WO2021232258A1 - 自动驾驶设备及用于自动驾驶设备的计算系统 - Google Patents

自动驾驶设备及用于自动驾驶设备的计算系统 Download PDF

Info

Publication number
WO2021232258A1
WO2021232258A1 PCT/CN2020/091131 CN2020091131W WO2021232258A1 WO 2021232258 A1 WO2021232258 A1 WO 2021232258A1 CN 2020091131 W CN2020091131 W CN 2020091131W WO 2021232258 A1 WO2021232258 A1 WO 2021232258A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
computing system
automatic driving
power supply
air inlet
Prior art date
Application number
PCT/CN2020/091131
Other languages
English (en)
French (fr)
Inventor
阳一斌
Original Assignee
深圳元戎启行科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳元戎启行科技有限公司 filed Critical 深圳元戎启行科技有限公司
Priority to PCT/CN2020/091131 priority Critical patent/WO2021232258A1/zh
Priority to CN202080007638.1A priority patent/CN113272761A/zh
Publication of WO2021232258A1 publication Critical patent/WO2021232258A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/181Enclosures

Definitions

  • This application relates to the field of automatic driving equipment, and more specifically to automatic driving equipment and a computing system for the automatic driving equipment.
  • a computing system of an unmanned driving device includes a plurality of computing units and a power processing unit, and the computing unit and the power processing unit are respectively arranged in different positions of the unmanned driving device according to their functions. Then, the power processing unit and the computing unit generate heat during operation. Therefore, in order to avoid high heat generation that affects the stability of the power processing unit and computing unit, each power processing unit and computing unit is provided with a heat dissipation structure. The setting of the heat dissipation structure greatly increases the size of the computing unit, making the overall volume of the computing system larger.
  • a computing system for an automatic driving device including:
  • the electromagnetic shielding stopper is arranged in the inner cavity and divides the inner cavity into a power supply area and a computing unit area;
  • a number of power processing units are arranged in the power supply area of the inner cavity;
  • a number of calculation units are arranged in the calculation unit area of the inner cavity.
  • the heat dissipation structure is used to transport the air from the outside to the power supply area and the computing unit area, and discharge the air flow in the power supply area and the computing unit area.
  • the above computing system for automatic driving equipment, the power processing unit and the computing unit are arranged in the inner cavity of the same housing, and a number of power processing units and computing units are uniformly processed to dissipate heat, so as to reduce the overall area of the computing system. volume.
  • the heat dissipation structure includes a first air inlet, a second air inlet, a first air outlet, and a second air outlet provided on the housing; the first air inlet and the second air outlet An air outlet is connected to the power supply area and the outside; the second air inlet and the second air outlet are both connected to the computing unit area and the outside.
  • the heat dissipation structure further includes at least one of the first air inlets and at least one first air suction component, and the first air suction component is used to pass air from the outside through the at least one first air inlet.
  • the air inlet is drawn into the power supply area; and/or, the heat dissipation structure includes at least one of the first air outlets and at least one first exhaust component, and the first exhaust component is used to drive the power supply area The airflow flows out from at least one of the first air outlets.
  • the heat dissipation structure further includes a first air exhaust duct communicating with at least one of the first air outlets.
  • the first exhaust duct is also in communication with at least one of the second air outlets.
  • the first exhaust assembly is located at the outlet of the first exhaust duct.
  • the first air suction assembly is a suction fan, and/or, the first air exhaust assembly is an exhaust fan.
  • the heat dissipation structure further includes at least one of the second air inlets and at least one second air suction assembly, and the second air suction assembly is used to pass airflow from the outside through at least one of the second air inlets.
  • the air inlet sucks in the computing unit area; and/or, the heat dissipation assembly includes at least one of the second air outlets and at least one second air exhaust component, and the second air exhaust component is used to drive the computing unit area
  • the air flow inside flows out from at least one of the first air outlets.
  • the heat dissipation structure further includes a second air exhaust duct communicating with at least one of the second air outlets.
  • the second air exhaust assembly is located at the outlet of the second air exhaust duct.
  • the second air suction assembly is a suction fan, and/or, the second air exhaust assembly is an exhaust fan.
  • several of the computing units include a graphics processing unit, and the second air inlet is provided at a position close to the graphics processing unit of the housing; and one second air suction assembly may The airflow entering from the second air inlet is blown to the graphics processing unit.
  • a plurality of the calculation units include a voltage stabilization module, and a position of the housing close to the voltage stabilization module is provided with the second air inlet, and the second air inlet enters The airflow directly flows to the voltage stabilizing module.
  • a plurality of the computing units include a central processing unit, and a position of the housing close to the central processing unit is provided with the second air inlet, and the second air inlet enters The airflow flows directly to the central processing unit.
  • the first air inlet is in the shape of a net, or the second air inlet is in the shape of a net, or the first air inlet includes a plurality of air inlet slits, or the second air inlet includes Several air inlet gaps.
  • At least one power output interface is provided at a position of the housing corresponding to the power supply area.
  • the computing system further includes a monitoring device for monitoring the output voltage and output current of the computing system, and a safety switch provided on the housing; the safety switch can be turned off with one key The computing system.
  • a maintenance opening is provided on a position of the housing corresponding to the power supply area, and the computing system further includes a protection door matching the maintenance opening.
  • the housing has a mounting surface, and the mounting surface is provided with a flexible mounting member.
  • a flexible mounting member is provided at the bottom of the housing.
  • an automatic driving device includes a computing system, and the computing system includes:
  • the electromagnetic shielding stopper is arranged in the inner cavity and separates the inner cavity into a power supply area and a computing unit area;
  • a number of power processing units are arranged in the power supply area of the inner cavity;
  • a number of calculation units are arranged in the calculation unit area of the inner cavity
  • the heat dissipation structure is used to transport the air from the outside to the power supply area and the computing unit area, and discharge the air flow in the power supply area and the computing unit area.
  • FIG. 1 is a schematic structural diagram of a computing system provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of the computing system shown in FIG. 1 in another view direction.
  • Fig. 3 is a schematic diagram of the internal cavity structure of the computing system shown in Fig. 1.
  • FIG. 4 is a schematic diagram of the relative positions of several computing units in the computing system shown in FIG. 1.
  • FIG. 5 is a schematic structural diagram of the relative positions of several power processing units in the computing system shown in FIG. 1.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the computing system 100 for automatic driving equipment includes a housing 110, an electromagnetic shielding block 130, a number of power processing units, a number of computing units, and a heat dissipation mechanism .
  • the housing 110 has an inner cavity 111.
  • the electromagnetic shielding block 130 is disposed in the inner cavity 111 and divides the inner cavity 111 into a power supply area 111a and a computing unit area 111b.
  • a number of power processing units are provided in the power supply area 111 a of the inner cavity 111.
  • a number of calculation units are provided in the calculation unit area 111b of the inner cavity 111.
  • the heat dissipation structure is used to transport the air from the outside to the power supply area 111a and the computing unit area 111b, and discharge the air flow in the power supply area 111a and the computing unit area 111b.
  • the temperature of the outside airflow is relatively low, and the heat dissipation structure transports the outside airflow to the power supply area 111a and the computing unit area 111b, and flows out from the power supply area 111a and the computing unit area 111b to take away at least part of the power processing unit. And the heat generated by the operation of the computing unit, so as to avoid the high temperature of the power processing unit and the computing unit.
  • the airflows flowing into the power supply area 111a and the computing unit area 111b increase in temperature due to the heat generated by the power processing unit and the computing unit, respectively.
  • the heat dissipation structure can also discharge the airflow in the power supply area 111a and the computing unit area 111b, so as to discharge the airflow with increased temperature, so as to achieve the effect of heat dissipation.
  • the power processing unit and the computing unit are arranged in the inner cavity 111 of the same housing 110, and a number of power processing units and computing units are uniformly processed to dissipate heat, thereby reducing the computing system 100 The volume occupied by the whole.
  • the working voltage of the power processing unit is higher than the working voltage of the computing unit.
  • the power processing unit is a strong current.
  • the electromagnetic field generated by the power processing unit easily interferes with the operation of the computing unit, that is, the computing unit is susceptible to electromagnetic interference.
