WO2016038686A1 - Cuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極 - Google Patents

Cuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極 Download PDF

Info

Publication number
WO2016038686A1
WO2016038686A1 PCT/JP2014/073808 JP2014073808W WO2016038686A1 WO 2016038686 A1 WO2016038686 A1 WO 2016038686A1 JP 2014073808 W JP2014073808 W JP 2014073808W WO 2016038686 A1 WO2016038686 A1 WO 2016038686A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
less
solder
layer
arithmetic average
Prior art date
Application number
PCT/JP2014/073808
Other languages
English (en)
French (fr)
Inventor
浩由 川▲崎▼
六本木 貴弘
相馬 大輔
佐藤 勇
勇司 川又
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to US15/509,333 priority Critical patent/US10811376B2/en
Priority to KR1020187004667A priority patent/KR102315758B1/ko
Priority to PCT/JP2014/073808 priority patent/WO2016038686A1/ja
Priority to EP14901571.1A priority patent/EP3193360B1/en
Priority to JP2015507277A priority patent/JP5733486B1/ja
Priority to CN201480081816.XA priority patent/CN106688085B/zh
Priority to PT149015711T priority patent/PT3193360T/pt
Priority to KR1020177009272A priority patent/KR20170042372A/ko
Priority to TW104128958A priority patent/TWI566650B/zh
Publication of WO2016038686A1 publication Critical patent/WO2016038686A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0227Rods, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3615N-compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • H01L2224/11825Plating, e.g. electroplating, electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1357Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13575Plural coating layers
    • H01L2224/1358Plural coating layers being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13575Plural coating layers
    • H01L2224/1358Plural coating layers being stacked
    • H01L2224/13582Two-layer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13657Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/1366Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/1369Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01026Iron [Fe]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01048Cadmium [Cd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0109Thorium [Th]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01092Uranium [U]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10242Metallic cylinders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • H05K3/4015Surface contacts, e.g. bumps using auxiliary conductive elements, e.g. pieces of metal foil, metallic spheres

Definitions

  • the present invention relates to a Cu column, a Cu core column, a solder joint, and a silicon through electrode.
  • the electronic components to be mounted have been rapidly downsized.
  • the electronic component uses a ball grid array (hereinafter referred to as “BGA”) in which electrodes are provided on the back surface. .
  • BGA ball grid array
  • An electronic component to which BGA is applied includes, for example, a semiconductor package.
  • a semiconductor package a semiconductor chip having electrodes is sealed with a resin.
  • Solder bumps are formed on the electrodes of the semiconductor chip. This solder bump is formed by joining a solder ball to an electrode of a semiconductor chip.
  • a semiconductor package to which BGA is applied is mounted on a printed board by bonding solder bumps melted by heating and conductive lands of the printed board. In order to meet the demand for higher density mounting, three-dimensional high density mounting in which semiconductor packages are stacked in the height direction has been developed.
  • solder bumps for electrically joining Cu balls on the electrodes of electronic components using solder paste are being studied.
  • Solder bumps formed using Cu balls can support the semiconductor package with Cu balls that do not melt at the melting point of the solder even when the weight of the semiconductor package is applied to the solder bumps when the electronic component is mounted on a printed circuit board. it can. Therefore, the solder bump is not crushed by the weight of the semiconductor package.
  • the stand-off height between the substrates is the ball diameter of the Cu ball, so when attempting to achieve the required stand-off height, the lateral width of the Cu ball becomes large, and it is not possible to support mounting with a narrow pitch.
  • a semiconductor package a semiconductor chip is bonded to a die pad electrode portion of a lead frame using a solder material for die bonding, and then sealed with a resin.
  • a solder material for mounting different from the solder material for die bonding is used.
  • the reason for this is to prevent the die bonding solder material from being melted by the heating conditions of the mounting solder material when the semiconductor package is mounted on the substrate.
  • a difference occurs in the thermal expansion coefficient of each substrate. (Thermal stress) occurs, and TCT (temperature cycle test) reliability sometimes decreases.
  • Patent Documents 1 to 5 describe columnar columns made of copper, solder, or the like.
  • Patent Document 6 describes a copper column for joining a ceramic substrate and a glass epoxy substrate having a Vickers hardness of 55 HV or less.
