WO2021147741A1 - 一种电源输入组件及网络设备 - Google Patents

一种电源输入组件及网络设备 Download PDF

Info

Publication number
WO2021147741A1
WO2021147741A1 PCT/CN2021/071572 CN2021071572W WO2021147741A1 WO 2021147741 A1 WO2021147741 A1 WO 2021147741A1 CN 2021071572 W CN2021071572 W CN 2021071572W WO 2021147741 A1 WO2021147741 A1 WO 2021147741A1
Authority
WO
WIPO (PCT)
Prior art keywords
power input
network device
input component
heat dissipation
hollow structure
Prior art date
Application number
PCT/CN2021/071572
Other languages
English (en)
French (fr)
Inventor
王�锋
矫杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021147741A1 publication Critical patent/WO2021147741A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1461Slidable card holders; Card stiffeners; Control or display means therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to the technical field of electronic equipment, and in particular to a power input component and network equipment.
  • the power input component is located at one end of the heat dissipation air duct, which blocks the heat dissipation air duct, resulting in a small amount of ventilation in the heat dissipation air duct and heat dissipation. The effect is poor.
  • the present invention provides a power input component and network equipment to improve the heat dissipation performance of the equipment.
  • the present invention provides a power input component that is installed in a network device to provide power to the network device.
  • the network device also has at least two cooling fans for providing heat dissipation for the network device. Dissipate the heat generated in the network equipment as soon as possible.
  • the power input component is located at the end of the shaft of the heat dissipation fan, and the power input component has a hollow structure opposite to the heat dissipation fan.
  • the hollow structure forms a heat dissipation air duct for the network device, and the wind formed by the heat dissipation fan can pass through the hollow structure , In order to realize the heat dissipation of network equipment.
  • the power input assembly has a first shielding area opposite to the area between any two adjacent cooling fans, and the first shielding area is equipped with the power input assembly devices to expand the function of the power input assembly. While ensuring the heat dissipation effect of the network equipment, this solution can also enable the power input component to have a larger area for installing electronic devices, so as to have a relatively rich function.
  • the shape of the hollow structure is not limited, and the hollow structure is a semicircular hollow structure, a semi-square hollow structure or a triangular hollow structure. You can choose a suitable hollow structure according to your needs.
  • the power input assembly When the power input assembly is made, since the cooling fan includes a fan blade and a rotating shaft, the rotating shaft cannot be ventilated.
  • the power input assembly has a second shielding area opposite to the rotating shaft of the cooling fan, and the second shielding area is equipped with power input components.
  • the space can be fully utilized, and the space for installing devices of the power input component is further increased, which is beneficial to increase the number of electronic devices of the power input component and enrich the functions of the power input component.
  • the above-mentioned second shielding area When the above-mentioned second shielding area is specifically made, its shape is not specifically limited. In several alternative solutions, the above-mentioned second shielding area may be a semicircular area, a triangular area or a rectangular area. Of course, it can also be any shape such as irregular shape.
  • the present application also provides a network device, which includes a housing, at least two cooling fans, and the power input component in any of the above technical solutions.
  • the cooling fan and the power input assembly are mounted on the housing, and the power input assembly is located at the end of the rotating shaft of the cooling fan. While ensuring the heat dissipation effect of the network equipment, this solution can also enable the power input component to have a larger area for installing electronic devices, so as to have a relatively rich function.
  • one network device may include two power input components, and the two power input components are symmetrically arranged. Therefore, in this solution, the two power input components can be made exactly the same, and one of the power input components can be reversed one hundred and eighty degrees for installation. In this solution, two identical power input components can be installed, which is conducive to realizing the standardization of power input components, simplifying the manufacturing process, and reducing the difficulty of manufacturing.
  • an installation chute can be provided in the housing of the network device for installing the above-mentioned power input component.
  • the installation chute includes an anti-misinstallation structure
  • the power input component includes a matching structure that is adapted to the above anti-misinstallation structure.
  • the above-mentioned mis-installation prevention structure includes a limit block located at the end of the installation chute along the insertion direction, and the power input component includes a limit slot adapted to the above-mentioned limit block.
  • the above-mentioned mis-installation prevention structure includes a limit groove located at an end of the installation chute along the insertion direction, and the power input component includes a limit protrusion adapted to the above-mentioned limit groove.
  • Figure 1 is a schematic diagram of a structure of a network device
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a cooling fan of a network device in the prior art
  • FIG. 3 is a schematic cross-sectional structure diagram of a power input component of a network device in the prior art
  • FIG. 4 is a schematic structural diagram of a power input component of a network device in an embodiment of the application.
  • FIG. 5 is a schematic diagram of a cross-sectional structure of a power input component of a network device in an embodiment of the application
  • FIG. 6 is a schematic diagram of a side structure of a network device in an embodiment of this application.
  • FIG. 7 is a schematic diagram of another side structure of a network device in an embodiment of this application.
  • FIG. 8 is a schematic diagram of another side structure of a network device in an embodiment of the application.
  • FIG. 9 is a schematic cross-sectional structure diagram of another power input component of a network device in an embodiment of the application.
  • FIG. 10 is a schematic cross-sectional structure diagram of another power input component of a network device in an embodiment of the application.
  • FIG. 11 is a schematic cross-sectional structure diagram of another power input component of a network device in an embodiment of the application.
  • FIG. 12 is a schematic cross-sectional structure diagram of another power input component of a network device in an embodiment of the application.
  • FIG. 13 is a schematic cross-sectional structure diagram of another heat dissipation fan of a network device in an embodiment of the application.
