WO2016039008A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2016039008A1
WO2016039008A1 PCT/JP2015/069834 JP2015069834W WO2016039008A1 WO 2016039008 A1 WO2016039008 A1 WO 2016039008A1 JP 2015069834 W JP2015069834 W JP 2015069834W WO 2016039008 A1 WO2016039008 A1 WO 2016039008A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copolymer
compound
hydrogenated
group
Prior art date
Application number
PCT/JP2015/069834
Other languages
English (en)
French (fr)
Inventor
崇 石野
健夫 中園
裕平 山城
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to EP15839827.1A priority Critical patent/EP3181630B1/en
Priority to CN201580044675.9A priority patent/CN106574081B/zh
Priority to JP2015558262A priority patent/JP6631254B2/ja
Priority to US15/503,269 priority patent/US20170226331A1/en
Publication of WO2016039008A1 publication Critical patent/WO2016039008A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • C08K5/31Guanidine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/16Homopolymers or copolymers of alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • C08L45/02Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers of coumarone-indene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes

Definitions

  • the present invention relates to a pneumatic tire manufactured using a predetermined rubber composition.
  • a rubber composition for an automobile tire a rubber composition containing a conjugated diene polymer such as polybutadiene or butadiene-styrene copolymer and a filler such as carbon black or silica is used.
  • Patent Document 1 proposes a method using a diene rubber (modified rubber) modified with an organosilicon compound containing an amino group and an alkoxy group.
  • a diene rubber modified rubber
  • an organosilicon compound containing an amino group and an alkoxy group an organosilicon compound containing an amino group and an alkoxy group.
  • the conventional technology has problems such as insufficient wear resistance and wet grip performance that are contradictory to low fuel consumption, and also causes problems of rubber chipping, rubber breaking strength, wear resistance There is room for improvement in wet grip performance.
  • An object of the present invention is to solve the above problems and to provide a pneumatic tire with improved rubber breaking strength, wear resistance and wet grip performance while maintaining good fuel efficiency.
  • the present invention is a pneumatic tire produced using a rubber composition, wherein the rubber composition has a hydrogenation rate of a conjugated diene part obtained by copolymerizing an aromatic vinyl compound and a conjugated diene compound.
  • the rubber composition has a hydrogenation rate of a conjugated diene part obtained by copolymerizing an aromatic vinyl compound and a conjugated diene compound.
  • the present invention relates to a pneumatic tire having a resin content of 1 to 30 parts by mass relative to 100 parts by mass of a rubber component.
  • the hydrogenated copolymer preferably has a weight average molecular weight of 200,000 to 2,000,000.
  • the hydrogenation rate of the hydrogenated copolymer is 90 mol% or more.
  • the hydrogenated copolymer is preferably a hydrogenated styrene butadiene copolymer.
  • the hydrogenated styrene butadiene copolymer is preferably a hydrogenated styrene butadiene copolymer.
  • the hydrogenated styrene-butadiene copolymer preferably has a styrene content of 5 to 40% by mass.
  • the content of the hydrogenated styrene butadiene copolymer in 100% by mass of the rubber component is preferably 90 to 100% by mass.
  • the rubber composition further includes silica and / or carbon black, and the silica content is 1 to 200 parts by mass and the carbon black content is 1 part by mass or more with respect to 100 parts by mass of the rubber component. preferable.
  • a specific hydrogenated copolymer having a hydrogenation rate of 75 mol% or more is contained in an amount of 75 mass% or more in 100 mass% of the rubber component, and a resin having a softening point of 60 to 120 ° C. Since it is a pneumatic tire produced using a rubber composition containing 1 to 30 parts by mass with respect to 100 parts by mass of the component, it has good fuel economy, rubber breaking strength, abrasion resistance and wet grip performance.
  • the pneumatic tire of the present invention is a conjugated diene obtained by copolymerizing an aromatic vinyl compound and a conjugated diene compound (hereinafter also referred to as a copolymer of an aromatic vinyl compound and a conjugated diene compound).
  • the hydrogenated copolymer in which the conjugated diene part of the copolymer of the aromatic vinyl compound and the conjugated diene compound is hydrogenated and the hydrogenation rate is 75 mol% or more is obtained by adding 100 parts by mass of the rubber component.
  • the rubber composition in the present invention is characterized in that it contains a hydrogenated copolymer in which the conjugated diene portion of a copolymer of an aromatic vinyl compound and a conjugated diene compound is hydrogenated as a rubber component. Since ordinary rubber has many double bond portions that serve as cross-linking reaction points, cross-linking density occurs, and this cross-linking density is considered to be a starting point of breakage due to stress concentration. In the present invention, the reactive sites for crosslinking are reduced by reducing the double bond portion by hydrogenation treatment. As a result, it is expected that the wear resistance and the like are improved by reducing the cross-link density and reducing the stress concentration.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, 2,4,6-trimethylstyrene, and the like. These may be used singly or may be used in combination of two or more, but among them, the viewpoints of practical aspects such as the availability of monomers and the effect of the present invention can be more suitably obtained. To styrene is particularly preferred.
  • Examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, 1,3-hexadiene, and the like. These may be used singly or may be used in combination of two or more, but among them, the viewpoints of practical aspects such as the availability of monomers and the effect of the present invention can be more suitably obtained. 1,3-butadiene and isoprene are preferred, and 1,3-butadiene is more preferred.
  • the copolymer of the aromatic vinyl compound and the conjugated diene compound a copolymer of styrene and 1,3-butadiene (styrene butadiene copolymer) is preferable. Accordingly, a hydrogenated styrene butadiene copolymer is preferred as the hydrogenated copolymer. Furthermore, the hydrogenated styrene butadiene copolymer is preferably a hydrogenated styrene butadiene copolymer modified by a method described later.
  • the order of copolymerization is not particularly limited as long as the styrene-butadiene copolymer is a copolymer of styrene and 1,3-butadiene, and may be random copolymer or block copolymer, but random copolymer is preferable. .
  • the hydrogenation rate of the hydrogenated copolymer (ratio of hydrogenation with respect to the conjugated diene part of the copolymer of aromatic vinyl compound and conjugated diene compound) is 75 mol% or more, preferably 80 mol% or more, More preferably, it is 90 mol% or more, More preferably, it is 93 mol% or more.
  • the hydrogenation rate of the hydrogenated copolymer is preferably 99 mol% or less, more preferably 98 mol% or less. If the hydrogenation rate exceeds 99 mol%, the rubber composition may become hard.
  • the hydrogenation rate can be calculated from the spectrum reduction rate of the unsaturated bond portion of the spectrum obtained by measuring H 1 -NMR.
  • the weight average molecular weight (Mw) of the hydrogenated copolymer is preferably 200,000 or more, more preferably 400,000 or more. If Mw is less than 200,000, good rubber breaking strength and wear resistance may not be obtained.
  • the Mw of the hydrogenated copolymer is preferably 2,000,000 or less, more preferably 1,000,000 or less, and still more preferably 700,000 or less. When Mw exceeds 2,000,000, the workability tends to decrease.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are gel permeation chromatograph (GPC) (GPC-8000 series manufactured by Tosoh Corporation), detector: differential refractometer, column: It can be determined by standard polystyrene conversion based on the measured value by TSKGEL SUPERMULTIIPORE HZ-M manufactured by Tosoh Corporation.
  • GPC gel permeation chromatograph
  • the glass transition temperature (Tg) of the hydrogenated copolymer is preferably ⁇ 45 ° C. or higher, more preferably ⁇ 35 ° C. or higher, still more preferably ⁇ 30 ° C. or higher, still more preferably ⁇ 25 ° C. or higher, and ⁇ 24.5 ° C or higher is particularly preferable, and -24 ° C or higher is most preferable. If Tg is less than -45 ° C, sufficient wet grip performance may not be obtained.
  • the Tg of the hydrogenated copolymer is preferably less than ⁇ 10 ° C., more preferably less than ⁇ 12.5 ° C., still more preferably less than ⁇ 15 ° C., and particularly preferably less than ⁇ 20 ° C. If Tg is ⁇ 10 ° C. or higher, sufficient low temperature characteristics may not be obtained.
  • the glass transition temperature (Tg) of a hydrogenated copolymer is measured by the method as described in the below-mentioned Example.
  • the styrene content of the hydrogenated styrene butadiene copolymer is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass. % Or more, particularly preferably 20% by mass or more, and most preferably 25% by mass or more. If the styrene content is less than 5% by mass, sufficient grip performance may not be obtained. Further, the styrene content of the hydrogenated styrene butadiene copolymer is preferably 40% by mass or less, more preferably 35% by mass or less.
  • styrene content exceeds 40% by mass, sufficient rubber breaking strength and wear resistance cannot be obtained, and the fuel efficiency may be deteriorated.
  • the styrene content is within the above range, the effect of the present invention can be more suitably obtained.
  • styrene content is measured by the method as described in the Example mentioned later.
  • the hydrogenated copolymer can be synthesized, for example, by subjecting a polymer obtained by polymerizing an aromatic vinyl compound and a conjugated diene compound to a hydrogenation treatment, and specifically, can be synthesized by the following method.
  • Polymerization method There is no particular limitation on the polymerization method of the copolymer of the aromatic vinyl compound and the conjugated diene compound, and any of the solution polymerization method, the gas phase polymerization method, and the bulk polymerization method can be used, but the solution polymerization method is particularly preferable. Moreover, any of a batch type and a continuous type may be sufficient as the superposition
  • the monomer concentration in the solvent (the total of styrene and 1,3-butadiene in the case of a styrene butadiene copolymer) is preferably 5% by mass or more, and more preferably 10% by mass or more. .
  • the monomer concentration in the solvent is preferably 50% by mass or less, and more preferably 30% by mass or less.
  • the monomer concentration in the solvent exceeds 50% by mass, the solution viscosity becomes too high, stirring becomes difficult, and polymerization tends to be difficult.
  • the polymerization initiator is not particularly limited, but an organic lithium compound is preferably used.
  • the organic lithium compound those having an alkyl group having 2 to 20 carbon atoms are preferable.
  • n-butyllithium or sec-butyllithium is preferable from the viewpoints of availability, safety and the like.
  • a functional group having an interaction with silica can be introduced into the polymerization initiation terminal of the copolymer.
  • denatured is obtained.
  • reaction refers to an intermolecular force that forms a covalent bond between molecules or is weaker than a covalent bond (for example, ion-dipole interaction, dipole-dipole interaction, It means the formation of electromagnetic force between molecules such as hydrogen bonds and van der Waals forces.
  • the “functional group that interacts with silica” refers to a group having at least one atom that interacts with silica, such as a nitrogen atom, a sulfur atom, a phosphorus atom, or an oxygen atom.
  • the compound (R) is preferably a reaction product of an organolithium compound and a nitrogen-containing compound such as a secondary amine compound.
  • a nitrogen-containing compound such as a secondary amine compound.
  • the nitrogen-containing compound include, for example, dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N, N′-dimethyl-N′-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, Hexamethyleneimine, heptamethyleneimine, dicyclohexylamine, N-methylbenzylamine, di- (2-ethylhexyl) amine, diallylamine, morpholine, N- (trimethylsilyl) piperazine, N- (tert-butyldimethylsilyl) piperazine, 1, Examples include 3-ditrimethylsilyl-1,3,5-triazinane.
  • a compound (R) when superposing
  • Polymerization may be carried out by adding to the above.
  • the polymerization may be carried out by preparing the compound (R) by adding the organolithium compound and the compound (B1) to the polymerization system and mixing both in the polymerization system.
  • Method of anionic polymerization There is no restriction
  • a hydrocarbon solvent such as an aliphatic, alicyclic, or aromatic hydrocarbon compound, for example, butyl lithium is used as a polymerization initiator, and a randomizer is used as necessary.
  • styrene and 1,3-butadiene and the like By subjecting styrene and 1,3-butadiene and the like to anionic polymerization in the presence of styrene, a desired copolymer such as a styrene-butadiene copolymer can be obtained.
  • the hydrocarbon solvent is preferably one having 3 to 8 carbon atoms.
  • the randomizer is a microstructure control of a conjugated diene moiety in a copolymer, for example, an increase in 1,2-bond in butadiene, an increase in 3,4-bond in isoprene, or the composition of monomer units in the copolymer. It is a compound having an action of controlling distribution, for example, randomizing styrene units and butadiene units in a styrene-butadiene copolymer.
  • the randomizer is not particularly limited, and any known compound generally used as a conventional randomizer can be used.
  • the amount of randomizer used is preferably 0.01 molar equivalents or more, more preferably 0.05 molar equivalents or more per mole of the organic lithium compound. If the amount of randomizer used is less than 0.01 molar equivalent, the effect of addition tends to be small and it tends to be difficult to randomize.
  • the amount of randomizer used is preferably 1000 molar equivalents or less, more preferably 500 molar equivalents or less, per mole of the organic lithium compound. When the amount of the randomizer used exceeds 1000 molar equivalents, the monomer reaction rate changes greatly, and conversely, it tends to be difficult to randomize.
  • the Tg of the copolymer can be adjusted by adjusting the type and amount of the randomizer. For example, the Tg of the copolymer can be lowered by reducing the amount of tetrahydrofuran.
  • reaction temperature The reaction temperature in the anionic polymerization is not particularly limited as long as the reaction proceeds suitably, but it is usually preferably ⁇ 10 ° C. to 100 ° C., more preferably 25 ° C. to 70 ° C.
  • the polymerization initiation terminal may be unmodified or modified.
  • the compound (B2) is not particularly limited as long as it has a functional group that interacts with silica and can react with the polymerization active terminal.