  • the inner cavity 111 is divided into the power supply area 111a and the computing unit area 111b by the electromagnetic shielding stop 130, so as to shield the influence of electromagnetic interference of the power processing unit on the computing unit. Therefore, even if the power processing unit and the computing unit are integrated into the inner cavity 111 of the housing 110 at the same time, the normal operation of the computing unit will not be affected by electromagnetic interference.
  • the power processing unit and the computing unit are respectively arranged at different positions of the unmanned driving equipment, and in order to dissipate heat, a heat dissipation structure needs to be provided at each position of the power processing unit and the computing unit.
  • the surrounding space is limited and irregular, which makes the design of the corresponding heat dissipation structure more complicated, which in turn leads to poor heat dissipation effect of the heat dissipation structure.
  • the design of the heat dissipation structure is relatively complicated, the design, manufacturing, and maintenance costs of the heat dissipation structure are relatively high.
  • the heat dissipation structure is used to reduce the heat in the power supply area 111a and the computing unit area 111b, so the heat dissipation mechanism must be provided on the housing 110. According to the structure of the computing system 100, it is sufficient to set it at a suitable position of the automatic driving device.
  • the heat dissipation structure will not be complicated due to limited space.
  • the structure of the heat dissipation structure is also relatively simple, so there will be no poor heat dissipation effect due to the complex structure.
  • the heat dissipation structure is simple, and its design, manufacturing and maintenance costs are correspondingly low.
  • each power processing unit and each computing unit need to be separately Set up and install multiple times during assembly.
  • a plurality of power processing units and a plurality of computing units share a heat dissipation mechanism, so a structure such as a fan is used to enhance the heat dissipation effect, thereby reducing the number of structures such as a fan for enhancing the heat dissipation effect, and improving the installation efficiency.
  • the power processing unit and the computing unit are integrated in the inner cavity 111 of the housing 110, and the integrated computing system 100 can be installed on the automatic driving equipment at one time, thereby improving the automatic driving equipment.
  • the assembly efficiency of the system 100 is calculated.
  • the heat dissipation structure includes a first air inlet 151, a second air inlet 153, a first air outlet 155, and a second air outlet 157 provided on the housing 110.
  • the first air inlet 151 and the first air outlet 155 are both connected to the power supply area 111a and the outside, so as to achieve air flow between the power supply area 111a and the outside.
  • the second air inlet 153 and the second air outlet 157 are both connected to the computing unit area 111b and the outside, thereby realizing air flow between the computing unit area 111b and the outside.
  • the heat dissipation mechanism includes a first air inlet 151, a first air outlet 155 and a first air exhaust assembly 154.
  • the first air exhaust component 154 is used to drive the airflow in the power supply area 111a to flow out from the first air outlet 155, thereby reducing the pressure drop in the power supply area 111a, and drive the outside airflow to flow into the power supply area 111a through the first air inlet 151.
  • the number of the first air inlet, the first air outlet, and the first air exhaust component is not limited to one, and may also be two or more than two.
  • Each first air exhaust assembly may be arranged corresponding to one or at least two first air outlets, and one first air outlet may also correspond to one or at least two first air exhaust assemblies. Therefore, the air flow between the power supply area and the outside can be better increased. Of course, some air outlets may not be provided with the first air exhaust assembly. When the air pressure in the power supply area is relatively high, the air flow in the power supply area can flow out from the first air outlet under the action of the pressure difference.
  • the heat dissipation structure further includes at least one first air suction component, and the first air suction component is used for sucking the air from the outside into the power supply area through the at least one first air inlet.
  • the increase in air pressure can also cause the airflow in the power supply area to flow out through the first air outlet.
  • the heat dissipation structure further includes a first exhaust duct 158 communicating with the first air outlet 155.
  • the first exhaust duct 158 Through the first exhaust duct 158, the higher-temperature air flow in the power supply area 111a can be guided to a suitable position for exhaust.
  • the first air exhaust duct may also communicate with two or more first air outlets to The higher-temperature air currents discharged from at least two air outlets are all discharged through a first air exhaust duct.
  • the heat dissipation structure includes a first exhaust duct 158. It can be understood that, in another feasible embodiment, the heat dissipation structure may further include two or more than two first air exhaust channels. Each first air exhaust channel corresponds to a different first air outlet.
  • the first exhaust duct 158 has only one outlet. It can be understood that, in another feasible implementation, the first air exhaust channel may also have two or more outlets to discharge the airflow in the power supply area from different positions, so as to avoid one outlet causing this place. At the outlet of the first exhaust passage, the temperature at that location is higher due to more airflow with a higher discharge temperature, which results in a higher temperature of the components located near the outlet of the first exhaust passage.
  • the first exhaust duct 158 is also in communication with a second air outlet 157. That is, the airflow in the power supply area 111a and the computing unit can be exhausted through the first exhaust duct 158. It can be understood that, in another feasible embodiment, the first exhaust duct is not limited to be connected to one second air outlet, and may also be connected to two or more second air outlets.
  • first air outlet 155 and the second air outlet 157 communicating with the first air exhaust duct 158 are located on the same side of the housing 110, thereby making the structure of the first air exhaust duct 158 simpler.
  • first air outlet and the second air outlet communicating with the first air exhaust duct can also be located on different sides of the housing, by changing the structure of the first air exhaust duct. It can be connected to it.
  • the first exhaust assembly 154 is located at the outlet of the first exhaust duct 158.
  • the first exhaust assembly 154 is located in the first exhaust duct 158, and its operation does not affect other structures around the first exhaust duct 158 in the automatic driving equipment; on the other hand, the first exhaust assembly 154 is located in the first exhaust duct 158.
  • the outlet position of an exhaust duct 158 is convenient for inspection and maintenance.
  • the first exhaust assembly 154 is detachably provided at the outlet of the first exhaust duct 158, so that the first exhaust duct 158 can be disassembled for inspection and maintenance, which is more convenient for operators to operate.
  • the first exhaust component 154 is damaged, it is convenient to replace other first exhaust components 154.
  • the first exhaust assembly 154 is an exhaust fan. It can be understood that, in another feasible embodiment, the first air exhaust assembly is not limited to an exhaust fan, and it can drive the airflow in the power supply area to flow out from the first air outlet.
  • the first exhaust component is not limited to being located in the first exhaust duct, and can also be located in the power supply area of the inner cavity, which can drive the airflow in the power supply area from the corresponding first exhaust pipe. It can be discharged from one air outlet.
  • the first air suction component is a suction fan. It can be understood that, in another feasible embodiment, the first air suction component is not limited to a suction fan, and it can drive air from the outside into the power supply area from the first air inlet.
  • the heat dissipation structure includes three second air inlets 153, one second air suction assembly 152, two second air outlets 157, and one second air exhaust assembly 156.
  • the second air suction component 152 is used to drive the air from the outside to be sucked into the computing unit area 111 b through a second air inlet 153.
  • the second air exhaust component 156 is used to drive the air flow in the computing unit area 111b to be exhausted through a second air outlet 157.
  • the first air exhaust component 154 can also drive the airflow in the computing unit area 111b to be exhausted from another second air outlet 157.
  • the first exhaust component 154 and the second exhaust component 156 work together to reduce the air pressure in the computing unit, thereby driving the outside airflow to flow into the computing unit from the other two second air inlets 153 that do not correspond to the second suction component 152 Unit area 111b.
  • the heat dissipation structure is not limited to including three second air inlets, one second air suction assembly, two second air outlets, and one second air exhaust assembly.
  • the number of second air suction components, second air outlets and second air exhaust components can be additionally set as required.
  • different relative positions of the second air inlets may be set, so that the second air suction assembly can also pass the external air flow through two or more second air inlets.
  • the air inlet sucks into the computing unit area.
  • the second air exhaust component may also exhaust the air flow in the computing unit area through two or more second air outlets.
  • the heat dissipation structure further includes a second air exhaust duct 159 communicating with a second air outlet 157. It can be understood that, in another feasible embodiment, the heat dissipation structure may further include two or more second air exhaust channels. Each second air exhaust channel corresponds to a different second air outlet 157.