  • Japanese Unexamined Patent Publication No. 7-66209 Japanese Patent No. 3344295 JP 2000-232119 A Japanese Patent No. 444063 JP 2009-1474 A JP 2011-176124 A
  • Patent Documents 1 to 6 Although it is possible to cope with a narrow pitch mounting and to suppress thermal stress, there is no disclosure about the arithmetic average roughness of the Cu column. Therefore, when the Cu column of Patent Documents 1 to 6 is used, the fluidity of the Cu column when the Cu column is arranged on the substrate is reduced, or the adhesion between the Cu column and the electrode during mounting is reduced. There were cases where problems such as a drop occurred.
  • an object of the present invention is to provide a Cu column, a Cu core column, a solder joint, and a silicon through electrode having low Vickers hardness and low arithmetic average roughness in order to solve the above-described problems.
  • the inventors have made a selection for a Cu column. It has been found that when the Vickers hardness of the Cu column is 20 HV or more and 60 HV or less and the arithmetic average roughness is 0.3 ⁇ m or less, a preferable Cu column or the like for solving the problems of the present invention can be obtained.
  • the present invention is as follows.
  • a Cu column having a purity of 99.9% or more and 99.995% or less, an arithmetic average roughness of 0.3 ⁇ m or less, and a Vickers hardness of 20 HV or more and 60 HV or less.
  • the Cu column according to the above (1) or (2) which is composed of a column having a top surface and a bottom surface with a diameter of 1 to 1000 ⁇ m and a height of 1 to 3000 ⁇ m.
  • a Cu nucleus column comprising the Cu column according to any one of (1) to (4) above and a solder layer covering the Cu column.
  • a Cu nucleus column provided with the Cu column according to any one of (1) to (4) above and a plating layer made of one or more elements selected from Ni, Fe and Co covering the Cu column. .
  • the Vickers hardness of the Cu column is 20 HV or more and 60 HV or less, the drop impact resistance can be improved and an appropriate space between the substrates can be maintained.
  • the arithmetic average roughness of the Cu column is 0.3 ⁇ m or less, the fluidity when the Cu column is arranged on the substrate can be improved, and the adhesion between the Cu column and the electrode during mounting is improved. Can be made.
  • FIG. 1 is a diagram showing a configuration example of a Cu column according to the present invention.
  • FIG. 2 is a diagram showing a configuration example of a Cu nucleus column according to the present invention.
  • FIG. 3 is a diagram showing the relationship between temperature and time during the annealing process.
  • the unit (ppm, ppb, and%) related to the composition of the Cu column represents a ratio (mass ppm, mass ppb, and mass%) to the mass of the Cu column unless otherwise specified.
  • the Cu column 1 according to the present invention shown in FIG. 1 has a purity of 99.9% to 99.995%, an arithmetic average roughness of 0.3 ⁇ m or less, and a Vickers hardness of 20 HV to 60 HV. .
  • the Cu column 1 has, for example, a cylindrical shape. Since the Cu column 1 does not melt at the soldering temperature and can secure a certain standoff height (space between the substrates), it can be suitably used for three-dimensional mounting and narrow pitch mounting.
  • -Arithmetic mean roughness of Cu column 0.3 micrometer or less
  • the arithmetic mean roughness of Cu column 1 is 0.3 micrometer or less, More preferably, it is 0.2 micrometer or less.
  • the arithmetic average roughness of the Cu column 1 is 0.3 ⁇ m or less, the size of the crystal grains of the Cu column 1 is also reduced, so that the surface of the Cu column 1 can be made smoother (flat).
  • the fluidity of the Cu column 1 when the Cu column 1 is arranged on the substrate by a mounter or the like can be improved, and the adhesion between the Cu column 1 and the electrode on the substrate at the time of mounting is improved. You can also.
  • the Vickers hardness of the Cu column 1 which concerns on this invention is 60HV or less. This is because when the Vickers hardness is 60 HV or less, durability against external stress is increased, and the drop impact resistance is improved and cracks are hardly generated. In addition, when an auxiliary force such as pressurization is applied when forming bumps or joints for three-dimensional mounting, the possibility of causing electrode collapse or the like can be reduced by using a highly flexible Cu column 1. Because.
  • the Vickers hardness of the Cu column 1 needs to be at least a value larger than a typical Vickers hardness of 10 to 20 HV, preferably 20 HV or more.
  • a typical Vickers hardness of 10 to 20 HV preferably 20 HV or more.
  • the Vickers hardness of the Cu column 1 is 20 HV or more, deformation (collapse) of the Cu column 1 itself due to its own weight such as a semiconductor chip in three-dimensional mounting is prevented, and an appropriate space (standoff height) between the substrates is provided. Can hold.
  • a plating step is not required unlike Cu pillars or the like, it is possible to reduce the pitch of electrodes and the like by setting the Vickers hardness of the Cu column 1 to 20 HV or higher.