  • FIG. 14 is a schematic cross-sectional structure diagram of another power input component of a network device in an embodiment of the application.
  • 15 is a schematic structural diagram of a correct installation of a power input component of a network device in an embodiment of the application
  • 16 is a schematic structural diagram of an incorrect installation of a power input component of a network device in an embodiment of the application
  • FIG. 17 is a schematic structural diagram of another power input component of a network device in an embodiment of the application correctly installed.
  • references described in this specification to "specific embodiments” and “application embodiments” mean that one or more embodiments of the present application include specific features, structures, or characteristics described in conjunction with the embodiments, and not necessarily all Reference to the same embodiment means “one or more but not all embodiments” unless it is specifically emphasized otherwise.
  • the terms “including”, “having” and their variations all mean “including but not limited to” unless otherwise specifically emphasized.
  • FIG. 1 is a schematic diagram of a structure of a network device.
  • the network equipment includes many electronic devices.
  • the above-mentioned electronic devices generate heat during operation.
  • a heat dissipation structure needs to be configured to dissipate the heat in the network equipment.
  • the above-mentioned heat dissipation structure includes a heat dissipation fan 1, and the heat dissipation fan 1 is arranged at one end of the network device.
  • the network equipment is equipped with two power input components 2, and the power input components 2 are arranged at the shaft end of the cooling fan 1.
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a cooling fan of a network device in the prior art.
  • the network device includes two cooling fans 1 arranged side by side.
  • FIG. 3 is a schematic cross-sectional structure diagram of a power input component of a network device in the prior art.
  • each power input component 2 is provided with a larger hollow structure twenty one.
  • Each heat dissipation fan 1 is opposite to the above-mentioned hollow structure 21, so as to form a heat dissipation air duct, so that the wind generated by the heat dissipation fan 1 can provide sufficient heat dissipation wind for the network equipment.
  • the hollow structure 21 of each power input component 2 has a larger area, and the space for the power input component 2 to install the device is small, and the device layout of the power input component 2 is limited, and it is difficult to expand the function of the power input component 2 ,
  • the function of the power input component 2 is relatively single. If the function of the power input component 2 is expanded, a larger number of devices need to be provided in the power input component 2, and the size of the hollow structure 21 needs to be reduced, which results in limited heat dissipation air ducts of the network equipment and poor heat dissipation effect.
  • the present application provides a power input assembly 2 and a network device.
  • the network device in the embodiment of the present application includes a housing 3, at least two cooling fans 1 installed on the housing 3, and a power input assembly 2.
  • the cooling fan 1 is installed on one side of the network device, and the power input assembly 2 is arranged at the end of the rotating shaft 12 of the cooling fan 1, that is, the plane of the power input assembly 2 is substantially parallel to the plane formed by the rotation of the blades of the cooling fan 1.
  • FIG. 4 is a schematic structural diagram of a power input component of a network device in an embodiment of the application.
  • the power input component 2 includes a circuit board 28 and electronic devices mounted on the circuit board 28 to form a circuit board with various functions.
  • the above-mentioned power input assembly 2 may include an external power input connector 22 installed on a circuit board, a power protection circuit 23, an output combining circuit 24, and a power output backplane connector 25.
  • the external power input connector 22 is used to introduce external power into the input interface, thereby providing a power input interface for network equipment;
  • the power protection circuit 23 is electrically connected to the above external power input connector 22 to protect the circuit and ensure that part of the Abnormal conditions will not cause adverse effects such as combustion.
  • the output combining circuit 24 is electrically connected to the power protection circuit 23, and is used for network with multiple power input components 2 The device avoids current backflow;
  • the power output backplane connector 25 is electrically connected to the output combining circuit 24 as an interface for outputting power to the backplane of the network device, and supplies power to the various working components of the network device through the backplane.
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a power input component of a network device in an embodiment of the application.
  • the network device in the embodiment of the present application has at least two heat dissipation fans 1, and the power input component 2 has hollow structures 21 opposite to the heat dissipation fans 1 described above.
  • the projection of the cooling fan 1 overlaps the projection of the hollow structure 21.
  • the hollow structure 21 serves as the heat dissipation air duct of the network device, and the wind generated by the cooling fan 1 It can penetrate the hollow structure 21.
  • the power input assembly 2 has a first shielding area 26 opposite to the area between any two adjacent cooling fans 1, and the first shielding area 26 can install the power input assembly 2 components to expand the power input assembly 2 Functions, such as adding protection circuits or combining functions. Under the condition that the heat dissipation effect of the network equipment is ensured, this solution can also enable the power input assembly 2 to have a larger area for installing electronic devices, so as to have a relatively rich function.
  • FIG. 6 and FIG. 7 are schematic diagrams of two side structures of the network device in the embodiment of the application.
  • the specific setting method of the cooling fan is not limited.
  • the air outlet side of the cooling fan 1 can be directed toward the inside of the network device.
  • the cooling fan 1 draws outside fresh air into the network device and blows it out from the other side; or, you can also make the air inlet of the fan
  • the cooling fan 1 draws out the hot air inside the network device to the outside, and the outside fresh air enters the inside of the network device from the other side.
  • FIG. 8 shows another schematic diagram of the side structure of the network device in the embodiment of the present application. Please refer to FIG. 6 to FIG. 8.
  • the power input assembly 2 can be arranged on the air inlet side of the cooling fan 1, as shown in Figures 6 and 8; the power input assembly 2 can also be arranged on the air outlet side of the cooling fan 1, as shown in Figure 7; the power input assembly 2 It can be arranged on the side of the cooling fan 1 facing the outside, as shown in Figs. 6 and 8; or, the power input component 2 can also be arranged on the side of the cooling fan 1 facing the inside of the network device, as shown in Fig. 8.