  • the second exhaust duct 159 has only one outlet. It is understandable that, in another feasible implementation, the second air exhaust channel may also have two or more outlets, so as to discharge the airflow in the computing unit area from different positions, so as to avoid one outlet causing the At the outlet of the second exhaust channel, the temperature at that location is higher due to more airflow with a higher discharge temperature, which results in a higher temperature of the components located near the outlet of the second exhaust channel.
  • the two second air outlets may be located on the same side of the housing, so that the The structure is simpler.
  • the second air outlets communicating with the same second air exhaust duct can also be located on different sides of the housing, which can be achieved by changing the structure of the first air exhaust duct. Just connect.
  • the second exhaust assembly 156 is located at the outlet of the second exhaust duct 159.
  • the second exhaust assembly 156 is located in the second exhaust duct 159, and its operation does not affect other structures around the second exhaust duct 159 in the automatic driving equipment; on the other hand, the second exhaust assembly 156 is located in the second exhaust duct 159.
  • the outlet position of the second exhaust duct 159 is convenient for inspection and maintenance.
  • the second air exhaust assembly 156 is detachably provided at the outlet of the second air exhaust duct 159, so that the second air exhaust duct 159 can be disassembled for inspection and maintenance, which is more convenient for the operation of the operator. And it is easy to replace when the second exhaust assembly 156 is damaged.
  • the second exhaust assembly 156 is an exhaust fan. It can be understood that, in another feasible embodiment, the first air exhaust component is not limited to an exhaust fan, and it can drive the airflow in the computing unit area to flow out from the first air outlet.
  • several computing units include a graphics processing unit 10, and a second air inlet 153a is provided at a position close to the graphics processing unit 10 of the housing 110.
  • the second air suction component 152 can blow the air flow entering from the second air inlet 153 to the graphics processing unit 10.
  • the graphics processing unit 10 generates more heat during operation.
  • the second air suction assembly 152 is provided to make the air flow from the outside through the corresponding second air inlet 153a quickly blow toward the graphics processing unit 10, thereby More heat generated by the operation of the graphics processing unit 10 is taken away.
  • the second air suction component 152 is located in the computing unit area 111b. It is arranged inside the second air inlet 153a, so that air from the outside can be driven to flow into the computing unit area 111b through the second air inlet 153a.
  • the second suction assembly 152 is a suction fan. It can be understood that, in another feasible embodiment, the second air suction assembly 152 is not limited to a suction fan, and it can draw the external airflow into the computing unit and direct the airflow to blow directly to the graphics processing unit 10.
  • the second air suction assembly 152 is disposed close to the electromagnetic shielding block 130, and the graphics processing unit 10 is located on the side of the second air suction assembly 152 away from the electromagnetic shielding block 130.
  • the electromagnetic shielding block 130 has a plate shape, and the second air inlet 153 a is located on a surface perpendicular to the electromagnetic shielding block 130.
  • a baffle 112 is provided between the second air suction assembly 152 and the graphics processing unit 10, and the baffle 112 is provided with a through hole 1121 opposite to the graphics processing unit 10, so that the second air inlet 153a flows into the computer
  • the airflow in the unit area 111b can only flow to the graphics processing unit 10 through the via 1121, and increasing the airflow to the graphics processing unit 10 has been more conducive to the heat dissipation effect of the graphics processing unit 10.
  • several calculation units include a voltage stabilizing module 20, and a second air inlet 153b is provided at a position close to the voltage stabilizing module 20 of the housing 110, and the airflow entering from the second air inlet 153b flows directly to the stabilizing module 20, so as to better realize the heat dissipation of the voltage stabilizing module 20.
  • the voltage stabilizing module 20 is located on the side of the graphics processing unit 10 away from the electromagnetic shielding block 130, and a second air outlet 157 is located on the side of the voltage stabilizing module 20 away from the graphics processing unit 10 .
  • the airflow flowing into the computing unit area 111b from the second air inlet 153b and flowing through the graphics processing unit 10 at least partially flows through the voltage stabilizing module 20, which can also take away part of the heat generated by the voltage stabilizing module 20.
  • several computing units include a central processing unit 30.
  • a second air inlet 153c is provided at a position close to the central processing unit 30 of the housing 110, and the airflow entering from the second air inlet 153c flows directly to the central processing unit. 30, so as to better realize the heat dissipation of the voltage stabilizing module 20.
  • the central processing unit 30 is located on the side of the graphics processing unit 10 away from the electromagnetic shielding block 130, and a second air outlet 157 is located on the side of the central processing unit 30 away from the graphics processing unit 10.
  • the airflow flowing from the second air inlet 153c into the computing unit area 111b and flowing through the graphics processing unit 10 at least partially flows through the central processing unit 30, which can also take away part of the heat generated by the central processing unit 30.
  • the central processing unit 30 is located on the side of the voltage stabilizing module 20 away from the second air inlet 153b, so the second air inlet 153c and the second air inlet 153b corresponding to the central processing unit 30 are located on different surfaces of the housing 110111. In this way, the airflow entering the computing unit area 111b from the second air inlet 153c can directly flow to the central processing unit 30.
  • calculation units is not limited to the graphics processing unit 10, the voltage stabilizing module 20 and the central processing unit 30, and other calculation units can also be set as required. If other computing units generate more heat during operation, the heat dissipation effect can be improved by additionally providing a second air inlet 153 or the like.
  • the arrangement of the graphics processing unit 10, the voltage stabilizing module 20, and the central processing unit 30 is not limited to this, and may be arranged according to their sizes, circuits, and the like.
  • the power processing unit includes a power distribution unit 01 and a power processing unit 02.
  • the power distribution unit is responsible for the purposeful distribution of power processed by the power processing unit to meet the power requirements of the computing unit.
  • the first air inlet 151 is in a net shape
  • the second air inlet 153b and the second air inlet 153c are in a net shape
  • the second air inlet 153a includes a plurality of air inlet slits.
  • the external airflow can smoothly flow into the inner cavity 111; on the other hand, it can also prevent external dirt from entering the inner cavity 111 through the first air inlet 151 and the second air inlet 153.
  • the housing 110 is provided with seven power output interfaces 40 at positions corresponding to the power supply area 111a, specifically including a power output interface 40a, a power output interface 40b, and a power output interface 40c.
  • the output power of the power output interface 40a, the power output interface 40b, and the power output interface 40c are different to meet the requirements of different external devices.
  • the type of power output interface is not limited to this, and the number of various power output interfaces is not limited to this, and can be specifically set according to needs.
  • the computing system 100 further includes a monitoring device 50 for monitoring the output voltage and output current of the computing system 100, so as to monitor the operation of each power processing unit and each computing unit, so as to monitor the power processing unit or the computing unit. Problems in operation can be dealt with in a timely manner.
  • the computing system 100 further includes a safety switch 60 provided on the housing 110.
  • the safety switch 60 can shut down the computing system 100 with one key. That is, when the computing system 100 is abnormal, or the environment in which the computing system 100 is located has potential safety hazards, the safety switch 60 can be used to shut down the computing system 100 in time and completely.
  • the housing 110 is provided with a maintenance opening 113 at a position corresponding to the power supply area 111 a, and the computing system 100 further includes a protection door 70 matching the maintenance opening 113.
  • the protective door 70 can be opened, and the internal power processing unit can be inspected or maintained.
  • the housing has a mounting surface 115, and the mounting surface 115 is provided with a flexible mounting member 116. Therefore, when the structure of the installation position for installing the computing system 100 of different automatic driving equipment is different, the installation of the computing system 100 can also be realized through the deformation of the flexible mounting member 116.
  • a power input interface 80 is provided at a position of the housing 110 corresponding to the power supply area 111a for the operation of the computing system.
  • An embodiment of the present application provides an automatic driving device, which includes a computing system 100.
  • the computing system in the automatic driving device may also be another one provided in the present application. Computing system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种用于自动驾驶设备的计算系统(100),该计算系统(100)包括壳体(110),具有内腔(111);电磁屏蔽挡件(130),设于该内腔(111),并将内腔(111)分隔为电源区(111a)和计算单元区(111b);若干个电源处理单元,设于内腔(111)的电源区(111a);若干个计算单元,设于内腔(111)的计算单元区(111b);以及散热结构,用以将外界的气流输送至电源区(111a)和计算单元区(111b),并将电源区(111a)和计算单元区(111b)内的气流排出。

Description

自动驾驶设备及用于自动驾驶设备的计算系统 技术领域
本申请涉及自动驾驶设备领域,更具体地涉及自动驾驶设备及用于自动驾驶设备的计算系统。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
一般地,无人驾驶设备的计算系统包括多个计算单元和电源处理单元,计算单元和电源处理单元根据其功能分别设置在无人驾驶设备的不同位置。然后,电源处理单元和计算单元在运行过程中会产生热量。故为了避免产生的热量较高而影响电源处理单元和计算单元的稳定性,每个电源处理单元和计算单元均设置有一个散热结构。散热结构的设置,较大的增加了计算单元的大小,使得计算系统整体所占体积较大。
发明内容
根据本申请的一个方面,提供了一种用于自动驾驶设备的计算系统,所述计算系统包括:
壳体,具有内腔;
电磁屏蔽挡件,设于所述内腔,并将所述内腔分隔为电源区和计算单元区;
若干个电源处理单元,设于所述内腔的电源区;
若干个计算单元,设于所述内腔的计算单元区;以及
散热结构,用以将外界的气流输送至所述电源区和所述计算单元区,并将所述电源区和所述计算单元区内的气流排出。
上述用于自动驾驶设备的计算系统,将电源处理单元和计算单元设于 同一个壳体的内腔中,并统一对若干个电源处理单元和计算单元进行散热处理,缩小计算系统整体所占的体积。
在其中一个实施例中,所述散热结构包括设于所述壳体上的第一进风口、第二进风口、第一出风口和第二出风口;所述第一进风口和所述第一出风口均连通所述电源区和外界;所述第二进风口和所述第二出风口均连通所述计算单元区和外界。
在其中一个实施例中,所述散热结构还包括至少一个所述第一进风口以及至少一个第一吸风组件,所述第一吸风组件用以将外界的气流通过至少一个所述第一进风口吸入所述电源区内;和/或,所述散热结构包括至少一个所述第一出风口以及至少一个第一排风组件,所述第一排风组件用以驱使所述电源区内的气流由至少一个所述第一出风口流出。
在其中一个实施例中,所述散热结构还包括与至少一个所述第一出风口连通的第一排风管道。
在其中一个实施例中,所述第一排风管道还与至少一个所述第二出风口连通。
在其中一个实施例中,所述第一排风组件位于所述第一排风管道的出口。
在其中一个实施例中,所述第一吸风组件为吸风扇,和/或,所述第一排风组件为排风扇。
在其中一个实施例中,所述散热结构还包括至少一个所述第二进风口以及至少一个第二吸风组件,所述第二吸风组件用以将外界的气流通过至少一个所述第二进风口吸入所述计算单元区;和/或,所述散热组件包括至少一个所述第二出风口以及至少一个第二排风组件,所述第二排风组件用以驱使所述计算单元区内的气流由至少一个所述第一出风口流出。
在其中一个实施例中,所述散热结构还包括与至少一个所述第二出风口连通的第二排风管道。
在其中一个实施例中,所述第二排风组件位于所述第二排风管道的出口处。
在其中一个实施例中,所述第二吸风组件为吸风扇,和/或,所述第二排风组件为排风扇。
在其中一个实施例中,若干个所述计算单元包括图形处理单元,所述壳体的与所述图形处理单元靠近的位置设有所述第二进风口;一个所述第二吸风组件可将由该所述第二进风口进入的气流吹至所述图形处理单元。
在其中一个实施例中,若干个所述计算单元包括稳压模块,所述壳体的与所述稳压模块靠近的位置设有所述第二进风口,由该所述第二进风口进入的气流直接流向所述稳压模块。
在其中一个实施例中,若干个所述计算单元包括中央处理器,所述壳体的与所述中央处理器靠近的位置设有所述第二进风口,由该所述第二进风口进入的气流直接流向所述中央处理器。
在其中一个实施例中,所述第一进风口呈网状,或所述第二进风口呈网状,或所述第一进风口包括若干个进风缝隙,或所述第二进风口包括若干个进风缝隙。
在其中一个实施例中,所述壳体的与所述电源区对应的位置设有至少一个电源输出接口。
在其中一个实施例中,所述计算系统还包括用以监视所述计算系统的输出电压和输出电流的监控装置、以及设于所述壳体上的安全开关;所述安全开关可一键关闭所述计算系统。
在其中一个实施例中,所述壳体的与所述电源区对应的位置设有维护开口,所述计算系统还包括与所述维护开口匹配的保护门。
在其中一个实施例中,所述外壳具有安装面,所述安装面设有柔性安装件。
在其中一个实施例中,所述外壳的底部设有柔性安装件。
根据本申请的另一个方面,提供了一种自动驾驶设备,所述自动驾驶设备包括计算系统,所述计算系统包括:
壳体,具有内腔;
电磁屏蔽挡件,设于所述内腔,将所述内腔分隔为电源区和计算单元区;
若干个电源处理单元,设于所述内腔的电源区;
若干个计算单元,设于所述内腔的计算单元区;
散热结构,用以将外界的气流输送至所述电源区和所述计算单元区,并将所述电源区和所述计算单元区内的气流排出。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请一实施例提供的计算系统的结构示意图。
图2为图1所示计算系统的另一视图方向的结构示意图。
图3为图1所示计算系统的内腔结构示意图。
图4为图1所示计算系统中若干个计算单元的相对位置结构示意图。
图5为图1所示计算系统中若干个电源处理单元的相对位置结构示意图。
100、计算系统;110、壳体;111、内腔;111a、电源区;111b、计算单元区;112、挡板;1121、过孔;113、维护开口;115、安装面;116、柔性安装件;130、电磁屏蔽挡件;151、第一进风口;152、第二吸风组件; 153、第二进风口;154、第一排风组件;155、第一出风口;156、第二排风组件;157、第二出风口;158、第一排风管道;159、第二排风管道;10、图形处理单元;20、稳压模块;30、中央处理器;40、电源输出接口;50、监控装置;60、安全开关;70、保护门;80、电源输入接口;01、电源分配单元;02、电源处理单元。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或 两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
如图1至图5所示,本申请一实施例提供的用于自动驾驶设备的计算系统100,包括壳体110、电磁屏蔽挡件130、若干个电源处理单元、若干个计算单元以及散热机构。其中,壳体110具有内腔111。电磁屏蔽挡件130设于内腔111,并将内腔111分隔为电源区111a和计算单元区111b。若干个电源处理单元设于内腔111的电源区111a。若干个计算单元设于内 腔111的计算单元区111b。散热结构用以将外界的气流输送至电源区111a和计算单元区111b,并将电源区111a和计算单元区111b内的气流排出。