  • the Cu column 1 having a Vickers hardness of 60 HV or less is manufactured by promoting crystal growth of the manufactured Cu column 1.
  • An example of a means for promoting the crystal growth of the Cu column 1 is an annealing process.
  • the manufactured Cu column 1 is annealed, the Cu structure is recrystallized and crystal grains grow, thereby improving the flexibility of the Cu column 1.
  • a Cu column 1 containing a certain amount of impurities for example, a Cu column 1 having a purity of 3N, 4N, or 4N5
  • the contained impurities suppress excessive growth of crystal grains on the surface of the Cu column 1. Therefore, the crystal grains can be suppressed to a size below a certain value. Thereby, it is possible to provide a Cu column having both low Vickers hardness and low arithmetic average roughness.
  • U and Th are radioactive elements, and it is necessary to suppress their contents in order to suppress soft errors.
  • the contents of U and Th are required to be 5 ppb or less in order to make the ⁇ dose of the Cu column 1 0.0200 cph / cm 2 or less. Further, from the viewpoint of suppressing soft errors in current or future high-density mounting, the contents of U and Th are preferably 2 ppb or less, respectively.
  • the Cu column 1 constituting the present invention preferably has a purity of 99.9% or more and 99.995% or less.
  • the purity of the Cu column 1 is within this range, a sufficient amount of impurity element crystal nuclei can be secured in the Cu, so that the arithmetic average roughness of the Cu column 1 can be reduced.
  • the amount of impurity elements is small, the number of crystal nuclei is relatively small, and grain growth is not suppressed, and the crystal column grows in a certain direction. Therefore, the arithmetic average roughness of the Cu column 1 increases.
  • the lower limit of the purity of the Cu column 1 is not particularly limited, it is preferably 99.9% or more from the viewpoint of suppressing the ⁇ dose and suppressing the deterioration of the electrical conductivity and thermal conductivity of the Cu column 1 due to the decrease in purity.
  • the impurity element include Sn, Sb, Bi, Zn, As, Ag, Cd, Ni, Pb, Au, P, S, In, Co, Fe, U, and Th.
  • ⁇ dose 0.0200 cph / cm 2 or less
  • the ⁇ dose of the Cu column 1 constituting the present invention is 0.0200 cph / cm 2 or less. This is an ⁇ dose that does not cause a soft error in high-density mounting of electronic components.
  • the ⁇ dose is more preferably 0.0010 cph / cm 2 or less from the viewpoint of suppressing a soft error in further high-density mounting.
  • the total content of impurity elements is 1 ppm or more.
  • the Cu column 1 constituting the present invention has Sn, Sb, Bi, Zn, As, Ag, Cd, Ni, Pb, Au, P, S, In, and the like as impurity elements. Co, Fe, U, Th, etc. are contained, but the content of impurity elements is 1 ppm or more in total.
  • the contents of Pb and Bi that are impurity elements are preferably as low as possible.
  • the diameter ⁇ of the upper surface and the bottom surface of the Cu column 1 according to the present invention is preferably 1 to 1000 ⁇ m, more preferably 1 to 300 ⁇ m, more preferably 1 to 200 ⁇ m, most preferably when used for a fine pitch. Is 1 to 100 ⁇ m.
  • the height L of the Cu column 1 is preferably 1 to 3000 ⁇ m, particularly preferably 1 to 300 ⁇ m, more preferably 1 to 200 ⁇ m, and most preferably 1 to 100 ⁇ m when used for a fine pitch. Yes (see FIG. 1).
  • the diameter ⁇ and the height L of the Cu column 1 are in the above ranges, it is possible to mount with a narrow pitch between terminals, so that it is possible to suppress connection short circuit and to reduce the size and integration of the semiconductor package. Can be planned.
  • the layer may be coated on the outermost surface of the Cu column 1.
  • the flux layer is softer than the solder layer or the Ni plating layer, so that the fluidity is greatly affected.
  • the arithmetic average roughness of the Cu column 1 or Cu core column coated with the flux is 0.3 ⁇ m or less
  • the arithmetic average roughness of the Cu column 1 or Cu core column coated with the flux layer is 0.3 ⁇ m.
  • the flowability of the Cu column 1 when arranged on the substrate does not deteriorate so much, and the adhesion between the Cu column 1 and the electrode on the substrate during mounting can be improved.
