WO2016043247A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2016043247A1
WO2016043247A1 PCT/JP2015/076370 JP2015076370W WO2016043247A1 WO 2016043247 A1 WO2016043247 A1 WO 2016043247A1 JP 2015076370 W JP2015076370 W JP 2015076370W WO 2016043247 A1 WO2016043247 A1 WO 2016043247A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
small
impurity concentration
jte
adjacent
Prior art date
Application number
PCT/JP2015/076370
Other languages
English (en)
French (fr)
Inventor
祥司 北村
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2016548927A priority Critical patent/JP6265274B2/ja
Publication of WO2016043247A1 publication Critical patent/WO2016043247A1/ja
Priority to US15/250,998 priority patent/US11257900B2/en
Priority to US17/496,586 priority patent/US11728377B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material

Definitions

  • the present invention relates to a semiconductor device.
  • a semiconductor device using a silicon carbide (SiC) semiconductor (hereinafter referred to as a silicon carbide semiconductor device) has attracted attention as an element exceeding the limit of a semiconductor device using a silicon (Si) semiconductor.
  • silicon carbide semiconductors are expected to be applied to high breakdown voltage devices by taking advantage of their high breakdown electric field strength and high thermal conductivity compared to silicon semiconductors.
  • the termination structure portion is a region that surrounds the periphery of the active region, relaxes the electric field on the substrate front surface side of the active region, and maintains a withstand voltage.
  • the active region is a region through which current flows in the on state.
  • the breakdown voltage of the element is formed on the front surface side of an n ⁇ type semiconductor substrate (semiconductor chip) that becomes an n ⁇ type drift layer, and extends from the active region to the vicinity of the boundary between the active region and the termination structure. It is limited by the electric field concentration at the outer periphery of the p-type high concentration region.
  • this p-type high concentration region is a p-type anode region that forms a pn junction with the n ⁇ -type drift layer.
  • junction termination that relaxes the electric field in the termination structure portion by forming a p ⁇ type low concentration region having an impurity concentration lower than that of the p type high concentration region adjacent to the outer end of the p type high concentration region.
  • JTE Junction Termination Extension
  • a depletion layer extending from the pn junction between the p-type high concentration region and the n ⁇ type drift layer to the outside (chip outer peripheral side) extends to both the p type high concentration region and the p ⁇ type low concentration region. .
  • the electric field at the outer periphery of the p-type high concentration region is relaxed, so that the breakdown voltage can be improved.
  • this JTE structure is applied to a device having a higher breakdown voltage, the electric field is concentrated on the outer periphery of the p ⁇ type low concentration region, and as a result, the avalanche at the outer periphery of the p ⁇ type low concentration region constituting the JTE structure.
  • the breakdown voltage is limited by the breakdown. Such a problem can be avoided by gradually decreasing the impurity concentration of the p ⁇ -type low concentration region in the direction from the active region side toward the outside.
  • the JTE structure including the p ⁇ -type low concentration region having the impurity concentration distribution that gradually decreases in the direction from the active region side toward the outside is referred to as a VLD (Variation of Lateral Doping) structure.
  • VLD Very Low Density Deposition
  • the impurity concentration in the p ⁇ type low concentration region is applied from the active region side by applying the VLD structure. It is difficult to decrease in the outward direction. For this reason, it is necessary to form a JTE structure by forming a plurality of p ⁇ -type low-concentration regions adjacent to each other so that the impurity concentration is lowered or the thickness is reduced as they are arranged on the outer side.
  • FIG. 21 is an explanatory view showing the structure of a conventional SiC-SBD.
  • FIG. 21A shows a planar layout
  • FIG. 21B shows a cross-sectional structure taken along section line AA-AA ′ in FIG.
  • the termination structure portion 112 surrounding the active region 111 has two p-type regions (p ⁇ -type region 104 and A JTE structure consisting of a p - type region 105) is provided.
  • a silicon carbide epitaxial layer to be n ⁇ type drift layer 102 is deposited on the front surface of n + type silicon carbide substrate 101.
  • an epitaxial substrate formed of n + type silicon carbide substrate 101 and n ⁇ type drift layer 102 is referred to as a silicon carbide substrate (semiconductor chip).
  • the p-type guard extends from the active region 111 to the termination structure portion 112 at the boundary between the active region 111 and the termination structure portion 112.
  • a ring 103 is selectively provided.
  • the p-type guard ring 103 surrounds the Schottky junction between the n ⁇ -type drift layer 102 and the anode electrode 106 in the active region 111.
  • a JTE structure is provided on the front surface layer of the silicon carbide base so as to surround p-type guard ring 103 outside p-type guard ring 103. .
  • the JTE structure includes a p ⁇ type region 104 and a p ⁇ type region 105 (hereinafter referred to as a first JTE region 104 and a second JTE region 105).
  • the first JTE region 104 surrounds the periphery of the p-type guard ring 103 and touches the outer end of the p-type guard ring 103.
  • the impurity concentration of the first JTE region 104 is lower than the impurity concentration of the p-type guard ring 103.
  • the second JTE region 105 is disposed outside the first JTE region 104, surrounds the first JTE region 104, and is in contact with the outer end of the first JTE region 104.
  • the impurity concentration of the second JTE region 105 is lower than the impurity concentration of the first JTE region 104.
  • the first and second JTE regions 104 and 105 both have a uniform impurity concentration distribution.
  • Reference numerals 107 and 108 denote an interlayer insulating film and a cathode electrode, respectively.
  • the JTE structure shown in FIG. 21 can secure a breakdown voltage up to the 1200 V breakdown voltage class, but in the higher breakdown voltage class, the electric field concentration at the boundary between the first JTE region 104 and the second JTE region 105 It has been confirmed that there is a tendency to become prominent. Due to the electric field concentration at the boundary between the first JTE region 104 and the second JTE region 105, there is a problem that the margin of the manufacturing process necessary for securing a predetermined breakdown voltage of the termination structure portion is reduced.
  • the margin of the manufacturing process necessary to ensure a predetermined breakdown voltage of the termination structure portion is relative to ion implantation accuracy (dose amount, diffusion depth) and ion activation rate when forming the p-type region constituting the JTE structure. This is the margin of the breakdown voltage of the termination structure.
  • the problem with such a manufacturing process margin is that the number of p-type regions constituting the JTE structure is increased and a plurality of p-type regions are arranged so that the p-type regions having a small impurity concentration difference are adjacent to each other. This can be improved by decreasing the impurity concentration stepwise from the active region 111 side toward the outside.
  • the number of steps of photolithography and ion implantation increases as the number of p-type regions constituting the JTE structure is increased, resulting in a new problem of increasing costs. Accordingly, various proposals have been made for relaxing the electric field of the JTE structure with respect to the JTE structure of the silicon carbide semiconductor device.
  • a plurality of p-type small regions having the same impurity concentration as the first JTE region are formed in a ring shape surrounding the periphery of the first JTE region in the second JTE region on the first JTE region side.
  • the provided apparatus is proposed (for example, refer to the following Patent Document 1 (paragraph 0033, FIG. 11)).
  • a device in which the electric field of the JTE structure is relaxed a device in which the JTE structure of Patent Document 1 below is further optimized has been proposed (for example, see Patent Document 2 below).
  • Patent Document 2 a third JTE region surrounding the second JTE region is further provided, and a plurality of p-type small regions having the same impurity concentration as the second JTE region are provided in a portion of the third JTE region on the second JTE region side. It has been.
  • FIG. 22 shows a structure in which the JTE structure of Patent Documents 1 and 2 below is added to the two-layer JTE structure of the first and second JTE regions 104 and 105 in FIG.
  • FIG. 22 is an explanatory view showing another example of the structure of a conventional SiC-SBD.
  • FIG. 22A shows a planar layout of the JTE structure
  • FIG. 22B shows a cross-sectional structure of the JTE structure.
  • an electric field relaxation region 120 including a p ⁇ type small region 121 and a p ⁇ type small region 122 is provided between the first JTE region 104 and the second JTE region 105.
  • the impurity concentration of the p ⁇ type small region 121 is equal to the impurity concentration of the first JTE region 104.
  • the width of the p ⁇ type small region 121 (the width in the direction from the active region 111 toward the outside) is narrower than the width of the first JTE region 104 and is narrower as the p ⁇ type small region 121 arranged on the outside. Yes.
  • the impurity concentration of the p ⁇ type small region 122 is equal to the impurity concentration of the second JTE region 105.
  • p - -type width of the small region 122, second narrower than the width of 2JTE region 105, and p is disposed outside - has a type small region 122 as width.
  • each JTE region is formed concentrically around the active region, and the impurity concentration of each JTE region is controlled by the dose amount of ion implantation. Therefore, in order to form a two-layer JTE structure in the first and second JTE regions, it is necessary to perform photolithography and ion implantation at least twice each.
  • a p ⁇ type region having the same impurity concentration and the same depth as the first JTE region is arranged in a mesh shape (lattice shape), and an n ⁇ type drift layer is left in a matrix shape.
  • An apparatus having a 2JTE region has been proposed (see, for example, Patent Document 3 below).
  • the JTE structure of Patent Document 3 shown below is shown in FIGS.
  • FIG. 23 is a plan view showing another example of the structure of a conventional SiC-SBD.
  • FIG. 23A shows a planar layout
  • FIG. 23B shows a cross-sectional structure taken along the cutting line BB-BB ′ of FIG. 24 is an enlarged plan view showing a main part of FIG.
  • the part enclosed by the rectangular frame 130 of FIG. 23 is expanded and shown.
  • the n ⁇ type drift layer 102 is selectively left inside the second JTE region 132 having the same impurity concentration and the same depth as the first JTE region 131. This is equivalent to providing a JTE region having an impurity concentration lower than that of the first JTE region 131 outside the first JTE region 131.
  • Patent Document 3 the width and arrangement density of the n ⁇ type drift layer 102 left in a matrix are changed, and the ratio of the n ⁇ type drift layer 102 occupying the second JTE region 132 is changed. It is described that an impurity concentration distribution is obtained. Further, the JTE structures shown in Patent Documents 1 to 3 below are not limited to the JTE structure of a silicon carbide semiconductor device, but are known as improved items of the VLD structure described above.
  • ion implantation is performed using an oxide film opened in a mesh-like or matrix-like pattern as a mask, followed by thermal diffusion to form a p ⁇ -type region of a predetermined pattern, and the pattern shape of this p ⁇ -type region allows the JTE region to be
  • Patent Document 4 paragraph 0050, FIG. 3 below.
  • a first JTE region, a second JTE region having an impurity concentration lower than the first JTE region provided outside the first JTE region, and the first JTE region and the second JTE region In forming a JTE structure including first and second p-type small regions having different impurity concentrations provided between them and a third JTE region having an average impurity concentration between the first JTE region and the second JTE region, A method has been proposed. Ions are implanted using the first mask to form the same impurity layer as the second JTE region so as to extend to the formation region of the first JTE region and to form the second small region. Thereafter, ion implantation is performed using a second mask that covers at least the second JTE region to form a first JTE region and a first small region (see, for example, Patent Document 2 below).
  • JP 2008-034646 A International Publication No. 2012/049872 JP 2011-187767 A JP 2014-038937 A JP 2011-165856 A
  • Spatial impurity concentration distribution in the whole field relaxation region 120 are arranged alternately p - -type small region 122 having an impurity concentration gradient of the respective widths, p - - type subregion 121 and the p type sub-region 121 and p - determined by the impurity concentration ratio between type small area 122.
  • the widths of the p ⁇ type small region 121 and the p ⁇ type small region 122 are determined by the dimensional accuracy and variation of photolithography. For this reason, the design freedom is low, and the electric field relaxation region 120 having a desired impurity concentration distribution cannot be stably formed. Therefore, the withstand voltage of the termination structure portion may not be improved.
  • An object of the present invention is to provide a semiconductor device capable of improving the withstand voltage of the termination structure portion in order to eliminate the above-described problems caused by the prior art.
  • a semiconductor device has the following characteristics.
  • An active region through which a main current flows is provided on the front surface of the first conductivity type semiconductor substrate made of a silicon carbide semiconductor.
  • a termination structure portion surrounding the periphery of the active region is provided.
  • a plurality of second conductivity type semiconductor regions are provided in the termination structure portion concentrically around the active region.
  • the plurality of second conductivity type semiconductor regions have a lower impurity concentration as they are arranged on the outer side.
  • a second conductivity type intermediate region is provided so as to be in contact with each other between at least one pair of the adjacent second conductivity type semiconductor regions.
  • the impurity concentration of the second conductivity type intermediate region is lower than the impurity concentration of the second conductivity type semiconductor region adjacent to the inside and higher than the impurity concentration of the second conductivity type semiconductor region adjacent to the outside.
  • the second conductivity type intermediate region has an impurity concentration higher than that of the first small region of the second conductivity type in the first direction along the boundary between the active region and the termination structure portion.
  • the second small regions of the second conductivity type having a low level are alternately and repeatedly arranged.
  • the first small region is a boundary with the second conductive type semiconductor region adjacent to the inner side and the second conductive type semiconductor region adjacent to the outer side. It has a rectangular planar shape with the boundary as one set of opposite sides.
  • the second small region has a rectangular planar shape in which a boundary between the second conductive type semiconductor region adjacent to the inside and a boundary between the second conductive type semiconductor region adjacent to the outside are set as a pair of opposite sides. It is characterized by that.
  • the first small region is adjacent to the outside along a second direction extending outward from a boundary with the second conductivity type semiconductor region adjacent to the inside.
  • the width is narrower toward the second conductivity type semiconductor region side, and has a convex planar shape that makes point contact with the second conductivity type semiconductor region adjacent to the outside.
  • the second small region is located between the first small regions adjacent to each other in the first direction, and the width becomes wider toward the second conductive type semiconductor region adjacent to the outside along the second direction. It has a trapezoidal planar shape.
  • the first small region has a boundary with the second conductivity type semiconductor region adjacent to the inside as an upper base, and the second conductivity type adjacent to the outside. It has a trapezoidal planar shape having a lower base at the boundary with the semiconductor region and having a lower bottom narrower than the upper base.
  • the second small region has a boundary with the second conductivity type semiconductor region adjacent to the inside as an upper bottom, a boundary with the second conductivity type semiconductor region adjacent to the outside as a lower bottom, and more than the upper bottom.
  • the lower bottom has a wide trapezoidal planar shape.
  • the semiconductor device further has the following characteristics in the above-described invention.
  • the second conductivity type intermediate region is divided into a plurality of unit regions in the first direction and includes a pair of the first small region and the second small region that are adjacent to each other in the first direction.
  • the first small region has a width in the first direction that decreases in a stepped manner toward the outside in the unit region.
  • the second small region has a width in the first direction that increases stepwise toward the outside inside the unit region. The sum of the widths in the first direction of the first small region and the second small region is constant from the inside to the outside.
  • the semiconductor device further has the following characteristics in the above-described invention.
  • the unit region is divided into a plurality of units in a second direction orthogonal to the first direction.
  • the first small region has a narrower width in the first direction as it is disposed in the outer section.
  • the second small region has a wider width in the first direction as it is disposed in the outer section.
  • the section has an average impurity concentration determined by a width of the first small region and the second small region in the first direction. The average impurity concentration of the section decreases at a constant rate toward the outside.
  • the semiconductor device in the above-described invention, all the sets of the first small region and the second small region that are arranged in the section and are adjacent to each other in the first direction.
  • the first small region or the second small region is divided into minute regions having process limits.
  • one of the first small region and the second small region is arranged in a matrix-like planar layout, and the other region is the one region. It is arranged in a mesh-like plane layout surrounding the.
  • the semiconductor device further has the following characteristics in the above-described invention.
  • the second conductivity type intermediate region is divided into a plurality in a second direction orthogonal to the first direction.
  • the section includes one set of the one region and the other region sandwiched between the one region and the one region adjacent in the second direction.
  • the average impurity concentration of the section is determined based on the widths of the one region and the other region in the section, and the average impurity concentration is lower as it is arranged outside.
  • the distance between the adjacent one regions is a narrow limit of the manufacturing process.
  • the one region is the first small region, and the width of the one region in the second direction is narrower as the section is arranged on the outer side. And the distance of the 2nd direction between said one said adjacent area
  • regions is large, It is characterized by the above-mentioned.
  • the one region is the second small region, and the width of the one region in the second direction is wider as the section is arranged on the outer side. And the distance of the 2nd direction between said one said adjacent area
  • regions is narrow, It is characterized by the above-mentioned.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, an average impurity concentration difference is equal between all the adjacent sections.
  • the width and impurity concentration of the first small region are x 1 and n p1 , respectively, and the width and impurity concentration of the second small region are x 2 and n, respectively.
  • the average impurity concentration Np of the section satisfies the following formula (1).
  • Np ((x 1 ⁇ n p1 ) + (x 2 ⁇ n p2 )) / (x 1 + x 2 ) (1)
  • a portion of the other region sandwiched between the one region adjacent in the first direction is the active region and the termination structure portion. It faces the one region in a third direction orthogonal to the boundary.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the first small region has the same impurity concentration as the second conductive type semiconductor region adjacent to the inside.
  • the second small region has the same impurity concentration as the second conductive semiconductor region adjacent to the outside.
  • the average impurity concentration of the second conductivity type intermediate region is the second conductivity type semiconductor adjacent to the inside and the second conductivity type semiconductor adjacent to the outside.
  • the impurity concentration is intermediate to that of the region.
  • the impurity concentration gradient between the adjacent second conductive type semiconductor regions can be reduced. It can be made smaller compared to the case where it is not provided. Thereby, since the electric field between adjacent 2nd conductivity type semiconductor regions can be relieve
  • the breakdown voltage of the termination structure portion can be improved.
  • FIG. 1 is an explanatory diagram of the structure of the semiconductor device according to the first embodiment.
  • FIG. 2 is an explanatory view showing a part of the JTE structure of FIG. 1 in an enlarged manner.
  • FIG. 3 is an explanatory diagram showing a part of the JTE structure of FIG. 1 in an enlarged manner.
  • FIG. 4 is a plan view showing the structure of the semiconductor device according to the second embodiment.
  • FIG. 5 is an explanatory diagram of the structure of the semiconductor device according to the third embodiment.
  • FIG. 6 is an explanatory diagram showing the impurity concentration distribution of the JTE structure of FIG.
  • FIG. 7 is a cross-sectional view illustrating a state in the middle of manufacturing the semiconductor device according to the fourth embodiment.
  • FIG. 1 is an explanatory diagram of the structure of the semiconductor device according to the first embodiment.
  • FIG. 2 is an explanatory view showing a part of the JTE structure of FIG. 1 in an enlarged manner.
  • FIG. 3 is an explanatory diagram showing
  • FIG. 8 is a cross-sectional view of the semiconductor device according to the fourth embodiment in the middle of manufacturing.
  • FIG. 9 is an explanatory diagram of the structure of the semiconductor device according to the fifth embodiment.
  • FIG. 10 is an explanatory diagram of the structure of the semiconductor device according to the sixth embodiment.
  • FIG. 11 is a plan view showing the structure of the semiconductor device according to the eighth embodiment.
  • FIG. 12 is a plan view showing the structure of the semiconductor device according to the ninth embodiment.
  • FIG. 13 is a plan view showing the structure of the semiconductor device according to the tenth embodiment.
  • FIG. 14 is a plan view showing another example of the structure of the semiconductor device according to the tenth embodiment.
  • FIG. 15 is a plan view showing another example of the structure of the semiconductor device according to the tenth embodiment.
  • FIG. 16 is a plan view showing another example of the structure of the semiconductor device according to the tenth embodiment.
  • FIG. 17A is an explanatory diagram of a structure of the semiconductor device according to the eleventh embodiment.
  • FIG. 17B is an explanatory diagram of the structure of the semiconductor device according to the eleventh embodiment.
  • FIG. 18A is an explanatory diagram of a structure of another example of the semiconductor device according to the eleventh embodiment.
  • FIG. 18B is an explanatory diagram illustrating the structure of another example of the semiconductor device according to the eleventh embodiment.
  • FIG. 19A is a plan view illustrating the structure of the semiconductor device according to the seventh embodiment.
  • FIG. 19B is a plan view illustrating the structure of the semiconductor device according to the seventh embodiment.
  • FIG. 19A is a plan view illustrating the structure of the semiconductor device according to the seventh embodiment.
  • FIG. 19C is a plan view illustrating the structure of the semiconductor device according to the seventh embodiment.
  • FIG. 20 is a characteristic diagram illustrating the breakdown voltage characteristics of the termination structure portion of the semiconductor device according to the example.
  • FIG. 21 is an explanatory view showing the structure of a conventional SiC-SBD.
  • FIG. 22 is an explanatory view showing another example of the structure of a conventional SiC-SBD.
  • FIG. 23 is a plan view showing another example of the structure of a conventional SiC-SBD. 24 is an enlarged plan view showing a main part of FIG.
