WO2016051796A1 - 研磨パッド - Google Patents

研磨パッド Download PDF

Info

Publication number
WO2016051796A1
WO2016051796A1 PCT/JP2015/004980 JP2015004980W WO2016051796A1 WO 2016051796 A1 WO2016051796 A1 WO 2016051796A1 JP 2015004980 W JP2015004980 W JP 2015004980W WO 2016051796 A1 WO2016051796 A1 WO 2016051796A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing pad
layer
mpa
present
Prior art date
Application number
PCT/JP2015/004980
Other languages
English (en)
French (fr)
Inventor
橘 俊光
玉青 福島
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016051796A1 publication Critical patent/WO2016051796A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/22Lapping pads for working plane surfaces characterised by a multi-layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a laminated polishing pad used when polishing unevenness on a surface of a material to be polished such as a silicon wafer or a quartz wafer used for a semiconductor element or the like by chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • CMP chemical mechanical polishing
  • polishing is performed using a slurry-like abrasive (hereinafter referred to as slurry) in which abrasive grains (abrasive particles) are dispersed in a state where the surface to be polished of the wafer is pressed against the polishing surface of the polishing pad.
  • slurry a slurry-like abrasive
  • abrasive grains abrasive particles
  • CMP is a polishing technique in which the surface of a wafer is chemically melted with a processing liquid and mechanically shaved with abrasive grains, that is, a chemical removal action with a processing liquid and a mechanical removal action with abrasive grains. It is widely used because it hardly causes a work-affected layer (a part of the surface different from the inside caused by processing).
  • a polishing apparatus generally used in CMP is a rotatable polishing surface plate that supports a polishing pad, a support base (polishing head) that supports an object to be polished (wafer), and a uniform pressure for the wafer.
  • a backing material and an abrasive supply mechanism are provided.
  • the polishing pad is attached to the polishing surface plate by pasting with a double-sided tape.
  • the polishing surface plate and the support base are arranged so that the polishing pad supported by the polishing table and the object to be polished face each other, and each has a rotation shaft.
  • the support base is provided with a pressurizing mechanism for pressing the object to be polished against the polishing pad.
  • Polishing for smoothing and mirror-finishing a substrate such as a silicon wafer is performed using such a polishing apparatus, with the polishing pad fixed to the polishing surface plate and rotated, and placed on the polishing surface plate.
  • the wafer surface is polished and flattened and smoothed by applying a polishing slurry to the gap between the polishing pad and the wafer.
  • Non-woven polishing pad is made of polyester felt (with a random structure) impregnated with polyurethane, is porous, has moderate elasticity, has excellent high polishing rate and flatness, and can be processed with little sagging. It has become. Widely used for primary polishing of silicon substrates.
  • a suede type polishing pad is a base material in which a polyester felt is impregnated with polyurethane, a foam layer is grown in the polyurethane, the surface portion is removed, and an opening is provided in the foam layer (this layer is called a nap layer).
  • the polishing is progressed when the abrasive material used in the finish polishing acts between the workpiece and the inner surface of the foam layer. Although it is frequently used for CMP and a surface having no damage can be obtained, peripheral sag is likely to occur over time.
  • polishing pads such as foamed urethane sheets.
  • the polishing operation in the CMP polishing step is performed by holding abrasive grains in a slurry in which fine particles (abrasive grains) are suspended on a polishing pad to be used. Therefore, the higher the abrasive density of the polishing pad, the higher the polishing rate. For this reason, a porous material having a large number of pores is used as the polishing pad. By holding the abrasive grains in the pores, the holding density of the abrasive grains is increased and the polishing rate is increased. ing. In such a porous material, it is effective to increase the number of holes and reduce the diameter of the holes in order to increase the retention density of the abrasive grains.
  • Patent Document 1 discloses a polishing pad in which hollow microspheres or water-soluble polymer powder is dispersed in a matrix resin such as polyurethane is also known.
  • a required characteristic of the polishing pad in addition to a local flattening ability, an ability to polish the entire wafer uniformly is required.
  • a soft cushion layer is usually separately provided on the back surface of the polyurethane foam sheet, and polishing is performed. For this reason, the planarization ability of the polyurethane foam sheet on the wafer surface is substantially reduced, and there is a limit to the improvement of processing accuracy.
  • One of the objects of the present invention is to provide a polishing pad capable of uniformly polishing the entire wafer.
  • Another object of the present invention is to provide a polishing pad that can perform polishing with high processing accuracy.
  • the polishing pad of the present invention comprises at least (A) a surface polishing layer, (B) an adhesive layer and (C) a cushion layer, and the respective layers are laminated in the order of (A) / (B) / (C),
  • the compression ratio of the (A) surface polishing layer is 0.3% or more and 3.0% or less, and satisfies the relationship of (C) the compression ratio of the cushion layer> (A) the compression ratio of the surface polishing layer. is there.
  • the polishing pad of the present invention can uniformly polish the entire object to be polished (wafer).
  • the polishing pad of the present invention can perform polishing with high processing accuracy.
  • (A) by controlling the thickness of the surface polishing layer the compression rate of the resulting laminated polishing pad can be easily controlled, and the molecular weight of the material constituting the surface polishing layer can be reduced. Even if the viscosity and foaming method (control of foaming ratio, etc.) are not controlled, fine compression control is possible.
  • the polishing pad of this invention can also planarize the to-be-polished object (wafer) locally.
  • the block diagram of the polishing pad which concerns on one Embodiment of this invention is shown.
  • the block diagram of the polishing pad which concerns on other one Embodiment of this invention is shown.
  • 1 shows a schematic view of a polishing pad, a CMP apparatus and CMP.
  • the schematic showing the measuring method of the compressibility in the present invention is shown.
  • the measurement result of the compressibility in the polishing pad concerning the present invention is shown.
  • the polishing pad 1 of the present invention comprises at least (A) a surface polishing layer 2, (B) an adhesive layer 3 and (C) a cushion layer 4, and the respective layers are in the order of (A) / (B) / (C).
  • the compression ratio of the (A) surface polishing layer 2 is 0.3% or more and 3.0% or less, and the compression ratio of the (C) cushion layer 4> compression of the (A) surface polishing layer 2 It is characterized by satisfying the rate relationship. With this configuration, the polishing pad of the present invention is excellent in cushioning properties and can uniformly polish the entire object to be polished (wafer).
  • the polishing pad of the present invention can suppress a decrease in surface hardness and can provide polishing with high processing accuracy. Furthermore, with this configuration, the polishing pad of the present invention can be finely controlled by controlling the thickness of the (A) surface polishing layer in the laminate, and the wafer surface can be locally planarized. It becomes.
  • the surface polishing layer (polishing layer having a polishing surface for polishing a material to be polished) of the present invention is not particularly limited, but is a sintered porous sheet of ultra high molecular weight polyethylene (UHMWPE) powder. What is comprised from this is preferable.
  • the viscosity average molecular weight (M ⁇ ) of the UHMWPE is preferably 500,000 to 15 million, more preferably 1 million to 12 million.
  • the viscosity average molecular weight (M ⁇ ) of UHMWPE may be evaluated by a viscosity method which is a general measurement method. For example, M ⁇ can be calculated from the intrinsic viscosity [ ⁇ ] measured based on JIS K 7367-3: 1999. That's fine.
  • the sintered porous sheet of the UHMWPE powder can be produced, for example, by the method described in JP-A-8-169971. Specifically, it can be produced as follows. First, UHMWPE powder is filled into a mold, and then sintered in a steam atmosphere heated to a temperature equal to or higher than the melting point of UHMWPE to form a block-shaped molded body, which is then cooled, and this molded body has a predetermined thickness. Is cut into a sheet.
  • UHMWPE powder (average particle size is usually 30 to 200 ⁇ m) is filled in a mold, and then this is sintered in a steam atmosphere heated to the melting point of UHMWPE or higher to form a block-shaped molded body. And In this way, the UHMWPE powder is filled in a mold and sintered in a heated steam atmosphere, and therefore, a mold having at least one opening (for heating steam introduction) is used.
  • the time required for sintering varies depending on the filling amount of powder, the temperature of water vapor, etc., but is usually about 1 to 12 hours.
  • the water vapor used at this time is in a pressurized state in order to raise the temperature to the melting point of UHMWPE or more, and can easily enter between the UHMWPE powders filled in the mold.
  • the powder was filled in a mold, the mold was placed in a pressure vessel, subjected to a degassing operation to reduce the pressure, and then heated. You may make it sinter in water vapor
  • the degree of reduced pressure at this time is not particularly limited, but is preferably about 1 to 100 mmHg.
  • the sintering of the UHMWPE powder filled in the mold is performed by providing a steam inlet pipe and its open / close valve in the pressure vessel, degassing the air between the powders, and stopping the decompression or continuing the decompression.
  • the method can be carried out by opening a steam valve and introducing heated steam.
  • the UHMWPE powder is heated to a temperature above its melting point, but its melt viscosity is high, so it does not flow very much, and part or most of the powder shape is maintained.
  • a heat-fused porous block-shaped molded body (the non-contact portions between the powders become micropores of the porous molded body) is formed.
  • the pressure shall be about 10 kg / cm ⁇ 2 > or less normally.
  • cooling After cooling as described above, cool. In cooling, it is preferable to avoid rapid cooling in order to prevent cracks from forming in the block-shaped molded body.
  • a method of cooling by allowing to stand at room temperature can be employed. The cooling may be performed while the block-shaped molded body is placed in a mold, or may be performed after being removed from the mold.
  • a porous sheet can be obtained by cutting to predetermined thickness with a lathe.