  • the Vickers hardness of the Cu column 1 itself is 20 HV or more and 60 HV or less, the drop impact resistance after mounting the Cu column 1 is improved, and the solution to the problem of the present application that maintains an appropriate space between the substrates is achieved. Can do.
  • the Cu core column 3 includes a Cu column 1 and a solder layer 2 (metal layer) that covers the surface of the Cu column 1.
  • the composition of the solder layer 2 is not particularly limited as long as it is an alloy composition of a solder alloy containing Sn as a main component.
  • the solder layer 2 may be a Sn plating film.
  • Examples thereof include Sn, Sn—Ag alloy, Sn—Cu alloy, Sn—Ag—Cu alloy, Sn—In alloy, and those obtained by adding a predetermined alloy element thereto.
  • the Sn content is 40% by mass or more.
  • Sn—Bi alloy and Sn—Pb alloy can be used as the solder layer 2 when the ⁇ dose is not specified.
  • alloy elements to be added include Ag, Cu, In, Ni, Co, Sb, Ge, P, and Fe.
  • the alloy composition of the solder layer 2 is preferably a Sn-3Ag-0.5Cu alloy from the viewpoint of drop impact characteristics.
  • the thickness of the solder layer 2 is not particularly limited, but is preferably 100 ⁇ m or less on one side. Generally, it may be 20 to 50 ⁇ m on one side.
  • a Ni plating layer, a Fe plating layer, a Co plating layer, or the like can be provided in advance between the surface of the Cu column 1 and the solder layer 2. Thereby, the spreading
  • the thickness of the Ni plating layer, Fe plating layer, Co plating layer, etc. is generally 0.1 to 20 ⁇ m on one side.
  • the contents of U and Th in the solder layer 2 are each 5 ppb or less in order to set the ⁇ dose of the Cu nucleus column to 0.0200 cph / cm 2 or less. Further, from the viewpoint of suppressing soft errors in current or future high-density mounting, the contents of U and Th are preferably 2 ppb or less, respectively.
  • the Cu core column according to the present invention can also be constituted by a Cu column 1 and a plating layer (metal layer) composed of one or more elements selected from Ni, Fe and Co covering the Cu column 1. Moreover, you may coat
  • the Cu column 1 or the Cu core column 3 according to the present invention can also be used for forming a solder joint for joining electrodes.
  • a solder joint a structure in which a solder bump is mounted on an electrode of a printed board is called a solder joint.
  • the solder bump is a structure in which a Cu column 1 is mounted on an electrode of a semiconductor chip.
  • the Cu column 1 or the Cu core column 3 according to the present invention can be used as a through-silicon via (TSV) for connecting electrodes between stacked semiconductor chips.
  • TSV is manufactured by drilling holes in silicon, forming an insulating layer in the hole, and then forming through conductors in that order, polishing the top and bottom surfaces of silicon and exposing the through conductors on the top and bottom surfaces.
  • the through conductor is conventionally formed by filling the hole with Cu or the like by a plating method. In this method, the entire surface of silicon is immersed in the plating solution. There is a risk of adsorption and moisture absorption.
  • the column of the present invention can be directly inserted into a hole formed in silicon in the height direction and used as a through conductor.
  • the Cu column 1 When the Cu column 1 is inserted into silicon, it may be joined by a solder material such as a solder paste, and when the Cu core column is inserted into silicon, it can be joined only by flux. Thereby, defects such as impurity adsorption and moisture absorption can be prevented, and the manufacturing cost and time can be reduced by omitting the plating step.
  • the outermost surface of the above-described Cu column 1 or Cu core column may be covered with a flux layer.
  • the above-described flux layer is composed of one or more components including a compound that acts as an activator for preventing the metal surface of the Cu column 1 or the solder layer from being oxidized and removing the metal oxide film during soldering.
  • the flux layer may be composed of a plurality of components composed of a compound that acts as an activator and a compound that acts as an activity auxiliary agent.
  • any one of an amine, an organic acid, and a halogen, a combination of a plurality of amines, a combination of a plurality of organic acids, a combination of a plurality of halogens, and a simple substance can be used depending on the properties required in the present invention.
  • a combination of one or more amines, organic acids, halogens is added.
  • the active adjuvant that constitutes the flux layer is either an ester, an amide, or an amino acid, a combination of multiple esters, a combination of multiple amides, a combination of multiple amino acids, a single or multiple A combination of esters, amides, amino acids is added.
  • the flux layer may contain rosin or resin in order to protect the compound acting as an activator from heat during reflow. Further, the flux layer may include a resin that fixes a compound or the like acting as an activator to the solder layer.