  • FIG. 1 is an explanatory diagram of the structure of the semiconductor device according to the first embodiment.
  • FIG. 1A shows a planar layout
  • FIG. 1B shows a cross-sectional structure taken along section line AA ′ in FIG. 2 and 3 are explanatory views showing a part of the JTE structure of FIG. 1 in an enlarged manner.
  • FIG. 2A shows an enlarged plan layout of the straight line portion 14a of the annular JTE structure (a portion surrounded by the rectangular frame 13 in FIG. 1A), and
  • FIG. A cross-sectional structure taken along a cutting line BB ′ is shown.
  • FIG. 3 shows an enlarged plan layout at the corner portion 14b of the annular JTE structure (a portion surrounded by the rectangular frame 14 in FIG. 1A).
  • the semiconductor device relaxes the active region 11 through which a current flows in the on state and the electric field on the substrate front surface side of the active region 11 to withstand the voltage.
  • a termination structure portion 12 that holds The active region 11 is provided with an SBD element structure (not shown).
  • a p-type guard ring 3 is provided at the boundary between the active region 11 and the termination structure portion 12 so as to surround the periphery of the active region 11.
  • the termination structure 12 surrounds the periphery of the active region 11.
  • the termination structure 12 includes two p-type regions (second conductivity type semiconductor regions (p ⁇ type region 4 and p ⁇ type region 5)) having different impurity concentrations, p ⁇ type region 4 and p ⁇ type.
  • a JTE structure including a p-type electric field relaxation region (second conductivity type intermediate region) 20 provided between the region 5 and the region 5 is provided.
  • the p-type guard ring 3, the p ⁇ -type region (hereinafter referred to as the first JTE region) 4, the electric field relaxation region 20 and the p ⁇ -type region (hereinafter referred to as the second JTE region) 5 are sequentially formed from the inside into the active region 11. They are arranged concentrically around (for example, the center of the semiconductor chip). Further, each of the p-type guard ring 3, the first JTE region 4, the electric field relaxation region 20, and the second JTE region 5 includes, for example, a four-sided straight portion 14a and a corner portion 14b that connects the adjacent straight portions 14a. It has a substantially rectangular planar shape.
  • the impurity concentration of the first JTE region 4 is lower than the impurity concentration of the p-type guard ring 3.
  • the impurity concentration of the second JTE region 5 is lower than the impurity concentration of the first JTE region 4 and the average impurity concentration of the electric field relaxation region 20.
  • the first and second JTE regions 4 and 5 may have a uniform impurity concentration in a direction perpendicular to the main surface of the substrate (lateral direction) and in a direction perpendicular to the main surface (depth direction), and each has a predetermined impurity concentration distribution. You may have.
  • the average impurity concentration of the electric field relaxation region 20 is higher than the impurity concentration of the first JTE region 4 and lower than the impurity concentration of the second JTE region 5.
  • the average impurity concentration of the electric field relaxation region 20 is preferably an intermediate impurity concentration between the first JTE region 4 and the second JTE region 5. A detailed description of the electric field relaxation region 20 will be described later.
  • the p-type guard ring 3, the first JTE region 4, the electric field relaxation region 20, and the second JTE region 5 arranged in the termination structure portion 12 are more impurity concentration in the region arranged on the outer side (chip outer peripheral side). Is low.
  • the p-type guard ring 3, the first JTE region 4, the electric field relaxation region 20, and the second JTE region 5 are respectively formed on the front surface (n ⁇ of the silicon carbide substrate (semiconductor chip) 10). Is provided selectively on the surface layer on the surface of the type drift layer 2 side.
  • Silicon carbide substrate 10 is an epitaxial substrate formed by laminating a silicon carbide epitaxial layer to be n ⁇ type drift layer 2 on the front surface of n + type silicon carbide substrate 1.
  • the p-type guard ring 3 is selectively provided from the active region 11 to the termination structure portion 12 at the boundary between the active region 11 and the termination structure portion 12.
  • the p-type guard ring 3 surrounds the Schottky junction between the n ⁇ -type drift layer 2 and the anode electrode 8 in the active region 11.
  • the JTE structure is provided outside the p-type guard ring 3. Specifically, the first JTE region 4 arranged on the innermost side (active region side) among the regions constituting the JTE structure is in contact with the outer end portion of the p-type guard ring 3.
  • the electric field relaxation region 20 is disposed outside the first JTE region 4 and is in contact with the outer end of the first JTE region 4.
  • the second JTE region 5 is disposed outside the electric field relaxation region 20 and is in contact with the outer end of the electric field relaxation region 20.
  • the p-type guard ring 3, the first JTE region 4, the electric field relaxation region 20, and the second JTE region 5 may all have the same depth, or may be variously adjusted to satisfy the above impurity concentration difference with the adjacent region. Also good.
  • the interlayer insulating film 7 covers the JTE structure (that is, the first JTE region 4, the electric field relaxation region 20, and the second JTE region 5) of the termination structure portion 12. That is, the JTE structure of the termination structure portion 12 is electrically insulated from the anode electrode 8 by the interlayer insulating film 7. An inner end portion of the interlayer insulating film 7 extends on the p-type guard ring 3. Anode electrode 8 is provided on the front surface of silicon carbide substrate 10 and is in Schottky junction with n ⁇ type drift layer 2 and in contact with p type guard ring 3. An end portion of the anode electrode 8 extends on the interlayer insulating film 7. Cathode electrode 9 is provided on the back surface of silicon carbide substrate 10 (the back surface of n + -type silicon carbide substrate 1 serving as an n + -type cathode layer).
  • the electric field relaxation region 20 includes a p ⁇ type region (hereinafter referred to as a first small region) 21 and a p ⁇ type region (hereinafter referred to as a second small region) 22 as an active region 11.
  • a first small region a p ⁇ type region
  • a second small region a p ⁇ type region
  • an active region 11 a p ⁇ type region
  • the electric field relaxation region 20 has a super junction (SJ: Super Junction) structure in which the first small regions 21 and the second small regions 22 are alternately and repeatedly arranged in parallel pn layers. For this reason, it is preferable that the 1st small area
  • Both the first and second small regions 21 and 22 have a rectangular planar shape with the boundary 20a with the first JTE region 4 and the boundary 20b with the second JTE region 5 as opposite sides. Both the first and second small regions 21 and 22 are in contact with the first JTE region 4 and the second JTE region 5. That is, the first small region 21 and the second small region 22 are stripe-shaped extending in the normal direction of the outer periphery of the active region 11 (hereinafter simply referred to as the normal direction (second direction or third direction)) X. Arranged in a flat layout.
  • the impurity concentration of the first small region 21 is substantially equal to the impurity concentration of the first JTE region 4.
  • the impurity concentration of the second small region 22 is substantially equal to the impurity concentration of the second JTE region 5.
  • the JTE structure is configured in a planar layout in which the first JTE region 4 and the first small region 21 having substantially the same impurity concentration and the second JTE region 5 and the second small region 22 having the substantially equal impurity concentration are arranged in a comb shape. ing. Both the first and second small regions 21 and 22 may have a uniform impurity concentration in both the lateral direction and the depth direction, or may have a predetermined impurity concentration distribution. 2 and 3, the boundary 20a between the first JTE region 4 and the electric field relaxation region 20 and the boundary 20b between the second JTE region 5 and the electric field relaxation region 20 are indicated by dotted lines (the same applies to FIGS. 4 to 16). Further, in FIG.
  • regions having substantially the same impurity concentration are indicated by the same hatching (the JTE regions in FIGS. 4 to 16). And the same for small areas).
  • the first and second small regions 21 and 22 have, for example, substantially the same widths L1 and L2 in the tangential direction Y and are arranged at substantially the same pitch in the tangential direction Y.
  • the widths L1 and L2 in the tangential direction Y of the first and second small regions 21 and 22 are set so that the p-type guard ring 3 and the n
  • the dimension is set such that the first and second small regions 21 and 22 are depleted by the depletion layer extending outward from the pn junction with the ⁇ type drift layer 2.
  • the first and second small regions 21 and 22 are formed by photolithography and ion implantation for forming the first JTE region 4 (or the second JTE region 5) as described later (Embodiment 4). reference). For this reason, the widths L1 and L2 in the tangential direction Y of the first and second small regions 21 and 22 are determined based on the ratio of the dose amount of each ion implantation for forming the first and second small regions 21 and 22. Is done.
  • the widths L1 and L2 in the tangential direction Y of the first and second small regions 21 and 22 may be determined as follows. Since the diffusion coefficient of the p-type impurity with respect to the silicon carbide semiconductor is small enough to be ignored, it is assumed that the diffusion depths dj of the first and second small regions 21 and 22 are substantially equal. For example, in a general manufacturing process of a silicon carbide semiconductor device, each region constituting the JTE structure is formed by multiple times of ion implantation (multistage ion implantation) and thermal diffusion treatment at a high acceleration voltage. For this reason, as shown in FIG.
  • each cross-sectional shape in the cross section passing through the tangential direction Y of the first and second small regions 21 and 22 is a box shape having a diffusion depth dj of about 0.6 ⁇ m, for example. (Substantially square shape).
  • the widths L1 and L2 in the tangential direction Y of the first and second small regions 21 and 22 are determined by taking charge balance between the first small region 21 and the second small region 22. For example, when the impurity concentration ratio between the first small region 21 and the second small region 22 is 1: 0.6, the width L1 of the first small region 21 and the width L2 of the second small region 22 in the tangential direction Y The ratio is 0.6: 1. For this reason, the minimum values of the widths L1 and L2 in the tangential direction Y of the first and second small regions 21 and 22 are, for example, 1.5 ⁇ m and 2.5 ⁇ m, respectively.
  • the lower limit values of the widths L1 and L2 in the tangential direction Y of the first and second small regions 21 and 22 are determined by the dimensional accuracy of photolithography, they are equal to or larger than the minimum width of the opening of the ion implantation mask.
  • the first and second small regions 21 and 22 have, for example, the boundaries 20a and 20b with the first and second JTE regions 4 and 5,
  • the corner portion 14b has a substantially trapezoidal planar shape with the boundary between the first and second small regions 21 and 22 along the normal direction X from the center of the arc shape of the radius of curvature r as a leg.
  • the first and second small regions 21 and 22 in the corner portion 14b have a boundary 20a with the first JTE region 4 as an upper bottom, a boundary 20b with the second JTE region 5 as a lower bottom, and an inner side (first JTE region 4
  • the width (lower base) L13, L14 in the tangential direction Y on the outer side (second JTE region 5 side) is wider than the width (upper bottom) L11, L12 in the tangential direction Y on the side.
  • the widths L11 and L12 in the inner tangential direction Y of the first and second small regions 21 and 22 in the corner portion 14b are, for example, the width L1 in the tangential direction Y of the first and second small regions 21 and 22 in the straight portion 14a, respectively.
  • L2 may be approximately equal.
  • the dimensions of the first and second small regions 21 and 22 are determined so that the first small region 21 and the second small region 22 are in charge balance. That is, in the corner portion 14b of the JTE structure, the dimensions of the first and second small regions 21 and 22 may be set based on the impurity concentration ratio of the first and second small regions 21 and 22, similarly to the straight portion 14a.
  • the electric field is more concentrated on the corner portion 14b of the JTE structure than the straight portion 14a (especially, the electric field is concentrated on the second small region 22 side), but the repetition pitch of the first and second small regions 21 and 22 is narrowed.
  • the electric field can be relaxed.
  • the radius of curvature r of the corner portion 14b needs to be larger than that of a conventional JTE structure in which the electric field relaxation region 20 is not provided, and is preferably 150 ⁇ m or more, for example.
  • the electric field relaxation region 20 is a p ⁇ -type region in which the first and second small regions 21 and 22 having substantially the same size and substantially the same impurity concentration are arranged substantially evenly.
  • the average impurity concentration of the electric field relaxation region 20 is an intermediate impurity concentration between the impurity concentration of the first JTE region 4 and the impurity concentration of the second JTE region 5.
  • the difference between the impurity concentration of the first JTE region 4 and the average impurity concentration of the electric field relaxation region 20 is smaller than the impurity concentration difference between the first and second JTE regions of the conventional JTE structure in which the electric field relaxation region 20 is not provided.
  • the electric field concentration between the first JTE region 4 and the second JTE region 5 is relaxed as compared with the conventional JTE structure in which the electric field relaxation region 20 is not provided.
  • the first and second small regions having substantially the same impurity concentration as the first and second JTE regions are alternately arranged in the tangential direction between the first JTE region and the second JTE region.
  • FIG. 4 is a plan view showing the structure of the semiconductor device according to the second embodiment.
  • FIG. 4 shows an enlarged plan layout in a straight line portion of the JTE structure of FIG. 1A (portion surrounded by a rectangular frame 13).
  • the semiconductor device according to the second embodiment is different from the semiconductor device according to the first embodiment in that the first and second small regions have a planar shape in which the boundary between the first small region 23 and the second small region 24 is curved. 23 and 24 are provided.
  • the first small region 23 has a width L21 in the tangential direction Y that decreases toward the second JTE region 5 along the normal direction X that extends outward from the boundary 10a with the first JTE region 4, and It has a convex shape (arc shape in FIG. 4) that makes point contact with the second JTE region 5.
  • the second small region 24 is located between the first small regions 23 adjacent to each other in the tangential direction Y, and the width L22 in the tangential direction Y increases toward the second JTE region 5 along the normal direction X, and the width L24 ( L24> L21) (a substantially trapezoidal planar shape having an arc portion in FIG. 4).
  • the sum of the width L21 in the tangential direction Y inside the first small region 23 and the width L22 in the tangential direction Y inside the second small region 24 is the width in the tangential direction Y outside the second small region 24. It is almost equal to L24.
  • the first small region 23 has an impurity concentration distribution that decreases in a direction corresponding to the curvature of the boundary between the first small region 23 and the second small region 24 in the direction from the active region 11 side toward the outside.
  • the second small region 24 has an impurity concentration distribution that increases in the direction from the active region 11 to the outside in a state in which the charge balance with the first small region 23 is achieved.
  • the first small area 23 and the second JTE area 5 are almost in line contact. For this reason, the average impurity concentration of the electric field relaxation region 20 on the second JTE region 5 side is substantially equal to the impurity concentration of the second JTE region 5, and the electric field at the boundary 20b between the second JTE region 5 and the electric field relaxation region 20 is relaxed. .
  • the same effect as that of the first embodiment can be obtained.
  • the impurity concentration gradient between the first JTE region and the second JTE region can be controlled by variously changing the planar shapes of the first and second small regions.
  • FIG. 5 is an explanatory diagram of the structure of the semiconductor device according to the third embodiment.
  • FIG. 6 is an explanatory diagram showing the impurity concentration distribution of the JTE structure of FIG. 5 (a) and 6 (a) show an enlarged plan layout of the straight portion 14a of the JTE structure of FIG. 1 (a) (portion surrounded by the rectangular frame 13), and
  • FIG. 5 (b) shows the JTE structure. 1 is shown in an enlarged manner (a portion surrounded by a rectangular frame 15 in FIG. 1B).
  • FIG. 6B shows an impurity concentration distribution of the JTE structure of FIG.
  • the semiconductor device according to the third embodiment is different from the semiconductor device according to the first embodiment in that the average impurity concentration distribution of the electric field relaxation region 20 decreases at a constant rate in the direction from the active region 11 side toward the outside.
  • the first and second small regions 25 and 26 are provided.
  • the first small region 25 has a boundary 20a with the first JTE region 4 as an upper base and a boundary 20b with the second JTE region 5 below.
  • a substantially trapezoidal shape having a bottom and a width (lower bottom) L33 in the tangential direction Y on the outside (second JTE region 5 side) narrower than a width (upper bottom) L31 in the tangential direction Y on the inner side (first JTE region 4 side)
  • the planar shape is as follows.
  • the second small region 26 has a boundary 20a with the first JTE region 4 as an upper bottom, a boundary 20b with the second JTE region 5 as a lower bottom, and an outer side of the inner tangential direction width Y (upper bottom) L32. It has a substantially trapezoidal planar shape with a wide width (lower base) L34 in the tangential direction Y.
  • the planar shapes of the first and second small regions 25 and 26 in the corner portion 14b are substantially trapezoidal based on the curvature of the arc shape of the corner portion 14b, as in the first embodiment.
  • the dimensions of the first and second small regions 25 and 26 may be determined so that the first small region 25 and the second small region 26 are in charge balance, as in the first embodiment.
  • the average impurity concentration of the electric field relaxation region 20 becomes a value close to the impurity concentration of the first JTE region 4 in the portion on the first JTE region 4 side.
  • the portion on the second JTE region 5 side has a value close to the impurity concentration of the second JTE region 5.
  • the average impurity concentration distribution of the electric field relaxation region 20 is a distribution that decreases at a constant rate in the direction from the active region 11 side toward the outside. For this reason, the electric field at the boundary 20a between the first JTE region 4 and the electric field relaxation region 20 and at the boundary 20b between the second JTE region 5 and the electric field relaxation region 20 can be relaxed.
  • the gradient of the average impurity concentration distribution in the electric field relaxation region 20 is preferable to make the gradient of the average impurity concentration distribution in the electric field relaxation region 20 more gentle. The reason is that since the impurity concentration can be gradually decreased with a smaller impurity concentration difference in the direction from the active region 11 side toward the outside, the electric field in the electric field relaxation region 20 can be further relaxed. . On the other hand, as the gradient of the average impurity concentration distribution in the electric field relaxation region 20 becomes gentler, the width in the normal direction X of the electric field relaxation region 20 becomes wider, which hinders downsizing. Therefore, it is preferable to make the gradient of the average impurity concentration distribution of the electric field relaxation region 20 as gentle as possible within the allowable size range.
  • the electric field at the inner portion of the termination structure 12 where the electric field is more concentrated may be relaxed. Specifically, the electric field concentrates more on the boundary 20a between the first JTE region 4 and the electric field relaxation region 20 than on the boundary 20b between the second JTE region 5 and the electric field relaxation region 20 located outside. Therefore, the gradient of the average impurity concentration distribution of the electric field relaxation region 20 may be set so that the impurity concentration difference with the first JTE region 4 is smaller than the impurity concentration difference with the second JTE region 5.
  • FIGS. 7 and 8 are cross-sectional views showing a state during the manufacture of the semiconductor device according to the fourth embodiment.
  • FIG. 7A shows a planar structure during manufacture.
  • FIG. 7B shows a cross-sectional structure taken along the cutting line CC ′ in FIG. 7A
  • FIG. 7C shows a cross-sectional structure taken along the cutting line DD ′ in FIG.
  • the cutting line CC ′ is a cutting line parallel to the normal direction X and passing through the formation region of the second small region 26.
  • the cutting line DD ′ is a cutting line parallel to the normal direction X and passing through the first small region 25.
  • FIGS. 8A and 8B respectively show a planar structure and a cross-sectional structure during the manufacture.
  • an n + type silicon carbide substrate (semiconductor wafer) 1 having a predetermined impurity concentration and a predetermined thickness is prepared.
  • an epitaxial wafer (silicon carbide substrate 10) is produced by growing a silicon carbide epitaxial layer to be n ⁇ type drift layer 2 on the front surface of n + type silicon carbide substrate 1.
  • the surface layer of the front surface of silicon carbide substrate 10 (the surface on the n ⁇ -type drift layer 2 side) in termination structure portion 12 surrounding the active region 11 by photolithography and ion implantation of p-type impurities.
  • the p-type guard ring 3 is selectively formed, for example, in an annular plane shape surrounding the periphery of the active region 11.
  • the first JTE region 4 and the first small region 25 are formed, for example, by a resist material or an oxide film (SiO 2 ) having an opening.
  • a 1-ion implantation mask 31 is formed.
  • a p-type impurity such as aluminum (Al) is first ion-implanted, so that the first JTE region 4 and the first first layer are formed on the surface layer of the n ⁇ -type drift layer 2.
  • the small regions 25 are selectively formed.
  • the first ion implantation mask 31 is removed.
  • a second ion implantation mask 32 is formed.
  • a second JTE region 5 and a second small region 26 are formed in the surface layer of the n ⁇ -type drift layer 2 by second ion implantation of a p-type impurity such as aluminum using the second ion implantation mask 32 as a mask. Are selectively formed.
  • the second ion implantation the already formed first JTE region 4 and first small region 25 are increased in impurity concentration.
  • the first and second small regions 25, 26 having a substantially trapezoidal planar shape can be easily formed.
  • a double-layered JTE structure (first and second JTE regions 4 and 5) in which the impurity concentration is reduced in two stages is formed by two ion implantations (first and second ion implantations).
  • An electric field relaxation region 20 composed of different first and second small regions 25 and 26 can be formed. That is, an electric field relaxation region 20 having an average impurity concentration distribution that decreases at a constant rate in the direction from the active region 11 to the outside is formed.