  • the compound (B2) include, for example, (I) a compound (B2-1) represented by the following formula (1);
  • a 1 has at least one atom selected from the group consisting of a nitrogen atom, a phosphorus atom, and a sulfur atom, does not have active hydrogen, and is a nitrogen atom with respect to R 5 ;
  • a monovalent functional group bonded with a phosphorus atom or a sulfur atom, R 3 and R 4 are hydrocarbyl groups, R 5 is a hydrocarbylene group, and n is an integer of 0 to 2, provided that R When a plurality of 3 and R 4 are present, the plurality of R 3 and R 4 may be the same or different.
  • (II) In the molecule, at least one functional group (x1) selected from the group consisting of a cyclic ether group, a (thio) carbonyl group and an iso (thio) cyanate group, a nitrogen atom, a phosphorus atom, an oxygen atom
  • the (thio) carbonyl group represents a carbonyl group and a thiocarbonyl group
  • the iso (thio) cyanate group represents an isocyanate group and an isothiocyanate group.
  • the hydrocarbyl group of R 3 and R 4 is a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a 6 to 20 carbon atom group.
  • An aryl group is preferred.
  • R 5 is preferably a linear or branched alkanediyl group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, or an arylene group having 6 to 20 carbon atoms.
  • n is preferably 0 or 1 from the viewpoint of increasing the reactivity with the copolymer.
  • a 1 has at least one atom selected from the group consisting of a nitrogen atom, a phosphorus atom and a sulfur atom (hereinafter also referred to as a specific atom), and binds to R 5 with these specific atoms.
  • the specific atom is not bonded to active hydrogen, and may be protected with, for example, a trisubstituted hydrocarbylsilyl group.
  • active hydrogen refers to a hydrogen atom bonded to an atom other than a carbon atom, and preferably refers to an atom having a bond energy lower than that of polymethylene.
  • a 1 is preferably a group capable of becoming an onium ion by the onium salt generator.
  • the compound (B2) has such a group (A 1 )
  • excellent shape retention can be imparted to the modified copolymer.
  • Specific examples of A 1 include, for example, a nitrogen-containing group in which two hydrogen atoms of a primary amino group are substituted by two protecting groups, and one hydrogen atom of a secondary amino group is substituted by one protecting group.
  • examples thereof include a phosphorus-containing group that is substituted by one protecting group, a tertiary phosphino group, and a sulfur-containing group in which one hydrogen atom of a thiol group is substituted by one protecting group.
  • a group having a nitrogen atom is preferable from the viewpoint of good affinity with silica.
  • the “protecting group” is a functional group that converts A 1 into a functional group that is inactive with respect to the polymerization active terminal, and examples thereof include a trisubstituted hydrocarbylsilyl group.
  • the compound (B2-1) include a nitrogen-containing group in which two hydrogen atoms of a primary amine are substituted by two protecting groups, and one hydrogen atom of a secondary amine is substituted by one protecting group.
  • the compound having a nitrogen-containing group or a tertiary amino group and an alkoxysilyl group include, for example, N, N-bis (trimethylsilyl) aminopropyltrimethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyl Diethoxysilane, N, N ′, N′-tris (trimethylsilyl) -N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3- (4-trimethylsilyl-1-piperazino) propylmethyldimethoxysilane, Etc.
  • Examples of the compound having an imino group or pyridyl group and an alkoxysilyl group include N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N- (1-methylpropylidene).
  • a phosphorus-containing group in which two hydrogen atoms of a primary phosphino group are substituted by two protecting groups a phosphorus-containing group in which one hydrogen atom of a secondary phosphino group is substituted by one protecting group, a tertiary phosphino group
  • a compound having a sulfur-containing group in which one hydrogen atom of a thiol group is substituted with one protecting group and an alkoxysilyl group include P, P-bis (trimethylsilyl) phosphinopropylmethyldimethoxysilane, P , P-bis (trimethylsilyl) phosphinopropyltrimethoxysilane, 3-dimethylphosphinopropyltrimethoxysilane, 3-dimethylphosphinopropylmethyldimethoxysilane, 3-diphenylphosphinopropyltrimethoxysilane, 3-diphenylphosphinopropyl Triethoxysi
  • the group (x2) is preferably a group containing a nitrogen atom that is not bonded to active hydrogen.
  • Specific examples thereof include compounds having a cyclic ether group such as tetra Epoxyamine compounds such as glycidyl-1,3-bisaminomethylcyclohexane;
  • compounds having a (thio) carbonyl group include 4-aminoacetophenone such as 4-N, N-dimethylaminobenzophenone; bis (dihydrocarbylaminoalkyl) such as 1,7-bis (methylethylamino) -4-heptanone Ketones; dihydrocarbylaminoalkyl (meth) acrylates such as 2-dimethylaminoethyl acrylate; hydrocarbyl imidazolidinones such as 1,3-dimethyl-2-imidazolidinone; N-hydrocarbyl pyrrolidones such as 1-phenyl-2-pyrrolidone N
  • Examples of the compound (B2-3) include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate, and p-phenylene diene.
  • Examples include an isocyanate.
  • the compound (B2) it is particularly preferable to use the compound (B2-1) from the viewpoint of strong affinity with silica.
  • silane compound (B2-1) for the purpose of adjusting the Mooney viscosity of the modified copolymer, together with the silane compound (B2-1), silicon tetrachloride, an epoxy-containing compound (for example, tetraglycidyl-1, 3-bisaminomethylcyclohexane etc.) may be used.
  • an epoxy-containing compound for example, tetraglycidyl-1, 3-bisaminomethylcyclohexane etc.
  • R 6 is a hydrogen atom or a hydrocarbyl group, and a plurality of R 6 may be the same or different.
  • a 4 , R 3 , R 5 and n are as defined above. (It is synonymous with A ⁇ 1 >, R ⁇ 3 >, R ⁇ 5 > and n of Formula (1).)
  • the above terminal modification reaction can be performed as a solution reaction, for example.
  • This solution reaction may be performed using a solution containing unreacted monomers after completion of the polymerization reaction in the polymerization step, and the copolymer contained in the solution is isolated and dissolved in a suitable solvent such as cyclohexane. You may do it above.
  • the terminal modification reaction may be performed using either a batch system or a continuous system.
  • the method for adding the compound (B2) is not particularly limited, and examples thereof include a method of adding all at once, a method of adding in divided portions, and a method of adding continuously.
  • the amount of the compound (B2) used for the terminal modification reaction may be appropriately set according to the type of the compound used for the reaction, but is preferably 0.8 with respect to the metal atom involved in the polymerization reaction possessed by the polymerization initiator. 1 molar equivalent or more, more preferably 0.3 molar equivalent or more. By setting it to 0.1 molar equivalent or more, the modification reaction can be sufficiently advanced, and the dispersibility of silica can be suitably improved.
  • the temperature of the terminal modification reaction is usually the same as the temperature of the polymerization reaction, preferably ⁇ 20 to 150 ° C., more preferably 0 to 120 ° C., and particularly preferably 20 to 100 ° C. preferable.
  • the reaction time of the denaturation reaction is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the anionic polymerization can be stopped by adding a reaction terminator usually used in this field.
  • a reaction terminator include polar solvents having active protons such as alcohols such as methanol, ethanol and isopropanol or acetic acid and mixtures thereof, or polar solvents and nonpolar solvents such as hexane and cyclohexane. A mixed solution is mentioned.
  • the amount of the reaction terminator added is usually about the same molar amount or twice the molar amount relative to the anionic polymerization initiator.
  • a coupling agent may be added to the hydrocarbon solution of the copolymer from the start of the polymerization of the monomer to the recovery of the polymer described later.
  • the coupling agent include compounds represented by the following formula (2-1).
  • R 1 a ML 4-a (2-1) (In the formula (2-1), R 1 represents an alkyl group, an alkenyl group, a cycloalkenyl group or an aryl group, M represents a silicon atom or a tin atom, L represents a halogen atom or a hydrocarbyloxy group, and a represents Represents an integer of 0-2.)
  • Examples of the coupling agent represented by the above formula (2-1) include silicon tetrachloride, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, tin tetrachloride, methyltrichlorotin, dimethyldichlorotin, trimethylchlorotin, tetramethoxy
  • Examples include silane, methyltrimethoxysilane, dimethoxydimethylsilane, methyltriethoxysilane, ethyltrimethoxysilane, dimethoxydiethylsilane, diethoxydimethylsilane, tetraethoxysilane, ethyltriethoxysilane, and diethoxydiethylsilane.
  • the amount of the coupling agent added is preferably 0.03 mol or more, more preferably 0.05 mol or more, per 1 mol of alkali metal derived from the alkali metal catalyst in order to improve the processability of the polymer. Moreover, in order to improve low fuel consumption, Preferably it is 0.4 mol or less, More preferably, it is 0.3 mol or less.
  • hydrogenation there are no particular limitations on the hydrogenation method and reaction conditions, and hydrogenation may be performed using known methods and known conditions. Usually, it is carried out in the presence of a hydrogenation catalyst at 20 to 150 ° C. under hydrogen pressure of 0.1 to 10 MPa.
  • the hydrogenation rate can be arbitrarily selected by changing the amount of the hydrogenation catalyst, the hydrogen pressure during the hydrogenation reaction, the reaction time, and the like.
  • a hydrogenation catalyst a compound containing any of metals in groups 4 to 11 of the periodic table can be used.
  • a compound containing Ti, V, Co, Ni, Zr, Ru, Rh, Pd, Hf, Re, and Pt atoms can be used as the hydrogenation catalyst.
  • More specific hydrogenation catalysts include metallocene compounds such as Ti, Zr, Hf, Co, Ni, Pd, Pt, Ru, Rh, and Re; metals such as Pd, Ni, Pt, Rh, and Ru are carbon, A supported heterogeneous catalyst supported on a carrier such as silica, alumina, diatomaceous earth; a homogeneous Ziegler catalyst in which an organic salt of a metal element such as Ni or Co or an acetylacetone salt and a reducing agent such as organoaluminum is combined; Examples include organometallic compounds or complexes such as Ru and Rh; fullerenes and carbon nanotubes in which hydrogen is occluded.
  • metallocene compounds such as Ti, Zr, Hf, Co, Ni, Pd, Pt, Ru, Rh, and Re
  • metals such as Pd, Ni, Pt, Rh, and Ru are carbon
  • a supported heterogeneous catalyst supported on a carrier such as silica, alumina, diatomaceous
  • metallocene compounds containing any one of Ti, Zr, Hf, Co, and Ni are preferable in that they can be hydrogenated in a homogeneous system in an inert organic solvent. Furthermore, a metallocene compound containing any of Ti, Zr, and Hf is preferable.
  • a hydrogenation catalyst obtained by reacting a titanocene compound with an alkyl lithium is preferable because it is an inexpensive and industrially useful catalyst. Specific examples include, for example, JP-A-1-275605, JP-A-5-271326, JP-A-5-271325, JP-A-5-222115, JP-A-11-292924, and JP-A-11-292924.
  • JP 2000-37632 A, JP 59-133203 A, JP 63-5401 A, JP 62-218403 A, JP 7-90017 A, JP 43-19960 A Mention may be made of the hydrogenation catalyst described in JP-B 47-40473.
  • these hydrogenation catalysts can be used individually by 1 type or in combination of 2 or more types.
  • the content of the hydrogenated copolymer in 100% by mass of the rubber component is 75% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass. is there. If the content of the hydrogenated copolymer is less than 75% by mass, it tends to be difficult to obtain an effect of improving rubber breaking strength and wear resistance (particularly rubber breaking strength).
  • the hydrogenated copolymer is a hydrogenated styrene butadiene copolymer
  • the content of the hydrogenated styrene butadiene copolymer in 100% by mass of the rubber component is preferably 90% by mass or more, more preferably. Is 95% by mass or more, more preferably 100% by mass.
  • Examples of other rubber components that can be used other than the hydrogenated copolymer include conventional styrene butadiene copolymer rubber (SBR), polybutadiene rubber (BR), butadiene isoprene copolymer rubber, and butyl rubber. Moreover, natural rubber (NR), an ethylene propylene copolymer, an ethylene octene copolymer, etc. can be mentioned. Two or more of these rubber components may be used in combination.
  • the rubber composition in the present invention preferably further contains a filler.
  • the filler is blended in a rubber composition for the purpose of reinforcing rubber, for example, mica such as silica, calcium carbonate, sericite, aluminum hydroxide, magnesium oxide, magnesium hydroxide, White fillers such as clay, talc, alumina, titanium oxide and mica; carbon black and the like. These fillers may be used in combination of two or more.
  • the rubber composition in the present invention preferably contains silica and / or carbon black as a filler, more preferably contains silica, and further preferably contains silica and carbon black. Thereby, the effect of this invention is acquired more suitably.
  • the silica is not particularly limited, and examples thereof include dry method silica (anhydrous silica), wet method silica (hydrous silica), and the like, because there are many silanol groups. Wet silica is preferred.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 45 m 2 / g or more, more preferably 55 m 2 / g or more, still more preferably 60 m 2 / g or more, particularly preferably 100 m 2 / g or more, and most preferably. Is 150 m 2 / g or more. If it is less than 45 m 2 / g, the wear resistance and rubber breaking strength may be deteriorated. Further, N 2 SA of silica is preferably 350 m 2 / g or less, more preferably 300 m 2 / g or less, still more preferably 270 m 2 / g or less, and particularly preferably 220 m 2 / g or less.
  • the nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.
  • the content of silica is preferably 1 part by mass or more, more preferably 10 parts by mass or more, still more preferably 30 parts by mass or more, with respect to 100 parts by mass of the rubber component. Particularly preferred is 45 parts by mass or more. If the amount is less than 1 part by mass, the effect of blending silica cannot be sufficiently obtained, and the fuel economy and wear resistance tend to deteriorate.
  • the content of the silica is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, still more preferably 120 parts by mass or less, and particularly preferably 100 parts by mass or less. When the amount exceeds 200 parts by mass, silica is difficult to disperse, so that the workability, fuel efficiency, and wear resistance tend to deteriorate.
