WO2016039108A1 - 厚膜抵抗体及びその製造方法 - Google Patents

厚膜抵抗体及びその製造方法 Download PDF

Info

Publication number
WO2016039108A1
WO2016039108A1 PCT/JP2015/073358 JP2015073358W WO2016039108A1 WO 2016039108 A1 WO2016039108 A1 WO 2016039108A1 JP 2015073358 W JP2015073358 W JP 2015073358W WO 2016039108 A1 WO2016039108 A1 WO 2016039108A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
thick film
film resistor
resistance
ruthenium
Prior art date
Application number
PCT/JP2015/073358
Other languages
English (en)
French (fr)
Inventor
真島 浩
ゆかり 諸藤
Original Assignee
昭栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55458864&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016039108(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 昭栄化学工業株式会社 filed Critical 昭栄化学工業株式会社
Priority to CN201580015279.3A priority Critical patent/CN106104711B/zh
Priority to JP2016525626A priority patent/JP5988124B2/ja
Priority to EP15840330.3A priority patent/EP3193340A4/en
Priority to CA2939542A priority patent/CA2939542C/en
Priority to US15/119,653 priority patent/US9892828B2/en
Priority to KR1020167027057A priority patent/KR101747621B1/ko
Publication of WO2016039108A1 publication Critical patent/WO2016039108A1/ja
Priority to PH12016501663A priority patent/PH12016501663A1/en
Priority to IL249324A priority patent/IL249324B/en
Priority to US15/842,267 priority patent/US10403421B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06553Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of a combination of metals and oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • C03C3/074Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/102Glass compositions containing silica with 40% to 90% silica, by weight containing lead
    • C03C3/105Glass compositions containing silica with 40% to 90% silica, by weight containing lead containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/102Glass compositions containing silica with 40% to 90% silica, by weight containing lead
    • C03C3/108Glass compositions containing silica with 40% to 90% silica, by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/22Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions containing two or more distinct frits having different compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • H01C17/0654Oxides of the platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/003Thick film resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/06Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material including means to minimise changes in resistance with changes in temperature
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2205/00Compositions applicable for the manufacture of vitreous enamels or glazes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites

Definitions

  • the present invention relates to a thick film resistor that does not substantially contain a lead component and a manufacturing method thereof.
  • the present invention relates to a thick film resistor formed in a thick film circuit, a multilayer circuit board, various laminated composite parts, and the like, and a manufacturing method thereof.
  • a thick film resistor (hereinafter sometimes simply referred to as a resistor) is formed by forming a film made of a resistance composition mainly composed of a conductive component and glass on various insulating substrates, and firing the film.
  • the resistance composition is printed in a predetermined shape mainly on the alumina substrate on which the electrode is formed, a ceramic composite part, or the like in the form of a paste or paint, and fired at a high temperature of about 600 to 900 ° C. Then, after forming a protective film with overcoat glass if necessary, the resistance value is adjusted by laser trimming or the like as necessary.
  • the required resistor characteristics are that the temperature coefficient of resistance (TCR) is small, the current noise is small, the withstand voltage characteristic and the process stability are good (for example, the resistance value changes due to process variations). Small).
  • a resistance composition using a ruthenium-based oxide powder as a conductive component (hereinafter also referred to as a ruthenium-based resistance composition) has been widely used.
  • This ruthenium-based resistor composition can be fired in air, and a resistor having a wide range of resistance values can be easily obtained by changing the ratio of the conductive component and glass.
  • Examples of the conductive component of the ruthenium-based resistor composition include ruthenium dioxide (hereinafter sometimes referred to as ruthenium (IV) oxide), pyrochlore structure bismuth ruthenate, lead ruthenate, and the like, and perovskite structure barium ruthenate and ruthenium.
  • Ruthenium complex oxides such as calcium acid and ruthenium precursors such as ruthenium resinate are used.
  • a ruthenium composite oxide such as bismuth ruthenate described above is preferably used rather than ruthenium dioxide.
  • resistivity of ruthenium composite oxide is generally one digit higher than that of ruthenium dioxide, and it can be blended in a larger amount than ruthenium dioxide, so there is little variation in resistance value, and resistance characteristics such as current noise characteristics and TCR. This is because a stable resistor is easily obtained.
  • a glass containing lead oxide is mainly used as a glass used as a component constituting the thick film resistor.
  • the glass containing lead oxide has a low softening point, good fluidity, good wettability with conductive components, excellent adhesion to the substrate, and a thermal expansion coefficient compatible with ceramics, especially alumina substrates. This is because it has excellent characteristics suitable for the formation of thick film resistors.
  • the lead component is toxic and undesirable from the viewpoint of human influence and pollution.
  • electronic products are required to comply with the WEEE (Waste Electrical and Electronic Equipment Directive and Electronic Equipment) and the RoHS (Restriction of the Use of the Certificate of the Hazardous Resistant) requirement.
  • WEEE Wired Electrical and Electronic Equipment Directive and Electronic Equipment
  • RoHS Restriction of the Use of the Certificate of the Hazardous Resistant
  • the lead component since the lead component has very good wettability with respect to alumina, it may spread too much on the alumina substrate during firing, resulting in an unintended shape of the finally obtained resistor.
  • thick film resistors using lead-free glass still have excellent characteristics over a wide resistance range comparable to conventional thick film resistors using lead-containing glass.
  • the above-described decomposition can be suppressed to some extent by using a ruthenium composite oxide powder having a large particle size (for example, an average particle size of 1 ⁇ m or more).
  • a ruthenium composite oxide powder having a large particle size for example, an average particle size of 1 ⁇ m or more.
  • current noise and load characteristics deteriorate, and good resistance characteristics cannot be obtained.
  • a conductive layer in a resistance composition using a combination of a conventional ruthenium composite oxide and lead-free glass, the above-described network structure (hereinafter referred to as a conductive layer) is stable particularly in a high resistance region where the content of conductive particles is small. It was extremely difficult to create a network. For this reason, a thick film resistor that does not contain lead and has excellent characteristics such as TCR characteristics, current noise characteristics, and variations has not yet been put into practical use in industry.
  • the present invention eliminates harmful lead components from conductive components and glass, and has excellent resistance values, TCR characteristics, current noise characteristics, withstand voltage characteristics, etc. in a wide resistance range, which are equal to or better than those of the prior art.
  • An object of the present invention is to provide a thick film resistor having characteristics.
  • Another object of the present invention is to provide a thick film resistor that has a small variation and variation in resistance value, TCR, and the like due to firing, and thus can obtain a thick film resistor having stable characteristics even in a high resistance region. It is to provide a manufacturing method.
  • the thick film resistor of the present invention that achieves the above object is a thick film resistor made of a fired product of a resistance composition, and is a glass containing substantially no ruthenium-based conductive particles containing ruthenium dioxide and a lead component.
  • a thick film resistor having a resistance value in a range of 100 ⁇ / ⁇ to 10 M ⁇ / ⁇ and a resistance temperature coefficient of ⁇ 100 ppm / ° C. or less.
  • the method for producing a thick film resistor of the present invention is a ruthenium-based conductive particle containing ruthenium dioxide and a glass frit substantially free of a lead component, which is a mixture of glass frit and ruthenium dioxide.
  • a resistance composition containing a glass frit and an organic vehicle such that the temperature coefficient of resistance of the fired product exhibits a positive range is provided on the printed material.
  • the thick film resistor is baked at 600 to 900 ° C.
  • the thick film resistor of the present invention has a resistance value in the range of 100 ⁇ / ⁇ to 10 M ⁇ / ⁇ , and has a temperature coefficient of resistance of ⁇ 100 ppm / ° C. or less even though it does not substantially contain lead.
  • the thick film resistor of the present invention is extremely useful as a resistor having a medium resistance range to a high resistance range of 1 k ⁇ / ⁇ or more, particularly as a resistor having a high resistance range of 100 k ⁇ / ⁇ or more.
  • the ruthenium-based conductive particles in the present invention preferably contain 50% by mass or more of ruthenium dioxide (RuO 2 ), and more preferably consist only of ruthenium dioxide (RuO 2 ).
  • RuO 2 ruthenium dioxide
  • the resistive composition of the present invention can form a stable conductive network more easily after firing at a high temperature, has little variation, and has good resistance characteristics even in a high resistance range. A thick film resistor having good process stability can be obtained.
  • the ruthenium-based conductive particles may be a mixture or composite of ruthenium dioxide and other conductive particles described later.
  • the ruthenium-based conductive particles are substantially composed only of ruthenium dioxide.
  • the ruthenium-based conductive particles in the present invention are substantially free of a lead component and further substantially free of a bismuth component.
  • the terms “consisting essentially of” and “substantially free of” allow “a trace amount” such as an unintended impurity. This refers to the case of 1000 ppm or less, and is particularly desirable to be 100 ppm or less.
  • a ruthenium-based conductive particle having a fine particle diameter For example, a mass-based integrated fraction 50% value (hereinafter referred to as a particle size distribution measurement using a laser-type particle size distribution measuring apparatus)
  • the average particle diameter D 50 is preferably in the range of 0.01 to 0.2 ⁇ m.
  • the average particle diameter D 50 of the ruthenium-based conductive particles is 0.01 ⁇ m or more, easily quenched to glass easily obtained stable characteristics. Further, by the average particle diameter D 50 is 0.2 ⁇ m or less, they tend to easily improve the current noise and load life characteristics.
  • the ruthenium conductive particles preferably have an average particle diameter D 50 of 0.03 to 0.1 ⁇ m.
  • Glass frit In the present invention, as the glass frit, when the fired product of the mixture of glass frit and ruthenium dioxide takes a value in the range of 1 k ⁇ / ⁇ to 1 M ⁇ / ⁇ , the temperature coefficient of resistance (TCR) of the fired product shows a positive range. Such glass frit is used. When the glass frit having such characteristics is used, the inventors have adjusted the blending ratio with the ruthenium-based conductive particles or added an inorganic additive as will be described later, etc. It has been found that the TCR can be reduced even in the resistance region. For example, the thick film resistor of the present invention can control the TCR to be ⁇ 100 ppm / ° C. or less in a wide resistance range of 100 ⁇ / ⁇ to 10 M ⁇ / ⁇ .
  • the glass frit has a TCR of 0 ppm / ° C. or more and 500 ppm / ° C. or less when the fired product of the mixture of glass frit and ruthenium dioxide exhibits a resistance value of 1 k ⁇ / ⁇ to 1 M ⁇ / ⁇ .
  • the glass frit is preferably 400 ppm / ° C. or less, more preferably 300 ppm / ° C. or less.
  • a glass composition having a high resistance region and a positive TCR those containing 20 to 45 mol% BaO, 20 to 45 mol% B 2 O 3 , and 25 to 55 mol% SiO 2 in terms of oxides. preferable.
  • the TCR in the high resistance region can be set in a plus range, and when it is 45 mol% or less, the film shape after firing can be easily maintained.
  • the SiO 2 content is 25 mol% or more, the film shape after baking can be easily kept good, and when it is 55 mol% or less, a dense fired film can be easily obtained.
  • the glass frit More preferably, the glass frit, BaO 23 ⁇ 42 mol% in terms of oxide, B 2 O 3 23 ⁇ 42 mol%, and SiO 2 35 ⁇ 52 mol%.
  • the glass transition point Tg of the glass frit is preferably in the range of 450 to 700 ° C.
  • Tg is preferably in the range of 580 to 680 ° C.
  • Tg is preferably (baking temperature ⁇ 200) ° C. or lower, and in this case, the following formula (1) is satisfied.
  • Tg ⁇ (calcination temperature ⁇ 200) [° C.]
  • D 50 of the glass frit is 5 ⁇ m or less. When D 50 is 5 ⁇ m or less, it is easy to adjust the resistance value in the high resistance region, but when D 50 is too small, voids tend to be generated in the resistor.
  • a particularly preferred range of D 50 is 0.5 to 3 ⁇ m.
  • the glass frit further includes a metal oxide capable of adjusting TCR and other resistance characteristics, such as ZnO, Al 2 O 3 , Li 2 O, Na 2 O, K 2 O, Nb 2 O 5 , Ta 2 O 5. , TiO 2 , CuO, MnO 2 , La 2 O 3, or one or more components may be contained. These components can provide a high effect even in a small amount, but for example, they can be contained in a total amount of about 0.1 to 10 mol% in a glass frit, and can be appropriately adjusted according to the intended characteristics. .
  • a metal oxide capable of adjusting TCR and other resistance characteristics
  • other resistance characteristics such as ZnO, Al 2 O 3 , Li 2 O, Na 2 O, K 2 O, Nb 2 O 5 , Ta 2 O 5.
  • TiO 2 , CuO, MnO 2 , La 2 O 3, or one or more components may be contained. These components can provide a high effect even in a small amount, but for example, they can be contained in a total
  • the resistance composition forming the thick film resistor of the present invention preferably contains a functional filler (hereinafter sometimes simply referred to as filler) in addition to the above-described inorganic components.
  • a functional filler hereinafter sometimes simply referred to as filler
  • the functional filler in the present invention apart from the glass frit described above, glass particles having low fluidity during firing are prepared, and the ruthenium-based conductive particles described above are formed on the surface of the glass particles or in the vicinity thereof.
  • composite particles prepared by adhering and fixing other conductive particles hereinafter referred to as conductive particles) prepared separately are preferable.
  • the term “glass frit” and the term “glass particle” are used separately.
  • the glass component derived from the glass frit is referred to as “first glass component”
  • the glass component derived from the glass particles is referred to as “second glass component”.
  • the glass particles can be used regardless of the composition as long as the fluidity during firing is low.
  • the glass transition point Tg ′ is 500 ° C. or higher, and in particular, the glass has a glass transition point Tg ′ higher than the glass transition point Tg of the glass frit described above (that is, Tg ⁇ Tg ′ is satisfied).