  • the pore size and porosity of the porous sheet obtained by the above method are determined by the particle size of the UHMWPE powder used and the presence or absence of pressure during sintering. If the other conditions are the same, a porous sheet with a larger porosity and a higher porosity can be obtained as the particle size of the powder used is larger. Further, when no pressure is applied during sintering, a porous sheet having a large pore diameter and a high porosity can be obtained as compared with the case where pressure is applied. Furthermore, when the pressure is applied during sintering, the higher the pressure, the smaller the pore diameter, and the lower the porosity.
  • the UHMWPE porous sheet obtained by the above method maintains a part or most of the shape of the adjacent UHMWPE powder, and the powders are heat-fused at the contact site to form a sheet shape. And it has the microstructure which makes the non-contact part of powder mutual micropores.
  • the microstructure of the porous sheet is obtained by, for example, cutting the porous sheet along the thickness direction, and observing the cut surface with a scanning electron microscope (the magnification can be appropriately set, but usually about 100 to 1000). Can be).
  • the UHMWPE porous sheet obtained by the above method may be subjected to a hydrophilic treatment.
  • the hydrophilic treatment method include surfactant impregnation, corona treatment, plasma treatment, sulfonation treatment, hydrophilic monomer graft polymerization treatment, and the like. Among them, graft polymerization treatment is excellent in hydrophilicity. This is preferable because the treatment effect is stable.
  • the surfactant is not particularly limited, and examples thereof include cationic surfactant.
  • the compression ratio of the surface polishing layer is not particularly limited, but is 0.3% or more and 3.0% or less from the point that the obtained laminated polishing pad can be uniformly polished and the planarization ability is enhanced.
  • the compression rate refers to a rate of contraction when a certain load is applied to a molded body having a predetermined shape.
  • the measuring method of the compression rate in the present invention is as described in Examples described later.
  • the thickness of the surface polishing layer is not particularly limited, but is preferably from 0.1 mm to 2.5 mm, more preferably from 0.1 mm to 2.0 mm.
  • the average pore size of the surface polishing layer is not particularly limited, but is preferably 0.05 to 30 ⁇ m, more preferably 0.1 to 25 ⁇ m, and more preferably 1.0 to 20 ⁇ m from the viewpoint of excellent functions required for the polishing layer. Is more preferable.
  • the average pore diameter can be measured in accordance with the provisions of ASTM (American Society for Test Materials) F316-86.
  • Porometer fluorine-based solvent (trade name “FC-40”, product name “FC-40”, surface tension 1.6 ⁇ 10 ⁇ 2 N / m) used as a solvent for impregnation) and the like) can be used.
  • the porosity of the surface polishing layer is not particularly limited, but is preferably from 5 to 60%, more preferably from 10 to 50%, and even more preferably from 15 to 40% from the viewpoint of increasing polishing uniformity and processing accuracy. . That is, when the porosity is less than 5%, the holding ability of the polishing slurry is lowered and the polishing rate cannot be increased. Conversely, when the porosity exceeds 60%, the mechanical strength of the polymer porous sheet is low. This is because the sheet itself is greatly deformed by the pressure during polishing and it is difficult to obtain a smooth polished surface.
  • the hardness of the surface polishing layer is not particularly limited, and is preferably 20 or more and 100 or less from the viewpoint of high polishing accuracy, and is 20, 25, 29, 30, 31, 35, 39, 40, 41, 45, 49, 50, 51, 55, 59, 60, 61, 65, 70, 75, 80, 81, 85, 89, 90, 95 and 100, or two arbitrarily selected from these values It can be a range of values (the values at the end points of the range may be included or excluded), more preferably 25 or more and less than 97, and even more preferably 45 or more and 96 or less.
  • hardness means durometer hardness as defined in JIS K 6253-3: 2012. The durometer hardness can be measured by using a rubber hardness meter (type A, manufactured by Teclock Corporation).
  • the surface roughness (arithmetic mean roughness (Ra)) of the surface polishing layer is not particularly limited, but is preferably 0.1 ⁇ m or more and 5.0 ⁇ m or less, 0.1 ⁇ m, 0.3 ⁇ m, 0.7 ⁇ m, 0 0.9 ⁇ m, 1.0 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.4 ⁇ m, 1.5 ⁇ m, 1.9 ⁇ m, 2.0 ⁇ m, 2.1 ⁇ m, 2.4 ⁇ m, 2.5 ⁇ m, 2.7 ⁇ m, 2.9 ⁇ m , 3.0 ⁇ m, 3.1 ⁇ m, 3.5 ⁇ m, 3.9 ⁇ m, 4.0 ⁇ m, 4.1 ⁇ m, 4.4 ⁇ m, 4.5 ⁇ m, 4.9 ⁇ m and 5.0 ⁇ m, or any value from these
  • the range of the two values selected in the above is preferably 1.0 ⁇ m or more and 3.0 ⁇ m or
  • the surface roughness (Ra) is small, so that the roughness of the object to be polished can be reduced.
  • the arithmetic average roughness means a value specified in JIS B 0601: 2001.
  • the arithmetic average roughness can be measured using a stylus type surface roughness meter (Tokyo Seimitsu Co., Ltd., Surfcom 550A).
  • the measurement conditions can be a tip diameter R of 250 ⁇ m, a speed of 0.3 mm / sec, and a measurement length of 4 mm.
  • the physical properties such as the compression ratio of the (A) surface polishing layer can be obtained by appropriately changing the particle size of the resin powder of the material, the presence or absence of pressure during sintering, and the like in the above-described manufacturing method.
  • a commercially available product may be used as the sintered porous sheet of the UHMWPE powder.
  • Commercially available products include the Sunmap (registered trademark) series (for example, Sunmap HP-5320 (M ⁇ : 3 million, average pore diameter: 24 ⁇ m, porosity: 38%, Shore D hardness: 42, Ra: 1.2 ⁇ m), Sunmap LC (M ⁇ : 3 million, average pore diameter: 17 ⁇ m, porosity: 30%, Shore D hardness: 48, Ra: 2.0 ⁇ m), etc.) (Nitto Denko), Sun Fine ( (Registered trademark) AQ series (for example, Sun Fine AQ-100 (M ⁇ : 3.3 million), Sunfine AQ-800 (M ⁇ : 4.5 million), etc.) (above, manufactured by Asahi Kasei Chemicals) and the like.
  • Sunmap registered trademark
  • Sunmap HP-5320 M ⁇ : 3 million, average pore diameter: 24 ⁇ m, porosity: 38%, Shore D hardness: 42, Ra: 1.2
  • Adhesive Layer The adhesive used in the present invention is not particularly limited, and examples thereof include a pressure sensitive adhesive and a hot melt adhesive, and a hot melt adhesive is preferable.
  • the said adhesive agent may be used individually by 1 type, and may mix and use 2 or more types.
  • the pressure-sensitive adhesive examples include a (meth) acrylate (co) polymer; a synthetic or natural rubber such as polyisoprene, polybutadiene, and chloroprene; a base polymer, and the base polymer. And the like obtained by blending a tackifier, a tackifier, a crosslinking agent, a stabilizer and the like.
  • the rubber or polymer may be modified as long as the effects of the present invention are not hindered.
  • the hot melt adhesive is not particularly limited, and any known material can be used without any particular limitation.
  • the adhesive include polyester resins, ethylene-vinyl acetate (EVA) resins (for example, ethylene / glycidyl dimethacrylate (GMA) / vinyl acetate copolymers), polyamide resins, polyurethane resins, and polyolefin resins.
  • EVA ethylene-vinyl acetate
  • EVA ethylene-vinyl acetate
  • EVA ethylene-vinyl acetate
  • EVA ethylene-vinyl acetate
  • It does not specifically limit as polyolefin-type resin For example, polyethylene, a polypropylene, etc. are mentioned.
  • the resin may be modified as long as the effects of the present invention are not hindered.
  • hot melt adhesives composed of polyolefin resins are particularly preferred.
  • a two-component curing type epoxy adhesive, silicone adhesive, etc. May be used.
  • a commercially available product can be used as the adhesive.
  • Examples of commercially available products include “Bond First” (manufactured by Sumitomo Chemical) and “Admer” (manufactured by Mitsui Chemicals).
  • the adhesive layer may have a reinforcing sheet as a core material.
  • the adhesive layer may be laminated in the order of adhesive layer / reinforcing sheet / adhesive layer (not shown).
  • the reinforcing sheet is not particularly limited, but polyethylene terephthalate is preferable.
  • the thickness of the reinforcing sheet is preferably 12 to 250 ⁇ m, and more preferably 25 to 100 ⁇ m.
  • the thickness of the adhesive layer is not particularly limited, but is preferably 0.01 to 0.5 mm.
  • the constituent material of the (C) cushion layer used in the present invention is not particularly limited, and polymer resin foams such as urethane foam and polyethylene foam; fiber nonwoven fabrics such as polyester nonwoven fabric, nylon nonwoven fabric, and acrylic nonwoven fabric A rubbery resin such as butadiene rubber and isoprene rubber, and a photosensitive resin. These may be used individually by 1 type, and 2 or more types may be mixed and used for them. Of these, urethane foam is preferred. A commercially available product can be used for the cushion layer.
  • the cushion layer may be a single layer or may be used by stacking the same or different types of constituent materials, but is preferably a single layer.
  • the manufacturing method of a cushion layer is not specifically limited, A well-known method can be used.
  • the tensile strength of the cushion layer is not particularly limited, but is preferably 0.50 to 10.0 MPa, 0.50 MPa, 0.80 MPa, 0.90 MPa, 1.0 MPa, 1.1 MPa, 1.5 MPa, 1.9 MPa, 2.0 MPa, 2.1 MPa, 2.3 MPa, 2.4 MPa, 2.7 MPa, 2.9 MPa, 3.0 MPa, 3.1 MPa, 3.4 MPa, 3.5 MPa, 3.9 MPa, 4.
  • the tensile strength means a value defined in JIS K 6251 (2010).
  • the tensile elongation of the cushion layer is not particularly limited, but is preferably 50 to 200%, more preferably 100 to 180%.
  • the tensile elongation means a value defined in JIS K 6251 (2010).
  • the compression rate of the cushion layer is not particularly limited, but if the compression rate is too small, the stress concentration that the polishing layer gives to the surface to be polished of the polishing material cannot be diffused well, and the in-plane uniformity of the surface to be polished Since it tends to deteriorate the properties, it is preferably 1.0% or more and 40.0% or less, 1.0%, 2.0%, 4.0%, 5.0%, 6.0%, 7. 0%, 9.0%, 10.0%, 11.0%, 12.0%, 13.0%, 15.0%, 18.0%, 19.0%, 20.0%, 21. 0%, 23.0%, 25.0%, 28.0%, 29.0%, 30.0%, 31.0%, 35.0%, 38.0%, 39.0% and 40.
  • the hardness of the cushion layer is not particularly limited, but is preferably 1 to 80, more preferably 3 to 60, and still more preferably 5 to 50.
  • a polyurethane resin has a hard segment formed by the reaction of a polyisocyanate compound and a polyamine compound and a soft segment formed by a polyol compound.
  • the hard segment hydrogen bonds are formed between the urethane bonds and the cohesive force is increased, so that the hard segment exhibits rigidity and high crystallinity.
  • the soft segment the hydrogen bond is hardly formed and the cohesive force is weakened, so that the soft segment is easily deformed and has low crystallinity. Therefore, physical properties such as compression ratio of the polyurethane resin can be adjusted by the balance between the hard segment and the soft segment.
  • a commercially available product can be used for the cushion layer.