  • the rubber composition in this invention contains a filler
  • content of the silica in 100 mass% of fillers becomes like this.
  • it is 80 mass% or more, More preferably, it is 90 mass% or more. If it is less than 80% by mass, the effects of the present invention may not be sufficiently obtained.
  • carbon black is used as the remaining filler, wet grip performance tends to deteriorate. Further, if a filler other than carbon black is used, the wear resistance may be deteriorated.
  • the rubber composition in the present invention preferably uses a silane coupling agent in combination with silica.
  • a silane coupling agent in combination with silica.
  • silica and a silane coupling agent are blended together with the hydrogenated copolymer. As a result, a good crosslinked network can be formed, and the effects of the present invention can be obtained more suitably.
  • silane coupling agent conventionally known ones can be used.
  • silane coupling agent may be used independently and may be used in combination of 2 or more type.
  • sulfide-based silane coupling agents are preferred from the viewpoints of the coupling effect, processability, and cost of the silane coupling agent, such as bis (3-triethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl). Disulfide is more preferred.
  • 3 mass parts or more are preferable with respect to 100 mass parts of silica, and, as for content of a silane coupling agent, 5 mass parts or more are more preferable. If the amount is less than 3 parts by mass, the coupling effect is insufficient and high silica dispersion tends to be not obtained. Therefore, there is a possibility that the fuel efficiency and rubber breaking strength may be reduced. Moreover, 15 mass parts or less are preferable with respect to 100 mass parts of silica, and, as for content of a silane coupling agent, 10 mass parts or less are more preferable. When it exceeds 15 parts by mass, an excess silane coupling agent remains, which may cause deterioration in processability and fracture characteristics of the resulting rubber composition.
  • the carbon black may be a furnace black such as SAF, ISAF, HAF, MAF, FEF, SRF, GPF, APF, FF, CF, SCF and ECF.
  • Acetylene black acetylene carbon black
  • thermal black thermal carbon black
  • channel black channel carbon black
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is usually 5 to 200 m 2 / g.
  • the lower limit is preferably 50 m 2 / g, and more preferably 80 m 2 / g. It is preferable that the upper limit is 150 meters 2 / g, more preferably 120 m 2 / g.
  • Carbon black has a dibutyl phthalate (DBP) absorption of usually 5 to 300 ml / 100 g, preferably a lower limit of 80 ml / 100 g and an upper limit of 180 ml / 100 g.
  • DBP dibutyl phthalate
  • the reinforcing effect tends to be small and the wear resistance tends to decrease. If the upper limit of the above range is exceeded, dispersibility is poor and hysteresis loss increases. There is a tendency for fuel efficiency to decrease.
  • the nitrogen adsorption specific surface area is measured according to ASTM D4820-93, and the DBP absorption is measured according to ASTM D2414-93.
  • the content of carbon black is preferably 1 part by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component. If the amount is less than 1 part by mass, sufficient reinforcement may not be obtained.
  • the content of carbon black is preferably 60 parts by mass or less, more preferably 30 parts by mass or less, and still more preferably 15 parts by mass or less. If it exceeds 60 parts by mass, the fuel efficiency tends to deteriorate.
  • the rubber composition in the present invention contains a resin having a softening point of 60 to 120 ° C.
  • the resin is not particularly limited as long as it satisfies the softening point, and examples thereof include aromatic vinyl polymers, coumarone indene resins, indene resins, terpene resins, and rosin resins. These may be used alone or in combination of two or more. Of these, aromatic vinyl polymers, coumarone indene resins, terpene resins, rosin resins, and derivatives thereof are preferred because of their good adhesion when unvulcanized and low fuel consumption. An aromatic vinyl polymer and a coumarone indene resin are more preferable because they are suitably obtained.
  • An aromatic vinyl polymer is a resin obtained by polymerizing ⁇ -methylstyrene and / or styrene.
  • a polymer etc. are mentioned. Among them, a copolymer of ⁇ -methylstyrene and styrene is preferable because the effects of the present invention can be more suitably obtained.
  • Coumarone indene resin is a resin containing coumarone and indene as main monomer components constituting the skeleton (main chain) of the resin.
  • monomer components contained in the skeleton include styrene, ⁇ - Examples include methylstyrene, methylindene, vinyltoluene and the like.
  • An indene resin is a resin containing indene as a main monomer component constituting the resin skeleton (main chain).
  • the terpene resin is a resin obtained by polymerizing terpene compounds such as ⁇ -pinene, ⁇ -pinene, camphor and dipetene, and terpene phenols typified by terpene phenol which is a resin obtained from a terpene compound and a phenol compound.
  • the rosin resin is a rosin resin represented by natural rosin, polymerized rosin, modified rosin, ester compounds thereof, or hydrogenated products thereof.
  • the softening point of the resin is 60 ° C. or higher, preferably 75 ° C. or higher, more preferably 80 ° C. or higher. When the temperature is lower than 60 ° C., sufficient wet grip performance and wear resistance cannot be improved.
  • the softening point of the resin is 120 ° C. or lower, preferably 110 ° C. or lower, more preferably 100 ° C. or lower. When the temperature exceeds 120 ° C., the loss elastic modulus in the high temperature region significantly increases, and the fuel efficiency tends to deteriorate.
  • the softening point is a temperature at which a sphere descends when the softening point defined in JIS K 6220-1: 2001 is measured with a ring and ball softening point measuring apparatus.
  • the resin content of the specific softening point is 1 part by mass or more, preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and still more preferably 8 parts by mass with respect to 100 parts by mass of the rubber component. If the amount is less than 1 part by mass, sufficient effect of improving wet grip performance cannot be obtained.
  • the resin content is 30 parts by mass or less, preferably 25 parts by mass or less. When it exceeds 30 parts by mass, the elastic modulus of the rubber composition in the low temperature region is significantly increased, and the grip performance on the road surface on snow and the wet grip performance in the cold region tend to deteriorate.
  • the resin which has softening points other than the said specific softening point is preferable to use together with the resin of the said specific softening point.
  • a resin having a softening point lower than 60 ° C. rubber breaking strength and wet grip performance can be improved while maintaining good fuel economy and wear resistance.
  • the resin used in combination is not particularly limited as long as the softening point is other than 60 to 120 ° C., and examples thereof include aromatic vinyl polymers, coumarone indene resins, indene resins, terpene resins, and rosin resins. These may be used alone or in combination of two or more. Of these, aromatic vinyl polymers, coumarone indene resins, terpene resins, rosin resins, and derivatives thereof are preferred because of their good adhesion when unvulcanized and low fuel consumption. Coumarone indene resin is more preferable because it is suitably obtained.
  • the softening point of the resin used in combination is preferably ⁇ 40 ° C. or higher, more preferably ⁇ 20 ° C. or higher, still more preferably ⁇ 10 ° C. or higher, and particularly preferably 0 ° C. or higher.
  • the softening point is preferably 45 ° C. or lower, more preferably 40 ° C. or lower, and further preferably 35 ° C. or lower.
  • the content of the resin used in combination is preferably 1 part by mass or more and more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the content is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, and still more preferably 8 parts by mass or less.
  • the content of the resin used in combination is within the above range, the effect of improving wet grip performance and rubber breaking strength can be more suitably obtained.
  • the rubber composition in the present invention includes a vulcanizing agent such as sulfur; a thiazole vulcanization accelerator, a thiuram vulcanization accelerator, a sulfenamide vulcanization accelerator, and a guanidine vulcanization accelerator.
  • Vulcanization accelerators such as agents; vulcanization activators such as stearic acid and zinc oxide; organic peroxides; processing aids such as extenders (oils) and lubricants; Can be used.
  • extending oil oil
  • aromatic mineral oil viscosity specific gravity constant (VGC value) 0.900 to 1.049
  • naphthenic mineral oil VCC value 0. 850 to 0.899
  • paraffinic mineral oil VCC value 0.790 to 0.849
  • the polycyclic aromatic content of the extender oil is preferably less than 3% by mass, more preferably less than 1% by mass.
  • the polycyclic aromatic content is measured according to the British Petroleum Institute 346/92 method.
  • the aromatic compound content (CA) of the extending oil is preferably 20% by mass or more.
  • the extension oil, a resin having a softening point of 60 to 120 ° C., and a resin other than the softening point of 60 to 120 ° C. preferably an extension oil, a resin having a softening point of 60 to 120 ° C.
  • the total content is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, and preferably 50 parts by mass or less, more preferably 100 parts by mass with respect to 100 parts by mass of the rubber component. Is 40 parts by mass or less, more preferably 30 parts by mass or less.
  • vulcanization accelerators include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; tetramethylthiuram monosulfide, tetramethylthiuram disulfide Thiuram vulcanization accelerators such as: N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N- Sulfenamide vulcanization accelerators such as oxyethylene-2-benzothiazole sulfenamide, N, N′-diisopropyl-2-benzothiazole sulfenamide; diphenylguanidine, dioltolylguanidine, orthotolylbiguanidine, etc.
  • emission-based vulcanization accelerator It can be mentioned emission-based vulcanization accelerator. Of these, sulfenamide-based vulcanization accelerators are preferable and N-cyclohexyl-2-benzothiazole sulfenamide is more preferable because the effects of the present invention can be more suitably obtained. It is also preferable to use a guanidine vulcanization accelerator in combination.
  • the amount of the vulcanization accelerator used is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass with respect to 100 parts by mass of the rubber component.
  • Sulfur can be used conveniently.
  • the sulfur content is preferably 0.5 to 5 parts by mass, more preferably 1 to 3 parts by mass with respect to 100 parts by mass of the rubber component. Thereby, the effect of this invention is acquired more suitably.
  • the rubber composition in the present invention is produced by a general method. That is, it can be produced by a method of kneading the above components with a Banbury mixer, a kneader, an open roll or the like and then vulcanizing.
  • the rubber composition in the present invention can be used for each member (tread, sidewall, carcass, belt, bead, etc.) of a tire, and is particularly preferably used as a tire tread.
  • the tread includes a surface layer (cap tread) and an inner surface layer (base tread).
  • a tread having a multilayer structure is manufactured by a method in which a sheet is bonded to a predetermined shape, or a method in which two or more extruders are loaded and two or more layers are formed at the head outlet of the extruder. Can do.
  • the pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, a rubber composition containing a hydrogenated copolymer, a resin having a softening point of 60 to 120 ° C. and, if necessary, the above various compounding agents, a tire composition such as a tread at an unvulcanized stage.
  • the unvulcanized tire is formed by extruding to match the shape of the tire and molding it together with other tire members on a tire molding machine by a normal method.
  • the pneumatic tire of the present invention is obtained by heating and pressurizing the unvulcanized tire in a vulcanizer.
  • the pneumatic tire of the present invention is preferably used as a tire for passenger cars, a tire for trucks and buses, a tire for motorcycles, a tire for competition, and the like, and particularly preferably used as a tire for passenger cars.
  • n-hexane Kanto Chemical Co., Ltd.
  • Styrene Kanto Chemical Co., Ltd.
  • Butadiene Tokyo Chemical Industry Co., Ltd.
  • 1,3-butadiene TMEDA Kanto Chemical Co., Ltd. N, N, N ', N '-Tetramethylethylenediamine n-butyllithium solution: 1.6M n-butyllithium hexane solution manufactured by Kanto Chemical Co., Inc.
  • 2,6-di-tert-butyl-p-cresol manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. No crack 200 Alcohol: Ethanolamine modifier manufactured by Kanto Chemical Co., Inc .: N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane
  • H 1 -NMR was measured at 25 ° C. using a JEOL JNM-A 400 NMR apparatus, and phenyl protons based on 6.5 to 7.2 ppm styrene units and 4.9 to 5.4 ppm butadiene were obtained from the spectrum.
  • the styrene content was determined from the ratio of vinyl protons based on units.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the copolymer were determined by gel permeation chromatography (GPC) (GPC-8000 series, manufactured by Tosoh Corporation), detector: differential refractometer, column: Tosoh Corporation ) Obtained by TSKGEL SUPERMULTIPORE HZ-M, manufactured by TSKGEL).
  • GPC gel permeation chromatography
  • TSKGEL SUPERMULTIPORE HZ-M manufactured by TSKGEL
  • the glass transition temperature (Tg) is measured in accordance with JIS K 7121 using a differential scanning calorimeter (Q200) manufactured by TA Instruments Japan while raising the temperature at a heating rate of 10 ° C./min. Thus, the glass transition start temperature was determined.
  • copolymer (1) had a weight average molecular weight (Mw) of 490,000 and a styrene content of 30% by mass.
  • Synthesis Example 2 (Synthesis of copolymer (2): hydrogenation rate 60 mol%, hydrogenated SBR) A copolymer (2) was obtained by the same formulation as the copolymer (1) except that the obtained polymer was hydrogenated. That is, after the polymerization conversion reaction in the copolymer (1), alcohol is not added to stop the polymerization reaction, and then the mixture is stirred for 20 minutes while supplying hydrogen gas at a pressure of 0.4 MPa-Gauge. Reaction with terminal lithium gave lithium hydride. Hydrogenation was performed using a catalyst mainly composed of titanocene dichloride at a hydrogen gas supply pressure of 0.7 MPa-Gauge, a reaction temperature of 90 ° C.
  • the reaction temperature is brought to room temperature, the hydrogen pressure is returned to normal pressure, the reaction vessel is withdrawn from the reaction vessel, the reaction solution is stirred into water, and the solvent is steamed.
  • the copolymer (2) was obtained by removing by stripping.
  • the resulting copolymer (2) had a hydrogenation rate of 60 mol% and a weight average molecular weight (Mw) of 450,000.
  • Synthesis Example 3 (Synthesis of copolymer (3): hydrogenation rate 80 mol%, hydrogenated SBR) A copolymer (3) was obtained by the same formulation as the copolymer (2) except that the cumulative amount of hydrogen suction was adjusted so as to achieve the target hydrogenation rate. The resulting copolymer (3) had a hydrogenation rate of 80 mol% and a weight average molecular weight (Mw) of 480,000.