可以理解的是,外界的气流温度相对较低,散热结构将外界的气流输送至电源区111a和计算单元区111b,并由电源区111a和计算单元区111b流出,以带走至少部分电源处理单元和计算单元运行产生的热量,从而避免电源处理单元和计算单元温度较高的情况。换言之,流入电源区111a和计算单元区111b的气流分别因电源处理单元和计算单元发热而温度升高。散热结构还可以将电源区111a和计算单元区111b内的气流排出,从而可以将温度升高的气流排出,从而达到散热的效果。
上述用于自动驾驶设备的计算系统100,将电源处理单元和计算单元设于同一个壳体110的内腔111中,并统一对若干个电源处理单元和计算单元进行散热处理,缩小计算系统100整体所占的体积。
需要说明的是,电源处理单元的工作电压高于计算单元的工作电压。换言之,相对于计算单元,电源处理单元为强电。电源处理单元产生的电磁场容易干扰计算单元的运行,即使得计算单元容易受到电磁干扰的影响。本实施例中,通过电磁屏蔽挡件130将内腔111分别为电源区111a和计算单元区111b,从而屏蔽电源处理单元对计算单元的电磁干扰的影响。故即使电源处理单元和计算单元同时集成至壳体110的内腔111中,也不会因电磁干扰而影响计算单元的正常运行。
另外,传统的,电源处理单元和计算单元分别设于无人驾驶设备的不同位置,且为了散热,需分别在每个电源处理单元和计算单元的位置设置散热结构。而对于一些电源处理单元和计算单元,其周围的空间有限,且不规则,故使得其对应的散热结构的设计较为复杂,进而导致散热结构的散热效果较差。且由于散热结构的设计较为复杂,导致散热结构的设计、制造和维护的成本较高。
而本实施例中,散热结构用以降低电源区111a和计算单元区111b内 的热量,故散热机构必然设于壳体110上。而根据计算系统100的结构将其设置在自动驾驶设备的合适的位置即可。不会因为空间有限而导致散热结构复杂。且,本实施例中,散热结构的结构也较为简单,故不会出现因结构复杂而导致散热效果差的情况。另外,散热结构结构简单,其设计、制造和维护的成本也相应较低。
另外,相对于传统的每个电源处理单元和每个计算单元分别设置一个散热结构的情况,若散热结构需另外设置风扇等来加强散热效果,则每个电源处理单元和每个计算单元需要分别进行设置,组装时需要进行多次安装。而本实施例中,若干个电源处理单元和若干个计算单元共用散热机构,故用以加强散热效果的风扇等结构,从而减少风扇等用于加强散热效果的结构的个数,提高安装效率。
再者,本实施例中,将电源处理单元和计算单元均集成在壳体110的内腔111,可将集成后的计算系统100一次性安装在自动驾驶设备上,从而提高了自动驾驶设备中计算系统100的组装效率。
具体地,本实施例中,散热结构包括设于壳体110上的第一进风口151、第二进风口153、第一出风口155和第二出风口157。第一进风口151和第一出风口155均连通电源区111a和外界,从而实现电源区111a和外界的气流流通。第二进风口153和第二出风口157均连通计算单元区111b和外界,从而实现计算单元区111b和外界的气流流通。
本实施例中,散热机构包括一个第一进风口151、一个第一出风口155和一个第一排风组件154。第一排风组件154用以驱使电源区111a内的气流由第一出风口155流出,从而降低电源区111a内的气压降低,驱使外界的气流经第一进风口151流入电源区111a。
可以理解的是,在另外可行的实施例中,第一进风口、第一出风口以及第一排风组件的个数均不限于一个,还可以是两个或多于两个。每个第一排风组件可以对应一个或至少两个第一出风口设置,一个第一出风口也 可以对应一个或至少两个第一排风组件。从而,能更好的增加电源区和外界的气流流动。当然,部分出风口也可不设置第一排风组件。在电源区内的气压较大时,可以使得电源区内的气流在压力差的作用下由第一出风口流出。
同样地,在另外可行的实施例中,散热结构还包括至少一个第一吸风组件,第一吸风组件用以将外界的气流通过至少一个第一进风口吸入电源区内,电源区内的气压增大,也可以使得电源区内的气流通过第一出风口流出。可以理解的是,根据计算系统的壳体的结构设计及散热需求,可以仅设置第一吸风组件或第一排风组件。
进一步地,本实施例中,散热结构还包括与第一出风口155连通的第一排风管道158。通过第一排风管道158可将电源区111a内的温度较高的气流引导至合适的位置排出。可以理解的是,在另外可行的实施例中,若壳体上设有至少两个第一出风口,第一排风管道也可以与两个或多于两个的第一出风口连通,以将至少两个出风口排出的温度较高的气流均通过一个第一排风管道排出。
本实施例中,散热结构包括一个第一排风管道158。可以理解的是,在另外可行的实施例中,散热结构还可以包括两个或多于两个的第一排风通道。每个第一排风通道对应不同的第一出风口即可。
本实施例中,第一排风管道158仅具有一个出口。可以理解的是,在另外可行的实施中,第一排风通道还可以具有两个或多于两个出口,以将电源区内的气流由不同的位置排出,避免因一个出口而导致该处第一排风通道的出口处因排出温度较高的气流较多而导致该位置的温度较高,导致位于第一排风通道的出口附近的元件温度较高。
本实施例中,第一排风管道158还与一个第二出风口157连通。即电源区111a和计算单元去内的气流均可通过第一排风管道158排出。可以理解的是,在另外可行的实施例中,第一排风管道不限于与一个第二出风口 连通,还可以与两个或多于两个的第二出风口连通。
本实施例中,与第一排风管道158连通的第一出风口155和第二出风口157位于壳体110的同一侧,从而可以使得第一排风管道158的结构更加简单。当然,可以理解的是,在另外可行的实施例中,与第一排风管道连通的第一出风口和第二出风口还可以位于壳体的不同侧,通过改变第一排风管道的结构实现与之连通即可。
本实施例中,第一排风组件154位于第一排风管道158的出口。一方面,第一排风组件154位于第一排风管道158内,其运行不影响自动驾驶设备中位于第一排风管道158周围的其它结构;另一方面,第一排风组件154位于第一排风管道158的出口位置,从而便于检修和维护。进一步地,可选地,第一排风组件154可拆卸的设于第一排风管道158的出口,从而可将第一排风管道158拆卸以进行检修和维护,更加便于操作人员的操作,且在第一排风组件154损坏时便于更换其它第一排风组件154。
本实施例中,第一排风组件154为排风扇。可以理解的是,在另外可行的实施例中,第一排风组件也不限于排风扇,能驱使电源区内的气流由第一出风口流出即可。
可以理解的是,在另外可行的实施例中,第一排风组件不限于位于第一排风管道内,还可以位于内腔的电源区等位置,能驱使电源区内的气流从对应的第一出风口排出即可。
可选地,在另外可行的实施例中,若散热结构包括第一吸风组件,则第一吸风组件为吸风扇。可以理解的是,在另外可行的实施例中,第一吸风组件不限于吸风扇,能驱使外界的气流由第一进风口流入电源区内的即可。
本实施例中,散热结构包括三个第二进风口153、一个第二吸风组件152、两个第二出风口157和一个第二排风组件156。第二吸风组件152用以驱使外界的气流通过一个第二进风口153吸入计算单元区111b。第二排 风组件156用以驱使计算单元区111b内的气流由一个第二出风口157排出。同时,第一排风组件154还可以驱使驱使计算单元区111b内的气流由另一个第二出风口157排出。第一排风组件154和第二排风组件156共同作用,使得计算单元内的气压降低,从而驱使外界的气流由另外两个与第二吸风组件152不对应的第二进风口153流入计算单元区111b。
可以理解的是,在另外可行的实施例中,散热结构不限于包括三个第二进风口、一个第二吸风组件、两个第二出风口和一个第二排风组件,第二进风口、第二吸风组件、第二出风口和第二排风组件的个数还可根据需要进行另外设定。
另外,可以理解的是,在另外可行的实施例中,还可以通过设置不同的第二进风口的相对位置,使得第二吸风组件还可以将外界气流通过两个或多于两个第二进风口吸入计算单元区。同样的,在另外可行的实施例中,第二排风组件也可以将计算单元区内的气流通过两个或多于两个第二出风口排出。
本实施例中,散热结构还包括与一个第二出风口157连通的第二排风管道159。可以理解的是,在另外可行的实施例中,散热结构还可以包括两个或多于两个的第二排风通道。每个第二排风通道对应不同的第二出风口157即可。
本实施例中,第二排风管道159仅具有一个出口。可以理解的是,在另外可行的实施中,第二排风通道还可以具有两个或多于两个出口,以将计算单元区内的气流由不同的位置排出,避免因一个出口而导致该处第二排风通道的出口处因排出温度较高的气流较多而导致该位置的温度较高,导致位于第二排风通道的出口附近的元件温度较高。
在另外可行的本实施例中,与第二排风管道连通的第二出风口具有至少两个时,两个第二出风口可以位于壳体的同一侧,从而可以使得第一排风管道的结构更加简单。当然,可以理解的是,在另外可行的实施例中, 与同一第二排风管道连通的第二出风口还可以分别位于壳体的不同侧,通过改变第一排风管道的结构实现与之连通即可。
本实施例中,第二排风组件156位于第二排风管道159的出口处。一方面,第二排风组件156位于第二排风管道159内,其运行不影响自动驾驶设备中位于第二排风管道159周围的其它结构;另一方面,第二排风组件156位于第二排风管道159的出口位置,从而便于检修和维护。进一步地,可选地,第二排风组件156可拆卸的设于第二排风管道159的出口,从而可将第二排风管道159拆卸以进行检修和维护,更加便于操作人员的操作,且在第二排风组件156损坏时便于更换。
本实施例中,第二排风组件156为排风扇。可以理解的是,在另外可行的实施例中,第一排风组件也不限于排风扇,能驱使计算单元区内的气流由第一出风口流出即可。
具体地,本实施例中,若干个计算单元包括图形处理单元10,壳体110的与图形处理单元10靠近的位置设有第二进风口153a。第二吸风组件152可将由该第二进风口153进入的气流吹至图形处理单元10。一般的,图形处理单元10在工作时发热较多,通过第二吸风组件152的设置,可以使得由由外界通过该对应的第二进风口153a流入的气流快速吹向图形处理单元10,从而更多的带走图形处理单元10运行产生的热量。
更具体地,本实施例中,第二吸风组件152位于计算单元区111b内。并设于该第二进风口153a内侧,从而可驱使外界的气流通过该第二进风口153a流入计算单元区111b。
本实施例中,第二吸风组件152为吸风扇。可以理解的是,在另外可行的实施例中,第二吸风组件152不限于吸风扇,能将外界气流吸入计算单元内并引导气流直接吹至图形处理单元10即可。
具体的,本实施例中,第二吸风组件152靠近电磁屏蔽挡件130设置,图形处理单元10位于第二吸风组件152的远离电磁屏蔽挡件130的一侧。 本实施例中,电磁屏蔽挡件130呈板状,第二进风口153a位于与电磁屏蔽挡件130垂直的表面。进一步地,第二吸风组件152与图形处理单元10之间设有挡板112,挡板112上设有与图形处理单元10相对设置的过孔1121,从而使得又第二进风口153a流入计算单元区111b内的气流只能由过孔1121流向图形处理单元10,增大流向图形处理单元10的气流,已更有利于图形处理单元10的散热效果。
本实施例中,若干个计算单元包括稳压模块20,壳体110的与稳压模块20靠近的位置设有第二进风口153b,由该第二进风口153b进入的气流直接流向稳压模块20,从而能够更好的实现稳压模块20的散热。更具体地,本实施例中,稳压模块20位于图形处理单元10的远离电磁屏蔽挡件130的一侧,且一个第二出风口157位于稳压模块20的远离图形处理单元10的一侧。由第二进风口153b流入计算单元区111b并流经图形处理单元10的气流至少部分流经稳压模块20,从能也能带走部分稳压模块20产生的热量。
本实施例中,若干个计算单元包括中央处理器30,壳体110的与中央处理器30靠近的位置设有第二进风口153c,由该第二进风口153c进入的气流直接流向中央处理器30,从而能够更好的实现稳压模块20的散热。
同样地,本实施例中,中央处理器30位于图形处理单元10的远离电磁屏蔽挡件130的一侧,且一个第二出风口157位于中央处理器30的远离图形处理单元10的一侧。由第二进风口153c流入计算单元区111b并流经图形处理单元10的气流至少部分流经中央处理器30,从能也能带走部分中央处理器30产生的热量。
进一步地,中央处理器30位于稳压模块20的远离第二进风口153b的一侧,故与中央处理器30对应的第二进风口153c与第二进风口153b位于壳体110111的不同表面,以使得由第二进风口153c进入计算单元区111b的气流能直接流向中央处理器30。
当然,若干个计算单元不限于图形处理单元10、稳压模块20和中央处理器30,还可以根据需要设定其它计算单元。若其它计算单元运行过程中发热较多,可通过另外设置第二进风口153等方式提高其散热效果。
另外,需要说明的是,在另外可行的实施例中,图形处理单元10、稳压模块20和中央处理器30的排布不限于此,根据其大小、线路等具体排布即可。
本实施例中,电源处理单元包括电源分配单元01和电源处理单元02,电源分配单元负责对经过电源处理单元处理的功率进行有目的的分配,以满足计算单元的功率需求。
本实施例中,第一进风口151呈网状,第二进风口153b和第二进风口153c呈网状,第二进风口153a包括若干个进风缝隙。一方面,可以使得外界的气流顺利的流入内腔111;另一方面,还能避免外界的脏污通过第一进风口151和第二进风口153进入内腔111。
本实施例中,壳体110的与电源区111a对应的位置设有七个电源输出接口40,具体包括电源输出接口40a、电源输出接口40b和电源输出接口40c。电源输出接口40a、电源输出接口40b和电源输出接口40c输出功率不同,以满足不同的外置设备的需求。当然,可以理解的是,在另外可行的实施例中,电源输出接口的种类不限于此,各种电源输出接口的数量也不限于此,均可以根据需要进行具体设定。
本实施例中,计算系统100还包括用以监视计算系统100的输出电压和输出电流的监控装置50,以监控各电源处理单元和各计算单元的运行情况,以在电源处理单元或计算单元的运行出现问题是,能及时进行处理。
本实施例中,计算系统100还包括设于壳体110上的安全开关60。安全开关60可一键关闭计算系统100。即在计算系统100出现异常,或计算系统100所处的环境存在安全隐患时,能通过安全开关60及时并全部关闭计算系统100。
本实施例中,壳体110的与电源区111a对应的位置设有维护开口113,计算系统100还包括与维护开口113匹配的保护门70。从而打开保护门70,便可对其内部的电源处理单元进行检修或维护。
本实施例中,外壳具有安装面115,安装面115设有柔性安装件116。从而不同自动驾驶设备的用以安装计算系统100的安装位置的结构不同时,还可以通过柔性安装件116的变形实现计算系统100的安装。
另外,壳体110的与电源区111a对应的位置设有电源输入接口80,以供计算系统的运行。
本申请一实施例,提供了一种自动驾驶设备,其包括计算系统100,当然,可以理解的是,在另外可行的实施例中,自动驾驶设备中的计算系统还可以是本申请提供的其它计算系统。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种用于自动驾驶设备的计算系统,所述计算系统包括:
    壳体,具有内腔;
    电磁屏蔽挡件,设于所述内腔,并将所述内腔分隔为电源区和计算单元区;
    若干个电源处理单元,设于所述内腔的电源区;
    若干个计算单元,设于所述内腔的计算单元区;以及
    散热结构,用以将外界的气流输送至所述电源区和所述计算单元区,并将所述电源区和所述计算单元区内的气流排出。
  2. 根据权利要求1所述的用于自动驾驶设备的计算系统,所述散热结构包括设于所述壳体上的第一进风口、第二进风口、第一出风口和第二出风口;所述第一进风口和所述第一出风口均连通所述电源区和外界;所述第二进风口和所述第二出风口均连通所述计算单元区和外界。
  3. 根据权利要求2所述的用于自动驾驶设备的计算系统,所述散热结构还包括至少一个所述第一进风口以及至少一个第一吸风组件,所述第一吸风组件用以将外界的气流通过至少一个所述第一进风口吸入所述电源区内;和/或,所述散热结构包括至少一个所述第一出风口以及至少一个第一排风组件,所述第一排风组件用以驱使所述电源区内的气流由至少一个所述第一出风口流出。
  4. 根据权利要求3所述的用于自动驾驶设备的计算系统,所述散热结构还包括与至少一个所述第一出风口连通的第一排风管道。
  5. 根据权利要求4所述的用于自动驾驶设备的计算系统,所述第一排风管道还与至少一个所述第二出风口连通。
  6. 根据权利要求4或5所述的用于自动驾驶设备的计算系统,所述第一排风组件位于所述第一排风管道的出口。
  7. 根据权利要求3所述的用于自动驾驶设备的计算系统,所述第一吸 风组件为吸风扇,和/或,所述第一排风组件为排风扇。
  8. 根据权利要求2所述的用于自动驾驶设备的计算系统,所述散热结构还包括至少一个所述第二进风口以及至少一个第二吸风组件,所述第二吸风组件用以将外界的气流通过至少一个所述第二进风口吸入所述计算单元区;和/或,所述散热组件包括至少一个所述第二出风口以及至少一个第二排风组件,所述第二排风组件用以驱使所述计算单元区内的气流由至少一个所述第一出风口流出。
  9. 根据权利要求8所述的用于自动驾驶设备的计算系统,所述散热结构还包括与至少一个所述第二出风口连通的第二排风管道。
  10. 根据权利要求1所述的用于自动驾驶设备的计算系统,所述第二排风组件位于所述第二排风管道的出口处。
  11. 根据权利要求1所述的用于自动驾驶设备的计算系统,所述第二吸风组件为吸风扇,和/或,所述第二排风组件为排风扇。
  12. 根据权利要求8至11任一项所述的用于自动驾驶设备的计算系统,若干个所述计算单元包括图形处理单元,所述壳体的与所述图形处理单元靠近的位置设有所述第二进风口;一个所述第二吸风组件可将由该所述第二进风口进入的气流吹至所述图形处理单元。
  13. 根据权利要求8至11任一项所述的用于自动驾驶设备的计算系统,若干个所述计算单元包括稳压模块,所述壳体的与所述稳压模块靠近的位置设有所述第二进风口,由该所述第二进风口进入的气流直接流向所述稳压模块。
  14. 根据权利要求8至11任一项所述的用于自动驾驶设备的计算系统,若干个所述计算单元包括中央处理器,所述壳体的与所述中央处理器靠近的位置设有所述第二进风口,由该所述第二进风口进入的气流直接流向所述中央处理器。
  15. 根据权利要求2所述的用于自动驾驶设备的计算系统,所述第一 进风口呈网状,或所述第二进风口呈网状,或所述第一进风口包括若干个进风缝隙,或所述第二进风口包括若干个进风缝隙。
  16. 根据权利要求1至5、7至11任一项所述的用于自动驾驶设备的计算系统,所述壳体的与所述电源区对应的位置设有至少一个电源输出接口。
  17. 根据权利要求1至5、7至11任一项所述的用于自动驾驶设备的计算系统,所述计算系统还包括用以监视所述计算系统的输出电压和输出电流的监控装置、以及设于所述壳体上的安全开关;所述安全开关可一键关闭所述计算系统。
  18. 根据权利要求1至5、7至11任一项所述的用于自动驾驶设备的计算系统,所述壳体的与所述电源区对应的位置设有维护开口,所述计算系统还包括与所述维护开口匹配的保护门。
  19. 根据权利要求1至5、7至11任一项所述的用于自动驾驶设备的计算系统,所述外壳具有安装面,所述安装面设有柔性安装件。
  20. 一种自动驾驶设备,所述自动驾驶设备包括计算系统,所述计算系统包括:
    壳体,具有内腔;
    电磁屏蔽挡件,设于所述内腔,将所述内腔分隔为电源区和计算单元区;
    若干个电源处理单元,设于所述内腔的电源区;
    若干个计算单元,设于所述内腔的计算单元区;以及
    散热结构,用以将外界的气流输送至所述电源区和所述计算单元区,并将所述电源区和所述计算单元区内的气流排出。
PCT/CN2020/091131 2020-05-20 2020-05-20 自动驾驶设备及用于自动驾驶设备的计算系统 WO2021232258A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/091131 WO2021232258A1 (zh) 2020-05-20 2020-05-20 自动驾驶设备及用于自动驾驶设备的计算系统
CN202080007638.1A CN113272761A (zh) 2020-05-20 2020-05-20 自动驾驶设备及用于自动驾驶设备的计算系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/091131 WO2021232258A1 (zh) 2020-05-20 2020-05-20 自动驾驶设备及用于自动驾驶设备的计算系统