  • the flux layer may be composed of a single layer composed of a single compound or a plurality of compounds.
  • the flux layer may be composed of a plurality of layers made of a plurality of compounds.
  • the components constituting the flux layer adhere to the surface of the solder layer in a solid state. However, in the step of attaching the flux to the solder layer, the flux needs to be liquid or gaseous.
  • the components constituting the flux layer need to be soluble in a solvent in order to coat with a solution.
  • a salt when a salt is formed, there is a component that becomes insoluble in the solvent.
  • the presence of components that are insoluble in the liquid flux makes it difficult to uniformly adsorb fluxes that contain poorly soluble components such as precipitates. For this reason, conventionally, a compound that forms a salt cannot be mixed to form a liquid flux.
  • the flux layer can be formed one by one to form a solid state, and a multilayer flux layer can be formed.
  • the compound which forms a salt is used, Comprising: Even if it is a component which cannot be mixed with a liquid flux, a flux layer can be formed.
  • the surface of the Cu column 1 or Cu core column that is easily oxidized is coated with a flux layer that acts as an activator, so that the surface of the Cu column 1 and the surface of the solder or metal layer of the Cu core column can be stored during storage. Can be suppressed.
  • the colors of the flux and the metal are generally different, and the colors of the Cu column 1 and the flux layer are also different. Therefore, the amount of adsorption of the flux can be confirmed by color saturation, for example, brightness, yellowness, and redness.
  • the above-described Cu column 1 may be covered with an organic film containing an imidazole compound. As a result, the outermost Cu layer of the Cu column 1 is bonded to the imidazole compound, so that an OSP coating (imidazole copper complex) is formed on the surface of the Cu column 1 and the surface of the Cu column 1 is prevented from being oxidized. can do.
  • OSP coating imidazole copper complex
  • a copper wire as a material is prepared, the prepared copper wire is extended by passing through a die, and then the copper wire is cut to a predetermined length by a cutting machine. In this way, the Cu column 1 having a predetermined diameter ⁇ and a predetermined length (height L) having a cylindrical shape is manufactured.
  • the manufacturing method of Cu column 1 is not limited to this Embodiment, You may employ
  • the produced Cu column 1 is subjected to an annealing treatment.
  • the annealing treatment the Cu column 1 is heated for a predetermined time at 700 ° C. where annealing can be performed, and then the heated Cu column 1 is gradually cooled over a long time. Thereby, recrystallization of the Cu column 1 can be performed, and gradual crystal growth can be promoted.
  • the impurity element contained in the Cu column 1 suppresses excessive growth of crystal grains, the extreme arithmetic average roughness of the Cu column 1 does not decrease.
  • the Vickers hardness of the Cu column 1 is 20 HV or more and 60 HV or less, it is possible to improve the drop impact resistance and to maintain an appropriate space between the substrates.
  • the arithmetic average roughness of the Cu column 1 is 0.3 ⁇ m or less, the fluidity when the Cu column 1 is arranged on the substrate can be improved, and the adhesion between the Cu column 1 and the electrode during mounting is improved. Can be improved.
  • a plurality of Cu columns were prepared using a plurality of copper wires having different purities, and the Vickers hardness, arithmetic average roughness, and ⁇ dose of each of the prepared Cu columns were measured.
  • Copper wires having a purity of 99.9%, 99.99%, and 99.995% were prepared. Next, by passing these copper wires through a die, the copper wires are extended so that the diameter ⁇ of the top surface and the bottom surface becomes 200 ⁇ m, and then the copper wire is placed at a position where the length (height L) is 200 ⁇ m.
  • the target Cu column was produced by cutting.
  • Arithmetic average roughness The arithmetic average roughness (image evaluation) of the Cu column was evaluated using a laser microscope (model number VK-9510 / JISB0601-1994) manufactured by KEYENCE. In this example, the measurement was performed in a range of 10 ⁇ 10 ⁇ m centering on the flattest portion of the upper surface of the Cu column. The measurement pitch on the z-axis (height direction) of the Cu column is 0.01 ⁇ m. Under such conditions, the arithmetic average roughness Ra of 10 arbitrary positions was measured as the arithmetic average roughness Ra of the Cu column, and those arithmetic averages were used as the true arithmetic average roughness.
  • arithmetic mean roughness Ra may measure the bottom face and peripheral surface of Cu column, and may use the value which averaged each measured value of the upper surface, bottom face, and peripheral surface of Cu column as a measured value.
  • ultrasonic waves are used to flatten the surface of the Cu column, but the present invention is not limited to this.