  • Synthesis Example 4 (Synthesis of copolymer (4): hydrogenation rate 95 mol%, hydrogenated SBR) A copolymer (4) was obtained by the same formulation as the copolymer (2) except that the integrated amount of hydrogen suction was adjusted so as to achieve the target hydrogenation rate. The resulting copolymer (4) had a hydrogenation rate of 95 mol% and a weight average molecular weight (Mw) of 450,000.
  • Synthesis Example 5 (Synthesis of copolymer (5): hydrogenation rate 95 mol%, hydrogenated modified SBR) Add 2000 ml of n-hexane, 60 g of styrene, 140 g of 1,3-butadiene, 0.93 g of TMEDA, and 0.45 mmol of n-butyllithium to a heat-resistant reaction vessel sufficiently purged with nitrogen, and stir at 50 ° C. for 5 hours to carry out the polymerization reaction. went. Thereafter, 0.15 mol of an amine-based modifier was added and stirred at 0 ° C. for 1 hour.
  • a copolymer (5) was obtained according to the same formulation as the copolymer (2) except that the integrated amount of hydrogen suction was adjusted.
  • the resulting copolymer (5) had a hydrogenation rate of 95 mol% and a weight average molecular weight (Mw) before modification of 440,000.
  • Copolymers (1) to (5) Synthetic natural rubber by the above method: TSR20 Carbon black: Dia Black N339 manufactured by Mitsubishi Chemical Corporation (N 2 SA: 96 m 2 / g, DBP absorption: 124 ml / 100 g) Oil: X-140 manufactured by Japan Energy Co., Ltd.
  • Stearic acid Beads manufactured by NOF Corporation
  • Zinc stearate Zinc oxide Zinc flower No. 1 manufactured by Mitsui Kinzoku Mining Co., Ltd.
  • Wax Sunnock N manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Sulfur Powder sulfur vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd. (1): Soxinol CZ (N-cyclohexyl-2-benzothiazolylsulfenamide) manufactured by Sumitomo Chemical Co., Ltd.
  • Vulcanization accelerator (2) Soxinol D (1,3-diphenylguanidine) manufactured by Sumitomo Chemical Co., Ltd.
  • the obtained unvulcanized rubber composition is molded into a tread shape and bonded together with other tire members on a tire molding machine to form an unvulcanized tire, which is vulcanized at 170 ° C. for 12 minutes, and tested.
  • Tires (size: 195 / 65R15) were manufactured.
  • tan ⁇ of the vulcanized rubber composition was measured at a dynamic strain amplitude of 1%, a frequency of 10 Hz, and a temperature of 50 ° C.
  • the reciprocal value of tan ⁇ was expressed as an index with Comparative Example 1 being 100. Larger values indicate lower rolling resistance and better fuel efficiency. A good index was determined when the index was 95 or higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、良好な低燃費性が維持されつつ、ゴム破壊強度、耐摩耗性及びウェットグリップ性能が改善された空気入りタイヤを提供する。 本発明は、ゴム組成物を用いて作製した空気入りタイヤであって、前記ゴム組成物は、芳香族ビニル化合物及び共役ジエン化合物を共重合して得られた、共役ジエン部の水素添加率が75モル%以上である水添共重合体と、軟化点が60~120℃のレジンとを含み、ゴム成分100質量%中の前記水添共重合体の含有量が75質量%以上であり、ゴム成分100質量部に対する前記レジンの含有量が1~30質量部である空気入りタイヤに関する。

Description

空気入りタイヤ
本発明は、所定のゴム組成物を用いて作製した空気入りタイヤに関する。
近年、環境問題への関心の高まりから、自動車に対して低燃費化の要求が強くなっており、自動車用タイヤに用いるゴム組成物に対しても、低燃費性に優れることが求められている。自動車タイヤ用のゴム組成物としては、ポリブタジエンやブタジエン-スチレン共重合体などの共役ジエン系重合体と、カーボンブラックやシリカなどの充填剤とを含有するゴム組成物などが用いられている。
低燃費性を改善する方法として、例えば、特許文献1では、アミノ基及びアルコキシ基を含有する有機ケイ素化合物で変性されたジエン系ゴム(変性ゴム)を用いる方法が提案されている。このような従来技術により低燃費性は改善されるものの、経済性及び安全性の観点からは、耐摩耗性、破壊特性(ゴム破壊強度)及びウェットグリップ性能を充分に確保することも重要な課題である。上記課題に対し、従来技術では、低燃費性に対して背反性能となる耐摩耗性やウェットグリップ性能が充分でなく、また、ゴム欠けを引き起こしてしまう問題があり、ゴム破壊強度、耐摩耗性及びウェットグリップ性能については改善の余地がある。
特開2000-344955号公報
本発明は、上記課題を解決し、良好な低燃費性が維持されつつ、ゴム破壊強度、耐摩耗性及びウェットグリップ性能が改善された空気入りタイヤを提供することを目的とする。
本発明は、ゴム組成物を用いて作製した空気入りタイヤであって、前記ゴム組成物は、芳香族ビニル化合物及び共役ジエン化合物を共重合して得られた、共役ジエン部の水素添加率が75モル%以上である水添共重合体と、軟化点が60~120℃のレジンとを含み、ゴム成分100質量%中の前記水添共重合体の含有量が75質量%以上であり、ゴム成分100質量部に対する前記レジンの含有量が1~30質量部である空気入りタイヤに関する。
前記水添共重合体の重量平均分子量が200,000~2,000,000であることが好ましい。
前記水添共重合体の水素添加率が90モル%以上であることが好ましい。
前記水添共重合体が水添スチレンブタジエン共重合体であることが好ましい。
前記水添スチレンブタジエン共重合体が水添変性スチレンブタジエン共重合体であることが好ましい。
前記水添スチレンブタジエン共重合体のスチレン含有量が5~40質量%であることが好ましい。
ゴム成分100質量%中の前記水添スチレンブタジエン共重合体の含有量が90~100質量%であることが好ましい。
前記ゴム組成物は、シリカ及び/又はカーボンブラックを更に含み、ゴム成分100質量部に対して、シリカの含有量が1~200質量部、カーボンブラックの含有量が1質量部以上であることが好ましい。
本発明によれば、水素添加率が75モル%以上である特定の水添共重合体をゴム成分100質量%中に75質量%以上含み、更に、軟化点が60~120℃のレジンをゴム成分100質量部に対して1~30質量部含むゴム組成物を用いて作製した空気入りタイヤであるので、良好な低燃費性、ゴム破壊強度、耐摩耗性及びウェットグリップ性能を有する。
本発明の空気入りタイヤは、芳香族ビニル化合物及び共役ジエン化合物を共重合して得られた共重合体(以下においては、芳香族ビニル化合物及び共役ジエン化合物の共重合体ともいう)の共役ジエン部が水素添加され、水素添加率が75モル%以上である水添共重合体を、ゴム成分100質量%中に75質量%以上含み、更に、軟化点が60~120℃のレジンを、ゴム成分100質量部に対して1~30質量部含むゴム組成物を用いて作製したものである。
本発明におけるゴム組成物は、芳香族ビニル化合物及び共役ジエン化合物の共重合体の共役ジエン部が水素添加され、水素添加率が75モル%以上である水添共重合体を、ゴム成分100質量%中に75質量%以上含んでいる。これにより、良好な低燃費性及びウェットグリップ性能を維持又は改善しつつ、ゴム破壊強度及び耐摩耗性を良好に改善できる。更に、上記水添共重合体とともに軟化点が60~120℃のレジンを特定量配合することで、ウェットグリップ性能を良好に改善できると共に、ゴム破壊強度及び耐摩耗性を相乗的に改善できる。その結果、良好な低燃費性を維持しつつ、ゴム破壊強度、耐摩耗性及びウェットグリップ性能(特に、ゴム破壊強度)を顕著に改善できる。
本発明におけるゴム組成物は、ゴム成分として、芳香族ビニル化合物及び共役ジエン化合物の共重合体の共役ジエン部が水素添加された水添共重合体を含んでいることを特徴としている。通常のゴムは、架橋の反応点となる二重結合部が多数存在するため、架橋の疎密が発生してしまい、この架橋疎密が応力集中による破壊の起点になると考えられる。本発明では、水添処理により二重結合部を減らすことで、架橋の反応点を減らしている。これにより、架橋疎密が低減され、応力集中が緩和されることで、耐摩耗性等が向上すると予想される。
芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、1-ビニルナフタレン、3-ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4-シクロヘキシルスチレン、2,4,6-トリメチルスチレンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよいが、これらの中で、モノマーの入手容易性などの実用面の観点及び本発明の効果がより好適に得られるという理由からスチレンが特に好ましい。
共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン、1,3-ヘキサジエンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよいが、これらの中で、モノマーの入手容易性などの実用面の観点及び本発明の効果がより好適に得られるという理由から1,3-ブタジエン、イソプレンが好ましく、1,3-ブタジエンがより好ましい。
芳香族ビニル化合物及び共役ジエン化合物の共重合体としては、スチレン及び1,3-ブタジエンの共重合体(スチレンブタジエン共重合体)が好ましい。従って、水添共重合体としては、水添スチレンブタジエン共重合体が好ましい。更に、水添スチレンブタジエン共重合体は、後述の方法で変性された水添変性スチレンブタジエン共重合体であることが好ましい。
上記スチレンブタジエン共重合体は、スチレン及び1,3-ブタジエンを共重合させるものである限り、共重合させる順序に特に限定はなく、ランダム共重合でもブロック共重合でもよいが、ランダム共重合が好ましい。スチレンブタジエン共重合体以外の芳香族ビニル化合物及び共役ジエン化合物の共重合体の場合も同様である。
水添共重合体の水素添加率(芳香族ビニル化合物及び共役ジエン化合物の共重合体の共役ジエン部に対して水素添加された割合)は75モル%以上であり、好ましくは80モル%以上、より好ましくは90モル%以上、更に好ましくは93モル%以上である。水素添加率が75モル%未満では、ゴム破壊強度及び耐摩耗性の改善が困難である。また、水添共重合体の水素添加率は、好ましくは99モル%以下、より好ましくは98モル%以下である。水素添加率が99モル%を超えると、ゴム組成物が硬くなるおそれがある。
なお、水素添加率は、H-NMRを測定して得られたスペクトルの不飽和結合部のスペクトル減少率から計算することができる。
水添共重合体の重量平均分子量(Mw)は、好ましくは200,000以上、より好ましくは400,000以上である。Mwが200,000未満では、良好なゴム破壊強度及び耐摩耗性が得られないおそれがある。また、水添共重合体のMwは、好ましくは2,000,000以下、より好ましくは1,000,000以下であり、更に好ましくは700,000以下である。Mwが2,000,000を超えると、加工性が低下する傾向がある。
なお、本明細書において、重量平均分子量(Mw)、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
水添共重合体のガラス転移温度(Tg)は、-45℃以上が好ましく、-35℃以上がより好ましく、-30℃以上が更に好ましく、-25℃以上が更により好ましく、-24.5℃以上が特に好ましく、-24℃以上が最も好ましい。Tgが-45℃未満であると、充分なウェットグリップ性能が得られないおそれがある。また、水添共重合体のTgは、-10℃未満が好ましく、-12.5℃未満がより好ましく、-15℃未満が更に好ましく、-20℃未満が特に好ましい。Tgが-10℃以上であると、充分な低温特性が得られないおそれがある。
なお、水添共重合体のガラス転移温度(Tg)は、後述の実施例の記載の方法により測定される。
水添共重合体が水添スチレンブタジエン共重合体である場合、水添スチレンブタジエン共重合体のスチレン含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、特に好ましくは20質量%以上であり、最も好ましくは25質量%以上である。スチレン含有量が5質量%未満であると、充分なグリップ性能が得られないおそれがある。また、水添スチレンブタジエン共重合体のスチレン含有量は、好ましくは40質量%以下、より好ましくは35質量%以下である。スチレン含有量が40質量%を超えると、充分なゴム破壊強度及び耐摩耗性が得られず、低燃費性も悪化するおそれがある。スチレン含有量が上記範囲内であると、本発明の効果がより好適に得られる。
なお、スチレン含有量は、後述する実施例に記載の方法により測定される。
上記水添共重合体は、例えば、芳香族ビニル化合物及び共役ジエン化合物を重合して得られた重合体に水素添加処理を施すことで合成でき、具体的には以下の方法で合成できる。
<共重合体の製造方法>
(重合方法)
芳香族ビニル化合物及び共役ジエン化合物の共重合体の重合方法については特に制限はなく、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、特に溶液重合法が好ましい。また、重合形式は、回分式及び連続式のいずれであってもよい。
溶液重合法を用いた場合には、溶媒中のモノマー濃度(スチレンブタジエン共重合体の場合はスチレン、1,3-ブタジエンの合計)は、5質量%以上が好ましく、10質量%以上がより好ましい。溶液中のモノマー濃度が5質量%未満では、得られる共重合体の量が少なく、コストが高くなる傾向がある。また、溶媒中のモノマー濃度は50質量%以下が好ましく、30質量%以下がより好ましい。溶媒中のモノマー濃度が50質量%を超えると、溶液粘度が高くなりすぎて撹拌が困難となり、重合しにくくなる傾向がある。
(アニオン重合における重合開始剤)
アニオン重合を行う場合、重合開始剤としては特に制限はないが、有機リチウム化合物が好ましく用いられる。前記有機リチウム化合物としては、炭素数2~20のアルキル基を有するものが好ましく、例えばエチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチルーフェニルリチウム、4-フェニル-ブチルリチウム、シクロヘキシルリチウム、シクロペンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物などが挙げられるが、これらの中で、入手容易性、安全性等の観点からn-ブチルリチウムまたはsec-ブチルリチウムが好ましい。