  • the planar shapes of the first and second small regions constituting the electric field relaxation region 20 can be variously changed according to the pattern of the first ion implantation mask 31. That is, the semiconductor device according to the first and second embodiments can be manufactured by applying the fourth embodiment and forming the first and second small regions in a substantially rectangular shape or a planar shape having a curved portion. .
  • FIG. 9 is an explanatory diagram of the structure of the semiconductor device according to the fifth embodiment.
  • FIG. 9A shows a planar layout in a straight line portion of the JTE structure
  • FIG. 9B shows an enlarged cross-sectional structure of the JTE structure.
  • the semiconductor device according to the fifth embodiment is different from the semiconductor device according to the third embodiment in that a second electric field relaxation region 40 that is in contact with the outer edge of the second JTE region 5 is provided outside the second JTE region 5. It is a point.
  • the p-type guard ring 3, the first JTE region 4, the electric field relaxation region (hereinafter referred to as the first electric field relaxation region) 20, the second JTE region 5, and the second electric field relaxation region 40 form the active region 11 in order from the inside. It is arranged concentrically with a center.
  • the second electric field relaxation region 40 In the second electric field relaxation region 40, p ⁇ -type regions (hereinafter referred to as third small regions) 41 and n ⁇ -type regions (hereinafter referred to as fourth small regions) 42 are alternately and repeatedly arranged in the tangential direction Y. Do it. That is, the second electric field relaxation region 40 has an SJ structure as a parallel pn layer in which the third small regions 41 and the fourth small regions 42 are alternately and repeatedly arranged. For this reason, it is preferable that the 3rd small area
  • region 42 are charge balance.
  • the impurity concentration of the third small region 41 is substantially equal to the impurity concentration of the second JTE region 5.
  • the impurity concentration of the fourth small region 42 is substantially equal to the impurity concentration of the n ⁇ type drift layer 2.
  • the average impurity concentration of the second electric field relaxation region 40 is lower than the impurity concentration of the second JTE region 5.
  • the third small region 41 has the same planar shape as the first small region 25. That is, the third small region 41 has a boundary 20a with the first JTE region 4 as an upper base, a boundary 20b with the second JTE region 5 as a lower base, and a width in the tangential direction Y on the inner side (the second JTE region 5 side). It has a substantially trapezoidal planar shape in which the width (lower bottom) in the tangential direction Y outside (upper bottom) is narrower than (upper bottom).
  • the fourth small region 42 has the same planar shape as the second small region 26.
  • the fourth small region 42 has the boundary 20a with the first JTE region 4 as the upper bottom, the boundary 20b with the second JTE region 5 as the lower bottom, and outside the inner tangential direction Y width (upper bottom).
  • the average impurity concentration of the second electric field relaxation region 40 has a value close to the impurity concentration of the second JTE region 5 in the portion on the second JTE region 5 side, and the portion on the chip outer peripheral portion side has the impurity concentration in the n ⁇ type drift layer 2. The value is close to the concentration.
  • the average impurity concentration distribution of the second electric field relaxation region 40 is a distribution that decreases at a constant rate in the direction from the active region 11 side to the outer side, like the first electric field relaxation region 20.
  • the planar shape of the third and fourth small regions 41 and 42 in the corner portion 14b is substantially trapezoidal based on the curvature of the arc shape of the corner portion 14b, as in the first embodiment. Further, the dimensions of the third and fourth small regions 41 and 42 may be determined so that the third small region 41 and the fourth small region 42 are in charge balance, as in the first embodiment.
  • the manufacturing method of the semiconductor device according to the fifth embodiment is the same as that of the semiconductor device manufacturing method according to the fourth embodiment.
  • the first, second JTE regions 4, 5 and the first to third small regions 25, 26, 41 are formed.
  • What is necessary is just to form the 2nd ion implantation mask which consists of a resist material or an oxide film with the area
  • Conditions other than the second ion implantation mask in the semiconductor device manufacturing method according to the fifth embodiment are the same as those in the fourth embodiment.
  • the same effects as in the first to fourth embodiments can be obtained. Further, according to the fifth embodiment, the electric field at the boundary between the second JTE region and the second electric field relaxation region can be relaxed by providing the second electric field relaxation region outside the second JTE region. For this reason, the electric field in a termination
  • FIG. 10 is an explanatory diagram of the structure of the semiconductor device according to the sixth embodiment.
  • FIG. 10A shows a planar layout in a straight line portion of the JTE structure
  • FIG. 10B shows an enlarged cross-sectional structure of the JTE structure.
  • the semiconductor device differs from that according to the semiconductor device according to the fifth embodiment according to the sixth embodiment, the outer side than the second field limiting region 40, yet a 3JTE region (p --- -type region) 6, and a third field This is that a relaxation region 50 is provided.
  • the p-type guard ring 3, the first JTE region 4, the first electric field relaxation region 20, the second JTE region 5, the second electric field relaxation region 40, the third JTE region 6 and the third electric field relaxation region 50 are arranged from the inside. In order, they are arranged concentrically around the active region 11.
  • the configuration of the second electric field relaxation region 40 is the same as that of the first electric field relaxation region 20. That is, the average impurity concentration of the second electric field relaxation region 40 is lower than the impurity concentration of the second JTE region 5 adjacent to the inner side and higher than the impurity concentration of the third JTE region 6 adjacent to the outer side.
  • the second electric field relaxation region 40 is configured by alternately and repeatedly arranging the third small region 41 and the fourth small region 43 in the tangential direction Y.
  • the configuration of the third small region 41 is the same as that of the fifth embodiment.
  • the impurity concentration of the fourth small region 43 is substantially equal to the impurity concentration of the third JTE region 6.
  • the configuration other than the impurity concentration of the fourth small region 43 is the same as that of the fourth small region of the fifth embodiment.
  • the third electric field relaxation region 50 is disposed outside the third JTE region 6 and is in contact with the outer end of the third JTE region 6.
  • the impurity concentration of the fifth small region 51 is substantially equal to the impurity concentration of the third JTE region 6.
  • the impurity concentration of the sixth small region 52 is substantially equal to the impurity concentration of the n ⁇ type drift layer 2.
  • the average impurity concentration of the third electric field relaxation region 50 is lower than the impurity concentration of the third JTE region 6.
  • the fifth small region 51 has the same planar shape as the first small region 25. That is, the fifth small region 51 has a boundary 20a with the first JTE region 4 as an upper base, a boundary 20b with the second JTE region 5 as a lower base, and a width in the tangential direction Y on the inner side (the third JTE region 6 side). It has a substantially trapezoidal planar shape in which the width (lower bottom) in the tangential direction Y outside (upper bottom) is narrower than (upper bottom).
  • the sixth small region 52 has the same planar shape as the second small region 26.
  • the sixth small region 52 has the boundary 20a with the first JTE region 4 as the upper bottom, the boundary 20b with the second JTE region 5 as the lower bottom, and outside the inner tangential direction Y width (upper bottom).
  • the average impurity concentration of the third electric field relaxation region 50 is close to the impurity concentration of the third JTE region 6 on the third JTE region 6 side, and the portion on the chip outer peripheral side is the impurity of the n ⁇ type drift layer 2. The value is close to the concentration.
  • the average impurity concentration distribution of the third electric field relaxation region 50 is a distribution that decreases at a constant rate in the direction from the active region 11 side toward the outside, similarly to the first electric field relaxation region 20.
  • planar shapes of the fifth and sixth small regions 51 and 52 in the corner portion 14b are substantially trapezoidal based on the curvature of the arc shape of the corner portion 14b, as in the first embodiment. Further, the dimensions of the fifth and sixth small regions 51 and 52 may be determined so that the fifth small region 51 and the sixth small region 52 are in charge balance as in the first embodiment.
  • the third ion implantation is further performed following the two ion implantations (first and second ion implantations). Just do it. Specifically, the first and second ion implantations are performed in the same manner as in the fifth embodiment. Next, a third ion implantation mask made of, for example, a resist material or an oxide film in which the formation regions of the first and second JTE regions 4 and 5 and the first to fifth small regions 25, 26, 41, 43, and 51 are opened is used. A third ion implantation is performed.
  • the three times of ion implantation forms a JTE structure having a three-layer structure (first to third JTE regions 4 to 6) in which the impurity concentration is reduced in three stages.
  • First to third electric field relaxation regions 20, 40 and 50 can be formed outside the 3JTE regions 4 to 6, respectively.
  • Conditions other than the third ion implantation of the semiconductor device manufacturing method according to the sixth embodiment are the same as those in the fifth embodiment.
  • the same effects as in the first to fifth embodiments can be obtained. Further, according to the sixth embodiment, by increasing the number of JTE regions and electric field relaxation regions, a termination structure with respect to ion implantation accuracy (dose amount, diffusion depth) when forming a p-type region constituting the JTE structure. The breakdown voltage margin of the part can be expanded. Further, it is possible to increase the number of JTE regions and electric field relaxation regions, but considering the increase in the number of photolithography and ion implantation steps, it is practical to use a JTE structure having a two-layer structure or a three-layer structure. Presumed to be.
  • FIGS. 19A to 19C are plan views showing the structure of the semiconductor device according to the seventh embodiment.
  • the semiconductor device according to the seventh embodiment is different from the semiconductor device according to the first embodiment in that the electric field relaxation region 20 is equally divided into a plurality of sections in the normal direction X (here, four from the inside toward the outside).
  • Reference numerals 61 to 64 are provided), and first small regions 21 and 22 having different widths in the tangential direction Y are arranged in the respective sections 61 to 64.
  • the electric field relaxation region 20 is divided into unit (unit region) portions 60 in the tangential direction Y, and has a planar layout in which the planar layout of the unit portion 60 is repeatedly arranged in the tangential direction Y as a basic pattern.
  • the unit portion 60 includes a pair of first and second small regions 21 and 22 that are adjacent to each other in the tangential direction Y in each of the sections 61 to 64. That is, the unit 60 includes a set of first and second small regions 21 and 22 adjacent in the tangential direction Y that are adjacent in the normal direction X (the number of layers: a portion surrounded by a dotted rectangular frame). .
  • the widths L41 to L44 in the tangential direction Y of the first small areas 21 of the sections 61 to 64 are narrower as the first small areas of the sections arranged on the outer side.
  • the widths L51 to L54 in the tangential direction Y of the second small areas 22 of the sections 61 to 64 are wider as the second small areas of the sections arranged on the outer side.
  • one end portion in the tangential direction Y of all the first small regions 21 inside the unit portion 60 is located on one end portion 60 a in the tangential direction Y of the unit portion 60.
  • one end portion in the tangential direction Y of all the second small regions 22 inside the unit portion 60 is located on the other end portion 60 b in the tangential direction Y of the unit portion 60.
  • the first small region 21 has a width L41 to L44 that are stepped toward the outside on the other end side in the tangential direction Y located on the center side of the unit portion 60.
  • the second small region 22 is on the other end side in the tangential direction Y located on the center side of the unit portion 60, and has widths L51 to L54 that increase stepwise toward the outside.
  • the average impurity concentration Np of each of the sections 61 to 64 is equivalent to the following equation (2).
  • Y1 and Y2 are the widths in the tangential direction Y of the first and second small regions 21 and 22 of the sections 61 to 64, respectively. That is, when calculating the average impurity concentration Np of the section 61, Y1 and Y2 are the widths L41 and L51 in the tangential direction Y of the first and second small regions 21 and 22 of the section 61, respectively.
  • the widths L41 to L44 in the tangential direction Y of the first small areas 21 of the sections 61 to 64 are narrower as the sections are arranged on the outer side, and the widths L51 to L54 of the tangential direction Y of the second small areas 22 are. Is wider as it is placed outside. For this reason, the average impurity concentration Np of the sections 61 to 64 is lower as the section is arranged on the outer side, and the average impurity concentration of the unit section 60 is lower toward the outer periphery.
  • Np ((Y1 ⁇ n p1 ) + (Y2 ⁇ n p2 )) / (Y1 + Y2) (2)
  • the first and second small regions 21 and 22 in one unit 60 may be further divided in the tangential direction Y. Specifically, a set of first and first sets each having a width obtained by dividing the widths Y1 and Y2 of the first and second small regions 21 and 22 in FIG. Two small regions 21 and 22 are repeatedly arranged in the tangential direction Y by the number of divisions.
  • FIG. 19B shows a case where all the first and second small regions 21 and 22 in one unit 60 are divided into two in the tangential direction Y.
  • FIG. 19C shows a case where the sections 62 and 63 are further divided into two in the tangential direction Y in the unit part 60 in FIG.
  • 19B (that is, the unit part 60 in FIG. 19A is divided into four in the tangential direction Y). Even if the first and second small regions 21 and 22 are divided in the tangential direction Y, the total area of each of the first and second small regions 21 and 22 for each of the sections 61 to 64 in the unit portion 60 does not change.
  • 19C has the same average impurity concentration as that of the unit portion 60 in FIG. 19A. The number of divisions in the tangential direction Y of the unit portion 60 is determined by the process limit of the photoetching process.
  • the first small region 21 is set such that all the pairs of the first small region 21 and the second small region 22 adjacent to each other in the tangential direction Y inside the sections 61 to 64 have the same average impurity concentration.
  • the second small area 22 is divided into a minute area of the limit value of the process limit. Accordingly, all the sets of the first and second small regions 21 and 22 adjacent to each other in the tangential direction Y can be brought close to the same average impurity concentration, and the electric field strength is reduced.
  • Embodiment 7 may be applied to Embodiments 2 and 3, and a unit portion having a planar shape other than a substantially rectangular shape may be disposed. Further, the seventh embodiment may be applied to the fifth and sixth embodiments, and second and third electric field relaxation regions having the configuration of the electric field relaxation region 20 of the seventh embodiment may be further arranged.
  • FIG. 11 is a plan view showing the structure of the semiconductor device according to the eighth embodiment.
  • FIG. 11 shows an enlarged plan layout in the straight line portion of the JTE structure of FIG. 1A (portion surrounded by a rectangular frame 13).
  • the semiconductor device according to the eighth embodiment is different from the semiconductor device according to the first embodiment in that the first small region 27 is arranged in a mesh-like plane pattern, so that the electric field relaxation region 20 from the active region 11 side. The amount of decrease in the average impurity concentration distribution that decreases toward the outside is adjusted.
  • the first small regions 27 are arranged in a mesh-like plane pattern.
  • a second small region 28 is disposed in a portion other than the first small region 27 in the electric field relaxation region 20. That is, the plurality of second small regions 28 are arranged in a matrix.
  • the widths L3 in the tangential direction Y of the second small regions 28 are all substantially equal.
  • the width L5 of the second small region 28 in the normal direction X is wider as the second small region 28 disposed on the second JTE region 5 side.
  • the second small regions 28 are, for example, arranged in parallel to the tangential direction Y and at equal intervals L4, and are arranged in parallel to the normal direction X and at equal intervals L6.
  • the second small region 28 By arranging the second small region 28 in this way, the area occupied by the first small region 27 in the electric field relaxation region 20 decreases from the active region 11 side toward the outside, and the area occupied by the second small region 28. Becomes larger. As a result, the average impurity concentration distribution of the electric field relaxation region 20 is a distribution that decreases in the direction from the active region 11 side toward the outside.
  • the interval L4 between the second small regions 28 adjacent in the tangential direction Y and the interval L6 between the second small regions 28 adjacent in the normal direction X are the second small regions before reaching the dielectric breakdown voltage of the termination structure portion 12. The distance between the depletion layers extending from the region 28 is preferable.
  • the planar shape of the second small region 28 in the corner portion 14b is substantially trapezoidal based on the curvature of the arc shape of the corner portion 14b, as in the first embodiment, and the plane of the first small region 27 is The shape is a mesh shape surrounding the substantially trapezoidal second small region 28.
  • the electric field relaxation region 20 having the above-described configuration has a configuration substantially equivalent to a state in which the first and second small regions 27 and 28 are arranged in stripes extending in the normal direction X, respectively. Therefore, the dimensions of the first and second small regions 27 and 28 are based on the dose ratio of each ion implantation for forming the first and second small regions 27 and 28 as in the first embodiment. Can be determined.
  • FIG. 12 is a plan view showing the structure of the semiconductor device according to the ninth embodiment.
  • FIG. 12 shows an enlarged plan layout in the straight line portion of the JTE structure of FIG. 1A (portion surrounded by a rectangular frame 13).
  • the semiconductor device according to the ninth embodiment is different from the semiconductor device according to the eighth embodiment in that the first small regions 29 are arranged in a matrix-like plane pattern, so that the electric field relaxation region 20 from the active region 11 side. The amount of decrease in the average impurity concentration distribution that decreases toward the outside is adjusted.
  • the plurality of first small regions 29 are arranged in a matrix.
  • the widths L7 in the tangential direction Y of the respective first small regions 29 are almost equal.
  • the width L8 of the first small region 29 in the normal direction X is narrower as the first small region 29 arranged on the second JTE region 5 side.
  • the first small regions 29 are, for example, arranged in parallel to the tangential direction Y and at equal intervals L9, and are arranged in parallel to the normal direction X and at equal intervals L10.
  • the second small region 30 is disposed in a portion other than the first small region 29 in the electric field relaxation region 20. That is, the plurality of second small regions 30 are arranged in a mesh shape surrounding the first small region 29.
  • the area occupied by the first small region 29 in the electric field relaxation region 20 decreases as it goes outward from the active region 11 side, and the area occupied by the second small region 30. Becomes larger.
  • the average impurity concentration distribution of the electric field relaxation region 20 is a distribution that decreases in the direction from the active region 11 side toward the outside.
  • An interval L9 between the first small regions 29 adjacent in the tangential direction Y and an interval L10 between the first small regions 29 adjacent in the normal direction X are the first small regions before the dielectric breakdown voltage of the termination structure portion 12 is reached.
  • the distance between the depletion layers extending from the region 29 is preferable.
  • the planar shape of the first small region 29 in the corner portion 14b is substantially trapezoidal based on the curvature of the arc shape of the corner portion 14b as in the first embodiment, and the plane of the second small region 30 is The shape is a mesh shape surrounding the substantially trapezoidal first small region 29.
  • the electric field relaxation region 20 has a configuration substantially equivalent to a state in which the first and second small regions 29 and 30 are arranged in stripes extending in the normal direction X, respectively, as in the eighth embodiment. Become. Therefore, the dimensions of the first and second small regions 29 and 30 can be determined as in the eighth embodiment.
  • FIG. 13 is a plan view showing the structure of the semiconductor device according to the tenth embodiment.
  • FIG. 13 shows an enlarged plan layout in the straight line portion of the JTE structure of FIG. 1A (a portion surrounded by a rectangular frame 13) (the same applies to FIGS. 14 to 16).
  • the semiconductor device according to the tenth embodiment is different from the semiconductor device according to the ninth embodiment in that the first small region 29 arranged on the second JTE region 5 side is closer to the width L7 in the tangential direction Y of the first small region 29. It is a point that is narrowed.
  • the planar shape of the first small region 29 is, for example, a straight line extending in the tangential direction Y.
  • the widths L8 of the first small regions 29 in the normal direction X are all equal.
  • the first small regions 29 adjacent to each other in the tangential direction Y are arranged, for example, at equal intervals L9.
  • the first small region 29 arranged on the second JTE region 5 side is narrowed from the active region 11 side by reducing the width L7 in the tangential direction Y of the first small region 29, as in the ninth embodiment.
  • the area occupied by the first small region 29 in the electric field relaxation region 20 decreases toward the outside. For this reason, the average impurity concentration distribution of the electric field relaxation region 20 can be adjusted.
  • the portions 30 a sandwiched between the first small regions 29 adjacent to each other in the tangential direction Y of the second small region 30 do not oppose each other in the normal direction X.
  • the first small regions 29 can be arranged so that the end portions 29 a and 29 b in the tangential direction Y between the first small regions 29 adjacent in the normal direction X do not face each other in the normal direction X. Thereby, it is possible to avoid the concentration of the electric field locally, and a sufficient breakdown voltage can be secured in the termination structure portion 12.
  • FIG. 14 to 16 are plan views showing another example of the structure of the semiconductor device according to the tenth embodiment.
  • the interval L10 between the first small regions 29 adjacent to each other in the normal direction X may be increased in the first small region 29 arranged on the second JTE region 5 side.
  • the planar shape of the first small region 29 is, for example, a straight line extending in the tangential direction Y.
  • the widths L7 in the tangential direction Y of the first small regions 29 are all equal, for example.
  • the widths L8 of the first small regions 29 in the normal direction X are all equal.
  • the width L8 in the normal direction X of the first small region 29 may be made narrower in the first small region 29 arranged on the second JTE region 5 side.
  • the planar shape of the first small region 29 is, for example, rectangular as the first small region 29 arranged on the first JTE region 4 side, and linear as the first small region 29 arranged on the second JTE region 5 side. It becomes.
  • the widths L7 in the tangential direction Y of the first small regions 29 are all equal, for example.
  • the first small regions 29 that are adjacent to each other in the normal direction X are arranged, for example, at equal intervals L10.
  • a portion of the electric field relaxation region 20 on the second JTE region 5 side is a region where the first small region 29 is not disposed with a relatively wide width L10a.
  • the first small region 29 arranged on the second JTE region 5 side narrows the width L7 in the tangential direction Y and the width L8 in the normal direction X of the first small region 29, respectively. Further, the interval L9 between the first small regions 29 adjacent in the tangential direction Y may be increased. In this case, a portion of the electric field relaxation region 20 on the second JTE region 5 side is a region where the first small region 29 is not disposed with a relatively wide width L10a.
  • Other examples of the semiconductor device according to the tenth embodiment shown in FIGS. 14 to 16 are the same as those of the semiconductor device according to the tenth embodiment shown in FIG. 13 except for the planar pattern of the first small region 29.
  • 17A and 17B are explanatory diagrams showing the structure of the semiconductor device according to the eleventh embodiment.
  • 17A and 17B both show (a) a planar layout of the straight line portion 14a of the JTE structure, and (b) shows impurity concentration distributions along the cutting line EE ′ and the cutting line FF ′ of (a), respectively.
  • the semiconductor device according to the eleventh embodiment is different from the semiconductor device according to the eighth embodiment in that the distance L6 adjacent to the normal direction X of the second small regions 28 arranged in a matrix is arranged on the outer side. It is a point to narrow.
  • the width L5 in the normal direction X of the second small region 28 is wider as the second small region 28 arranged on the outer side.
  • An interval L4 between the second small regions 28 adjacent to each other in the tangential direction Y is constant from the inside toward the outside.
  • the electric field relaxation region 20 is divided into a plurality in the normal direction X (here, four are provided with reference numerals 61 to 64 from the inside to the outside), and each of the divisions 61 to 64 includes the second small region 28 and A set of the second small region 28 and the first small region 27 sandwiched between the second small regions 28 adjacent to the outside is disposed.
  • the width L5 in the normal direction X of the second small region 28 and the width in the normal direction X of the first small region 27 sandwiched between the second small region 28 and the second small region 28 adjacent to the outside of the second small region 28 ( L6) and the sum L60 are equal in all the sections 61 to 64.
  • the first small regions 27 are arranged at equal intervals (L3) in the tangential direction Y and with the same width (L4) and extend in the normal direction X, with a wider interval (L5) toward the outside and toward the outside. They are arranged in a mesh-like plane pattern in which stripes arranged in a narrow width (L6) and extending in the tangential direction Y are orthogonal to each other.
  • the interval L4 between the second small regions 28 adjacent in the tangential direction Y is a lower limit value determined by, for example, a process limit.
  • the average impurity concentration of each of the sections 61 to 64 is the first width sandwiched between the width L5 of the second small region 28 in the normal direction X and the second small region 28 and the second small region 28 adjacent to the outside. It is determined by the ratio to the width (L6) of the small region 27. As described above, in the sections 61 to 64 arranged outside, the pattern width (L6) in the normal direction X of the first small region 27 is narrow, and the width L5 in the normal direction X of the second small region 28 is wide.
  • the sections 61 to 64 arranged on the outer side have a lower average impurity concentration and a higher electric field relaxation effect. Further, by making all the impurity concentration differences between the sections 61 to 64 adjacent in the normal direction X equal, the electric field relaxation effect can be further enhanced.
  • the distance L66 between the second small regions 28 adjacent in the normal direction X may be reduced to the process limit. Good.
  • the inside of the sections 62 to 64 in FIG. 17A may be divided into a plurality of parts in the normal direction X.
  • the electric field relaxation region 20 shown in FIG. 17B has a width obtained by dividing the width in the normal direction X of the second and first small regions 28 and 27 in FIG. 17A by the number of divisions in one section.
  • the second and first small regions 28 and 27 of the set are repeatedly arranged in the normal direction X by the number of divisions.
  • FIGS. 18A and 18B are explanatory diagrams illustrating the structure of another example of the semiconductor device according to the eleventh embodiment.
  • FIGS. 18A and 18B both show (a) a planar layout of the straight line portion 14a of the JTE structure, and (b) shows the impurity concentration distributions along the cutting line GG ′ and the cutting line HH ′ of (a), respectively.
  • the ninth embodiment is applied to the eleventh embodiment, the first small regions 29 are arranged in a matrix-like plane pattern, and the distance L10 adjacent to the normal direction X of the first small regions 29 is arranged. May be made wider as it is arranged on the outside.
  • the width L8 in the normal direction X of the first small region 29 is narrower as the first small region 29 arranged on the outside.
  • the interval L9 between the first small regions 29 adjacent in the tangential direction Y is constant from the inside to the outside.
  • the second small area 30 sandwiched between the first small area 29 and the first small area 29 and the adjacent first small area 29 (or the first JTE area 4). And one set is arranged.
  • the total sum L60 of the width (L10) in the normal direction X of the second small region 30 sandwiched between the two subregions 30 is equal in all the sections 61 to 64. That is, the second small region 30 is arranged at equal intervals (L7) in the tangential direction Y with the same width (L9) and extending in the normal direction X, and at a smaller interval (L8) toward the outside and outward.
  • the stripes are arranged in a mesh-like plane pattern in which stripes that are arranged with a wider width (L10) and extend in the tangential direction Y are orthogonal to each other.
  • the interval L9 between the first small regions 29 adjacent in the tangential direction Y is a lower limit value determined by, for example, a process limit.
  • the average impurity concentration of each of the sections 61 to 64 includes the width L8 in the normal direction X of the first small region 29, the width L8 in the normal direction X of the first small region 29, the first small region 29, and its It is determined by the ratio of the width (L10) in the normal direction X of the second small region 30 sandwiched between the first small regions 29 (or the first JTE region 4) adjacent to the inside.
  • the pattern width (L10) in the normal direction X of the second small region 30 is wide, and the width L8 in the normal direction X of the first small region 29 is narrow. It has become. Therefore, as in the semiconductor device according to the eleventh embodiment shown in FIGS. 17A and 17B, the sections 61 to 64 arranged on the outer side have a lower average impurity concentration and a higher electric field relaxation effect.
  • the distance L70 between the first small regions 29 adjacent in the normal direction X that is, the pattern width of the stripe portion extending in the tangential direction Y of the second small region 30 is reduced to the process limit. May be.
  • the inside of each of the sections 62 to 64 in FIG. 18A may be divided into a plurality in the normal direction X.
  • the electric field relaxation region 20 shown in FIG. 18B has a width obtained by dividing the width in the normal direction X of the second and first small regions 30 and 29 in FIG. 18A by the number of divisions in one section.
  • the second and first small regions 30 and 29 of the set are repeatedly arranged in the normal direction X by the number of divisions.
  • the section 62 is divided into three in the normal direction X
  • the section 63 is divided into four in the normal direction X
  • the section 64 is divided into three in the normal direction X.
  • FIG. 20 is a characteristic diagram illustrating the breakdown voltage characteristics of the termination structure portion of the semiconductor device according to the example.
  • a SiC-SBD having an electric field relaxation region 20 between first and second JTE regions 4 and 5 constituting a two-layer JTE structure (that is, FIG. 5).
  • the impurity concentration ratio between the first JTE region 4 and the second JTE region 5 is fixed to 1: 0.5, and the dose of aluminum in the first ion implantation for forming the first JTE region 4 is variously changed.
  • FIG. 20 shows a breakdown voltage characteristic of a SiC-SBD (hereinafter referred to as a conventional example) having a conventional JTE structure without the electric field relaxation region 20 as a comparison.
  • the configuration of the conventional example except that the electric field relaxation region 20 is not provided is the same as that of the example.
  • the breakdown voltage may decrease in the conventional example depending on the impurity concentration of the first JTE region 4 (the dose amount of the first ion implantation).
  • the breakdown voltage can be secured almost constant regardless of the impurity concentration of the first JTE region 4, and it can be seen that the drop in breakdown voltage generated in the conventional example is improved.
  • the maximum breakdown voltage of the semiconductor device is determined by the breakdown voltage outside the JTE structure in the termination structure 12. In the embodiment, by providing the electric field relaxation region 20, the electric field between the first JTE region 4 and the second JTE region 5 is relaxed, and the electric field concentration points are dispersed, so that it is estimated that the breakdown voltage does not drop.
  • the present invention can be variously modified without departing from the gist of the present invention, and in each of the above-described embodiments, for example, the dimensions and impurity concentration of each part are variously set according to required specifications. .
  • the SBD is described as an example.
  • the present invention is not limited to this, and the present invention can be applied to various semiconductor devices including a breakdown voltage structure.
  • the present invention can be applied to, for example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor: Insulated Gate Bipolar Transistor) and an IGBT (Insulated Gate Bipolar Transistor).
  • the present invention is not limited thereto. These regions may be diffusion regions formed by ion implantation inside the silicon carbide substrate.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type. It holds.
  • the semiconductor device according to the present invention is useful for a high breakdown voltage semiconductor device having a JTE structure, and particularly suitable for a silicon carbide semiconductor device having a breakdown voltage class of 1200 V or higher (for example, 1700 V or 3300 V).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 終端構造部に、内側から順に、活性領域の周囲を囲む同心円状に設けられた第1,2JTE領域(4,5)間には、当該領域に接するようにp型の電界緩和領域(20)が設けられている。第2JTE領域(5)の不純物濃度は、第1JTE領域(4)の不純物濃度よりも低い。電界緩和領域(20)は、第1小領域(21)と第2小領域(22)とを活性領域の外周の接線方向(Y)に交互に繰り返し配置してなる。電界緩和領域(20)の平均不純物濃度は、第1JTE領域(4)の不純物濃度よりも高く、かつ第2JTE領域(5)の不純物濃度よりも低い。第1小領域(21)の不純物濃度は、第1JTE領域(4)の不純物濃度と等しい。第2小領域(22)の不純物濃度は、第2JTE領域(5)の不純物濃度と等しい。第1小領域(21)と第2小領域(22)とはチャージバランスである。このようにすることで、終端構造部の耐圧を向上させることができる。

Description

半導体装置
 この発明は、半導体装置に関する。
 炭化珪素(SiC)半導体を用いた半導体装置(以下、炭化珪素半導体装置)は、近年、シリコン(Si)半導体を用いた半導体装置の限界を超える素子として注目されている。特に、炭化珪素半導体は、シリコン半導体に比べて破壊電界強度が高い、熱伝導率が高いという特長を活かして高耐圧素子への応用が期待されている。しかし、実用的な炭化珪素半導体装置を作製(製造)するには、高耐圧を安定して得られる終端構造の形成が重要な課題となっている。終端構造部は、活性領域の周囲を囲み、活性領域の基板おもて面側の電界を緩和して耐圧を保持する領域である。活性領域は、オン状態のときに電流が流れる領域である。
 通常、素子の耐圧は、n-型ドリフト層となるn-型半導体基板(半導体チップ)のおもて面側に形成され、かつ活性領域から活性領域と終端構造部との境界付近まで延在するp型高濃度領域の外周部における電界集中によって制限される。このp型高濃度領域は、例えばpn接合ダイオードの場合、n-型ドリフト層との間のpn接合を形成するp型アノード領域である。そこで、p型高濃度領域の外側の端部に隣接して、p型高濃度領域よりも不純物濃度の低いp-型低濃度領域を形成することで、終端構造部における電界を緩和する接合終端(JTE:Junction Termination Extension)構造が公知である。
 JTE構造では、p型高濃度領域とn-型ドリフト層との間のpn接合から外側(チップ外周部側)に伸びる空乏層はp型高濃度領域およびp-型低濃度領域の両方に広がる。これによって、p型高濃度領域の外周部での電界が緩和されるため、耐圧を向上させることができる。このJTE構造をさらに高耐圧な素子に適用する場合、p-型低濃度領域の外周部にも電界が集中し、その結果、JTE構造を構成するp-型低濃度領域の外周部でのアバランシェ降伏によって耐圧が制限されてしまう。このような問題は、p-型低濃度領域の不純物濃度を活性領域側から外側に向う方向に緩やかに減少させることで回避することができる。
 このように活性領域側から外側に向う方向に緩やかに減少する不純物濃度分布を有するp-型低濃度領域からなるJTE構造は、VLD(Variation of Lateral Doping)構造と称される。VLD構造では、電界集中点が複数個所に分散されるため、最大電界強度が大幅に低減される。ところで、不純物の熱拡散が非常に小さく、かつ不純物導入のために高加速電圧のイオン注入を行う炭化珪素半導体では、VLD構造を適用してp-型低濃度領域の不純物濃度を活性領域側から外側に向う方向に減少させることは難しい。このため、外側に配置されるほど不純物濃度を低くしたまたは厚さを薄くした複数のp-型低濃度領域を隣接して形成してJTE構造を構成する必要がある。
 不純物濃度または厚さの異なる複数のp-型低濃度領域からなるJTE構造を構成する場合、素子の耐圧性能の観点から、p-型低濃度領域の個数を増やし、隣り合うp-型低濃度領域同士の不純物濃度差を可能な限り小さくすることが好ましい。しかしながら、工程数が増大するため、製造コストの低減を妨げる要因となっている。現在、炭化珪素半導体装置では、2段階または3段階で不純物濃度または厚さを変えた複数のp-型低濃度領域からなるJTE構造を形成することが一般的である。炭化珪素半導体装置の一般的なJTE構造について、ショットキーバリアダイオード(Schottky Barrier Diode:SBD)を例に説明する。
 図21は、従来のSiC-SBDの構造を示す説明図である。図21(a)には平面レイアウトを示し、図21(b)には図21(a)の切断線AA-AA’における断面構造を示す。図21に示すように、例えば600Vや1200Vの耐圧クラスでは、一般的に、活性領域111の周囲を囲む終端構造部112には、不純物濃度の異なる2つのp型領域(p-型領域104およびp--型領域105)からなるJTE構造が設けられる。具体的には、n+型炭化珪素基板101のおもて面に、n-型ドリフト層102となる炭化珪素エピタキシャル層が堆積されている。以下、n+型炭化珪素基板101およびn-型ドリフト層102からなるエピタキシャル基板を炭化珪素基体(半導体チップ)とする。
 炭化珪素基体のおもて面(n-型ドリフト層102側の表面)の表面層には、活性領域111と終端構造部112との境界に、活性領域111から終端構造部112にわたってp型ガードリング103が選択的に設けられている。p型ガードリング103は、活性領域111におけるn-型ドリフト層102とアノード電極106とのショットキー接合の周囲を囲む。また、終端構造部112において、炭化珪素基体のおもて面の表面層には、p型ガードリング103よりも外側に、p型ガードリング103の周囲を囲むようにJTE構造が設けられている。JTE構造は、p-型領域104およびp--型領域105(以下、第1JTE領域104および第2JTE領域105とする)からなる。
 第1JTE領域104は、p型ガードリング103の周囲を囲み、かつp型ガードリング103の外側の端部に接する。第1JTE領域104の不純物濃度は、p型ガードリング103の不純物濃度よりも低い。第2JTE領域105は、第1JTE領域104よりも外側に配置され、第1JTE領域104の周囲を囲み、かつ第1JTE領域104の外側の端部に接する。第2JTE領域105の不純物濃度は、第1JTE領域104の不純物濃度よりも低い。また、第1,2JTE領域104,105は、ともに一様な不純物濃度分布を有する。符号107,108は、それぞれ層間絶縁膜およびカソード電極である。
 発明者の鋭意研究により、1200V耐圧クラスまでは、図21に示すJTE構造によって耐圧を確保可能であるが、さらに高耐圧クラスでは、第1JTE領域104と第2JTE領域105との境界における電界集中が顕著になる傾向があることが確認されている。この第1JTE領域104と第2JTE領域105との境界における電界集中が生じることにより、終端構造部の所定耐圧を確保するために必要な製造プロセスのマージンが低減するという問題がある。終端構造部の所定耐圧を確保するために必要な製造プロセスのマージンとは、JTE構造を構成するp型領域を形成する際のイオン注入精度(ドーズ量、拡散深さ)、イオン活性化率に対する終端構造部の耐圧のマージンである。
 このような製造プロセスのマージンについての問題は、JTE構造を構成するp型領域の個数を増やして、不純物濃度差の小さいp型領域同士が隣接するように複数のp型領域を配置することにより、活性領域111側から外側に向ってより段階的に不純物濃度を減少させることで改善可能である。しかしながら、JTE構造を構成するp型領域の個数を増やした分だけフォトリソグラフィおよびイオン注入の工程数が増えることとなり、コストアップにつながるという新たな問題が生じる。そこで、炭化珪素半導体装置のJTE構造に関して、JTE構造の電界を緩和するための種々の提案がなされている。
 JTE構造の電界を緩和した装置として、第2JTE領域の、第1JTE領域側の部分に、第1JTE領域と同じ不純物濃度を有する複数のp型小領域を、第1JTE領域の周囲を囲むリング状に設けた装置が提案されている(例えば、下記特許文献1(第0033段落、第11図)参照。)。また、JTE構造の電界を緩和した別の装置として、下記特許文献1のJTE構造をさらに最適化した装置が提案されている(例えば、下記特許文献2参照。)。下記特許文献2では、さらに第2JTE領域の周囲を囲む第3JTE領域を備え、第3JTE領域の、第2JTE領域側の部分に、第2JTE領域と同じ不純物濃度を有する複数のp型小領域が設けられている。
 図21の第1,2JTE領域104,105の2層構造のJTE構造に下記特許文献1,2のJTE構造を付加した構造を図22に示す。図22は、従来のSiC-SBDの構造の別の一例を示す説明図である。図22(a)にはJTE構造の平面レイアウトを示し、図22(b)にはJTE構造の断面構造を示す。図22に示すJTE構造では、第1JTE領域104と第2JTE領域105との間に、p-型小領域121およびp--型小領域122からなる電界緩和領域120が設けられている。p--型小領域122とp-型小領域121とは、活性領域111から外側に向う方向に、内側(活性領域側)に隣接するp型小領域の周囲を囲むように交互に繰り返し配置されている。
 p-型小領域121の不純物濃度は、第1JTE領域104の不純物濃度と等しい。p-型小領域121の幅(活性領域111から外側に向う方向の幅)は、第1JTE領域104の幅よりも狭く、かつ外側に配置されたp-型小領域121ほど狭い幅となっている。p--型小領域122の不純物濃度は、第2JTE領域105の不純物濃度と等しい。p--型小領域122の幅は、第2JTE領域105の幅よりも狭く、かつ外側に配置されたp--型小領域122ほど広い幅となっている。p-型小領域121およびp--型小領域122の幅を外側に向けて変えることで、第1JTE領域104から第2JTE領域105へ向う方向に不純物濃度を徐々に減少させた構成となっている。
 下記特許文献1,2では、活性領域の周囲を囲む同心円状に各JTE領域を形成しており、各JTE領域の不純物濃度はイオン注入のドーズ量で制御されている。このため、第1,2JTE領域の2層構造のJTE構造を形成するには、フォトリソグラフィおよびイオン注入をそれぞれ少なくとも2回ずつ行う必要がある。この点を解消した装置として、第1JTE領域と同一の不純物濃度および同一の深さを有するp-型領域をメッシュ形状(格子状)に配置してn-型ドリフト層をマトリクス状に残した第2JTE領域を備えた装置が提案されている(例えば、下記特許文献3参照。)。下記特許文献3のJTE構造を図23,24に示す。
 図23は、従来のSiC-SBDの構造の別の一例を示す平面図である。図23(a)には平面レイアウトを示し、図23(b)には図23(a)の切断線BB-BB’における断面構造を示す。図24は、図23の要部を拡大して示す平面図である。図24には、図23の矩形枠130で囲む部分を拡大して示す。図23,24に示すように、下記特許文献3では、第1JTE領域131と同一の不純物濃度および同一の深さを有する第2JTE領域132の内部にn-型ドリフト層102を選択的に残すことによって、第1JTE領域131の外側に第1JTE領域131よりも不純物濃度の低いJTE領域を設けたことと等価となる。
 また、下記特許文献3には、マトリクス状に残したn-型ドリフト層102の幅や配置密度を変えて、第2JTE領域132の内部に占めるn-型ドリフト層102の割合を変えることで所定の不純物濃度分布を得ることが記載されている。また、下記特許文献1~3に示すJTE構造は、炭化珪素半導体装置のJTE構造に限らず、上述したVLD構造の改良項目として知られている。例えば、メッシュ状またはマトリクス状のパターンに開口した酸化膜をマスクとしてイオン注入を行った後に熱拡散させて所定パターンのp-型領域を形成し、このp-型領域のパターン形状によってJTE領域の所定の不純物濃度分布を得る方法が提案されている(例えば、下記特許文献4(第0050段落、第3図)参照。)。
 また、JTE構造の別の形成方法として、炭化珪素半導体層上に複数の単位マスクよりなる注入マスクを形成する第1工程と、注入マスクを用いて炭化珪素半導体層に所定の注入エネルギーで所定のイオンを注入する第2工程と、を含み、第1工程では、単位マスク内の任意の点から単位マスクの端までの距離を、所定の注入エネルギーで所定のイオンを炭化珪素に注入した場合の散乱距離以下とし、単位マスクの寸法と配置間隔が異なる複数の領域を持つように注入マスクを形成する方法が提案されている(例えば、下記特許文献5参照。)。下記特許文献5では、第1工程において、円状、長方形形状または十字形状の単位マスクよりなる注入マスクを形成している。
 また、JTE構造の別の形成方法として、第1JTE領域と、第1JTE領域よりも外側に設けられた、第1JTE領域よりも不純物濃度の低い第2JTE領域と、第1JTE領域と第2JTE領域との間に設けられた不純物濃度の異なる第1,2p型小領域からなり、第1JTE領域と第2JTE領域との間の平均不純物濃度を有する第3JTE領域と、からなるJTE構造を形成するにあたって、次の方法が提案されている。第1マスクを用いてイオン注入し、第2JTE領域と同じ不純物層を第1JTE領域の形成領域におよぶように形成するとともに第2小領域を形成する。その後、少なくとも第2JTE領域を覆う第2マスクを用いてイオン注入し、第1JTE領域および第1小領域を形成する(例えば、下記特許文献2参照。)。
特開2008-034646号公報 国際公開第2012/049872号 特開2011-187767号公報 特開2014-038937号公報 特開2011-165856号公報
 しかしながら、上述したように、炭化珪素半導体では、JTE構造の外周部での破壊電界強度で決まる耐圧を向上させるために、外側に配置されるほど不純物濃度を低くした複数のJTE領域を隣接して形成する必要があるが、JTE領域間の境界では不純物濃度勾配が不連続となるため、電界が集中する。この問題に対して、上記特許文献1,2では、第1,2JTE領域104,105間に、第1,2JTE領域104,105よりも狭い幅で、p-型小領域121とp--型小領域122とを同心円状に交互に繰り返し配置している。これによって、第1,2JTE領域104,105間に、第1JTE領域104と第2JTE領域105との中間の不純物濃度を有する電界緩和領域120を配置したことと等価になるため、JTE構造の、活性領域111側から外側に向って減少する不純物濃度勾配が緩やかになると推測される。
 電界緩和領域120全体における空間的な不純物濃度分布は、交互に配置されるp-型小領域121およびp--型小領域122それぞれの不純物濃度勾配の幅と、p-型小領域121とp--型小領域122との不純物濃度比で決まる。特にJTE構造での電界を緩和させるために、電界緩和領域120の不純物濃度勾配を小さくするには、隣り合うp-型小領域121およびp--型小領域122の一方の幅を小さくする必要がある。しかしながら、p-型小領域121およびp--型小領域122の幅は、フォトリソグラフィの寸法精度やばらつき具合で決まってしまう。このため、設計自由度が低く、所望の不純物濃度分布を有する電界緩和領域120を安定して形成することができない。したがって、終端構造部の耐圧を向上させることができない虞がある。
 この発明は、上述した従来技術による問題点を解消するため、終端構造部の耐圧を向上させることができる半導体装置を提供することを目的とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。炭化珪素半導体からなる第1導電型の半導体基板のおもて面に、主電流が流れる活性領域が設けられている。前記活性領域の周囲を囲む終端構造部が設けられている。前記終端構造部に、前記活性領域の周囲を囲む同心円状に、複数の第2導電型半導体領域が設けられている。複数の前記第2導電型半導体領域は、外側に配置されるほど低い不純物濃度を有する。少なくとも1組の隣り合う前記第2導電型半導体領域間に互いに接するように、第2導電型中間領域が設けられている。前記第2導電型中間領域の不純物濃度は、内側に隣接する前記第2導電型半導体領域の不純物濃度よりも低く、かつ外側に隣接する前記第2導電型半導体領域の不純物濃度よりも高い。そして、前記第2導電型中間領域は、前記活性領域と前記終端構造部との境界に沿った第1方向に、第2導電型の第1小領域と、前記第1小領域よりも不純物濃度の低い第2導電型の第2小領域とを交互に繰り返し配置してなる。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1小領域は、内側に隣接する前記第2導電型半導体領域との境界および外側に隣接する前記第2導電型半導体領域との境界を1組の対辺とする矩形状の平面形状を有する。前記第2小領域は、内側に隣接する前記第2導電型半導体領域との境界および外側に隣接する前記第2導電型半導体領域との境界を1組の対辺とする矩形状の平面形状を有することを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1小領域は、内側に隣接する前記第2導電型半導体領域との境界から外側に向う第2方向に沿って外側に隣接する前記第2導電型半導体領域側に向うにつれて幅が狭くなり、かつ外側に隣接する前記第2導電型半導体領域に点接触する凸形状の平面形状を有する。前記第2小領域は、前記第1方向に隣り合う前記第1小領域間に位置し、前記第2方向に沿って外側に隣接する前記第2導電型半導体領域側に向うにつれて幅が広くなる台形状の平面形状を有することを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1小領域は、内側に隣接する前記第2導電型半導体領域との境界を上底とし、外側に隣接する前記第2導電型半導体領域との境界を下底とし、かつ上底よりも下底が狭い台形形状の平面形状を有する。前記第2小領域は、内側に隣接する前記第2導電型半導体領域との境界を上底とし、外側に隣接する前記第2導電型半導体領域との境界を下底とし、かつ上底よりも下底が広い台形形状の平面形状を有することを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、さらに次の特徴を有する。前記第2導電型中間領域は、前記第1方向に複数の単位領域に分割され、前記第1方向に隣り合う1組の前記第1小領域および前記第2小領域を含む。前記第1小領域は、前記単位領域の内部において外側に向うにつれて階段状に前記第1方向の幅が狭くなっている。前記第2小領域は、前記単位領域の内部において外側に向うにつれて階段状に前記第1方向の幅が広くなっている。前記第1小領域および前記第2小領域の前記第1方向の幅の総和は内側から外側へ向って一定である。
 また、この発明にかかる半導体装置は、上述した発明において、さらに次の特徴を有する。前記単位領域は、前記第1方向と直交する第2方向に複数に区分されている。前記第1小領域は、外側の前記区分に配置されるほど前記第1方向の幅が狭い。前記第2小領域は、外側の前記区分に配置されるほど前記第1方向の幅が広い。前記区分は、前記第1小領域および前記第2小領域の前記第1方向の幅で決定される平均不純物濃度を有する。前記区分の平均不純物濃度は、外側に向って一定の割合で低減している。
 また、この発明にかかる半導体装置は、上述した発明において、前記区分の内部に配置された、前記第1方向に隣り合う1組の前記第1小領域および前記第2小領域のすべての組が同一の平均不純物濃度を有するように、前記第1小領域または前記第2小領域はプロセス限界の微少領域に分割されている。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1小領域および前記第2小領域のうち、一方の領域はマトリクス状の平面レイアウトに配置され、他方の領域は前記一方の領域を囲むメッシュ状の平面レイアウトに配置されていることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、さらに次の特徴を有する。前記第2導電型中間領域は、前記第1方向と直交する第2方向に複数に区分されている。前記区分は、前記一方の領域と、当該一方の領域に前記第2方向に隣り合う前記一方の領域とに挟まれた前記他の領域と、の1組を含む。前記区分は、当該区分内の前記一方の領域および前記他の領域の幅に基づいて平均不純物濃度が決定され、かつ外側に配置されるほど平均不純物濃度が低い。隣り合う前記一方の領域間の距離は、製造プロセスの限界の狭さである。
 また、この発明にかかる半導体装置は、上述した発明において、前記一方の領域は前記第1小領域であり、外側に配置された前記区分ほど、前記一方の領域の第2方向の幅が狭く、かつ隣り合う前記一方の領域間の第2方向の距離が広いことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記一方の領域は前記第2小領域であり、外側に配置された前記区分ほど、前記一方の領域の第2方向の幅が広く、かつ隣り合う前記一方の領域間の第2方向の距離が狭いことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、隣接するすべての前記区分間で平均不純物濃度差が等しいことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1小領域の幅および不純物濃度をそれぞれx1およびnp1とし、前記第2小領域の幅および不純物濃度をそれぞれx2およびnp2としたときに、前記区分の平均不純物濃度Npは下記(1)式を満たすことを特徴とする。
 Np=((x1×np1)+(x2×np2))/(x1+x2) ・・・(1)
 また、この発明にかかる半導体装置は、上述した発明において、前記他方の領域の、前記第1方向に隣り合う前記一方の領域間に挟まれた部分は、前記活性領域と前記終端構造部との境界と直交する第3方向に前記一方の領域と対向することを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1小領域は、内側に隣接する前記第2導電型半導体領域と同じ不純物濃度を有することを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2小領域は、外側に隣接する前記第2導電型半導体領域と同じ不純物濃度を有することを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2導電型中間領域の平均不純物濃度は、内側に隣接する前記第2導電型半導体領域と外側に隣接する前記第2導電型半導体領域との中間の不純物濃度であることを特徴とする。
 上述した発明によれば、隣り合う第2導電型半導体領域間に第2導電型中間領域を設けることで、隣り合う第2導電型半導体領域間の不純物濃度勾配を、第2導電型中間領域を設けない場合に比べて小さくすることができる。これにより、隣り合う第2導電型半導体領域間の電界を緩和することができるため、終端構造部の外周部での絶縁破壊強度を高くすることができる。
 本発明にかかる半導体装置によれば、終端構造部の耐圧を向上させることができるという効果を奏する。
図1は、実施の形態1にかかる半導体装置の構造を示す説明図である。 図2は、図1のJTE構造の一部を拡大して示す説明図である。 図3は、図1のJTE構造の一部を拡大して示す説明図である。 図4は、実施の形態2にかかる半導体装置の構造を示す平面図である。 図5は、実施の形態3にかかる半導体装置の構造を示す説明図である。 図6は、図5のJTE構造の不純物濃度分布を示す説明図である。 図7は、実施の形態4にかかる半導体装置の製造途中の状態を示す断面図である。 図8は、実施の形態4にかかる半導体装置の製造途中の状態を示す断面図である。 図9は、実施の形態5にかかる半導体装置の構造を示す説明図である。 図10は、実施の形態6にかかる半導体装置の構造を示す説明図である。 図11は、実施の形態8にかかる半導体装置の構造を示す平面図である。 図12は、実施の形態9にかかる半導体装置の構造を示す平面図である。 図13は、実施の形態10にかかる半導体装置の構造を示す平面図である。 図14は、実施の形態10にかかる半導体装置の構造の別の一例を示す平面図である。 図15は、実施の形態10にかかる半導体装置の構造の別の一例を示す平面図である。 図16は、実施の形態10にかかる半導体装置の構造の別の一例を示す平面図である。 図17Aは、実施の形態11にかかる半導体装置の構造を示す説明図である。 図17Bは、実施の形態11にかかる半導体装置の構造を示す説明図である。 図18Aは、実施の形態11にかかる半導体装置の別の一例の構造を示す説明図である。 図18Bは、実施の形態11にかかる半導体装置の別の一例の構造を示す説明図である。 図19Aは、実施の形態7にかかる半導体装置の構造を示す平面図である。 図19Bは、実施の形態7にかかる半導体装置の構造を示す平面図である。 図19Cは、実施の形態7にかかる半導体装置の構造を示す平面図である。 図20は、実施例にかかる半導体装置の終端構造部の耐圧特性を示す特性図である。 図21は、従来のSiC-SBDの構造を示す説明図である。 図22は、従来のSiC-SBDの構造の別の一例を示す説明図である。 図23は、従来のSiC-SBDの構造の別の一例を示す平面図である。 図24は、図23の要部を拡大して示す平面図である。
 以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
 実施の形態1にかかる半導体装置の構造について、ショットキーバリアダイオード(SBD)を例に説明する。図1は、実施の形態1にかかる半導体装置の構造を示す説明図である。図1(a)には平面レイアウトを示し、図1(b)には図1(a)の切断線A-A’における断面構造を示す。図2,3は、図1のJTE構造の一部を拡大して示す説明図である。図2(a)には環状のJTE構造の直線部14aにおける平面レイアウトを拡大して示し(図1(a)の矩形枠13で囲む部分)、図2(b)には図2(a)の切断線B-B’における断面構造を示す。図3には環状のJTE構造のコーナー部14bにおける平面レイアウトを拡大して示す(図1(a)の矩形枠14で囲む部分)。
 図1(a)に示すように、実施の形態1にかかる半導体装置は、オン状態のときに電流が流れる活性領域11と、活性領域11の基体おもて面側の電界を緩和して耐圧を保持する終端構造部12と、を備える。活性領域11には、SBDの素子構造(不図示)が設けられている。活性領域11と終端構造部12との境界には、活性領域11の周囲を囲むようにp型ガードリング3が設けられている。終端構造部12は、活性領域11の周囲を囲む。終端構造部12には、不純物濃度の異なる2つのp型領域(第2導電型半導体領域(p-型領域4およびp--型領域5))と、p-型領域4とp--型領域5との間に設けられたp型の電界緩和領域(第2導電型中間領域)20と、からなるJTE構造が設けられている。
 p型ガードリング3、p-型領域(以下、第1JTE領域とする)4、電界緩和領域20およびp--型領域(以下、第2JTE領域とする)5は、内側から順に、活性領域11(例えば半導体チップの中心)を中心とした同心円状に配置されている。また、p型ガードリング3、第1JTE領域4、電界緩和領域20および第2JTE領域5は、それぞれ、例えば、4辺の直線部14aと、隣り合う直線部14a同士を連結するコーナー部14bとからなる略矩形状の平面形状を有する。第1JTE領域4の不純物濃度は、p型ガードリング3の不純物濃度よりも低い。第2JTE領域5の不純物濃度は、第1JTE領域4の不純物濃度および電界緩和領域20の平均不純物濃度よりも低い。
 第1,2JTE領域4,5は、基体主面に垂直な方向(横方向)および直交する方向(深さ方向)ともに一様な不純物濃度であってもよいし、それぞれ所定の不純物濃度分布を有していてもよい。電界緩和領域20の平均不純物濃度は、第1JTE領域4の不純物濃度よりも高く、かつ第2JTE領域5の不純物濃度よりも低い。また、電界緩和領域20の平均不純物濃度は、第1JTE領域4と第2JTE領域5との中間の不純物濃度であることが好ましい。電界緩和領域20の詳細な説明については後述する。このように、終端構造部12に配置された、p型ガードリング3、第1JTE領域4、電界緩和領域20および第2JTE領域5は、外側(チップ外周部側)に配置された領域ほど不純物濃度が低くなっている。
 図1(b)に示すように、p型ガードリング3、第1JTE領域4、電界緩和領域20および第2JTE領域5は、それぞれ、炭化珪素基体(半導体チップ)10のおもて面(n-型ドリフト層2側の表面)の表面層に選択的に設けられている。炭化珪素基体10とは、n+型炭化珪素基板1のおもて面にn-型ドリフト層2となる炭化珪素エピタキシャル層を積層してなるエピタキシャル基板である。p型ガードリング3は、活性領域11と終端構造部12との境界に、活性領域11から終端構造部12にわたって選択的に設けられている。p型ガードリング3は、活性領域11におけるn-型ドリフト層2とアノード電極8とのショットキー接合の周囲を囲む。
 JTE構造は、p型ガードリング3よりも外側に設けられている。具体的には、JTE構造を構成する各領域のうち、最も内側(活性領域側)に配置された第1JTE領域4は、p型ガードリング3の外側の端部に接する。電界緩和領域20は、第1JTE領域4よりも外側に配置され、かつ第1JTE領域4の外側の端部に接する。第2JTE領域5は、電界緩和領域20よりも外側に配置され、かつ電界緩和領域20の外側の端部に接する。p型ガードリング3、第1JTE領域4、電界緩和領域20および第2JTE領域5の深さは、ともに等しくてもよいし、隣接する領域との上記不純物濃度差を満たすように種々調整されていてもよい。
 層間絶縁膜7は、終端構造部12のJTE構造(すなわち第1JTE領域4、電界緩和領域20および第2JTE領域5)を覆う。すなわち、終端構造部12のJTE構造は、層間絶縁膜7によって、アノード電極8と電気的に絶縁されている。層間絶縁膜7の内側端部は、p型ガードリング3上に延在している。アノード電極8は、炭化珪素基体10のおもて面上に設けられ、n-型ドリフト層2にショットキー接合するとともにp型ガードリング3に接する。アノード電極8の端部は、層間絶縁膜7上に延在している。カソード電極9は、炭化珪素基体10の裏面(n+型カソード層となるn+型炭化珪素基板1の裏面)に設けられている。
 次に、電界緩和領域20について詳細に説明する。図2に示すように、電界緩和領域20は、p-型領域(以下、第1小領域とする)21とp--型領域(以下、第2小領域とする)22とを活性領域11の外周(すなわち活性領域11と終端構造部12との境界)の接線方向(以下、単に接線方向(第1方向)とする)Yに交互に繰り返し配置してなる。すなわち、電界緩和領域20は、第1小領域21と第2小領域22とを交互に繰り返し配置した並列pn層とした超接合(SJ:Super Junction)構造をなす。このため、第1小領域21と第2小領域22とはチャージバランスであることが好ましい。
 第1,2小領域21,22はともに、第1JTE領域4との境界20aおよび第2JTE領域5との境界20bを対辺とする矩形状の平面形状を有する。第1,2小領域21,22はともに、第1JTE領域4および第2JTE領域5に接する。すなわち、第1小領域21と第2小領域22とは、活性領域11の外周の法線方向(以下、単に法線方向(第2方向または第3方向)とする)Xに延びるストライプ状の平面レイアウトで配置されている。第1小領域21の不純物濃度は、第1JTE領域4の不純物濃度とほぼ等しい。第2小領域22の不純物濃度は、第2JTE領域5の不純物濃度とほぼ等しい。
 すなわち、不純物濃度のほぼ等しい第1JTE領域4および第1小領域21と、不純物濃度のほぼ等しい第2JTE領域5および第2小領域22とを櫛歯状に配置した平面レイアウトでJTE構造が構成されている。第1,2小領域21,22は、ともに横方向および深さ方向ともに一様な不純物濃度であってもよいし、それぞれ所定の不純物濃度分布を有していてもよい。図2,3には、第1JTE領域4と電界緩和領域20との境界20aと、第2JTE領域5と電界緩和領域20との境界20bとを点線で示す(図4~16についても同様)。また、図2では、不純物濃度のほぼ等しい領域(第1JTE領域4と第1小領域21、および、第2JTE領域5と第2小領域22)を同じハッチングで示す(図4~16のJTE領域および小領域についても同様)。
 JTE構造の直線部14aにおいて、第1,2小領域21,22は、例えば、接線方向Yにほぼ同じ幅L1,L2を有し、接線方向Yにほぼ同じピッチで配置されている。第1,2小領域21,22の接線方向Yの幅L1,L2は、所定の逆方向電圧を印加した時に、終端構造部12の絶縁破壊耐圧に達する前に、p型ガードリング3とn-型ドリフト層2との間のpn接合から外側に伸びる空乏層によって第1,2小領域21,22が空乏化する寸法に設定されている。具体的には、第1,2小領域21,22は、後述するように第1JTE領域4(または第2JTE領域5)を形成するためのフォトリソグラフィおよびイオン注入によって形成される(実施の形態4参照)。このため、第1,2小領域21,22の接線方向Yの各幅L1,L2は、第1,2小領域21,22を形成するための各イオン注入のドーズ量の比に基づいて決定される。
 具体的には、第1,2小領域21,22の接線方向Yの各幅L1,L2は、次のように決定すればよい。炭化珪素半導体に対するp型不純物の拡散係数はほぼ無視できるほど小さいため、第1,2小領域21,22の拡散深さdjはほぼ等しくなると仮定する。例えば炭化珪素半導体装置の一般的な製造プロセスにおいて、JTE構造を構成する各領域は、高加速電圧での複数回のイオン注入(多段イオン注入)および熱拡散処理によって形成される。このため、図2(b)に示すように、第1,2小領域21,22の、接線方向Yを通る断面における各断面形状は、拡散深さdjを例えば0.6μm程度とするボックス形状(略正方形状)となる。
 そして、第1,2小領域21,22の接線方向Yの幅L1,L2は、第1小領域21と第2小領域22とのチャージバランスをとることで決定される。例えば、第1小領域21と第2小領域22との不純物濃度比が1:0.6である場合、接線方向Yにおける第1小領域21の幅L1と第2小領域22の幅L2との比は0.6:1である。このため、第1,2小領域21,22の接線方向Yの幅L1,L2の最低値は、それぞれ、例えば1.5μmおよび2.5μmとなる。第1,2小領域21,22の接線方向Yの幅L1,L2の下限値は、フォトリソグラフィの寸法精度によって決定されるため、イオン注入用マスクの開口部の最小幅以上である。
 また、図3に示すように、JTE構造のコーナー部14bにおいて、第1,2小領域21,22は、例えば、第1,2JTE領域4,5との各境界20a,20bを底辺とし、当該コーナー部14bの、曲率半径rの円弧形状の中心からの法線方向Xに沿った第1,2小領域21,22同士の境界を脚とする略台形状の平面形状を有する。すなわち、コーナー部14bにおける第1,2小領域21,22は、第1JTE領域4との境界20aを上底とし、第2JTE領域5との境界20bを下底とし、かつ内側(第1JTE領域4側)の接線方向Yの幅(上底)L11,L12よりも外側(第2JTE領域5側)の接線方向Yの幅(下底)L13,L14が広い。コーナー部14bにおける第1,2小領域21,22の、内側の接線方向Yの幅L11,L12は、それぞれ、例えば直線部14aにおける第1,2小領域21,22の接線方向Yの幅L1,L2とほぼ等しくてもよい。
 JTE構造のコーナー部14bにおいても直線部14aと同様に、第1小領域21と第2小領域22とがチャージバランスとなるように第1,2小領域21,22の寸法が決定される。すなわち、JTE構造のコーナー部14bにおいても直線部14aと同様に、第1,2小領域21,22の不純物濃度比に基づいて第1,2小領域21,22の寸法を設定すればよい。また、JTE構造のコーナー部14bには直線部14aよりも電界が集中するが(特に第2小領域22側に電界が集中)、第1,2小領域21,22の繰り返しピッチを狭くすることにより電界を緩和させることができる。コーナー部14bの曲率半径rは、電界緩和領域20を設けない従来のJTE構造に比べて大きくする必要があり、例えば150μm以上であることが好ましい。
 上述したように、電界緩和領域20は、ほぼ同じ寸法でかつほぼ同じ不純物濃度の第1,2小領域21,22をほぼ均等に配置したp-型領域である。このため、電界緩和領域20の平均不純物濃度は、第1JTE領域4の不純物濃度と第2JTE領域5の不純物濃度との中間の不純物濃度となっている。逆方向電圧印加時、逆方向電圧が上昇するにしたがって法線方向Xに順次空乏化が進み、第1JTE領域4、電界緩和領域20および第2JTE領域5の順に空乏化される。このとき、第1JTE領域4の不純物濃度と電界緩和領域20の平均不純物濃度との差は電界緩和領域20を設けない従来のJTE構造の第1,2JTE領域間の不純物濃度差よりも小さいため、第1JTE領域4と第2JTE領域5との間での電界集中は電界緩和領域20を設けない従来のJTE構造に比べて緩和される。
 以上、説明したように、実施の形態1によれば、第1JTE領域と第2JTE領域との間に、第1,2JTE領域それぞれと略同じ不純物濃度の第1,2小領域を接線方向に交互に繰り返し配置してなる電界緩和領域を設けることで、第1JTE領域と第2JTE領域との間の不純物濃度勾配を、電界緩和領域を設けない場合に比べて小さくすることができる。これにより、第1JTE領域と第2JTE領域との間の電界を緩和することができ、終端構造部の外周部での絶縁破壊強度を高くすることができる。したがって、終端構造部の耐圧を向上させることができる。
(実施の形態2)
 次に、実施の形態2にかかる半導体装置の構造について説明する。図4は、実施の形態2にかかる半導体装置の構造を示す平面図である。図4には、図1(a)のJTE構造の直線部における平面レイアウトを拡大して示す(矩形枠13で囲む部分)。実施の形態2にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、第1小領域23と第2小領域24との境界が曲線状をなす平面形状で第1,2小領域23,24を設けている点である。
 具体的には、第1小領域23は、第1JTE領域4との境界10aから外側に向う法線方向Xに沿って第2JTE領域5側に向うにつれて接線方向Yの幅L21が狭くなり、かつ第2JTE領域5に点接触する凸形状(図4では円弧状)の平面形状を有する。第2小領域24は、接線方向Yに隣り合う第1小領域23間に位置し、法線方向Xに沿って第2JTE領域5側に向うにつれて接線方向Yの幅L22が広くなり幅L24(L24>L21)となる平面形状(図4では円弧部を有する略台形状の平面形状)を有する。すなわち、第1小領域23の内側の接線方向Yの幅L21と、第2小領域24の内側の接線方向Yの幅L22との総和は、第2小領域24の外側の接線方向Yの幅L24とほぼ等しい。
 したがって、第1小領域23は、活性領域11側から外側へ向う方向に、第1小領域23と第2小領域24との境界の曲率に応じた割合で減少する不純物濃度分布を有する。一方、第2小領域24は、第1小領域23とのチャージバランスを取った状態で、活性領域11側から外側へ向う方向に増加する不純物濃度分布を有する。また、第1小領域23と第2JTE領域5とはほぼ線接触となる。このため、電界緩和領域20の、第2JTE領域5側の平均不純物濃度は第2JTE領域5の不純物濃度とほぼ等しく、第2JTE領域5と電界緩和領域20との境界20bでの電界が緩和される。
 以上、説明したように、実施の形態2によれば、実施の形態1と同様の効果を得ることができる。また、実施の形態2によれば、第1,2小領域の平面形状を種々変更することによって第1JTE領域と第2JTE領域との間の不純物濃度勾配を制御することができる。
(実施の形態3)
 次に、実施の形態3にかかる半導体装置の構造について説明する。図5は、実施の形態3にかかる半導体装置の構造を示す説明図である。図6は、図5のJTE構造の不純物濃度分布を示す説明図である。図5(a),6(a)には図1(a)のJTE構造の直線部14aにおける平面レイアウトを拡大して示し(矩形枠13で囲む部分)、図5(b)にはJTE構造の断面構造を拡大して示す(図1(b)の矩形枠15で囲む部分)。図6(b)には図6(a)のJTE構造の不純物濃度分布を示す。実施の形態3にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、電界緩和領域20の平均不純物濃度分布が活性領域11側から外側に向う方向に一定の割合で減少するように第1,2小領域25,26を設けている点である。
 具体的には、図5(a),6(a)に示すように、第1小領域25は、第1JTE領域4との境界20aを上底とし、第2JTE領域5との境界20bを下底とし、かつ内側(第1JTE領域4側)の接線方向Yの幅(上底)L31よりも外側(第2JTE領域5側)の接線方向Yの幅(下底)L33を狭くした略台形状の平面形状を有する。第2小領域26は、第1JTE領域4との境界20aを上底とし、第2JTE領域5との境界20bを下底とし、かつ内側の接線方向Yの幅(上底)L32よりも外側の接線方向Yの幅(下底)L34を広くした略台形状の平面形状を有する。図示省略するが、コーナー部14bにおける第1,2小領域25,26の平面形状は、実施の形態1と同様に、コーナー部14bの円弧形状の曲率に基づいた略台形状となる。また、第1,2小領域25,26の寸法は、実施の形態1と同様に、第1小領域25と第2小領域26とがチャージバランスとなるように決定すればよい。
 このような平面形状で第1,2小領域25,26を配置することにより、電界緩和領域20の平均不純物濃度は、第1JTE領域4側の部分が第1JTE領域4の不純物濃度に近い値となり、第2JTE領域5側の部分が第2JTE領域5の不純物濃度に近い値となる。また、図6(b)に示すように、電界緩和領域20の平均不純物濃度分布は、活性領域11側から外側に向う方向に一定の割合で減少した分布となる。このため、第1JTE領域4と電界緩和領域20との境界20a、および、第2JTE領域5と電界緩和領域20との境界20bでの電界を緩和させることができる。
 また、電界緩和領域20の平均不純物濃度分布の勾配をより緩やかにすることが好ましい。その理由は、活性領域11側から外側に向う方向に、より少ない不純物濃度差で徐々に不純物濃度を減少させることができるため、電界緩和領域20での電界をより緩和することができるからである。一方、電界緩和領域20の平均不純物濃度分布の勾配を緩やかにするほど、電界緩和領域20の法線方向Xの幅が広くなるため、小型化の妨げとなる。したがって、許容される寸法範囲内で可能な限り、電界緩和領域20の平均不純物濃度分布の勾配を緩やかにすることが好ましい。
 また、終端構造部12の、より電界が集中する内側部分での電界を緩和する構成としてもよい。具体的には、第1JTE領域4と電界緩和領域20との境界20aには、外側に位置する第2JTE領域5と電界緩和領域20との境界20bよりも電界が集中する。このため、第2JTE領域5との不純物濃度差よりも第1JTE領域4との不純物濃度差が小さくなるように、電界緩和領域20の平均不純物濃度分布の勾配を設定してもよい。
 以上、説明したように、実施の形態3によれば、実施の形態1,2と同様の効果を得ることができる。
(実施の形態4)
 次に、実施の形態4にかかる半導体装置の製造方法として、実施の形態3にかかる半導体装置の製造方法について図1,7,8を参照しながら説明する。図7,8は、実施の形態4にかかる半導体装置の製造途中の状態を示す断面図である。図7(a)には製造途中の平面構造を示す。図7(b)には図7(a)の切断線C-C’における断面構造を示し、図7(c)には図7(a)の切断線D-D’における断面構造を示す。切断線C-C’は、法線方向Xに平行で、かつ第2小領域26の形成領域を通る切断線である。切断線D-D’は、法線方向Xに平行で、かつ第1小領域25を通る切断線である。図8(a)、8(b)にはそれぞれ製造途中の平面構造および断面構造を示す。
 まず、所定の不純物濃度を有する所定厚さのn+型炭化珪素基板(半導体ウエハ)1を用意する。次に、n+型炭化珪素基板1のおもて面にn-型ドリフト層2となる炭化珪素エピタキシャル層を成長させることによりエピタキシャルウエハ(炭化珪素基体10)を作製する。次に、フォトリソグラフィおよびp型不純物のイオン注入により、活性領域11の周囲を囲む終端構造部12において、炭化珪素基体10のおもて面(n-型ドリフト層2側の表面)の表面層に、活性領域11の周囲を囲む例えば環状の平面形状でp型ガードリング3を選択的に形成する。
 次に、図7に示すように、炭化珪素基体10のおもて面に、第1JTE領域4および第1小領域25の形成領域が開口した例えばレジスト材または酸化膜(SiO2)からなる第1イオン注入用マスク31を形成する。次に、第1イオン注入用マスク31をマスクとして例えばアルミニウム(Al)などのp型不純物を第1イオン注入することにより、n-型ドリフト層2の表面層に、第1JTE領域4および第1小領域25をそれぞれ選択的に形成する。次に、第1イオン注入用マスク31を除去する。
 次に、図8に示すように、n-型ドリフト層2の表面に、第1,2JTE領域4,5および第1,2小領域25,26の形成領域が開口した例えばレジスト材または酸化膜からなる第2イオン注入用マスク32を形成する。次に、第2イオン注入用マスク32をマスクとして例えばアルミニウムなどのp型不純物を第2イオン注入することにより、n-型ドリフト層2の表面層に、第2JTE領域5および第2小領域26をそれぞれ選択的に形成する。また、この第2イオン注入により、すでに形成されている第1JTE領域4および第1小領域25が高不純物濃度化される。
 このように第1イオン注入用マスク31によって第2小領域26の形成領域を覆うことで、略台形状の平面形状を有する第1,2小領域25,26を容易に形成することができる。また、2回のイオン注入(第1,2イオン注入)により、2段階に不純物濃度が減少した2層構造(第1,2JTE領域4,5)のJTE構造が形成されるとともに、不純物濃度の異なる第1,2小領域25,26からなる電界緩和領域20を形成することができる。すなわち、活性領域11側から外側に向う方向に一定の割合で減少する平均不純物濃度分布を有する電界緩和領域20が形成される。次に、第2イオン注入用マスク32を除去した後、その後の一般的な製造プロセス工程(例えば層間絶縁膜7、アノード電極8およびカソード電極9の形成)を行うことにより、図1,7,8に示すSBDが完成する。
 上述した実施の形態4にかかる半導体装置の製造方法において、電界緩和領域20を構成する第1,2小領域の平面形状は、第1イオン注入用マスク31のパターンによって種々変更可能である。すなわち、実施の形態4を適用して、略矩形状や曲線部をもつ平面形状で第1,2小領域を形成することにより、実施の形態1,2にかかる半導体装置を作製することができる。
 以上、説明したように、実施の形態4によれば、実施の形態1~3と同様の効果を得ることができる。
(実施の形態5)
 次に、実施の形態5にかかる半導体装置の構造について説明する。図9は、実施の形態5にかかる半導体装置の構造を示す説明図である。図9(a)にはJTE構造の直線部における平面レイアウトを示し、図9(b)にはJTE構造の断面構造を拡大して示す。実施の形態5にかかる半導体装置が実施の形態3にかかる半導体装置と異なる点は、第2JTE領域5よりも外側に、第2JTE領域5の外側の端部に接する第2電界緩和領域40を設けている点である。すなわち、p型ガードリング3、第1JTE領域4、電界緩和領域(以下、第1電界緩和領域とする)20、第2JTE領域5および第2電界緩和領域40は、内側から順に、活性領域11を中心とした同心円状に配置されている。
 第2電界緩和領域40は、p--型領域(以下、第3小領域とする)41とn-型領域(以下、第4小領域とする)42とを接線方向Yに交互に繰り返し配置してなる。すなわち、第2電界緩和領域40は、第3小領域41と第4小領域42とを交互に繰り返し配置した並列pn層としたSJ構造をなす。このため、第3小領域41と第4小領域42とはチャージバランスであることが好ましい。第3小領域41の不純物濃度は、第2JTE領域5の不純物濃度とほぼ等しい。第4小領域42の不純物濃度は、n-型ドリフト層2の不純物濃度とほぼ等しい。第2電界緩和領域40の平均不純物濃度は、第2JTE領域5の不純物濃度よりも低い。
 具体的には、第3小領域41は、第1小領域25と同様の平面形状を有する。すなわち、第3小領域41は、第1JTE領域4との境界20aを上底とし、第2JTE領域5との境界20bを下底とし、かつ内側(第2JTE領域5側)の接線方向Yの幅(上底)よりも外側(チップ外周部側)の接線方向Yの幅(下底)を狭くした略台形状の平面形状を有する。第4小領域42は、第2小領域26と同様の平面形状を有する。すなわち、第4小領域42は、第1JTE領域4との境界20aを上底とし、第2JTE領域5との境界20bを下底とし、かつ内側の接線方向Yの幅(上底)よりも外側の接線方向Yの幅(下底)を広くした略台形状の平面形状を有する。これにより、第2電界緩和領域40の平均不純物濃度は、第2JTE領域5側の部分が第2JTE領域5の不純物濃度に近い値となり、チップ外周部側の部分がn-型ドリフト層2の不純物濃度に近い値となる。また、第2電界緩和領域40の平均不純物濃度分布は、第1電界緩和領域20と同様に、活性領域11側から外側に向う方向に一定の割合で減少した分布となる。
 図示省略するが、コーナー部14bにおける第3,4小領域41,42の平面形状は、実施の形態1と同様に、コーナー部14bの円弧形状の曲率に基づいた略台形状となる。また、第3,4小領域41,42の寸法は、実施の形態1と同様に、第3小領域41と第4小領域42とがチャージバランスとなるように決定すればよい。
 実施の形態5にかかる半導体装置の製造方法は、例えば、実施の形態4にかかる半導体装置の製造方法において、第1,2JTE領域4,5および第1~3小領域25,26,41の形成領域が開口した例えばレジスト材または酸化膜からなる第2イオン注入用マスクを形成すればよい。実施の形態5にかかる半導体装置の製造方法の、第2イオン注入用マスク以外の条件は、実施の形態4と同様である。
 以上、説明したように、実施の形態5によれば、実施の形態1~4と同様の効果を得ることができる。また、実施の形態5によれば、第2JTE領域の外側に第2電界緩和領域を設けることにより、第2JTE領域と第2電界緩和領域との境界での電界を緩和させることができる。このため、終端構造部での電界をさらに緩和することができる。
(実施の形態6)
 次に、実施の形態6にかかる半導体装置の構造について説明する。図10は、実施の形態6にかかる半導体装置の構造を示す説明図である。図10(a)にはJTE構造の直線部における平面レイアウトを示し、図10(b)にはJTE構造の断面構造を拡大して示す。実施の形態6にかかる半導体装置が実施の形態5にかかる半導体装置と異なる点は、第2電界緩和領域40よりも外側に、さらに第3JTE領域(p---型領域)6および第3電界緩和領域50を設けている点である。具体的には、p型ガードリング3、第1JTE領域4、第1電界緩和領域20、第2JTE領域5、第2電界緩和領域40、第3JTE領域6および第3電界緩和領域50を、内側から順に、活性領域11を中心とした同心円状に配置している。
 第2電界緩和領域40の構成は、第1電界緩和領域20と同様である。すなわち、第2電界緩和領域40の平均不純物濃度は、内側に隣接する第2JTE領域5の不純物濃度よりも低く、かつ外側に隣接する第3JTE領域6の不純物濃度よりも高い。具体的には、第2電界緩和領域40は、第3小領域41と第4小領域43とを接線方向Yに交互に繰り返し配置してなる。第3小領域41の構成は、実施の形態5と同様である。第4小領域43の不純物濃度は、第3JTE領域6の不純物濃度とほぼ等しい。第4小領域43の不純物濃度以外の構成は、実施の形態5の第4小領域と同様である。
 第3電界緩和領域50は、第3JTE領域6よりも外側に配置され、第3JTE領域6の外側の端部に接する。第3電界緩和領域50は、p---型領域(以下、第5小領域とする)51とn-型領域(以下、第6小領域とする)52とを接線方向Yに交互に繰り返し配置してなる。すなわち、第3電界緩和領域50は、第5小領域51と第6小領域52とを交互に繰り返し配置した並列pn層としたSJ構造をなす。このため、第5小領域51と第6小領域52とはチャージバランスであることが好ましい。第5小領域51の不純物濃度は、第3JTE領域6の不純物濃度とほぼ等しい。第6小領域52の不純物濃度は、n-型ドリフト層2の不純物濃度とほぼ等しい。第3電界緩和領域50の平均不純物濃度は、第3JTE領域6の不純物濃度よりも低い。
 具体的には、第5小領域51は、第1小領域25と同様の平面形状を有する。すなわち、第5小領域51は、第1JTE領域4との境界20aを上底とし、第2JTE領域5との境界20bを下底とし、かつ内側(第3JTE領域6側)の接線方向Yの幅(上底)よりも外側(チップ外周部側)の接線方向Yの幅(下底)を狭くした略台形状の平面形状を有する。第6小領域52は、第2小領域26と同様の平面形状を有する。すなわち、第6小領域52は、第1JTE領域4との境界20aを上底とし、第2JTE領域5との境界20bを下底とし、かつ内側の接線方向Yの幅(上底)よりも外側の接線方向Yの幅(下底)を広くした略台形状の平面形状を有する。これにより、第3電界緩和領域50の平均不純物濃度は、第3JTE領域6側の部分が第3JTE領域6の不純物濃度に近い値となり、チップ外周部側の部分がn-型ドリフト層2の不純物濃度に近い値となる。また、第3電界緩和領域50の平均不純物濃度分布は、第1電界緩和領域20と同様に、活性領域11側から外側に向う方向に一定の割合で減少した分布となる。
 図示省略するが、コーナー部14bにおける第5,6小領域51,52の平面形状は、実施の形態1と同様に、コーナー部14bの円弧形状の曲率に基づいた略台形状となる。また、第5,6小領域51,52の寸法は、実施の形態1と同様に、第5小領域51と第6小領域52とがチャージバランスとなるように決定すればよい。
 実施の形態6にかかる半導体装置の製造方法は、例えば、実施の形態5にかかる半導体装置の製造方法において2回のイオン注入(第1,2イオン注入)に続けてさらに第3イオン注入を行えばよい。具体的には、1,2回目のイオン注入を実施の形態5と同様に行う。次に、第1,2JTE領域4,5および第1~5小領域25,26,41,43,51の形成領域が開口した例えばレジスト材または酸化膜からなる第3イオン注入用マスクを用いて第3イオン注入を行う。この3回のイオン注入(第1~3イオン注入)により、3段階に不純物濃度が減少した3層構造(第1~3JTE領域4~6)のJTE構造が形成されるとともに、各第1~3JTE領域4~6の外側にそれぞれ第1~3電界緩和領域20,40,50を形成することができる。実施の形態6にかかる半導体装置の製造方法の、第3イオン注入以外の条件は、実施の形態5と同様である。
 以上、説明したように、実施の形態6によれば、実施の形態1~5と同様の効果を得ることができる。また、実施の形態6によれば、JTE領域および電界緩和領域の個数を増やすことにより、JTE構造を構成するp型領域を形成する際のイオン注入精度(ドーズ量、拡散深さ)に対する終端構造部の耐圧のマージンを拡大することができる。さらにJTE領域および電界緩和領域の個数を増やすことも可能であるが、フォトリソグラフィおよびイオン注入の工程数が増加することを考慮すると2層構造または3層構造のJTE構造とすることが実用的であると推測される。
(実施の形態7)
 次に、実施の形態7にかかる半導体装置の構造について説明する。図19A~19Cは、実施の形態7にかかる半導体装置の構造を示す平面図である。実施の形態7にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、電界緩和領域20を法線方向Xに複数区分に等分し(ここでは4つ、内側から外側へ向って符号61~64を付す)、各区分61~64にそれぞれ接線方向Yの幅が異なる第1小領域21,22を配置した点である。電界緩和領域20は、接線方向Yにユニット(単位領域)部60に分割され、当該ユニット部60の平面レイアウトを基本パターンとして接線方向Yに繰り返し配置した平面レイアウトを有する。ユニット部60には、区分61~64それぞれの、接線方向Yに隣り合う1組の第1,2小領域21,22が含まれる。すなわち、ユニット部60は、接線方向Yに隣り合う1組の第1,2小領域21,22を法線方向Xに隣接する組分(層数分:点線矩形枠で囲む部分)含んでいる。
 区分61~64の各第1小領域21の接線方向Yの幅L41~L44は、外側に配置された区分の第1小領域ほど狭くなっている。区分61~64の各第2小領域22の接線方向Yの幅L51~L54は、外側に配置された区分の第2小領域ほど広くなっている。1つのユニット部60の内部において、各区分61~64ともに、接線方向Yに隣り合う1組の第1,2小領域21,22の接線方向Yの幅の総和(すなわちユニット部60の接線方向Yの幅)L50が等しく、ユニット部60の平面形状が略矩形状となるようにユニット部60に配置される。すなわち、ユニット部60の接線方向Yの一方の端部60a上には、ユニット部60の内部のすべての第1小領域21の接線方向Yの一方の端部が位置する。ユニット部60の接線方向Yの他方の端部60b上には、ユニット部60の内部のすべての第2小領域22の接線方向Yの一方の端部が位置する。すなわち、第1小領域21は、ユニット部60の中央側に位置する接線方向Yの他方の端部側で、外側に向うにつれて階段状に幅L41~L44が狭くなっている。第2小領域22は、ユニット部60の中央側に位置する接線方向Yの他方の端部側で、外側に向うにつれて階段状に幅L51~L54が広くなっている。
 第1JTE領域4の不純物濃度をnp1とし、第2JTE領域5の不純物濃度np2をとした場合、各区分61~64それぞれの平均不純物濃度Npは、下記(2)式と等価となる。Y1,Y2は、それぞれ区分61~64の第1,2小領域21,22の接線方向Yの幅である。すなわち、区分61の平均不純物濃度Npを算出する場合、Y1,Y2はそれぞれ区分61の第1,2小領域21,22の接線方向Yの幅L41,L51である。上述したように、区分61~64の各第1小領域21の接線方向Yの幅L41~L44は外側に配置された区分ほど狭く、各第2小領域22の接線方向Yの幅L51~L54は外側に配置された区分ほど広い。このため、区分61~64の平均不純物濃度Npは外側に配置された区分ほど低く、ユニット部60の平均不純物濃度は外周に向って低くなっている。
 Np=((Y1×np1)+(Y2×np2))/(Y1+Y2)・・・(2)
 図19B,19Cに、実施の形態7にかかる半導体装置の変形例を示す。図19B,19Cに示すように、1つのユニット部60内の第1,2小領域21,22をさらに接線方向Yに分割してもよい。具体的には、1つのユニット部60内に、区分ごとに、図19Aの第1,2小領域21,22の幅Y1,Y2をそれぞれ分割数で割った幅を有する1組の第1,2小領域21,22が接線方向Yに分割数分だけ繰り返し配置されている。図19Bには、1つのユニット部60内のすべての第1,2小領域21,22をそれぞれ接線方向Yに2分割した場合を示す。図19Cには、図19Bのユニット部60においてさらに区分62,63を接線方向Yに2分割(すなわち図19Aのユニット部60を接線方向Yに4分割)した場合を示す。第1,2小領域21,22を接線方向Yに分割したとしても、ユニット部60内の区分61~64ごとの第1,2小領域21,22それぞれの総面積はかわらないため、図19B,19Cのユニット部60の平均不純物濃度は図19Aのユニット部60と同じである。ユニット部60の接線方向Yの分割数は、フォトエッチング工程のプロセス限界で決まる。ユニット部60の内部の区分61~64ごとの接線方向Yの分割数を最適化し、第1,2小領域21,22の接線方向Yの幅を狭くすることが好ましい。例えば、区分61~64の内部の、接線方向Yに隣り合う1組の第1小領域21および第2小領域22のすべての組が同一の平均不純物濃度を有するように、第1小領域21または第2小領域22はプロセス限界の限界値の微少領域に分割されることが好ましい。これによって、接線方向Yに隣り合う1組の第1,2小領域21,22のすべての組をほぼ同じ平均不純物濃度に近づけることができ、電界強度が緩和される。
 実施の形態7を実施の形態2,3に適用し、略矩形状以外の平面形状を有するユニット部を配置してもよい。また、実施の形態7を実施の形態5,6に適用し、実施の形態7の電界緩和領域20の構成を備えた第2,3電界緩和領域をさらに配置してもよい。
 以上、説明したように、実施の形態7によれば、実施の形態1~6と同様の効果を得ることができる。
(実施の形態8)
 次に、実施の形態8にかかる半導体装置の構造について説明する。図11は、実施の形態8にかかる半導体装置の構造を示す平面図である。図11には、図1(a)のJTE構造の直線部における平面レイアウトを拡大して示す(矩形枠13で囲む部分)。実施の形態8にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、第1小領域27をメッシュ状の平面パターンで配置することによって、電界緩和領域20の、活性領域11側から外側へ向って減少する平均不純物濃度分布の減少量を調整している点である。
 具体的には、図11に示すように、第1小領域27は、メッシュ状の平面パターンで配置されている。電界緩和領域20の、第1小領域27以外の部分に、第2小領域28が配置されている。すなわち、複数の第2小領域28は、マトリクス状に配置されている。各第2小領域28の接線方向Yの幅L3はすべてほぼ等しい。第2小領域28の法線方向Xの幅L5は、第2JTE領域5側に配置された第2小領域28ほど広くなっている。また、各第2小領域28は、例えば、接線方向Yに平行にかつ等間隔L4に配置され、法線方向Xに平行にかつ等間隔L6に配置されている。
 このように第2小領域28を配置することにより、活性領域11側から外側に向うにしたがって、電界緩和領域20における第1小領域27の占有面積が小さくなり、第2小領域28の占有面積が大きくなる。これによって、電界緩和領域20の平均不純物濃度分布は、活性領域11側から外側に向う方向に減少した分布となる。接線方向Yに隣り合う第2小領域28間の間隔L4および法線方向Xに隣り合う第2小領域28間の間隔L6は、終端構造部12の絶縁破壊耐圧に達する前に、第2小領域28から伸びる空乏層同士が接する距離であることが好ましい。
 図示省略するが、コーナー部14bにおける第2小領域28の平面形状は、実施の形態1と同様に、コーナー部14bの円弧形状の曲率に基づいた略台形状となり、第1小領域27の平面形状は略台形状の第2小領域28を囲むメッシュ状となる。上述した構成の電界緩和領域20は、実施の形態1と同様に、第1,2小領域27,28をそれぞれ法線方向Xに延びるストライプ状に配置した状態とほぼ等価な構成となる。このため、第1,2小領域27,28の各寸法は、実施の形態1と同様に、第1,2小領域27,28を形成するための各イオン注入のドーズ量の比に基づいて決定することができる。
 以上、説明したように、実施の形態8によれば、実施の形態1~4と同様の効果を得ることができる。
(実施の形態9)
 次に、実施の形態9にかかる半導体装置の構造について説明する。図12は、実施の形態9にかかる半導体装置の構造を示す平面図である。図12には、図1(a)のJTE構造の直線部における平面レイアウトを拡大して示す(矩形枠13で囲む部分)。実施の形態9にかかる半導体装置が実施の形態8にかかる半導体装置と異なる点は、第1小領域29をマトリクス状の平面パターンで配置することによって、電界緩和領域20の、活性領域11側から外側へ向って減少する平均不純物濃度分布の減少量を調整している点である。
 具体的には、図12に示すように、複数の第1小領域29は、マトリクス状に配置されている。各第1小領域29の接線方向Yの幅L7はすべてほぼ等しい。第1小領域29の法線方向Xの幅L8は、第2JTE領域5側に配置された第1小領域29ほど狭くなっている。また、各第1小領域29は、例えば、接線方向Yに平行にかつ等間隔L9に配置され、法線方向Xに平行にかつ等間隔L10に配置されている。電界緩和領域20の、第1小領域29の以外の部分に、第2小領域30が配置されている。すなわち、複数の第2小領域30は、第1小領域29を囲むメッシュ状に配置されている。
 このように第1小領域29を配置することにより、活性領域11側から外側に向うにしたがって、電界緩和領域20における第1小領域29の占有面積が小さくなり、第2小領域30の占有面積が大きくなる。これによって、電界緩和領域20の平均不純物濃度分布は、活性領域11側から外側に向う方向に減少した分布となる。接線方向Yに隣り合う第1小領域29間の間隔L9および法線方向Xに隣り合う第1小領域29間の間隔L10は、終端構造部12の絶縁破壊耐圧に達する前に、第1小領域29から伸びる空乏層同士が接する距離であることが好ましい。
 図示省略するが、コーナー部14bにおける第1小領域29の平面形状は、実施の形態1と同様に、コーナー部14bの円弧形状の曲率に基づいた略台形状となり、第2小領域30の平面形状は略台形状の第1小領域29を囲むメッシュ状となる。実施の形態9においても、電界緩和領域20は、実施の形態8と同様に、第1,2小領域29,30をそれぞれ法線方向Xに延びるストライプ状に配置した状態とほぼ等価な構成となる。このため、実施の形態8と同様に第1,2小領域29,30の各寸法を決定することができる。
 以上、説明したように、実施の形態9によれば、実施の形態1~4と同様の効果を得ることができる。
(実施の形態10)
 次に、実施の形態10にかかる半導体装置の構造について説明する。図13は、実施の形態10にかかる半導体装置の構造を示す平面図である。図13には、図1(a)のJTE構造の直線部における平面レイアウトを拡大して示す(矩形枠13で囲む部分)(図14~16においても同様)。実施の形態10にかかる半導体装置が実施の形態9にかかる半導体装置と異なる点は、第2JTE領域5側に配置された第1小領域29ほど、第1小領域29の接線方向Yの幅L7を狭くしている点である。第1小領域29の平面形状は例えば接線方向Yに延びる直線状とする。各第1小領域29の法線方向Xの幅L8は例えばすべて等しい。接線方向Yに隣り合う第1小領域29は例えば等間隔L9に配置されている。
 このように第2JTE領域5側に配置された第1小領域29ほど、第1小領域29の接線方向Yの幅L7を狭くすることで、実施の形態9と同様に、活性領域11側から外側に向うにしたがって、電界緩和領域20における第1小領域29の占有面積が小さくなる。このため、電界緩和領域20の平均不純物濃度分布を調整することができる。また、第2小領域30の、接線方向Yに隣り合う第1小領域29間に挟まれた部分30a同士は法線方向Xに対向しない。すなわち、法線方向Xに隣り合う第1小領域29同士の接線方向Yの端部29a,29bが法線方向Xに対向しないように、第1小領域29を配置することができる。これにより、局所的に電界が集中することを回避することができ、終端構造部12において十分な耐圧を確保することができる。
 実施の形態10にかかる半導体装置の別の一例について説明する。図14~16は、実施の形態10にかかる半導体装置の構造の別の一例を示す平面図である。図14に示すように、第2JTE領域5側に配置された第1小領域29ほど、法線方向Xに隣り合う第1小領域29間の間隔L10を広くしてもよい。この場合、第1小領域29の平面形状は例えば接線方向Yに延びる直線状とする。各第1小領域29の接線方向Yの幅L7は例えばすべて等しい。各第1小領域29の法線方向Xの幅L8は例えばすべて等しい。
 また、図15に示すように、第2JTE領域5側に配置された第1小領域29ほど、第1小領域29の法線方向Xの幅L8を狭くしてもよい。この場合、第1小領域29の平面形状は、第1JTE領域4側に配置された第1小領域29ほど例えば矩形状となり、第2JTE領域5側に配置された第1小領域29ほど直線状となる。各第1小領域29の接線方向Yの幅L7は例えばすべて等しい。法線方向Xに隣り合う第1小領域29は例えば等間隔L10に配置される。電界緩和領域20の、第2JTE領域5側の部分は比較的広い幅L10aで第1小領域29が配置されていない領域となる。
 また、図16に示すように、第2JTE領域5側に配置された第1小領域29ほど、第1小領域29の接線方向Yの幅L7および法線方向Xの幅L8をそれぞれ狭くし、かつ接線方向Yに隣り合う第1小領域29間の間隔L9を広げてもよい。この場合、電界緩和領域20の、第2JTE領域5側の部分は比較的広い幅L10aで第1小領域29が配置されていない領域となる。図14~16に示す実施の形態10にかかる半導体装置の別の一例の、第1小領域29の平面パターン以外の構成は、図13に示す実施の形態10にかかる半導体装置と同様である。これら図14~16に示す実施の形態10にかかる半導体装置の別の一例においても、図13に示す実施の形態10にかかる半導体装置と同様の効果を奏する。また、実施の形態10を実施の形態8に適用し、第1小領域と第2小領域との配置を逆転させた構成としてもよい。
 以上、説明したように、実施の形態10によれば、実施の形態4,8,9と同様の効果を得ることができる。
(実施の形態11)
 次に、実施の形態11にかかる半導体装置の構造について説明する。図17A,17Bは、実施の形態11にかかる半導体装置の構造を示す説明図である。図17A,17Bにはともに(a)にJTE構造の直線部14aにおける平面レイアウトを示し、(b)にそれぞれ(a)の切断線E-E’および切断線F-F’における不純物濃度分布を示す。実施の形態11にかかる半導体装置が実施の形態8にかかる半導体装置と異なる点は、マトリクス状に配置した第2小領域28の法線方向Xに隣り合う間隔L6を、外側に配置されるほど狭くする点である。
 図17Aに示すように、第2小領域28の法線方向Xの幅L5は、外側に配置された第2小領域28ほど広い。接線方向Yに隣り合う第2小領域28間の間隔L4は、内側から外側へ向って一定である。そして、電界緩和領域20を法線方向Xに複数に区分し(ここでは4つ、内側から外側へ向って符号61~64を付す)、各区分61~64それぞれに、第2小領域28と、当該第2小領域28とその外側に隣り合う第2小領域28とに挟まれた第1小領域27と、の1組が配置される。第2小領域28の法線方向Xの幅L5と、当該第2小領域28とその外側に隣り合う第2小領域28とに挟まれた第1小領域27の法線方向Xの幅(L6)と、の総和L60はすべての区分61~64で等しい。第1小領域27は、接線方向Yに等間隔(L3)にかつ同じ幅(L4)で配置され法線方向Xに延びるストライプと、外側に向うほど広い間隔(L5)でかつ外側に向うほど狭い幅(L6)で配置され接線方向Yに延びるストライプと、を直交させたメッシュ状の平面パターンで配置されている。
 接線方向Yに隣り合う第2小領域28間の間隔L4は、例えばプロセス限界で決定される下限値である。各区分61~64の平均不純物濃度は、第2小領域28の法線方向Xの幅L5と、当該第2小領域28とその外側に隣り合う第2小領域28とに挟まれた第1小領域27の幅(L6)と、の比率で決定される。上述したように、外側に配置された区分61~64ほど、第1小領域27の法線方向Xのパターン幅(L6)が狭く、第2小領域28の法線方向Xの幅L5が広くなっているため、外側に配置された区分61~64ほど、平均不純物濃度が低く、電界緩和効果が高くなる。また、法線方向Xに隣り合う区分61~64間の不純物濃度差をすべて等しくすることで、さらに電界緩和効果を高めることができる。
 図17Bに示すように、法線方向Xに隣り合う第2小領域28間の間隔L66、すなわち、第1小領域27の接線方向Yに延びるストライプ部分のパターン幅をプロセス限界まで低減させてもよい。この場合、例えば、図17Aの区分62~64の内部をそれぞれ法線方向Xに複数に分割すればよい。具体的には、図17Bに示す電界緩和領域20は、1つの区分内に図17Aの第2,1小領域28,27の法線方向Xの幅をそれぞれ分割数で割った幅を有する1組の第2,1小領域28,27が法線方向Xに分割数分だけ繰り返し配置される。図17Bには、区分62を法線方向Xに3分割し、区分63を法線方向Xに4分割し、区分64を法線方向Xに3分割した場合を示す。例えば、法線方向Xに3分割した区分62を例に説明すると、図17Bの区分62の第2小領域28の法線方向Xの幅L65は、図17Aの区分62の第2小領域28の法線方向Xの幅L5の1/3である(L65=L5/3)。図17Bの区分62の、法線方向Xに隣り合う第2小領域28間の間隔L66は、図17Aの区分62の、法線方向Xに隣り合う第2小領域28間の間隔L6の1/3である(L66=L6/3)。図17Bの第2小領域28の接線方向Yの幅L63、および、接線方向Yに隣り合う第2小領域28間の間隔L64は、それぞれ図17Aの第2小領域28の接線方向Yの幅L3、および、接線方向Yに隣り合う第2小領域28間の間隔L4と同様である(L63=L3、L64=L4)。
 次に、実施の形態11にかかる半導体装置の別の一例の構造について説明する。図18A,18Bは、実施の形態11にかかる半導体装置の別の一例の構造を示す説明図である。図18A,18Bにはともに(a)にJTE構造の直線部14aにおける平面レイアウトを示し、(b)にそれぞれ(a)の切断線G-G’および切断線H-H’における不純物濃度分布を示す。図18Aに示すように、実施の形態11に実施の形態9を適用し、第1小領域29をマトリクス状の平面パターンで配置し、第1小領域29の法線方向Xに隣り合う間隔L10を、外側に配置されるほど広くしてもよい。
 第1小領域29の法線方向Xの幅L8は、外側に配置された第1小領域29ほど狭い。接線方向Yに隣り合う第1小領域29間の間隔L9は、内側から外側へ向って一定である。そして、区分61~64それぞれに、第1小領域29と、当該第1小領域29とその内に隣り合う第1小領域29(または第1JTE領域4)とに挟まれた第2小領域30と、の1組が配置される。法線方向Xに隣り合う1組の第1小領域29の法線方向Xの幅L8と、当該第1小領域29とその内側に隣り合う第1小領域29(または第1JTE領域4)とに挟まれた第2小領域30の法線方向Xの幅(L10)と、の総和L60はすべての区分61~64で等しい。すなわち、第2小領域30は、接線方向Yに等間隔(L7)にかつ同じ幅(L9)で配置され法線方向Xに延びるストライプと、外側に向うほど狭い間隔(L8)でかつ外側に向うほど広い幅(L10)で配置され接線方向Yに延びるストライプと、を直交させたメッシュ状の平面パターンで配置されている。
 接線方向Yに隣り合う第1小領域29間の間隔L9は、例えばプロセス限界で決定される下限値である。各区分61~64の平均不純物濃度は、第1小領域29の法線方向Xの幅L8と、当該第1小領域29の法線方向Xの幅L8と、当該第1小領域29とその内側に隣り合う第1小領域29(または第1JTE領域4)とに挟まれた第2小領域30の法線方向Xの幅(L10)と、の比率で決定される。上述したように、外側に配置された区分61~64ほど、第2小領域30の法線方向Xのパターン幅(L10)が広く、第1小領域29の法線方向Xの幅L8が狭くなっている。このため、図17A,図17Bに示す実施の形態11にかかる半導体装置と同様に、外側に配置された区分61~64ほど、平均不純物濃度が低く、電界緩和効果が高くなる。
 また、図18Bに示すように、法線方向Xに隣り合う第1小領域29間の間隔L70、すなわち、第2小領域30の接線方向Yに延びるストライプ部分のパターン幅をプロセス限界まで低減させてもよい。この場合、例えば、図18Aの各区分62~64の内部をそれぞれ法線方向Xに複数に分割すればよい。具体的には、図18Bに示す電界緩和領域20は、1つの区分内に図18Aの第2,1小領域30,29の法線方向Xの幅をそれぞれ分割数で割った幅を有する1組の第2,1小領域30,29が法線方向Xに分割数分だけ繰り返し配置される。図18Bには、区分62を法線方向Xに3分割し、区分63を法線方向Xに4分割し、区分64を法線方向Xに3分割した場合を示す。例えば、法線方向Xに3分割した区分62を例に説明すると、図18Bの区分62の第1小領域29の法線方向Xの幅L68は、図18Aの区分62の第1小領域29の法線方向Xの幅L8の1/3である(L68=L8/3)。図18Bの区分62の、法線方向Xに隣り合う第1小領域29間の間隔L70は、図18Aの区分62の、法線方向Xに隣り合う第1小領域29間の間隔L10の1/3である(L70=L10/3)。図18Bの第1小領域29の接線方向Yの幅L67、および、接線方向Yに隣り合う第1小領域29間の間隔L69は、それぞれ図18Aの第1小領域29の接線方向Yの幅L7、および、接線方向Yに隣り合う第1小領域29間の間隔L9と同様である(L67=L7、L69=L9)。
 以上、説明したように、実施の形態11によれば、実施の形態1~10と同様の効果を得ることができる。
(実施例)