  • the glass composition having a high glass transition point Tg ′ include borosilicate zinc-based glass, lead borosilicate glass, borosilicate alkaline earth metal glass such as borosilicate barium and calcium borosilicate. The invention is not limited to these.
  • Tg ′ is preferably (baking temperature ⁇ 150) ° C. or more, and in this case, the following formula (2) is satisfied.
  • conductive particles to be combined with glass particles in the functional filler silver (Ag), gold (Au), platinum (Pt), palladium (Pd), copper (Cu), nickel (Ni), aluminum (Al)
  • silver Au
  • gold Au
  • platinum Pt
  • palladium Pd
  • copper Cu
  • nickel Ni
  • aluminum Al
  • alloy particles containing these metals ruthenium-based conductive particles can also be used.
  • Ruthenium-based conductive particles include ruthenium dioxide, neodymium ruthenate (Nd 2 Ru 2 O 7 ), samarium ruthenate (Sm 2 Ru 2 O 7 ), neodymium calcium ruthenate (NdCaRu 2 O 7 ), ruthenic acid.
  • Ruthenium composite oxides having a perovskite structure having a perovskite structure; other ruthenium composite oxides such as cobalt ruthenate (Co 2 RuO 4 ) and strontium ruthenate (Sr 2 RuO 4 ); and mixtures thereof .
  • the conductive particles one or two or more of those exemplified above may be used. Further, they may be used in combination with a precursor compound such as silver oxide or palladium oxide.
  • ruthenium-based conductive particles mainly composed of ruthenium dioxide as the conductive particles combined with the glass particles in the functional filler.
  • the conductive particles preferably have a fine particle diameter, and the average particle diameter D 50 is preferably in the range of 0.01 to 0.2 ⁇ m.
  • the method for producing the functional filler is not limited.
  • the conductive particles described above are deposited on the surface of glass particles prepared in advance by a known method such as substitution deposition, electroless plating, or electrolysis. You may make it.
  • the glass particles prepared in advance and the conductive particles are stirred and mixed by a known stirring means such as a media mill, heat treated (for example, 850 to 900 ° C.), and then pulverized, whereby the surface of the glass particles and / or It is desirable to manufacture by a so-called mechanochemical method in which conductive particles are fixed inside.
  • the resistance composition according to the present invention can easily adjust the TCR and other resistance characteristics, a good resistor can be obtained even by using an inorganic additive described later, but contains the above-described functional filler. Accordingly, it is possible to obtain a resistor which is stable with little variation in resistance value in the high resistance region and improved in various characteristics such as withstand voltage characteristics, electrostatic characteristics and resistance value changes.
  • the average particle diameter D 50 of the filler is desirably in the range of 0.5 to 5 ⁇ m.
  • the average particle diameter D 50 of the filler is 0.5 ⁇ m or more, easy dense fired film can be obtained, withstand voltage characteristic is hardly degraded by at 5 ⁇ m or less.
  • the average particle diameter D 50 is preferably 1 to 3 ⁇ m.
  • the average particle diameter D 50 of the filler is, for example, when producing in the preceding mechanochemical technique can be controlled by adjusting milling conditions.
  • the content of the conductive particles contained in the filler is preferably 20 to 35% by mass with respect to the filler. When it is 20% by mass or more, it is easy to adjust / control the resistance value of the thick film resistor obtained after firing, and when it is 35% by mass or less, STOL characteristics (voltage resistance characteristics) are improved. .
  • glass particles containing substantially no lead component are included, and the glass transition point Tg of the glass frit is (calcination temperature ⁇ 200) ° C. or less.
  • the glass in the resistor forms a sea-island structure.
  • This sea-island structure is a structure in which glass (first glass component) derived from glass frit forms the sea (matrix), and glass derived from glass particles (second glass component) forms islands. .
  • Such a structure is formed not only when a functional filler is added as a component of the resistance composition, but also when glass particles are used instead of the functional filler.
  • Such a structure is a structure that is not found in a conventional resistor.
  • the resistance composition according to the present invention is variously used for the purpose of improving and adjusting resistance characteristics such as TCR, current noise, ESD characteristics, and STOL, as long as the effects of the present invention are not impaired.
  • Inorganic additives such as Nb 2 O 5 , Ta 2 O 5 , TiO 2 , CuO, MnO 2 , ZnO, ZrO 2 , La 2 O 3 , Al 2 O 3 , V 2 O 5 , glass (hereinafter referred to as additive glass).
  • additive glass is another glass component different from said 1st glass component and 2nd glass component.) Etc. may be added individually or in combination.
  • the amount of addition is appropriately adjusted according to the purpose of use.
  • the total amount of inorganic solids in the resistance composition is 100.
  • the total amount is about 0.1 to 10 parts by mass with respect to parts by mass.
  • it may add exceeding 10 mass parts.
  • the ruthenium-based conductive particles and glass frit are suitable for a method of applying a resistance composition such as screen printing by being mixed with an organic vehicle together with a functional filler and additives blended as necessary. It becomes a paste-like, paint-like, or ink-like resistance composition having rheology.
  • the organic vehicle is not particularly limited, and terpineol (hereinafter referred to as TPO), carbitol, butyl carbitol, cellosolve, butyl cellosolve and their esters, toluene, xylene, etc., which are generally used in resistance compositions.
  • TPO terpineol
  • carbitol butyl carbitol
  • cellosolve butyl cellosolve and their esters
  • toluene xylene, etc.
  • a solution prepared by dissolving a resin such as ethyl cellulose, nitrocellulose, acrylic acid ester, methacrylic acid ester, or rosin.
  • a plasticizer, a viscosity modifier, a surfactant, an oxidizing agent, a metal organic compound, or the like may be added.
  • the blending amount of the organic vehicle may be within a range generally blended in the resistance composition, and is appropriately adjusted according to an application method such as printing for forming the resistor.
  • the inorganic solid content is preferably about 50 to 80% by mass and the organic vehicle is about 50 to 20% by mass.
  • the resistance composition according to the present invention is produced by mixing and kneading with an organic vehicle and dispersing uniformly with a ruthenium-based conductive particle, glass frit, and a functional filler or additive blended as necessary according to a conventional method.
  • the composition is not limited to a paste form, and may be a paint form or an ink form.
  • the resistance composition in the present invention is printed / coated in a predetermined shape by a printing method or the like on an insulating substrate such as an alumina substrate or a glass-ceramic substrate or a laminated electronic component according to a conventional method, and after drying, for example, 600 Baking at a high temperature of about 900 ° C.
  • the thick film resistor thus formed is usually formed with a protective film by baking overcoat glass, and the resistance value is adjusted by laser trimming or the like as necessary.
  • a combination of two or more resistance compositions forming resistors having different resistance values is often sold and distributed as a set.
  • the resistance composition of the present invention is suitable for this, and by providing two or more types of the resistance composition of the present invention as a set, the user appropriately mixes a plurality of resistance compositions to obtain a desired resistance value. It is possible to prepare a resistance composition capable of producing a resistor having a resistance value, and thereby a wide range of resistance regions can be covered by a plurality of resistance compositions having similar compositions.
  • the measurement of the physical property value about each sample produced in the Example was performed with the following measuring instruments and measuring methods.
  • [Rs (sheet resistance)] It measured using the digital multimeter "3458A” made from Agilent, and converted into the fired film thickness of 8 micrometers. 20 samples were measured and the average value was taken.
  • [TCR] Using the digital multimeter, +25 to + 125 ° C. (H-TCR) and ⁇ 55 to + 25 ° C. (C-TCR) were measured. 20 samples were measured and the average value was taken.
  • Tg, Tg ′, TMA] A thermomechanical measuring device “TMA4000S” manufactured by Bruker AXS was used. 20 samples were measured and the average value was taken.
  • a resistance value Rs is measured for each of the fired patterns, and a fired pattern having a resistance value of about 1 k ⁇ / ⁇ or higher is further expressed as a TCR (hereinafter, H-TCR) of + 25 ° C. to + 125 ° C.
  • H-TCR a TCR of + 25 ° C. to + 125 ° C.
  • C-TCR a TCR of ⁇ 55 ° C. to + 25 ° C.
  • a glass frit (samples 43 to 50 in Table 2) containing SiO 2 , B 2 O 3 , and BaO as main components in the same manner as the sample 13 is newly added in the same manner as described above. Then, a paste having a mass ratio of ruthenium dioxide to each glass frit of 30:70, 20:80, 10:90 was prepared. Next, a firing pattern was obtained using each paste, and a glass transition point Tg, a thermal expansion coefficient ⁇ , and a resistance value Rs, H-TCR, and C-TCR of the firing pattern were measured.
  • the glass frit of the samples 13, 43, 44, 45, 46, 47, and 49 used in Experimental Examples 13, 43, 44, 45, 46, 47, and 49 is the glass frit.
  • the fired product of the mixture of ruthenium dioxide has a value in the range of 1 k ⁇ / ⁇ to 1 M ⁇ / ⁇ , it can be said to be a glass frit in which the temperature coefficient of resistance of the fired product shows a positive range.
  • a resistor is prepared from a resistor composition containing glass frit of Sample 13 will be described.
  • ruthenium dioxide (Ru-109) is prepared as the conductive particles contained in the filler, so that the content of the conductive particles in the filler is 20% by mass, 30% by mass, and 40% by mass, respectively.
  • Three kinds of fillers were prepared by pulverizing until.
  • the content of the conductive particles in the filler is preferably in the range of 20 to 35% by mass in the present invention.
  • Example 1 This example is an example in the case where the resistance composition contains a functional filler as a component.
  • a functional filler as a component.
  • Ru-109 Ruthenium dioxide
  • a composition in which 30 parts by mass of an organic vehicle was added was kneaded with three rolls to prepare pastes of Examples 1-1 to 2-6.
  • the organic vehicle used was 15 parts by mass of ethyl cellulose and the remaining TPO as a solvent.
  • the sheet resistance value Rs, H-TCR, C-TCR, resistance value variation CV, noise, and STOL were measured for each resistor.
  • CV is a value obtained from 20 resistors.
  • Table 4 The measured results are also shown in Table 4.
  • Table 4 measurement is omitted for those that are difficult to measure due to overrange with respect to noise, and is indicated by “ ⁇ ” in the table.
  • the resistance value Rs set as the target value for each paste is also shown in Table 4 for reference.
  • FIG. 1 shows the result of analyzing the obtained resistor by a scanning microscope-energy dispersive X-ray analysis (SEM-EDX).
  • FIG. 1A is a SEM image of a resistor
  • FIG. 1B is a diagram showing a result of mapping for a Ba element
  • FIG. 1C is a diagram showing a result of mapping for a Ru element.
  • the resistor obtained in Example 1 has a discontinuous body (hereinafter referred to as an island) not including Ba in a continuous body region (hereinafter referred to as a matrix) including Ba.
  • a discontinuous body hereinafter referred to as an island
  • a continuous body region hereinafter referred to as a matrix
  • the resistor of the present invention is included in the glass frit matrix. It is presumed that the glass particles having low fluidity at the time of firing remain in the shape of islands, and such a sea-island structure is formed.
  • RuO 2 particles are not uniformly dispersed in the resistor of the present invention. It is inferred that a part of the resistor has a network structure with a soap bubble-like bias.
  • Example 2 This example is an example in the case where the resistance composition does not contain a functional filler.
  • Example 2-1 to Example 2-6 As a glass frit having a composition close to that of the sample 13, a sample 51 (SiO 2 38.1 mol%, B 2 O 3 26.1 mol%, BaO 27.2 mol%, Al 2 O 3 0. 8 mol%, SrO 0.5 mol%, ZnO 3.6 mol%, Na 2 O 3.2 mol% was prepared K 2 O 0.5 mol%). Sample 51 had a Tg of 629.4 ° C.
  • an additive glass was added to the paste for the purpose of adjusting the TCR.
  • the doped glass SiO 2 43.0 mol% in terms of oxide, B 2 O 3 18.2 mol%, Al 2 O 3 13.0 mol%, CaO 2.8 mol%, MgO 3.2 mol% SnO 2 1.3 mol%, Co 2 O 3 1.9 mol%, K 2 O 6.6 mol%, Li 2 O 10.0 mol%).
  • the glass transition point of the added glass was 494.0 ° C.
  • the TCR could be adjusted to ⁇ 100 ppm / ° C. or less in a wide resistance range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Non-Adjustable Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Conductive Materials (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