  • the Cu column can be immersed in a soluble liquid that lightly dissolves the surface of the Cu column and promotes smoothing.
  • a sulfonic acid (methanesulfonic acid or the like) or carboxylic acid (oxalic acid or the like) acidic solution can be used.
  • the Vickers hardness of the Cu column was measured according to "Vickers hardness test-test method JIS Z2244".
  • the equipment used was a micro Vickers hardness tester manufactured by Akashi Seisakusho and an AKASHI micro hardness tester MVK-F 12001-Q.
  • ⁇ ⁇ dose The measurement method of ⁇ dose is as follows. For measuring the ⁇ dose, an ⁇ ray measuring device of a gas flow proportional counter was used. The measurement sample is a 300 mm ⁇ 300 mm flat shallow container in which a Cu column is spread until the bottom of the container is not visible. This measurement sample was placed in an ⁇ -ray measuring apparatus and allowed to stand for 24 hours in a PR-10 gas flow, and then the ⁇ dose was measured.
  • the PR-10 gas used for the measurement (90% argon—10% methane) was obtained after 3 weeks or more had passed since the gas cylinder was filled with the PR-10 gas.
  • the cylinder that was used for more than 3 weeks was used because the JEDEC STANDARDE-Alpha Radiation Measuring Element was established by JEDEC (Joint Electron Engineering Engineering Coil) so that alpha rays would not be generated by radon in the atmosphere entering the gas cylinder. This is because JESD221 is followed.
  • Example 1 A Cu column manufactured using a copper wire having a purity of 99.9% was placed in a carbon bat, and then the bat was carried into a continuous conveyor type electric resistance heating furnace for annealing treatment. The annealing conditions at this time are shown in FIG. The inside of the furnace was in a nitrogen gas atmosphere in order to prevent oxidation of the Cu column. The room temperature was 25 ° C.
  • the heating time for heating from room temperature to 700 ° C. is 60 minutes
  • the holding time for holding at 700 ° C. is 60 minutes
  • the cooling time for cooling from 700 ° C. to room temperature is 120 minutes. Minutes.
  • the inside of the furnace was cooled using a cooling fan installed in the furnace.
  • the acid treatment was performed by immersing the Cu column subjected to the annealing treatment in dilute sulfuric acid. This is to remove the oxide film formed on the surface of the Cu column by the annealing process.
  • Table 1 below shows the Vickers hardness, arithmetic average roughness, and ⁇ dose before and after the annealing treatment of the Cu column thus obtained.
  • Example 2 In Example 2, an annealing process and an oxide film removal process were performed on a Cu column made of a copper wire having a purity of 99.99% by the same method as in Example 1. And the Vickers hardness, arithmetic mean roughness, and alpha dose of the obtained Cu column were measured. The measurement results are shown in Table 1 below.
  • Example 3 an annealing process and an oxide film removal process were performed on a Cu column made of a copper wire having a purity of 99.995% by the same method as in Example 1. And the Vickers hardness, arithmetic mean roughness, and alpha dose of the obtained Cu column were measured. The measurement results are shown in Table 1 below.
  • Comparative example 1 In Comparative Example 1, the Vickers hardness, arithmetic average roughness, and ⁇ dose of a Cu column made of a copper wire having a purity of 99.9% were measured. The measurement results are shown in Table 1 below.
  • Comparative example 2 In Comparative Example 2, the Vickers hardness, arithmetic average roughness, and ⁇ dose of a Cu column made of a copper wire with a purity of 99.99% were measured. The measurement results are shown in Table 1 below.
  • Comparative example 3 In Comparative Example 3, the Vickers hardness, arithmetic average roughness, and ⁇ dose of a Cu column made of a copper wire with a purity of 99.995% were measured. The measurement results are shown in Table 1 below.
  • Comparative example 4 In Comparative Example 4, the Vickers hardness, arithmetic average roughness, and ⁇ dose of a Cu column made of a copper wire having a purity exceeding 99.995% were measured. The measurement results are shown in Table 1 below.
  • Comparative example 5 In Comparative Example 5, an annealing process and an oxide film removal process were performed on a Cu column made of a copper wire having a purity exceeding 99.995% by the same method as in Example 1. And the Vickers hardness, arithmetic mean roughness, and alpha dose of the obtained Cu column were measured. The measurement results are shown in Table 1 below.
  • Example 1 As shown in Table 1, in Example 1, the arithmetic average roughness of the Cu column was 0.10 ⁇ m, in Example 2, the arithmetic average roughness of the Cu column was 0.17 ⁇ m, and in Example 3, the arithmetic average of the Cu column was The roughness was 0.28 ⁇ m, and the arithmetic average roughness was 0.3 ⁇ m or less in any of the examples.