  • Examples of commercially available products include the PORON (registered trademark) series made of urethane foam (for example, PORON H-24 (tensile elongation: 150%, tensile strength: 0.88 MPa), PORON H-32 (tensile elongation: 155%). , Tensile strength: 1.44 MPa), PORON H-48 (tensile elongation: 140%, tensile strength: 2.35 MPa), etc. (above, manufactured by Roger Sinoac).
  • the thickness of the cushion layer is not particularly limited, but is preferably from 0.1 mm to 3.0 mm, and more preferably from 0.3 mm to 2.5 mm.
  • the thickness of the (C) cushion layer may be about 0.3 to 20 times, or about 0.5 to 5 times the thickness of the (A) surface polishing layer. It may be about 0.8 to 2.5 times.
  • the polishing pad of the present invention satisfies the relationship of (C) the compression rate of the cushion layer> (A) the compression rate of the surface polishing layer, and (C) the compression rate of the cushion layer is uniform in polishing.
  • the compression ratio of the laminated body after being laminated is not particularly limited, but if the compression ratio is too low, it becomes difficult to follow the warp of the object to be polished, and in-plane uniformity is achieved. If the compression rate is too high, the flatness at the local level difference of the patterned wafer is prevented from being lowered.
  • From 1.0% to 30.0% is preferable, and 1.0% 2.0%, 3.0%, 5.0%, 6.0%, 7.0%, 9.0%, 10.0%, 11.0%, 12.0%, 13.0% 15.0%, 18.0%, 19.0%, 20.0%, 21.0%, 23.0%, 25.0%, 28.0%, 29.0% and 30.0% Or a range of two values arbitrarily selected from these values (the values at the end points of the range may be included or excluded) More preferably 2.0% or more 35.0% or less, more preferably 30.0% or less than 5.0%.
  • the thickness of the laminated polishing pad of the present invention is not particularly limited, but is preferably from 0.3 mm to 7.0 mm, more preferably from 0.5 mm to 6.0 mm, and even more preferably from 1.0 mm to 4.0 mm.
  • the hardness of the laminated body after being laminated is not particularly limited, and is preferably 20 or more and 100 or less, 20, 25, 29, 30, 31, 35, 39, 40, 41, 45, 49, 50, 51, 55, 59, 60, 61, 65, 70, 75, 80, 81, 85, 89, 90, 95 and 100, or two values arbitrarily selected from these
  • the range (the value of the end point of the range may be included or excluded) may be included, and is preferably 25 or more and less than 97.
  • the hardness of the laminate is the same definition as the hardness of the surface polishing layer, and can be measured in the same manner as the hardness of the surface polishing layer.
  • the manufacturing method of the polishing pad is not particularly limited, and can be manufactured according to a known method.
  • a manufacturing method it can manufacture, for example by apply
  • a hot-melt adhesive is applied to the material constituting the surface polishing layer, (C) a cushion layer is laminated, and heat treatment is performed to bond them together.
  • the temperature of the heat treatment is not particularly limited, but is preferably 50 to 200 ° C, more preferably 70 to 180 ° C, and further preferably 90 to 150 ° C.
  • the heat treatment time is not particularly limited, but is preferably 5 to 180 minutes, more preferably 10 to 120 minutes, and further preferably 30 to 120 minutes.
  • the heating device used for the heat treatment is not particularly limited. In the said manufacturing method, you may perform a drying process further as needed.
  • the method for the drying treatment is not particularly limited, but it may be dried by a drying apparatus at about 70 to 150 ° C.
  • FIG. 2 shows another embodiment of the polishing pad of the present invention.
  • the polishing pad 1 of the present invention may have (C) a double-sided tape 5 attached to the cushion layer 4 as shown in FIG.
  • the double-sided tape 5 includes, for example, a flexible film base, and an adhesive layer on both sides of the base.
  • the flexible film is not particularly limited, and examples thereof include polyethylene terephthalate (hereinafter abbreviated as PET) films.
  • PET polyethylene terephthalate
  • the adhesive used for the adhesive layer is not particularly limited.
  • the adhesive may be the same as the adhesive layer (B) of the polishing pad 1 of the present invention, but a rubber-based adhesive or an acrylic adhesive may be used. preferable.
  • the double-sided tape 5 is bonded to the cushion layer 4 with an adhesive layer on one side of the substrate, and the adhesive layer on the other side is covered with release paper.
  • the laminated polishing pad of the present invention is not particularly limited, but is preferably used for a CMP apparatus.
  • the CMP apparatus is not particularly limited, and a polishing apparatus generally used in CMP can be used.
  • a rotatable polishing surface plate 6 that supports the polishing pad 1 a support base 9 (polishing head) that supports an object to be polished 8 (wafer), and a wafer are uniformly pressed.
  • a backing material and a supply mechanism for the abrasive 7 are provided.
  • the polishing pad 1 is attached to the polishing surface plate 6 by sticking with a double-sided tape, for example.
  • the polishing surface plate 6 and the support base 9 are disposed so that the polishing pad 1 and the material to be polished 8 supported by each of the polishing surface plate 6 and the support base 9 are opposed to each other, and are provided with rotating shafts 10 and 11 respectively. Further, the support base 9 is provided with a pressurizing mechanism for pressing the workpiece 8 against the polishing pad 1.
  • the abrasive grains (abrasive particles) used together with the laminated polishing pad of the present invention are not particularly limited as long as the effects of the present invention are not hindered.
  • silica, alumina, ceria (cerium oxide), zirconia, titania ( Titanium oxide), germania and the like may be used alone or in combination of two or more.
  • the polishing slurry used together with the multilayer polishing pad of the present invention is not particularly limited as long as the effects of the present invention are not hindered.
  • the abrasive grains are dispersed in water or a water-based aqueous solution, and the surface of the wafer is further dispersed.
  • a reaction liquid for example, sodium hydroxide, ammonia, etc. that chemically reacts with the substance is added.
  • a silicon wafer, a crystal wafer or the like used for a semiconductor element or the like is preferably a workpiece (abrasive material).
  • the present invention includes embodiments in which the above configurations are combined in various ways within the technical scope of the present invention as long as the effects of the present invention are exhibited.
  • Example 1 Sintered porous sheet of ultra high molecular weight polyethylene powder (trade name: Sunmap LC, M ⁇ : 3 million, average pore diameter: 17 ⁇ m, porosity: 30%, Shore D hardness: 48, Ra: 2.0 ⁇ m, thickness: 2.0 mm, manufactured by Nitto Denko) and microcell polymer sheet (trade name: PORON (registered trademark), model number: H-48 2.0 mm, material: urethane foam, tensile strength: 2.35 MPa, tensile elongation: 150% , Thickness: 2.0 mm, manufactured by Roger Sinoac) was bonded together with a hot melt adhesive to obtain a laminate. The hot melt adhesive was melted with a press heated to 120 ° C.
  • Example 2 Instead of the sunmap LC, a sunmap prepared using an ultra-high molecular weight polyethylene resin having a molecular weight of 3 million, a high porosity product having a porosity of 50% and a thickness of 2.0 mm was used. A laminated polishing pad was obtained in the same manner as Example 1 except for the above.
  • Examples 3 to 7 A laminated polishing pad was obtained in the same manner as in Example 1 using a sintered porous sheet of ultrahigh molecular weight polyethylene powder having the same physical properties except that only the film thickness was changed to that shown in Table 2. About each obtained lamination polishing pad, the compressibility, hardness, and film thickness were measured. The results are shown in Table 2 below, and the measurement results of the compression ratio and the film thickness are plotted in FIG. In the figure, LC represents the sun map LC, and the numerical value next to the LC represents the thickness of the sun map LC.
  • the laminated polishing pad of the present invention can be controlled with a fine compression ratio by controlling the thickness of the (A) surface polishing layer in the laminate. Since the compressibility of the laminated polishing pad can be finely controlled, the entire wafer can be polished uniformly and the wafer surface can be locally planarized.
  • Tegramin-30 (table plate diameter (diameter) 300 mm, manufactured by Marumoto Struers) was used, and the size of the polishing pad to be measured was 300 mm in diameter.
  • a quartz substrate is first placed in a workpiece having a diameter of 25 mm, embedded in an epoxy resin (trade name: EpoFix Kit, manufactured by Struers), and then a SiC water resistant abrasive paper # 200. (FEPA standard, manufactured by Struers), the surface was laid out (rotation speed: 300 rpm, polishing pressure: 30 N, polishing time: 10 seconds). At this time, polishing was performed only with water without adding abrasive grains.
  • the laminated polishing pad of Example 4 was placed on a surface plate and rotated as a running-in operation (rotation speed: 150 rpm, pressure: 20 N, rotation time: 5 minutes). Subsequently, the quartz substrate was polished using the laminated polishing pad (rotational speed: 150 rpm, polishing pressure: 20 N, polishing time: 5 minutes). The rate of adding abrasive grains (polishing slurry) during polishing was 2 mL / min.
  • the surface of the quartz substrate was observed using a laser microscope (trade name: wide-field confocal laser microscope HD100D, manufactured by Laser Tec) (magnification 20 times), and the surface roughness Ra of the quartz substrate (JIS B 0601: The arithmetic average roughness defined in 2001) was measured.
  • the amount of polishing was measured before the polishing (after faceting), by scratching the quartz substrate and measuring the depth with the laser microscope (50 times magnification), and for the amount shaved in the depth direction. did. After the polishing, it was confirmed that the quartz substrate polished using the laminated polishing pad of Example 4 was uniformly polished as a whole.
  • Polishability was evaluated by the same method as described above except that Sunmap LC alone was used instead of the laminated polishing pad of Example 4 described above.
  • the laminated polishing pad of the present invention can smooth the surface with a small amount of polishing and can perform polishing with high processing accuracy. Furthermore, the laminated polishing pad of the present invention was able to uniformly polish the entire object to be polished.
  • the polishing pad of the present invention can obtain both performance of uniformity and flatness by using a hard material for the surface layer and further using a cushion material for the lower layer in order to ensure followability to the wafer surface. it can. Further, by controlling the thickness of the sintered porous sheet of ultra high molecular weight polyethylene powder, it is possible to control the compression rate finely. Furthermore, the polishing pad of the present invention can perform polishing with high processing accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 本発明は、ウェハ全体を均一に研磨することができる研磨パッドを提供する。本発明は、少なくとも(A)表面研磨層、(B)接着剤層及び(C)クッション層を備え、前記各層が(A)/(B)/(C)の順で積層され、前記(A)表面研磨層の圧縮率が0.3%以上3.0%以下であり、前記(C)クッション層の圧縮率>前記(A)表面研磨層の圧縮率の関係を満たすことを特徴とする研磨パッドに関する。