また、重合反応は、上記の有機リチウム化合物のうち少なくともいずれかと、シリカと相互作用する官能基を有する化合物(B1)とを混合して得られる化合物(R)の存在下で行ってもよい。当該化合物(R)の存在下で重合を行うことにより、共重合体の重合開始末端に、シリカと相互作用を有する官能基を導入することができる。これにより、開始末端が変性された共重合体が得られる。なお、本明細書において「相互作用」とは、分子間で共有結合を形成するか、又は共有結合よりも弱い分子間力(例えば、イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することを意味する。また、「シリカと相互作用する官能基」は、窒素原子、硫黄原子、リン原子、酸素原子などのシリカと相互作用する原子を少なくとも1つ有する基を示す。
上記化合物(R)としては、中でも有機リチウム化合物と、第2級アミン化合物などの窒素含有化合物との反応生成物であることが好ましい。当該窒素含有化合物の具体例としては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。なお、化合物(R)の存在下で重合を行う場合、有機リチウム化合物と、化合物(B1)とを予め混合することにより化合物(R)を調製し、その調製した化合物(R)を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、有機リチウム化合物と、化合物(B1)とを添加し、重合系中で両者を混合することにより化合物(R)を調製して重合を行ってもよい。
(アニオン重合の方法)
前記重合開始剤を用いてアニオン重合し、共重合体を製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。
具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物などの炭化水素系溶剤中において、例えばブチルリチウムを重合開始剤とし、必要に応じてランダマイザーの存在下でスチレン及び1,3-ブタジエン等をアニオン重合させることにより、スチレンブタジエン共重合体等の目的の共重合体を得ることができる。
(アニオン重合における炭化水素系溶剤)
前記炭化水素系溶剤としては、炭素数3~8のものが好ましく、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼンなどを挙げることができる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
(アニオン重合におけるランダマイザー)
また、前記ランダマイザーとは、共重合体中の共役ジエン部分のミクロ構造制御、例えばブタジエンにおける1,2-結合、イソプレンにおける3,4-結合の増加など、あるいは共重合体におけるモノマー単位の組成分布の制御、例えばスチレンブタジエン共重合体におけるスチレン単位、ブタジエン単位のランダム化などの作用を有する化合物のことである。このランダマイザーとしては、特に制限はなく、従来ランダマイザーとして般に使用されている公知の化合物の中から任意のものを用いることができる。例えば、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ビステトラヒドロフリルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、N,N,N’,N’-テトラメチルエチレンジアミン、1,2-ジピペリジノエタンなどのエーテル類及び第三級アミン類などを挙げることができる。また、カリウム-t-アミレート、カリウム-t-ブトキシドなどのカリウム塩類、ナトリウム-t-アミレートなどのナトリウム塩類も用いることができる。これらのランダマイザーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、ランダマイザーの使用量は、有機リチウム化合物1モル当たり、0.01モル当量以上が好ましく、0.05モル当量以上がより好ましい。ランダマイザーの使用量が0.01モル当量未満では、添加効果が小さく、ランダム化しにくい傾向がある。また、ランダマイザーの使用量は、有機リチウム化合物1モル当たり1000モル当量以下が好ましく、500モル当量以下がより好ましい。ランダマイザーの使用量が1000モル当量を超えると、モノマーの反応速度が大きく変化してしまい、逆にランダム化しにくくなる傾向がある。
ランダマイザーの種類や使用量を調整することにより、共重合体のTgを調整することができる。例えば、テトラヒドロフランの量を減量することにより、共重合体のTgを低くできる。
(反応温度)
アニオン重合の際の反応温度は、好適に反応が進行する限り特に限定はないが、通常-10℃~100℃であることが好ましく、25℃~70℃であることがより好ましい。
(変性工程)
上記重合の工程により得られた共重合体の活性末端と、シリカと相互作用する官能基を有する化合物(B2)とを反応させる工程により、共重合体の重合終了末端に、シリカと相互作用する官能基を導入することができる。これにより、重合終了末端が変性された共重合体が得られる。なお、本発明において末端とは、分子鎖の端に存在する、炭素-炭素二重結合を有するモノマーに由来する構造以外の部分を意味する。
上記変性反応(以下、末端変性反応ともいう。)に用いる共重合体は、活性末端を有している限り、重合開始末端が未変性のものでもよいし、変性されたものでもよい。また、化合物(B2)としては、シリカと相互作用する官能基を有し、かつ重合活性末端と反応し得る化合物であれば特に限定しない。化合物(B2)の好ましい具体例としては、例えば
(I)下記式(1)で表される化合物(B2-1);
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Aは、窒素原子、リン原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、活性水素を有さず、かつRに対して窒素原子、リン原子又は硫黄原子で結合する1価の官能基である。R及びRはヒドロカルビル基であり、Rはヒドロカルビレン基であり、nは0~2の整数である。但し、R及びRが複数存在する場合、複数のR及びRは、それぞれ同じでも異なっていてもよい。)
(II)分子中に、環状エーテル基、(チオ)カルボニル基及びイソ(チオ)シアナート基からなる群より選択される少なくとも1種の官能基(x1)と、窒素原子、リン原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子(但し、窒素原子、リン原子及び硫黄原子は、少なくともいずれかが3置換のヒドロカルビルシリル基で保護されていてもよい。)を有し、かつ活性水素を有していない、前記官能基(x1)とは異なる基(x2)と、を各々1つ以上有する化合物(B2-2);
(III)分子中に、イソ(チオ)シアナート基を2つ以上有する化合物(B2-3);
等が挙げられる。化合物(B2)としては、これらを一種単独で又は二種以上を組み合わせて使用することができる。なお、本明細書において、(チオ)カルボニル基は、カルボニル基及びチオカルボニル基を示し、イソ(チオ)シアナート基は、イソシアナート基及びイソチオシアナート基を示す。
上記式(1)において、R及びRのヒドロカルビル基としては、炭素数1~20の直鎖状若しくは分岐状のアルキル基、炭素数3~20のシクロアルキル基又は炭素数6~20のアリール基であることが好ましい。
は、炭素数1~20の直鎖状若しくは分岐状のアルカンジイル基、炭素数3~20のシクロアルキレン基又は炭素数6~20のアリーレン基であることが好ましい。
nは、共重合体との反応性を高める観点から、0又は1が好ましい。
は、窒素原子、リン原子及び硫黄原子からなる群より選択される少なくとも一種の原子(以下、特定原子ともいう。)を有し、これら特定原子でRに結合する。特定原子は活性水素に結合しておらず、例えば3置換のヒドロカルビルシリル基等で保護されていてもよい。なお、ここでいう「活性水素」とは、炭素原子以外の原子に結合した水素原子をいい、好ましくはポリメチレンの炭素-水素結合よりも結合エネルギが低いものを指す。
は、中でも、オニウム塩生成剤によってオニウムイオンになり得る基であることが好ましい。化合物(B2)がこのような基(A)を有することにより、変性共重合体に対して優れた形状保持性を付与することができる。
の具体例としては、例えば1級アミノ基の2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミノ基の1つの水素原子が1つの保護基によって置換されてなる窒素含有基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基の2つの水素原子が2つの保護基によって置換されてなるリン含有基、2級ホスフィノ基の1つの水素原子が1つの保護基によって置換されてなるリン含有基、3級ホスフィノ基、及び、チオール基の1つの水素原子が1つの保護基によって置換されてなる硫黄含有基等が挙げられる。これらの中でも、シリカとの親和性が良好である観点から、窒素原子を有する基であることが好ましい。なお、「保護基」とは、Aを重合活性末端に対して不活性な官能基に変換しておく官能基であり、例えば3置換のヒドロカルビルシリル基等が挙げられる。
上記化合物(B2-1)の具体例としては、1級アミンの2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミンの1つの水素原子が1つの保護基によって置換されてなる窒素含有基、又は3級アミノ基と、アルコキシシリル基とを有する化合物として、例えば、N,N-ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルメチルジメトキシシラン、等を挙げることができる。
イミノ基又はピリジル基と、アルコキシシリル基とを有する化合物としては、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(4-N,N-ジメチルアミノベンジリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(シクロヘキシリデン)-3-(トリエトキシシリル)-1-プロパンアミン及びこれらのトリエトキシシリル化合物に対応するトリメトキシシリル化合物、メチルジエトキシシリル化合物、エチルジメトキシシリル化合物、N-(3-トリメトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-(3-トリメトキシシリルプロピル)-4,5-イミダゾール、N-(3-トリエトキシシリルプロピル)-4,5-イミダゾール、3-ヘキサメチレンイミノプロピルトリメトキシシラン、3-ヘキサメチレンイミノプロピルメチルジメトキシシラン、並びに上記化合物中のアルキル基、アルカンジイル基を、各々炭素数1~6のアルキル基、炭素数1~6のアルカンジイル基に置き換えた化合物等が挙げられる。
1級ホスフィノ基の2つの水素原子が2つの保護基によって置換されてなるリン含有基、2級ホスフィノ基の1つの水素原子が1つの保護基によって置換されてなるリン含有基、3級ホスフィノ基、又はチオール基の1つの水素原子が1つの保護基によって置換されてなる硫黄含有基と、アルコキシシリル基とを有する化合物としては、P,P-ビス(トリメチルシリル)ホスフィノプロピルメチルジメトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノプロピルトリメトキシシラン、3-ジメチルフォスフィノプロピルトリメトキシシラン、3-ジメチルフォスフィノプロピルメチルジメトキシシラン、3-ジフェニルフォスフィノプロピルトリメトキシシラン、3-ジフェニルフォスフィノプロピルトリエトキシシラン、3-ジフェニルフォスフィノプロピルメリルジメトキシシラン、S-トリメチルシリルメルカプトプロピルメチルジメトキシシラン、S-トリメチルシリルメルカプトプロピルトリメトキシシラン、S-トリメチルシリルメルカプトプロピルトリエトキシシラン、S-トリメチルシリルメルカプトプロピルメチルジエトキシシラン、及び上記化合物中のアルキル基、アルカンジイル基を、各々炭素数1~6のアルキル基、炭素数1~6のアルカンジイル基に置き換えた化合物等を挙げることができる。その他、イソ(チオ)シアナート基を有する化合物として、3-イソシアナトプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン等を挙げることができる。
上記化合物(B2-2)は、上記基(x2)が、活性水素に結合していない窒素原子を含む基であることが好ましく、その具体例としては、環状エーテル基を有する化合物として、例えばテトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等のエポキシアミン化合物などを;
(チオ)カルボニル基を有する化合物として、例えば4-N,N-ジメチルアミノベンゾフェノン等の4-アミノアセトフェノン;1,7-ビス(メチルエチルアミノ)-4-ヘプタノン等のビス(ジヒドロカルビルアミノアルキル)ケトン;2-ジメチルアミノエチルアクリレート等のジヒドロカルビルアミノアルキル(メタ)アクリレート;1,3-ジメチル-2-イミダゾリジノン等のヒドロカルビルイミダゾリジノン;1-フェニル-2-ピロリドン等のN-ヒドロカルビルピロリドン;N-メチル-ε-カプロラクタム等のN-ヒロドカルビルカプトラクタム;N,N-ジエチルホルムアミド等のN-ジヒドロカルビルホルムアミド;N,N-ジメチルアセトアミド等のN,N-ジヒドロカルビルアセトアミド;N,N-ジメチルアクリルアミド等の(メタ)アクリルアミド;などを;
イソ(チオ)シアナート基を有する化合物として、例えば3-イソシアナトプロピルトリメトキシシランなどを;挙げることができる。
上記化合物(B2-3)としては、例えば2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ナフタレンジイソシアナート、トリフェニルメタントリイソシアナート、p-フェニレンジイソシアナート、トリス(イソシアナートフェニル)チオホスフェート、キシレンジイソシアナート、ベンゼン-1,2,4-トリイソシアナート、ナフタレン-1,2,5,7-テトライソシアナート、1,4-フェニレンジイソチオシアナートなどを挙げることができる。
化合物(B2)としては、シリカとの親和性が強い点において、特に化合物(B2-1)を用いることが好ましい。なお、シラン化合物(B2-1)を用いる場合、変性共重合体のムーニー粘度を調整する目的で、シラン化合物(B2-1)と共に、四塩化ケイ素、エポキシ含有化合物(例えば、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサンなど)などを用いてもよい。上記で例示した化合物(B2)は、重合終了末端が変性された変性共重合体を得ることが可能である点において、いずれも同様の作用を有するものである。したがって、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。なお、上記式(1)で表される化合物と変性共重合体との反応によって下記式(1-1)で表される構造が重合体末端に導入される。
Figure JPOXMLDOC01-appb-C000002
(一般式(1-1)中、Rは水素原子またはヒドロカルビル基であり、複数存在するRは同じであっても異なっていてもよい。A、R、R及びnは上記式(1)のA、R、R及びnと同義である。)
上記の末端変性反応は、例えば溶液反応として行うことができる。この溶液反応は、上記重合工程における重合反応の終了後の未反応モノマーを含む溶液を用いて行ってもよく、当該溶液に含まれる共重合体を単離し、シクロヘキサン等の適当な溶媒に溶解した上で行ってもよい。また、末端変性反応は、回分式及び連続式のいずれを用いて行ってもよい。このとき、化合物(B2)の添加方法は特に制限されず、一括して添加する方法、分割して添加する方法、連続的に添加する方法などが挙げられる。
末端変性反応に使用する化合物(B2)の量は、反応に使用する化合物の種類に応じて適宜設定すればよいが、重合開始剤が有する重合反応に関与する金属原子に対し、好ましくは0.1モル当量以上、より好ましくは0.3モル当量以上である。0.1モル当量以上とすることにより、変性反応を十分に進行させることができ、シリカの分散性を好適に改良することができる。
末端変性反応の温度は、通常、上記重合反応の温度と同じであり、-20~150℃であることが好ましく、0~120℃であることがより好ましく、20~100℃であることが特に好ましい。変性反応の温度が低いと、変性共重合体の粘度が上昇する傾向がある。一方、変性反応の温度が高いと、重合活性末端が失活しやすくなる。変性反応の反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。
(反応停止)
上記アニオン重合は、この分野で通常使用する反応停止剤の添加により、停止させることができる。そのような反応停止剤としては、例えば、メタノール、エタノール、イソプロパノールなどのアルコールまたは酢酸などの活性プロトンを有する極性溶媒およびこれらの混液、またはそれらの極性溶媒とヘキサン、シクロヘキサンなどの無極性溶媒との混液が挙げられる。反応停止剤の添加量は、通常、アニオン重合開始剤に対し、同モル量もしくは2倍モル量程度で充分である。
<カップリング>
上記共重合体の製造方法においては、単量体の重合開始から、後述する重合体の回収までに、共重合体の炭化水素溶液にカップリング剤を添加してもよい。カップリング剤としては、下記式(2-1)で表される化合物を挙げることができる。
  R ML4-a      (2-1)
(式(2-1)中、Rはアルキル基、アルケニル基、シクロアルケニル基またはアリール基を表し、Mはケイ素原子またはスズ原子を表し、Lはハロゲン原子またはヒドロカルビルオキシ基を表し、aは0~2の整数を表す。)
上記式(2-1)で表されるカップリング剤としては、四塩化ケイ素、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、四塩化スズ、メチルトリクロロスズ、ジメチルジクロロスズ、トリメチルクロロスズ、テトラメトキシシラン、メチルトリメトキシシラン、ジメトキシジメチルシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、テトラエトキシシラン、エチルトリエトキシシラン、ジエトキシジエチルシランなどを挙げることができる。
カップリング剤の添加量は重合体の加工性を高めるために、アルカリ金属触媒由来のアルカリ金属1mol当たり、好ましくは0.03mol以上、より好ましくは0.05mol以上である。また低燃費性を高めるために、好ましくは0.4mol以下、より好ましくは0.3mol以下である。
<水素添加方法>
水添共重合体の製造方法においては、これまでに説明した共重合体を水素添加して、水素添加率が75モル%以上の水添共重合体を得る。共重合体を水素添加することによって、耐熱性が向上するという利点がある。また、水素添加率が低いと、ゴム破壊強度及び耐摩耗性の改善効果が充分に得られない。
水素添加の方法、反応条件については特に限定はなく、公知の方法、公知の条件で水素添加すればよい。通常は、20~150℃、0.1~10MPaの水素加圧下、水添触媒の存在下で実施される。なお、水素添加率は、水添触媒の量、水添反応時の水素圧力、反応時間等を変えることにより、任意に選定することができる。水添触媒として、通常は、元素周期表4~11族金属のいずれかを含む化合物を用いることができる。例えば、Ti、V、Co、Ni、Zr、Ru、Rh、Pd、Hf、Re、Pt原子を含む化合物を水添触媒として用いることができる。より具体的な水添触媒としては、Ti、Zr、Hf、Co、Ni、Pd、Pt、Ru、Rh、Re等のメタロセン系化合物;Pd、Ni、Pt、Rh、Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等の担体に担持させた担持型不均一系触媒;Ni、Co等の金属元素の有機塩又はアセチルアセトン塩と有機アルミニウム等の還元剤とを組み合わせた均一系チーグラー型触媒;Ru、Rh等の有機金属化合物又は錯体;水素を吸蔵させたフラーレンやカーボンナノチューブ等を挙げることができる。
これらのうち、Ti、Zr、Hf、Co、Niのいずれかを含むメタロセン化合物は、不活性有機溶媒中、均一系で水添反応できる点で好ましい。更に、Ti、Zr、Hfのいずれかを含むメタロセン化合物が好ましい。特に、チタノセン化合物とアルキルリチウムとを反応させた水添触媒は、安価で工業的に特に有用な触媒であるので好ましい。具体的な例として、例えば、特開平1-275605号公報、特開平5-271326号公報、特開平5-271325号公報、特開平5-222115号公報、特開平11-292924号公報、特開2000-37632号公報、特開昭59-133203号公報、特開昭63-5401号公報、特開昭62-218403号公報、特開平7-90017号公報、特公昭43-19960号公報、特公昭47-40473号公報に記載の水添触媒を挙げることができる。なお、これらの水添触媒は、一種単独で又は二種以上を組み合わせて用いることができる。
ゴム成分100質量%中の水添共重合体の含有量は、75質量%以上であり、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは100質量%である。水添共重合体の含有量が75質量%未満であると、ゴム破壊強度及び耐摩耗性(特にゴム破壊強度)の改善効果が得られにくい傾向がある。
特に、上記水添共重合体が水添スチレンブタジエン共重合体である場合、ゴム成分100質量%中の水添スチレンブタジエン共重合体の含有量は、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、更に好ましくは100質量%である。
上記水添共重合体以外に使用できるその他のゴム成分としては、従来のスチレンブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、ブタジエンイソプレン共重合体ゴム、ブチルゴムなどを挙げることができる。また、天然ゴム(NR)、エチレンプロピレン共重合体、エチレンオクテン共重合体なども挙げることができる。これらのゴム成分は、2種以上組み合わせて用いてもよい。
本発明におけるゴム組成物は、充填剤を更に含むことが好ましい。本明細書において、充填剤は、ゴムの補強を目的にゴム組成物に配合されるものであり、例えば、シリカ、炭酸カルシウム、セリサイトなどの雲母、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、クレー、タルク、アルミナ、酸化チタン、マイカ等の白色充填剤;カーボンブラック等が挙げられる。これらの充填剤は、2種以上組み合わせて用いてもよい。本発明におけるゴム組成物は、充填剤として、シリカ及び/又はカーボンブラックを含むことが好ましく、シリカを含むことがより好ましく、シリカ及びカーボンブラックを含むことが更に好ましい。これにより、本発明の効果がより好適に得られる。
本発明におけるゴム組成物がシリカを含む場合、シリカとしては特に限定されず、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
シリカの窒素吸着比表面積(NSA)は、好ましくは45m/g以上、より好ましくは55m/g以上、更に好ましくは60m/g以上、特に好ましくは100m/g以上、最も好ましくは150m/g以上である。45m/g未満であると、耐摩耗性、ゴム破壊強度が悪化するおそれがある。また、シリカのNSAは、好ましくは350m/g以下、より好ましくは300m/g以下、更に好ましくは270m/g以下、特に好ましくは220m/g以下である。350m/gを超えると、シリカの分散が困難であり、低燃費性が悪化するおそれがある。
なお、シリカの窒素吸着比表面積は、ASTM D3037-81に準じてBET法で測定される値である。
本発明におけるゴム組成物がシリカを含む場合、シリカの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは10質量部以上、更に好ましくは30質量部以上、特に好ましくは45質量部以上である。1質量部未満では、シリカを配合した効果が充分に得られず、低燃費性、耐摩耗性が悪化する傾向がある。該シリカの含有量は、好ましくは200質量部以下、より好ましくは150質量部以下、更に好ましくは120質量部以下、特に好ましくは100質量部以下である。200質量部を超えるとシリカが分散しにくくなるため、加工性、低燃費性及び耐摩耗性が悪化する傾向がある。
本発明におけるゴム組成物が充填剤を含む場合、充填剤100質量%中のシリカの含有量は、好ましくは80質量%以上、より好ましくは90質量%以上である。80質量%未満であると、本発明の効果が充分に得られないおそれがある。また、この場合、残りの充填剤として、カーボンブラックを使用すると、ウェットグリップ性能が悪化する傾向がある。また、カーボンブラック以外の充填剤を使用すると、耐摩耗性が悪化するおそれがある。
本発明におけるゴム組成物は、シリカとともにシランカップリング剤を併用することが好ましい。本発明では、水素添加率の高い上記水添共重合体を使用するため、充分な架橋密度が得られないおそれがあるが、上記水添共重合体と共に、シリカ、シランカップリング剤を配合することにより、良好な架橋ネットワークを形成でき、本発明の効果がより好適に得られる。
シランカップリング剤としては、従来から公知のものを用いることができ、たとえば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド等のスルフィド系、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン等のメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン等のアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン等のグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシラン等のニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、2-クロロエチルトリメトキシシラン、2-クロロエチルトリエトキシシラン等のクロロ系が挙げられる。なお、上記のシランカップリング剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、シランカップリング剤によるカップリング効果、加工性、コストの観点から、スルフィド系シランカップリング剤が好ましく、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィドがより好ましい。
シランカップリング剤の含有量は、シリカ100質量部に対して、3質量部以上が好ましく、5質量部以上がより好ましい。3質量部未満では、カップリング効果が不充分であり高いシリカ分散も得られない傾向がある。そのため低燃費性やゴム破壊強度が低下してしまうおそれがある。また、シランカップリング剤の含有量は、シリカ100質量部に対して、15質量部以下が好ましく、10質量部以下がより好ましい。15質量部を超えると、余分なシランカップリング剤が残存し、得られるゴム組成物の加工性及び破壊特性の低下を招くおそれがある。
本発明におけるゴム組成物がカーボンブラックを含む場合、カーボンブラックとしては、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCF及びECFのようなファーネスブラック(ファーネスカーボンブラック);アセチレンブラック(アセチレンカーボンブラック);FT及びMTのようなサーマルブラック(サーマルカーボンブラック);EPC、MPC及びCCのようなチャンネルブラック(チャンネルカーボンブラック);グラファイトなどをあげることができる。これらは1種または2種以上組み合わせて用いることができる。
カーボンブラックの窒素吸着比表面積(NSA)は、通常5~200m/gである。下限は50m/gであることが好ましく、80m/gであることがより好ましい。また、上限は150m/gであることが好ましく、120m/gであることがより好ましい。また、カーボンブラックのジブチルフタレート(DBP)吸収量は、通常5~300ml/100gであり、下限は80ml/100g、上限は180ml/100gであることが好ましい。カーボンブラックのNSAやDBP吸収量が上記範囲の下限未満では、補強効果が小さく耐摩耗性が低下する傾向があり、上記範囲の上限を超えると、分散性が悪く、ヒステリシスロスが増大し低燃費性が低下する傾向がある。
該窒素吸着比表面積は、ASTM D4820-93に従って測定され、該DBP吸収量は、ASTM D2414-93に従って測定される。
本発明におけるゴム組成物がカーボンブラックを含む場合、カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。1質量部未満では、充分な補強性が得られないおそれがある。カーボンブラックの含有量は、好ましくは60質量部以下、より好ましくは30質量部以下、更に好ましくは15質量部以下である。60質量部を超えると、低燃費性が悪化する傾向がある。
本発明におけるゴム組成物は、軟化点が60~120℃のレジンを含む。上記レジンとしては、上記軟化点を満たしていれば特に限定されないが、芳香族ビニル重合体、クマロンインデン樹脂、インデン樹脂、テルペン樹脂、ロジン樹脂などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、未加硫時の粘着性や、低燃費性能が良好なことから、芳香族ビニル重合体、クマロンインデン樹脂、テルペン樹脂やロジン樹脂及びこれらの誘導体が好ましく、本発明の効果がより好適に得られるという理由から、芳香族ビニル重合体、クマロンインデン樹脂がより好ましい。
芳香族ビニル重合体とは、α-メチルスチレン及び/又はスチレンを重合して得られる樹脂であり、スチレンの単独重合体、α-メチルスチレンの単独重合体、α-メチルスチレンとスチレンとの共重合体などが挙げられる。なかでも、本発明の効果がより好適に得られるという理由から、α-メチルスチレンとスチレンとの共重合体が好ましい。クマロンインデン樹脂とは、樹脂の骨格(主鎖)を構成する主なモノマー成分として、クマロン及びインデンを含む樹脂であり、クマロン、インデン以外に骨格に含まれるモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエンなどが挙げられる。インデン樹脂とは、樹脂の骨格(主鎖)を構成する主なモノマー成分として、インデンを含む樹脂である。テルペン樹脂とは、αピネン、βピネン、カンフェル、ジペテンなどのテルペン化合物を重合して得られる樹脂や、テルペン化合物とフェノール系化合物とを原料として得られる樹脂であるテルペンフェノールに代表されるテルペン系樹脂である。ロジン樹脂とは、天然ロジン、重合ロジン、変性ロジン、またはこれらのエステル化合物、または、これらの水素添加物に代表されるロジン系樹脂である。
上記レジンの軟化点は、60℃以上であり、好ましくは75℃以上、より好ましくは80℃以上である。60℃未満であると、充分なウェットグリップ性能、耐摩耗性の改善効果が得られない。また、上記レジンの軟化点は、120℃以下であり、好ましくは110℃以下、より好ましくは100℃以下である。120℃を超えると、高温領域での損失弾性率が大幅に上昇し、低燃費性が悪化する傾向がある。
なお、本明細書において、軟化点とは、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
上記特定軟化点のレジンの含有量は、ゴム成分100質量部に対して、1質量部以上、好ましくは3質量部以上、より好ましくは5質量部以上、更に好ましくは8質量部である。1質量部未満であると、充分なウェットグリップ性能の改善効果が得られない。また、上記レジンの含有量は、30質量部以下、好ましくは25質量部以下である。30質量部を超えると、低温領域におけるゴム組成物の弾性率が大幅に上昇してしまい、雪上路面でのグリップ性能や寒冷地域でのウェットグリップ性能が悪化する傾向がある。
本発明では、上記特定軟化点のレジンと共に、上記特定軟化点以外の軟化点を有するレジンを併用することが好ましい。特に、軟化点が60℃よりも低いレジンを併用することで、良好な低燃費性、耐摩耗性を維持したままゴム破壊強度、ウェットグリップ性能を改善できる。
併用するレジンとしては、軟化点が60~120℃以外である限り特に限定されないが、芳香族ビニル重合体、クマロンインデン樹脂、インデン樹脂、テルペン樹脂及びロジン樹脂などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、未加硫時の粘着性や、低燃費性能が良好なことから、芳香族ビニル重合体、クマロンインデン樹脂、テルペン樹脂やロジン樹脂及びこれらの誘導体が好ましく、本発明の効果がより好適に得られるという理由から、クマロンインデン樹脂がより好ましい。
併用するレジンの軟化点は、-40℃以上が好ましく、-20℃以上がより好ましく、-10℃以上が更に好ましく、0℃以上が特に好ましい。また、該軟化点は、45℃以下が好ましく、40℃以下がより好ましく、35℃以下が更に好ましい。併用するレジンの軟化点が上記範囲内であると、ウェットグリップ性能、ゴム破壊強度の改善効果がより好適に得られる。
併用するレジンの含有量は、ゴム成分100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。該含有量は、15質量部以下が好ましく、10質量部以下がより好ましく、8質量部以下が更に好ましい。併用するレジンの含有量が上記範囲内であると、ウェットグリップ性能、ゴム破壊強度の改善効果がより好適に得られる。
本発明におけるゴム組成物には、前記成分以外にも、硫黄などの加硫剤;チアゾール系加硫促進剤、チウラム系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤などの加硫促進剤;ステアリン酸、酸化亜鉛などの加硫活性化剤;有機過酸化物;伸展油(オイル)、滑剤などの加工助剤;老化防止剤などの従来ゴム工業で使用される配合剤を用いることができる。
伸展油(オイル)としては、アロマチック系鉱物油(粘度比重恒数(V.G.C.値)0.900~1.049)、ナフテン系鉱物油(V.G.C.値0.850~0.899)、パラフィン系鉱物油(V.G.C.値0.790~0.849)などを挙げることができる。伸展油の多環芳香族含有量は、好ましくは3質量%未満であり、より好ましくは1質量%未満である。該多環芳香族含有量は、英国石油学会346/92法に従って測定される。また、伸展油の芳香族化合物含有量(CA)は、好ましくは20質量%以上である。これらの伸展油は、2種以上組み合わされて用いられてもよい。
本発明の効果が好適に得られるという理由から、伸展油、軟化点60~120℃のレジン、軟化点60~120℃以外のレジン(好ましくは伸展油、軟化点60~120℃のレジン)の合計含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上であり、また、好ましくは50質量部以下、より好ましくは40質量部以下、更に好ましくは30質量部以下である。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。なかでも、本発明の効果がより好適に得られるという理由から、スルフェンアミド系加硫促進剤が好ましく、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドがより好ましい。また、更にグアニジン系加硫促進剤を併用することも好ましい。加硫促進剤の使用量は、ゴム成分100質量部に対して0.1~5質量部が好ましく、さらに好ましくは0.2~4質量部である。
加硫剤としては、特に限定されないが、硫黄を好適に使用できる。硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.5~5質量部、より好ましくは1~3質量部である。これにより、本発明の効果がより好適に得られる。
本発明におけるゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサーやニーダー、オープンロールなどで上記各成分を混練りし、その後加硫する方法等により製造できる。
本発明におけるゴム組成物は、タイヤの各部材(トレッド、サイドウォール、カーカス、ベルト、ビード等)に使用でき、なかでも、タイヤのトレッドとして好適に用いられる。2層構造のトレッドの場合には、表面層(キャップトレッド)及び内面層(ベーストレッド)から構成される。
多層構造のトレッドは、シート状にしたものを、所定の形状に貼り合わせる方法や、2本以上の押出し機に装入して押出し機のヘッド出口で2層以上に形成する方法により作製することができる。
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法により製造される。すなわち、水添共重合体を含むゴム成分、軟化点が60~120℃のレジン及び必要に応じて上記各種配合剤を配合したゴム組成物を、未加硫の段階でトレッドなどの各タイヤ部材の形状に合わせて押し出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することで、本発明の空気入りタイヤが得られる。
本発明の空気入りタイヤは、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、競技用タイヤ等として好適に用いられ、特に乗用車用タイヤとして好適に用いられる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下、合成、重合時に用いた各種薬品について、まとめて説明する。なお、薬品は必要に応じて定法に従い精製を行った。
n-ヘキサン:関東化学(株)製
スチレン:関東化学(株)製
ブタジエン:東京化成工業(株)製の1,3-ブタジエン
TMEDA:関東化学(株)製のN,N,N’,N’-テトラメチルエチレンジアミン
n-ブチルリチウム溶液:関東化学(株)製の1.6M n-ブチルリチウムヘキサン溶液
2,6-ジ-tert-ブチル-p-クレゾール:大内新興化学工業(株)製のノクラック200
アルコール:関東化学(株)製のエタノール
アミン系変性剤:N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン
また、得られた共重合体の評価方法について、以下にまとめて説明する。
(共重合体の共役ジエン部の水素添加率の測定)
四塩化炭素を溶媒として用いて15質量%濃度の溶液を調製して、100MHzのH-NMRの不飽和結合部のスペクトル減少率から算出した。
(スチレン含有量の測定)
25℃にてJEOL JNM-A 400NMR装置を用いてH-NMRを測定し、そのスペクトルより求めた6.5~7.2ppmのスチレン単位に基づくフェニルプロトンと4.9~5.4ppmのブタジエン単位に基づくビニルプロトンの比からスチレン含有量を決定した。
(重量平均分子量(Mw)、数平均分子量(Mn)の測定)
共重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めた。また、共重合体が変性基を有する場合、変性処理を実施する前にMw、Mnを測定した。これは、変性基を有する共重合体を測定した場合、変性基とカラムのシリカゲルとが相互作用を起こし、正確なMw、Mnが得られないためである。
(ガラス転移温度(Tg)の測定)
ガラス転移温度(Tg)は、JIS K 7121に従い、ティー・エイ・インスツルメント・ジャパン社製の示差走査熱量計(Q200)を用いて昇温速度10℃/分で昇温しながら測定することにより、ガラス転移開始温度として求めた。
<共重合体の製造例>
合成例1(共重合体(1)の合成:水素添加率0モル%、SBR)
十分に窒素置換した耐熱反応容器にn-ヘキサン2000ml、スチレン60g、1,3-ブタジエン140g、TMEDA0.93g、n-ブチルリチウム0.45mmolを加えて、50℃で5時間攪拌し、重合反応を行った。その後、アルコールを加えて反応を止め、反応溶液に2,6-ジ-tert-ブチル-p-クレゾール1gを添加後、再沈殿精製により共重合体(1)を得た。得られた共重合体(1)は重量平均分子量(Mw)490,000、スチレン含有量30質量%であった。
合成例2(共重合体(2)の合成:水素添加率60モル%、水添SBR)
得られた重合体を水素添加する以外は、共重合体(1)と同様の処方にて共重合体(2)を得た。すなわち、共重合体(1)において重合転化反応後、アルコールを加えて重合反応を停止させず、次いで、水素ガスを0.4MPa-Gaugeの圧力で供給しながら20分間撹拌し、未反応のポリマー末端リチウムと反応させ、水素化リチウムとした。水素ガス供給圧力を0.7MPa-Gauge、反応温度を90℃とし、チタノセンジクロリドを主体とする触媒を用いて水素添加を行った。水素の吸収が目的の水素添加率となる積算量に達した時点で、反応温度を常温とし、水素圧を常圧に戻して反応容器より抜き出し、反応溶液を水中に撹拌投入して溶媒をスチームストリッピングにより除去することによって、共重合体(2)を得た。得られた共重合体(2)の水素添加率は60モル%であり、重量平均分子量(Mw)は450,000であった。
合成例3(共重合体(3)の合成:水素添加率80モル%、水添SBR)
目的の水素添加率となるように、水素の吸引の積算量を調整した以外は、共重合体(2)と同様の処方により、共重合体(3)を得た。得られた共重合体(3)の水素添加率は80モル%であり、重量平均分子量(Mw)は480,000であった。
合成例4(共重合体(4)の合成:水素添加率95モル%、水添SBR)
目的の水素添加率となるように、水素の吸引の積算量を調整した以外は、共重合体(2)と同様の処方により、共重合体(4)を得た。得られた共重合体(4)の水素添加率は95モル%であり、重量平均分子量(Mw)は450,000であった。
合成例5(共重合体(5)の合成:水素添加率95モル%、水添変性SBR)
十分に窒素置換した耐熱反応容器にn-ヘキサン2000ml、スチレン60g、1,3-ブタジエン140g、TMEDA0.93g、n-ブチルリチウム0.45mmolを加えて、50℃で5時間攪拌し、重合反応を行った。その後アミン系変性剤を0.15mol加えて、0℃で1時間撹拌した。その後の工程については、水素の吸引の積算量を調整した以外は、共重合体(2)と同様の処方により、共重合体(5)を得た。得られた共重合体(5)の水素添加率は95モル%であり、変性前の重量平均分子量(Mw)は440,000であった。
Figure JPOXMLDOC01-appb-T000003
以下に、実施例及び比較例で用いた各種薬品について説明する。
共重合体(1)~(5):上記方法で合成
天然ゴム:TSR20
カーボンブラック:三菱化学(株)製のダイアブラックN339(NSA:96m/g、DBP吸収量:124ml/100g)
オイル:(株)ジャパンエナジー製のX-140
レジン(1):Rutgers Chemicals社製のNOVARES C90(クマロンインデン樹脂、軟化点:90℃)
レジン(2):Rutgers Chemicals社製のNOVARES C30(クマロンインデン樹脂、軟化点:30℃)
レジン(3):Rutgers Chemicals社製のNOVARES C10(クマロンインデン樹脂、軟化点:10℃)
レジン(4):Arizona Chemical社製のSYLVARES SA85(α-メチルスチレンとスチレンとの共重合体、軟化点:85℃、Mw:1000)
シリカ:EVONIK社製のULTRASIL VN3(NSA:180m/g)
シランカップリング剤:デグッサ社製のSi69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)
老化防止剤:住友化学(株)製のアンチゲン3C
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ワックス:大内新興化学工業(株)製のサンノックN
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤(1):住友化学(株)製のソクシノールCZ(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)
加硫促進剤(2):住友化学(株)製のソクシノールD(1,3-ジフェニルグアニジン)
(実施例及び比較例)
表2~4に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で20分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃で12分間加硫し、試験用タイヤ(サイズ:195/65R15)を製造した。
<評価項目及び試験方法>
得られた加硫ゴム組成物及び試験用タイヤについて、下記の評価を行った。結果を表2~4に示す。
(ゴム破壊強度)
上記加硫ゴム組成物について、JIS K 6251に準じて引張試験を行い、破断伸びを測定した。測定結果を、比較例1を100とした指数で示した。指数が大きいほどゴム破壊強度が大きいことを示している。
(ゴム破壊強度指数)=(各配合のゴム破壊強度)/(比較例1のゴム破壊強度)×100
(耐摩耗性)
LAT試験機(Laboratory Abration and Skid Tester)を用い、荷重50N、速度20km/h、スリップアングル5°の条件にて、各加硫ゴム組成物の容積損失量を測定した。比較例1の容積損失量を100として指数表示した。数値が大きいほど耐摩耗性に優れることを示している。
(低燃費性)
(株)上島製作所製スペクトロメーターを用いて、動的歪振幅1%、周波数10Hz、温度50℃で加硫ゴム組成物のtanδを測定した。tanδの逆数の値について比較例1を100として指数表示した。数値が大きいほど転がり抵抗が小さく、低燃費性に優れることを示している。なお、指数が95以上の場合に、良好と判断した。
(ウェットグリップ性能)
各試験用タイヤを車両(国産FF2000cc)の全輪に装着して、湿潤アスファルト路面にて初速度100km/hからの制動距離を求めた。結果は指数で表し、数字が大きいほどウェットスキッド性能(ウェットグリップ性能)が良好である。指数は次の式で求めた。
ウェットスキッド性能=(比較例1の制動距離)÷(各配合の制動距離)×100
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
表2~4より、実施例1~10では、ゴム破壊強度及び耐摩耗性が良好に改善されているだけでなく、良好な低燃費性が維持されつつ、ウェットグリップ性能も良好に改善されている。以上より、水素添加率が75モル%以上である水添スチレンブタジエン共重合体をゴム成分100質量%中に75質量%以上含み、更に、軟化点が60~120℃のレジンをゴム成分100質量部に対して1~30質量部含むゴム組成物を用いることにより、良好な低燃費性を維持しつつ、ゴム破壊強度、耐摩耗性及びウェットグリップ性能を顕著に改善できることが明らかとなった。

Claims (8)

  1. ゴム組成物を用いて作製した空気入りタイヤであって、
    前記ゴム組成物は、芳香族ビニル化合物及び共役ジエン化合物を共重合して得られた、共役ジエン部の水素添加率が75モル%以上である水添共重合体と、軟化点が60~120℃のレジンとを含み、
    ゴム成分100質量%中の前記水添共重合体の含有量が75質量%以上であり、
    ゴム成分100質量部に対する前記レジンの含有量が1~30質量部である空気入りタイヤ。
  2. 前記水添共重合体の重量平均分子量が200,000~2,000,000である請求項1に記載の空気入りタイヤ。
  3. 前記水添共重合体の水素添加率が90モル%以上である請求項1又は2に記載の空気入りタイヤ。
  4. 前記水添共重合体が水添スチレンブタジエン共重合体である請求項1~3のいずれかに記載の空気入りタイヤ。
  5. 前記水添スチレンブタジエン共重合体が水添変性スチレンブタジエン共重合体である請求項4に記載の空気入りタイヤ。
  6. 前記水添スチレンブタジエン共重合体のスチレン含有量が5~40質量%である請求項4又は5に記載の空気入りタイヤ。
  7. ゴム成分100質量%中の前記水添スチレンブタジエン共重合体の含有量が90~100質量%である請求項4~6のいずれかに記載の空気入りタイヤ。
  8. 前記ゴム組成物は、シリカ及び/又はカーボンブラックを更に含み、
    ゴム成分100質量部に対して、シリカの含有量が1~200質量部、カーボンブラックの含有量が1質量部以上である請求項1~7のいずれかに記載の空気入りタイヤ。
PCT/JP2015/069834 2014-09-08 2015-07-10 空気入りタイヤ WO2016039008A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15839827.1A EP3181630B1 (en) 2014-09-08 2015-07-10 Pneumatic tire
CN201580044675.9A CN106574081B (zh) 2014-09-08 2015-07-10 充气轮胎
JP2015558262A JP6631254B2 (ja) 2014-09-08 2015-07-10 空気入りタイヤ
US15/503,269 US20170226331A1 (en) 2014-09-08 2015-07-10 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-182394 2014-09-08
JP2014182394 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016039008A1 true WO2016039008A1 (ja) 2016-03-17

Family

ID=55458770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069834 WO2016039008A1 (ja) 2014-09-08 2015-07-10 空気入りタイヤ

Country Status (5)

Country Link
US (1) US20170226331A1 (ja)
EP (1) EP3181630B1 (ja)
JP (1) JP6631254B2 (ja)
CN (2) CN110643094A (ja)
WO (1) WO2016039008A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056351A (ja) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016056350A (ja) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016056349A (ja) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016069628A (ja) * 2014-09-30 2016-05-09 住友ゴム工業株式会社 空気入りタイヤ
US20180142089A1 (en) * 2016-11-22 2018-05-24 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP2018095776A (ja) * 2016-12-15 2018-06-21 東洋ゴム工業株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JP2018095777A (ja) * 2016-12-15 2018-06-21 東洋ゴム工業株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
CN110088191A (zh) * 2016-12-15 2019-08-02 通伊欧轮胎株式会社 轮胎用橡胶组合物及使用了该轮胎用橡胶组合物的充气轮胎
US10526472B2 (en) 2016-02-18 2020-01-07 Sumitomo Rubber Industries, Ltd. Pneumatic tire and method for producing pneumatic tire
JP2020105387A (ja) * 2018-12-27 2020-07-09 Toyo Tire株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
US10808082B2 (en) 2016-10-31 2020-10-20 Sumitomo Rubber Industries, Ltd. Method for kneading a polymer
JP2021062822A (ja) * 2019-10-16 2021-04-22 横浜ゴム株式会社 空気入りタイヤ
WO2021079676A1 (ja) * 2019-10-23 2021-04-29 住友ゴム工業株式会社 ゴム組成物及びタイヤ
JP2021075725A (ja) * 2021-01-05 2021-05-20 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6801183B2 (ja) 2014-09-08 2020-12-16 住友ゴム工業株式会社 空気入りタイヤ
JP6953841B2 (ja) * 2017-07-05 2021-10-27 住友ゴム工業株式会社 空気入りタイヤ
JP6992308B2 (ja) * 2017-08-01 2022-01-13 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP7224150B2 (ja) * 2018-11-12 2023-02-17 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
EP3919288A4 (en) * 2019-01-30 2022-10-26 ENEOS Materials Corporation RUBBER, RETICULATED AND PNEUMATIC BODY COMPOSITION
EP3741802A1 (de) * 2019-05-24 2020-11-25 Continental Reifen Deutschland GmbH Kautschukmischung und reifen