  • the Vickers hardness of the Cu column is 57.1
  • Example 2 the Vickers hardness of the Cu column is 52.9
  • Example 3 the Vickers hardness of the Cu column is 50.2, In all examples, the Vickers hardness was 20 HV or more and 60 HV or less. From these results, it was confirmed that a Cu column having both physical properties of low Vickers hardness and low arithmetic average roughness can be obtained by subjecting the Cu column during production to annealing.
  • Comparative Examples 1 to 4 where the annealing treatment was not applied to the Cu column the arithmetic average roughness of the Cu column was 0.3 ⁇ m or less, but the Vickers hardness was over 60 HV, and the Vickers hardness was 20 HV or more and 60 HV. It was confirmed that the following conditions were not met.
  • Comparative Example 5 the Vickers hardness of the Cu column was in the range of 20 HV to 60 HV, but the arithmetic average roughness was over 0.3 ⁇ m. Thereby, even when annealing treatment was performed on the Cu column at the time of production, it was confirmed that the arithmetic average roughness does not satisfy the condition regarding 0.3 ⁇ m or less when a high purity Cu column is used.
  • alpha dose Cu column is less than 0.0010cph / cm 2 or less, which satisfies the ⁇ 0.0200cph / cm 2, further the ⁇ 0.0010cph / cm 2 It was confirmed that the result was satisfied.
  • a Cu core column was prepared by coating the surface of the Cu column after the annealing treatment of Example 1 described above with a solder plating layer made of an Sn-3Ag-0.5Cu alloy, and the Cu core column and the Cu core column.
  • the plating solution used at the time of production was collected in a 300 cc beaker as it was, and was applied to an ultrasonic machine and irradiated with ultrasonic waves for 60 minutes.
  • the ultrasonic machine a commercially available ultrasonic cleaning machine (US-CLEANER manufactured by AS ONE) was used, and the output was 80 W and the frequency of 40 kHz.
  • the arithmetic average roughness and ⁇ dose of the prepared Cu core column were measured.
  • the arithmetic average roughness of the Cu core column was 0.3 ⁇ m or less.
  • the Cu core column in which the surface of the Cu column of Example 1 is coated with the Ni plating layer, and the Cu core column in which the surface of the Cu column of Example 1 is sequentially coated with the Ni plating layer and the solder plating layer are also described above.
  • the arithmetic average roughness of the Cu core column was 0.3 ⁇ m or less.
  • alpha dose is less than 0.0010cph / cm 2, which satisfied the ⁇ 0.0200cph / cm 2, even more was confirmed to be the results which satisfy the ⁇ 0.0010cph / cm 2 .
  • the arithmetic average roughness was 0.3 ⁇ m or less as in the case of the Cu core column coated with the Ni plating layer. Further, the dose may be less than 0.0010cph / cm 2 ⁇ , which satisfies the ⁇ 0.0200cph / cm 2, even more was confirmed to be the results which satisfy the ⁇ 0.0010cph / cm 2.
  • a flux-coated Cu column was prepared by coating the surface of the Cu column after the annealing treatment of Example 1 described above with a flux, and the arithmetic average roughness and ⁇ dose of the prepared flux-coated Cu column were measured. Similar to Examples 1 to 3, the arithmetic average roughness of the flux-coated Cu column was 0.3 ⁇ m or less. Furthermore, in the flux-coated Cu column, the ⁇ dose is less than 0.0010 cph / cm 2 , which is confirmed to satisfy ⁇ 0.0200 cph / cm 2 and further satisfy ⁇ 0.0010 cph / cm 2. It was done.
  • the flux-coated Cu core column in which the surface of the Cu core column was coated with a flux also had an arithmetic average roughness of 0.3 ⁇ m or less, like the flux-coated Cu column.
  • alpha dose is less than 0.0010cph / cm 2, which is possible ⁇ meet 0.0200cph / cm 2, even at results which satisfy the ⁇ 0.0010cph / cm 2 confirmed.
  • Example 2 the surface of the Cu column after the annealing treatment of Example 1 was coated with an organic coating containing an imidazole compound to prepare an OSP-treated Cu column, and the arithmetic average roughness and ⁇ dose of the produced OSP-treated Cu column were respectively determined. It was measured. As in Examples 1 to 3, it was confirmed that the OSP-treated Cu column had an arithmetic average roughness of 0.3 ⁇ m or less and an ⁇ dose of 0.0010 cph / cm 2 or less.