 本発明は、導電性成分及びガラスから有害な鉛成分を排除し、しかも広い抵抗域で抵抗値、TCR特性、電流雑音特性、耐電圧特性等の特性において、従来と同等若しくはそれ以上の優れた特性を備えた厚膜抵抗体を提供することを目的とする。 本発明は、抵抗組成物の焼成物からなる厚膜抵抗体であって、二酸化ルテニウムを含むルテニウム系導電性粒子と、鉛成分を実質的に含まないガラス成分とを含み、100Ω/□~10MΩ/□の範囲内の抵抗値を有し、抵抗温度係数が±100ppm/℃以下である厚膜抵抗体である。

Description

厚膜抵抗体及びその製造方法
 本発明は、実質的に鉛成分を含まない厚膜抵抗体及びその製造方法に関し、特にチップ抵抗器をはじめ、半固定抵抗器、可変抵抗器、フォーカス抵抗、サージ素子等の各種抵抗部品、また厚膜回路、多層回路基板、各種積層複合部品等において形成される厚膜抵抗体を及びその製造方法に関する。
 一般に、厚膜抵抗体(以下、単に抵抗体と記すこともある)は、種々の絶縁基板上に導電性成分及びガラスを主成分とする抵抗組成物からなる膜を形成し、これを焼成して作製される。具体的には、抵抗組成物は、主としてペーストや塗料の形で、電極を形成したアルミナ基板上やセラミック複合部品等に所定の形状に印刷され、600~900℃程度の高温で焼成される。その後、必要によりオーバーコートガラスで保護被膜を形成した後、必要に応じてレーザートリミング等により抵抗値の調整を行う。
 要求される抵抗体の特性としては、抵抗温度係数(TCR)が小さいこと、電流雑音が小さいこと、また耐電圧特性、更にプロセス安定性が良好であること(例えばプロセスの変動による抵抗値変化が小さいこと)等がある。
 従来、一般に、導電性成分としてルテニウム系の酸化物粉末を用いた抵抗組成物(以下ルテニウム系抵抗組成物ともいう)が広く使用されている。このルテニウム系抵抗組成物は、空気中での焼成が可能であり、導電性成分とガラスの比率を変えることにより、広い範囲の抵抗値を有する抵抗体が容易に得られる。
 ルテニウム系抵抗組成物の導電性成分としては、二酸化ルテニウム(以下、酸化ルテニウム(IV)と記すこともある)や、パイロクロア構造のルテニウム酸ビスマス、ルテニウム酸鉛等、ペロブスカイト構造のルテニウム酸バリウム、ルテニウム酸カルシウム等のルテニウム複合酸化物類、またルテニウムレジネート等のルテニウム前駆体が使用されている。特に、ガラスの含有比率の高い高抵抗域の抵抗組成物においては、二酸化ルテニウムよりも、上述したルテニウム酸ビスマス等のルテニウム複合酸化物が好ましく使用されている。これは、ルテニウム複合酸化物の抵抗率が一般的に二酸化ルテニウムよりも1桁以上高く、二酸化ルテニウムに比べて多量に配合でき、そのため抵抗値のばらつきが少なく、電流雑音特性、TCR等の抵抗特性が良好で、安定な抵抗体が得られやすいことによる。
 一方、厚膜抵抗体を構成する成分として用いられるガラスとしては、主として酸化鉛を含むガラスが使用されている。その主な理由は、酸化鉛含有ガラスの軟化点が低く、流動性、導電性成分との濡れ性が良好で基板との接着性も優れ、また熱膨張係数がセラミック、特にアルミナ基板と適合する等、厚膜抵抗体の形成に適した、優れた特性を有するためである。
 しかし鉛成分は毒性があり、人体への影響及び公害の点から望ましくない。近年環境問題に対処するためエレクトロニクス製品がWEEE(廃電気電子機器指令 Waste Electrical and Electronic Equipment)及びRoHS(特定有害物質使用制限 Restriction of the Use of the Certain Hazardous Substances)対応を要求される中で、抵抗組成物においても鉛フリーの素材の開発が強く求められている。
 また、鉛成分はアルミナに対する濡れ性が非常に良いために、焼成時にアルミナ基板上に濡れ広がり過ぎ、最終的に得られる抵抗体の形状が意図しないものとなってしまうこともある。
 そこで、従来からルテニウム酸ビスマスやルテニウム酸アルカリ土類金属塩等を導電性成分として用い、鉛を含まないガラスを使用した抵抗組成物がいくつか提案されている(特許文献1、2参照)。
 しかし、鉛を含まないガラスを使用した厚膜抵抗体において、従来の鉛含有ガラスを用いた厚膜抵抗体に匹敵するような、広い抵抗値範囲に亘って優れた特性を示すものは未だに得られておらず、特に、100kΩ/□以上の高抵抗域の抵抗体を形成するのが困難であった。それは以下の理由によると考えられる。
 一般に高抵抗域で用いられるルテニウム複合酸化物の多くは、抵抗組成物を高温で焼成する際、ガラスと反応してルテニウム複合酸化物より抵抗率の低い二酸化ルテニウムに分解する傾向がある。とりわけ鉛成分を含まないガラスと組み合わせた場合、焼成中(例えば800℃~900℃付近)に二酸化ルテニウムへの分解を抑制することが困難であった。このため、抵抗値が低下して所望の高抵抗値が得られず、また膜厚依存性や焼成温度依存性が大きくなるといった問題もあった。
 特許文献1に記載されているように粒径の大きい(例えば平均粒径1μm以上)ルテニウム複合酸化物粉末を用いることによって、或る程度、上述した分解を抑制できる。しかし、このような粗大な導電性粉末を使用した場合、電流雑音や負荷特性が悪化し、良好な抵抗特性が得られなくなる。
 また、ルテニウム複合酸化物の一つであるルテニウム酸ビスマスの分解の抑制には、特許文献2に記載されているようにビスマス系ガラスと組み合わせることが有効であるが、この組み合せの抵抗組成物から得られる抵抗体は、高抵抗域におけるTCRが大きくマイナスになる。
 本願発明者等が電子顕微鏡により抵抗体の焼成膜を観察したところ、ガラスのマトリックスに対して微細な導電性粒子が分散し、これらの導電性粒子同士が接触してネットワーク(網目状構造)を形成している様子が見られる。それ故、こうしたネットワークが導電パスとなって導電性を示していると考えられる。
 ところで従来のルテニウム複合酸化物と鉛を含まないガラスを組み合わせて用いた抵抗組成物においては、特に、導電性粒子の含有量が少ない高抵抗域において、安定的に上述したネットワーク構造(以下、導電ネットワークと記すこともある)を作ることが極めて難しかった。このため、鉛を含まず、且つ、TCR特性、電流雑音特性、ばらつき等の諸特性に優れた厚膜抵抗体は未だに産業上の実用化には到っていない。
特開2005-129806公報 特開平8-253342公報
 本発明は、導電性成分及びガラスから有害な鉛成分を排除し、しかも広い抵抗域で抵抗値、TCR特性、電流雑音特性、耐電圧特性等の特性において、従来と同等若しくはそれ以上の優れた特性を備えた厚膜抵抗体を提供することを目的とする。
 また、本発明の他の目的は、焼成による抵抗値やTCR等の変動やばらつきが小さく、それ故、高抵抗域においても特性の安定した厚膜抵抗体を得ることができる厚膜抵抗体の製造方法を提供することにある。
 上記目的を達成する本発明の厚膜抵抗体は、抵抗組成物の焼成物からなる厚膜抵抗体であって、二酸化ルテニウムを含むルテニウム系導電性粒子と、鉛成分を実質的に含まないガラス成分とを含み、100Ω/□~10MΩ/□の範囲内の抵抗値を有し、抵抗温度係数が±100ppm/℃以下である厚膜抵抗体である。
 また上記目的を達成する本発明の厚膜抵抗体の製造方法は、二酸化ルテニウムを含むルテニウム系導電性粒子と、鉛成分を実質的に含まないガラスフリットであって、ガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□~1MΩ/□の範囲の値をとるとき、前記焼成物の抵抗温度係数がプラスの範囲を示すようなガラスフリットと、有機ビヒクルとを含む抵抗組成物を被印刷物上に印刷した後、600~900℃で焼成する厚膜抵抗体の製造方法である。
 本発明の厚膜抵抗体は、100Ω/□~10MΩ/□の範囲の抵抗値を有し、鉛を実質的に含有しないにも拘わらず、その抵抗温度係数が±100ppm/℃以下である。
 特に本発明の厚膜抵抗体は、1kΩ/□以上の中抵抗域~高抵抗域の抵抗体、とりわけ100kΩ/□以上の高抵抗域の抵抗体として極めて有用である。
 また本発明の製造方法によれば、焼成中に導電性成分の分解が生じないため、ガラスマトリックス中に均質で安定な導電ネットワークを作ることが可能となり、これにより、高抵抗域でも特性劣化がなく、焼成条件等のプロセス依存性が小さく、ばらつきの少ない、電流雑音特性にも優れた厚膜抵抗体を得ることができる。
本発明の抵抗組成物を用いて作製した抵抗体を走査型顕微鏡-エネルギー分散型X線分析(SEM-EDX)で分析したSEM画像を示す図である。 SEM画像をBa元素についてマッピングした結果を示す図である。 SEM画像をRu元素についてマッピングした結果を示す図である
〔ルテニウム系導電性粒子〕
 本発明におけるルテニウム系導電性粒子としては、二酸化ルテニウム(RuO)を50質量%以上含むことが好ましく、二酸化ルテニウム(RuO)のみからなるものが更に好ましい。これにより本発明の抵抗組成物は、高温で焼成した後も、安定な導電ネットワークがより容易に形成され、ばらつきが小さく、高抵抗域においても良好な抵抗特性が得られ、その他の電気特性及びプロセス安定性の良好な厚膜抵抗体を得ることができる。
 ルテニウム系導電性粒子は、二酸化ルテニウムと、後述する他の導電性粒子とが混合或いは複合化されたものであっても良い。
 但し、抵抗体中に異なる種類の導電成分が混在すると電流雑音特性が劣化する場合がある。従って、本発明においてルテニウム系導電性粒子は実質的に二酸化ルテニウムのみから成ることが好ましい。
 特に本発明におけるルテニウム系導電性粒子は、鉛成分を実質的に含まず、更には、ビスマス成分も実質的に含まれないことが好ましい。
 なお、本発明において「実質的に~のみから成る」及び「~を実質的に含まない」という文言は、意図しない不純物のような「微量の含有」を許容し、例えば当該不純物の含有量が1000ppm以下の場合を言い、100ppm以下であることが特に望ましい。
 本発明において、ルテニウム系導電性粒子としては、微細な粒径のものを用いることが望ましく、例えばレーザー式粒度分布測定装置を用いて測定した粒度分布の質量基準の積算分率50%値(以下、平均粒径D50と記す)が0.01~0.2μmの範囲にあることが好ましい。このような微細なルテニウム系導電性粒子を使用することにより、高抵抗域においても抵抗体焼成膜中でルテニウム系導電性粒子が良好に分散し、均一で安定なルテニウム系導電性粒子とガラスからなる微細構造(導電ネットワーク)が当該膜中に形成され、優れた特性の抵抗体が得られる。
 ルテニウム系導電性粒子の平均粒径D50が0.01μm以上であることにより、ガラスとの反応を抑え易くなり、安定した特性を得やすい。また平均粒径D50が0.2μm以下であることにより、電流雑音や負荷特性を改善し易くなる傾向がある。ルテニウム系導電性粒子としては、特に平均粒径D50が0.03~0.1μmであることが好ましい。
〔ガラスフリット〕
 本発明においてガラスフリットとしては、ガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□~1MΩ/□の範囲の値をとるとき、前記焼成物の抵抗温度係数(TCR)がプラスの範囲を示すようなガラスフリットを用いる。
 本発明者等は、このような特性のガラスフリットを用いた場合に、ルテニウム系導電性粒子との配合比率を調整したり、後述する無機添加剤を適宜加える等によって、100kΩ/□以上の高抵抗域においてもTCRを小さくすることができることを見出した。例えば本発明の厚膜抵抗体は、100Ω/□~10MΩ/□の広い抵抗域において、TCRを±100ppm/℃以下にコントロールすることができる。
 好ましくは、ガラスフリットはガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□~1MΩ/□の抵抗値を示すとき、焼成物のTCRが0ppm/℃より大きく、且つ、500ppm/℃以下であり、好ましくは400ppm/℃以下であり、更に好ましくは300ppm/℃以下であるようなガラスフリットである。