Description

研磨パッド
 本発明は、半導体素子等に用いられるシリコンウェハ、水晶ウェハ等の被研磨材表面の凹凸を、化学的機械的研磨(Chemical Mechanical Polishing :CMP)で研磨する際に使用される積層研磨パッドに関する。
 従来から、例えば、自動車、光学機器、電子材料、又は各種工作機器の分野では、様々な部品又は部材の研磨が行われており、被研磨体に要求される精密さ、均一性は益々厳しくなってきている。例えば、IC、LSI等の半導体集積回路を製造するためのシリコンウェハ、磁気ハードディスク基板、磁気ヘッド基板、ディスプレイ用ガラス基板、フォトマスク基板、光学レンズ、光導波路等の分野において、高度の表面平坦性が要求されている。特に、情報処理、情報記録を行う素子あるいはディスクは飛躍的に集積度の向上が求められており、基板上に形成される回路等のパターンの微細化や多層配線化が進んでいるが、これに伴い、ウェハ表面の凹凸を平坦化する技術が重要となってきた。
 ウェハ表面の凹凸を平坦化する方法としては、化学的機械的研磨(Chemical Mechanical Polishing :CMP)が知られている。CMPでは、ウェハの被研磨面を研磨パッドの研磨面に押し付けた状態で、砥粒(研磨材粒子)が分散されたスラリー状の研磨材(以下、スラリーという)を用いて研磨する。CMPは、ウェハの表面を加工液で化学的に溶かすとともに、砥粒で機械的に削る、すなわち加工液による化学的な溶去作用と砥粒による機械的な除去作用とを併せ持つ研磨技術であり、加工変質層(加工により生じた内部と異なる表面の部分)を生じることがほとんどないため、広く利用されている。
 CMPで一般的に使用する研磨装置は、研磨パッドを支持する回転可能な研磨定盤と、被研磨対象物(ウェハ)を支持する支持台(ポリシングヘッド)とウェハの均一加圧を行うためのバッキング材と、研磨材の供給機構を備えている。研磨パッドは、例えば、両面テープで貼り付けることにより、研磨定盤に装着される。研磨定盤と支持台とは、それぞれに支持された研磨パッドと被研磨対象物が対向するように配置され、それぞれに回転軸を備えている。また、支持台には、被研磨対象物を研磨パッドに押し付けるための加圧機構が設けてある。
 シリコンウェハ等の基板を平滑にし、鏡面仕上げするための研磨は、このような研磨装置を用いて、研磨定盤に研磨パッドを固定して回転させながら、研磨定盤に対峙して設置したウェハを自公転運動させて相対的に移動させるとともに、研磨パッドとウェハの間隙に研磨スラリーを加えることによって、ウェハ表面が研磨され、平坦化、平滑化が行われている。
 研磨パッドとしては、不織布タイプの研磨パッド、スエードタイプの研磨パッド等が用いられている。不織布タイプの研磨パッドはポリエステルフェルト(組織はランダムな構造)にポリウレタンを含浸させたもので多孔性があり、かつ弾性も適度で、高い研磨速度と平坦性に優れ、ダレの少ない加工ができるようになっている。シリコン基板の1次研磨用で広く使用されている。スエードタイプ研磨パッドは、ポリエステルフェルトにポリウレタンを含浸させた基材に、ポリウレタン内に発泡層を成長させ、表面部位を除去し発泡層に開口部を設けたもの(この層をナップ層と呼ぶ)で、特に仕上げ研磨用に使用されており、発泡層内に保持された研磨材が、工作物と発泡層内面との間で作用することにより研磨が進行する。CMPに多用され、ダメージのない面が得られるが、時間をかけると周辺ダレが発生しやすい。他にも、発泡ウレタンシート等の研磨パッドがある。
 かかるCMP研磨工程における研磨操作は、微細な粒子(砥粒)を懸濁させたスラリー中の砥粒を、使用する研磨パッドに保持させることにより行われる。従って、研磨パッドの砥粒の保持密度が高いほど研磨速度が高くなる。このため、研磨パッドとしては、多数の空孔を有する多孔質材料が使用され、空孔で砥粒を保持させることによって、砥粒の保持密度を高くし、研磨速度を高くすることが行われている。かかる多孔質材料においては、砥粒の保持密度を大きくするためには、空孔の数を多くし、かつ空孔の径を小さくすることが有効である。
 従来、上記の高精度の研磨に使用される研磨パッドとしては、一般的に空洞率が30~35%程度のポリウレタン発泡体シートが使用されていた。また、ポリウレタン等のマトリックス樹脂に中空微小球体又は水溶性高分子粉末等を分散した研磨パッドを開示した特許文献1に記載の技術も公知である。研磨パッドの要求特性として、局所的な平坦化能力に加えて、ウェハ全体を均一に研磨する能力が必要となる。
 しかしながら、従来のポリウレタン発泡体シートとして、変形し易い(高圧縮率)ものは、局所的な平坦化が困難であり、変形し難い(低圧縮率)ものは、局部的な平坦化能力は優れたものであるが、クッション性が不足しているためにウェハ全面に均一な圧力を与えることが難しかった。十分なクッション性を得るために、ポリウレタン発泡体シートの圧縮率を2%程度にするには空洞率を高めることが必要になり、空洞率を高めると圧縮回復率、表面硬度が低下することが避けられない。圧縮回復率、表面硬度が低下すると、研磨工程における圧縮と荷重の開放の繰り返しにより研磨パッドの圧密化が起こり、加工精度が低下するという問題が起こる。このような研磨精度の低下を防止するために、通常、ポリウレタン発泡体シートの背面に柔らかいクッション層が別途設けられ、研磨加工が行われる。そのためにポリウレタン発泡体シートのウェハ表面の平坦化能力が実質的に減殺され、加工精度の向上に限界があった。
特表平8-500622号公報
 本発明の目的の一つは、ウェハ全体を均一に研磨することができる研磨パッドを提供することである。また、本発明の他の目的は、加工精度の高い研磨を行うことができる研磨パッドを提供することである。
 本発明の研磨パッドは、少なくとも(A)表面研磨層、(B)接着剤層及び(C)クッション層を備え、前記各層が(A)/(B)/(C)の順で積層され、前記(A)表面研磨層の圧縮率が0.3%以上3.0%以下であり、前記(C)クッション層の圧縮率>前記(A)表面研磨層の圧縮率の関係を満たすものである。
 本発明の研磨パッドは、被研磨対象物(ウェハ)全体を均一に研磨することができる。また、本発明の研磨パッドは、加工精度の高い研磨を行うことができる。さらに、本発明の研磨パッドは、(A)表面研磨層の厚みを制御することによって、得られる積層研磨パッドの圧縮率の制御が容易になり、表面研磨層を構成する材料の分子量、製造時の粘度、発泡方法(発泡倍率の制御等)を制御しなくても、圧縮率の細かい制御が可能となる。また、本発明の研磨パッドは、被研磨対象物(ウェハ)を局部的に平坦化することもできる。
本発明の一実施形態に係る研磨パッドの構成図を示す。 本発明の他の一実施形態に係る研磨パッドの構成図を示す。 研磨パッド、CMP装置及びCMPの概略図を示す。 本発明における圧縮率の測定方法を表す概略図を示す。 本発明に係る研磨パッドにおける圧縮率の測定結果を示す。
 本発明の研磨パッドの一態様を図1に示す。本発明の研磨パッド1は、少なくとも(A)表面研磨層2、(B)接着剤層3及び(C)クッション層4を備え、前記各層が(A)/(B)/(C)の順で積層され、前記(A)表面研磨層2の圧縮率が0.3%以上3.0%以下であり、前記(C)クッション層4の圧縮率>前記(A)表面研磨層2の圧縮率の関係を満たすことを特徴とする。この構成によって、本発明の研磨パッドは、クッション性に優れ、被研磨対象物(ウェハ)全体を均一に研磨することができる。また、この構成によって、本発明の研磨パッドは、表面硬度の低下を抑制でき、加工精度の高い研磨を提供することができる。さらに、この構成によって、本発明の研磨パッドは、積層体において、(A)表面研磨層の厚みを制御することによって圧縮率の細かい制御ができ、ウェハ表面を局所的に平坦化することも可能となる。
(A)表面研磨層
 本発明の表面研磨層(被研磨材を研磨加工するための研磨面を有する研磨層)は、特に限定されないが、超高分子量ポリエチレン(UHMWPE)粉末の焼結多孔質シートから構成されるものが好ましい。前記UHMWPEの粘度平均分子量(Mν)は、50万~1500万が好ましく、100万~1200万がより好ましい。UHMWPEの粘度平均分子量(Mν)は、一般的な測定方法である粘度法により評価すればよく、例えば、JIS K 7367-3:1999に基づいて測定した極限粘度数[η]からMνを算出すればよい。
 前記UHMWPE粉末の焼結多孔質シートは、例えば、特開平8-169971号公報に記載の方法で製造することができる。具体的には、以下のようにして製造することができる。まず、UHMWPE粉末を金型に充填し、次いで、これをUHMWPEの融点以上の温度に加熱された水蒸気雰囲気中で焼結してブロック状成形体とした後冷却し、この成形体を所定厚さのシートに切削するものである。
