JP7078226B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP7078226B2
JP7078226B2 JP2018135632A JP2018135632A JP7078226B2 JP 7078226 B2 JP7078226 B2 JP 7078226B2 JP 2018135632 A JP2018135632 A JP 2018135632A JP 2018135632 A JP2018135632 A JP 2018135632A JP 7078226 B2 JP7078226 B2 JP 7078226B2
Authority
JP
Japan
Prior art keywords
region
semiconductor
type
semiconductor region
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018135632A
Other languages
English (en)
Other versions
JP2020013916A (ja
Inventor
勇介 小林
学 武井
信介 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fuji Electric Co Ltd
Priority to JP2018135632A priority Critical patent/JP7078226B2/ja
Publication of JP2020013916A publication Critical patent/JP2020013916A/ja
Application granted granted Critical
Publication of JP7078226B2 publication Critical patent/JP7078226B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide

Description

この発明は、半導体装置に関する。
シリコン(Si)よりもバンドギャップの広い半導体(以下、ワイドバンドギャップ半導体とする)は、最大電界強度がシリコンより大きいため、オン抵抗を十分に小さくすることができる半導体材料として期待されている。また、ワイドバンドギャップ半導体を半導体材料として用いたパワー半導体装置では、低オン抵抗化、順方向特性劣化の抑制および逆回復損失の低減が求められている。
順方向特性劣化の抑制および逆回復損失の低減については、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属-酸化膜-半導体の3層構造からなる絶縁ゲートを備えたMOS型電界効果トランジスタ)と同一の半導体チップに、ショットキーバリアダイオード(SBD:Schottky Barrier Diode)を内蔵することで実現可能である。
従来の半導体装置について、炭化珪素を半導体材料とした場合を例に説明する。図14は、従来の半導体装置の構造を示す断面図である。図14に示す従来の半導体装置は、炭化珪素からなる半導体基板(半導体チップ)130のおもて面上に平板状にゲート電極109を設けたプレーナゲート構造の縦型MOSFETであり、同一の半導体基板130のおもて面上に平板状に配置したSBD(以下、平面SBDとする)120を内蔵する。
半導体基板130は、炭化珪素からなるn+型出発基板101上にn-型ドリフト領域102およびp型ベース領域104となる各炭化珪素層131,132を順にエピタキシャル成長させたエピタキシャル基板である。n-型炭化珪素層131の、n+型出発基板101側に対して反対側の表面層に、n型電流拡散領域103が設けられている。n型電流拡散領域103は、キャリアの広がり抵抗を低減させる機能を有する。n-型炭化珪素層131の、n型電流拡散領域103以外の部分がn-型ドリフト領域102である。n型電流拡散領域103の内部には、最下部p+型領域107が選択的に設けられている。
p型炭化珪素層132には、p型炭化珪素層132を深さ方向Zに貫通してn-型炭化珪素層131に達するn+型ソース領域105およびp++型コンタクト領域106がそれぞれ選択的に設けられている。また、p型炭化珪素層132には、n+型ソース領域105およびp++型コンタクト領域106と離してn型領域が設けられている。このn型領域は、炭化珪素層132を深さ方向Zに貫通して、下層のn型電流拡散領域103の、隣り合う最下部p+型領域107間に挟まれた部分に接して、n型電流拡散領域103(JFET領域103a)の一部をなす。
p型炭化珪素層132の、n+型ソース領域105、p++型コンタクト領域106およびJFET領域103a以外の部分がp型ベース領域104である。これら炭化珪素層131,132に形成された各領域103a,104~107は、半導体基板130のおもて面側から見て半導体基板130のおもて面に平行な方向(以下、第1方向とする)Xに延びる直線状のレイアウトに配置されている。n+型ソース領域105は、半導体基板130のおもて面に平行で、かつ第1方向Xと直交する方向(以下、第2方向とする)Yに、p型ベース領域104を挟んでJFET領域103aに対向する。
++型コンタクト領域106は、n+型ソース領域105の、JFET領域103a側に対して反対側に配置され、当該n+型ソース領域105に接する。JFET領域103aは、n型電流拡散領域103の、隣り合うp型ベース領域(p型ベース領域104および後述する最下部p+型領域107)間の領域である。最下部p+型領域107は、n型電流拡散領域103の内部において最もドレイン側に配置されたp+型領域であり、p型ベース領域104、n+型ソース領域105およびp++型コンタクト領域106のドレイン側(ドレイン電極113側)に、これらの領域に接して設けられている。
最下部p+型領域107は、p型ベース領域104、n+型ソース領域105およびp++型コンタクト領域106のドレイン側の全面を覆う。p型ベース領域104の、n+型ソース領域105とJFET領域103a(n型電流拡散領域103)との間の表面上に、ゲート絶縁膜108を介してゲート電極109が設けられている。導電層111は、n+型ソース領域105およびp++型コンタクト領域106にオーミック(ohmic)接触する。導電層121は、JFET領域103aにショットキー(shottky)接触する。ソース電極112は、導電層111,121に電気的に接続されている。
平面SBD120は、JFET領域103aと導電層121とのショットキー接触による整流作用を示すダイオードであり、JFET領域103aを挟んで隣り合うゲート電極109間に配置されている。ゲート電極109間に平面SBD120を配置することで、p++型コンタクト領域106、最下部p+型領域107、n型電流拡散領域103、n-型ドリフト領域102およびn+型出発基板(n+型ドレイン領域)101とのpn接合で形成される寄生pin(p-intrinsic-n)ダイオード動作による順方向劣化が抑制される。
図14には、半導体基板130とオーミック接触する導電層111と、半導体基板130とショットキー接触する導電層121と、をそれぞれ異なるハッチングで示す。符号RJFET,RDは、それぞれMOSFETのJFET(Junction FET)抵抗、および、MOSFETのドリフト抵抗(n-型ドリフト領域102の抵抗)である。符号AAは、MOSFETの1つの単位セルである。
従来のプレーナゲート構造の縦型MOSFETの別の一例として、n型ドリフト層の内部において、p型ベース領域の、p+型コンタクト領域(ソース電極とオーミック接触するp+型コンタクト領域)に深さ方向に対向する部分の直下(ドレイン側)に、p型ベース領域に接して、p+型コンタクト領域と略同じ幅のp型層を選択的に設けた装置が提案されている(例えば、下記特許文献1(第0019,0041段落、第1図)参照。)。
下記特許文献1では、サージ電圧発生時に、p型ベース領域とn型ドリフト層とのpn接合により形成される寄生pnダイオードのブレークポイントがp型ベース領域直下のp型層となる。サージ電圧発生時に半導体基板内部に流れる電流を、p型ベース領域直下のp型層からp+型コンタクト領域を通る経路でソース電極へ引き抜くことで、表面チャネル層への電流集中を抑制して耐圧を向上させている。
また、従来のプレーナゲート構造の縦型MOSFETとして、n-型ドリフト領域よりも不純物濃度の高いn型電流拡散領域をJFET領域のみに設けることで、JFET領域のキャリアの広がり抵抗を低減させた装置が提案されている(例えば、下記特許文献2(第0083段落、第21図)参照。)。