 このような、高抵抗域でTCRがプラスであるガラス組成としては、酸化物換算でBaO 20~45モル%、B 20~45モル%、SiO 25~55モル%を含むものが好ましい。
 BaOが20モル%以上であることにより、特に高抵抗域でのTCRをプラスの範囲にすることができ、45モル%以下であることにより焼成後の膜形状を良好に保ち易くなる。
 Bが20モル%以上であることにより、緻密な焼成膜を得やすくなり、45モル%以下であることにより、特に高抵抗域でのTCRをプラスの範囲にすることができる。
 SiOが25モル%以上であることにより、焼成後の膜形状を良好に保ち易く、55モル%以下であることにより、緻密な焼成膜を得やすくなる。
 より好ましくは、当該ガラスフリットは、酸化物換算でBaO 23~42モル%、B23~42モル%、SiO 35~52モル%である。
 また、ガラスフリットのガラス転移点Tgは、450~700℃の範囲であることが好ましい。転移点Tgが450℃以上であることにより容易に高抵抗を得ることができ、700℃以下であることにより緻密な焼成膜を得ることができる。Tgは580~680℃の範囲内にあることが好ましい。
 抵抗組成物を焼成する焼成温度との関係では、Tgは(焼成温度-200)℃以下であることが好ましく、その場合、下式(1)が成り立つ。
     Tg≦(焼成温度-200)〔℃〕・・・式(1)
 また、ガラスフリットの平均粒径D50は5μm以下であることが好ましい。D50が5μm以下であることにより高抵抗域での抵抗値の調整が容易になるが、D50が小さすぎると抵抗体にボイドが発生しやすくなる傾向がある。特に好ましいD50の範囲は0.5~3μmである。
 ガラスフリットには、更に、TCRやその他の抵抗特性を調整し得る金属酸化物、例えばZnO、Al、LiO、NaO、KO、Nb、Ta、TiO、CuO、MnO、Laといった成分を1種又は2種以上含有されていても良い。これらの成分は少量でも高い効果を得ることができるが、例えば、ガラスフリット中に合計量で0.1~10mol%程度含有させることができ、目的とする特性に応じて適宜調整することができる。
〔機能性フィラー〕
 本発明の厚膜抵抗体を形成する抵抗組成物は、上述した無機成分の他、機能性フィラー(以下、単にフィラーと記すこともある)を含むことが好ましい。
 ここで本発明において機能性フィラーとしては、前出のガラスフリットとは別に焼成時における流動性が低いガラス粒子を準備し、そのガラス粒子の表面やその内部近傍に、前出ルテニウム系導電性粒子とは別に準備する他の導電性粒子(以下、導電粒子という)を付着・固着させて複合化させた複合粒子が好ましい。なお、本発明においては「ガラスフリット」という用語と「ガラス粒子」という用語とを区別して用いる。
 また、本発明においては厚膜抵抗体を構成するガラス成分については、ガラスフリットに由来するガラス成分を「第1のガラス成分」といい、ガラス粒子に由来するガラス成分を「第2のガラス成分」ということもある。
 前記ガラス粒子としては、焼成時における流動性が低ければ組成を問わず用いることができる。一例としてはそのガラス転移点Tg’が500℃以上であり、特には前出ガラスフリットのガラス転移点Tgよりもガラス転移点Tg’が高い(すなわちTg<Tg’が成り立つ)ガラスであることが好ましい。ガラス転移点Tg’の高いガラス組成の例としては、硼珪酸亜鉛系ガラス、硼珪酸鉛系ガラス、硼珪酸バリウム系や硼珪酸カルシウム系といった硼珪酸アルカリ土類金属ガラスなどが挙げられるが、本発明はこれらに限定されない。
 抵抗組成物の焼成温度との関係では、Tg’は(焼成温度-150)℃以上であることが好ましく、その場合、下式(2)が成り立つ。
     Tg’≧(焼成温度-150)〔℃〕・・・式(2)
 機能性フィラーにおいてガラス粒子と複合化される導電粒子としては、銀(Ag)、金(Au)、白金(Pt)、パラジウム(Pd)、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)などの金属粒子や、これらの金属を含む合金粒子の他、ルテニウム系の導電粒子を用いることもできる。
 ルテニウム系の導電粒子としては、二酸化ルテニウムの他、ルテニウム酸ネオジム(NdRu)、ルテニウム酸サマリウム(SmRu)、ルテニウム酸ネオジムカルシウム(NdCaRu)、ルテニウム酸サマリウムストロンチウム(SmSrRu)、これらの関連酸化物等のパイロクロア構造を有するルテニウム複合酸化物;ルテニウム酸カルシウム(CaRuO)、ルテニウム酸ストロンチウム(SrRuO)、ルテニウム酸バリウム(BaRuO)等のペロブスカイト構造を有するルテニウム複合酸化物;ルテニウム酸コバルト(CoRuO)、ルテニウム酸ストロンチウム(SrRuO)等、その他のルテニウム複合酸化物;並びに、これらの混合物が含まれる。
 当該導電粒子としては、上記例示したものの一種または二種以上を用いることができ、更には、酸化銀、酸化パラジウム等の前駆体化合物と複合化して用いても良い。
 但し、前述したように、抵抗体中に異なる種類の導電成分が混在すると電流雑音特性が劣化する場合がある。それ故、機能性フィラーにおいてガラス粒子と複合化される導電粒子としては、二酸化ルテニウムを主成分とするルテニウム系導電性粒子を用いることが特に好ましい。
 また当該導電粒子としては、微細な粒径のものを用いることが望ましく、平均粒径D50が0.01~0.2μmの範囲にあることが好ましい。
 本発明において機能性フィラーの製法に限定はなく、例えば予め準備したガラス粒子の表面に、置換析出法、無電解メッキ法、電解法等の周知の手法により前出の導電粒子を析出させて複合化させても良い。本発明においては、予め準備したガラス粒子と導電粒子とをメディアミル等の公知の撹拌手段によって攪拌混合し、熱処理(例えば850~900℃)した後に粉砕することにより、ガラス粒子の表面及び/又は内部に導電粒子を固着させる、いわゆるメカノケミカル的手法により製造することが望ましい。
 このような手法によれば、相対的に粒径の大きいガラス粒子の表面及びその近傍の内部に対し、粒径の小さい導電粒子が付着・固着した分散構造の複合粒子を容易に製造することができる。
 本発明に係る抵抗組成物はTCRやその他の抵抗特性の調整が容易であるため、後述する無機添加剤を用いても良好な抵抗体を得ることができるが、上述の機能性フィラーを含有することにより、高抵抗域における抵抗値のばらつきが少なく安定し、耐電圧特性、静電気特性、抵抗値変化等の諸特性が改善された抵抗体を得ることができる。
 フィラーの平均粒径D50は0.5~5μmの範囲であることが望ましい。フィラーの平均粒径D50が0.5μm以上であることにより、緻密な焼成膜が得られ易く、5μm以下であることにより耐電圧特性が劣化しにくくなる。特には平均粒径D50が1~3μmが好ましい。
 なお、フィラーの平均粒径D50は、例えば前出のメカノケミカル的手法で製造する場合は粉砕条件を調整することによって制御することができる。
 フィラー中に含まれる導電粒子の含有量はフィラーに対して20~35質量%であることが好ましい。20質量%以上であることにより、焼成後に得られる厚膜抵抗体の抵抗値を調整/制御することが容易であり、35質量%以下であることによりSTOL特性(耐電圧特性)が良好となる。
 後述する実施例1で図1に基づいて示すが、鉛成分を実質的に含まないガラス粒子を含み、ガラスフリットのガラス転移点Tgが(焼成温度-200)℃以下であり、前記ガラス粒子のガラス転移点Tg’が(焼成温度-150)℃以上である場合には、抵抗体におけるガラスは海島構造を形成するようになる。この海島構造は、ガラスフリットに由来するガラス(第1のガラス成分)が海(マトリックス)を形成し、ガラス粒子に由来するガラス(第2のガラス成分)が島を形成している構造である。このような構造は抵抗組成物の成分として機能性フィラーを添加した場合に限らず、機能性フィラーに代えてガラス粒子を使用した場合にも形成される。このような構造は従来の抵抗体には見られない構造である。
〔その他の添加剤〕
 本発明に係る抵抗組成物には、本発明の効果を損なわない範囲であれば、TCR、電流雑音、ESD特性、STOL等の抵抗特性の改善や調整の目的で一般的に使用される種々の無機添加剤、例えばNb、Ta、TiO、CuO、MnO、ZnO、ZrO、La、Al、V、ガラス(以下添加ガラスという。なお、「添加ガラス」は、前記の第1のガラス成分、第2のガラス成分とは異なる別のガラス成分である。)等を単独で又は組み合わせて添加してもよい。このような添加剤を配合することにより、広い抵抗値範囲に亘ってより優れた特性の抵抗体を製造することができる。添加量は、その使用目的に応じて適宜調整されるが、例えばNb等の金属酸化物系の添加剤の場合は、一般的には、抵抗組成物中の無機固形分の合計100質量部に対して合計で0.1~10質量部程度である。また添加ガラスを添加する場合は、10質量部を超えて添加する場合もある。
〔有機ビヒクル〕
 本発明においてルテニウム系導電性粒子、ガラスフリットは、必要に応じて配合される機能性フィラーや添加剤と共に有機ビヒクルと混合されることにより、スクリーン印刷等の抵抗組成物を適用する方法に適したレオロジーを備えるペースト状、塗料状、又はインク状の抵抗組成物となる。
 有機ビヒクルとしては、特に制限はなく、抵抗組成物において一般的に用いられているテルピネオール(以下、TPOと記す)、カルビトール、ブチルカルビトール、セロソルブ、ブチルセロソルブやこれらのエステル類、トルエン、キシレン等の溶剤や、これらにエチルセルロースやニトロセルロース、アクリル酸エステル、メタアクリル酸エステル、ロジン等の樹脂を溶解した溶液が用いられる。ここで必要により可塑剤、粘度調整剤、界面活性剤、酸化剤、金属有機化合物等を添加してもよい。
 有機ビヒクルの配合量も、抵抗組成物において一般的に配合される範囲でよく、抵抗体を形成するための印刷等の適用方法に応じて適宜調整される。好ましくは無機固形分50~80質量%、有機ビヒクル50~20質量%程度である。
〔抵抗組成物〕
 本発明における抵抗組成物は常法に従って、ルテニウム系導電性粒子、ガラスフリット及び必要に応じて配合される機能性フィラーや添加剤と共に、有機ビヒクルと混合・混練され、均一に分散させることによって製造されるが、本発明において組成物はペースト状に限られるものではなく、塗料状またはインク状でも良い。
〔抵抗体の製造〕
 本発明における抵抗組成物は常法に従ってアルミナ基板、ガラスセラミック基板等の絶縁性基板や積層電子部品等の被印刷物上に、印刷法等により所定の形状に印刷/塗布され、乾燥後、例えば600~900℃程度の高温で焼成される。このようにして形成された厚膜抵抗体には、通常オーバーコートガラスを焼付けることにより保護被膜が形成され、必要に応じてレーザートリミング等により抵抗値の調整が行われる。
 また、抵抗組成物の商品としての流通形態としては、抵抗値が異なる抵抗体を形成する抵抗組成物を2種以上組み合わせてセットで販売、流通することが多い。
 本発明の抵抗組成物はこれに適したものであり、本発明の抵抗組成物の2種以上をセットで提供することにより、使用者において適宜複数の抵抗組成物を配合して所望の抵抗値を有する抵抗体を作製することが可能な抵抗組成物を調製することができる、これにより、類似した組成の複数の抵抗組成物によって広い範囲の抵抗領域をカバーすることができる。
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例で作製した各試料についての物性値の測定は以下の測定機器及び測定方法によって行った。
[Rs(シート抵抗)]
Agilent社製デジタルマルチメーター「3458A」を使用し測定し焼成膜厚8μmに換算した。試料20個について測定しその平均値をとった。
[TCR]
上記デジタルマルチメーターを使用して、+25~+125℃(H-TCR)、-55~+25℃(C-TCR)を測定した。試料20個について測定しその平均値をとった。