 この方法においては、先ず、UHMWPE粉末(平均粒径は通常30~200μm)を金型に充填し、次いで、これをUHMWPEの融点以上に加熱された水蒸気雰囲気中で焼結してブロック状成形体とする。このようにUHMWPE粉末を金型に充填し、これを加熱された水蒸気雰囲気中で焼結するので、金型としては少なくとも一つの開口部(加熱水蒸気導入用)を有するものを用いる。焼結に要する時間は粉末の充填量、水蒸気の温度等によって変わるが、通常、約1~12時間である。
 この際に用いる水蒸気はUHMWPEの融点以上に昇温させるために、加圧状態とされ、金型に充填されたUHMWPE粉末間に容易に進入することができる。なお、UHMWPE粉末間への加熱水蒸気の進入をより容易にするため、該粉末を金型に充填し、この金型を耐圧容器に入れ、減圧状態とする脱気操作を施し、その後加熱された水蒸気雰囲気中で焼結するようにしてもよい。この際の減圧度合いは特に限定されないが、約1~100mmHgが好ましい。
 従って、金型に充填されたUHMWPE粉末の焼結は、前記耐圧容器に水蒸気導入管及びその開閉バルブを設けておき、該粉末間の空気を脱気した後、減圧を止めあるいは減圧を続けながら、水蒸気バルブを開いて加熱水蒸気を導入する方法によって行うことができる。
 この焼結時において、UHMWPE粉末は融点以上の温度に加熱されるがその溶融粘度が高いのであまり流動せず、その粉末形状を一部乃至大部分維持し、隣接する粉末相互がその接触部位において熱融着し多孔質のブロック状成形体(粉末相互の非接触部が該多孔質成形体の微孔となる)が形成される。なお、焼結に際し、所望により加圧することもできるが、その圧力は、通常、約10kg/cm2以下とするのが好ましい。
 上記のようにして焼結を行った後、冷却する。冷却に際してはブロック状成形体への亀裂の発生を防止するため、急冷を避けるのが好ましく、例えば、室温に放置して冷却する方法を採用できる。なお、冷却はブロック状成形体を金型に入れたまま行ってもよく、あるいは金型から取り出して行ってもよい。このようにしてブロック状成形体を冷却した後、旋盤等により所定厚さに切削することにより、多孔質シートを得ることができる。
 上記方法により得られる多孔質シートの微孔の孔径、気孔率は用いるUHMWPE粉末の粒径や焼結時における加圧の有無によって決定される。他の条件が同じであれば、用いた粉末の粒径が大きい程微孔の孔径が大きく、気孔率の高い多孔質シートが得られる。また、焼結時に加圧しない場合は加圧した場合に比べ微孔の孔径が大きく、気孔率の高い多孔質シートが得られる。更に、焼結時に加圧した場合はその圧力が高い程微孔の孔径が小さく、気孔率の低い多孔質シートが得られる。
 上記の方法によって得られるUHMWPE多孔質シートは、上記したように隣接するUHMWPE粉末がその形状の一部乃至大部分を維持すると共に粉末相互がその接触部位において熱融着してシート形状を呈し、且つ、粉末相互の非接触部位を微孔とするミクロ構造を有している。この多孔質シートのミクロ構造は、例えば、多孔質シートを厚さ方向に沿って切断し、その切断面を走査型電子顕微鏡を用いて観察(倍率は適宜設定できるが、通常、約100~1000倍である)することができる。
 上記の方法によって得られるUHMWPE多孔質シートに、親水化処理を施してもよい。上記親水化処理の方法としては、界面活性剤の含浸、コロナ処理、プラズマ処理、スルフォン化処理、親水性モノマーのグラフト重合処理等が挙げられ、なかでもグラフト重合処理が、親水性に優れ、その処理効果が安定しているため好適である。界面活性剤は、特に限定されず、例えばカチオン系界面活性等が挙げられる。
 (A)表面研磨層の圧縮率は、特に限定されないが、得られる積層研磨パッドが均一に研磨することができるとともに平坦化能力が高くなる点から、0.3%以上3.0%以下が好ましく、0.3%、0.4%、0.5%、0.7%、0.8%、0.9%、1.0%、1.1%、1.4%、1.5%、1.8%、2.0%、2.2%、2.3%、2.4%、2.5%、2.7%、2.8%、2.9%及び3.0%のいずれかの値、又はこれらから任意に選択した2つの値の範囲(範囲の端点の値は含めても除いていてもよい)とすることができ、0.8%以上2.8%以下がより好ましい。圧縮率とは、所定形状の成形体に一定の荷重をかけたときに縮む割合をいう。本発明における圧縮率の測定方法は、後記する実施例に記載のとおりである。
 (A)表面研磨層の厚みは、特に限定されないが、0.1mm以上2.5mm以下が好ましく、0.1mm以上2.0mm以下がより好ましい。
 (A)表面研磨層の平均孔径は、特に限定されないが、研磨層として要求される機能が優れる点から、0.05~30μmが好ましく、0.1~25μmがより好ましく、1.0~20μmがさらに好ましい。本発明において、平均孔径は、ASTM(米国試験材料協会)F316-86の規定に準拠して測定でき、例えばこの規定に準拠した自動測定が可能な市販の測定装置(Porous Material社製のPerm-Porometer(含浸用溶剤としてフッ素系溶媒(スリーエム社製、商品名「FC-40」、表面張力1.6×10-2N/m)を使用)等)を用いて測定できる。
 (A)表面研磨層の気孔率は、特に限定されないが、研磨の均一性及び加工精度が高まる点から、5~60%が好ましく、10~50%がより好ましく、15~40%がさらに好ましい。すなわち、気孔率が5%未満では、研磨スラリーの保持能力が低下し研磨速度を高めることができないのであり、逆に、気孔率が60%を超えると、高分子多孔質シートの機械的強度が低下し、研磨時の圧力によってシート自体の変形が大きく平滑な研磨面が得られにくいからである。
 本発明における気孔率とは、多孔質シート(表面研磨層)中の孔の部分の容積割合を意味し、下記式によって定義される値である。
気孔率=(1-(見掛け密度/(表面研磨層材料の真比重))×100
ここで、見掛け密度は、サンプルの重量と体積を量り、重量(g)/体積(cm)から算出した。
 (A)表面研磨層の硬度は、特に限定されず、研磨の加工精度が高くなる点から、20以上100以下が好ましく、20、25、29、30、31、35、39、40、41、45、49、50、51、55、59、60、61、65、70、75、80、81、85、89、90、95及び100のいずれかの値、又はこれらから任意に選択した2つの値の範囲(範囲の端点の値は含めても除いていてもよい)とすることができ、25以上97未満がより好ましく、45以上96以下がさらに好ましい。本発明において、硬度は、JIS K 6253-3:2012に規定されるデュロメーター硬度を意味する。デュロメーター硬度は、ゴム硬度計(タイプA、株式会社テクロック製)を用いて測定できる。
 (A)表面研磨層の表面粗さ(算術平均粗さ(Ra))は、特に限定されないが、0.1μm以上5.0μm以下が好ましく、0.1μm、0.3μm、0.7μm、0.9μm、1.0μm、1.1μm、1.2μm、1.4μm、1.5μm、1.9μm、2.0μm、2.1μm、2.4μm、2.5μm、2.7μm、2.9μm、3.0μm、3.1μm、3.5μm、3.9μm、4.0μm、4.1μm、4.4μm、4.5μm、4.9μm及び5.0μmのいずれかの値、又はこれらから任意に選択した2つの値の範囲(範囲の端点の値は含めても除いていてもよい)とすることができ、1.0μm以上3.0μm以下がより好ましい。前記表面粗さ(Ra)が小さいことで、被研磨物側の粗さも低くすることができると考えられる。本発明において、算術平均粗さは、JIS B 0601:2001に規定される値を意味する。算術平均粗さは、触針式表面粗さ計(株式会社東京精密製品、サーフコム550A)を用いて測定できる。測定条件は、先端径R250μm、速度0.3mm/sec、測定長4mmとすることができる。
 前記(A)表面研磨層の圧縮率等の物性は、上述の製造方法において、材料の樹脂粉末の粒径や焼結時における加圧の有無等を適宜変更することで得られる。
 前記UHMWPE粉末の焼結多孔質シートは、市販品を用いてもよい。このような市販品としては、例えば、サンマップ(登録商標)シリーズ(例えば、サンマップHP-5320(Mν:300万、平均孔径:24μm、気孔率:38%、ショアD硬度:42、Ra:1.2μm)、サンマップLC(Mν:300万、平均孔径:17μm、気孔率:30%、ショアD硬度:48、Ra:2.0μm)等)(以上、日東電工製)、サンファイン(登録商標)AQシリーズ(例えば、サンファインAQ-100(Mν:330万)、サンファインAQ-800(Mν:450万)等)(以上、旭化成ケミカルズ製)等が挙げられる。
(B)接着剤層
 本発明に用いる接着剤としては、特に限定されず、感圧接着剤、ホットメルト接着剤等が挙げられ、ホットメルト接着剤が好ましい。前記接着剤は、1種単独で使用してもよく、2種以上を混合して用いてもよい。
 前記感圧接着剤としては、例えば、(メタ)アクリレート系(共)重合体;ポリイソプレン系、ポリブタジエン系、クロロプレン系等の合成又は天然ゴム;等を基剤重合体とし、該基剤重合体に粘着付与剤、粘着調整剤、架橋剤、安定剤等を配合して得られたもの等が挙げられる。また、前記ゴム又は重合体は、本発明の効果が妨げない限り、変性されていてもよい。