  • the specific shape of the above-mentioned hollow structure 21 is not limited.
  • the hollow structure 21 is a semicircular structure.
  • the semicircular hollow structure 21 matches the effective air duct area formed by the rotation of the blade 11 of the heat dissipation fan 1, which is beneficial to make full use of the effective air duct formed by the heat dissipation fan 1 while improving the power input assembly 2.
  • Area As the area of the power input component 2 is increased, the type and number of electronic devices of the power input component 2 can be increased, and the functions of the power input component 2 can be enriched.
  • the above-mentioned hollow structure 21 may also be a semi-square hollow structure 21 or a triangular hollow structure 21. In this solution, the edge of the hollow structure 21 is a straight edge, which facilitates the layout of electronic devices.
  • FIG. 9 is a schematic cross-sectional structure diagram of another power input component of a network device in an embodiment of the application.
  • the power input assembly 2 may be provided with a second shielding area 27 opposite to the rotating shaft 12 of the cooling fan 1.
  • the above-mentioned second shielding area 27 can be installed with components of the power input assembly 2.
  • the effective area of the air duct formed by the cooling fan 1 is the fan blade 11 area, and the rotating shaft 12 area does not generate flowing airflow.
  • the power input assembly 2 of the present application has a second shielding area 27 opposite to the rotating shaft 12 of the cooling fan 1, which can make full use of space, so that the power input assembly 2 has a larger installation area for electronic devices and increases the electronic devices of the power input assembly 2. quantity.
  • the shape of the second shielding area 27 is not limited. Specifically, it may be a semicircular area, a triangular area, or a rectangular area.
  • the hollow structure 21 is a semi-annular hollow structure 21
  • the second shielding area 27 is a semicircular area
  • the outer edge of the hollow structure 21 matches the rotating edge of the fan blade 11 of the heat dissipation fan 1, and the second shielding area 27
  • the shape matches the area of the rotating shaft 12 of the cooling fan 1.
  • the shape of the second shielding area 27 is a triangle.
  • the outer edge of the hollow structure 21 is arc-shaped.
  • the outer edge of the hollow structure 21 is in the shape of a broken line, which matches the outer edge of the second shielding area 27.
  • the shape of the second shielding area 27 is a rectangle. The shape of the hollow structure 21 and the shape of the second shielding area 27 can be selected according to actual product conditions.
  • the number of cooling fans 1 in the network device is not specifically limited, and the above only takes the network device having two cooling fans 1 as an example. For example, it may also be three, four or more.
  • FIG. 13 is a schematic cross-sectional structure diagram of another heat dissipation fan of a network device in an embodiment of the application.
  • FIG. 14 is a schematic cross-sectional structure diagram of another power input component of a network device in an embodiment of the application. As shown in Figure 13, the network device has three cooling fans 1.
  • the network device includes a power input component 2 corresponding to the above three fans, and the power input component 2 in this solution has a hollow structure 21 opposite to the above heat dissipation fan 1 one by one.
  • FIG. 15 is a schematic structural diagram of a correct installation of a power input component of a network device in an embodiment of the application.
  • the network device includes two power input components 2, and the arrangement direction A of the two power input components 2 is perpendicular to the arrangement direction B of the cooling fan 1, which means substantially perpendicular here.
  • the above two power input components 2 are arranged symmetrically.
  • the two power input components 2 can be made exactly the same, and one of the power input components 2 is reversed to the other power input component 2 by one hundred and eighty.
  • the hollow structures 21 of the two power input components 2 are matched, and opposed to the fan blades 11 of the cooling fan 1 to form an effective air duct.
  • the same power input component 2 can be manufactured, which is beneficial to realize the standardization of the power input component 2, simplifies the manufacturing process, and reduces the manufacturing difficulty.
  • each power input component 2 needs to be installed to the housing of the network device at a set angle.
  • the housing 3 includes a mounting chute 31 for installing the power input assembly 2 described above.
  • the mounting chute 31 has an anti-misassembly structure 32 so that the power input assembly 2 can be installed according to the set position. Match with cooling fan 1.
  • the power input component 2 includes a matching structure adapted to the above-mentioned mis-installation prevention structure 32. When the power input component 2 is installed in cooperation with the above-mentioned mis-installation structure 32, it indicates that the power input component 2 is installed correctly.
  • the position and form of the above-mentioned anti-misassembly structure 32 are not limited, and the specific position and form of the above-mentioned anti-misassembly structure 32 can be selected according to requirements. Two specific examples are given below.
  • a limit block 321 may be provided at the bottom end of the installation chute 31 along the insertion direction, and the power input assembly 2 has a limit slot 322 adapted to the above-mentioned limit block 321.
  • FIG. 17 is a schematic structural diagram of another power input component of a network device in an embodiment of the application correctly installed.
  • the mis-installation prevention structure 32 includes a limiting groove 323 located at the bottom end of the mounting chute 31 along the insertion direction.
  • the above-mentioned limiting groove 323 is located perpendicular to the power input assembly 2.
  • the power input component 2 includes a limiting protrusion 324 that is adapted to the above limiting groove 323. Only when the above limiting protrusion 324 is inserted into the limiting groove 323, the power input component 2 can be completely installed in the housing of the network device. Body 3.
  • the adaptation mentioned in the embodiments of the present application refers to that the two structures can be matched and arranged in a state where the installation is completed, and the specific positions and sizes of the mutually adapted structures are adapted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明提供了一种电源输入组件及网络设备,上述电源输入组件安装于网络设备,从而为网络设备提供电源,网络设备还具有至少两个散热风扇。上述电源输入组件位于散热风扇的转轴端部,上述电源输入组件具有与散热风扇一一相对的镂空结构,则该镂空结构形成网络设备的散热风道,散热风扇形成的风能够透过上述镂空结构,以实现网络设备的散热。此外,电源输入组件具有与任意相邻两个散热风扇之间区域相对的第一遮挡区域,第一遮挡区域安装上述电源输入组件的器件,以扩展电源输入组件的功能。则该方案在保证了网络设备的散热效果的情况下,还能够使电源输入组件具有较多的面积安装电子器件,以具有较为丰富的功能。