[Tg,Tg’,TMA]
Bruker AXS社製熱機械測定装置「TMA4000S」を使用した。試料20個について測定しその平均値をとった。
[STOL]
1/4W定格電圧の2.5倍(但し最大400V)を5秒間かけた後の抵抗値変化率を測定した。試料20個について測定しその平均値をとった。
[平均粒径D50
HORIBA社製レーザー回折/散乱式粒子径分布測定装置「LA950V2」を使用した。試料20個について測定しその平均値をとった。
<予備実験A>
 まず、ガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□~1MΩ/□の範囲の値をとるとき、焼成物の抵抗温度係数がプラスの範囲を示すガラスフリットを得るための実験を行った。
(実験例1~42)
表1に示すガラス組成で、平均粒径D50が2μmのガラスフリットを作製し、それぞれを試料1~42とした。
 次に、これとは別に準備した二酸化ルテニウム(昭栄化学工業株式会社製、製品名:Ru-109、平均粒径D50=0.05μm)と各試料1~42とを20:80の質量比で混合した後、当該混合物100質量部に対し、有機ビヒクルを30質量部加えた組成物を3本ロールで混練することにより、試料1~42に対応する実験例1~42のペーストをそれぞれ作製した。なお、ここで有機ビヒクルとしてはエチルセルロースを15質量部、溶剤としてTPOを残部加えたものを用いた。
 各ペーストを用いて、予め銀厚膜電極が焼き付けられたアルミナ基板上に対して1mm×1mmのパターンを印刷し、室温で10分間のレベリングを行った後、150℃で10分間乾燥させ、その後、大気中において850℃(ピーク温度)で60分焼成することによって、各試料1~42に対応する実験例1~42の焼成パターンを得た。
 当該焼成パターンのそれぞれについて抵抗値Rsを測定し、おおよそ1kΩ/□程度及びそれ以上の抵抗値が得られている焼成パターンについては、更に+25℃~+125℃のTCR(以下、H-TCR)と-55℃~+25℃のTCR(以下、C-TCR)を測定した。
 その測定結果を表1に併記する。
 また、表1において、Rsが1kΩ/□に満たなかったものについては、H-TCR及びC-TCRの測定を省略し、表中に“-”の符号を記した。
 実験例1~42のうち、H-TCR、C-TCRが共にプラスの範囲であった実験例11、13、30、38、39、41で用いた試料11、13、30、38、39、41については、前述と同様にして二酸化ルテニウムと各試料との質量比が10:90のペーストを作製し、焼成パターンを得た。
 その後、同様に各パターンについて抵抗値Rsを測定し、更に、抵抗値が測定できなかったものを除いてH-TCRとC-TCRを測定した。その結果を表1に併記する。
Figure JPOXMLDOC01-appb-T000001
 表1に示される通り、上述の予備実験Aにおいては、試料1~42の中で試料13だけが、全てのTCRがプラスの範囲であった。
 そこで更に詳細な検討を行うために、上述と同様にして、組成が試料13と同様にSiO、B、BaOを主たる成分として含むガラスフリット(表2の試料43~50)を新たに準備した後、二酸化ルテニウムと各ガラスフリットとの質量比が30:70、20:80、10:90となるペーストを作製した。次に、それぞれのペーストを用いて焼成パターンを得、ガラス転移点Tg、熱膨張係数α、焼成パターンの抵抗値Rs、H-TCR、C-TCRをそれぞれ測定した。
 更に、焼成膜表面の緻密性を評価するため、各パターンの焼成面を目視で観察し、その表面上にハッキリと凹凸を確認できるものを“×”、わずかに凹凸を確認できるものを“△”、殆ど凹凸を観察できないものを“○”とした。
 その結果を表2に併記する。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から理解されるように、実験例13、43、44、45、46、47、49で用いた試料13、43、44、45、46、47、49のガラスフリットは、ガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□~1MΩ/□の範囲の値をとるとき、前記焼成物の抵抗温度係数がプラスの範囲を示すガラスフリットであるといえる。
 後述する実施例では試料13のガラスフリットを含む抵抗組成物から抵抗体を作製した実施例を示す。
<予備実験B>
 次に、耐電圧特性、静電気特性、抵抗値変化等の諸特性を改善するための機能性フィラーについての予備実験を行った。
 焼成時における流動性の低いガラスとして、酸化物換算でSiO76.4モル%、B 3.3モル%、Al 6.5モル%、CaO 11.1モル%、MgO 1.2モル%、La 0.3モル%、KO 1.1モル%、ZrO0.1モル%を含むガラス粒子(平均粒径D50=2μm、Tg’=713℃)を準備した。
 またフィラー中に含まれる導電粒子として、二酸化ルテニウム(Ru-109)を準備し、フィラー中の導電粒子の含有量がそれぞれ20質量%、30質量%、40質量%となるように、前出のガラス粒子と導電粒子とを混合し、直径5mmのメディアを用い、アルコールを溶媒としてボールミルで攪拌した後、880℃で熱処理を行い、再度、前出のボールミルによってフィラーの平均粒径D50が3μmになるまで粉砕して、3種のフィラーを作製した。
 得られたフィラーを走査型電子顕微鏡(SEM)で観察したところ、相対的な粒径が大きい(約3μm)ガラス粒子の表面とその内部近傍に、相対的に小粒径(0.05μm)の二酸化ルテニウムの粒子が付着/分散した構造が観察された。
 これらのフィラーと前出の試料13のガラスフリットとを質量比で50:50、40:60、30:70となるよう混合し、予備実験Aと同様にして焼成パターンを作製した。
 更に、これらのフィラーと二酸化ルテニウム(Ru-109)と試料13のガラスフリットとを、質量比で45:5:50、35:5:60、25:5:70となるよう混合し、同様に焼成パターンを作製した。
 これらの各パターンについて、それぞれの抵抗値RsとSTOLを測定した。その結果を表3に示す。
 なお、表3において、抵抗値が大きく値が安定しないためにSTOLの測定が困難であったものについては測定を省略し、表中に“-”で記した。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、フィラー中における導電粒子の含有量が20質量%の場合は、フィラーだけでは導通しないが、二酸化ルテニウムを少量添加することにより導通が得られた。一方、当該含有量が40質量%になると、実用に適さないほどSTOLが大きくなった。
 以上の結果から、本発明においてはフィラー中の導電粒子の含有量は20~35質量%の範囲内が好ましいことが分かった。
<実施例1>
 本実施例は抵抗組成物が機能性フィラーを成分として含有する場合についての実施例である。
(実施例1-1~実施例1-6)
 二酸化ルテニウム(Ru-109)、予備実験Bで作製した導電粒子含有量が30質量%のフィラー、及び、予備実験Aで作製した試料13のガラスフリットを、表4に示す質量部で配合し、これに対して有機ビヒクルを30質量部加えた組成物を3本ロールで混練して実施例1-1~実施例2-6のペーストを作製した。なお、有機ビヒクルとしてはエチルセルロースを15質量部、溶剤としてTPOを残部加えたものを用いた。
 各ペーストを用いて、予め銀厚膜電極が焼き付けられたアルミナ基板上に1mm×1mmのパターンを印刷し、室温で10分間のレベリングを行った後、150℃で10分間乾燥させ、その後、大気中において850℃(ピーク温度)で60分焼成することによって、抵抗体を得た。
 各抵抗体に対し、シート抵抗値Rs、H-TCR、C-TCR、抵抗値のバラツキCV、ノイズ、STOLを測定した。なおCVは抵抗体20個から求めた値である。
 測定した結果を表4に併記する。
 なお、表4において、ノイズに関してオーバーレンジのため、測定が困難なものについては測定を省略し、表中に“-”で記した。
  また各ペースト毎に目標値として設定した抵抗値Rsについても、参考程度に表4に併記した。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、本発明によれば、広い抵抗域(100Ω/□~10MΩ/□)の全範囲内において、電流雑音特性や負荷特性のいずれにも優れた抵抗体を得ることができ、特にTCRについては、±100ppm/℃以下を達成することができた。
 更に、得られた抵抗体を走査型顕微鏡-エネルギー分散型X線分析(SEM-EDX)で分析した結果を図1に示す。図1Aは抵抗体のSEM画像であり、図1BはBa元素についてマッピングした結果を示す図であり、図1CはRu元素についてマッピングした結果を示す図である。
 図1Bに示されるように実施例1で得られた抵抗体には、Baを含む連続体領域(以下、マトリクス記す)の中に、Baを含まない不連続体(以下、島と記す)が複数点在する、所謂、海島構造(sea-island structure)が見られる。この実施例1で使用したガラスフリットにはBaが含まれており、一方、フィラーとして使用したガラス粒子にはBaが含まれていないことから、本発明の抵抗体は、ガラスフリットのマトリクス中に、焼成時の流動性が低いガラス粒子が島状に残り、このような海島構造が形成されたものと推測される。また、図1Cに示されるようにガラス粒子の表面にはRuが高濃度で存在していることが確認できることから、本発明の抵抗体中においてRuO粒子は均一に分散しておらず、少なくとも抵抗体中の一部に、石鹸の泡状の偏りのあるネットワーク構造を備えているものと推察される。
<実施例2>
 本実施例は抵抗組成物が機能性フィラーを含有しない場合についての実施例である。
(実施例2-1~実施例2-6)
 組成が試料13に近いガラスフリットとして、新たに試料51(酸化物換算でSiO38.1モル%、B 26.1モル%、BaO 27.2モル%、Al0.8モル%、SrO 0.5モル%、ZnO 3.6モル%、NaO 3.2モル%、KO 0.5モル%)を準備した。なお試料51のTgは629.4℃であった。
 また、TCRを調整する目的でペーストに添加ガラスを加えた。当該添加ガラスとして、酸化物換算でSiO43.0モル%、B 18.2モル%、Al 13.0モル%、CaO 2.8モル%、MgO 3.2モル%、SnO 1.3モル%、Co 1.9モル%、KO 6.6モル%、LiO 10.0モル%)を準備した。添加ガラスのガラス転移点は494.0℃であった。
 二酸化ルテニウム(Ru-109)、添加ガラス、及び、試料51のガラスフリットを、表5に示す質量部で配合し、これに対して有機ビヒクルを30質量部と、更に表5に示す質量部のその他の添加剤とを加えた組成物を3本ロールで混練してペーストを作製した。なお、有機ビヒクルとしてはエチルセルロースを15質量部、溶剤としてTPOを残部加えたものを用いた。
 各ペーストを用いて、予め銀厚膜電極が焼き付けられたアルミナ基板上に1mm×1mmのパターンを印刷し、室温で10分間のレベリングを行った後、150℃で10分間乾燥させ、その後、大気中において850℃(ピーク温度)で60分焼成することによって、抵抗体を得た。
 各抵抗体に対し、シート抵抗値Rs、H-TCR、C-TCR、抵抗値のバラツキCV、ノイズ、を測定した。
 測定した結果を表5に併記する。
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、本発明は機能性フィラーを含まない場合でも、広い抵抗域においてTCRを±100ppm/℃以下にすることができた。
<実施例3>
 使用するルテニウム系導電性粒子を平均粒径D50=0.20μmの二酸化ルテニウム(昭栄化学工業株式会社製、製品名:Ru-108)、及び、D50=0.02μmの二酸化ルテニウム(昭栄化学工業株式会社製、製品名:Ru-105)にそれぞれ変更した他は予備実験A、予備実験B、実施例1及び実施例2と同様の実験を行ったところ、ほぼ同様の結果が得られた。