 前記ホットメルト接着剤としては、特に限定されず、公知の物を特に制限なく使用できる。前記接着剤としては、例えば、ポリエステル系樹脂、エチレン-酢酸ビニル(EVA)系樹脂(例えば、エチレン/グリシジルジメタクリレート(GMA)/酢酸ビニル共重合体)、ポリアミド系樹脂、ポリウレタン系樹脂及びポリオレフィン系樹脂から構成されるもの等が挙げられ、ポリオレフィン系樹脂から構成されるもの、エチレン-酢酸ビニル(EVA)系樹脂から構成されるものが好ましい。ポリオレフィン系樹脂としては、特に限定されず、例えば、ポリエチレン、ポリプロピレン等が挙げられる。また、前記樹脂は、本発明の効果が妨げない限り、変性されていてもよい。これらのホットメルト接着剤のうち、ポリオレフィン系樹脂から構成されるホットメルト接着剤が特に好ましい。
 また、前記ホットメルト接着剤及び感圧接着剤以外にも、前記ホットメルト接着剤及び感圧接着剤に換えて又は併用して、2液硬化タイプのエポキシ系接着剤、シリコーン系接着剤等を使用してもよい。
 前記接着剤は、市販品を使用することもできる。市販品としては、例えば、「ボンドファースト(住友化学工業製)」、「アドマー(三井化学製)」等が挙げられる。
 さらに、(B)接着剤層は、芯材として補強シートを有していてもよい。接着剤層に補強シートを有する場合、例えば、接着剤層/補強シート/接着剤層の順で積層されていてもよい(図示せず)。補強シートとしては、特に限定されないが、ポリエチレンテレフタレートが好ましい。補強シートの厚さは、12~250μmが好ましく、25~100μmがより好ましい。
 (B)接着剤層の厚みは、特に限定されないが、0.01~0.5mmが好ましい。
(C)クッション層
 本発明に用いる(C)クッション層の構成材料としては、特に限定されず、ウレタンフォーム、ポリエチレンフォーム等の高分子樹脂発泡体;ポリエステル不織布、ナイロン不織布、アクリル不織布等の繊維不織布;ブタジエンゴム、イソプレンゴム等のゴム性樹脂及び感光性樹脂等が挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。これらのうち、ウレタンフォームが好ましい。クッション層は、市販品を使用することができる。クッション層は、単層であってもよく、種類の同一又は異なる前記構成材料を積層して用いてもよいが、単層であることが好ましい。クッション層の製造方法は、特に限定されず、公知の方法を用いることができる。
 (C)クッション層の引張強さは、特に限定されないが、0.50~10.0MPaが好ましく、0.50MPa、0.80MPa、0.90MPa、1.0MPa、1.1MPa、1.5MPa、1.9MPa、2.0MPa、2.1MPa、2.3MPa、2.4MPa、2.7MPa、2.9MPa、3.0MPa、3.1MPa、3.4MPa、3.5MPa、3.9MPa、4.0MPa、4.4MPa、4.5MPa、4.9MPa、5.0MPa、5.1MPa、5.5MPa、5.9MPa、6.0MPa、6.1MPa、6.5MPa、6.9MPa、7.0MPa、7.1MPa、7.5MPa、7.9MPa、8.0MPa、8.1MPa、8.5MPa、8.9MPa、9.0MPa、9.1MPa、9.5MPa、9.9MPa及び10.0MPaいずれかの値、又はこれらから任意に選択した2つの値の範囲(範囲の端点の値は含めても除いていてもよい)とすることができ、0.80~5.0MPaがより好ましい。本発明において、引張強さは、JIS K 6251(2010)に規定される値を意味する。
 (C)クッション層の引張伸びは、特に限定されないが、50~200%が好ましく、100~180%がより好ましい。本発明において、引張伸びは、JIS K 6251(2010)に規定される値を意味する。
 (C)クッション層の圧縮率は、特に限定されないが、圧縮率が小さすぎると、研磨層が被研磨材料の被研磨面に与える応力集中の拡散がうまくできず、被研磨面の面内均一性が悪くなる傾向にあることから、1.0%以上40.0%以下が好ましく、1.0%、2.0%、4.0%、5.0%、6.0%、7.0%、9.0%、10.0%、11.0%、12.0%、13.0%、15.0%、18.0%、19.0%、20.0%、21.0%、23.0%、25.0%、28.0%、29.0%、30.0%、31.0%、35.0%、38.0%、39.0%及び40.0%のいずれかの値、又はこれらから任意に選択した2つの値の範囲(範囲の端点の値は含めても除いていてもよい)とすることができ、微細パターンが形成されたウェハのうねりに対応して、研磨パッドが変形し良好な均一性を得ることができることから、1.0%以上35.0%以下がより好ましい。
 (C)クッション層の硬度は、特に限定されないが、1以上80以下が好ましく、3以上60以下がより好ましく、5以上50以下がさらに好ましい。
 上記の各物性は、例えば、クッション層がウレタン樹脂からなる場合、ポリウレタン樹脂を形成するポリイソシアネート化合物、ポリオール化合物及びポリアミン化合物の配合割合を変える等によって調整することができる。通常、ポリウレタン樹脂では、ポリイソシアネート化合物及びポリアミン化合物の反応で形成されるハードセグメントと、ポリオール化合物で形成されるソフトセグメントと、を有している。ハードセグメントでは、ウレタン結合間に水素結合が形成され凝集力が強くなるため、剛直性を示し高結晶性となる。これに対して、ソフトセグメントでは、水素結合が形成されにくく凝集力が弱くなるため、変形しやすく低結晶性となる。従って、ハードセグメントとソフトセグメントとのバランスによりポリウレタン樹脂の圧縮率等の物性を調整することができる。
 (C)クッション層は、市販品を使用することができる。市販品としては、例えば、ウレタンフォーム製のPORON(登録商標)シリーズ(例えば、PORON H-24(引張伸び:150%、引張強さ:0.88MPa)、PORON H-32(引張伸び:155%、引張強さ:1.44MPa)、PORON H-48(引張伸び:140%、引張強さ:2.35MPa)等)(以上、ロジャースイノアック製)等が挙げられる。
 (C)クッション層の厚みは、特に限定されないが、0.1mm以上3.0mm以下が好ましく、0.3mm以上2.5mm以下がより好ましい。また、(C)クッション層の厚みは、前記(A)表面研磨層の厚みに対して、0.3~20倍程度であってもよく、0.5~5倍程度であってもよく、0.8~2.5倍程度であってもよい。
 本発明の研磨パッドは、圧縮率について、(C)クッション層の圧縮率>(A)表面研磨層の圧縮率の関係を満たすものであり、(C)クッション層の圧縮率は、研磨の均一性及び加工精度が高まる点から、(A)表面研磨層の圧縮率の2.0倍以上であることが好ましく、3.0倍以上であることがより好ましく、5.0倍以上であることがさらに好ましい。
 本発明の研磨パッドにおいて、積層された後の積層体の圧縮率は、特に限定されないが、圧縮率が低すぎると被研磨体の反りなどに追従することが難しくなり、面内の均一性を低下することを防ぎ、圧縮率が高すぎると、パターン付きウェハのローカルな段差での平坦性が低下することを防ぐ点から、1.0%以上30.0%以下が好ましく、1.0%、2.0%、3.0%、5.0%、6.0%、7.0%、9.0%、10.0%、11.0%、12.0%、13.0%、15.0%、18.0%、19.0%、20.0%、21.0%、23.0%、25.0%、28.0%、29.0%及び30.0%のいずれかの値、又はこれらから任意に選択した2つの値の範囲(範囲の端点の値は含めても除いていてもよい)とすることができ、2.0%以上35.0%以下がより好ましく、5.0%以上30.0%以下がさらに好ましい。
 本発明の積層研磨パッドの厚みは、特に限定されないが、0.3mm以上7.0mm以下が好ましく、0.5mm以上6.0mm以下がより好ましく、1.0mm以上4.0mm以下がさらに好ましい。
 本発明の研磨パッドにおいて、積層された後の積層体の硬度は、特に限定されず、20以上100以下が好ましく、20、25、29、30、31、35、39、40、41、45、49、50、51、55、59、60、61、65、70、75、80、81、85、89、90、95及び100のいずれかの値、又はこれらから任意に選択した2つの値の範囲(範囲の端点の値は含めても除いていてもよい)とすることができ、25以上97未満がより好ましい。積層体の硬度は、表面研磨層の硬度と同一の定義であり、表面研磨層の硬度と同様に測定できる。
 研磨パッドの製造方法は、特に限定されず、公知の方法に準じて製造することができる。製造方法としては、例えば、(A)表面研磨層を構成する材料に、接着剤を塗布し、(C)クッション層を積層して張り合わせることで製造できる。製造方法の一態様として、(A)表面研磨層を構成する材料に、ホットメルト接着剤を塗布し、(C)クッション層を積層して、加熱処理を行って張り合わせる方法が挙げられる。前記加熱処理の温度は、特に限定されないが、50~200℃が好ましく、70~180℃がより好ましく、90~150℃がさらに好ましい。加熱処理時間は、特に限定されないが、5~180分が好ましく、10~120分がより好ましく、30~120分がさらに好ましい。加熱処理に用いる加熱装置は、特に限定されない。前記製造方法において、必要に応じて、さらに乾燥処理を行ってもよい。乾燥処理の方法は特に限定されないが、70~150℃程度の乾燥装置で乾燥させてもよい。
 本発明の研磨パッドの他の一態様を図2に示す。研磨定盤に固定するために、本発明の研磨パッド1は、図2に示されるように、(C)クッション層4に、両面テープ5が張り付けられていてもよい。両面テープ5は、例えば、可撓性フィルムの基材を備え、該基材の両面に接着剤層を備える。前記可撓性フィルムは、特に限定されず、例えば、ポリエチレンテレフタレート(以下、PETと略記する。)製フィルム等が挙げられる。前記接着剤層に用いる接着剤は、特に限定されず、例えば、本発明の研磨パッド1の(B)接着剤層と同じものであってもよいが、ゴム系接着剤又はアクリル系接着剤が好ましい。両面テープ5は、基材の一面側の接着剤層でクッション層4と貼り合わされており、他面側の接着剤層が剥離紙で覆われている。
 本発明の積層研磨パッドは、特に限定されないが、CMP装置用とするのが好ましい。CMP装置としては、特に限定されず、CMPで一般的に使用する研磨装置が使用できる。例えば、図3に示されるように、研磨パッド1を支持する回転可能な研磨定盤6と、被研磨材8(ウェハ)を支持する支持台9(ポリシングヘッド)とウェハの均一加圧を行うためのバッキング材と、研磨材7の供給機構を備えている。研磨パッド1は、例えば、両面テープで貼り付けることにより、研磨定盤6に装着される。研磨定盤6と支持台9とは、それぞれに支持された研磨パッド1と被研磨材8が対向するように配置され、それぞれに回転軸10、11を備えている。また、支持台9には、被研磨材8を研磨パッド1に押し付けるための加圧機構が設けてある。
 CMPにおいて、本発明の積層研磨パッドとともに用いる砥粒(研磨材粒子)としては、本発明の効果を妨げない限り特に限定されず、例えば、シリカ、アルミナ、セリア(酸化セリウム)、ジルコニア、チタニア(酸化チタン)、ゲルマニア等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 CMPにおいて、本発明の積層研磨パッドとともに用いる研磨スラリーとしては、本発明の効果を妨げない限り特に限定されず、例えば、水又は水ベースの水溶液に前記砥粒を分散させ、さらにウェハの表面の物質と化学的に反応する反応液(例えば、水酸化ナトリウム、アンモニア等)を添加したものが挙げられる。
 本発明の積層研磨パッドは、半導体素子等に用いられるシリコンウェハ、水晶ウェハ等を工作物(被研磨材)とするのが好ましい。
 本発明は、本発明の効果を奏する限り、本発明の技術的範囲内において、上記の構成を種々組み合わせた態様を含む。
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。
[圧縮率の測定方法]
 圧縮率は、直径5mmの円筒状の圧子(圧縮棒)を使用し、Bruker AXS社製TMAにて25℃において、下記条件でT1~T2を測定し、下記の式にて求めた。測定方法の概略図を図4に示す。
<測定条件>
 初期荷重:200g/cm2
 最大荷重:2000g/cm2
 荷重速度:250g/cm2/分
 圧縮率(%)={(T1-T2)/T1}×100
(式中、T1は荷重が300g/cm2のときの研磨パッド断面の厚さを表し、T2は荷重が1800g/cm2のときの研磨パッド断面の厚さを表す。)
[実施例1]
 超高分子量ポリエチレン粉末の焼結多孔質シート(商品名:サンマップLC、Mν:300万、平均孔径:17μm、気孔率:30%、ショアD硬度:48、Ra:2.0μm、厚さ:2.0mm、日東電工製)とマイクロセルポリマーシート(商品名:PORON(登録商標)、型番:H-48 2.0mm、材質:ウレタンフォーム、引張強さ:、2.35MPa、引張伸び:150%、厚さ:2.0mm、ロジャースイノアック製)を、ホットメルト粘着剤で貼りあわせて積層体を得た。ホットメルト接着剤は、ペレット状のボンドファーストBF7B(エチレン/グリシジルジメタクリレート(GMA)/酢酸ビニル共重合体、住友化学工業製)を120℃に加熱したプレスにて溶融し、厚さ0.15mmにフィルム化したものを用いた。得られた積層体を、130℃、20分乾燥炉に入れて加熱し、接着を行い、積層研磨パッドを得た。
[実施例2]
 サンマップLCに代えて、分子量300万の超高分子量ポリエチレン樹脂を用いて作製したサンマップであって、気孔率が50%であり、厚さが2.0mmである高気孔率品を用いた以外は実施例1と同様にして、積層研磨パッドを得た。
 実施例1及び2において、(A)表面研磨層単独及び(C)クッション層単独の圧縮率、硬度及び膜厚を測定した。硬度は、ゴム硬度計(タイプA、株式会社テクロック製)を用いて測定した。測定結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例3~7]
 膜厚のみを表2に記載のものに変更した以外は、同様の物性を有する超高分子量ポリエチレン粉末の焼結多孔質シートを用いて実施例1と同様にして積層研磨パッドを得た。得られた各積層研磨パッドについて、圧縮率、硬度及び膜厚を測定した。結果を下記表2に示し、圧縮率と膜厚の測定結果をグラフ化したものを図5に示す。図中、LCはサンマップLCを表し、LCの隣の数値はサンマップLCの厚みを表す。
Figure JPOXMLDOC01-appb-T000002
 上記結果から、本発明の積層研磨パッドは、積層体において、(A)表面研磨層の厚みを制御することによって圧縮率の細かい制御ができることが確認できた。積層研磨パッドの圧縮率を細かく、制御できることによって、ウェハ全体を均一に研磨することができるとともに、ウェハ表面を局所的に平坦化することも可能となる。
[研磨性の評価]
 サンマップLC単体及び実施例4の積層研磨パッドについて、研磨性を評価した。
 被研磨材として、底面が15mm四方の正方形の水晶基板を用いた。研磨材として、酸化セリウム(CeO)砥粒(商品名:SHOROX(登録商標)グレード:NX23(T)、粒度分布(μm)D50:0.9~1.1、昭和電工製)を、蒸留水で10wt%に調整し、研磨スラリーを得た。研磨装置には、テグラミン(Tegramin)-30(定盤径(直径)300mm、丸本ストルアス製)を用い、測定対象の研磨パッドのサイズは直径300mmとした。
 上記の材料及び装置を用いて、まず水晶基板を直径25mmのワークに入れてエポキシ樹脂(商品名:エポフィックス キット(EpoFix Kit)、Struers社製)にて包埋後、SiC耐水研磨紙#200(FEPA規格、Struers社製)にて、面だしを行った(回転速度:300rpm、研磨圧力:30N、研磨時間:10秒)。この際、研磨は砥粒を加えずに水のみで行った。次に、実施例4の積層研磨パッドを定盤に設置し、慣らし運転として、回転させた(回転速度:150rpm、圧力:20N、回転時間:5分)。続いて、前記積層研磨パッドを用いて、水晶基板を研磨した(回転速度:150rpm、研磨圧力:20N、研磨時間:5分)。研磨時に砥粒(研磨スラリー)を加える速度は、2mL/分とした。
 研磨後にレーザー顕微鏡(商品名:広視野コンフォーカルレーザー顕微鏡 HD100D、Laser Tec社製)を用いて、水晶基板の表面を観察し(倍率20倍)、水晶基板の表面粗さRa(JIS B 0601:2001に規定の算術平均粗さ)を測定した。また、研磨量について、研磨前(面だし後)、水晶基板に傷を付け、その深さを前記レーザー顕微鏡で測定することによって(倍率50倍)、深さ方向の削られた量について、測定した。研磨後、実施例4の積層研磨パッドを用いて研磨した水晶基板では、全体を均一に研磨できていたことが確認された。
 前記した実施例4の積層研磨パッドの代わりに、サンマップLC単体を使用した以外は、上記と同様の方法で研磨性を評価した。
Figure JPOXMLDOC01-appb-T000003
 サンマップLC単体と本発明の積層研磨パッド(実施例4)を比較すると、研磨量は、サンマップLC単体の方が多く削れた。また、研磨後の表面粗さは、本発明の積層研磨パッドの方が平滑になった。したがって、本発明の積層研磨パッドは少ない研磨量で表面をより平滑にすることができ、加工精度の高い研磨を行うことができることが確認された。さらに、本発明の積層研磨パッドは、被研磨対象物全体を均一に研磨することができていた。
 本発明の研磨パッドは、表面層に硬い素材を用い、さらに、ウェハ表面への追従性を確保するため、下層にクッション材を用いることで、均一性と平坦性の両方の性能を得ることができる。また、超高分子量ポリエチレン粉末の焼結多孔質シートの厚みを制御することによって圧縮率の細かい制御が可能になった。さらに、本発明の研磨パッドは、加工精度の高い研磨を行うことができる。