Publications (1)

Publication Number Publication Date
WO2021232258A1 true WO2021232258A1 (zh) 2021-11-25

Family

ID=77227976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091131 WO2021232258A1 (zh) 2020-05-20 2020-05-20 自动驾驶设备及用于自动驾驶设备的计算系统

Country Status (2)

Country Link
CN (1) CN113272761A (zh)
WO (1) WO2021232258A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056307A (en) * 1990-05-25 1991-10-15 The United States Of America As Represented By The Secretary Of The Air Force Exhaust nozzle cooling utilizing total engine flow
CN201830601U (zh) * 2010-09-20 2011-05-11 云南无线电有限公司 密封机箱散热模块
CN203416177U (zh) * 2013-08-07 2014-01-29 阳光电源股份有限公司 一种光伏逆变器
CN204335182U (zh) * 2014-11-26 2015-05-13 重庆南方迪马专用车股份有限公司 车载控制设备安装盒
CN204794728U (zh) * 2015-08-13 2015-11-18 威海广泰空港电源设备有限公司 移动式航空地面270v直流静态电源
CN206024393U (zh) * 2016-08-30 2017-03-15 广州市斗牛士音响设备有限公司 一种功放机高效散热及抗干扰结构
CN207037476U (zh) * 2017-07-06 2018-02-23 北京博雅英杰科技股份有限公司 无人机地面控制站和可变距离传输链路
CN207766032U (zh) * 2018-02-12 2018-08-24 北京科华众生云计算科技有限公司 一种机架式不间断电源
CN208338163U (zh) * 2018-06-06 2019-01-04 深圳市麦思美科技有限公司 一种ott播放器的散热结构
CN208868303U (zh) * 2018-06-25 2019-05-17 深圳市道通智能航空技术有限公司 散热结构及无人飞行器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344809A (zh) * 2007-07-13 2009-01-14 鸿富锦精密工业(深圳)有限公司 散热系统及其构造方法
JP5212540B2 (ja) * 2009-04-14 2013-06-19 富士通株式会社 電子機器
CN111082641A (zh) * 2019-12-17 2020-04-28 中国电子科技集团公司第十三研究所 电源箱及无人机电源的装配方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056307A (en) * 1990-05-25 1991-10-15 The United States Of America As Represented By The Secretary Of The Air Force Exhaust nozzle cooling utilizing total engine flow
CN201830601U (zh) * 2010-09-20 2011-05-11 云南无线电有限公司 密封机箱散热模块
CN203416177U (zh) * 2013-08-07 2014-01-29 阳光电源股份有限公司 一种光伏逆变器
CN204335182U (zh) * 2014-11-26 2015-05-13 重庆南方迪马专用车股份有限公司 车载控制设备安装盒
CN204794728U (zh) * 2015-08-13 2015-11-18 威海广泰空港电源设备有限公司 移动式航空地面270v直流静态电源
CN206024393U (zh) * 2016-08-30 2017-03-15 广州市斗牛士音响设备有限公司 一种功放机高效散热及抗干扰结构
CN207037476U (zh) * 2017-07-06 2018-02-23 北京博雅英杰科技股份有限公司 无人机地面控制站和可变距离传输链路
CN207766032U (zh) * 2018-02-12 2018-08-24 北京科华众生云计算科技有限公司 一种机架式不间断电源
CN208338163U (zh) * 2018-06-06 2019-01-04 深圳市麦思美科技有限公司 一种ott播放器的散热结构
CN208868303U (zh) * 2018-06-25 2019-05-17 深圳市道通智能航空技术有限公司 散热结构及无人飞行器

Also Published As

Publication number Publication date
CN113272761A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
JP4994503B2 (ja) 演算処理装置
JP2005019562A (ja) 電子機器の冷却構造
TWI405945B (zh) 氣冷式熱交換器及其適用之電子設備
US20110090643A1 (en) Computer system
KR102236294B1 (ko) 제어반
WO2023124168A1 (zh) 一种空调室内机及空调器
WO2021232258A1 (zh) 自动驾驶设备及用于自动驾驶设备的计算系统
WO2017202018A1 (zh) 微波炉
TW201325418A (zh) 電子裝置
CN218037594U (zh) 一种散热液晶显示屏
US9057384B2 (en) Integrated fan
JP2000304304A (ja) 空気調和機の室外機
US10833490B2 (en) Control board
CN210895282U (zh) 一种可快速散热的计算机主机箱
JP6226074B2 (ja) 電力変換装置
WO2017101257A1 (zh) 蒸汽吸尘器
KR101912684B1 (ko) 입체 냉각 구조를 갖는 emp 랙 장착형 자체 냉각시스템
TWI491348B (zh) 電子裝置
TWI715504B (zh) 電腦裝置
CN218998685U (zh) 扫描成像设备
TWM509272U (zh) 風扇模組
WO2021147741A1 (zh) 一种电源输入组件及网络设备
CN219288040U (zh) 一种组串逆变器的散热结构
CN210864481U (zh) 一种散热性能良好的显示器
CN220603832U (zh) 单lcd投影光机及投影仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 18/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20936950

Country of ref document: EP

Kind code of ref document: A1