Claims (21)

  1.  抵抗組成物の焼成物からなる厚膜抵抗体であって、
     二酸化ルテニウムを含むルテニウム系導電性粒子と、鉛成分を実質的に含まないガラス成分とを含み、
     100Ω/□~10MΩ/□の範囲内の抵抗値を有し、抵抗温度係数が±100ppm/℃以下である厚膜抵抗体。
  2.  1kΩ/□~10MΩ/□の範囲内の抵抗値を有する請求項1に記載の厚膜抵抗体。
  3.  10kΩ/□~10MΩ/□の範囲内の抵抗値を有する請求項2に記載の厚膜抵抗体。
  4.  100kΩ/□~10MΩ/□の範囲内の抵抗値を有する請求項3に記載の厚膜抵抗体。
  5.  1MΩ/□~10MΩ/□の範囲内の抵抗値を有する請求項4に記載の厚膜抵抗体。
  6.  前記ガラス成分が、ガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□~1MΩ/□の範囲の値をとるとき、前記焼成物の抵抗温度係数がプラスの範囲を示すガラスフリットに由来するガラス成分を含む請求項1乃至5の何れかに記載の厚膜抵抗体。
  7.  前記ガラスフリットが、酸化物換算でBaO 20~45モル%、B 20~45モル%、SiO 25~55モル%を含む請求項6に記載の厚膜抵抗体。
  8.  抵抗組成物の焼成物からなる厚膜抵抗体であって、
     二酸化ルテニウムを含むルテニウム系導電性粒子と、鉛成分を実質的に含まないガラス成分を含み、
     前記ガラス成分が少なくとも、第1のガラス成分、及び、当該第1のガラス成分よりもガラス転移点の高い第2のガラス成分を含み、前記第1のガラス成分のマトリクスに対して、第2のガラス成分が島状に点在する海島構造を備えており、100Ω/□~10MΩ/□の範囲内の抵抗値を有し、抵抗温度係数が±100ppm/℃以下である厚膜抵抗体。
  9.  前記二酸化ルテニウムの一部が、島状に点在する前記第2のガラス成分の表面及びその近傍に偏在した構造を備える請求項8に記載の厚膜抵抗体。
  10.  前記ルテニウム系導電性粒子が、平均粒径D50が0.01~0.2μmの粒子である請求項8又は9に記載の厚膜抵抗体。
  11.  二酸化ルテニウムを含むルテニウム系導電性粒子と、鉛成分を実質的に含まないガラスフリットであって、ガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□~1MΩ/□の範囲の値をとるとき、前記焼成物の抵抗温度係数がプラスの範囲を示すガラスフリットと、有機ビヒクルとを含む抵抗組成物を被印刷物上に印刷した後、600~900℃で焼成する厚膜抵抗体の製造方法。
  12.  前記抵抗組成物として、前記ルテニウム系導電性粒子と前記ガラスフリットとの含有率が異なる2以上の抵抗組成物を用い、前記2以上の抵抗組成物のそれぞれの配合割合を調整して、100Ω/□~10MΩ/□の範囲内の抵抗値を有する厚膜抵抗体を製造する請求項11に記載の厚膜抵抗体の製造方法。
  13.  前記ガラスフリットが、酸化物換算でBaO 20~45モル%、B20~45モル%、SiO 25~55モル%を含む請求項11又は12に記載の厚膜抵抗体の製造方法。
  14.  前記ルテニウム系導電性粒子の平均粒径D50が0.01~0.2μmである請求項11乃至13の何れかに記載の厚膜抵抗体の製造方法。
  15.  前記抵抗組成物が更に機能性フィラーを含み、
     当該機能性フィラーが鉛成分を実質的に含まないガラス粒子に対して当該ガラス粒子よりも粒径が小さく鉛成分を実質的に含まない導電粒子とからなる複合粒子である請求項11乃至14の何れかに記載の厚膜抵抗体の製造方法。
  16.  前記ガラス粒子のガラス転移点Tg’が、前記ガラスフリットのガラス転移点Tgに対して、Tg<Tg’を満たす請求項15に記載の厚膜抵抗体の製造方法。
  17.  Tgが450~700℃であり、Tg’が500℃以上である請求項16に記載の厚膜抵抗体の製造方法。
  18.  前記機能性フィラーが前記導電粒子を20~35質量%含む請求項15乃至17の何れかに記載の厚膜抵抗体の製造方法。
  19.  前記導電粒子が二酸化ルテニウムを含むルテニウム系の導電粒子である請求項15乃至18の何れかに記載の厚膜抵抗体の製造方法。
  20.  前記導電粒子の平均粒径D50が0.01~0.2μmである請求項15乃至19の何れかに記載の厚膜抵抗体の製造方法。
  21.  前記機能性フィラーの平均粒径D50が0.5~5μmである請求項15乃至20の何れかに記載の厚膜抵抗体の製造方法。
PCT/JP2015/073358 2014-09-12 2015-08-20 厚膜抵抗体及びその製造方法 WO2016039108A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201580015279.3A CN106104711B (zh) 2014-09-12 2015-08-20 厚膜电阻体及其制造方法
JP2016525626A JP5988124B2 (ja) 2014-09-12 2015-08-20 厚膜抵抗体及びその製造方法
EP15840330.3A EP3193340A4 (en) 2014-09-12 2015-08-20 Thin film resistive body and production method for same
CA2939542A CA2939542C (en) 2014-09-12 2015-08-20 Thick film resistor and production method for same
US15/119,653 US9892828B2 (en) 2014-09-12 2015-08-20 Thick film resistor and production method for same
KR1020167027057A KR101747621B1 (ko) 2014-09-12 2015-08-20 후막 저항체 및 그 제조방법
PH12016501663A PH12016501663A1 (en) 2014-09-12 2016-08-19 Thick film resistor body and production method for same
IL249324A IL249324B (en) 2014-09-12 2016-12-01 Anti-thick film and method for its production
US15/842,267 US10403421B2 (en) 2014-09-12 2017-12-14 Thick film resistor and production method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-185800 2014-09-12
JP2014185800 2014-09-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/119,653 A-371-Of-International US9892828B2 (en) 2014-09-12 2015-08-20 Thick film resistor and production method for same
US15/842,267 Division US10403421B2 (en) 2014-09-12 2017-12-14 Thick film resistor and production method for same