特開2009-016601号公報 特開2017-055145号公報
従来のプレーナゲート構造の縦型MOSFET(図14参照)では、最下部p+型領域107の直下の部分においてn型電流拡散領域103のキャリアの広がり抵抗Rspが高いと、p型ベース領域104、最下部p+型領域107、n型電流拡散領域103、n-型ドリフト領域102およびn+型出発基板101からなる寄生pinダイオードに順方向電圧が印加されやすい。この寄生pinダイオードは、最下部p+型領域107とn-型ドリフト領域102とのpn接合のビルトインポテンシャル(内蔵電位)を超える順方向電圧が印加されると動作してしまう。
n型電流拡散領域103のキャリアの広がり抵抗Rspは、最下部p+型領域107の幅L101で決まる。最下部p+型領域107の幅L101とは、n型電流拡散領域103からn+型出発基板101へ向かって流れる平面SBD120の順方向電流の電流経路からp++型コンタクト領域106側へ向かう方向Yにおける最下部p+型領域107の長さ(すなわち隣り合う平面SBD120の直下のJFET領域間の幅)である。
この最下部p+型領域107の幅L101が広いと、n型電流拡散領域103のキャリアの広がり抵抗Rspが高くなり、上記寄生pinダイオードが動作しやすいことが発明者により確認されている。最下部p+型領域107の幅L101は、プレーナゲート構造のMOSFETではp型ベース領域104、n+型ソース領域105およびp++型コンタクト領域106の条件(特にこれらの領域の幅)に依存して決定されるため、狭くすることが難しい。
例えば、MOSFETのセルピッチL102が10μm程度である場合、最下部p+型領域107の幅L101は8μm以上となってしまう。最下部p+型領域107の幅L101が8μm以上となると、後述するように最下部p+型領域107からn+型出発基板101へ向かう方向(深さ方向Z)に大電流(寄生pnダイオードの動作電流)が流れた場合に、寄生pnダイオード動作を抑制することが難しいことが発明者により確認されている(図6,7参照)。
図15は、従来の半導体装置の別の一例を示す断面図である。図15には、上記特許文献1の図1の縦型MOSFETを簡略化して示す。上記特許文献1においても、図14に示す従来の縦型MOSFETと同様に、p型ベース領域104’の最下部107’の幅(具体的にはp型ベース領域104’の最下部107’の、JFET領域103a’から隣接する他の単位セルまでの幅L101’)で、n型ドリフト領域102’のキャリアの広がり抵抗Rsp’が決まる。
n型ドリフト領域102’のキャリアの広がり抵抗Rsp’を低くするには、n-型ドリフト領域102’の不純物濃度を高くすればよいが、n型ドリフト領域102’の不純物濃度を高くするほど耐圧が低下してしまう。一方、所定耐圧を得るためにn型ドリフト領域102’の不純物濃度を低くした場合、n型ドリフト領域102’のキャリアの広がり抵抗Rsp’が高くなってしまう。
また、上記特許文献1においても、p型ベース領域104’の最下部107’の幅(=2×L101’)は、p+型コンタクト領域106’、n+型ソース領域105’およびチャネル領域104a’の幅に依存して広くなってしまう。このため、図14に示す従来の縦型MOSFETと同様に、p型ベース領域104’とn型ドリフト領域102’とのpn接合で形成される寄生pnダイオード動作を抑制することが難しいという問題が生じる。
チャネル領域104a’は、p型ベース領域104’の、n+型ソース領域105’とJFET領域103a’とに挟まれた部分である。図15において、符号101’は、n+型ドレイン領域であるn+型出発基板である。符号108’~113’は、それぞれゲート絶縁膜、ゲート電極、層間絶縁膜、半導体基板とオーミック接触する導電層、ソース電極、およびドレイン電極である。
この発明は、上述した従来技術による問題点を解消するため、同一の半導体基板にSBDを内蔵したMOS型半導体装置であって、寄生pinダイオード動作を抑制することができる半導体装置を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、トランジスタおよびショットキーバリアダイオードを備え、次の特徴を有する。シリコンよりもバンドギャップの広い半導体からなる半導体基板のおもて面に、シリコンよりもバンドギャップの広い半導体からなる第1導電型の第1半導体層が設けられている。前記第1半導体層の、前記半導体基板側に対して反対側の表面層に、前記第1半導体層よりも不純物濃度の高い第1導電型の第1半導体領域が設けられている。前記第1半導体層の、前記半導体基板側に対して反対側に、シリコンよりもバンドギャップの広い半導体からなる第2導電型の第2半導体層が設けられている。前記第2半導体層は、前記第1半導体領域を覆う。第1導電型の第2半導体領域は、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達する。
第1導電型の第3半導体領域は、前記第2半導体層に前記第2半導体領域と離して選択的に設けられている。前記第3半導体領域は、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達して前記第1半導体領域の一部をなす。前記第3半導体領域は、前記第1半導体層よりも不純物濃度が高い。第2導電型の第4半導体領域は、前記第2半導体層の、前記第2半導体領域および前記第3半導体領域以外の部分である。前記第4半導体領域の、前記第2半導体領域と前記第3半導体領域とに挟まれた部分の表面上に、ゲート絶縁膜を介してゲート電極が設けられている。第1電極は、前記第2半導体領域および前記第4半導体領域に電気的に接続されている。第2電極は、前記半導体基板の裏面に設けられている。
前記トランジスタは、前記第1,2半導体層、前記第1~4半導体領域、前記ゲート電極および前記第1,2電極を有する。前記ショットキーバリアダイオードは、前記第3半導体領域と、前記第3半導体領域にショットキー接触し、かつ前記第1電極に電気的に接続された導電層と、からなる。前記第1半導体領域の内部には、前記第4半導体領域よりも不純物濃度の高い、第2導電型の第5半導体領域および第2導電型の第1~3埋め込み領域がそれぞれ選択的に設けられている。前記第5半導体領域は、深さ方向に前記第2半導体領域および前記第4半導体領域と対向して配置され、かつ前記第2半導体領域および前記第4半導体領域の前記第2電極側の面を覆う。前記第1埋め込み領域は、前記第5半導体領域よりも前記第2電極側に2段以上配置されている。
2段以上の前記第1埋め込み領域は、深さ方向に前記第5半導体領域に対向し、かつ前記第1電極側から前記第2電極側へ向かって多段に積層されて互いに接し積層構造をなす。前記第2埋め込み領域は、前記第5半導体領域および前記第1埋め込み領域と離して配置され、かつ深さ方向に前記第3半導体領域に対向する。前記第3埋め込み領域は、前記第1埋め込み領域のうちの最も前記第2電極側に配置された最下部埋め込み領域と、前記第2埋め込み領域と、の間に配置され、前記最下部埋め込み領域と前記第2埋め込み領域とを連結する。前記第1埋め込み領域のうちの最も前記第1電極側に配置された最上部埋め込み領域は、前記第5半導体領域に接する。前記最下部埋め込み領域の幅は、前記第5半導体領域の幅よりも狭い。
また、この発明にかかる半導体装置は、上述した発明において、前記第4半導体領域、前記第5半導体領域、前記第1埋め込み領域、前記第3半導体領域、前記第1半導体層および前記半導体基板からなる寄生ダイオードの臨界電流密度は3000A/cm2以上である。前記トランジスタのセルピッチは10μmである。前記最下部埋め込み領域の幅は8μm以下であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記ゲート電極は、前記半導体基板のおもて面に平行な第1方向に延びる直線状のレイアウトに配置されている。前記第1埋め込み領域および前記第2埋め込み領域は、前記第1方向に延びる直線状のレイアウトに配置されている。前記第3埋め込み領域は、前記半導体基板のおもて面に平行で、かつ前記最下部埋め込み領域と直交する第2方向に延びる直線状のレイアウトに配置され、前記最下部埋め込み領域と十字状のレイアウトをなす。前記最下部埋め込み領域の、前記第2方向に前記第3埋め込み領域と対向する矩形状の平面形状部分の対角線の長さは8μm以下であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記ゲート電極は、前記半導体基板のおもて面に平行な第1方向に延びる直線状のレイアウトに配置されている。前記第1埋め込み領域および前記第2埋め込み領域は、前記第1方向に延びる直線状のレイアウトに配置されている。前記第3埋め込み領域は、前記半導体基板のおもて面に平行で、かつ前記最下部埋め込み領域と直交する第2方向に延びる直線状のレイアウトに配置され、前記最下部埋め込み領域とT字状のレイアウトをなす。前記最下部埋め込み領域の、前記第2方向に前記第3埋め込み領域と対向する矩形状の平面形状部分を前記第2方向に平行な中心線で分割した矩形状の分割部分の対角線の長さは8μm以下であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記最下部埋め込み領域の、前記第2方向に前記第3埋め込み領域と対向する前記矩形状の平面形状部分は、当該矩形状の平面形状部分の頂点を、当該矩形状の平面形状部分の中心側に凹むように切欠いた切欠き部を有する平面形状を有することを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第1半導体領域の内部に、前記第1半導体領域よりも不純物濃度の高い第1導電型の第6半導体領域をさらに備えることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達し、前記第2半導体領域に対して前記第3半導体領域と反対側に、前記第2半導体領域に接して配置された、前記第2半導体層よりも不純物濃度の高い第2導電型の第7半導体領域をさらに備える。前記第4半導体領域は、前記第2半導体層の、前記第2半導体領域、前記第3半導体領域および前記第7半導体領域以外の部分である。前記第5半導体領域は、深さ方向に前記第2半導体領域、前記第4半導体領域および前記第7半導体領域と対向して選択的に設けられ、かつ前記第2半導体領域、前記第4半導体領域および前記第7半導体領域の前記第2電極側の面を覆うことを特徴とする。
上述した発明によれば、第5半導体領域の直下(第2電極側)に第1埋め込み領域を多段に配置し、単位セル内のドリフト領域に接する寄生JFETの数を2つ以上に増やすことで、寄生pinダイオードの順方向動作時における第3半導体領域のキャリアの広がり抵抗が、最も第2電極側に配置された第1埋め込み領域(最下部埋め込み領域)の幅で決まる。かつ、最下部埋め込み領域の幅は、第3,4,7半導体領域の条件に依存しないため、第5半導体領域の幅よりも狭い例えば8μm以下程度にすることができる。このため、寄生pinダイオードの順方向動作時における第3半導体領域のキャリアの広がり抵抗を抑制することができる。
本発明にかかる半導体装置によれば、同一の半導体基板にSBDを内蔵したMOS型半導体装置であって、寄生pinダイオード動作を抑制することができるという効果を奏する。
実施の形態1にかかる半導体装置の構造を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の一部を半導体基板のおもて面側から見たレイアウトを示す平面図である。 実施の形態1にかかる半導体装置の一部を半導体基板のおもて面側から見たレイアウトの別の一例を示す平面図である。 実施の形態1にかかる半導体装置の一部を半導体基板のおもて面側から見たレイアウトの別の一例を示す平面図である。 実施の形態2にかかる半導体装置の構造を示す断面図である。 同一の半導体基板に配置されたpinダイオードおよびユニポーラ素子間の距離とバイポーラ電流との関係を示す特性図である。 図12の検証に用いた試料の断面構造を示す断面図である。 従来の半導体装置の構造を示す断面図である。 従来の半導体装置の別の一例を示す断面図である。
以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
実施の形態1にかかる半導体装置は、シリコン(Si)よりもバンドギャップが広い半導体(ワイドバンドギャップ半導体とする)を用いて構成される。この実施の形態1にかかる半導体装置の構造について、ワイドバンドギャップ半導体として例えば炭化珪素(SiC)を用いた場合を例に説明する。図1は、実施の形態1にかかる半導体装置の構造を示す断面図である。図1には、MOSFETの1つの単位セル(素子の構成単位)の断面構造と、当該単位セルの両側にそれぞれ隣接する他の単位セルの1/2の断面構造と、を示す(図2~8においても同様)。
また、図1には、活性領域に配置された一部の単位セルのみを図示し、活性領域の周囲を囲むエッジ終端領域を図示省略する(図11においても同様)。活性領域とは、MOSFETの主電流が流れる領域である。エッジ終端領域は、活性領域と半導体基板(半導体チップ)30の側面との間の領域であり、半導体基板30のおもて面側の電界を緩和して耐圧(耐電圧)を保持する領域である。エッジ終端領域には、例えばガードリングやフィールドプレート、リサーフ等の一般的な耐圧構造が配置される。耐圧とは、半導体装置が誤動作や破壊を起こさない限界の電圧である。
図1に示す実施の形態1にかかる半導体装置は、炭化珪素からなる半導体基板30のおもて面上に平板状にゲート電極9を設けたプレーナゲート構造の縦型MOSFETであり、同一の半導体基板30のおもて面上に平板状に配置したSBD(平面SBD)20を内蔵する。半導体基板30は、炭化珪素からなるn+型出発基板1のおもて面上にn-型ドリフト領域2およびp型ベース領域(第4半導体領域)4となる各炭化珪素層31,32を順にエピタキシャル成長させたエピタキシャル基板である。
-型炭化珪素層31の、n+型出発基板1側に対して反対側の表面層には、n型電流拡散領域(第1半導体領域)3が設けられている。n型電流拡散領域3は、キャリアの広がり抵抗を低減させる、いわゆる電流拡散層(Current Spreading Layer:CSL)である。このn型電流拡散領域3は、例えば、n-型炭化珪素層31へのn型不純物のイオン注入により、半導体基板30のおもて面に平行な方向(横方向:後述する第1,2方向X,Y)に一様に設けられている。n-型炭化珪素層31の、n型電流拡散領域3以外の部分がn-型ドリフト領域2である。
n型電流拡散領域3の表面領域には、第1p+型領域(第5半導体領域)7が選択的に設けられている。第1p+型領域7は、p型ベース領域4とともに、MOSFETのp型ベース領域として機能する。また、n型電流拡散領域3の内部には、第1p+型領域7よりもドレイン側(ドレイン電極(第2電極)13側)に深い位置に、第2~4p+型領域41~43がそれぞれ選択的に設けられている。第1p+型領域7および第2~4p+型領域41~43は、後述するp++型コンタクト領域6を介してソース電極(第1電極)12の電位(ソース電位)に固定されている。第2,3p+型領域(第1埋め込み領域)41,42は、寄生pinダイオードの順方向動作時に、第3p+型領域42の直下(ドレイン側)におけるn型電流拡散領域3のキャリアの広がり抵抗Rspを低減する機能を有する。
p型炭化珪素層32は、例えば活性領域においてn-型炭化珪素層31の、n+型出発基板1側に対して反対側の全面に設けられ、第1p+型領域7を覆う。すなわち、エッジ終端領域においては、半導体基板30のおもて面は、炭化珪素層31の、n+型出発基板1側に対して反対側の表面である(不図示)。p型炭化珪素層32には、深さ方向Zに第1p+型領域7に対向する位置に、n+型ソース領域(第2半導体領域)5およびp++型コンタクト領域(第7半導体領域)6がそれぞれ選択的に設けられている。n+型ソース領域5およびp++型コンタクト領域6は、炭化珪素層32を深さ方向Zに貫通して、第1p+型領域7に達する。深さ方向Zとは、半導体基板30のおもて面から裏面へ向かう方向(縦方向)である。
また、p型炭化珪素層32には、n+型ソース領域5およびp++型コンタクト領域6と離して、p型炭化珪素層32をイオン注入により打ち返してなるn型領域(以下、n型打ち返し領域(第3半導体領域)とする)が設けられている。このn型打ち返し領域は、p型炭化珪素層32を深さ方向Zに貫通して、n型電流拡散領域3の、隣り合う第1p+型領域7間に挟まれた部分に接し、当該n型電流拡散領域3(JFET領域3a)の一部をなす。p型炭化珪素層32の、n+型ソース領域5、p++型コンタクト領域6およびn型打ち返し領域(JFET領域3a)以外の部分がp型ベース領域4である。
これらJFET領域3a、p型ベース領域4、n+型ソース領域5、p++型コンタクト領域6および第1~4p+型領域7,41~43は、半導体基板30のおもて面側から見て半導体基板30のおもて面に平行な方向(第1方向)Xに延びる直線状のレイアウトに配置されている。n型電流拡散領域3の、隣り合うp型ベース領域(p型ベース領域4および第1p+型領域7)間に挟まれた部分がJFET領域3aである。n+型ソース領域5は、半導体基板30のおもて面に平行で、かつ第1方向Xと直交する方向(第2方向)Yに、p型ベース領域4を挟んでJFET領域3aに対向する。
++型コンタクト領域6は、n+型ソース領域5の、JFET領域3a側に対して反対側に、当該n+型ソース領域5に接して配置されている。具体的には、p++型コンタクト領域6の第2方向Yの両側にn+型ソース領域5が配置され、n+型ソース領域5の、p++型コンタクト領域6側に対して反対側にp型ベース領域4が配置されている。かつp型ベース領域4の、n+型ソース領域5側に対して反対側にJFET領域3aが配置されている。すなわち、p++型コンタクト領域6の第2方向Yの両側に、n+型ソース領域5、p型ベース領域4およびJFET領域3aが対称に配置されている。
第1p+型領域7は、p型ベース領域4、n+型ソース領域5およびp++型コンタクト領域6のドレイン側において、これらの領域に深さ方向に対向する。かつ、第1p+型領域7は、p型ベース領域4、n+型ソース領域5およびp++型コンタクト領域6のドレイン側に接し、これらの領域のドレイン側の全面を覆う。すなわち、第1p+型領域7の幅(第2方向Yの幅)L11は、p型ベース領域4、n+型ソース領域5およびp++型コンタクト領域6の各幅に依存して設定される。具体的には、第1p+型領域7の幅L11は、p型ベース領域4、n+型ソース領域5およびp++型コンタクト領域6の各幅の略総和である。
第2,3p+型領域41,42は、深さ方向Zに第1p+型領域7に対向する位置に配置され、かつソース側(ソース電極12側)からドレイン側へ向かって多段に積層された積層構造をなす。具体的には、第2p+型領域(最上部埋め込み領域)41は、第1p+型領域7の直下で、かつ深さ方向Zにp++型コンタクト領域6に対向する位置に、第1p+型領域7に接して配置されている。隣り合う第2p+型領域41間に挟まれた部分は、深さ方向ZにJFET領域3aに対向して配置され、当該JFET領域3aに接し、JFET領域3bとして機能する。
第3p+型領域(最下部埋め込み領域)42は、第2p+型領域41の直下で、かつ深さ方向Zにp++型コンタクト領域6に対向する位置に、第2p+型領域41に接して配置されている。隣り合う第3p+型領域42間に挟まれた部分は、深さ方向ZにJFET領域3bに対向して配置され、当該JFET領域3bに接し、JFET領域3cとして機能する。第3p+型領域42は、n-型ドリフト領域2とn型電流拡散領域3との界面よりもソース側に位置する。第2,3p+型領域41,42を設けることで、単位セル当たりのJFET領域の個数(JFET領域3a~3c)を増やすことができる。
第2,3p+型領域41,42の幅(第2方向Yの幅)L1,L2は、p型ベース領域4、n+型ソース領域5およびp++型コンタクト領域6の各幅に依らず設定可能である。このため、単位セル当たりのJFET領域の個数を深さ方向Zに積層されるように増やすことで、平面SBD20の順方向電流の電流経路に対して最下部p+型領域の幅を第1p+型領域7の幅L11よりも狭くすることができる。最下部p+型領域とは、n型電流拡散領域3の内部において深さ方向Zにp++型コンタクト領域6に対向する第1~3p+型領域7,41,42のうち、最もドレイン側に配置されたp+型領域(すなわち第3p+型領域42)である。最下部p+型領域の幅とは、n型電流拡散領域3からn+型出発基板1へ向かって流れる平面SBD20の順方向電流の電流経路から第2方向Yへの最下部p+型領域の長さであり、具体的には第3p+型領域42の幅L2である。
第2,3p+型領域41,42の幅L1,L2は、第1p+型領域7の幅L11よりも狭い。第2,3p+型領域41,42の幅L1,L2は、p++型コンタクト領域6の幅L12よりも広くてもよい。第3p+型領域42の幅L2は狭いほどよい。その理由は、最下部p+型領域である第3p+型領域42の幅L2を狭くするほど、後述する寄生pinダイオードの順方向動作時におけるn型電流拡散領域3のキャリアの広がり抵抗Rspを低くすることができるからである。具体的には、第3p+型領域42の幅L2は、MOSFETのセルピッチ(単位セルの第2方向Yの幅)L10が10μmである場合、例えば8μm以下程度である。また、第3p+型領域42の幅L2は、第2p+型領域41の幅L1と同じであってもよいし、第2p+型領域41の幅L1よりも狭くてもよい。
第4p+型領域(第2埋め込み領域)43は、隣り合う第3p+型領域42間に挟まれた部分(すなわちJFET領域3c)に、第2,3p+型領域41,42および第1p+型領域7と離して配置されている。第4p+型領域43は、p+型領域42の間において、第2方向Yにn型電流拡散領域3を挟んで複数個配置してもよい。また、第4p+型領域43は、図示省略する部分で第3p+型領域42に連結されている。第3p+型領域42と第4p+型領域43との連結部(第5p+型領域(第3埋め込み領域)44:図8~10参照)を半導体基板30のおもて面側から見たレイアウトについては、後述する実施の形態3で説明する。第4p+型領域43の幅(第2方向Yの幅)L3は、第3p+型領域42の幅L2と同じであってもよい。
p型ベース領域4の、n+型ソース領域5とJFET領域3a(n型電流拡散領域3)との間の表面上に、ゲート絶縁膜8を介してゲート電極9が設けられている。ゲート電極9は、半導体基板30のおもて面側から見て第1方向Xに延びるストライプ状のレイアウトに配置されている。半導体基板30のおもて面の全面に、ゲート電極9を覆うように層間絶縁膜10が設けられている。層間絶縁膜10には、隣り合うゲート電極9間において、層間絶縁膜10およびゲート絶縁膜8を深さ方向Zに貫通して半導体基板30のおもて面に達する第1,2コンタクトホール10a,10bが設けられている。
各第1,2コンタクトホール10a,10bは、例えば半導体基板30のおもて面側から見て第1方向Xに延びる直線状のレイアウトに配置されている。また、第1コンタクトホール10aと第2コンタクトホール10bとは、第2方向Yに交互に繰り返し配置されている。第1コンタクトホール10aには、n+型ソース領域5およびp++型コンタクト領域6が露出されている。第1コンタクトホール10aの内部において、n+型ソース領域5は第2方向Yの両側に配置された各ゲート電極9側にそれぞれ露出され、例えばこれらn+型ソース領域5の間にp++型コンタクト領域6が露出されている。
第1コンタクトホール10aの内部において、半導体基板30のおもて面(n+型ソース領域5およびp++型コンタクト領域6の表面)上には、半導体基板30とオーミック(ohomic)接触する導電層11が設けられている。第2コンタクトホール10bには、JFET領域3a(n型電流拡散領域3)が露出されている。第2コンタクトホール10bの内部において、半導体基板30のおもて面(JFET領域3aの表面)上には、半導体基板30とショットキー(schottky)接触する導電層21が設けられている。このように導電層11,21を配置することで、MOSFETの各単位セルAにそれぞれ1つの平面SBD20が配置される。
具体的には、JFET領域3aを挟んで隣り合うゲート電極9間に、JFET領域3aと導電層21とのショットキー接触による整流作用を示す平面SBD20が配置される。平面SBD20は、MOSFETのp++型コンタクト領域6、第1~3p+型領域7,41,42、n型電流拡散領域3、n-型ドリフト領域2およびn+型出発基板1(n+型ドレイン領域)からなる寄生pinダイオードの順方向バイアス時に、当該寄生pinダイオードよりも低い電圧で、当該寄生pinダイオードよりも早くオンする。したがって、ゲート電極9間においてJFET領域3a上に平面SBD20を設けることで、MOSFETの当該寄生pinダイオード動作が抑制される。
平面SBD20を挟んで隣り合う2つのゲート電極9と、これらのゲート電極9の、平面SBD20側に対して反対側の各オーミックコンタクト(半導体部と導電層11との電気的接触部)と、でMOSFETの1つの単位セルAが構成される。図1には、半導体基板30とオーミック接触する導電層11と、半導体基板30とショットキー接触する導電層21と、をそれぞれ異なるハッチングで示す(図11においても同様)。図1において、符号RJFET,RDは、それぞれMOSFETのJFET抵抗(JFET領域3a~3cの抵抗)、および、MOSFETのドリフト抵抗(n-型ドリフト領域2の抵抗)である。
ソース電極12は、第1,2コンタクトホール10a,10bの内部に埋め込むように、半導体基板30のおもて面上に設けられている。ソース電極12は、導電層11に接し、当該導電層11を介してn+型ソース領域5およびp++型コンタクト領域6に電気的に接続されている。また、ソース電極12は、導電層21に接し、当該導電層21を介してJFET領域3aに電気的に接続されている。ソース電極12および導電層11,21は、層間絶縁膜10によりゲート電極9と電気的に絶縁されている。n+型ドレイン領域であるn+型出発基板1の裏面(半導体基板30の裏面)には、ドレイン電極13が設けられている。
次に、実施の形態1にかかる半導体装置の製造方法について説明する。図2~7は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。まず、図2に示すように、n+型ドレイン領域となるn+型出発基板(出発ウエハ)1を用意する。次に、n+型出発基板1のおもて面に、n-型炭化珪素層31をエピタキシャル成長させる。次に、図3に示すように、フォトリソグラフィおよびp型不純物のイオン注入により、n-型炭化珪素層31の表面層に、第3,4p+型領域42,43をそれぞれ選択的に形成する。
次に、フォトリソグラフィおよびn型不純物のイオン注入により、n-型炭化珪素層31の表面層に、例えば活性領域の全域にわたって、n型電流拡散領域3の一部となるn型領域(以下、n型部分領域とする)51を形成する。このとき、n型部分領域51の深さは第3,4p+型領域42,43の深さよりも深いほうが好ましい、第3,4p+型領域42,43のドレイン側(n+型出発基板1側)全体をn型部分領域51で覆う。n-型炭化珪素層31の、n型部分領域51よりもドレイン側の部分がn-型ドリフト領域2となる。n型部分領域51と第3,4p+型領域42,43との形成順序を入れ替えてもよい。
次に、図4に示すように、n-型炭化珪素層31上にさらにn-型炭化珪素層をエピタキシャル成長させて、n-型炭化珪素層31の厚さを厚くする。次に、フォトリソグラフィおよびp型不純物のイオン注入により、n-型炭化珪素層31の厚さを増した部分31aにおいて、下層の第3p+型領域42に深さ方向Zに対向する部分に、第3p+型領域42に達する深さで、第2p+型領域41を選択的に形成する。
次に、フォトリソグラフィおよびn型不純物のイオン注入により、n-型炭化珪素層31の厚さを増した部分31aに、例えば活性領域の全域にわたって、下層のn型部分領域51に達する深さで、n型電流拡散領域3の一部となるn型部分領域52を形成する。n型部分領域52の不純物濃度は、n型部分領域51と略同じである。n型部分領域52と第2p+型領域41との形成順序を入れ替えてもよい。
次に、図5に示すように、n-型炭化珪素層31上に、さらにn-型炭化珪素層をエピタキシャル成長させて、n-型炭化珪素層31の厚さを厚くする。次に、フォトリソグラフィおよびp型不純物のイオン注入により、n-型炭化珪素層31の厚さを増した部分31bにおいて、下層の第2p+型領域41に深さ方向Zに対向する部分に、第2p+型領域41に達する深さで、第1p+型領域7を選択的に形成する。
次に、フォトリソグラフィおよびn型不純物のイオン注入により、n-型炭化珪素層31の厚さを増した部分31bに、例えば活性領域の全域にわたって、下層のn型部分領域52に達する深さで、n型電流拡散領域3の一部となるn型部分領域53を形成する。n型部分領域53の不純物濃度は、n型部分領域51,52と略同じである。n型部分領域53と第1p+型領域7との形成順序を入れ替えてもよい。
上述したn-型炭化珪素層31の厚さを増すことに代えて、n-型炭化珪素層31上にn型電流拡散領域3と同じ不純物濃度の2つのn型炭化珪素層をエピタキシャル成長させてもよい。この場合、n型部分領域52,53を形成するためのイオン注入を省略可能であり、各n型炭化珪素層をエピタキシャル成長させるごとにそれぞれ第1,2p+型領域7,41を形成すればよい。
次に、図6に示すように、n-型炭化珪素層31上に、n型またはp型の炭化珪素層32を所定の厚さでエピタキシャル成長させる。ここでは、p型の炭化珪素層32をエピタキシャル成長させた場合を例に説明する。これにより、n+型出発基板1のおもて面上にn-型炭化珪素層31および炭化珪素層32を順に堆積してなる半導体基板(半導体ウエハ)30が形成される。半導体基板30のn-型炭化珪素層31の内部には、イオン注入により形成された第1~4p+型領域7,41~43が選択的に埋め込まれる。
次に、図7に示すように、フォトリソグラフィおよびイオン注入を一組とする工程を異なる条件で繰り返し行い、p型炭化珪素層32の表面層に、n+型ソース領域5、p++型コンタクト領域6およびn型部分領域54をそれぞれ選択的に形成する。n型部分領域54は、n型電流拡散領域3の一部となる。n+型ソース領域5、p++型コンタクト領域6およびn型部分領域54の形成順序を入れ替えてもよい。
このとき、n+型ソース領域5およびp++型コンタクト領域6は、下層の第1p+型領域7に達する深さで形成する。n型部分領域54は、下層のn型部分領域53に達する深さで形成する。p型炭化珪素層32の、n+型ソース領域5、p++型コンタクト領域6およびn型部分領域54以外の部分がp型ベース領域4となる。n型部分領域51~54が深さ方向Zに連結されて、n型電流拡散領域3が形成される。
次に、イオン注入で形成したすべての領域について、不純物を活性化させるための熱処理(活性化アニール)を行う。次に、例えば半導体基板30のおもて面を熱酸化して、ゲート絶縁膜8を形成する。次に、ゲート絶縁膜8上にポリシリコン層を堆積(形成)してパターニングして、ポリシリコン層のゲート電極9となる部分を、p型ベース領域4の、n+型ソース領域5とn型電流拡散領域3との挟まれた部分の表面上にのみ残す。
次に、半導体基板30のおもて面の全面に、ゲート電極9を覆うように層間絶縁膜10を堆積(形成)する。次に、フォトリソグラフィおよびエッチングにより層間絶縁膜10およびゲート絶縁膜8を部分的に除去し、層間絶縁膜10およびゲート絶縁膜8を深さ方向Zに貫通して半導体基板30に達する第1,2コンタクトホール10a,10bを形成する。第1コンタクトホール10aにはn+型ソース領域5およびp++型コンタクト領域6が露出され、第2コンタクトホール10bにはn型電流拡散領域3(JFET領域3a)が露出される。
次に、第1コンタクトホール10aの内部に、半導体基板30とオーミック接触する導電層11を形成する。第2コンタクトホール10bの内部に、半導体基板30とショットキー接触する導電層21を形成する。次に、第1,2コンタクトホール10a,10bの内部に埋め込むように、活性領域において半導体基板30のおもて面上にソース電極12を形成する。半導体基板30の裏面全面にドレイン電極13を形成する。その後、半導体ウエハをダイシング(切断)して個々のチップ状に個片化することで、図1に示すMOSFETが完成する。
次に、第3p+型領域42と第4p+型領域43との連結部(第5p+型領域44)を半導体基板30のおもて面側から見たレイアウトについて説明する。図8は、実施の形態1にかかる半導体装置の一部を半導体基板のおもて面側から見たレイアウトを示す平面図である。図9,10は、実施の形態1にかかる半導体装置の一部を半導体基板のおもて面側から見たレイアウトの別の一例を示す平面図である。図8~10には、第3p+型領域42と第4p+型領域43とを連結する第5p+型領域44のレイアウトを示す。
上述したように、第3,4p+型領域42,43は、第1方向Xに延びる直線状のレイアウトに配置されている。かつ、第4p+型領域43は、隣り合う第3p+型領域42間に挟まれた部分(JFET領域3c)に配置されている。すなわち、第3,4p+型領域42,43は、第2方向Yに交互に繰り返し配置され、かつ第1方向Xに延びるストライプ状のレイアウトに配置されている。第3p+型領域42と第4p+型領域43とは、第5p+型領域44により連結されている。
第5p+型領域44は、隣り合う第3p+型領域42と第4p+型領域43との間において第2方向Yに延びる直線状のレイアウトに配置され、当該第3,4p+型領域42,43とに接する。第5p+型領域44は、同一の隣り合う第3p+型領域42と第4p+型領域43との間に、互いに離して複数設けられていてもよい。第5p+型領域44の幅(第1方向の幅)L4は、例えば、第3p+型領域42の幅L2と同じであってもよい。図8~10には、第3~5p+型領域42~44をハッチングで示す。図8~10においてハッチング以外の部分は、n型電流拡散領域3(JFET領域3c)である。
第5p+型領域44の配置は種々変更可能である。例えば、図8に示すように、第5p+型領域44同士が第3p+型領域42を挟んで第2方向Yに隣り合っていてもよい。この場合、n型電流拡散領域3の、深さ方向Zに第1p+型領域7(図1参照)に対向する部分に、第3p+型領域42と、当該第3p+型領域42と直交し、かつ当該第3p+型領域42を挟んで隣り合う第5p+型領域44と、が十字状のレイアウトに配置される。第3p+型領域42の、第2方向Yに第5p+型領域44と対向する矩形状の平面形状部分(十字状の中心部分)42aの対角線の長さL5が8μm以下程度に設定される。
また、図9に示すように、第5p+型領域44同士が第3p+型領域42を挟んで第2方向Yに隣り合わないように配置されてもよい。この場合、n型電流拡散領域3の、深さ方向Zに第1p+型領域7(図1参照)に対向する部分に、第3p+型領域42と、当該第3p+型領域42と直交する第5p+型領域44と、がT字状のレイアウトに配置される。第3p+型領域42の、第2方向Yに第5p+型領域44と対向する矩形状の平面形状部分42bを第2方向Yに平行な中心線Y’で分割した矩形状の分割部分42cの対角線の長さL6が8μm以下程度に設定される。
また、第3p+型領域42と第5p+型領域44とを十字状のレイアウトに配置した場合に(図8参照)、第3p+型領域42の、第2方向Yに第5p+型領域44と対向する略矩形状の平面形状部分42a’は、当該略矩形状の平面形状部分42a’の各頂点を、当該略矩形状の平面形状部分42a’の中心側に凹むように切欠いた(えぐる)切欠部45を有する平面形状としてもよい。これにより、第3p+型領域42の、第2方向Yに第5p+型領域44と対向する略矩形状の平面形状部分42a’の対角線の長さ(当該略矩形状の平面形状部分42a’の対角線上に位置する切欠部45間の距離)L5’を、第3,5p+型領域42,44の幅L2,L4よりも短くすることができる。
第3p+型領域42と第5p+型領域44とをT字状のレイアウトに配置(図9参照)した場合においても、第3p+型領域42の、第2方向Yに第5p+型領域44と対向する矩形状の平面形状部分42a’を、第5p+型領域44と接触する各頂点に切欠部45を有する平面形状としてもよい。この場合、第3p+型領域42の、第2方向Yに第5p+型領域44と対向する矩形状の平面形状部分42bを第2方向Yに平行な中心線Y’で分割した矩形状の分割部分42cの対角線の長さL6を、第3,5p+型領域42,44の幅L2,L4よりも短くすることができる。図10には、切欠部45の平面形状を円形状とした場合を示すが、切欠部45の平面形状は種々変更可能である。
以上、説明したように、実施の形態1によれば、n型電流拡散領域の内部において、p型ベース領域、n+型ソース領域およびp++型コンタクト領域の直下にこれらの領域に接して配置され、これらの領域の条件(不純物濃度及び幅)に依存してその幅が決まる第1p+型領域の直下に、第2,3p+型領域が深さ方向に多段に積層して配置されている。第1p+型領域の直下に第2,3p+型領域を多段に配置し、単位セル内のドリフト領域に接する寄生JFET(n型電流拡散領域の、第2p+型領域と第4p+型領域との間や、第2p+型領域と第4p+型領域との間、に挟まれた領域)の数を2つ以上に増やすことで、寄生pinダイオードの順方向動作時におけるn型電流拡散領域のキャリアの広がり抵抗が最下部p+型領域(第3p+型領域)の幅で決まる。また、最下部p+型領域の幅は、p型ベース領域、n+型ソース領域およびp++型コンタクト領域の条件に依存しないため、第1p+型領域の幅よりも狭い8μm以下程度にすることができる。このため、寄生pinダイオードの順方向動作時におけるn型電流拡散領域のキャリアの広がり抵抗を抑制することができ、寄生pinダイオードに大電流(例えば3000A/cm2以上程度の動作電流)が流れた場合であっても、寄生pinダイオード動作を抑制することができる。
(実施の形態2)
次に、実施の形態2にかかる半導体装置の構造について説明する。図11は、実施の形態2にかかる半導体装置の構造を示す断面図である。実施の形態2にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、n型電流拡散領域3の内部に、n型電流拡散領域3よりも不純物濃度の高いn+型領域(第6半導体領域)61を設けた点である。
+型領域61は、n型電流拡散領域3の内部において、半導体基板30のおもて面から、最下部p+型領域(第3p+型領域42)のドレイン側の面までの深さに、半導体基板30のおもて面に平行な方向(横方向)に一様に配置される。例えば、n+型領域61は深さ方向Zに例えばJFET領域3a,3bにわたる厚さtで配置されてもよく、この場合、n+型領域61は第1,2p+型領域7,41に接する。
以上、説明したように、実施の形態2によれば、実施の形態1と同様の効果を得ることができる。また、実施の形態2によれば、n型電流拡散領域の内部に、n型電流拡散領域よりも不純物濃度の高いn+型領域を設けることで、JFET抵抗(JFET領域の抵抗)を低減させることができる。
(実施例)
次に、第3p+型領域42の幅L2の上限値について検証した。図12は、同一の半導体基板に配置されたpinダイオードおよびユニポーラ素子間の距離とバイポーラ電流との関係を示す特性図である。図12の横軸は、図13のpinダイオード70aおよびユニポーラ素子70b間の距離Cである。図12の縦軸は、ユニポーラ素子70bの電流量に対する半導体基板75に配置されたバイポーラ素子(不図示)の電流量の割合(=バイポーラ素子の電流量/ユニポーラ素子の電流量)である。
ユニポーラ素子70bの電流量に対する半導体基板75に配置されたバイポーラ素子の電流量の割合(以下、バイポーラ電流比とする)が10%未満の範囲B1であれば、pinダイオード動作による順方向劣化が生じない、または、製品の推奨仕様(使用年数等)に耐え得る特性が得られる程度にバイポーラ電流の電流量が少ないことが発明者により確認されている。したがって、バイポーラ電流比が1×10-1以上の範囲B2である場合(すなわちユニポーラ素子70bの電流量よりもバイポーラ素子の電流量が10%以上多い場合)に、バイポーラ素子にpinダイオード動作による順方向劣化が生じているとする。
図13は、図12の検証に用いた試料の断面構造を示す断面図である。図13に示す試料は、バイポーラ素子(不図示)と同一の半導体基板75にユニポーラ素子70bを内蔵する。半導体基板75は、炭化珪素からなるn+型出発基板71にn-型層72をエピタキシャル成長させた炭化珪素エピタキシャル基板である。n-型層72の、n+型出発基板71側に対して反対側の表面層(半導体基板75のおもて面の表面層)に、2つのp型領域73を互いに離して選択的に形成した。n-型層72の、2つのp型領域73に挟まれた部分(以下、JFET領域とする)74の幅wJFETを1.0μmとした。
同一の半導体基板75に配置された図示省略するバイポーラ素子を、本発明にかかるMOSFET(図1参照)のn型電流拡散領域3、p型ベース領域4およびn+型ソース領域5からなる縦型の寄生npnバイポーラトランジスタ(ボディーダイオード)と仮定する。p型領域73とn-型層72およびn+型出発基板71とのpn接合で形成されるpinダイオード70aを、本発明にかかるMOSFET(図1参照)のp型ベース領域4および第1~3p+型領域7,41,42とn型電流拡散領域3とのpn接合で形成される寄生pnダイオードと仮定する。JFET領域74と導電層(不図示)とからなるユニポーラ素子70bを、図1の平面SBD20と仮定する。
図13に示す試料においてバイポーラ素子をオンしたときにおける、バイポーラ電流比(ユニポーラ素子70bの電流量に対する半導体基板75に配置されたバイポーラ素子の電流量の割合)と、pinダイオード70aとユニポーラ素子70bとの距離Cと、の関係を図12に示す。pinダイオード70aとユニポーラ素子70bとの距離Cは、本発明にかかるMOSFET(図1参照)の第3p+型領域42の幅L2に相当する。図12には、バイポーラ素子の臨界電流密度Jcを種々変更して測定した複数の結果を示す。図13において、符号76を付した矢印の向きは、pinダイオード70aがユニポーラ素子70bから離れる方向(すなわちpinダイオード70aとユニポーラ素子70bとの距離Cが長くなる方向)である。
図12に示す結果より、pinダイオード70aとユニポーラ素子70bとの距離Cが長くなるほど、バイポーラ電流が流れやすいことが確認された。その理由は、当該距離Cの長さ分だけn-型層72が抵抗となり、ユニポーラ素子70bのオン抵抗が増加するからである。この結果はバイポーラ素子の臨界電流密度Jcを大きくするほど顕著にあらわれるが、バイポーラ素子の臨界電流密度Jcを例えば3000A/cm2以上程度と高くした場合であっても、pinダイオード70aとユニポーラ素子70bとの距離Cが8μm以下であれば、バイポーラ電流が流れない、または、pinダイオード70aの動作による順方向劣化が生じていないと言える程度にバイポーラ電流の電流量が少ないことが確認された。
したがって、本発明においては、プレーナゲート構造のMOSFETの最下部p+型領域である第3p+型領域42の幅L2が8μm以下程度であれば、バイポーラ電流が流れない、または、製品の推奨仕様(使用年数等)に耐え得る特性が得られる程度にバイポーラ電流の電流量が少ないことがわかる。
以上において本発明は本発明の趣旨を逸脱しない範囲で種々変更可能であり、上述した各実施の形態において、例えば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。また、上述した各実施の形態では、単位セルのMOSゲートを半導体基板のおもて面に平行な方向に直線状に配置(すなわち複数配置されるすべての単位セルのMOSゲートをストライプ状のレイアウトに配置)した場合を例に説明しているが、これに限らず、半導体基板のおもて面上から見て、複数のMOSゲートをマトリクス状のレイアウトに配置してもよい。
すなわち、複数のMOSゲートをマトリクス状のレイアウトに配置した場合、n型電流拡散領域の内部において深さ方向にp++型コンタクト領域に対向するp+型領域(第1~3p+型領域)は、JFET領域の周囲を囲む環状に配置される。このため、上述した各実施の形態と同様に、最下部p+型領域の幅を8μm以下程度にすれば同様の効果が得られる。また、複数の単位セルの各MOSゲートをマトリクス状のレイアウトに配置した場合、複数のMOSゲートをストライプ状のレイアウトに配置した場合よりも、平面SBDの表面積を狭くしてもよい。
また、上述した各実施の形態では、MOSFETの各部(p型ベース領域、n+型ソース領域およびp++型コンタクト領域)の条件に依存してその幅が決まるp+型領域(第1p+型領域)のドレイン側に、MOSFETの各部の条件に依存しない2つのp+型領域(第2,3p+型領域)を多段に配置するとした場合を例に説明しているが、これに限らず、MOSFETの各部の条件に依存しない3つ以上のp+型領域を多段に配置した場合においても、これら3つ以上のp+型領域のうちの最もドレイン側に配置されたp+型領域(最下部p+型領域)の幅を8μm以下程度にすることで同様の効果が得られる。
また、上述した各実施の形態では、炭化珪素からなる出発基板に炭化珪素層をエピタキシャル成長させてなる炭化珪素エピタキシャル基板を用いた場合を例に説明しているが、本発明にかかる半導体装置を構成する各領域を例えばイオン注入等により炭化珪素基板に形成してもよい。また、本発明は、炭化珪素以外のワイドバンドギャップ半導体(例えばガリウム(Ga)など)に適用した場合においても同様の効果を奏する。また、本発明は、導電型(n型、p型)を反転させても同様に成り立つ。
以上のように、本発明にかかる半導体装置は、同一の半導体基板に平面SBDを内蔵したプレーナゲート構造のMOS型半導体装置に有用であり、特に、MOSFETに適している。
1 n+型出発基板
2 n-型ドリフト領域
3 n型電流拡散領域
3a~3c JFET領域
4 p型ベース領域
5 n+型ソース領域
6 p++型コンタクト領域
7,41~44 n型電流拡散領域にイオン注入により形成された(埋め込んだ)p+型領域
8 ゲート絶縁膜
9 ゲート電極
10 層間絶縁膜
10a,10b コンタクトホール
11,21 導電層
12 ソース電極
13 ドレイン電極
20 平面SBD
30 半導体基板
31 n-型炭化珪素層
31a,31b n-型炭化珪素層の厚さを増した部分
32 p型炭化珪素層
42a,42a',42b 最下部p+型領域の、第2方向に連結部(第5p+型領域)と対向する矩形状の平面形状部分
42c 最下部p+型領域の、第2方向に連結部と対向する矩形状の平面形状部分の矩形状の分割部分
45 最下部p+型領域の、第2方向に連結部と対向する矩形状の平面形状部分の切欠部
51~54 n型部分領域
61 n+型領域
A MOSFETの単位セル
L1~L4,L11 n型電流拡散領域にイオン注入により形成された(埋め込んだ)p+型領域の幅
L5,L5’,L6 最下部p+型領域の、第2方向Yに連結部に対向する矩形状の平面形状の部分の対角線の長さ
L10 MOSFETのセルピッチ
X MOSゲートを構成する各領域およびゲート電極が半導体基板のおもて面に平行な方向に直線状に延在する方向(第1方向)
Y 半導体基板のおもて面に平行な方向で、かつ第1方向と直交する方向(第2方向)
Y’ 最下部p+型領域の、第2方向に連結部と対向する矩形状の平面形状部分の、第2方向に平行な中心線
Z 深さ方向

Claims (7)

  1. シリコンよりもバンドギャップの広い半導体からなる半導体基板と、
    前記半導体基板のおもて面に設けられた、シリコンよりもバンドギャップの広い半導体からなる第1導電型の第1半導体層と、
    前記第1半導体層の、前記半導体基板側に対して反対側の表面層に設けられた、前記第1半導体層よりも不純物濃度の高い第1導電型の第1半導体領域と、
    前記第1半導体層の、前記半導体基板側に対して反対側に設けられ、前記第1半導体領域を覆う、シリコンよりもバンドギャップの広い半導体からなる第2導電型の第2半導体層と、
    前記第2半導体層を深さ方向に貫通して前記第1半導体層に達する第1導電型の第2半導体領域と、
    前記第2半導体層に前記第2半導体領域と離して選択的に設けられ、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達して前記第1半導体領域の一部をなす、前記第1半導体層よりも不純物濃度の高い第1導電型の第3半導体領域と、
    前記第2半導体層の、前記第2半導体領域および前記第3半導体領域以外の部分である第2導電型の第4半導体領域と、
    前記第4半導体領域の、前記第2半導体領域と前記第3半導体領域とに挟まれた部分の表面上に、ゲート絶縁膜を介して設けられたゲート電極と、
    前記第2半導体領域および前記第4半導体領域に電気的に接続された第1電極と、
    前記半導体基板の裏面に設けられた第2電極と、を有するトランジスタと、
    前記第3半導体領域と、前記第3半導体領域にショットキー接触し、かつ前記第1電極に電気的に接続された導電層と、からなるショットキーバリアダイオードと、
    を備え、
    前記第1半導体領域の内部には、
    深さ方向に前記第2半導体領域および前記第4半導体領域と対向し、かつ前記第2半導体領域および前記第4半導体領域の前記第2電極側の面を覆う、前記第4半導体領域よりも不純物濃度の高い第2導電型の第5半導体領域と、
    前記第5半導体領域よりも前記第2電極側に配置され、深さ方向に前記第5半導体領域に対向し、かつ前記第1電極側から前記第2電極側へ向かって多段に積層されて互いに接し積層構造をなす、前記第4半導体領域よりも不純物濃度の高い第2導電型の2段以上の第1埋め込み領域と、
    前記第5半導体領域および前記第1埋め込み領域と離して配置され、かつ深さ方向に前記第3半導体領域に対向する、前記第4半導体領域よりも不純物濃度の高い第2導電型の第2埋め込み領域と、
    前記第1埋め込み領域のうちの最も前記第2電極側に配置された最下部埋め込み領域と、前記第2埋め込み領域と、の間に配置され、前記最下部埋め込み領域と前記第2埋め込み領域とを連結する、前記第4半導体領域よりも不純物濃度の高い第2導電型の第3埋め込み領域と、がそれぞれ選択的に設けられており、
    前記第1埋め込み領域のうちの最も前記第1電極側に配置された最上部埋め込み領域は、前記第5半導体領域に接し、
    前記最下部埋め込み領域の幅は、前記第5半導体領域の幅よりも狭いことを特徴とする半導体装置。
  2. 前記第4半導体領域、前記第5半導体領域、前記第1埋め込み領域、前記第3半導体領域、前記第1半導体層および前記半導体基板からなる寄生ダイオードの臨界電流密度は3000A/cm2以上であり、
    前記トランジスタのセルピッチは10μmであり、
    前記最下部埋め込み領域の幅は8μm以下であることを特徴とする請求項1に記載の半導体装置。
  3. 前記ゲート電極は、前記半導体基板のおもて面に平行な第1方向に延びる直線状のレイアウトに配置され、
    前記第1埋め込み領域および前記第2埋め込み領域は、前記第1方向に延びる直線状のレイアウトに配置され、
    前記第3埋め込み領域は、前記半導体基板のおもて面に平行で、かつ前記最下部埋め込み領域と直交する第2方向に延びる直線状のレイアウトに配置され、前記最下部埋め込み領域と十字状のレイアウトをなし、
    前記最下部埋め込み領域の、前記第2方向に前記第3埋め込み領域と対向する矩形状の平面形状部分の対角線の長さは8μm以下であることを特徴とする請求項1または2に記載の半導体装置。
  4. 前記ゲート電極は、前記半導体基板のおもて面に平行な第1方向に延びる直線状のレイアウトに配置され、
    前記第1埋め込み領域および前記第2埋め込み領域は、前記第1方向に延びる直線状のレイアウトに配置され、
    前記第3埋め込み領域は、前記半導体基板のおもて面に平行で、かつ前記最下部埋め込み領域と直交する第2方向に延びる直線状のレイアウトに配置され、前記最下部埋め込み領域とT字状のレイアウトをなし、
    前記最下部埋め込み領域の、前記第2方向に前記第3埋め込み領域と対向する矩形状の平面形状部分を前記第2方向に平行な中心線で分割した矩形状の分割部分の対角線の長さは8μm以下であることを特徴とする請求項1または2に記載の半導体装置。
  5. 前記最下部埋め込み領域の、前記第2方向に前記第3埋め込み領域と対向する前記矩形状の平面形状部分は、当該矩形状の平面形状部分の頂点を、当該矩形状の平面形状部分の中心側に凹むように切欠いた切欠き部を有する平面形状を有することを特徴とする請求項3または4に記載の半導体装置。
  6. 前記第1半導体領域の内部に、前記第1半導体領域よりも不純物濃度の高い第1導電型の第6半導体領域をさらに備えることを特徴とする請求項1~5のいずれか一つに記載の半導体装置。
  7. 前記第2半導体層を深さ方向に貫通して前記第1半導体層に達し、前記第2半導体領域に対して前記第3半導体領域と反対側に、前記第2半導体領域に接して配置された、前記第2半導体層よりも不純物濃度の高い第2導電型の第7半導体領域をさらに備え、
    前記第4半導体領域は、前記第2半導体層の、前記第2半導体領域、前記第3半導体領域および前記第7半導体領域以外の部分であり、
    前記第5半導体領域は、深さ方向に前記第2半導体領域、前記第4半導体領域および前記第7半導体領域と対向して選択的に設けられ、かつ前記第2半導体領域、前記第4半導体領域および前記第7半導体領域の前記第2電極側の面を覆うことを特徴とする請求項1~6のいずれか一つに記載の半導体装置。
JP2018135632A 2018-07-19 2018-07-19 半導体装置 Active JP7078226B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018135632A JP7078226B2 (ja) 2018-07-19 2018-07-19 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018135632A JP7078226B2 (ja) 2018-07-19 2018-07-19 半導体装置

Publications (2)

Publication Number Publication Date
JP2020013916A JP2020013916A (ja) 2020-01-23
JP7078226B2 true JP7078226B2 (ja) 2022-05-31

Family

ID=69170733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018135632A Active JP7078226B2 (ja) 2018-07-19 2018-07-19 半導体装置

Country Status (1)

Country Link
JP (1) JP7078226B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115763259B (zh) * 2023-02-13 2023-05-12 泰科天润半导体科技(北京)有限公司 一种交叉式平面栅碳化硅vdmosfet的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529115A (ja) 2003-12-30 2007-10-18 フェアチャイルド・セミコンダクター・コーポレーション パワー半導体デバイスおよびその製造方法
JP2011258635A (ja) 2010-06-07 2011-12-22 Mitsubishi Electric Corp 半導体装置
WO2014038110A1 (ja) 2012-09-06 2014-03-13 三菱電機株式会社 半導体装置
WO2014125586A1 (ja) 2013-02-13 2014-08-21 富士電機株式会社 半導体装置
JP2018064047A (ja) 2016-10-13 2018-04-19 富士電機株式会社 半導体装置および半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529115A (ja) 2003-12-30 2007-10-18 フェアチャイルド・セミコンダクター・コーポレーション パワー半導体デバイスおよびその製造方法
JP2011258635A (ja) 2010-06-07 2011-12-22 Mitsubishi Electric Corp 半導体装置
WO2014038110A1 (ja) 2012-09-06 2014-03-13 三菱電機株式会社 半導体装置
WO2014125586A1 (ja) 2013-02-13 2014-08-21 富士電機株式会社 半導体装置
JP2018064047A (ja) 2016-10-13 2018-04-19 富士電機株式会社 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
JP2020013916A (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
JP6874797B2 (ja) 半導体装置
JP7052330B2 (ja) 絶縁ゲート型半導体装置及びその製造方法
JP7067021B2 (ja) 絶縁ゲート型半導体装置及びその製造方法
JP7059555B2 (ja) 半導体装置
JP7059556B2 (ja) 半導体装置
KR101603570B1 (ko) 탄화 규소 반도체장치
US10964809B2 (en) Semiconductor device and manufacturing process therefor
US11888057B2 (en) Semiconductor device
US11139376B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP6747195B2 (ja) 半導体装置および半導体装置の製造方法
JP6853977B2 (ja) 半導体装置および半導体装置の製造方法
JP2019207957A (ja) 半導体装置
US11322607B2 (en) Semiconductor device
JP7155641B2 (ja) 半導体装置
JP4844371B2 (ja) 縦型超接合半導体素子
US10707301B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2021015884A (ja) 半導体装置および半導体装置の製造方法
WO2019073776A1 (ja) ショットキーバリアダイオードを備えた炭化珪素半導体装置およびその製造方法
JP7078226B2 (ja) 半導体装置
JP2019160898A (ja) 半導体装置
CN112531013A (zh) 半导体装置
WO2017010164A1 (ja) 電力用半導体装置
US20230050319A1 (en) Silicon carbide semiconductor device
CN114156342A (zh) 半导体装置以及半导体装置的制造方法
JP6972680B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220510

R150 Certificate of patent or registration of utility model

Ref document number: 7078226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150