Description

一种电源输入组件及网络设备
本申请要求于2020年1月22日提交中国国家知识产权局、申请号为202010074130.5、发明名称为“一种电源输入组件及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子设备技术领域,尤其涉及到一种电源输入组件及网络设备。
背景技术
网络设备在工作过程中,会产生一定的热量。为了提高网络设备的工作效果,需要对网络设备进行散热。目前,通信设备领域普遍采用风冷散热系统实现散热。为了使网络设备具有足够的散热能力,就需要在网络设备的散热风道具有足够的通风量。现有技术中,网络设备通常具有两个电源输入组件(Power Interface Unit,PIU),电源输入组件位于散热风道的一端,对散热风道形成阻挡,导致散热风道的通风量较小,散热效果较差。
发明内容
本发明提供了一种电源输入组件及网络设备,以提升设备散热性能。
第一方面,本发明提供了一种电源输入组件,该电源输入组件安装于网络设备,从而为网络设备提供电源,网络设备还具有至少两个散热风扇,用于为网络设备提供散热功能,以将网络设备内产生的热量尽快排出。上述电源输入组件位于散热风扇的转轴端部,上述电源输入组件具有与散热风扇一一相对的镂空结构,则该镂空结构形成网络设备的散热风道,散热风扇形成的风能够透过上述镂空结构,以实现网络设备的散热。此外,电源输入组件具有与任意相邻两个散热风扇之间区域相对的第一遮挡区域,第一遮挡区域安装所述电源输入组件的器件,以扩展电源输入组件的功能。该方案在保证了网络设备的散热效果的情况下,还能够使电源输入组件具有较多的面积安装电子器件,以具有较为丰富的功能。
具体制作上述镂空结构时,镂空结构的形状不做限制,镂空结构为半圆形镂空结构、半方形镂空结构或者三角形镂空结构。具体根据需求选择合适的镂空结构即可。
在制作上述电源输入组件时,由于散热风扇包括扇叶和转轴,转轴处无法通风,电源输入组件具有与散热风扇的转轴相对的第二遮挡区域,第二遮挡区域安装电源输入组件的器件。该方案中,可以充分利用空间,电源输入组件安装器件的空间进一步增加,有利于增加电源输入组件的电子器件数量,丰富电源输入组件的功能。
具体制作上述第二遮挡区域时,其形状不做具体限制。可选的几种方案中,上述第二遮挡区域可以为半圆形区域、三角形区域或矩形区域。当然,也可以为非规则形状等任何形状。
第二方面,本申请还提供了一种网络设备,该网络设备包括壳体、至少两个散热风扇以及上述任一技术方案中的电源输入组件。上述散热风扇与电源输入组件安装于壳体,上述电源输入组件位于散热风扇的转轴端部。该方案在保证了网络设备的散热效果的情况下,还能够使电源输入组件具有较多的面积安装电子器件,以具有较为丰富的功能。
在具体的技术方案中,一个网络设备可以包括两个所述电源输入组件,两个所述电源 输入组件对称设置。因此,在该方案中,可以使两个电源输入组件完全相同,将其中一种电源输入组件反转一百八十度进行安装即可。该方案中,可以安装两个相同的电源输入组件,有利于实现电源输入组件的标准化,简化制作工艺,降低制作难度。
为了减少电源输入误安装的概率,可以在网络设备的壳体设置安装滑槽,用于安装上述电源输入组件。上述安装滑槽包括防误装结构,电源输入组件包括与上述防误装结构适配的配合结构。当电源输入组件按设定位置安装时,电源输入组件的配合结构与上述防误装结构配合安装,否则,电源输入组件无法正常安装至上述安装滑槽。
上述防误装结构的具体结构以及设置位置不做限制。一种具体的技术方案中,上述防误装结构包括位于安装滑槽沿插入方向的端部的限位块,电源输入组件包括与上述限位块适配的限位槽。另一种具体的技术方案中,上述防误装结构包括位于安装滑槽沿插入方向的端部的限位凹槽,电源输入组件包括与上述限位凹槽适配的限位凸起。以上仅作为防误装结构的两种可选的技术方案。
附图说明
图1为网络设备的一种结构示意图;
图2为现有技术中网络设备的一种散热风扇剖面结构示意图;
图3为现有技术中网络设备的一种电源输入组件的剖面结构示意图;
图4为本申请实施例中网络设备的一种电源输入组件的结构示意图;
图5为本申请实施例中网络设备的一种电源输入组件的剖面结构示意图;
图6为本申请实施例中网络设备的一种侧面结构示意图;
图7为本申请实施例中网络设备的另一种侧面结构示意图;
图8为本申请实施例中网络设备的另一种侧面结构示意图;
图9为本申请实施例中网络设备的另一种电源输入组件的剖面结构示意图;
图10为本申请实施例中网络设备的另一种电源输入组件的剖面结构示意图;
图11为本申请实施例中网络设备的另一种电源输入组件的剖面结构示意图;
图12为本申请实施例中网络设备的另一种电源输入组件的剖面结构示意图;
图13为本申请实施例中网络设备的另一种散热风扇剖面结构示意图;
图14为本申请实施例中网络设备的另一种电源输入组件的剖面结构示意图;
图15为本申请实施例中网络设备的一种电源输入组件安装正确的结构示意图;
图16为本申请实施例中网络设备的一种电源输入组件安装错误的结构示意图;
图17为本申请实施例中网络设备的另一种电源输入组件安装正确的结构示意图。
附图标记:
1-散热风扇;11-扇叶;12-转轴;2-电源输入组件;21-镂空结构;22-外部电源输入连接器;23-电源防护电路;24-输出合路电路;25-电源输出背板连接器;26-第一遮挡区域;27-第二遮挡区域;28-电路板;3-壳体;31-安装滑槽;32-防误装结构;321-限位块;322-限位槽;323-限位凹槽;324-限位凸起;33-竖壁。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”和“该”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“具体的实施例”、“本申请实施例”意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点,不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图1为网络设备的一种结构示意图。网络设备内部包括较多的电子器件,上述电子器件在工作过程中会产生热量,为了提高网络设备的使用寿命和使用效果,需要配置散热结构,以使网络设备内的热量散发出去。如图1所示的网络设备中,上述散热结构包括散热风扇1,散热风扇1设置于网络设备的一端。为了向网络设备输送较为稳定和可靠的电源,网络设备配置两个电源输入组件2,该电源输入组件2设置于散热风扇1的轴端部。
图2为现有技术中网络设备的一种散热风扇剖面结构示意图。如图2所示,网络设备包括两个并排设置的散热风扇1。图3为现有技术中网络设备的一种电源输入组件的剖面结构示意图,如图3所示,为了避免电源输入组件2遮挡散热风道,每个电源输入组件2设置一个较大的镂空结构21。各个散热风扇1均与上述镂空结构21相对,以便于形成散热风道,使散热风扇1产生的风能够为网络设备提供足够的散热风。该方案中,每个电源输入组件2的镂空结构21面积较大,则电源输入组件2能够设置器件的空间较小,则电源输入组件2的器件布局受限,难以扩展电源输入组件2的功能,则电源输入组件2的功能较为单一。若扩展电源输入组件2的功能,则需要在电源输入组件2设置数量较多的器件,则需要减小镂空结构21的尺寸,导致网络设备的散热风道受限,散热效果较差。为了解决电源输入组件2的器件的数量以及散热效果之间的矛盾,本申请提供了一种电源输入组件2和网络设备。
如图1所示,本申请实施例中的网络设备包括壳体3,以及安装于壳体3的至少两个散热风扇1,以及电源输入组件2。其中,散热风扇1安装于网络设备的一侧,电源输入组件2设置于散热风扇1的转轴12端部,即电源输入组件2的平面与散热风扇1的扇叶转动形成的平面大致平行。
图4为本申请实施例中网络设备的一种电源输入组件的结构示意图,如图4所示,电源输入组件2包括电路板28和安装于电路板28上的电子器件,以形成具备各个功能的电源输入组件2。具体地,上述电源输入组件2可以包括安装于电路板的外部电源输入连接器22、电源防护电路23、输出合路电路24和电源输出背板连接器25。其中,外部电源输入连接器22用于将外部电源引入的输入接口,从而为网络设备提供供电输入接口;电源防护电路23与上述外部电源输入连接器22电连接,用于保护电路,确保在部分异常情况下不至于引起燃烧等恶劣影响,上述部分异常情况可以包括过压或者过流等;输出合路电路24与上述电源防护电路23电连接,用于对有多个电源输入组件2的网络设备,避免电流倒灌的情况;电源输出背板连接器25与上述输出合路电路24电连接,作为输出电源到网络设备的背板的接口,通过背板给网络设备各个工作部件供电。
图4为本申请实施例中网络设备的一种电源输入组件的剖面结构示意图。如图2和图 4所示,本申请实施例中的网络设备具有至少两个散热风扇1,电源输入组件2具有与上述散热风扇1一一相对的镂空结构21。如图5所示,在垂直于散热风扇1的转轴12方向的投影上,散热风扇1的投影与镂空结构21的投影重叠,镂空结构21作为网络设备的散热风道,散热风扇1产生的风能够穿透镂空结构21。此外,该电源输入组件2具有与任意相邻的两个散热风扇1之间区域相对的第一遮挡区域26,该第一遮挡区域26能够安装电源输入组件2的器件,以扩展电源输入组件2的功能,例如增加防护电路或者合路功能。该方案在保证了网络设备的散热效果的情况下,还能够使电源输入组件2具有较多的面积安装电子器件,以具有较为丰富的功能。
图6和图7为本申请实施例中网络设备的两种侧面结构示意图。如图6和图7所示,在具体设置散热风扇1时,散热风扇的具体设置方式不限。可以使散热风扇1的出风侧朝向网络设备内侧的方向,如图6所示,散热风扇1将外界新风抽进网络设备内部,再从另一侧吹出;或者,还可以使风扇的进风侧朝向网络设备内侧的方向,如图7所示,则散热风扇1将网络设备内部的热风抽出至外界,外界新风从另一侧进入网络设备内部。
图8示出了本申请实施例中网络设备的另一种侧面结构示意图,请参考图6~图8,对于电源输入组件2与散热风扇1的位置关系,本申请也不做具体限制。电源输入组件2可以设置于散热风扇1的进风侧,如图6和图8所示;电源输入组件2也可以设置于散热风扇1的出风侧,如图7所示;电源输入组件2可以设置于散热风扇1朝向外界的一侧,如图6和图8所示;或者,电源输入组件2也可以设置于散热风扇1朝向网络设备内部的一侧,如图8所示。