DE102019209823A1 (de) * 2019-07-04 2021-01-07 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
DE102019209822A1 (de) * 2019-07-04 2021-01-07 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
KR102162967B1 (ko) * 2019-08-01 2020-10-07 한국타이어앤테크놀로지 주식회사 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 타이어
DE102021206274A1 (de) 2021-06-18 2022-12-22 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
DE102021206273A1 (de) 2021-06-18 2022-12-22 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
DE102021206277A1 (de) 2021-06-18 2022-12-22 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
DE102021206276A1 (de) 2021-06-18 2022-12-22 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
DE102021206278A1 (de) 2021-06-18 2022-12-22 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
DE102021206271A1 (de) 2021-06-18 2022-12-22 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277560A (ja) * 2002-03-25 2003-10-02 Asahi Kasei Corp 水添共重合体組成物
JP2007137941A (ja) * 2005-11-15 2007-06-07 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いた高性能タイヤ
JP2008184517A (ja) * 2007-01-29 2008-08-14 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2012052028A (ja) * 2010-09-01 2012-03-15 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
JP2012153810A (ja) * 2011-01-26 2012-08-16 Sumitomo Rubber Ind Ltd モトクロスタイヤ用ゴム組成物及びモトクロスタイヤ
JP2013018868A (ja) * 2011-07-11 2013-01-31 Sumitomo Rubber Ind Ltd サイドウォール用ゴム組成物及び空気入りタイヤ
JP2013028783A (ja) * 2011-06-21 2013-02-07 Sumitomo Rubber Ind Ltd クリンチ又はチェーファー用ゴム組成物及び空気入りタイヤ
JP2013253207A (ja) * 2012-06-08 2013-12-19 Sumitomo Rubber Ind Ltd トラック・バスタイヤ用ゴム組成物及びトラック・バスタイヤ
JP2014024913A (ja) * 2012-07-25 2014-02-06 Sumitomo Rubber Ind Ltd 高性能タイヤ用ゴム組成物及び高性能タイヤ
JP2014125546A (ja) * 2012-12-26 2014-07-07 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
WO2014126184A1 (ja) * 2013-02-14 2014-08-21 Jsr株式会社 水添共役ジエン重合体の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124051A (en) * 1976-05-21 1978-11-07 Horton William E Shock absorbing wheel hub
US6058994A (en) * 1997-05-19 2000-05-09 The Yokohama Rubber Co., Ltd. Rubber composition for tire-tread having high frictional force on ice and pneumatic tire using same
JP2003292919A (ja) * 2002-01-30 2003-10-15 Sanyo Chem Ind Ltd ホットメルト接着剤
US7279532B2 (en) * 2002-03-01 2007-10-09 Asahi Kasei Chemicals Corporation Modified hydrogenated copolymer
WO2004000931A1 (ja) * 2002-06-19 2003-12-31 Bridgestone Corporation タイヤ用ゴム組成物及びこれを用いたタイヤ
US7150919B2 (en) * 2002-09-30 2006-12-19 The Goodyear Tire & Rubber Company Overmolded grip
ES2335603T3 (es) * 2006-09-20 2010-03-30 Arizona Chemical Company Composiciones de caucho con formacion adhesiva.
JP5268647B2 (ja) * 2006-10-20 2013-08-21 電気化学工業株式会社 フイルム基材及び粘着テープ
JP2008174696A (ja) * 2007-01-22 2008-07-31 Bridgestone Corp タイヤ用ゴム組成物及びそれを用いた空気入りタイヤ
WO2009125747A1 (ja) * 2008-04-07 2009-10-15 株式会社ブリヂストン タイヤ用ゴム組成物およびタイヤ
JP2010265379A (ja) * 2009-05-14 2010-11-25 Bridgestone Corp ゴム組成物およびこれを用いた空気入りタイヤ
JP2011088998A (ja) * 2009-10-21 2011-05-06 Bridgestone Corp ゴム組成物及びタイヤ
JP5200134B2 (ja) * 2010-07-16 2013-05-15 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP5559234B2 (ja) * 2011-08-09 2014-07-23 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP5650690B2 (ja) * 2012-06-12 2015-01-07 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP5465346B1 (ja) * 2013-01-22 2014-04-09 株式会社椿本チエイン 歯付ベルト
EP2963087B1 (en) * 2013-02-28 2017-04-19 JSR Corporation Tire member, hydrogenated conjugated diene polymer and polymer composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277560A (ja) * 2002-03-25 2003-10-02 Asahi Kasei Corp 水添共重合体組成物
JP2007137941A (ja) * 2005-11-15 2007-06-07 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いた高性能タイヤ
JP2008184517A (ja) * 2007-01-29 2008-08-14 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2012052028A (ja) * 2010-09-01 2012-03-15 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
JP2012153810A (ja) * 2011-01-26 2012-08-16 Sumitomo Rubber Ind Ltd モトクロスタイヤ用ゴム組成物及びモトクロスタイヤ
JP2013028783A (ja) * 2011-06-21 2013-02-07 Sumitomo Rubber Ind Ltd クリンチ又はチェーファー用ゴム組成物及び空気入りタイヤ
JP2013018868A (ja) * 2011-07-11 2013-01-31 Sumitomo Rubber Ind Ltd サイドウォール用ゴム組成物及び空気入りタイヤ
JP2013253207A (ja) * 2012-06-08 2013-12-19 Sumitomo Rubber Ind Ltd トラック・バスタイヤ用ゴム組成物及びトラック・バスタイヤ
JP2014024913A (ja) * 2012-07-25 2014-02-06 Sumitomo Rubber Ind Ltd 高性能タイヤ用ゴム組成物及び高性能タイヤ
JP2014125546A (ja) * 2012-12-26 2014-07-07 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
WO2014126184A1 (ja) * 2013-02-14 2014-08-21 Jsr株式会社 水添共役ジエン重合体の製造方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056350A (ja) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016056349A (ja) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016056351A (ja) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016069628A (ja) * 2014-09-30 2016-05-09 住友ゴム工業株式会社 空気入りタイヤ
US10526472B2 (en) 2016-02-18 2020-01-07 Sumitomo Rubber Industries, Ltd. Pneumatic tire and method for producing pneumatic tire
US10808082B2 (en) 2016-10-31 2020-10-20 Sumitomo Rubber Industries, Ltd. Method for kneading a polymer
US10472505B2 (en) * 2016-11-22 2019-11-12 Sumitomo Rubber Industries, Ltd. Pneumatic tire
US20180142089A1 (en) * 2016-11-22 2018-05-24 Sumitomo Rubber Industries, Ltd. Pneumatic tire
CN108084532A (zh) * 2016-11-22 2018-05-29 住友橡胶工业株式会社 充气轮胎
CN108084532B (zh) * 2016-11-22 2021-09-14 住友橡胶工业株式会社 充气轮胎
JP2018095777A (ja) * 2016-12-15 2018-06-21 東洋ゴム工業株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JP7011603B2 (ja) 2016-12-15 2022-01-26 Toyo Tire株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JPWO2018110414A1 (ja) * 2016-12-15 2019-10-24 Toyo Tire株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JPWO2018110409A1 (ja) * 2016-12-15 2019-10-24 Toyo Tire株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
CN110088190A (zh) * 2016-12-15 2019-08-02 通伊欧轮胎株式会社 轮胎用橡胶组合物及使用了该轮胎用橡胶组合物的充气轮胎
CN110088191A (zh) * 2016-12-15 2019-08-02 通伊欧轮胎株式会社 轮胎用橡胶组合物及使用了该轮胎用橡胶组合物的充气轮胎
DE112017006322B4 (de) 2016-12-15 2023-03-30 Toyo Tire Corporation Kautschukzusammensetzung für Reifen, vulkanisiertes Produkt und pneumatischer Reifen, die diese verwenden
WO2018110412A1 (ja) * 2016-12-15 2018-06-21 東洋ゴム工業株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JP7011604B2 (ja) 2016-12-15 2022-01-26 Toyo Tire株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
CN110168009A (zh) * 2016-12-15 2019-08-23 通伊欧轮胎株式会社 轮胎用橡胶组合物及使用了该轮胎用橡胶组合物的充气轮胎
JP2018095776A (ja) * 2016-12-15 2018-06-21 東洋ゴム工業株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JP2020105387A (ja) * 2018-12-27 2020-07-09 Toyo Tire株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2021062822A (ja) * 2019-10-16 2021-04-22 横浜ゴム株式会社 空気入りタイヤ
JP7417043B2 (ja) 2019-10-16 2024-01-18 横浜ゴム株式会社 空気入りタイヤ
JP2021066803A (ja) * 2019-10-23 2021-04-30 住友ゴム工業株式会社 ゴム組成物及びタイヤ
WO2021079676A1 (ja) * 2019-10-23 2021-04-29 住友ゴム工業株式会社 ゴム組成物及びタイヤ
JP2021075725A (ja) * 2021-01-05 2021-05-20 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP7088325B2 (ja) 2021-01-05 2022-06-21 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ

Also Published As

Publication number Publication date
EP3181630B1 (en) 2019-05-22
EP3181630A4 (en) 2018-05-23
CN106574081B (zh) 2019-11-15
EP3181630A1 (en) 2017-06-21
JP6631254B2 (ja) 2020-01-15
JPWO2016039008A1 (ja) 2017-06-22
CN110643094A (zh) 2020-01-03
CN106574081A (zh) 2017-04-19
US20170226331A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6631254B2 (ja) 空気入りタイヤ
JP6862787B2 (ja) 空気入りタイヤ
JP6627513B2 (ja) 空気入りタイヤ
JP6627512B2 (ja) 空気入りタイヤ
JP6953841B2 (ja) 空気入りタイヤ
JP6627294B2 (ja) 空気入りタイヤ
JP6805502B2 (ja) 空気入りタイヤ
JP6627293B2 (ja) 空気入りタイヤ
JP6716942B2 (ja) 空気入りタイヤ及び空気入りタイヤの製造方法
JP6801183B2 (ja) 空気入りタイヤ
JP6627511B2 (ja) 空気入りタイヤ
JP6631059B2 (ja) 空気入りタイヤ
JP7159799B2 (ja) 空気入りタイヤ
JP7371631B2 (ja) 空気入りタイヤ
US20240132706A1 (en) Rubber composition for tires and tire
JP2021004309A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015558262

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015839827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015839827

Country of ref document: EP