が出口配管17Bに取り付けられて第2の高段側蒸発器16Bを出た冷媒の温度を検出する。また、この場合も実施例1の温度センサ46、47は設けられていない。その他の構成は実施例1、或いは、実施例2の場合と同様である。
 この場合の冷凍装置1において、制御装置48により高段側冷媒回路4の高段側圧縮機7、低段側冷媒回路6A、6Bの低段側圧縮機21、各ガスクーラ用送風機51、52が運転されると、高段側圧縮機7で圧縮された高温高圧の冷媒(二酸化炭素)が吐出配管8に吐出され、分岐配管9A、9Bに分流された後、各高段側ガスクーラ11A、11Bに流入する。各高段側ガスクーラ11A、11Bに流入した冷媒は、ガスクーラ用送風機51により超臨界状態で冷却され、温度が低下する。
 そして、各高段側ガスクーラ11A、11Bで冷却された冷媒は、出口配管12A、12Bを経て合流した後、高段側膨張弁13に流入し、そこで絞られた後(減圧)、出口配管59を経て先ず第1のカスケード熱交換器43Aを構成する第1の高段側蒸発器16Aに流入して蒸発し、第1の低段側冷媒回路6Aの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。この第1の高段側蒸発器16Aを出た冷媒は、出口配管17Aを経て次に第2のカスケード熱交換器43Bを構成する第2の高段側蒸発器16Bに流入して蒸発し、第2の低段側冷媒回路6Bの過冷却用熱交換器28を流れる冷媒を冷却する(過冷却)。
 そして、この第2の高段側蒸発器16Bを出た冷媒は、出口配管17Bを経て吸込配管18から高段側圧縮機7に吸い込まれる循環を繰り返す。
 また、この場合の制御装置48は、温度センサ58が検出する第2の高段側蒸発器16Bを出た冷媒の温度に基づいて高段側圧縮機7の運転周波数を制御する。このとき、制御装置48は、各カスケード熱交換器43A、43Bにおいて低段側冷媒回路6A、6Bの高圧側冷媒の所要の過冷却がとれるように高段側圧縮機7の運転周波数を制御する。
 更に、制御装置48は、実施例2の場合と同様に圧力センサ56が検出する高段側冷媒回路4の高圧側圧力に基づいて膨張弁13の弁開度を前述した低段側冷媒回路6A、6Bの圧力調整用膨張弁31と同様に制御することにより、高段側冷媒回路4の高圧側圧力を前述同様の適正な値(高段側冷媒回路4の高圧側圧力の目標値)に制御する。尚、低段側冷媒回路6A、6Bの運転及びそれらに関する制御装置48の制御は実施例1と同様である。
 この実施例においても二系統(複数)の低段側冷媒回路6A、6Bと、各低段側冷媒回路6A、6Bにそれぞれ設けられた二つ(複数)のカスケード熱交換器43A、43Bを備えているので、同様に一つの高段側冷媒回路4にて二系統(複数)の低段側冷媒回路6A、6Bの高圧側冷媒を過冷却することができるようになる。
 ここで、実施例2の場合には何れかの低段側冷媒回路6A、又は、6Bの運転が停止したときに、高段側冷媒回路4の高段側圧縮機7に液バックが発生する危険性があるが、この実施例では高段側冷媒回路4は、高段側ガスクーラ11A、11Bの出口に接続された高段側膨張弁13の出口に直列に各カスケード熱交換器をそれぞれ構成する二つ(複数)の高段側蒸発器16A、16Bを接続しており、下流側の第2の高段側蒸発器16Bを出た冷媒の温度で高段側圧縮機7の運転周波数を制御しているので、係る不都合は解消される。
 但し、この実施例の場合には、第1の高段側蒸発器16Aが上流側、第2の高段側蒸発器16Bが下流側となる関係上、プルダウン時にはどうしても第1のカスケード熱交換器43Aで冷却される低段側冷媒回路6Aの冷媒の過冷却が低段側冷媒回路6Bよりも優先されるかたちとなる。そのため、低段側冷媒回路6Aはより負荷が大きくなるショーケース2の冷却を分担する構成とするとよい。
 尚、実施例では単一の高段側冷媒回路と二系統の低段側冷媒回路とをカスケード接続した冷凍装置で本発明を説明したが、それに限らず、単一の低段側冷媒回路と高段側冷媒回路をカスケード接続した冷凍装置でも良く、或いは、三系統以上の低段側冷媒回路を高段側冷媒回路とカスケード接続したものでも良い。また、実施例ではショーケースを冷却する冷凍装置に本発明を適用したが、それに限らず、自動販売機等を冷却する冷凍装置にも本発明は有効である。
 1 冷凍装置
 2 ショーケース
 3 冷凍機ユニット
 4 高段側冷媒回路
 6A、6B 低段側冷媒回路
 7 高段側圧縮機
 11A、11B 高段側ガスクーラ
 13A、13B、13 高段側膨張弁
 16A、16B 高段側蒸発器
 21 低段側圧縮機
 23、26 低段側ガスクーラ
 28 過冷却熱交換器
 31 圧力調整用膨張弁
 34 低段側膨張弁
 36 低段側蒸発器
 39 アキュムレータ
 48 制御装置
 51、52 ガスクーラ用送風機

Claims (8)

  1.  高段側冷媒回路と、低段側冷媒回路と、前記高段側冷媒回路の冷媒を蒸発させて前記低段側冷媒回路の高圧側冷媒を冷却するカスケード熱交換器とを備え、前記各冷媒回路には二酸化炭素を冷媒として封入して成る冷凍装置において、
     前記低段側冷媒回路の高圧側圧力を調整するための圧力調整用膨張弁を設けたことを特徴とする冷凍装置。
  2.  前記圧力調整用膨張弁を制御する制御装置を備え、
     該制御装置は、前記低段側冷媒回路の高圧側圧力に基づき、最適な当該高圧側圧力を目標値として前記圧力調整用膨張弁を制御することを特徴とする請求項1に記載の冷凍装置。
  3.  前記制御装置は、外気温度とそのときの最適な前記高圧側圧力との関係を示す情報を予め保有しており、前記外気温度に基づいて前記高圧側圧力の目標値を算出することを特徴とする請求項2に記載の冷凍装置。
  4.  前記低段側冷媒回路の低段側蒸発器を出た冷媒を、当該低段側冷媒回路の高圧側冷媒と熱交換させること無く、前記低段側冷媒回路の低段側圧縮機に吸い込ませると共に、
     該低段側圧縮機の吸込側には、アキュムレータを設けたことを特徴とする請求項1乃至請求項3のうちの何れかに記載の冷凍装置。
  5.  前記低段側冷媒回路は、低段側圧縮機と、低段側ガスクーラを有し、
     前記カスケード熱交換器は、前記低段側ガスクーラを出た冷媒を過冷却することを特徴とする請求項1乃至請求項4のうちの何れかに記載の冷凍装置。
  6.  複数の前記低段側冷媒回路と、各低段側冷媒回路にそれぞれ設けられた複数の前記カスケード熱交換器とを備え、
     前記高段側冷媒回路は、並列に接続された複数の高段側ガスクーラと、各高段側ガスクーラの出口にそれぞれ接続された複数の高段側膨張弁と、各高段側膨張弁の出口にそれぞれ接続されて前記各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を有することを特徴とする請求項1乃至請求項5のうちの何れかに記載の冷凍装置。
  7.  複数の前記低段側冷媒回路と、各低段側冷媒回路にそれぞれ設けられた複数の前記カスケード熱交換器とを備え、
     前記高段側冷媒回路は、高段側ガスクーラと、該高段側ガスクーラの出口に接続された高段側膨張弁と、該高段側膨張弁の出口に並列に接続されて前記各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を有することを特徴とする請求項1乃至請求項5のうちの何れかに記載の冷凍装置。
  8.  複数の前記低段側冷媒回路と、各低段側冷媒回路にそれぞれ設けられた複数の前記カスケード熱交換器とを備え、
     前記高段側冷媒回路は、高段側ガスクーラと、該高段側ガスクーラの出口に接続された高段側膨張弁と、該高段側膨張弁の出口に直列に接続されて前記各カスケード熱交換器をそれぞれ構成する複数の高段側蒸発器を有することを特徴とする請求項1乃至請求項5のうちの何れかに記載の冷凍装置。
PCT/JP2015/057718 2014-03-19 2015-03-16 冷凍装置 WO2015141633A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15765394.0A EP3106779A4 (en) 2014-03-19 2015-03-16 Refrigeration device
US15/126,845 US10180269B2 (en) 2014-03-19 2015-03-16 Refrigeration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-055974 2014-03-19
JP2014055974A JP2015178919A (ja) 2014-03-19 2014-03-19 冷凍装置

Publications (1)

Publication Number Publication Date
WO2015141633A1 true WO2015141633A1 (ja) 2015-09-24

Family

ID=54144601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057718 WO2015141633A1 (ja) 2014-03-19 2015-03-16 冷凍装置

Country Status (4)

Country Link
US (1) US10180269B2 (ja)
EP (1) EP3106779A4 (ja)
JP (1) JP2015178919A (ja)
WO (1) WO2015141633A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10556484B2 (en) * 2015-10-28 2020-02-11 Ford Global Technologies, Llc Vehicle climate control valve and operating method
CN107024018B (zh) * 2017-04-28 2019-10-01 同济大学 一种基于末端独立循环的可插拔多联式制冷热泵机组
US20190264957A1 (en) * 2017-06-21 2019-08-29 Honeywell Interntional Inc. Refrigeration systems and methods
WO2020014220A1 (en) 2018-07-09 2020-01-16 Honeywell International Inc. Refrigeration systems and methods
JP7214227B2 (ja) * 2018-11-07 2023-01-30 伸和コントロールズ株式会社 温調システム
CN109855252B (zh) * 2019-02-14 2022-02-22 青岛海尔空调电子有限公司 多联机空调系统的冷媒控制方法
CN110966813B (zh) * 2019-09-29 2021-11-05 广东申菱环境系统股份有限公司 一种宽温工况风冷冷水机的冷凝压力控制方法
KR20210121437A (ko) * 2020-03-30 2021-10-08 엘지전자 주식회사 공기 조화기

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133206A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 冷凍装置
WO2012002248A1 (ja) * 2010-06-28 2012-01-05 三洋電機株式会社 冷凍装置
WO2012060164A1 (ja) * 2010-11-04 2012-05-10 サンデン株式会社 ヒートポンプ式暖房装置
JP2012112622A (ja) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp 二元冷凍装置
JP2012193866A (ja) * 2011-03-15 2012-10-11 Mitsubishi Electric Corp 冷凍装置
WO2013111786A1 (ja) * 2012-01-24 2013-08-01 サンデン株式会社 ヒートポンプ装置
JP2013181513A (ja) * 2012-03-05 2013-09-12 Mitsubishi Electric Corp 圧縮機及び冷凍サイクル装置
JP2014016055A (ja) * 2012-07-06 2014-01-30 Orion Mach Co Ltd 精密温調装置
WO2014030238A1 (ja) * 2012-08-23 2014-02-27 三菱電機株式会社 冷凍装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205672A (ja) 1999-01-08 2000-07-28 Daikin Ind Ltd 冷凍装置
JP3604973B2 (ja) 1999-09-24 2004-12-22 三洋電機株式会社 カスケード式冷凍装置
JP4294351B2 (ja) 2003-03-19 2009-07-08 株式会社前川製作所 Co2冷凍サイクル
JP2009014210A (ja) * 2007-06-29 2009-01-22 Daikin Ind Ltd 冷凍装置
JP5120056B2 (ja) * 2008-05-02 2013-01-16 ダイキン工業株式会社 冷凍装置
JP5585003B2 (ja) * 2009-05-27 2014-09-10 三洋電機株式会社 冷凍装置
EP2339266B1 (en) * 2009-12-25 2018-03-28 Sanyo Electric Co., Ltd. Refrigerating apparatus
WO2012066763A1 (ja) 2010-11-15 2012-05-24 三菱電機株式会社 冷凍装置
JP5595245B2 (ja) * 2010-11-26 2014-09-24 三菱電機株式会社 冷凍装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133206A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 冷凍装置
WO2012002248A1 (ja) * 2010-06-28 2012-01-05 三洋電機株式会社 冷凍装置
WO2012060164A1 (ja) * 2010-11-04 2012-05-10 サンデン株式会社 ヒートポンプ式暖房装置
JP2012112622A (ja) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp 二元冷凍装置
JP2012193866A (ja) * 2011-03-15 2012-10-11 Mitsubishi Electric Corp 冷凍装置
WO2013111786A1 (ja) * 2012-01-24 2013-08-01 サンデン株式会社 ヒートポンプ装置
JP2013181513A (ja) * 2012-03-05 2013-09-12 Mitsubishi Electric Corp 圧縮機及び冷凍サイクル装置
JP2014016055A (ja) * 2012-07-06 2014-01-30 Orion Mach Co Ltd 精密温調装置
WO2014030238A1 (ja) * 2012-08-23 2014-02-27 三菱電機株式会社 冷凍装置

Also Published As

Publication number Publication date
EP3106779A1 (en) 2016-12-21
US20170089614A1 (en) 2017-03-30
JP2015178919A (ja) 2015-10-08
EP3106779A4 (en) 2017-11-29
US10180269B2 (en) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2015141633A1 (ja) 冷凍装置
US9759475B2 (en) Outdoor unit and air-conditioning apparatus
US10323862B2 (en) Air conditioning unit having dynamic target condensing and evaporating values based on load requirements
WO2012066763A1 (ja) 冷凍装置
US20230134047A1 (en) Refrigeration cycle apparatus and refrigeration apparatus
JP2007139225A (ja) 冷凍装置
WO2016080275A1 (ja) 冷凍装置
EP2910872B1 (en) Freezing device
JPWO2018008139A1 (ja) 冷凍サイクル装置およびそれを備えた空気調和装置
JPWO2019082372A1 (ja) 冷凍サイクル装置
WO2010047420A1 (ja) ガスインジエクション冷凍システム
JP6890555B2 (ja) 冷凍装置
JP2005233559A (ja) 空調・冷蔵・冷凍設備及びその運転方法
WO2017179210A1 (ja) 冷凍装置
JP2005180815A (ja) 冷却装置
JP2018087693A (ja) 冷凍装置
JPWO2014038059A1 (ja) 空気調和装置
JP6536061B2 (ja) 冷却装置
JP5195302B2 (ja) 冷凍空調装置
WO2017006723A1 (ja) 冷凍装置
JP2020046157A (ja) 冷凍装置
JP2015178920A (ja) 冷凍装置
KR102303804B1 (ko) 냉장 및 냉동 공조 시스템
JP6573723B2 (ja) 空気調和装置
US20240230181A9 (en) Refrigeration cycle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765394

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015765394

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015765394

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15126845

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE