WO2019242036A1 - 一种碳化硅金属氧化物半导体场效应晶体管及其制造方法 - Google Patents

一种碳化硅金属氧化物半导体场效应晶体管及其制造方法 Download PDF

Info

Publication number
WO2019242036A1
WO2019242036A1 PCT/CN2018/093008 CN2018093008W WO2019242036A1 WO 2019242036 A1 WO2019242036 A1 WO 2019242036A1 CN 2018093008 W CN2018093008 W CN 2018093008W WO 2019242036 A1 WO2019242036 A1 WO 2019242036A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity type
region
silicon carbide
effect transistor
semiconductor field
Prior art date
Application number
PCT/CN2018/093008
Other languages
English (en)
French (fr)
Inventor
杨同同
柏松
Original Assignee
中国电子科技集团公司第五十五研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第五十五研究所 filed Critical 中国电子科技集团公司第五十五研究所
Priority to EP18923692.0A priority Critical patent/EP3813127A4/en
Publication of WO2019242036A1 publication Critical patent/WO2019242036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation

Definitions

  • the invention relates to a semiconductor and a power semiconductor device and a method for manufacturing the same, and particularly relates to a silicon carbide MOSFET device and a method for manufacturing the same.
  • the present invention proposes a silicon carbide metal oxide semiconductor field effect transistor structure, which solves the problem of the increase in the width of the JFET, causing the device's gate oxygen field blocking state to be too high, and causing breakdown. .
  • Another object of the present invention is to provide a method for preparing the silicon carbide metal oxide semiconductor field effect transistor.
  • a silicon carbide metal oxide semiconductor field effect transistor according to the present invention includes:
  • a second conductivity type source region located in the first conductivity type well region near the JFET region;
  • a first conductive type heavily doped region located in the first conductive type well region away from the JFET region;
  • a plurality of first conductivity type regions within the second conductivity type epitaxial layer are A plurality of first conductivity type regions within the second conductivity type epitaxial layer
  • a preferred embodiment of the present invention is that the first conductivity type region has a higher doping concentration than the second conductivity type epitaxial layer.
  • a preferred embodiment of the present invention is that the top of the first conductivity type region extends to the lower surface of the gate oxide layer or has a certain distance from the gate oxide layer.
  • a preferred embodiment of the present invention is that the bottom of the first conductivity type region extends to the bottom of the JFET region or is a certain distance from the bottom of the JFET region.
  • a preferred embodiment of the present invention is that the first conductivity type region is located in the JFET region.
  • a plurality of the first conductive type regions have the same width.
  • the heights of several regions of the first conductivity type are the same.
  • the first conductivity type region is uniformly doped or non-uniformly doped.
  • the present invention is applicable to N-channel MOSFET and P-channel MOSFET. Further, the first conductivity type is N-type and the second conductivity type is P-type; or the first conductivity type is P-type, so The second conductivity type is N-type.
  • the second conductivity type epitaxial layer includes an N-type heavily doped substrate near one side of the drain and an N-type lightly doped drift layer far from the drain.
  • a second conductivity type source region located in the first conductivity type well region near the JFET region;
  • a first conductive type heavily doped region located in the first conductive type well region away from the JFET region;
  • the above method for preparing a silicon carbide metal oxide semiconductor field effect transistor includes the following steps: (1) forming an epitaxial layer on a carbonized substrate; (2) preparing a masking medium, and preparing the implant after performing processes such as photolithography and etching;
  • the mask medium is prepared by an ion implantation process to produce a first-conductivity-type well region; (3) the mask medium in step (2) is removed, and the mask medium is prepared again.
  • an implantation mask is prepared.
  • the second conductive type source region is prepared by an ion implantation process; (4) the masking medium described in step (3) is removed, and the masking medium is prepared again.
  • an implantation mask is prepared.
  • Beneficial effects (1) In the present invention, by introducing an extra implanted doped region in the JFET region, it is possible to increase the width of the JFET while suppressing the electric field strength of the gate oxygen of the device, and at the same time improve the device's conduction capability; 2) The present invention is beneficial to make a better compromise between the forward conduction characteristics of the device and the reliability of the gate oxygen, and improve the performance of the device.
  • FIG. 1 is a cross-sectional view of a silicon carbide MOSFET device according to Embodiment 1 of the present invention.
  • FIGS. 2a-1 are schematic diagrams of a manufacturing process of a silicon carbide MOSFET device according to Embodiment 1 of the present invention.
  • FIG. 3 is a sectional view of a silicon carbide MOSFET device according to Embodiment 2 of the present invention.
  • FIGS. 4a-1 are schematic diagrams of a manufacturing process of a silicon carbide MOSFET device according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of another manufacturing process of a silicon carbide MOSFET device according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram showing a distribution of a first conductivity type region 1 formed in a JFET region of the present invention
  • FIG. 7 is a comparison diagram of the blocking electric field distribution of the conventional MOSFET structure and the MOSFET structure device in Example 1.
  • FIG. 7 is a comparison diagram of the blocking electric field distribution of the conventional MOSFET structure and the MOSFET structure device in Example 1.
  • the second conductivity type when the first conductivity type is N-type, the second conductivity type is P-type; when the first conductivity type is P-type, the second conductivity type is N-type.
  • the second conductive type epitaxial layer described in the embodiment includes an N-type heavily doped substrate and an N-type lightly doped drift layer, but there may be no N-type heavily doped substrate.
  • the width in the embodiments refers to the length along the X-axis direction, and the height or depth refers to the length along the Y-axis direction.
  • the width of the JFET region in the embodiment refers to the width between adjacent first conductive type well regions.
  • Embodiment 1 A silicon carbide metal oxide semiconductor field effect transistor according to the present invention includes an epitaxial layer 4 and a drain electrode 2 located on the back of the epitaxial layer 4; as shown in FIG. 1, the epitaxial layer 4 is made of N-type light
  • the doped drift layer 41 is composed of an N-type heavily doped substrate 42. The thickness and doping concentration of the N-type lightly doped drift layer 41 can be selected according to the blocking voltage of the device.
  • the P well 5 is adjacent to the N-type lightly doped drift layer 41 and is distributed on both sides of the N-type lightly doped drift layer 41, and the width between the P wells 5 is the width of the JFET region;
  • the first conductive type region 1 is located in the JFET region.
  • the first conductive type region 1 has a higher doping concentration than the N-type lightly doped drift layer 41, and the bottom is higher than the bottom of the JFET region. With a certain distance, the width of the first conductivity type region 1 is smaller than the width of the JFET region.
  • the N + source region 6 is located in the P-well 5 near the JFET region; the P + doped region 3 is located in the P-well 5 away from the JFET region;
  • the source electrode 7 is located on the N + source region 6 and the P + doped region 3;
  • the gate oxide layer 8 is located above the JFET region and a portion of the N + source region 6.
  • the gate oxide layer 8 is a gate electrode 9, and the gate electrode 9 is a passivation protection layer 10.
  • the method for preparing the structure of Embodiment 1 of the present invention is:
  • an N-type lightly doped drift layer 41 is formed on an N-type heavily doped substrate 42 substrate;
  • a masking medium is prepared. After the photolithography and etching processes are prepared, an implanted masking medium is prepared, and a P well 5 is manufactured by an ion implantation process;
  • the masking medium in the above steps is removed, and the masking medium is prepared again.
  • an implanted masking medium is prepared, and an N + source region is produced by an ion implantation process. 6 ;
  • the masking medium in the above steps is removed, and the masking medium is prepared again.
  • an implanted masking medium is prepared, and a P + doped region is produced by an ion implantation process. 3;
  • the masking medium in the above steps is removed, the masking medium is prepared again, and an implanted masking medium is prepared after processes such as photolithography and etching;
  • a first conductivity type region 1 is formed by ion implantation
  • a gate oxide layer 8 and a gate electrode 9 are fabricated by thermal oxidation
  • the source electrode 7 is metallized, the passivation protection medium 10 and the drain 11 ohm metallization are prepared, and the basic device structure is completed.
  • Embodiment 2 Another structure of the silicon carbide metal oxide semiconductor field effect transistor according to the present invention is shown in FIG. 3.
  • the difference from the structure of Embodiment 1 is that three JFET regions are formed by ion implantation in the same area.
  • the height of the first conductivity type region 1 is different, and the width of each first conductivity type 1 is different.
  • the first conductivity type region 1 has a higher doping concentration than the N-type lightly doped drift layer 41, and the bottom is higher than the bottom of the JFET region.
  • the top of the first conductivity type region 1 extends to the lower surface of the gate oxide layer 8, that is, the surface of the device.
  • the method for preparing the structure of embodiment 2 of the present invention is:
  • an N-type lightly doped drift layer 41 is formed on an N-type heavily doped substrate 42 substrate;
  • a masking medium is prepared. After the photolithography and etching processes are prepared, an implanted masking medium is prepared, and a P well 5 is manufactured by an ion implantation process;
  • the masking medium in the above steps is removed, and the masking medium is prepared again.
  • an implanted masking medium is prepared, and an N + source region is produced by an ion implantation process. 6 ;
  • the masking medium in the above steps is removed, and the masking medium is prepared again.
  • an implanted masking medium is prepared, and a P + doped region is produced by an ion implantation process. 3;
  • the masking medium in the above steps is removed, the masking medium is prepared again, and an implanted masking medium is prepared after processes such as photolithography and etching;
  • a first conductivity type region 1 is formed by ion implantation
  • a gate oxide layer 8 and a gate electrode 9 are fabricated by thermal oxidation
  • the source electrode 7 is metallized, the passivation protection medium 10 and the drain 11 ohms are metallized to complete the fabrication of the basic device structure.
  • an N-type lightly doped drift layer 41 is formed on an N-type heavily doped substrate 42 substrate;
  • a masking medium is prepared. After the photolithography and etching processes are prepared, an implanted masking medium is prepared, and a P well 5 is manufactured by an ion implantation process;
  • the masking medium in the above steps is removed, and the masking medium is prepared again.
  • an implanted masking medium is prepared, and an N + source region is produced by an ion implantation process. 6 ;
  • the masking medium in the above steps is removed, and the masking medium is prepared again.
  • an implanted masking medium is prepared, and a P + doped region is produced by an ion implantation process. 3;
  • the masking medium in the above steps is removed, the masking medium is prepared again, and an implanted masking medium is prepared after processes such as photolithography and etching;
  • a first conductivity type region 1 is formed by ion implantation
  • a gate oxide layer 8 and a gate electrode 9 are fabricated by thermal oxidation
  • the source electrode 7 is metallized, the passivation protection medium 10 and the drain 11 ohm metallization are prepared, and the basic device structure is completed.
  • FIG. 6 shows another distribution form of the first conductivity type region 1 of the present invention.
  • the width of each first conductivity type region 1 It can be kept equal or not equal, and adjusted according to the actual electric field distribution.
  • the height of each first conductive type region 1 can be kept equal or unequal, and adjusted according to the requirements of the actual electric field distribution.
  • Each first conductive type The doping concentration of the region 1 is higher than that of the N-type lightly doped drift layer 41.
  • the doping profile of the plurality of first conductivity type regions 1 may be uniformly doped or non-uniformly doped.
  • the top of the region 1 can reach the surface of the device, that is, under the gate oxide layer 8.
  • FIG. 7 is a simulation result of a conventional MOSFET device structure and a MOSFET device structure proposed in Embodiment 1 of the present invention.
  • the thickness of the epitaxial layer is 10 ⁇ m
  • the doping of the epitaxial layer is 1e16cm -3 . It can be seen from the simulation results that, for a conventional MOSFET device structure, the electric field in the gate oxygen reaches 3.6 MV / cm.
  • the electric field strength in the gate oxygen is 1.5 MV / cm.
  • the strength of the gate oxygen electric field can be significantly reduced, and the reliability of the device is improved.
  • the forward conduction characteristics of the device can be improved by adjusting the width of the JFET region or the doping of the JFET region and the overall performance of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种碳化硅金属氧化物半导体场效应晶体管及其制备方法,该碳化硅金属氧化物半导体场效应晶体的结构包括外延层(4)、漏极(2)、第一导电类型阱区域(5)、第二导电类型源区域(6)、第一导电类型重掺杂区(3)、源电极(7)、栅氧化层(8)、栅电极(9)、钝化保护层(10)及若干个第一导电类型区域(1)。引入了第一导电类型区域,可以在增加JFET宽度的同时抑制器件栅氧内的电场强度,从而在不影响器件阻断的条件下,增加JFET区域的宽度,降低JFET区域的电阻,提升器件的导通特性。

Description

一种碳化硅金属氧化物半导体场效应晶体管及其制造方法 技术领域
本发明涉及半导体和功率半导体器件及其制备方法,尤其涉及碳化硅MOSFET器件及其制造方法。
背景技术
目前碳化硅MOSFET器件存在严重的栅氧可靠性问题。为了改善器件的可靠性,必须降低碳化硅MOSFET器件栅氧内的电场强度。
为了提升碳化硅MOSFET器件的正向导通特性,通常希望能够增加JFET区域的宽度,降低JFET区域的电阻。但是JFET宽度的增加,会使得相邻P阱对栅氧电场抑制能力减弱,从而又引起栅氧可靠性问题。
发明内容
发明目的:为了解决上述问题,本发明提出了一种碳化硅金属氧化物半导体场效应晶体管结构,解决了JFET宽度的增加,造成器件栅氧电场阻断状态时过高,而发生击穿的问题。本发明的另一目的是提供了该碳化硅金属氧化物半导体场效应晶体管的制备方法。
技术方案:本发明所述的一种碳化硅金属氧化物半导体场效应晶体管,包括:
第二导电类型外延层;
位于所述第二导电类型外延层背面的漏极;
与所述第二导电类型外延层相邻并分布于所述第二导电类型外延层两侧的第一导电类型阱区域;
位于所述第一导电类型阱区域中,靠近JFET区域的第二导电类型源区域;
位于所述第一导电类型阱区域中,远离JFET区域的第一导电类型重掺杂区;
位于所述第二导电类型源区域及所述第一导电类型重掺杂区之上的源电极;
位于JFET区域及部分所述第二导电类型源区域上方的栅氧化层;
位于所述栅氧化层之上的栅电极;
位于所述栅电极之上的钝化保护层;
位于所述第二导电类型外延层之内的若干个第一导电类型区域;
本发明优选地一种实施方式为所述第一导电类型区域掺杂浓度高于所述第二导电 类型外延层。
本发明优选地一种实施方式为所述第一导电类型区域顶部延伸至所述栅氧化层下表面或与所述栅氧化层有一定距离。
本发明优选地一种实施方式为所述第一导电类型区域底部延伸至所述JFET区域底部或距离所述JFET区域底部有一定距离。
本发明优选地一种实施方式为所述第一导电类型区域位于所述JFET区域中。
本发明优选地一种实施方式为若干个所述第一导电类型区域的宽度相同。
本发明优选地一种实施方式为若干个所述第一导电类型区域的高度相同。
本发明优选地一种实施方式为所述第一导电类型区域为均匀掺杂或非均匀掺杂。
本发明适用于N型沟道MOSFET及P沟道MOSFET,进一步地,所述第一导电类型为N型,所述第二导电类型为P型;或所述第一导电类型为P型,所述第二导电类型为N型。
本发明优选地一种实施方式为所述第二导电类型外延层包括靠近所述漏极一侧的N型重掺衬底和远离所述漏极的N型轻掺杂漂移层。
本发明提供的另一种碳化硅金属氧化物半导体场效应晶体管,包括:
第二导电类型外延层;
位于所述第二导电类型外延层背面的漏极;
与所述第二导电类型外延层相邻并分布于所述第二导电类型外延层两侧的第一导电类型阱区域;
位于所述第一导电类型阱区域中,靠近JFET区域的第二导电类型源区域;
位于所述第一导电类型阱区域中,远离JFET区域的第一导电类型重掺杂区;
位于所述第二导电类型源区域及所述第一导电类型重掺杂区之上的源电极;
位于JFET区域及部分所述第二导电类型源区域上方的栅氧化层;
位于所述栅氧化层之上的栅电极;
位于所述栅电极之上的钝化保护层;
位于所述第二导电类型外延层之内的若干个第一导电类型区域;至少一个所述第一导电类型区域顶部与所述栅氧化层下表面具有一定距离。
上述碳化硅金属氧化物半导体场效应晶体管的制备方法,包括以下步骤:(1)在碳化衬底上形成外延层;(2)制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩 膜介质,通过离子注入工艺制作第一导电类型阱区域;(3)去除步骤(2)中的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作第二导电类型源区域;(4)去除步骤(3)中所述的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作第一导电类型重掺杂区;(5)去除步骤(4)中所述的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质;(6)通过离子注入形成第一导电类型区域;(7)去除步骤(5)中所述的掩膜介质,对器件表面进行牺牲氧化和CMP工艺,使得表面更加平整;(8)通过热氧化制作栅氧,然后制作栅电极;所述栅电极为多晶硅或金属;(9)制作源极金属化,制备钝化保护介质及漏极欧姆金属化,完成基本器件结构的制作。
有益效果:(1)本发明通过在JFET区域引入额外的注入掺杂区域,可以在增加JFET宽度的同时,很好的抑制器件栅氧的电场强度,同时也提高了器件的导通能力;(2)本发明有利于在器件正向导通特性和栅氧可靠性问题之间作更好的折中,提升器件的性能。
附图说明
图1为本发明实施例1碳化硅MOSFET器件剖面图;
图2a-l为本发明实施例1碳化硅MOSFET器件制备流程示意图;
图3为本发明实施例2碳化硅MOSFET器件剖面图;
图4a-l为本发明实施例2碳化硅MOSFET器件制备流程示意图;
图5为本发明实施例2碳化硅MOSFET器件另一种制备流程示意图;
图6为本发明JFET区域内形成的第一导电类型区域1的分布示意图;
图7为传统MOSFET结构和实例1中MOSFET结构器件阻断电场分布对比图。
具体实施方式
下面参照附图对本发明作出进一步说明,附图中所示的结构为本发明优选的实施例,然而,本发明可以有许多不同的形式实施,而不应限于本发明所列的实施例。
进一步需要说明的是,实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
本发明中,当第一导电类型为N型,则第二导电类型为P型;当第一导电类型为P 型,则第二导电类型为N型。
必须指出的是,实施例中给出的制作过程可以根据实际情况作相应的修改或作顺序调整。同时为了表述方便,实施方式中仅仅以N型沟道MOSFET加以说明;针对P沟道MOSFET同样适用。
实施例中所述的第二导电类型外延层包括N型重掺衬底和N型轻掺杂漂移层,但是可以不存在N型重掺衬底。
实施例中所述的宽度是指沿X轴方向的长度,所述的高度或深度是指沿Y轴方向的长度。
实施例中所述的JFET区域的宽度是指相邻第一导电类型阱区域之间的宽度。
实施例1:本发明所述的一种碳化硅金属氧化物半导体场效应晶体管,包括外延层4及位于外延层4背面的漏极2;如图1所示,其中外延层4由N型轻掺杂漂移层41和N型重掺衬底42组成,N型轻掺杂漂移层41的厚度和掺杂浓度可根据器件的阻断电压进行选择。
P阱5与N型轻掺杂漂移层41相邻并分布于N型轻掺杂漂移层41两侧,P阱5之间的宽度为JFET区域的宽度;
第一导电类型区域1位于JFET区域内,第一导电类型区域1掺杂浓度高于N型轻掺杂漂移层41,底部高于JFET区域底部,第一导电类型区域1顶部距离栅氧化层8具有一定距离,第一导电类型区域1宽度小于JFET区域的宽度。
N +源区6位于P阱5中,靠近JFET区域;P +掺杂区3位于P阱5中,远离JFET区域;
源电极7位于N +源区6及P +掺杂区3之上;
栅氧化层8位于JFET区域及部分N +源区6上方,栅氧化层8之上为栅电极9,栅电极9之上为钝化保护层10。
如图2a-i所示,本发明实施例1结构的制备方法为:
(1)如图2a和图2b所示,在N型重掺衬底42衬底上形成N型轻掺杂漂移层41;
(2)如图2c所示,制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作P阱5;
(3)如图2d所示,去除上述步骤中的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作N +源区6;
(4)如图2e所示,去除上述步骤中的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作P +掺杂区3;
(5)如图2f所示,去除上述步骤中的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质;
(6)如图2g所示,通过离子注入形成第一导电类型区域1;
(7)如图2h所示,去除上述步骤中的掩膜介质,对器件表面进行牺牲氧化和CMP工艺,使得表面更加平整;
(8)如图2i所示,通过热氧化制作栅氧化层8和制作栅电极9;
(9)如图2j、图2k、图2l所示,制作源电极7金属化,制备钝化保护介质10及漏极11欧姆金属化,完成基本器件结构的制作。
实施例2:本发明所述的碳化硅金属氧化物半导体场效应晶体管的另一种结构如图3所示,与实施例1结构不同的是,JFET区域内通过离子注入方式形成三个位于同一高度的第一导电类型区域1,且每个第一导电类型1的宽度不同,第一导电类型区域1掺杂浓度高于N型轻掺杂漂移层41,底部高于JFET区域底部,三个第一导电类型区域1顶部延伸至栅氧化层8下表面,即器件的表面。
如图4a-i所示,本发明实施例2结构的制备方法为:
(1)如图4a和图4b所示,在N型重掺衬底42衬底上形成N型轻掺杂漂移层41;
(2)如图4c所示,制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作P阱5;
(3)如图4d所示,去除上述步骤中的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作N +源区6;
(4)如图4e所示,去除上述步骤中的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作P +掺杂区3;
(5)如图4f所示,去除上述步骤中的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质;
(6)如图4g所示,通过离子注入形成第一导电类型区域1;
(7)如图4h所示,去除上述步骤中的掩膜介质,对器件表面进行牺牲氧化和CMP工艺,使得表面更加平整;
(8)如图4i所示,通过热氧化制作栅氧化层8和制作栅电极9;
(9)如图4j、图4k、图4l所示,制作源电极7金属化,制备钝化保护介质10及漏极11欧姆金属化,完成基本器件结构的制作。
本发明实施例2的另一种制备方法如图5a-l所示:
(1)如图5a和图5b所示,在N型重掺衬底42衬底上形成N型轻掺杂漂移层41;
(2)如图5c所示,制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作P阱5;
(3)如图5d所示,去除上述步骤中的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作N +源区6;
(4)如图5e所示,去除上述步骤中的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作P +掺杂区3;
(5)如图5f所示,去除上述步骤中的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质;
(6)如图5g所示,通过离子注入形成第一导电类型区域1;
(7)如图5h所示,去除上述步骤中的掩膜介质,对器件表面进行牺牲氧化和CMP工艺,使得表面更加平整;
(8)如图5i所示,通过热氧化制作栅氧化层8和制作栅电极9;
(9)如图5j、图5k、图5l所示,制作源电极7金属化,制备钝化保护介质10及漏极11欧姆金属化,完成基本器件结构的制作。
图6给出了本发明第一导电类型区域1的另一种分布形式,此外当本发明JFET区域内通过离子注入方式形成多个第一导电类型区域1,各第一导电类型区域1的宽度可以保持相等,也可以不相等,根据实际电场分布进行调整;各第一导电类型区域1的高度可以保持相等,也可以保持不相等,根据实际电场分布的要求来进行调整;各第一导电类型区域1掺杂浓度高于N型轻掺杂漂移层41,多个第一导电类型区域1的掺杂分布可以为均匀掺杂,也可以为非均匀掺杂;多个第一导电类型掺杂区域1的顶部都可以达到器件的表面,即栅氧化层8的下方。
为了进一步说明本发明对实际器件产生的效益,图7为传统MOSFET器件结构和本发明实施例1提出的MOSFET器件结构的仿真结果。仿真中针对1200V MOSFET器件,外延层厚度10μm,外延层掺杂为1e16cm -3。从仿真结果可以看出,对于传统MOSFET器件结构,栅氧内电场达到3.6MV/cm。而对于本发明实施例1的器件结构,栅氧内电 场强度为1.5MV/cm。通过本发明实施例1可以显著降低栅氧电场强度,提高了器件可靠性。此时可通过调整JFET区域宽度或者JFET区掺杂来提升器件正向导通特性,提升器件的整体性能。

Claims (12)

  1. 一种碳化硅金属氧化物半导体场效应晶体管,其特征在于,包括:
    第二导电类型外延层;
    位于所述第二导电类型外延层背面的漏极;
    与所述第二导电类型外延层相邻并分布于所述第二导电类型外延层两侧的第一导电类型阱区域;
    位于所述第一导电类型阱区域中,靠近JFET区域的第二导电类型源区域;
    位于所述第一导电类型阱区域中,远离JFET区域的第一导电类型重掺杂区;
    位于所述第二导电类型源区域及所述第一导电类型重掺杂区之上的源电极;
    位于JFET区域及部分所述第二导电类型源区域上方的栅氧化层;
    位于所述栅氧化层之上的栅电极;
    位于所述栅电极之上的钝化保护层;
    位于所述第二导电类型外延层之内的若干个第一导电类型区域;
  2. 根据权利要求1所述的所述碳化硅金属氧化物半导体场效应晶体管,其特征在于,所述第一导电类型区域掺杂浓度高于所述第二导电类型外延层。
  3. 根据权利要求1所述的所述碳化硅金属氧化物半导体场效应晶体管,其特征在于,所述第一导电类型区域顶部延伸至所述栅氧化层下表面或与所述栅氧化层有一定距离。
  4. 根据权利要求1所述的所述碳化硅金属氧化物半导体场效应晶体管,其特征在于,所述第一导电类型区域底部延伸至所述JFET区域底部或距离所述JFET区域底部有一定距离。
  5. 根据权利要求1所述的碳化硅金属氧化物半导体场效应晶体管,其特征在于,所述第一导电类型区域位于所述JFET区域中。
  6. 根据权利要求1所述的所述碳化硅金属氧化物半导体场效应晶体管,其特征在于,若干个所述第一导电类型区域的宽度相同。
  7. 根据权利要求1所述的所述碳化硅金属氧化物半导体场效应晶体管,其特征在于,若干个所述第一导电类型区域的高度相同。
  8. 根据权利要求1所述的所述碳化硅金属氧化物半导体场效应晶体管,其特征在于,所述第一导电类型区域为均匀掺杂或非均匀掺杂。
  9. 根据权利要求1所述的碳化硅金属氧化物半导体场效应晶体管,其特征在于, 所述第一导电类型为N型,所述第二导电类型为P型;或所述第一导电类型为P型,所述第二导电类型为N型。
  10. 根据权利要求1所述的碳化硅金属氧化物半导体场效应晶体管,其特征在于,所述第二导电类型外延层包括靠近所述漏极一侧的N型重掺衬底和远离所述漏极的N型轻掺杂漂移层。
  11. 一种碳化硅金属氧化物半导体场效应晶体管,其特征在于,包括:
    第二导电类型外延层;
    位于所述第二导电类型外延层背面的漏极;
    与所述第二导电类型外延层相邻并分布于所述第二导电类型外延层两侧的第一导电类型阱区域;
    位于所述第一导电类型阱区域中,靠近JFET区域的第二导电类型源区域;
    位于所述第一导电类型阱区域中,远离JFET区域的第一导电类型重掺杂区;
    位于所述第二导电类型源区域及所述第一导电类型重掺杂区之上的源电极;
    位于JFET区域及部分所述第二导电类型源区域上方的栅氧化层;
    位于所述栅氧化层之上的栅电极;
    位于所述栅电极之上的钝化保护层;
    位于所述第二导电类型外延层之内的若干个第一导电类型区域;至少一个所述第一导电类型区域顶部与所述栅氧化层下表面具有一定距离。
  12. 一种碳化硅金属氧化物半导体场效应晶体管的制备方法,其特征在于,包括以下步骤:
    (1)形成碳化衬底上形成外延层;
    (2)制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作第一导电类型阱区域;
    (3)去除步骤(2)中的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作第二导电类型源区域;
    (4)去除步骤(3)中所述的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质,通过离子注入工艺制作第一导电类型重掺杂区;
    (5)去除步骤(4)中所述的掩膜介质,重新制备掩膜介质,通过光刻、刻蚀等工艺后,制备注入掩膜介质;
    (6)通过离子注入形成第一导电类型区域;
    (7)去除步骤(5)中所述的掩膜介质,对器件表面进行牺牲氧化和CMP工艺,使得表面更加平整;
    (8)通过热氧化制作栅氧,然后制作栅电极;所述栅电极为多晶硅或金属;
    (9)制作源极金属化,制备钝化保护介质及漏极欧姆金属化,完成基本器件结构的制作。
PCT/CN2018/093008 2018-06-22 2018-06-27 一种碳化硅金属氧化物半导体场效应晶体管及其制造方法 WO2019242036A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18923692.0A EP3813127A4 (en) 2018-06-22 2018-06-27 SEMICONDUCTOR METAL-OXIDE FIELD-EFFECT TRANSISTOR IN SILICON CARBIDE AND ITS MANUFACTURING PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810650037.7A CN109065623B (zh) 2018-06-22 2018-06-22 一种碳化硅金属氧化物半导体场效应晶体管及其制造方法
CN201810650037.7 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019242036A1 true WO2019242036A1 (zh) 2019-12-26

Family

ID=64820759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093008 WO2019242036A1 (zh) 2018-06-22 2018-06-27 一种碳化硅金属氧化物半导体场效应晶体管及其制造方法

Country Status (3)

Country Link
EP (1) EP3813127A4 (zh)
CN (1) CN109065623B (zh)
WO (1) WO2019242036A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113464A (zh) * 2020-01-13 2021-07-13 张清纯 一种半导体器件及其制造方法
CN114242771A (zh) * 2021-11-30 2022-03-25 厦门大学 一种光增强碳化硅功率器件导通特性的结构
CN114242772A (zh) * 2021-11-30 2022-03-25 厦门大学 一种类超结光增强igbt器件
CN117711946A (zh) * 2023-12-18 2024-03-15 南京第三代半导体技术创新中心有限公司 碳化硅mosfet器件及其自对准制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755511B (zh) * 2019-03-26 2022-05-13 比亚迪股份有限公司 Vdmosfet及其制备方法和半导体器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244099A (zh) * 2011-06-23 2011-11-16 西安电子科技大学 外延沟道的SiCIEMOSFET器件及制备方法
CN104409501A (zh) * 2014-11-10 2015-03-11 中国科学院微电子研究所 碳化硅金属氧化物半导体场效应晶体管
CN104465392A (zh) * 2013-09-20 2015-03-25 株式会社东芝 半导体装置的制造方法
CN107393814A (zh) * 2017-08-10 2017-11-24 中国科学院上海微系统与信息技术研究所 一种mos功率器件及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9530844B2 (en) * 2012-12-28 2016-12-27 Cree, Inc. Transistor structures having reduced electrical field at the gate oxide and methods for making same
EP2889915A1 (en) * 2013-12-30 2015-07-01 ABB Technology AG Power semiconductor device
CN103928529B (zh) * 2014-04-30 2016-11-23 西安电子科技大学 4H-SiC金属半导体场效应晶体管
CN107658215A (zh) * 2017-09-26 2018-02-02 中国科学院微电子研究所 一种碳化硅器件及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244099A (zh) * 2011-06-23 2011-11-16 西安电子科技大学 外延沟道的SiCIEMOSFET器件及制备方法
CN104465392A (zh) * 2013-09-20 2015-03-25 株式会社东芝 半导体装置的制造方法
CN104409501A (zh) * 2014-11-10 2015-03-11 中国科学院微电子研究所 碳化硅金属氧化物半导体场效应晶体管
CN107393814A (zh) * 2017-08-10 2017-11-24 中国科学院上海微系统与信息技术研究所 一种mos功率器件及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113464A (zh) * 2020-01-13 2021-07-13 张清纯 一种半导体器件及其制造方法
CN113113464B (zh) * 2020-01-13 2023-03-10 清纯半导体(宁波)有限公司 一种半导体器件及其制造方法
CN114242771A (zh) * 2021-11-30 2022-03-25 厦门大学 一种光增强碳化硅功率器件导通特性的结构
CN114242772A (zh) * 2021-11-30 2022-03-25 厦门大学 一种类超结光增强igbt器件
CN114242772B (zh) * 2021-11-30 2024-06-04 厦门大学 一种类超结光增强igbt器件
CN114242771B (zh) * 2021-11-30 2024-06-04 厦门大学 一种光增强碳化硅功率器件导通特性的结构
CN117711946A (zh) * 2023-12-18 2024-03-15 南京第三代半导体技术创新中心有限公司 碳化硅mosfet器件及其自对准制造方法

Also Published As

Publication number Publication date
CN109065623B (zh) 2021-03-02
CN109065623A (zh) 2018-12-21
EP3813127A1 (en) 2021-04-28
EP3813127A4 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
WO2019242036A1 (zh) 一种碳化硅金属氧化物半导体场效应晶体管及其制造方法
JP6817443B2 (ja) ゲート・トレンチと、埋め込まれた終端構造とを有するパワー半導体デバイス、及び、関連方法
US8658503B2 (en) Semiconductor device and method of fabricating the same
JP5586887B2 (ja) 半導体装置及びその製造方法
JP5693851B2 (ja) 半導体装置
JP5628462B1 (ja) 半導体装置およびその製造方法
JP4972855B2 (ja) 半導体装置およびその製造方法
JP2008503894A (ja) 炭化ケイ素デバイスおよびその作製方法
DE112013002538T5 (de) Halbleiterbauelement
JP2012527114A (ja) 半導体装置の製造方法および半導体装置
JP2014165306A (ja) 超接合半導体装置の製造方法
JP2013152981A (ja) 半導体装置及びその製造方法
TWI566410B (zh) 半導體元件、終端結構及其製造方法
WO2014192437A1 (ja) 炭化珪素半導体装置
JP6870516B2 (ja) 半導体装置および半導体装置の製造方法
CN107431090B (zh) 电力用半导体装置
US10236284B2 (en) Semiconductor device for preventing field inversion
JP6129117B2 (ja) 半導体装置及びその製造方法
JP2018133493A (ja) 半導体装置
CN114361242B (zh) 一种可调节阈值电压的平面型碳化硅mosfet及其制备方法
JP6771433B2 (ja) 半導体装置
WO2018171197A1 (zh) 一种碳化硅mosfet单胞结构的制造方法
TWI557904B (zh) 半導體裝置及其製造方法
CN212113722U (zh) 具有肖特基二极管的半导体器件
JP7508764B2 (ja) 超接合炭化珪素半導体装置および超接合炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018923692

Country of ref document: EP

Effective date: 20210122