具体的实施例中,上述镂空结构21的具体形状不做限制。如图5所示,一种具体的实施方式中,镂空结构21为半圆形结构。该实施例中,半圆形镂空结构21与散热风扇1的扇叶11转动形成的有效风道区域较为匹配,有利于在充分利用散热风扇1形成的有效风道的同时,提高电源输入组件2的面积。由于电源输入组件2的面积得到了增加,故可以增加电源输入组件2的电子器件类型和数量,丰富电源输入组件2的功能。在其它的实施例中,上述镂空结构21还可以为半方形镂空结构21或者三角形镂空结构21,该方案中,镂空结构21的边缘为直线边缘有利于布局电子器件。
图9为本申请实施例中网络设备的另一种电源输入组件的剖面结构示意图。如图9所示,为了提高电源输入组件2的电子器件布局面积,可以使电源输入组件2具有与散热风扇1的转轴12相对的第二遮挡区域27。上述第二遮挡区域27可以安装电源输入组件2的器件。散热风扇1形成风道的有效区域为扇叶11区域,而转轴12区域不会产生流动的气流。本申请的电源输入组件2具有与散热风扇1的转轴12相对的第二遮挡区域27,可以充分利用空间,使电源输入组件2具有较大的电子器件安装面积,增加电源输入组件2的电子器件数量。
图10至图12分别为本申请实施例中网络设备的另三种电源输入组件的剖面结构示意图。请参考图9至图12,本申请实施例中,第二遮挡区域27的形状不做限制。具体可以为半圆形区域、三角形区域或者矩形区域。请参考图9,镂空结构21为半环形镂空结构21,第二遮挡区域27为半圆形区域,镂空结构21的外边缘与散热风扇1的扇叶11转动边缘匹配,第二遮挡区域27的形状与散热风扇1的转轴12区域相匹配。因此,本方案可以在使网络设备的有效风道保持在尺寸较大的情况下,还可以使电源输入组件2具有较大的器件安装面积。请参考图10和图11,第二遮挡区域27的形状为三角形。其中,图10所 示实施例中,镂空结构21的外边缘为弧形。图11示出的实施例中,镂空结构21的外边缘为折线形,与第二遮挡区域27的外边缘匹配。请参考图12,第二遮挡区域27的形状为矩形。对于镂空结构21的形状和第二遮挡区域27的形状,可以根据实际产品情况进行选择。
本申请实施例中,网络设备中散热风扇1的数量不做具体限制,以上仅仅以网络设备具有两个散热风扇1作为示例。例如还可以为三个、四个或者更多。图13为本申请实施例中网络设备的另一种散热风扇剖面结构示意图。图14为本申请实施例中网络设备的另一种电源输入组件的剖面结构示意图。如图13所示,网络设备具有三个散热风扇1。对应地,如图14所示,网络设备包括了与上述三个风扇对应的电源输入组件2,该方案中的电源输入组件2具有与上述散热风扇1一一相对的镂空结构21。
图15为本申请实施例中网络设备的一种电源输入组件安装正确的结构示意图。如图15所示,网络设备包括两个电源输入组件2,两个电源输入组件2的排列方向A与散热风扇1的排列方向B垂直,此处指的是大致垂直。如图5所示,上述两个电源输入组件2对称设置,该方案中,可以使两个电源输入组件2完全相同,将其中一个电源输入组件2相对另一个电源输入组件2反转一百八十度,使两个电源输入组件2的镂空结构21匹配,并与散热风扇1的扇叶11相对,形成有效风道。该方案中,可以制作相同的电源输入组件2,有利于实现电源输入组件2的标准化,简化制作工艺,降低制作难度。
由于上述对称设置的两个电源输入组件2的镂空结构21需要与散热风扇1匹配。因此,每个电源输入组件2需要按照设定的角度安装至网络设备的外壳。如图15所示,壳体3包括用于安装上述电源输入组件2的安装滑槽31,该安装滑槽31具有防误装结构32,以使电源输入组件2按照设定位置安装,即能够与散热风扇1匹配。为了实现该方案,电源输入组件2包括与上述防误装结构32适配的配合结构,当电源输入组件2的配合结构与上述防误装结构32配合安装时,表明电源输入组件2安装正确,如图15所示。当电源输入组件2的配合结构与上述防误装结构32出现结构干涉时,则电源输入组件2无法安装至网络设备的壳体3,以避免电源输入组件2装配错误的问题。
具体的实施例中,上述防误装结构32的设置位置和形式不做限制,可以根据需求选择合适的位置设置上述防误装结构32的具体位置和形式。下面举两个具体的实施例。请参考图15,一种具体的实施例中,可以在安装滑槽31沿插入方向的底端设置限位块321,电源输入组件2具有与上述限位块321适配的限位槽322。当安装上述电源输入组件2时,电源输入组件2插入安装滑槽31,只有电源输入组件2安装方向正确,才可以使电源输入组件2的限位槽322与安装滑槽31的限位块321适配,电源输入组件2正常安装。若电源输入组件2安装方向错误,则电源输入组件2无法完全插入上述安装滑槽31,如图16所示。该方案中,操作人员可以在安装错误时,及时调整电源输入组件2,防止电源输入组件2的镂空结构21与散热风扇1错位,导致网络设备散热效果较差。
图17为本申请实施例中网络设备的另一种电源输入组件安装正确的结构示意图。如图17所示,该实施例中,防误装结构32包括位于安装滑槽31沿插入方向的底端的限位凹槽323,具体的,上述限位凹槽323位于垂直于电源输入组件2的插入方向的竖壁33。电源输入组件2包括与上述限位凹槽323适配的限位凸起324,只有当上述限位凸起324插入限位凹槽323内,电源输入组件2才可以完全安装于网络设备的壳体3。
值得说明的是,本申请实施例中提到的适配,指的是在安装完成状态下,两个结构可以匹配设置,相互适配的结构所处的具体位置和尺寸均适配。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (9)

  1. 一种电源输入组件,其特征在于,安装于网络设备,所述网络设备具有至少两个散热风扇,所述电源输入组件位于所述散热风扇的转轴端部,所述电源输入组件具有与所述散热风扇一一相对的镂空结构,所述电源输入组件具有与任意相邻两个所述散热风扇之间区域相对的第一遮挡区域,所述第一遮挡区域安装所述电源输入组件的器件。
  2. 根据权利要求1所述的电源输入组件,其特征在于,所述镂空结构为半圆形镂空结构、半方形镂空结构或者三角形镂空结构。
  3. 根据权利要求1所述的电源输入组件,其特征在于,所述电源输入组件具有与所述散热风扇的所述转轴相对的第二遮挡区域,所述第二遮挡区域安装所述电源输入组件的器件。
  4. 根据权利要求3所述的电源输入组件,其特征在于,所述第二遮挡区域为半圆形区域、三角形区域或者矩形区域。
  5. 一种网络设备,其特征在于,包括壳体、至少两个散热风扇以及如权利要求1~4任一项所述的电源输入组件,所述散热风扇与所述电源输入组件安装于所述壳体。
  6. 根据权利要求5所述的网络设备,其特征在于,包括两个所述电源输入组件,且两个所述电源输入组件对称设置。
  7. 根据权利要求6所述的网络设备,其特征在于,所述壳体包括安装滑槽,用于安装所述电源输入组件,所述安装滑槽包括防误装结构,使所述电源输入组件按设定位置安装。
  8. 根据权利要求7所述的网络设备,其特征在于,所述防误装结构包括位于所述安装滑槽沿插入方向的端部的限位块,所述电源输入组件包括与所述限位块适配的限位槽。
  9. 根据权利要求7所述的网络设备,其特征在于,所述防误装结构包括位于安装滑槽沿插入方向的端部的限位凹槽,所述电源输入组件包括与所述限位凹槽适配的限位凸起。
PCT/CN2021/071572 2020-01-22 2021-01-13 一种电源输入组件及网络设备 WO2021147741A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010074130.5A CN113163662B (zh) 2020-01-22 2020-01-22 一种电源输入组件及网络设备
CN202010074130.5 2020-01-22

Publications (1)

Publication Number Publication Date
WO2021147741A1 true WO2021147741A1 (zh) 2021-07-29

Family

ID=76881527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071572 WO2021147741A1 (zh) 2020-01-22 2021-01-13 一种电源输入组件及网络设备

Country Status (2)

Country Link
CN (1) CN113163662B (zh)
WO (1) WO2021147741A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847940A (zh) * 2009-03-24 2010-09-29 深圳市英威腾电气股份有限公司 逆变器功率单元的组装结构及使用其的模块化功率单元
CN204408828U (zh) * 2014-12-29 2015-06-17 珠海市伟高变频科技有限公司 散热效果好的变频空调电控盒
WO2016041145A1 (zh) * 2014-09-16 2016-03-24 深圳市大疆创新科技有限公司 散热装置及采用该散热装置的uav
CN209627986U (zh) * 2019-01-09 2019-11-12 珠海凌达压缩机有限公司 一种散热结构及具有其的电机变频控制器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206508B (zh) * 2006-12-22 2012-08-01 英业达股份有限公司 数字数据储存装置的架体机构
CN205655265U (zh) * 2016-05-06 2016-10-19 中国计量大学 一种卤素灯标准光源
CN207625947U (zh) * 2017-12-22 2018-07-17 东莞市赢煜电子有限公司 一种卡扣便捷定位的控制板
CN108052186B (zh) * 2017-12-25 2019-10-01 重庆天杰科技有限公司 一种电脑散热风扇

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847940A (zh) * 2009-03-24 2010-09-29 深圳市英威腾电气股份有限公司 逆变器功率单元的组装结构及使用其的模块化功率单元
WO2016041145A1 (zh) * 2014-09-16 2016-03-24 深圳市大疆创新科技有限公司 散热装置及采用该散热装置的uav
CN204408828U (zh) * 2014-12-29 2015-06-17 珠海市伟高变频科技有限公司 散热效果好的变频空调电控盒
CN209627986U (zh) * 2019-01-09 2019-11-12 珠海凌达压缩机有限公司 一种散热结构及具有其的电机变频控制器

Also Published As

Publication number Publication date
CN113163662B (zh) 2023-03-28
CN113163662A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN100562238C (zh) 散热装置
TW201247091A (en) Heat dissipation device and heat dissipation system using same
WO2021147741A1 (zh) 一种电源输入组件及网络设备
CN113296338B (zh) 利于散热的投影机
CN100573310C (zh) 投影仪
US9383114B2 (en) Indoor equipment of air-conditioner
WO2023151708A2 (zh) 一种电子元件散热组件
TW201422135A (zh) 電子裝置
CN115664165A (zh) 逆变器及电源设备
CN210864590U (zh) 一种辅助散热式一体机
CN210406015U (zh) 一种导风散热装置
CN211236548U (zh) 投影仪
CN210404946U (zh) 一种增程器及控制器散热装置
JP2013076407A (ja) 送風装置
CN219162648U (zh) 一种新型机箱散热结构
CN220399789U (zh) 一种投影仪内部风路系统及投影仪
CN219536709U (zh) 电能转换器前箱体结构、电能转换器箱体以及电能转换器
CN105992506A (zh) 业务板结构及分布式网络设备
CN220986066U (zh) 一种逆变器散热结构及逆变器
EP4355043A1 (en) Outdoor electric cabinet and air duct structure thereof
WO2021232258A1 (zh) 自动驾驶设备及用于自动驾驶设备的计算系统
CN220798912U (zh) 双风扇散热的工业电源
CN215683101U (zh) 电控装置和空调器
CN219087692U (zh) 稳压器的散热结构
CN213687047U (zh) 散热器、电控盒及空调室外机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744292

Country of ref document: EP

Kind code of ref document: A1