Claims (8)

  1.  少なくとも(A)表面研磨層、(B)接着剤層及び(C)クッション層を備え、前記各層が(A)/(B)/(C)の順で積層され、前記(A)表面研磨層の圧縮率が0.3%以上3.0%以下であり、前記(C)クッション層の圧縮率>前記(A)表面研磨層の圧縮率の関係を満たすことを特徴とする研磨パッド。
  2.  (C)クッション層の圧縮率が1.0%以上40.0%以下であることを特徴とする請求項1に記載の研磨パッド。
  3.  (A)表面研磨層の厚みが0.1mm以上2.5mm以下であり、(C)クッション層の厚みが0.1mm以上3.0mm以下であることを特徴とする請求項1又は2に記載の研磨パッド。
  4.  (A)表面研磨層が、超高分子量ポリエチレン粉末の焼結多孔質シートから構成されることを特徴とする請求項1~3のいずれか1項に記載の研磨パッド。
  5.  (A)表面研磨層の算術平均粗さ(Ra)が、0.1μm以上5.0μm以下であることを特徴とする請求項1~4のいずれか1項に記載の研磨パッド。
  6.  (B)接着剤層が、ホットメルト接着剤から構成されることを特徴とする請求項1~5のいずれか1項に記載の研磨パッド。
  7.  積層体の圧縮率が、1.0%以上30.0%以下であることを特徴とする請求項1~6のいずれか1項に記載の研磨パッド。
  8.  CMP装置用であることを特徴とする請求項1~7のいずれか1項に記載の研磨パッド。
PCT/JP2015/004980 2014-10-01 2015-09-30 研磨パッド WO2016051796A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-203088 2014-10-01
JP2014203088 2014-10-01

Publications (1)

Publication Number Publication Date
WO2016051796A1 true WO2016051796A1 (ja) 2016-04-07

Family

ID=55629860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004980 WO2016051796A1 (ja) 2014-10-01 2015-09-30 研磨パッド

Country Status (3)

Country Link
JP (2) JP6671908B2 (ja)
TW (1) TW201628785A (ja)
WO (1) WO2016051796A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200028097A (ko) * 2018-09-06 2020-03-16 에스케이실트론 주식회사 웨이퍼 연마 장치용 연마패드
JP2020055091A (ja) * 2018-10-04 2020-04-09 株式会社ディスコ 被加工物の研削方法
TWI818029B (zh) * 2019-05-31 2023-10-11 智勝科技股份有限公司 研磨墊、研磨墊的製造方法以及研磨方法
CN115697630A (zh) 2020-05-28 2023-02-03 株式会社德山 层叠抛光垫
JP6927617B1 (ja) * 2020-11-19 2021-09-01 不二越機械工業株式会社 ワーク研磨装置およびトップリング用樹脂マット体
KR102489678B1 (ko) * 2020-12-07 2023-01-17 에스케이엔펄스 주식회사 연마패드용 시트, 연마패드 및 반도체 소자의 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176829A (ja) * 1999-12-20 2001-06-29 Nitto Denko Corp 半導体ウェーハの研磨方法及び半導体ウェーハ研磨用パッド
JP2002270550A (ja) * 2001-03-09 2002-09-20 Teijin Ltd 研磨用シート
JP2003218074A (ja) * 2001-11-13 2003-07-31 Toyobo Co Ltd 半導体ウエハ研磨パッド及び半導体ウエハの研磨方法
JP2008254171A (ja) * 2002-09-25 2008-10-23 Ppg Ind Ohio Inc 平坦化するための研磨パッド
JP2011067946A (ja) * 2000-12-01 2011-04-07 Toyo Tire & Rubber Co Ltd 研磨パッド用クッション層の製造方法
JP2011183495A (ja) * 2010-03-08 2011-09-22 Okamoto Machine Tool Works Ltd 取替え交換が容易な積層研磨パッド
JP2013018056A (ja) * 2011-07-07 2013-01-31 Toray Ind Inc 研磨パッド
JP2014124718A (ja) * 2012-12-26 2014-07-07 Toyo Tire & Rubber Co Ltd 積層研磨パッドの製造方法
JP2014172168A (ja) * 2013-03-07 2014-09-22 Rohm & Haas Electronic Materials Cmp Holdings Inc 広スペクトル終点検出ウィンドウを有するケミカルメカニカル研磨パッド及びそれを用いる研磨方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108372A (ja) * 1994-10-07 1996-04-30 Mitsubishi Electric Corp 研磨布
JP3459317B2 (ja) * 1995-06-29 2003-10-20 日東電工株式会社 研磨パッド
JP2000343411A (ja) * 1999-06-01 2000-12-12 Teijin Ltd 研磨用シート
US6593240B1 (en) * 2000-06-28 2003-07-15 Infineon Technologies, North America Corp Two step chemical mechanical polishing process
JP2002331453A (ja) * 2001-05-08 2002-11-19 Shin Etsu Handotai Co Ltd ウェーハの研磨方法及びウェーハの研磨装置
JP2004025407A (ja) * 2002-06-27 2004-01-29 Jsr Corp 化学機械研磨用研磨パッド
WO2005120775A1 (en) * 2004-06-08 2005-12-22 S.O.I. Tec Silicon On Insulator Technologies Planarization of a heteroepitaxial layer
JP2006186239A (ja) * 2004-12-28 2006-07-13 Toyo Tire & Rubber Co Ltd 研磨パッドおよび半導体デバイスの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176829A (ja) * 1999-12-20 2001-06-29 Nitto Denko Corp 半導体ウェーハの研磨方法及び半導体ウェーハ研磨用パッド
JP2011067946A (ja) * 2000-12-01 2011-04-07 Toyo Tire & Rubber Co Ltd 研磨パッド用クッション層の製造方法
JP2002270550A (ja) * 2001-03-09 2002-09-20 Teijin Ltd 研磨用シート
JP2003218074A (ja) * 2001-11-13 2003-07-31 Toyobo Co Ltd 半導体ウエハ研磨パッド及び半導体ウエハの研磨方法
JP2008254171A (ja) * 2002-09-25 2008-10-23 Ppg Ind Ohio Inc 平坦化するための研磨パッド
JP2011183495A (ja) * 2010-03-08 2011-09-22 Okamoto Machine Tool Works Ltd 取替え交換が容易な積層研磨パッド
JP2013018056A (ja) * 2011-07-07 2013-01-31 Toray Ind Inc 研磨パッド
JP2014124718A (ja) * 2012-12-26 2014-07-07 Toyo Tire & Rubber Co Ltd 積層研磨パッドの製造方法
JP2014172168A (ja) * 2013-03-07 2014-09-22 Rohm & Haas Electronic Materials Cmp Holdings Inc 広スペクトル終点検出ウィンドウを有するケミカルメカニカル研磨パッド及びそれを用いる研磨方法

Also Published As

Publication number Publication date
JP2020037182A (ja) 2020-03-12
JP6671908B2 (ja) 2020-03-25
TW201628785A (zh) 2016-08-16
JP2016068255A (ja) 2016-05-09

Similar Documents

Publication Publication Date Title
WO2016051796A1 (ja) 研磨パッド
US10201886B2 (en) Polishing pad and method for manufacturing the same
US5692950A (en) Abrasive construction for semiconductor wafer modification
US7163444B2 (en) Pad constructions for chemical mechanical planarization applications
KR101627897B1 (ko) 반도체 웨이퍼 연마 방법
WO2009139401A1 (ja) 研磨パッド
JP4943766B2 (ja) 被加工物保持材およびその製造方法
WO2016103862A1 (ja) 円形研磨パッド及び半導体デバイスの製造方法
JP2012101339A (ja) 研磨パッド
WO2017072919A1 (ja) 研磨パッド、研磨パッドを用いた研磨方法及び該研磨パッドの使用方法
TW200842962A (en) Composite sheet for mounting a workpiece and the method for making the same
JP5575363B2 (ja) 研磨パッド
JP5315678B2 (ja) 研磨パッドの製造方法
JP2002075932A (ja) 研磨パッドおよび研磨装置ならびに研磨方法
JP2009255271A (ja) 研磨パッド、およびその製造方法
JP2005056920A (ja) 研磨パッド
JP6345977B2 (ja) 研磨パッド、研磨パッドを用いた研磨方法及び該研磨パッドの使用方法
WO2021065619A1 (ja) 研磨パッド及び研磨加工物の製造方法
TWI322061B (en) Polishing pad, use thereof and method for making the same
JP5033356B2 (ja) 研磨パッド
JP5022635B2 (ja) 研磨パッド
JP2021053753A (ja) 研磨パッド及び研磨加工物の製造方法
JP2021053747A (ja) 研磨パッド及び研磨加工物の製造方法
JP2006142438A (ja) 研磨パッドおよびこれを用いた研磨方法
JP2010194667A (ja) 樹脂板の歪み取り装置、および歪み取り方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846935

Country of ref document: EP

Kind code of ref document: A1