Publications (1)

Publication Number Publication Date
WO2016039108A1 true WO2016039108A1 (ja) 2016-03-17

Family

ID=55458864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073358 WO2016039108A1 (ja) 2014-09-12 2015-08-20 厚膜抵抗体及びその製造方法

Country Status (11)

Country Link
US (2) US9892828B2 (ja)
EP (1) EP3193340A4 (ja)
JP (1) JP5988124B2 (ja)
KR (1) KR101747621B1 (ja)
CN (2) CN107293352B (ja)
CA (1) CA2939542C (ja)
IL (1) IL249324B (ja)
MY (1) MY180840A (ja)
PH (1) PH12016501663A1 (ja)
TW (1) TWI590417B (ja)
WO (1) WO2016039108A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014211A (ja) * 2016-07-20 2018-01-25 住友金属鉱山株式会社 抵抗ペースト及び該抵抗ペーストから作製される抵抗体
JP2018049901A (ja) * 2016-09-21 2018-03-29 住友金属鉱山株式会社 抵抗ペースト及びその焼成により作製される抵抗体
JP2019176112A (ja) * 2018-03-29 2019-10-10 住友金属鉱山株式会社 厚膜抵抗体用組成物、厚膜抵抗体用ペースト、及び厚膜抵抗体
EP3496112A4 (en) * 2016-08-03 2020-03-18 Shoei Chemical Inc. CONDUCTIVE PASTE
JP2020510996A (ja) * 2017-02-13 2020-04-09 テジュー エレクトロニック マテリアルス シーオー., エルティーディー.Dae Joo Electronic Materials Co., Ltd. 鉛フリー厚膜低抗体およびこれを含む電子部品

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662561B (zh) * 2016-10-08 2019-06-11 南韓商大州電子材料股份有限公司 無鉛厚膜電阻組合物、無鉛厚膜電阻及其製造方法
JP6848327B2 (ja) * 2016-10-19 2021-03-24 住友金属鉱山株式会社 正温度係数抵抗体用組成物、正温度係数抵抗体用ペースト、正温度係数抵抗体ならびに正温度係数抵抗体の製造方法
JP6931455B2 (ja) * 2017-02-17 2021-09-08 住友金属鉱山株式会社 抵抗体用組成物及びこれを含んだ抵抗体ペーストとそれを用いた厚膜抵抗体
CN110534274B (zh) * 2017-10-23 2021-07-02 潮州三环(集团)股份有限公司 一种阻值范围为0.1ω/□~1ω/□的厚膜电阻浆料及其制备方法
CN109872852A (zh) * 2017-12-02 2019-06-11 中国振华集团云科电子有限公司 一种提高厚膜电阻tcr合格率的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196201A (ja) * 1999-10-28 2001-07-19 Sumitomo Metal Electronics Devices Inc 厚膜抵抗体
JP2007103594A (ja) * 2005-10-03 2007-04-19 Shoei Chem Ind Co 抵抗体組成物並びに厚膜抵抗体
JP2011518104A (ja) * 2008-04-18 2011-06-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ルテニウム酸化物を有する、鉛を含有しない抵抗組成物
JP2011523489A (ja) * 2008-04-18 2011-08-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 表面改質された酸化ルテニウム導電性材料、無鉛ガラス、厚膜抵抗体ペースト、およびそれより製造されたデバイス

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145949A (ja) * 1984-01-06 1985-08-01 昭栄化学工業株式会社 抵抗組成物
US5491118A (en) 1994-12-20 1996-02-13 E. I. Du Pont De Nemours And Company Cadmium-free and lead-free thick film paste composition
EP1096512B1 (en) * 1999-10-28 2005-08-10 Murata Manufacturing Co., Ltd. Thick-film resistor and ceramic circuit board
JP2005129806A (ja) 2003-10-24 2005-05-19 Tdk Corp 抵抗体ペースト及び厚膜抵抗体
JP2006108611A (ja) * 2004-01-20 2006-04-20 Tdk Corp 抵抗体ペースト用ガラス組成物及びこれを用いた抵抗体ペースト、抵抗体、電子部品
JP4223456B2 (ja) * 2004-03-31 2009-02-12 株式会社神鋼環境ソリューション 導電性グラスライニング及び導電性グラスライニング製構造物
CN100511496C (zh) * 2004-09-01 2009-07-08 Tdk株式会社 厚膜电阻浆料和厚膜电阻
US7544314B2 (en) * 2004-09-01 2009-06-09 Tdk Corporation Glass composition for thick film resistor paste, thick film resistor paste, thick-film resistor, and electronic device
JP2006165347A (ja) * 2004-12-08 2006-06-22 Tdk Corp 抵抗体ペースト及び抵抗体、電子部品
WO2007097163A1 (ja) * 2006-02-27 2007-08-30 Murata Manufacturing Co., Ltd. 回路パターンの形成方法
US8133413B2 (en) * 2008-04-18 2012-03-13 E. I. Du Pont De Nemours And Company Resistor compositions using a Cu-containing glass frit
TW201227761A (en) * 2010-12-28 2012-07-01 Du Pont Improved thick film resistive heater compositions comprising ag & ruo2, and methods of making same
CN103429537B (zh) * 2011-06-21 2015-04-22 住友金属矿山株式会社 氧化钌粉末、使用它的厚膜电阻体用组合物及厚膜电阻体
US8815125B2 (en) * 2012-06-20 2014-08-26 E. I. Du Pont De Nemours And Company Method of manufacturing a resistor paste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196201A (ja) * 1999-10-28 2001-07-19 Sumitomo Metal Electronics Devices Inc 厚膜抵抗体
JP2007103594A (ja) * 2005-10-03 2007-04-19 Shoei Chem Ind Co 抵抗体組成物並びに厚膜抵抗体
JP2011518104A (ja) * 2008-04-18 2011-06-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ルテニウム酸化物を有する、鉛を含有しない抵抗組成物
JP2011523489A (ja) * 2008-04-18 2011-08-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 表面改質された酸化ルテニウム導電性材料、無鉛ガラス、厚膜抵抗体ペースト、およびそれより製造されたデバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3193340A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014211A (ja) * 2016-07-20 2018-01-25 住友金属鉱山株式会社 抵抗ペースト及び該抵抗ペーストから作製される抵抗体
EP3496112A4 (en) * 2016-08-03 2020-03-18 Shoei Chemical Inc. CONDUCTIVE PASTE
US11183315B2 (en) 2016-08-03 2021-11-23 Shoei Chemical Inc. Conductive paste
JP2018049901A (ja) * 2016-09-21 2018-03-29 住友金属鉱山株式会社 抵抗ペースト及びその焼成により作製される抵抗体
JP2020510996A (ja) * 2017-02-13 2020-04-09 テジュー エレクトロニック マテリアルス シーオー., エルティーディー.Dae Joo Electronic Materials Co., Ltd. 鉛フリー厚膜低抗体およびこれを含む電子部品
JP2019176112A (ja) * 2018-03-29 2019-10-10 住友金属鉱山株式会社 厚膜抵抗体用組成物、厚膜抵抗体用ペースト、及び厚膜抵抗体
JP7297409B2 (ja) 2018-03-29 2023-06-26 住友金属鉱山株式会社 厚膜抵抗体用組成物、厚膜抵抗体用ペースト、及び厚膜抵抗体

Also Published As

Publication number Publication date
KR101747621B1 (ko) 2017-06-14
IL249324A0 (en) 2017-02-28
CA2939542C (en) 2017-07-18
KR20160134703A (ko) 2016-11-23
US20180108460A1 (en) 2018-04-19
TW201614797A (en) 2016-04-16
TWI590417B (zh) 2017-07-01
EP3193340A1 (en) 2017-07-19
CN106104711B (zh) 2018-06-15
US20170011825A1 (en) 2017-01-12
CN107293352A (zh) 2017-10-24
CA2939542A1 (en) 2016-03-17
CN107293352B (zh) 2019-06-14
PH12016501663B1 (en) 2016-10-03
CN106104711A (zh) 2016-11-09
US10403421B2 (en) 2019-09-03
JP5988124B2 (ja) 2016-09-07
EP3193340A4 (en) 2018-04-18
PH12016501663A1 (en) 2016-10-03
MY180840A (en) 2020-12-10
US9892828B2 (en) 2018-02-13
IL249324B (en) 2021-02-28
JPWO2016039108A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5988124B2 (ja) 厚膜抵抗体及びその製造方法
JP5988123B2 (ja) 抵抗組成物
KR100750470B1 (ko) 저항체 조성물 및 두꺼운 막저항체
TWI752170B (zh) 電阻器用組成物暨含有其之電阻器用糊膏及使用其之厚膜電阻器
JP2003257242A (ja) 厚膜抵抗体ペースト
KR101739744B1 (ko) 무연 후막 저항 조성물, 무연 후막 저항체 및 이의 제조방법
JP4384428B2 (ja) 低温焼成用導体ペースト及びその製造方法
JPH113802A (ja) 低温焼成用抵抗ペースト
JP2006066475A (ja) 厚膜抵抗体形成用組成物、厚膜抵抗体の形成方法及び厚膜抵抗体
CN115516578A (zh) 厚膜电阻糊、厚膜电阻体和电子部件
JP2022089460A (ja) 厚膜導体及びその形成用組成物並びに該形成用組成物を含んだ厚膜導体ペースト
JP2005244114A (ja) 抵抗体用導電材及び抵抗体ペースト、抵抗体
JP2006236621A (ja) 厚膜抵抗体ペースト及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016525626

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2939542

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15119653

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12016501663

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20167027057

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015840330

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015840330

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 249324

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE