WO2016041145A1 - 散热装置及采用该散热装置的uav - Google Patents

散热装置及采用该散热装置的uav Download PDF

Info

Publication number
WO2016041145A1
WO2016041145A1 PCT/CN2014/086628 CN2014086628W WO2016041145A1 WO 2016041145 A1 WO2016041145 A1 WO 2016041145A1 CN 2014086628 W CN2014086628 W CN 2014086628W WO 2016041145 A1 WO2016041145 A1 WO 2016041145A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
air duct
air
conducting plate
heat conducting
Prior art date
Application number
PCT/CN2014/086628
Other languages
English (en)
French (fr)
Inventor
唐尹
赵喜峰
赵涛
郭晓凯
黄彦鑫
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201480006657.7A priority Critical patent/CN105684565B/zh
Priority to PCT/CN2014/086628 priority patent/WO2016041145A1/zh
Priority to JP2017510667A priority patent/JP6559771B2/ja
Publication of WO2016041145A1 publication Critical patent/WO2016041145A1/zh
Priority to US15/448,782 priority patent/US10178812B2/en
Priority to US16/237,984 priority patent/US10681849B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • H05K7/20863Forced ventilation, e.g. on heat dissipaters coupled to components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/90Cooling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • H05K7/20854Heat transfer by conduction from internal heat source to heat radiating structure

Definitions

  • the present invention relates to a heat dissipating device, and more particularly to a heat dissipating device having a duct tube and a UAV (Unmanned Aerial Vehicle) using the heat dissipating device.
  • UAV Unmanned Aerial Vehicle
  • the main control module includes an IMU (Inertial Measurement Unit).
  • the measurement unit module and the OFDM (Orthogonal Frequency-Division Multiplexing) module, the modules of the main control module (for example, the IMU module and the OFDM module) are arranged in one space as much as possible.
  • each module of the main control module will generate heat during normal operation, if the heat cannot be exported in time in a confined space, the ambient temperature of the main control module will increase. Moreover, each module of the main control module has its own ambient temperature requirement for normal operation, and the electronic module with severe heat generation may affect the electronic module with less heat generation. For example, the heat generation of the IMU module is lower than the heat generation of the OFDM module. Therefore, for the above reasons, the main control module (IMU module and OFDM module) cannot work in a good working state or cannot work normally.
  • the present invention to provide a heat sink capable of reducing the temperature of the entire main control module of the UAV and avoiding the mutual influence of the heat generation of each module of the main control module.
  • a heat sink comprising:
  • the air duct includes a duct tube for guiding the airflow, and an air inlet and an air outlet respectively located at two ends of the air duct tube; the side wall of the air duct tube is provided with a through installation window, the wind The pipe is used to install the first electronic module;
  • a heat conducting plate disposed on the mounting window and covering the mounting window, the surface of the heat conducting plate facing away from the air duct tube being capable of mounting a second electronic module, the heat conducting plate and the first electronic module being thermally insulated ;
  • the second electronic module generates heat conduction to the heat conducting plate, and the heat generated by the heat conducting plate and the first electronic module is carried away by the airflow flowing in the air duct.
  • the heat dissipating device dissipates a plurality of electronic modules separately, thereby avoiding mutual influence of heat generated by the respective electronic modules, so that the plurality of electronic modules operate at two different ambient temperatures and pass through the air duct of the air guiding hood
  • the airflow circulating inside the tube can quickly remove the heat generated by each electronic module.
  • the IMU module is disposed in the duct of the air duct, and the airflow in the duct of the air duct directly carries the heat generated by the IMU module.
  • the OFDM module is located outside the air duct and is fixed on the heat conducting board, OFDM The heat generated by the module is conducted to the heat conducting plate and carried away by the air flow in the duct of the air duct.
  • the heat conducting plate of the heat dissipating device directly constitutes a part of the side wall of the air duct of the air guiding hood, so that the heat generated by the electronic module is directly transmitted through the heat conducting plate, thereby improving the heat dissipation efficiency of the electronic module.
  • the heat conducting plate is fixed on the air guiding cover, which increases the firmness of the electronic module, and prevents the electronic module from causing poor electrical contact when the UAV is flying and vibrating, and at the same time, enhances the UAV.
  • the overall structural strength meets the structural strength requirements of the UAV.
  • the air inlet is disposed opposite to the air outlet.
  • the opening size of the air inlet is larger than the opening size of the air outlet.
  • the duct tube has a planar mounting sidewall, the mounting window is formed on the mounting sidewall, and the heat conducting plate comprises a planar plate body, the plate body sealing The installation window.
  • the installation window extends from one end of the air inlet to one end of the air outlet, and extends through the air outlet, the board extends to the air outlet, and The side walls of the duct tube together form the air outlet.
  • a central guiding surface is formed in a middle portion of the side wall of the air duct opposite to the mounting window, so that the airflow to the air outlet is gradually concentrated.
  • the median guiding surface is a convex curved surface or an inclined plane.
  • the side wall of the air duct opposite to the installation window is formed with an upper guiding surface adjacent to the air inlet, so that the airflow flowing from the air inlet to the middle of the air duct is gradually concentrated.
  • the upper guiding surface is a convex curved surface or an inclined plane.
  • the heat conducting plate includes a plate body and a plurality of heat dissipating fins, the plate body sealing the mounting window, and the plurality of heat dissipating fins are disposed on the plate body adjacent to the air duct tube on the surface.
  • the plurality of heat dissipation fins are provided with a hollowed out area.
  • the plurality of heat dissipation fins are spaced apart in parallel to form a plurality of flow guiding grooves, the flow guiding grooves being disposed in a direction parallel to the extending direction of the air duct.
  • a plurality of fixing bosses are disposed on a surface of the plate body adjacent to the air duct tube, wherein at least a part of the fixing bosses are fixedly connected to the heat dissipation fins;
  • a boss is fixedly coupled to a sidewall of the air duct to secure the heat conducting plate to the air duct.
  • the sidewall of the air duct tube is convexly formed to form a plurality of positioning slots, and the plurality of fixing bosses respectively cooperate with the plurality of positioning slots.
  • the heat conducting plate is detachably coupled to the air hood.
  • the heat conducting plate and the air guiding cover are fixedly connected by a snap structure.
  • the heat conducting plate and the air hood are fixedly coupled by a threaded fastener.
  • the surface of the heat conducting plate facing away from the air duct tube is provided with a mounting portion for fixing the second device.
  • the air hood further includes a baffle disposed in the air duct, and a flow guiding surface of the baffle is inclined to be opposite to an extending direction of the air duct to A central portion of the air duct tube is formed with a gradually narrowing width, and a larger end of the current collecting portion is disposed toward the air inlet.
  • the baffle includes a main body and a connecting plate disposed on a back surface of the main body, and the connecting plate is fixedly connected to a sidewall of the air duct to guide the diversion
  • the plate is fixed in the air duct, and the flow guiding surface is a front surface of the main body.
  • the baffle includes a main body and a hook at an edge of the main body, and a side wall of the air duct is provided with a card slot corresponding to the hook, the card The hook is engaged with the card slot to fix the main body in the air duct, and the flow guiding surface is a front surface of the main body.
  • the flow guiding surface is a concave curved surface, a convex curved surface or a flat surface.
  • the flow guiding surface is disposed perpendicular to a side wall of the air duct tube provided with the mounting window.
  • the flow guiding surface is disposed opposite the side wall of the air duct tube provided with the mounting window.
  • a mounting bracket is further included, the mounting bracket being located within the duct tube, the first electronic module being mounted within the duct tube by the mounting bracket.
  • the mounting bracket is fixedly coupled to the surface of the heat conducting plate adjacent to the air duct tube.
  • the mounting bracket is an insulated bracket and the mounting bracket is detachably coupled to the heat conducting plate.
  • the mounting bracket includes a U-shaped plate body and fixing lugs extending from opposite ends of the U-shaped plate body, respectively, and the U-shaped plate body is provided with a hollow for heat dissipation. a clamping space is formed in the U-shaped plate body, and the fixing lug is fixedly connected to the surface of the heat conducting plate near the air duct tube.
  • the mounting bracket includes a plurality of L-shaped frames, one end of each of the L-shaped frames is fixed on a surface of the heat conducting plate adjacent to the air duct tube, and the other end is parallel to the heat conducting plate.
  • a clamping space is formed between the two L-shaped frames that are disposed and disposed opposite each other.
  • the mounting bracket is fixedly coupled to a sidewall of the duct.
  • a fan is further included, and the airflow blown by the fan enters the duct tube from the air inlet.
  • the fan is installed at the air inlet, and an air outlet surface of the fan is disposed toward the air duct, so that the fan directly communicates with the air inlet.
  • the open end surface of the air inlet is provided with a plurality of positioning posts, and the edge of the fan is correspondingly provided with a plurality of positioning holes, and the plurality of positioning posts respectively pass through the plurality of positioning holes. Positioning the fan on an open end face of the air inlet.
  • a fan bracket is further included, and the fan is fixed to the open end surface of the air inlet through the fan bracket.
  • the fan is in communication with the air inlet through a flow guiding channel.
  • the mounting case is further disposed on a side of the heat conducting plate facing away from the air duct, and the mounting shell and the heat conducting board together form an electrical box.
  • the mounting shell includes a bottom plate and a plurality of side panels, the plurality of side panels are sequentially connected to form an annular closed structure, and are connected to an edge of the bottom plate, the bottom plate and the bottom plate
  • the heat conducting plates are oppositely disposed, the plurality of side plates enclosing an opening away from an edge of the bottom plate, and the shape of the opening is adapted to an edge shape of the heat conducting plate.
  • the bottom plate is provided with an external window for inserting an external plug or/and a heat dissipation window for the exposed electronic components.
  • connection bracket is further included, the connection bracket fixedly connecting the heat conducting plate and the mounting shell.
  • the connecting bracket is a Z-shaped structure, and includes a connecting body and two fixing portions respectively disposed at two ends of the connecting body, the two fixing portions respectively respectively with the heat conducting plate and the The mounting shell is fixedly connected.
  • the connecting body is a sheet-like structure, and the two fixing portions are respectively folded and extended from two ends of the connecting body, and the side plates of the mounting shell are opened and engaged The hole, one of the fixing portions is inserted into the engaging hole, and the other fixing portion is disposed close to the surface of the heat conducting plate near the air duct.
  • a fixing bracket for fixing the air hood is further included.
  • the fixing brackets are two, one of the fixing brackets is fixedly connected to the air guiding hood, and the other one of the fixing brackets is fixedly connected to the heat conducting board.
  • the fixing bracket comprises a U-shaped body and two connecting lugs, the U-shaped body comprising a bottom and two arms extending from the two ends of the bottom toward the same side of the bottom, the two The connecting lugs are spaced apart from each other and extend away from the arm perpendicular to the bottom from the outside of the bottom of the U-shaped body.
  • the present invention also provides a UAV using the above heat dissipating device.
  • a UAV that includes:
  • the first electronic module
  • the second electronic module The second electronic module.
  • the above UAV has at least the following advantages:
  • the UAV uses a heat dissipating device to dissipate a plurality of electronic modules separately, thereby avoiding the mutual influence of heat generated by the respective electronic modules, so that the plurality of electronic modules operate at two different ambient temperatures and pass through the air hood.
  • the airflow circulating in the duct can quickly remove the heat generated by each electronic module.
  • the IMU module is disposed in the duct of the air duct, and the airflow in the duct of the air duct directly carries the heat generated by the IMU module.
  • the OFDM module is located outside the air duct and is fixed on the heat conducting board, OFDM The heat generated by the module is conducted to the heat conducting plate and carried away by the air flow in the duct of the air duct.
  • the heat conducting plate of the heat dissipating device directly forms a part of the side wall of the air duct of the air guiding hood, so that the heat generated by the second electronic module is directly transmitted through the heat conducting plate, thereby improving the heat dissipation efficiency of the second electronic module.
  • the second electronic module of the UAV is directly fixed on the heat conducting plate, and the heat conducting plate is fixed on the air guiding cover, which increases the firmness of the second electronic module, and prevents the second electronic module from causing electrical contact when the UAV is flying and vibrating. Bad, at the same time, enhances the overall structural strength of the UAV and meets the structural strength requirements of the UAV.
  • the first electronic module generates more heat than the second electronic module generates.
  • the first electronic module generates less heat than the second electronic module generates heat.
  • the third electronic module is further disposed on a side of the second electronic module facing away from the heat conducting plate.
  • the first electronic module is an IMU module and the second electronic module is an OFDM module.
  • the third electronic module is a control module
  • the IMU module, the OFDM module, and the control module constitute a main control module of the UAV.
  • FIG. 1 is a schematic structural view of a UAV according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the UAV shown in Figure 1.
  • FIG. 3 is an exploded view of the UAV shown in FIG. 1.
  • FIG. 4 is an exploded view of another perspective of the UAV shown in FIG. 1.
  • Embodiments of the present invention disclose a heat dissipation device that can be applied to a UAV to solve a heat dissipation problem of an electronic module in a UAV.
  • an electronic module such as an IMU module, an OFDM module, and a control module of a main control module of a UAV can be solved.
  • the problem of heat dissipation can be solved.
  • the heat dissipating device comprises an air guiding cover and a heat conducting plate, wherein the air guiding cover is used for forming an air duct, the air duct tube has an air inlet and an air outlet, and the heat conducting plate forms part of the air duct.
  • the air guiding cover is used for forming an air duct
  • the air duct tube has an air inlet and an air outlet
  • the heat conducting plate forms part of the air duct.
  • the opening size of the air inlet is larger than the opening size of the air outlet, so that the airflow speed of the air inlet is smaller than the airflow speed of the air outlet.
  • the opening size of the air duct tube is not uniform, wherein the airflow speed is slower in the place where the opening size is larger, the airflow heat exchange time is increased, and the airflow speed is faster in the place where the opening size is smaller, Small airflow heat exchange time.
  • a middle guiding surface is formed in a middle portion of the side wall of the air duct opposite to the installation window, and an upper guiding surface is formed at a position of the air duct opposite to the installation window near the air inlet.
  • a baffle is provided in the duct of the air duct for changing the direction of airflow within the duct.
  • the flow guiding surface of the baffle is disposed in various manners, for example, the flow guiding surface is disposed perpendicular to a sidewall of the air duct tube provided with the mounting window; or The flow guiding surface is disposed opposite to the side wall of the air duct tube provided with the installation window.
  • the shape of the flow guiding surface of the baffle may be various, and the flow guiding surface is a concave curved surface, a convex curved surface or a flat surface.
  • the shape of the heat conducting plate may be planar or curved.
  • the thermally conductive plate can be a separate plate member or one of the side panels of the electrical box.
  • the heat conducting plate is thermally insulated from the electronic module mounted in the air duct, for example, the heat conducting plate is spaced apart from the electronic module installed in the air duct, or the heat conducting board is disposed between the electronic module installed in the air duct. There are insulation materials.
  • the heat sink further includes a mounting bracket for securing the electronic module, the mounting bracket being disposed within the duct of the air duct.
  • the mounting bracket can be fixed to the side wall of the air duct of the air duct or fixed to the heat conducting board.
  • the heat sink further includes a fan for generating a heat sinking airflow.
  • the fan can be directly connected to the duct, for example, the fan is directly installed at the air inlet of the duct.
  • the fan can also be indirectly connected to the duct.
  • the fan is disposed at other parts of the UAV, and communicates with the duct of the air duct through the air guiding passage inside the UAV.
  • the UAV 10 of the embodiment of the present invention includes a heat sink 100 , a first electronic module 200 , and a second electronic module 300 .
  • the heat dissipating device 100 includes an air guiding cover 110 and a heat conducting plate 120.
  • the heat conducting plate 120 is fixedly connected to the air guiding cover 110.
  • the air hood 110 and the heat conducting plate 120 isolate the first electronic module 200 and the second electronic module 300 and simultaneously dissipate heat from the first electronic module 200 and the second electronic module 300.
  • the first electronic module 200 is received in the air guiding cover 110 and spaced apart from the heat conducting plate 120; the second electronic module 300 is disposed on the outer surface of the heat conducting plate 120 facing away from the air guiding cover 110. .
  • the second electronic module 300 generates heat to the heat conducting plate 120, and the heat generated by the heat conducting plate 120 and the first electronic module 200 is carried away by the airflow flowing through the air guiding hood 110.
  • the air guiding hood 110 includes an air duct 111 for guiding the airflow, and an air inlet 112 and an air outlet 113 respectively located at both ends of the air duct 111.
  • a through mounting window 114 is provided on the side wall of the air duct 111.
  • the opening size of the air inlet 112 and the opening size of the air outlet 113 may not be equal. Specifically, in the illustrated embodiment, the opening size of the air inlet 112 is larger than the opening size of the air outlet 113.
  • the position of the air inlet 112 and the air outlet 113 can be designed according to different requirements.
  • the air inlet 112 is disposed opposite to the air outlet 113 to reduce the resistance of the airflow through the air duct 111, and further The heat dissipation efficiency of the heat sink 100 is improved.
  • the heat conducting plate 120 is used to fix the second electronic module 300.
  • the heat conducting plate 120 is disposed on the mounting window 114 of the air guiding hood 110 and covers the mounting window 114 of the air guiding hood 110.
  • the duct 111 has a planar mounting sidewall 119.
  • the mounting window 114 is defined on the mounting sidewall 119.
  • the heat conducting plate 120 includes a planar plate 121.
  • the plate 121 seals the mounting window. 114.
  • the installation window 114 of the air hood 110 extends from one end of the air inlet 112 to one end where the air outlet 113 is located, and penetrates the air outlet 113.
  • the board 121 extends to the air outlet 113 and is opposite to the side of the air duct 111.
  • the walls together form an air outlet 113. Since the heat conducting plate 120 occupies a large proportion of the mounting sidewall 119 of the air guiding hood 110, thereby increasing the contact area between the heat conducting plate and the airflow, the heat dissipation efficiency of the heat sink 100 is further improved.
  • a central guiding surface 111b is formed in a middle portion of the side wall of the air duct 111 opposite to the mounting window 114.
  • the intermediate guiding surface 111b is an inclined plane provided on the side wall of the air duct 111 to enable the flow to the air outlet.
  • the airflow of 113 is gradually concentrated.
  • the first electronic module 200 is located above the center guiding surface 111b, so that the airflow absorbs the heat of the first electronic module 200 and flows to the air outlet 113 as soon as possible, so as to avoid the heat of the airflow. Conducting to the first electronic module 200 further prevents the heat generated by the first electronic module 200 and the second electronic module 300 from interacting with each other.
  • the shape of the center guiding surface 111b can be designed according to different requirements.
  • the center guiding surface 111b is a convex curved surface provided on the side wall of the duct 111.
  • the sidewall of the air duct 111 opposite to the mounting window 114 is formed with an upper guiding surface 111c adjacent to the air inlet 112.
  • the upper guiding surface 111c is provided on the side wall of the duct 111.
  • the inclined curved surface can gradually concentrate the airflow flowing from the air inlet 112 to the middle of the air duct 111.
  • the first electronic module 200 is located below the upper guiding surface 111c, so that the speed of the airflow to the first electronic module 200 is faster, thereby further accelerating the heat dissipation efficiency of the first electronic module 200.
  • the shape of the upper guiding surface 111c can be designed according to different needs.
  • the upper guiding surface 111c is a convex curved surface provided on the side wall of the duct 111.
  • the heat conducting plate 120 further includes a plurality of heat dissipating fins 123.
  • the plurality of heat dissipating fins 123 are disposed on the surface of the plate body 121 near the air duct 111 to increase the airflow in the air duct 111 of the air guiding hood 110.
  • the contact area of the heat conducting plate 120 increases the heat dissipation efficiency of the heat conducting plate 120.
  • the plurality of heat dissipation fins 123 are provided with a hollowed-out area 123a for mounting the first electronic module 200.
  • the extending direction of the plurality of heat dissipation fins 123 can be designed according to different requirements.
  • the plurality of heat dissipation fins 123 are arranged in parallel to form a plurality of flow guiding grooves 122, and the guiding groove edge It is disposed parallel to the extending direction of the duct 111. Since the flow guiding groove is disposed parallel to the extending direction of the air duct 111, the resistance of the airflow in the air duct 111 to the plurality of heat radiating fins 123 is small, thereby further improving the heat dissipation efficiency of the heat conducting plate 120.
  • the heat conducting plate 120 is detachably connected to the air guiding hood 110.
  • the connection manner of the heat conducting plate 120 and the air guiding cover 110 is designed according to different requirements.
  • the heat conducting plate 120 and the air guiding cover 110 are fixedly connected by the engaging structure; or the heat conducting plate 120 and the air guiding cover 110 are threaded.
  • the fasteners are fixedly connected.
  • a plurality of fixing bosses 125 are disposed on the surface of the air duct tube 111 of the air-conditioning cover 110, and at least a part of the fixing protrusions 125 are fixedly connected to the heat dissipation fins 123. At least a part of the fixing boss 125 and the heat dissipation fin 123 are integrally formed; the plurality of fixing bosses 125 are fixedly connected with the sidewall of the air duct 111 of the air guiding cover 110 to fix the heat conducting plate 120 to the air guiding cover 110. on.
  • a plurality of positioning grooves 111a are formed on the side wall of the air duct tube 111, and the plurality of fixing bosses 125 are respectively engaged with the plurality of positioning grooves 111a. Since the side wall is convexly formed with a plurality of positioning grooves 111a, the fixing boss 125 is prevented from blocking the flow of the airflow in the air guiding cover 110, and the fixing boss 125 cooperates with the positioning groove 111a to function as a positioning.
  • a mounting portion 127 for fixing the second electronic module 300 is disposed on a surface of the air duct 111 facing away from the air guiding cover 110 to facilitate mounting of the second electronic module 300.
  • the mounting portion 127 is a mounting boss that is disposed on the surface of the heat conducting plate 120 that faces away from the air duct 111.
  • the surface of the heat conducting plate 120 facing away from the air duct tube 111 is further provided with a blocking frame 128.
  • the area enclosed by the blocking frame 128 forms a relief portion, and the electronic components of the second electronic module 300 can be received in the avoiding portion.
  • the air hood 110 further includes a flow of the deflector 116 disposed in the air duct tube 111.
  • the flow guiding surface 116c of the plate 116 is inclined with respect to the extending direction of the air duct tube 111 to be in the air duct 111.
  • a central portion having a gradually narrower width is formed in the middle portion, and a larger end of the current collecting portion is disposed toward the air inlet 112.
  • the baffle 116 is located at one side of the first electronic module 200, and the airflow in the air duct 111 of the air hood 110 flows through the deflector 116 to the first electronic module 200 to further The heat dissipation efficiency of the first electronic module 200 is accelerated.
  • the deflector 116 includes a main body 116a and a connecting plate 116b disposed on the back of the main body 116a.
  • the side wall of the duct 111 is fixedly connected to fix the deflector 116 in the duct 111, and the deflector 116c is the front surface of the main body 116a.
  • the baffle 116 further includes a hook on the edge of the main body 116a.
  • the side wall of the air duct 111 is provided with a card slot corresponding to the hook, and the hook is engaged with the card slot to
  • the main body 116a is fixed in the duct 111, and the deflector 116c is the front surface of the main body 116a.
  • the shape of the flow guiding surface 116c can be designed according to different requirements.
  • the flow guiding surface 116c can be a concave curved surface, a convex curved surface or a flat surface.
  • the manner of disposing the flow guiding surface 116c may also be designed according to different requirements.
  • the flow guiding surface 116c is disposed perpendicular to the side wall of the air duct tube 111 provided with the mounting window 114.
  • the flow guiding surface 116c is disposed opposite the side wall of the duct tube 111 that is provided with the mounting window 114.
  • a fan 130 is further included, and the airflow blown by the fan 130 enters the air duct tube 111 through the air inlet.
  • the communication mode of the fan 130 can be designed according to different requirements.
  • the fan 130 is installed at the air inlet 112 of the air hood 110, and the wind surface of the fan 130 faces the wind of the air hood 110.
  • the duct 111 is disposed such that the fan 130 is directly in communication with the air inlet 112.
  • the fan 130 is in communication with the air inlet 112 through a flow directing passage.
  • the fan 130 is disposed at other portions of the UAV 10, and communicates with the duct 111 of the air hood 110 through a flow guiding passage inside the UAV 10.
  • the fan 130 is disposed at a position away from the air hood 110 of the UAV 10, and a part of the airflow generated by the fan 130 is guided to the windshield 110 through the flow guiding channel inside the UAV 10, and the other part is directed to the power of the UAV 10 to dissipate heat from the power supply. .
  • the mounting manner of the fan 130 can be designed according to different requirements.
  • the opening end surface of the air inlet 112 is provided with a plurality of positioning posts 117
  • the edge of the fan 130 is correspondingly provided with a plurality of positioning holes 131.
  • the plurality of positioning posts 117 respectively pass through the plurality of positioning holes 131 to position the fan 130 on the open end surface of the air inlet 112.
  • the heat sink 100 further includes a fan bracket, and the fan 130 is fixed to the open end surface of the air inlet 112 by a fan bracket.
  • the heat dissipation device 100 further includes a mounting shell 140 disposed on a side of the heat conducting plate 120 away from the air duct 111 of the air guiding hood 110, and the mounting shell 140 and the heat conducting board 120 together form a second for accommodating the second Electrical box for electronic module 300.
  • the mounting shell 140 includes a bottom plate 141 and a plurality of side plates 143 which are sequentially connected to form an annular closed structure and are connected to the edge of the bottom plate 141, the bottom plate 141 and the heat conducting plate. 120 is oppositely disposed, and a plurality of side plates 143 surround an edge of the bottom plate 141 to form an opening, and the shape of the opening is adapted to the shape of the edge of the heat conducting plate 120.
  • the bottom plate 141 is provided with an external window 141a for inserting an external plug or/and a heat dissipation window 141b for exposing the electronic components.
  • connection between the mounting shell 140 and the heat conducting plate 120 can be designed according to different requirements.
  • the heat sink 100 further includes a connecting bracket 150 that is fixedly coupled to the heat conducting plate 120 and the mounting shell 140.
  • the connecting bracket 150 is a Z-shaped structure, and includes a connecting body 151 and two fixing portions respectively disposed at two ends of the connecting body 151. 153.
  • the two fixing portions 153 are fixedly connected to the heat conducting plate 120 and the mounting shell 140, respectively.
  • the connecting body 151 is a sheet-like structure, and the two fixing portions 153 are respectively folded and extended from the two ends of the connecting body 151, and the side plate 143 of the mounting shell 140 is provided with an engaging hole 143a (as shown in FIG. 3).
  • the fixing portion 153 is inserted into the engaging hole 143a, and the other fixing portion 153 is disposed close to the surface of the air duct 111 of the heat conducting plate 120 close to the air guiding cover 110.
  • the heat sink 100 further includes a fixing bracket 160 for fixing the air guiding hood 110.
  • the heat sink 100 is fixed to the body of the UAV 10 by the fixing bracket 160.
  • the mounting manner of the fixing bracket 160 can be designed according to different requirements.
  • the fixing bracket 160 is two, one of the fixing brackets 160 is fixedly connected with the air guiding cover 110, and the other fixing bracket 160 is The heat conducting plate 120 is fixedly connected.
  • the fixing bracket 160 includes a U-shaped body 161 and two connecting lugs 163.
  • the U-shaped body 161 includes a bottom portion and faces from both ends of the bottom portion.
  • Two arms extending on the same side of the bottom, the two connecting lugs 163 are spaced apart from each other, and extend from the bottom of the bottom of the U-shaped body 161 perpendicularly to the bottom of the U-shaped body 161 toward the arm facing away from the U-shaped body 161.
  • the first electronic module 200 is received in the air duct tube 111 of the air guiding hood 110 and spaced apart from the heat conducting plate 120.
  • the second electronic module 300 is disposed on a surface of the air duct 111 facing the heat conducting plate 120 away from the air guiding hood 110.
  • the second electronic module 300 generates heat conduction to the heat conducting plate 120, and the heat generated by the heat conducting plate 120 and the first electronic module 120 is carried away by the airflow flowing in the air duct tube 110.
  • the heat generated by the first electronic module 200 may be greater than the heat generated by the second electronic module 300 or less than the heat generated by the second electronic module 300.
  • the first electronic module 200 is an IMU module
  • the second electronic module 300 is an OFDM module.
  • the heat generated by the IMU module is generally smaller than the heat generated by the OFDM.
  • the IMU module is separated from the electrical box by the air hood 110 and the heat conducting plate 120, and separately radiated.
  • the heat sink 100 further includes a mounting bracket 170 for fixing the first electronic module 200, and the mounting bracket 170 is located in the duct 111 of the air guiding hood 110. Specifically, the mounting bracket 170 is disposed such that the first electronic module 200 is spaced from the heat conducting plate 120 to prevent heat of the heat conducting plate 120 from being directly transmitted to the first electronic module 200.
  • connection manner of the mounting bracket 170 can be designed according to different requirements.
  • the mounting bracket 170 is fixedly connected to the surface of the heat conducting plate 120 near the air duct 111, so that the first electronic module 200 can follow the heat conducting board.
  • the 120 is disassembled together for easy access to the first electronic module 200.
  • the mounting bracket 170 is fixedly coupled to the sidewall of the duct 111.
  • the mounting bracket 170 is an insulated bracket, and the mounting bracket 170 is detachably connected to the heat conducting plate 120.
  • the mounting bracket 170 includes a U-shaped plate body 171 and a fixed extension from the opposite ends of the U-shaped plate body 171.
  • the lug 173, the U-shaped plate body 171 is provided with a hollow portion 171a for heat dissipation, and the U-shaped plate body 171 forms a clamping space therein, that is, the first electronic module 200 is clamped in the U-shaped plate body 171, and the fixing lug 173 is fixed.
  • the heat conducting plate 120 is fixedly connected to the surface of the air duct 111.
  • the mounting bracket 170 includes a plurality of L-shaped frames, one end of each of the L-shaped frames is fixed on the surface of the heat conducting plate 120 adjacent to the air duct 111, and the other end is spaced apart from the heat conducting plate 120 so that the other end is Abutting with the first electronic module 200, and forming a clamping space between the two L-shaped frames disposed opposite to each other, that is, the first electronic module 200 is sandwiched between the two L-shaped frames disposed opposite each other.
  • the UAV 10 further includes a third electronic module 400 disposed on a side of the second electronic module 300 facing away from the heat conducting plate 120.
  • the third electronic module 400 is a control module.
  • the first electronic module 200 and the second electronic module 300 are separated by the heat conducting plate 120.
  • the first electronic module 200 is fixed in the air duct 111 of the air guiding cover 110, and the second electronic module 300 is located in the guide.
  • the duct 110 of the hood 110 is outside and fixed to the surface of the heat conducting plate 120 facing away from the duct 111.
  • the airflow generated by the fan 130 is blown downward from the top end of the first electronic module 200, and the airflow pipe 111 of the air guiding hood 110 is used to concentrate the airflow to the surface of the first electronic module 200, and the airflow is radiated from the heat radiating fin of the heat conducting plate 120.
  • the sheet 123 flows away, and the surface heat of the first electronic module 200 and the heat conducted by the second electronic module 300 to the heat conducting plate 120 are taken away to function as a temperature drop.
  • the above UAV 10 has at least the following advantages:
  • the UAV 10 uses the heat dissipating device 100 to separately dissipate heat from a plurality of electronic modules, thereby avoiding mutual influence of heat generated by the respective electronic modules, so that the plurality of electronic modules operate at two different ambient temperatures and pass the wind guide.
  • the airflow flowing in the duct 111 of the cover 110 can quickly remove the heat generated by each electronic module.
  • the IMU module is disposed in the air duct 111 of the air hood 110, and the airflow in the air duct 111 of the air hood 110 directly carries the heat generated by the IMU module, and the OFDM module is located outside the air hood 110, and Fixed on the heat conducting plate 120, the heat generated by the OFDM module is conducted to the heat conducting plate 120 and carried away by the airflow in the duct 111 of the air guiding hood 110.
  • the heat conducting plate 120 of the heat dissipating device 100 directly forms a part of the side wall of the air duct 111 of the air guiding cover 110, so that the heat generated by the second electronic module 300 is directly transmitted through the heat conducting plate 120, thereby improving the second electronic module 300. Cooling efficiency.
  • the second electronic module 300 of the UAV 10 is directly fixed on the heat conducting plate 120, and the heat conducting plate 120 is fixed on the air guiding cover 110, which increases the firmness of the second electronic module 300, and prevents the second electronic module 300 from being in the UAV. 10 Flight vibration will lead to poor electrical contact, and at the same time, the overall structural strength of the UAV 10 is enhanced, meeting the structural strength requirements of the UAV 10.
  • the related apparatus and method disclosed may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热装置及采用该散热装置的UAV,该散热装置(100)包括:导风罩(110),包括用于导向气流的风道管(111)、以及分别位于所述风道管的两端的进风口(112)及出风口(113);所述风道管的侧壁上设有贯穿的安装窗口(114);导热板(120),设于所述安装窗口,并且遮盖所述安装窗口;所述导热板背向所述风道管的表面用于固定第二电子模块(300);用于将第一电子模块(200)固定在所述风道管内、并且与所述导热板间隔设置的安装支架(170),所述安装支架位于所述风道管内。上述散热装置能够将多个电子模块进行分离式散热,从而避免各个电子模块产生的热量互相影响,并且通过导风罩的风道管内流通的气流可快速带走各个电子模块产生的热量。

Description

散热装置及采用该散热装置的UAV 技术领域
本发明涉及一种散热装置,特别涉及一种具有风道管的散热装置及采用该散热装置的UAV(Unmanned Aerial Vehicle,无人飞行器)。
背景技术
在UAV的领域,例如,多旋翼一体机,为了尽量减少一体机的质量,减小一体机的体积,一般要求主控模块的结构设计比较紧凑,该主控模块包括IMU(Inertial Measurement Unit,惯性测量单元)模块和OFDM(Orthogonal Frequency-Division Multiplexing,正交频分复用)模块,主控模块的各个模块(例如,IMU模块和OFDM模块)尽量布局在一体空间里。
然而,由于主控模块的各个模块正常工作时都会发热,在密闭空间里面,如果不能将热量及时导出,会导致主控模块的环境温度升高。并且,主控模块的各个模块都有各自正常工作的环境温度要求,发热严重的电子模块会影响发热较少的电子模块,例如,IMU模块的发热量低于OFDM模块的发热量。因此,基于上述原因,会导致主控模块(IMU模块和OFDM模块)不能在良好的工作状态下工作,或者不能正常工作。
发明内容
鉴于此,本发明有必要提供一种能够降低UAV的整个主控模块的温度、并可避免主控模块的各个模块发热相互影响的散热装置。
一种散热装置,包括:
导风罩,包括用于导向气流的风道管、以及分别位于所述风道管的两端的进风口及出风口;所述风道管的侧壁上设有贯穿的安装窗口,所述风道管用于安装第一电子模块;以及
导热板,设于所述安装窗口,并且遮盖所述安装窗口,所述导热板背向所述风道管的表面能够安装第二电子模块,所述导热板与所述第一电子模块绝热设置;
其中,所述第二电子模块产生热量传导到所述导热板上,所述导热板以及所述第一电子模块的产生热量由流通在所述风道管内的气流带走。
上述散热装置至少具有如下优点:
(1)上述散热装置将多个电子模块进行分离式散热,从而避免各个电子模块产生的热量互相影响,使得多个电子模块在两个不同的环境温度下工作,并且通过导风罩的风道管内流通的气流可快速带走各个电子模块产生的热量。
例如,IMU模块设于导风罩的风道管内,通过导风罩的风道管内的气流直接带走IMU模块产生的热量,OFDM模块位于导风罩的外侧,并且固定在导热板上,OFDM模块产生的热量传导到导热板,并且通过导风罩的风道管内的气流带走。
(2)上述散热装置的导热板直接构成导风罩的风道管的侧壁一部分,使得电子模块产生的热量通过导热板直接传导,从而提高电子模块的散热效率。
(3)由于电子模块直接固定在导热板上,导热板固定在导风罩上,增加了电子模块的牢固程度,避免电子模块在UAV飞行震动时会导致电接触不良,同时,增强了UAV的整体结构强度,满足了UAV的结构强度要求。
在其中一个实施例中,所述进风口与所述出风口相对设置。
在其中一个实施例中,所述进风口的开口尺寸大于所述出风口的开口尺寸。
在其中一个实施例中,所述风道管具有一平面形的安装侧壁,所述安装窗口开设在所述安装侧壁上,所述导热板包括平面形的板体,所述板体密封所述安装窗口。
在其中一个实施例中,所述安装窗口从所述进风口所在的一端延伸至所述出风口所在的一端,并且贯穿所述出风口,所述板体延伸至所述出风口,并且与所述风道管的侧壁共同形成所述出风口。
在其中一个实施例中,所述风道管与所述安装窗口相对的侧壁的中部形成有中位导向面,使流向所述出风口的气流逐渐集中。
在其中一个实施例中,所述中位导向面为外凸曲面或倾斜平面。
在其中一个实施例中,所述风道管与所述安装窗口相对的侧壁形成有靠近所述进风口的上位导向面,使由所述进风口流向所述风道管中部的气流逐渐集中。
在其中一个实施例中,所述上位导向面为外凸曲面或倾斜平面。
在其中一个实施例中,所述导热板包括板体以及多个散热鳍片,所述板体密封所述安装窗口,所述多个散热鳍片设于所述板体靠近所述风道管的表面上。
在其中一个实施例中,所述多个散热鳍片设有镂空区域。
在其中一个实施例中,所述多个散热鳍片平行间隔设置,以形成多个导流槽,所述导流槽沿平行于所述风道管的延伸方向设置。
在其中一个实施例中,所述板体靠近所述风道管的表面上设有多个固定凸台,其中至少一部分所述固定凸台与所述散热鳍片固定连接;所述多个固定凸台与所述风道管的侧壁固定连接,以将所述导热板固定在所述导风罩上。
在其中一个实施例中,所述风道管的侧壁外凸形成多个定位槽,所述多个固定凸台分别与所述多个定位槽相配合。
在其中一个实施例中,所述导热板与所述导风罩可拆卸连接。
在其中一个实施例中,所述导热板与所述导风罩通过卡合结构固定连接起来。
在其中一个实施例中,所述导热板与所述导风罩通过螺纹紧固件固定连接起来。
在其中一个实施例中,所述导热板背离所述风道管的表面上设有用于固定所述第二装置的安装部。
在其中一个实施例中,所述导风罩还包括设于所述风道管内的导流板,所述导流板的导流面相较于所述风道管的延伸方向倾斜设置,以在所述风道管的中部形成宽度逐渐变窄的集流部,所述集流部的宽度较大的一端朝向所述进风口设置。
在其中一个实施例中,所述导流板包括主板体及设于所述主板体的背面的连接板,所述连接板与所述风道管的侧壁固定连接,以将所述导流板固定在所述风道管内,所述导流面为所述主板体的正面。
在其中一个实施例中,所述导流板包括主板体以及位于所述主板体边缘的卡勾,所述风道管的侧壁设有与所述卡勾相对应的卡槽,所述卡勾与所述卡槽相卡合,以将所述主板体固定在所述风道管内,所述导流面为所述主板体的正面。
在其中一个实施例中,所述导流面为内凹的弧形面、外凸的弧形面或平面。
在其中一个实施例中,所述导流面与所述风道管设有所述安装窗口的侧壁垂直设置。
在其中一个实施例中,所述导流面与所述风道管设有所述安装窗口的侧壁相对设置。
在其中一个实施例中,还包括安装支架,所述安装支架位于所述风道管内,通过所述安装支架将所述第一电子模块安装在所述风道管内。
在其中一个实施例中,所述安装支架与所述导热板靠近所述风道管的表面固定连接。
在其中一个实施例中,所述安装支架为绝热支架,并且所述安装支架与所述导热板可拆卸连接。
在其中一个实施例中,所述安装支架包括U形板体以及从所述U形板体的两端分别反向弯折延伸的固定凸耳,所述U形板体设有用于散热的镂空部,所述U形板体内形成夹持空间,所述固定凸耳与所述导热板靠近所述风道管的表面固定连接。
在其中一个实施例中,所述安装支架包括多个L形框,每个所述L形框的一端固定在所述导热板靠近所述风道管的表面上,另一端与导热板平行间隔设置,并且相对设置的两个所述L形框之间形成夹持空间。
在其中一个实施例中,所述安装支架与所述风道管的侧壁固定连接。
在其中一个实施例中,还包括风扇,所述风扇吹出的气流由所述进气口进入到所述风道管内。
在其中一个实施例中,所述风扇安装在所述进风口,并且所述风扇的出风面朝向所述风道管设置,使所述风扇直接与所述进风口相连通。
在其中一个实施例中,所述进风口的开口端面设有多个定位柱,所述风扇的边缘对应设有多个定位孔,所述多个定位柱分别穿过所述多个定位孔,以将所述风扇定位在所述进风口的开口端面上。
在其中一个实施例中,还包括风扇支架,所述风扇通过所述风扇支架固定在所述进风口的开口端面上。
在其中一个实施例中,所述风扇通过导流通道与所述进风口连通。
在其中一个实施例中,还包括安装壳,所述安装壳设于所述导热板背离所述风道管的一侧,并且所述安装壳与所述导热板共同形成一个电气盒。
在其中一个实施例中,所述安装壳包括底板以及多个侧板,所述多个侧板依次相连围成一个环状封闭结构,并且与所述底板的边缘连接,所述底板与所述导热板相对设置,所述多个侧板远离所述底板的边缘围成一开口,并且所述开口的形状与所述导热板的边缘形状相适配。
在其中一个实施例中,所述底板上设有用于供外接插头插入的外接窗口或/及用于外露电子元器件的散热窗口。
在其中一个实施例中,还包括连接支架,所述连接支架固定连接所述导热板与所述安装壳。
在其中一个实施例中,所述连接支架为Z型结构,并且包括连接主体以及分别设于所述连接主体的两端的两个固定部,所述两个固定部分别与所述导热板以及所述安装壳固定连接。
在其中一个实施例中,所述连接主体为片状结构,所述两个固定部分别为从所述连接主体的两端弯折延伸的折片,所述安装壳的侧板开设有卡合孔,其中一个所述固定部插入所述卡合孔内,另外一个所述固定部紧贴所述导热板靠近所述风道管的表面设置。
在其中一个实施例中,还包括用于固定所述导风罩的固定支架。
在其中一个实施例中,所述固定支架为两个,其中一个所述固定支架与所述导风罩固定连接,另外一个所述固定支架与所述导热板固定连接。
在其中一个实施例中,所述固定支架包括U形体以及两个连接凸耳,所述U形体包括底部及从所述底部两端朝向所述底部同一侧延伸的两个支臂,所述两个连接凸耳相对间隔设置,并且从所述U形体的底部外侧垂直于所述底部背离所述支臂延伸。
同时,本发明还提供一种采用上述散热装置的UAV。
一种UAV,包括:
上述的散热装置;
所述第一电子模块;以及
所述第二电子模块。
相较于传统的UAV,上述UAV至少具有如下优点:
(1)上述UAV采用散热装置将多个电子模块进行分离式散热,从而避免各个电子模块产生的热量互相影响,使得多个电子模块在两个不同的环境温度下工作,并且通过导风罩的风道管内流通的气流可快速带走各个电子模块产生的热量。
例如,IMU模块设于导风罩的风道管内,通过导风罩的风道管内的气流直接带走IMU模块产生的热量,OFDM模块位于导风罩的外侧,并且固定在导热板上,OFDM模块产生的热量传导到导热板,并且通过导风罩的风道管内的气流带走。
(2)上述散热装置的导热板直接构成导风罩的风道管的侧壁一部分,使得第二电子模块产生的热量通过导热板直接传导,从而提高第二电子模块的散热效率。
(3)上述UAV的第二电子模块直接固定在导热板上,导热板固定在导风罩上,增加了第二电子模块的牢固程度,避免第二电子模块在UAV飞行震动时会导致电接触不良,同时,增强了UAV的整体结构强度,满足了UAV的结构强度要求。
在其中一个实施例中,所述第一电子模块产生的热量大于所述第二电子模块产生的热量。
在其中一个实施例中,所述第一电子模块产生的热量小于所述第二电子模块产生的热量。
在其中一个实施例中,还包括第三电子模块,所述第三电子模块设于所述第二电子模块背离所述导热板的一侧。
在其中一个实施例中,所述第一电子模块为IMU模块,所述第二电子模块为OFDM模块。
在其中一个实施例中,所述第三电子模块为控制模块,所述IMU模块、所述OFDM模块以及所述控制模块构成所述UAV的主控制模块。
附图说明
图1为本发明的实施方式的UAV的结构示意图。
图2为图1所示的UAV的剖视图。
图3为图1所示的UAV的分解图。
图4为图1所示的UAV的另一视角的分解图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明的实施方式公开一种散热装置,其可以应用于UAV中,以解决UAV中的电子模块的散热问题,例如,可以解决UAV的主控制模块的IMU模块、OFDM模块、控制模块等电子模块的散热问题。
该散热装置包括导风罩以及导热板,导风罩用于形成风道管,风道管具有进风口及出风口,导热板构成风道管的一部分。当需要对两个不同的电子模块进行散热时,其中一个电子模块收容在风道管内,其产生的热量直接被风道管内的气流带走;另外一个电子模块位于风道管外侧,并且与导热板连接,其产生的热量传导到导热板上,再经由风道管内的气流带走。
在其中一些实施例中,所述进风口的开口尺寸大于所述出风口的开口尺寸,使进风口的气流速度小于出风口的气流速度。
在其中一些实施例中,风道管的开口尺寸不均匀,其中,开口尺寸较大的地方的气流速度较慢,增大气流热交换时间,开口尺寸较小的地方的气流速度较快,减小气流热交换时间。
例如,所述风道管与所述安装窗口相对的侧壁的中部形成有中位导向面,所述风道管与所述安装窗口相对的侧壁靠近进风口的位置形成有上位导向面,以改变风道管的开口尺寸。
在其中一些实施例中,导风罩的风道管内设有导流板,用于改变风道管内的气流流向。
在其中一些实施例中,导流板的导流面的设置方式有多种,例如,所述导流面与所述风道管设有所述安装窗口的侧壁垂直设置;或者,所述导流面与所述风道管设有所述安装窗口的侧壁相对设置。
在其中一些实施例中,导流板的导流面的形状可以为多种,所述导流面为内凹的弧形面、外凸的弧形面或平面。
在其中一些实施例中,导热板的形状可以为平面状,也可以为曲面状。
在其中一些实施例中,导热板可以为单独的板体部件,也可以为电气盒的其中一个侧板。
在其中一些实施例中,导热板与安装在风道内的电子模块绝热设置,例如,导热板与安装在风道内的电子模块间隔设置,或者,导热板与安装在风道内的电子模块之间设有绝热材料。
在其中一些实施例中,散热装置还包括用于固定电子模块的安装支架,该安装支架设于导风罩的风道管内。
该安装支架可以固定在导风罩的风道管的侧壁上,也可以固定在导热板上。
在其中一些实施例中,散热装置还包括用于产生散热气流的风扇。
该风扇可以直接与风道管连通,例如,风扇直接安装在风道管的进风口。该风扇也可以间接与风道管连通,例如,风扇设于UAV的其他部位,其通过UAV内部的导流通道与导风罩的风道管连通。
下面结合附图,对本发明的一些实施方式作详细说明。
请参阅图1及图2,本发明的实施方式的UAV 10包括散热装置100、第一电子模块200、第二电子模块300。
散热装置100包括导风罩110及导热板120,导热板120与导风罩110固定连接。该导风罩110及导热板120将第一电子模块200、第二电子模块300隔离,并且同时对该第一电子模块200及第二电子模块300进行散热。例如,在图示的实施例中,第一电子模块200收容在导风罩110内、并且与导热板120间隔设置;第二电子模块300设于导热板120背离导风罩110的外表面上。第二电子模块300产生热量传导到导热板120上,导热板120以及第一电子模块200的产生热量由流通在导风罩110内的气流带走。
请同时参阅图3及图4,导风罩110包括用于导向气流的风道管111、以及分别位于风道管111的两端的进风口112及出风口113。风道管111的侧壁上设有贯穿的安装窗口114。
进风口112的开口尺寸与出风口113的开口尺寸可以不相等。具体在图示的实施例中,进风口112的开口尺寸大于出风口113的开口尺寸。
进风口112与出风口113的位置可以根据不同需求来设计,例如,在图示的实施例中,进风口112与出风口113相对设置,以减小气流通过该风道管111的阻力,进一步提高散热装置100的散热效率。
导热板120用于固定第二电子模块300。导热板120设于导风罩110的安装窗口114,并且遮盖导风罩110的安装窗口114。具体在图示实施例中,风道管111具有一平面形的安装侧壁119,安装窗口114开设在安装侧壁119上,导热板120包括平面形的板体121,板体121密封安装窗口114。
进一步的,导风罩110的安装窗口114从进风口112所在的一端延伸至出风口113所在的一端,并且贯穿出风口113,板体121延伸至出风口113,并且与风道管111的侧壁共同形成出风口113。由于导热板120占导风罩110的安装侧壁119的比例较大,从而增大导热板与气流的接触面积,进一步提高散热装置100的散热效率。
进一步的,风道管111与安装窗口114相对的侧壁的中部形成有中位导向面111b,中位导向面111b为设于风道管111的侧壁上的倾斜平面,能使流向出风口113的气流逐渐集中。例如,在图示的实施例中,第一电子模块200位于中位导向面111b的上方位置,使得气流吸收了第一电子模块200的热量后尽快流向出风口113,避免气流所带的热量反向传导到第一电子模块200,进一步防止第一电子模块200与第二电子模块300产生的热量相互影响。
中位导向面111b的形状可以根据不同需求来设计,在其他实施例中,中位导向面111b为设于风道管111的侧壁上的外凸曲面。
进一步的,风道管111与安装窗口114相对的侧壁上形成有靠近进风口112的上位导向面111c,在图示的实施例中,上位导向面111c为设于风道管111的侧壁上的倾斜曲面,能使由进风口112流向风道管111中部的气流逐渐集中。例如,在图示的实施例中,第一电子模块200位于上位导向面111c的下方位置,使得流向第一电子模块200的气流的速度较快,从而进一步加快第一电子模块200的散热效率。
上位导向面111c的形状可以根据不同需求来设计。在其他实施例中,上位导向面111c为设于风道管111的侧壁上的外凸曲面。
进一步的,导热板120还包括多个散热鳍片123,多个散热鳍片123设于板体121靠近风道管111的表面,以增大导风罩110的风道管111内的气流与导热板120的接触面积,从而提高导热板120的散热效率。
具体在图示的实施例中,多个散热鳍片123设有用于安装第一电子模块200的镂空区域123a。
多个散热鳍片123的延伸方向可以根据不同的需求来设计,例如,在图示的实施例中,多个散热鳍片123平行间隔设置,以形成多个导流槽122,导流槽沿平行于风道管111的延伸方向设置。由于导流槽沿平行于风道管111的延伸方向设置,使得风道管111内的气流穿过多个散热鳍片123的阻力较小,从而进一步提高导热板120的散热效率。
导热板120与导风罩110可拆卸连接。具体的,导热板120与导风罩110的连接方式根据不同需求来设计,例如,导热板120与导风罩110通过卡合结构固定连接起来;或者,导热板120与导风罩110通过螺纹紧固件固定连接起来。
具体在图示的实施例中,板体121靠近导风罩110的风道管111的表面上设有多个固定凸台125,其中至少一部分固定凸台125与散热鳍片123固定连接,具体地,其中至少一部分固定凸台125与散热鳍片123一体成型;多个固定凸台125与导风罩110的风道管111的侧壁固定连接,以将导热板120固定在导风罩110上。
进一步的,风道管111的侧壁外凸形成多个定位槽111a,多个固定凸台125分别与多个定位槽111a相配合。由于的侧壁外凸形成多个定位槽111a,避免固定凸台125阻挡导风罩110内的气流流动,并且,固定凸台125与定位槽111a相配合,起到定位的作用。
进一步的,导热板120背离导风罩110的风道管111的表面上设有用于固定第二电子模块300的安装部127,以方便安装第二电子模块300。具体在图示的实施例中,安装部127为设于导热板120背离风道管111的表面上的安装凸台。
进一步的,导热板120背离风道管111的表面上还设有阻挡边框128,阻挡边框128围成的区域形成避让部,第二电子模块300的电子器件可收容在避让部内。
进一步的,导风罩110还包括设于风道管111内的导流板116流,板116的导流面116c相较于风道管111的延伸方向倾斜设置,以在风道管111的中部形成宽度逐渐变窄的集流部,集流部的宽度较大的一端朝向进风口112设置。
例如,在图示的实施例中,导流板116位于第一电子模块200的一侧,使导风罩110的风道管111内气流经过导流板116流向第一电子模块200,以进一步加快第一电子模块200的散热效率。
导流板116的具体结构可以根据不同需求来设计,例如,在图示的实施例中,导流板116包括主板体116a及设于主板体116a的背面的连接板116b,连接板116b与风道管111的侧壁固定连接,以将导流板116固定在风道管111内,导流面116c为主板体116a的正面。
在其他实施例中,导流板116还包括位于主板体116a边缘的卡勾,风道管111的侧壁设有与卡勾相对应的卡槽,卡勾与卡槽相卡合,以将主板体116a固定在风道管111内,导流面116c为主板体116a的正面。
进一步的,导流面116c的形状可以根据不同需求来设计,例如,导流面116c可以为内凹的弧形面、外凸的弧形面或平面。
进一步的,导流面116c的设置方式也可以根据不同需求来设计,例如,在图示的实施例,导流面116c与风道管111设有安装窗口114的侧壁垂直设置。
在其他实施例中,导流面116c与风道管111设有安装窗口114的侧壁相对设置。
进一步的,还包括风扇130,风扇130吹出的气流由进气口进入到风道管111内。
风扇130的连通方式可以根据不同的需求来设计,例如,在图示的实施例中,风扇130安装在导风罩110的进风口112,并且风扇130的出风面朝向导风罩110的风道管111设置,使风扇130直接与进风口112相连通。
在其他实施例中,风扇130通过导流通道与进风口112连通。例如,风扇130设于UAV 10的其他部位,其通过UAV 10内部的导流通道与导风罩110的风道管111连通。或者,风扇130设于UAV 10远离导风罩110的位置,通过UAV 10内部的导流通道,将风扇130产生的气流一部分导向导风罩110,另外一部分导向UAV 10的电源,以给电源散热。
风扇130的安装方式可以根据不同的需求来设计,例如,在图示的实施例中,进风口112的开口端面设有多个定位柱117,风扇130的边缘对应设有多个定位孔131,多个定位柱117分别穿过多个定位孔131,将风扇130定位在进风口112的开口端面上。
在其他实施例中,散热装置100还包括风扇支架,风扇130通过风扇支架固定在进风口112的开口端面上。
进一步的,散热装置100还包括安装壳140,安装壳140设于导热板120背离导风罩110的风道管111的一侧,并且安装壳140与导热板120共同形成一个用于收容第二电子模块300的电气盒。
具体在图示的实施例中,安装壳140包括底板141以及多个侧板143,多个侧板143依次相连围成一个环状封闭结构,并且与底板141的边缘连接,底板141与导热板120相对设置,多个侧板143远离底板141的边缘围成一开口,并且该开口的形状与导热板120的边缘形状相适配。
进一步的,底板141上设有用于供外接插头插入的外接窗口141a或/及用于外露电子元器件的散热窗口141b。
安装壳140与导热板120的连接方式可以根据不同的需求来设计,例如,在图示的实施例中,散热装置100还包括连接支架150,连接支架150固定连接导热板120与安装壳140。
连接支架150的具体结构可以根据不同的需求来设计,例如,在图示的实施例中,连接支架150为Z型结构,并且包括连接主体151以及分别设于连接主体151两端的两个固定部153,两个固定部153分别与导热板120以及安装壳140固定连接。
进一步的,连接主体151为片状结构,两个固定部153分别为从连接主体151的两端弯折延伸的折片,安装壳140的侧板143开设有卡合孔143a(如图3所示),其中一个固定部153插入卡合孔143a内,另外一个固定部153紧贴导热板120靠近导风罩110的风道管111的表面设置。
进一步的,散热装置100还包括用于固定导风罩110的固定支架160。例如,通过固定支架160将散热装置100固定在UAV 10的机体上。
固定支架160的安装方式可以根据不同的需求来设计,例如,在图示的实施例中,固定支架160为两个,其中一个固定支架160与导风罩110固定连接,另外一个固定支架160与导热板120固定连接。
固定支架160的具体结构可以根据不同的需求来设计,例如,在图示的实施例中,固定支架160包括U形体161以及两个连接凸耳163,U形体161包括底部及从底部两端朝向底部同一侧延伸的两个支臂,两个连接凸耳163相对间隔设置,并且从U形体161的底部外侧垂直于U形体161的底部向背离U形体161的支臂延伸。
具体在图示的实施例中,第一电子模块200收容在导风罩110的风道管111内,并且与导热板120间隔设置。第二电子模块300设于导热板120背离导风罩110的风道管111的表面上。第二电子模块300产生热量传导到所述导热板120上,所述导热板120以及所述第一电子模块120的产生热量由流通在所述风道管110内的气流带走。
第一电子模块200产生的热量可以大于第二电子模块300产生的热量,也可以小于第二电子模块300产生的热量。具体在图示的实施例中,第一电子模块200为IMU模块,第二电子模块300为OFDM模块。IMU模块产生的热量一般小于OFDM产生的热量,通过导风罩110及导热板120将IMU模块从电气盒中分离出来,单独进行散热。
进一步的,散热装置100还包括用于固定第一电子模块200的安装支架170,安装支架170位于导风罩110的风道管111内。具体地,安装支架170使得第一电子模块200与导热板120间隔设置,避免导热板120的热量直接传导到第一电子模块200上。
安装支架170的连接方式可以根据不同需求来设计,例如,在图示的实施例中,安装支架170与导热板120靠近风道管111的表面固定连接,使得第一电子模块200可以跟随导热板120一起拆卸下来,便于检修第一电子模块200。
在其他实施例中,安装支架170与风道管111的侧壁固定连接。
进一步的,为了避免导热板120通过安装支架170进行导热,安装支架170为绝热支架,并且安装支架170与导热板120可拆卸连接。
安装支架170的具体结构可以根据不同需求来设计,例如,在图示的实施例中,安装支架170包括U形板体171以及从U形板体171的两端分别反向弯折延伸的固定凸耳173,U形板体171设有用于散热的镂空部171a,U形板体171内形成夹持空间,即,第一电子模块200夹持在U形板体171内,固定凸耳173与导热板120靠近风道管111的表面固定连接。
在其他实施例中,安装支架170包括多个L形框,每个L形框的一端固定在导热板120靠近风道管111的表面上,另一端与导热板120平行间隔设置,使另一端与第一电子模块200抵接,并且相对设置的两个所述L形框之间形成夹持空间,即,第一电子模块200夹持在相对设置的两个L形框之间。
进一步的,UAV 10还包括第三电子模块400,第三电子模块400设于第二电子模块300背离导热板120的一侧。具体在图示的实施例中,第三电子模块400为控制模块。
上述散热装置100开始工作时,第一电子模块200与第二电子模块300通过导热板120隔离,第一电子模块200固定在导风罩110的风道管111内,第二电子模块300位于导风罩110的风道管111外,并且固定在导热板120背离风道管111的表面上。风扇130产生的气流从第一电子模块200的顶端往下吹,利用导风罩110的风道管111,将气流汇聚到第一电子模块200的表面,并让气流从导热板120的散热鳍片123之间流走,并将第一电子模块200的表面热量和第二电子模块300传导到导热板120的热量带走,起到降温的功能。
相较于传统的UAV 10,上述UAV 10至少具有如下优点:
(1)上述UAV 10采用散热装置100将多个电子模块进行分离式散热,从而避免各个电子模块产生的热量互相影响,使得多个电子模块在两个不同的环境温度下工作,并且通过导风罩110的风道管111内流通的气流可快速带走各个电子模块产生的热量。
例如,IMU模块设于导风罩110的风道管111内,通过导风罩110的风道管111内的气流直接带走IMU模块产生的热量,OFDM模块位于导风罩110的外侧,并且固定在导热板120上,OFDM模块产生的热量传导到导热板120,并且通过导风罩110的风道管111内的气流带走。
(2)上述散热装置100的导热板120直接构成导风罩110的风道管111的侧壁一部分,使得第二电子模块300产生的热量通过导热板120直接传导,从而提高第二电子模块300的散热效率。
(3)上述UAV 10的第二电子模块300直接固定在导热板120上,导热板120固定在导风罩110上,增加了第二电子模块300的牢固程度,避免第二电子模块300在UAV 10飞行震动时会导致电接触不良,同时,增强了UAV 10的整体结构强度,满足了UAV 10的结构强度要求。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (50)

  1. 一种散热装置,其特征在于,包括:
    导风罩,包括用于导向气流的风道管、以及分别位于所述风道管的两端的进风口及出风口;所述风道管的侧壁上设有贯穿的安装窗口,所述风道管内能够安装第一电子模块;以及
    导热板,设于所述安装窗口,并且遮盖所述安装窗口,所述导热板背向所述风道管的表面用于安装第二电子模块,所述导热板与所述第一电子模块绝热设置;
    其中,所述第二电子模块产生热量传导到所述导热板上,所述导热板以及所述第一电子模块的产生热量由流通在所述风道管内的气流带走。
  2. 根据权利要求1所述的散热装置,其特征在于,所述进风口与所述出风口相对设置。
  3. 根据权利要求1所述的散热装置,其特征在于,所述进风口的开口尺寸大于所述出风口的开口尺寸。
  4. 根据权利要求1所述的散热装置,其特征在于,所述风道管具有一平面形的安装侧壁,所述安装窗口开设在所述安装侧壁上,所述导热板包括平面形的板体,所述板体盖设于所述安装窗口。
  5. 根据权利要求4所述的散热装置,其特征在于,所述安装窗口从所述进风口所在的一端延伸至所述出风口所在的一端,并且贯穿所述出风口,所述板体延伸至所述出风口,并且与所述风道管的侧壁共同形成所述出风口。
  6. 根据权利要求1所述的散热装置,其特征在于,所述风道管与所述安装窗口相对的侧壁的中部形成有中位导向面,使流向所述出风口的气流逐渐集中。
  7. 根据权利要求6所述的散热装置,其特征在于,所述中位导向面为外凸曲面或倾斜平面。
  8. 根据权利要求1所述的散热装置,其特征在于,所述风道管与所述安装窗口相对的侧壁形成有靠近所述进风口的上位导向面,使由所述进风口流向所述风道管中部的气流逐渐集中。
  9. 根据权利要求8所述的散热装置,其特征在于,所述上位导向面为外凸曲面或倾斜平面。
  10. 根据权利要求1所述的散热装置,其特征在于,所述导热板包括板体以及多个散热鳍片,所述板体密封所述安装窗口,所述多个散热鳍片设于所述板体靠近所述风道管的表面上。
  11. 根据权利要求10所述的散热装置,其特征在于,所述多个散热鳍片设有镂空区域。
  12. 根据权利要求10所述的散热装置,其特征在于,所述多个散热鳍片大致平行且间隔设置,以形成多个导流槽,所述导流槽沿平行于所述风道管的延伸方向设置。
  13. 根据权利要求10所述的散热装置,其特征在于,所述板体靠近所述风道管的表面上设有多个固定凸台,其中至少一部分所述固定凸台与所述散热鳍片固定连接;所述多个固定凸台与所述风道管的侧壁固定连接,以将所述导热板固定在所述导风罩上。
  14. 根据权利要求13所述的散热装置,其特征在于,所述风道管的侧壁外凸形成多个定位槽,所述多个固定凸台分别与所述多个定位槽相配合。
  15. 根据权利要求1所述的散热装置,其特征在于,所述导热板与所述导风罩可拆卸连接。
  16. 根据权利要求15所述的散热装置,其特征在于,所述导热板与所述导风罩通过卡合结构固定连接起来。
  17. 根据权利要求15所述的散热装置,其特征在于,所述导热板与所述导风罩通过螺纹紧固件固定连接起来。
  18. 根据权利要求1所述的散热装置,其特征在于,所述导热板背离所述风道管的表面上设有用于固定所述第二装置的安装部。
  19. 根据权利要求1所述的散热装置,其特征在于,所述导风罩还包括设于所述风道管内的导流板,所述导流板的导流面相较于所述风道管的延伸方向倾斜设置,以在所述风道管的中部形成宽度逐渐变窄的集流部,所述集流部的宽度较大的一端朝向所述进风口设置。
  20. 根据权利要求19所述的散热装置,其特征在于,所述导流板包括主板体及设于所述主板体的背面的连接板,所述连接板与所述风道管的侧壁固定连接,以将所述导流板固定在所述风道管内,所述导流面为所述主板体的正面。
  21. 根据权利要求19所述的散热装置,其特征在于,所述导流板包括主板体以及位于所述主板体边缘的卡勾,所述风道管的侧壁设有与所述卡勾相对应的卡槽,所述卡勾与所述卡槽相卡合,以将所述主板体固定在所述风道管内,所述导流面为所述主板体的正面。
  22. 根据权利要求20或21所述的散热装置,其特征在于,所述导流面为内凹的弧形面、外凸的弧形面或平面。
  23. 根据权利要求20或21所述的散热装置,其特征在于,所述导流面与所述风道管设有所述安装窗口的侧壁垂直设置。
  24. 根据权利要求20或21所述的散热装置,其特征在于,所述导流面与所述风道管设有所述安装窗口的侧壁相对设置。
  25. 根据权利要求1所述的散热装置,其特征在于,还包括安装支架,所述安装支架位于所述风道管内,通过所述安装支架将所述第一电子模块安装在所述风道管内。
  26. 根据权利要求25所述的散热装置,其特征在于,所述安装支架与所述导热板靠近所述风道管的表面固定连接。
  27. 根据权利要求26所述的散热装置,其特征在于,所述安装支架为绝热支架,并且所述安装支架与所述导热板可拆卸连接。
  28. 根据权利要求27所述的散热装置,其特征在于,所述安装支架包括U形板体以及从所述U形板体的两端分别反向弯折延伸的固定凸耳,所述U形板体设有用于散热的镂空部,所述U形板体内形成夹持空间,所述固定凸耳与所述导热板靠近所述风道管的表面固定连接。
  29. 根据权利要求27所述的散热装置,其特征在于,所述安装支架包括多个L形框,每个所述L形框的一端固定在所述导热板靠近所述风道管的表面上,另一端与导热板平行间隔设置,并且相对设置的两个所述L形框之间形成夹持空间。
  30. 根据权利要求25所述的散热装置,其特征在于,所述安装支架与所述风道管的侧壁固定连接。
  31. 根据权利要求1所述的散热装置,其特征在于,还包括风扇,所述风扇吹出的气流由所述进气口进入到所述风道管内。
  32. 根据权利要求31所述的散热装置,其特征在于,所述风扇安装在所述进风口,并且所述风扇的出风面朝向所述风道管设置,使所述风扇直接与所述进风口相连通。
  33. 根据权利要求32所述的散热装置,其特征在于,所述进风口的开口端面设有多个定位柱,所述风扇的边缘对应设有多个定位孔,所述多个定位柱分别穿过所述多个定位孔,以将所述风扇定位在所述进风口的开口端面上。
  34. 根据权利要求32所述的散热装置,其特征在于,还包括风扇支架,所述风扇通过所述风扇支架固定在所述进风口的开口端面上。
  35. 根据权利要求31所述的散热装置,其特征在于,所述风扇通过导流通道与所述进风口连通。
  36. 根据权利要求1所述的散热装置,其特征在于,还包括安装壳,所述安装壳设于所述导热板背离所述风道管的一侧,并且所述安装壳与所述导热板共同形成一个电气盒。
  37. 根据权利要求36所述的散热装置,其特征在于,所述安装壳包括底板以及多个侧板,所述多个侧板依次相连围成一个环状封闭结构,并且与所述底板的边缘连接,所述底板与所述导热板相对设置,所述多个侧板远离所述底板的边缘围成一开口,并且所述开口的形状与所述导热板的边缘形状相适配。
  38. 根据权利要求37所述的散热装置,其特征在于,所述底板上设有用于供外接插头插入的外接窗口或/及用于外露电子元器件的散热窗口。
  39. 根据权利要求36所述的散热装置,其特征在于,还包括连接支架,所述连接支架固定连接所述导热板与所述安装壳。
  40. 根据权利要求39所述的散热装置,其特征在于,所述连接支架为Z型结构,并且包括连接主体以及分别设于所述连接主体的两端的两个固定部,所述两个固定部分别与所述导热板以及所述安装壳固定连接。
  41. 根据权利要求40所述的散热装置,其特征在于,所述连接主体为片状结构,所述两个固定部分别为从所述连接主体的两端弯折延伸的折片,所述安装壳的侧板开设有卡合孔,其中一个所述固定部插入所述卡合孔内,另外一个所述固定部紧贴所述导热板靠近所述风道管的表面设置。
  42. 根据权利要求1所述的散热装置,其特征在于,还包括用于固定所述导风罩的固定支架。
  43. 根据权利要求42所述的散热装置,其特征在于,所述固定支架为两个,其中一个所述固定支架与所述导风罩固定连接,另外一个所述固定支架与所述导热板固定连接。
  44. 根据权利要求43所述的散热装置,其特征在于,所述固定支架包括U形体以及两个连接凸耳,所述U形体包括底部及从所述底部两端朝向所述底部同一侧延伸的两个支臂,所述两个连接凸耳相对间隔设置,并且从所述U形体的底部外侧垂直于所述底部背离所述支臂延伸。
  45. 一种UAV,其特征在于,包括:
    权利要求1~44任一项所述的散热装置;
    所述第一电子模块;以及
    所述第二电子模块。
  46. 根据权利要求45所述的UAV,其特征在于,所述第一电子模块产生的热量大于所述第二电子模块产生的热量。
  47. 根据权利要求45所述的UAV,其特征在于,所述第一电子模块产生的热量小于所述第二电子模块产生的热量。
  48. 根据权利要求45所述的UAV,其特征在于,还包括第三电子模块,所述第三电子模块设于所述第二电子模块背离所述导热板的一侧。
  49. 根据权利要求48所述的UAV,其特征在于,所述第一电子模块为IMU模块,所述第二电子模块为OFDM模块。
  50. 根据权利要求49所述的UAV,其特征在于,所述第三电子模块为控制模块,所述IMU模块、所述OFDM模块以及所述控制模块构成所述UAV的主控制模块。
PCT/CN2014/086628 2014-09-16 2014-09-16 散热装置及采用该散热装置的uav WO2016041145A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480006657.7A CN105684565B (zh) 2014-09-16 2014-09-16 散热装置及采用该散热装置的uav
PCT/CN2014/086628 WO2016041145A1 (zh) 2014-09-16 2014-09-16 散热装置及采用该散热装置的uav
JP2017510667A JP6559771B2 (ja) 2014-09-16 2014-09-16 放熱装置及びこの放熱装置を用いるuav
US15/448,782 US10178812B2 (en) 2014-09-16 2017-03-03 Heat dissipation device and UAV using the same
US16/237,984 US10681849B2 (en) 2014-09-16 2019-01-02 Heat dissipation device and UAV using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086628 WO2016041145A1 (zh) 2014-09-16 2014-09-16 散热装置及采用该散热装置的uav

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/448,782 Continuation US10178812B2 (en) 2014-09-16 2017-03-03 Heat dissipation device and UAV using the same

Publications (1)

Publication Number Publication Date
WO2016041145A1 true WO2016041145A1 (zh) 2016-03-24

Family

ID=55532434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086628 WO2016041145A1 (zh) 2014-09-16 2014-09-16 散热装置及采用该散热装置的uav

Country Status (4)

Country Link
US (2) US10178812B2 (zh)
JP (1) JP6559771B2 (zh)
CN (1) CN105684565B (zh)
WO (1) WO2016041145A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106672225A (zh) * 2016-12-27 2017-05-17 昆山优尼电能运动科技有限公司 无人机散热风路系统
TWI717175B (zh) * 2019-12-26 2021-01-21 富瑞科技有限公司 散熱器
WO2021147741A1 (zh) * 2020-01-22 2021-07-29 华为技术有限公司 一种电源输入组件及网络设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112722239B (zh) * 2015-06-01 2023-02-28 深圳市大疆创新科技有限公司 无人飞行器
FR3060202B1 (fr) * 2016-12-12 2019-07-05 Aptiv Technologies Limited Dispositif de dissipation de chaleur d'une unite de controle multimedia
CN206865924U (zh) * 2017-05-19 2018-01-09 深圳市大疆创新科技有限公司 无人机及散热结构
US10434963B2 (en) * 2018-01-04 2019-10-08 Sumitomo Wiring Systems, Ltd. Power distribution box assembly with alignment features
CN108357668B (zh) * 2018-02-01 2022-04-22 天津翰宇昊德科技发展有限公司 一种具有螺旋桨散热功能的无人机
US11772791B2 (en) * 2018-03-15 2023-10-03 Unmanned Systems and Solutions, LLC Unmanned aerial vehicle tether system
WO2020034160A1 (zh) * 2018-08-16 2020-02-20 深圳市大疆创新科技有限公司 散热组件、散热模组和无人飞行器
CN111086619A (zh) * 2019-03-04 2020-05-01 苏州臻迪智能科技有限公司 散热装置及飞行器
CN111426317B (zh) * 2020-04-08 2022-06-17 深圳市道通智能航空技术股份有限公司 一种惯性测量模块、减震系统以及无人机
TWM618207U (zh) * 2021-05-31 2021-10-11 和碩聯合科技股份有限公司 電子裝置
CN114401609B (zh) * 2022-03-25 2022-06-28 深圳市永锋顺科技有限公司 一种用于滑板车的电机控制器散热通风结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771138A1 (en) * 1995-10-26 1997-05-02 The Furukawa Electric Co., Ltd. Cooling device for electric components in a casing of a travelling structure
US7164586B2 (en) * 2003-12-05 2007-01-16 Au Optronics Corp. Plasma display
CN101331816A (zh) * 2005-10-14 2008-12-24 通用电气航空系统有限责任公司 具有改善的电磁干扰控制和减少的重量的电子设备冷却方法
JP2009231511A (ja) * 2008-03-21 2009-10-08 Sharp Corp 筐体
CN102316700A (zh) * 2010-07-07 2012-01-11 鸿富锦精密工业(深圳)有限公司 适用同时对多个电子元件散热的导风罩及具有该导风罩的电子装置
CN202310424U (zh) * 2011-10-17 2012-07-04 阳光电源股份有限公司 一种散热风道
TW201236554A (en) * 2011-02-18 2012-09-01 Hon Hai Prec Ind Co Ltd Airflow guiding cover and electronic device having the same
CN203377773U (zh) * 2013-08-14 2014-01-01 重庆科川电气有限公司 一种变频器散热结构
CN204217293U (zh) * 2014-09-16 2015-03-18 深圳市大疆创新科技有限公司 散热装置及采用该散热装置的uav

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520272U (zh) * 1978-07-25 1980-02-08
JPH0611585Y2 (ja) * 1989-03-30 1994-03-23 アンリツ株式会社 風向調整具
JPH0448762A (ja) * 1990-06-15 1992-02-18 Hitachi Ltd 電子機器用半導体基板
JPH0456155A (ja) * 1990-06-22 1992-02-24 Nippon Telegr & Teleph Corp <Ntt> 電子装置の冷却構造
JPH08125366A (ja) * 1994-10-21 1996-05-17 Mitsubishi Materials Corp 電子部品用冷却装置
JP2750823B2 (ja) * 1994-11-08 1998-05-13 株式会社三社電機製作所 可搬型電源装置及びその筐体の製造方法
TW456675U (en) * 1999-02-24 2001-09-21 Mitsubishi Electric Corp Power drive apparatus
US6359779B1 (en) * 1999-04-05 2002-03-19 Western Digital Ventures, Inc. Integrated computer module with airflow accelerator
AU5205200A (en) * 1999-06-11 2001-01-02 Jiung-Jung Wang The heat-radiator of a portable computer's cpu
DE10058574B4 (de) * 2000-11-24 2005-09-15 Danfoss Drives A/S Kühlgerät für Leistungshalbleiter
JP4108348B2 (ja) * 2002-02-19 2008-06-25 株式会社三社電機製作所 電源装置
US7027300B2 (en) * 2003-09-16 2006-04-11 Mobility Electronics, Inc. Compact electronics plenum
US7265981B2 (en) * 2005-07-05 2007-09-04 Cheng-Ping Lee Power supply with heat sink
US7403385B2 (en) * 2006-03-06 2008-07-22 Cisco Technology, Inc. Efficient airflow management
JP4936019B2 (ja) * 2006-09-04 2012-05-23 株式会社安川電機 モータ制御装置
JP2008103576A (ja) * 2006-10-20 2008-05-01 Yaskawa Electric Corp モータ制御装置
CN101202529A (zh) * 2006-12-11 2008-06-18 丹佛斯传动有限公司 电子装置及电动机变频器
CN101312635B (zh) * 2007-05-21 2010-07-28 凌华科技股份有限公司 具有热管与散热片的导风罩及装设所述导风罩的电子装置
JP4819071B2 (ja) * 2008-02-06 2011-11-16 本田技研工業株式会社 電気車両及び車両用dc/dcコンバータの冷却方法
US8123460B2 (en) * 2008-07-23 2012-02-28 Honeywell International Inc. UAV pod cooling using integrated duct wall heat transfer
US9192079B2 (en) * 2008-09-26 2015-11-17 Rockwell Automation Technologies, Inc. Power electronic module cooling system and method
FI20085945L (fi) * 2008-10-08 2010-04-09 Abb Oy Elektroniikkalaitteen jäähdytysrakenne ja menetelmä
US8488315B2 (en) * 2009-08-18 2013-07-16 GM Global Technology Operations LLC Power module assemblies with staggered coolant channels
US8648779B2 (en) 2009-10-20 2014-02-11 Taiwan Semiconductor Manufacturing Co., Ltd. LCD driver
JP5344182B2 (ja) * 2010-02-02 2013-11-20 株式会社安川電機 電力変換装置
WO2011149544A1 (en) * 2010-05-26 2011-12-01 Aerovironment Inc. Reconfigurable battery-operated vehicle system
TW201228576A (en) * 2010-12-23 2012-07-01 Hon Hai Prec Ind Co Ltd Air conduction assembly and heat disspation system using same
JP2012170183A (ja) * 2011-02-10 2012-09-06 Sanyo Electric Co Ltd パワーコンディショナ
JP2012228018A (ja) * 2011-04-18 2012-11-15 Yaskawa Electric Corp 電力変換装置
JP5872223B2 (ja) * 2011-09-27 2016-03-01 株式会社ケーヒン 半導体制御装置
DE102011117223B3 (de) * 2011-10-28 2013-04-25 Fujitsu Technology Solutions Intellectual Property Gmbh Luftleithaube zur Strömungsführung von Luft in einem elektronischen Gerät und elektronisches Gerät mit einer solchen Luftleithaube
FR2983013B1 (fr) * 2011-11-18 2013-11-08 Sagemcom Broadband Sas Appareil electronique de type modem ou analogue comportant plusieurs processeurs refroidis par air
CN202488375U (zh) * 2012-02-06 2012-10-10 常熟开关制造有限公司(原常熟开关厂) 一种逆变器
US9702349B2 (en) * 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
KR20150025755A (ko) * 2013-08-30 2015-03-11 엘에스산전 주식회사 인버터 냉각장치
DE102015201440A1 (de) * 2015-01-28 2016-07-28 Bayerische Motoren Werke Aktiengesellschaft Versorgungsschiene für ein Kraftfahrzeug

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771138A1 (en) * 1995-10-26 1997-05-02 The Furukawa Electric Co., Ltd. Cooling device for electric components in a casing of a travelling structure
US7164586B2 (en) * 2003-12-05 2007-01-16 Au Optronics Corp. Plasma display
CN101331816A (zh) * 2005-10-14 2008-12-24 通用电气航空系统有限责任公司 具有改善的电磁干扰控制和减少的重量的电子设备冷却方法
JP2009231511A (ja) * 2008-03-21 2009-10-08 Sharp Corp 筐体
CN102316700A (zh) * 2010-07-07 2012-01-11 鸿富锦精密工业(深圳)有限公司 适用同时对多个电子元件散热的导风罩及具有该导风罩的电子装置
TW201236554A (en) * 2011-02-18 2012-09-01 Hon Hai Prec Ind Co Ltd Airflow guiding cover and electronic device having the same
CN202310424U (zh) * 2011-10-17 2012-07-04 阳光电源股份有限公司 一种散热风道
CN203377773U (zh) * 2013-08-14 2014-01-01 重庆科川电气有限公司 一种变频器散热结构
CN204217293U (zh) * 2014-09-16 2015-03-18 深圳市大疆创新科技有限公司 散热装置及采用该散热装置的uav

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106672225A (zh) * 2016-12-27 2017-05-17 昆山优尼电能运动科技有限公司 无人机散热风路系统
TWI717175B (zh) * 2019-12-26 2021-01-21 富瑞科技有限公司 散熱器
WO2021147741A1 (zh) * 2020-01-22 2021-07-29 华为技术有限公司 一种电源输入组件及网络设备

Also Published As

Publication number Publication date
US10681849B2 (en) 2020-06-09
US10178812B2 (en) 2019-01-08
JP2017531913A (ja) 2017-10-26
US20190141863A1 (en) 2019-05-09
JP6559771B2 (ja) 2019-08-14
US20170181330A1 (en) 2017-06-22
CN105684565A (zh) 2016-06-15
CN105684565B (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2016041145A1 (zh) 散热装置及采用该散热装置的uav
WO2017041466A1 (zh) 拍摄设备及无人机
WO2016172947A1 (zh) 热管理系统及热管理方法,及应用该热管理系统的无人机
EP3160029B1 (en) Inverter
WO2011046289A2 (en) Air conditioner
WO2017091997A1 (zh) 散热系统及具有散热系统的飞行器
WO2021115005A1 (zh) 电子设备
WO2021256687A1 (ko) 디스플레이 장치 및 그 제어방법
US8982555B2 (en) Electronic device having passive cooling
WO2015096499A1 (zh) 一种插箱及终端
WO2018012937A1 (ko) 고전압 클링팬 모터유닛
WO2018090433A1 (zh) 户外电子设备
WO2019045453A1 (en) OVEN
WO2016192015A1 (zh) 过滤结构、无人飞行器及可移动物体
TWI487474B (zh) 電子裝置
WO2022149624A1 (ko) 제어박스 및 이를 구비하는 디스플레이 디바이스
JP4042520B2 (ja) 通信機器の実装構造とその放熱方法
JP2806373B2 (ja) 電子機器の冷却構造
CN211792570U (zh) 用于电子设备的机架及使用该机架的电子设备
WO2010128704A1 (ko) 히트싱크 및 이를 이용한 파워 서플라이
JP2003188566A (ja) 冷却モジュール
TWI680629B (zh) 馬達及其散熱裝置
JP2000124646A (ja) プリント回路板の冷却構造
WO2014129705A1 (ko) 서버 방열시스템
WO2024147439A1 (ko) 휴대용 공기조화기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902182

Country of ref document: EP

Kind code of ref document: A1