 次に、実施例にかかる半導体装置の終端構造部12の耐圧について検証した。図20は、実施例にかかる半導体装置の終端構造部の耐圧特性を示す特性図である。まず、実施の形態4にかかる半導体装置の製造方法にしたがい、2層構造のJTE構造を構成する第1,2JTE領域4,5間に電界緩和領域20を備えたSiC-SBD(すなわち、図5,6に示す実施の形態3にかかる半導体装置)を作製した(以下、実施例とする)。実施例においては、第1JTE領域4と第2JTE領域5との不純物濃度比を1:0.5と固定し、第1JTE領域4を形成するための第1イオン注入のアルミニウムのドーズ量を種々変更して複数の試料を作製し、各試料の耐圧を測定した。その結果を図20に示す。また、図20には、比較として、電界緩和領域20を設けない従来のJTE構造からなるSiC-SBD(以下、従来例とする)の耐圧特性を示す。従来例の、電界緩和領域20を備えていないこと以外の構成は、実施例と同様である。
 図20に示す結果より、従来例では、第1JTE領域4の不純物濃度(第1イオン注入のドーズ量)に依って耐圧が低下する場合があることが確認された。一方、実施例においては、第1JTE領域4の不純物濃度に依らず、耐圧をほぼ一定に確保することができ、従来例で生じた耐圧の落ち込みが改善されていることがわかる。半導体装置の最大耐圧は、終端構造部12におけるJTE構造の外側の耐圧で決定される。実施例においては、電界緩和領域20を設けることにより、第1JTE領域4と第2JTE領域5との間の電界が緩和され、電界集中点が分散されるため、耐圧の落ち込みが生じないと推測される。
 以上において本発明は、本発明の趣旨を逸脱しない範囲で種々変更可能であり、上述した各実施の形態において、たとえば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。また、本発明では、SBDを例に説明しているが、これに限らず、耐圧構造部を備えた様々な半導体装置に適用可能である。具体的には、本発明は、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)や、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)などに適用可能である。また、上述した各実施の形態では、炭化珪素基板上に炭化珪素エピタキシャル層を堆積した炭化珪素エピタキシャル基板を用いた場合を例に説明しているが、これに限らず、例えばデバイスを構成するすべての領域を炭化珪素基板の内部にイオン注入により形成した拡散領域としてもよい。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
 以上のように、本発明にかかる半導体装置は、JTE構造を備えた高耐圧な半導体装置に有用であり、特に1200V以上(例えば1700Vまたは3300V)の耐圧クラスの炭化珪素半導体装置に適している。
 1 n+型炭化珪素基板
 2 n-型ドリフト層
 3 p型ガードリング
 4 第1JTE領域
 5 第2JTE領域
 6 第3JTE領域
 7 層間絶縁膜
 8 アノード電極
 9 カソード電極
 10 炭化珪素基体
 11 活性領域
 12 終端構造部
 14a JTE構造の直線部
 14b JTE構造のコーナー部
 20,40,50 電界緩和領域
 20a 第1JTE領域と電界緩和領域との境界
 20b 第2JTE領域と電界緩和領域との境界
 21,23,25,27,29 第1小領域
 22,24,26,28,30 第2小領域
 29a,29b 第1小領域の接線方向の端部
 30a 第2小領域の、接線方向に隣り合う第1小領域間に挟まれた部分
 31 第1イオン注入用マスク
 32 第2イオン注入用マスク
 41 第3小領域
 42,43 第4小領域
 51 第5小領域
 52 第6小領域
 60 ユニット部
 60a,60b ユニット部の接線方向の端部
 61~64 区分
 L1,L7,L11,L13,L21,L31,L33,L41~44,L67 第1小領域の接線方向の幅
 L2,L3,L12,L14,L22,L24,L32,L34,L51~54,L63 第2小領域の接線方向の幅
 L4,L64 接線方向に隣り合う第2小領域間の間隔
 L5,L65 第2小領域の法線方向の幅
 L6,L66 法線方向に隣り合う第2小領域間の間隔
 L8,L68 第1小領域の法線方向の幅
 L9,L69 接線方向に隣り合う第1小領域間の間隔
 L10,L70 法線方向に隣り合う第1小領域間の間隔
 L10a 電界緩和領域の、第2JTE領域側の第1小領域が配置されていない部分の幅
 L50 ユニット部の接線方向の幅
 L60 ユニット部の法線方向の幅
 X 活性領域の外周の法線方向
 Y 活性領域の外周の接線方向
 r JTE構造のコーナー部の曲率半径

Claims (17)

  1.  炭化珪素半導体からなる第1導電型の半導体基板と、
     前記半導体基板のおもて面に設けられた、主電流が流れる活性領域と、
     前記活性領域の周囲を囲む終端構造部と、
     前記終端構造部に、前記活性領域の周囲を囲む同心円状に、かつ外側に配置されるほど低い不純物濃度で設けられた複数の第2導電型半導体領域と、
     少なくとも1組の隣り合う前記第2導電型半導体領域間に互いに接するように設けられた、内側に隣接する前記第2導電型半導体領域よりも不純物濃度が低く、かつ外側に隣接する前記第2導電型半導体領域よりも不純物濃度が高い第2導電型中間領域と、
     を備え、
     前記第2導電型中間領域は、前記活性領域と前記終端構造部との境界に沿った第1方向に、第2導電型の第1小領域と、前記第1小領域よりも不純物濃度の低い第2導電型の第2小領域とを交互に繰り返し配置してなることを特徴とする半導体装置。
  2.  前記第1小領域は、内側に隣接する前記第2導電型半導体領域との境界および外側に隣接する前記第2導電型半導体領域との境界を1組の対辺とする矩形状の平面形状を有し、
     前記第2小領域は、内側に隣接する前記第2導電型半導体領域との境界および外側に隣接する前記第2導電型半導体領域との境界を1組の対辺とする矩形状の平面形状を有することを特徴とする請求項1に記載の半導体装置。
  3.  前記第1小領域は、内側に隣接する前記第2導電型半導体領域との境界から外側に向う第2方向に沿って外側に隣接する前記第2導電型半導体領域側に向うにつれて幅が狭くなり、かつ外側に隣接する前記第2導電型半導体領域に点接触する凸形状の平面形状を有し、
     前記第2小領域は、前記第1方向に隣り合う前記第1小領域間に位置し、前記第2方向に沿って外側に隣接する前記第2導電型半導体領域側に向うにつれて幅が広くなる台形状の平面形状を有することを特徴とする請求項1に記載の半導体装置。
  4.  前記第1小領域は、内側に隣接する前記第2導電型半導体領域との境界を上底とし、外側に隣接する前記第2導電型半導体領域との境界を下底とし、かつ上底よりも下底が狭い台形形状の平面形状を有し、
     前記第2小領域は、内側に隣接する前記第2導電型半導体領域との境界を上底とし、外側に隣接する前記第2導電型半導体領域との境界を下底とし、かつ上底よりも下底が広い台形形状の平面形状を有することを特徴とする請求項1に記載の半導体装置。
  5.  前記第2導電型中間領域は、前記第1方向に複数の単位領域に分割され、前記第1方向に隣り合う1組の前記第1小領域および前記第2小領域を含み、
     前記第1小領域は、前記単位領域の内部において外側に向うにつれて階段状に前記第1方向の幅が狭くなり、
     前記第2小領域は、前記単位領域の内部において外側に向うにつれて階段状に前記第1方向の幅が広くなり、
     前記第1小領域および前記第2小領域の前記第1方向の幅の総和は内側から外側へ向って一定であることを特徴とする請求項1に記載の半導体装置。
  6.  前記単位領域は、前記第1方向と直交する第2方向に複数に区分され、
     前記第1小領域は、外側の前記区分に配置されるほど前記第1方向の幅が狭く、
     前記第2小領域は、外側の前記区分に配置されるほど前記第1方向の幅が広く、
     前記区分は、前記第1小領域および前記第2小領域の前記第1方向の幅で決定される平均不純物濃度を有し、
     前記区分の平均不純物濃度は、外側に向って一定の割合で低減していることを特徴とする請求項5に記載の半導体装置。
  7.  前記区分の内部に配置された、前記第1方向に隣り合う1組の前記第1小領域および前記第2小領域のすべての組が同一の平均不純物濃度を有するように、前記第1小領域または前記第2小領域はプロセス限界の微少領域に分割されていることを特徴とする請求項5に記載の半導体装置。
  8.  前記第1小領域および前記第2小領域のうち、一方の領域はマトリクス状の平面レイアウトに配置され、他方の領域は前記一方の領域を囲むメッシュ状の平面レイアウトに配置されていることを特徴とする請求項1に記載の半導体装置。
  9.  前記第2導電型中間領域は、前記第1方向と直交する第2方向に複数に区分され、
     前記区分は、前記一方の領域と、当該一方の領域に前記第2方向に隣り合う前記一方の領域とに挟まれた前記他の領域と、の1組を含み、
     前記区分は、当該区分内の前記一方の領域および前記他の領域の幅に基づいて平均不純物濃度が決定され、かつ外側に配置されるほど平均不純物濃度が低く、
     隣り合う前記一方の領域間の距離は、製造プロセスの限界の狭さであることを特徴とする請求項8に記載の半導体装置。
  10.  前記一方の領域は前記第1小領域であり、
     外側に配置された前記区分ほど、前記一方の領域の第2方向の幅が狭く、かつ隣り合う前記一方の領域間の第2方向の距離が広いことを特徴とする請求項9に記載の半導体装置。
  11.  前記一方の領域は前記第2小領域であり、
     外側に配置された前記区分ほど、前記一方の領域の第2方向の幅が広く、かつ隣り合う前記一方の領域間の第2方向の距離が狭いことを特徴とする請求項9に記載の半導体装置。
  12.  隣接するすべての前記区分間で平均不純物濃度差が等しいことを特徴とする請求項9に記載の半導体装置。
  13.  前記第1小領域の幅および不純物濃度をそれぞれx1およびnp1とし、前記第2小領域の幅および不純物濃度をそれぞれx2およびnp2としたときに、前記区分の平均不純物濃度Npは下記(1)式を満たすことを特徴とする請求項9に記載の半導体装置。
     Np=((x1×np1)+(x2×np2))/(x1+x2) ・・・(1)
  14.  前記他方の領域の、前記第1方向に隣り合う前記一方の領域間に挟まれた部分は、前記活性領域と前記終端構造部との境界と直交する第3方向に前記一方の領域と対向することを特徴とする請求項8に記載の半導体装置。
  15.  前記第1小領域は、内側に隣接する前記第2導電型半導体領域と同じ不純物濃度を有することを特徴とする請求項1に記載の半導体装置。
  16.  前記第2小領域は、外側に隣接する前記第2導電型半導体領域と同じ不純物濃度を有することを特徴とする請求項1に記載の半導体装置。
  17.  前記第2導電型中間領域の平均不純物濃度は、内側に隣接する前記第2導電型半導体領域と外側に隣接する前記第2導電型半導体領域との中間の不純物濃度であることを特徴とする請求項1~16のいずれか一つに記載の半導体装置。
PCT/JP2015/076370 2014-09-17 2015-09-16 半導体装置 WO2016043247A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016548927A JP6265274B2 (ja) 2014-09-17 2015-09-16 半導体装置
US15/250,998 US11257900B2 (en) 2014-09-17 2016-08-30 Semiconductor device
US17/496,586 US11728377B2 (en) 2014-09-17 2021-10-07 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014189477 2014-09-17
JP2014-189477 2014-09-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/250,998 Continuation US11257900B2 (en) 2014-09-17 2016-08-30 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2016043247A1 true WO2016043247A1 (ja) 2016-03-24

Family

ID=55533283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076370 WO2016043247A1 (ja) 2014-09-17 2015-09-16 半導体装置

Country Status (3)

Country Link
US (2) US11257900B2 (ja)
JP (1) JP6265274B2 (ja)
WO (1) WO2016043247A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409884A (zh) * 2016-11-07 2017-02-15 株洲中车时代电气股份有限公司 一种功率半导体器件终端结构
JP2017168683A (ja) * 2016-03-16 2017-09-21 富士電機株式会社 半導体装置および半導体装置の製造方法
CN108735720A (zh) * 2017-04-25 2018-11-02 松下知识产权经营株式会社 半导体元件
US10347713B2 (en) 2017-09-15 2019-07-09 Kabushiki Kaisha Toshiba Semiconductor device having a triple region resurf structure
JP2020017673A (ja) * 2018-07-26 2020-01-30 ラピスセミコンダクタ株式会社 半導体装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994068A (zh) * 2017-12-20 2018-05-04 上海南麟电子股份有限公司 一种半导体器件结终端扩展结构及制备方法
JP7254180B2 (ja) * 2019-07-16 2023-04-07 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法
JP7249921B2 (ja) * 2019-09-20 2023-03-31 株式会社東芝 半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034646A (ja) * 2006-07-28 2008-02-14 Toshiba Corp 高耐圧半導体装置
JP2009105110A (ja) * 2007-10-22 2009-05-14 Toshiba Corp 半導体素子
JP2011187767A (ja) * 2010-03-10 2011-09-22 Toshiba Corp 半導体装置
WO2014208201A1 (ja) * 2013-06-27 2014-12-31 三菱電機株式会社 半導体装置およびその製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2134705B (en) * 1983-01-28 1985-12-24 Philips Electronic Associated Semiconductor devices
US4742377A (en) * 1985-02-21 1988-05-03 General Instrument Corporation Schottky barrier device with doped composite guard ring
CN1019720B (zh) * 1991-03-19 1992-12-30 电子科技大学 半导体功率器件
CN1040814C (zh) * 1994-07-20 1998-11-18 电子科技大学 一种用于半导体器件的表面耐压区
DE19723176C1 (de) * 1997-06-03 1998-08-27 Daimler Benz Ag Leistungshalbleiter-Bauelement und Verfahren zu dessen Herstellung
DE19848828C2 (de) * 1998-10-22 2001-09-13 Infineon Technologies Ag Halbleiterbauelement mit kleiner Durchlaßspannung und hoher Sperrfähigkeit
US7026650B2 (en) * 2003-01-15 2006-04-11 Cree, Inc. Multiple floating guard ring edge termination for silicon carbide devices
KR100576872B1 (ko) * 2004-09-17 2006-05-10 삼성전기주식회사 정전기 방전 방지기능을 갖는 질화물 반도체 발광소자
JP3914226B2 (ja) * 2004-09-29 2007-05-16 株式会社東芝 高耐圧半導体装置
US8084815B2 (en) * 2005-06-29 2011-12-27 Fairchild Korea Semiconductor Ltd. Superjunction semiconductor device
JP5002974B2 (ja) * 2006-02-02 2012-08-15 富士電機株式会社 半導体装置
JP2008066694A (ja) * 2006-03-16 2008-03-21 Sanyo Electric Co Ltd 半導体装置及びその製造方法
JP5052025B2 (ja) * 2006-03-29 2012-10-17 株式会社東芝 電力用半導体素子
JP4333782B2 (ja) * 2007-07-05 2009-09-16 株式会社デンソー ジャンクションバリアショットキーダイオードを備えた炭化珪素半導体装置
US9640609B2 (en) * 2008-02-26 2017-05-02 Cree, Inc. Double guard ring edge termination for silicon carbide devices
US8232558B2 (en) * 2008-05-21 2012-07-31 Cree, Inc. Junction barrier Schottky diodes with current surge capability
US8497552B2 (en) * 2008-12-01 2013-07-30 Cree, Inc. Semiconductor devices with current shifting regions and related methods
US8637386B2 (en) * 2009-05-12 2014-01-28 Cree, Inc. Diffused junction termination structures for silicon carbide devices and methods of fabricating silicon carbide devices incorporating same
JP5601849B2 (ja) 2010-02-09 2014-10-08 三菱電機株式会社 炭化珪素半導体装置の製造方法
US9117739B2 (en) * 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
JP5554415B2 (ja) 2010-10-15 2014-07-23 三菱電機株式会社 半導体装置およびその製造方法
US9318623B2 (en) * 2011-04-05 2016-04-19 Cree, Inc. Recessed termination structures and methods of fabricating electronic devices including recessed termination structures
US8680587B2 (en) * 2011-09-11 2014-03-25 Cree, Inc. Schottky diode
JP2014038937A (ja) 2012-08-16 2014-02-27 Mitsubishi Electric Corp 半導体装置
US8912599B2 (en) * 2012-08-31 2014-12-16 Nuvoton Technology Corporation Semiconductor device and method of fabricating the same
KR101490937B1 (ko) * 2013-09-13 2015-02-06 현대자동차 주식회사 쇼트키 배리어 다이오드 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034646A (ja) * 2006-07-28 2008-02-14 Toshiba Corp 高耐圧半導体装置
JP2009105110A (ja) * 2007-10-22 2009-05-14 Toshiba Corp 半導体素子
JP2011187767A (ja) * 2010-03-10 2011-09-22 Toshiba Corp 半導体装置
WO2014208201A1 (ja) * 2013-06-27 2014-12-31 三菱電機株式会社 半導体装置およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168683A (ja) * 2016-03-16 2017-09-21 富士電機株式会社 半導体装置および半導体装置の製造方法
CN106409884A (zh) * 2016-11-07 2017-02-15 株洲中车时代电气股份有限公司 一种功率半导体器件终端结构
CN106409884B (zh) * 2016-11-07 2019-06-28 株洲中车时代电气股份有限公司 一种功率半导体器件终端结构
CN108735720A (zh) * 2017-04-25 2018-11-02 松下知识产权经营株式会社 半导体元件
JP2018186160A (ja) * 2017-04-25 2018-11-22 パナソニックIpマネジメント株式会社 半導体素子
CN108735720B (zh) * 2017-04-25 2023-04-07 松下知识产权经营株式会社 半导体元件
US10347713B2 (en) 2017-09-15 2019-07-09 Kabushiki Kaisha Toshiba Semiconductor device having a triple region resurf structure
JP2020017673A (ja) * 2018-07-26 2020-01-30 ラピスセミコンダクタ株式会社 半導体装置
JP7201288B2 (ja) 2018-07-26 2023-01-10 ラピスセミコンダクタ株式会社 半導体装置

Also Published As

Publication number Publication date
US20220037462A1 (en) 2022-02-03
US11257900B2 (en) 2022-02-22
JPWO2016043247A1 (ja) 2017-04-27
US11728377B2 (en) 2023-08-15
JP6265274B2 (ja) 2018-01-24
US20160372540A1 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6265274B2 (ja) 半導体装置
US10727304B2 (en) Semiconductor device
JP6512025B2 (ja) 半導体素子及び半導体素子の製造方法
US7777292B2 (en) Semiconductor device
US20200227549A1 (en) Semiconductor device and manufacturing process therefor
JP4943639B2 (ja) 半導体装置
CN108369963B (zh) 碳化硅超结功率器件的边缘终端设计
JP2003101039A (ja) 高耐圧半導体装置
JP2006005275A (ja) 電力用半導体素子
JP6064547B2 (ja) 半導体装置
JP2007266505A (ja) 電力用半導体素子
JP2007116190A (ja) 半導体素子およびその製造方法
JP2016208030A (ja) 半導体素子及びその製造方法
JP6649102B2 (ja) 半導体装置
JP5559232B2 (ja) 電力用半導体素子
WO2019242036A1 (zh) 一种碳化硅金属氧化物半导体场效应晶体管及其制造方法
US10032866B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP6104743B2 (ja) ショットキーダイオードを内蔵するfet
JP2008244371A (ja) ショットキバリア半導体装置とその製造方法
JP4998524B2 (ja) 半導体装置
JP6129117B2 (ja) 半導体装置及びその製造方法
JP2019021788A (ja) 半導体装置および半導体装置の製造方法
JP2014192433A (ja) 半導体装置
JP7078226B2 (ja) 半導体装置
WO2018168069A1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842156

Country of ref document: EP

Kind code of ref document: A1