  • the column of the present invention has a columnar shape, but the shape is not limited to a column, and the upper and lower surfaces that are in direct contact with the substrate, such as a triangular column or a quadrangular column, are three sides. If it is the pillar body comprised by the above, the effect of this invention can be acquired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Conductive Materials (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Powder Metallurgy (AREA)
  • Combinations Of Printed Boards (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 ビッカース硬さが低く、かつ、算術平均粗さが小さいCuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極を提供する。 本発明に係るCuカラム1は、純度が99.9%以上99.995%以下であり、算術平均粗さが0.3μm以下であり、ビッカース硬さが20HV以上60HV以下である。Cuカラム1は、はんだ付けの温度で溶融せず、一定のスタンドオフ高さ(基板間の空間)を確保できるので、三次元実装や狭ピッチ実装に好適に用いられる。

Description

Cuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極
 本発明は、Cuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極に関する。
 近年、小型情報機器の発達により、搭載される電子部品では急速な小型化が進行している。電子部品は、小型化の要求により接続端子の狭小化や実装面積の縮小化に対応するため、裏面に電極が設置されたボールグリッドアレイ(以下、「BGA」と称する。)が適用されている。
 BGAを適用した電子部品には、例えば半導体パッケージがある。半導体パッケージでは、電極を有する半導体チップが樹脂で封止されている。半導体チップの電極には、はんだバンプが形成されている。このはんだバンプは、はんだボールを半導体チップの電極に接合することによって形成されている。BGAを適用した半導体パッケージは、加熱により溶融したはんだバンプとプリント基板の導電性ランドが接合することにより、プリント基板に搭載される。また、更なる高密度実装の要求に対応するため、半導体パッケージが高さ方向に積み重ねられた3次元高密度実装が開発されている。
 しかし、3次元高密度実装がなされた半導体パッケージにBGAを適用した場合、半導体パッケージの自重によりはんだボールが潰れてしまうことがある。もしそのようなことが起きると、基板間の適切な空間を保持できなくなる。
 そこで、はんだペーストを用いて電子部品の電極上にCuボールを電気的に接合するはんだバンプが検討されている。Cuボールを用いて形成されたはんだバンプは、電子部品がプリント基板に実装される際、半導体パッケージの重量がはんだバンプに加わっても、はんだの融点では溶融しないCuボールにより半導体パッケージを支えることができる。したがって、半導体パッケージの自重によりはんだバンプが潰れることがない。
 ところが、上述したCuボールを用いた場合には以下のような問題があった。Cuボールでは、基板間のスタンドオフ高さがCuボールの球径となるため、要求されるスタンドオフ高さを実現しようとするとCuボールの横幅が大きくなってしまい、狭ピッチ化実装に対応できない場合があった。また、一般に半導体パッケージにおいては、半導体チップをリードフレームのダイパッド電極部にダイボンド用のはんだ材料を用いて接合された後、樹脂で封止される。この半導体パッケージをプリント基板に実装する場合には、ダイボンド用のはんだ材料とは異なる実装用のはんだ材料が用いられている。この理由は、半導体パッケージを基板に実装する時の実装用のはんだ材料の加熱条件によって、ダイボンド用のはんだ材料が溶け出さないようにするためである。このように、ダイボンド用のはんだ材料と実装用のはんだ材料に異なる材料が使用される場合、各基板の熱膨張係数に差が生じるため、環境温度等の変化によりはんだバンプとの接合部に応力(熱ストレス)が発生してしまい、TCT(温度サイクル試験)信頼性が低下してしまう場合があった。
 そのため、近年では、はんだボールよりも狭ピッチ化が可能であり、かつ、TCT信頼性の向上を図ることが可能なCuカラムが開発されている。また、同一のピッチのCuボールとCuカラムを比較した場合、ボール形状よりカラム形状の方が安定して電極間を支持できるため、この点でもCuカラムの採用が検討されている。例えば、特許文献1から5には、銅やはんだ等からなる柱状のカラムが記載されている。特許文献6には、ビッカース硬さが55HV以下である、セラミック基板とガラスエポキシ基板とを接合するための銅カラムが記載されている。
特開平7-66209号公報 特許第3344295号 特開2000-232119号公報 特許第4404063号 特開2009-1474号公報 特開2011-176124号公報
 しかしながら、上記特許文献1から6によれば、狭ピッチ化実装に対応できると共に熱ストレスを抑制することができるが、Cuカラムの算術平均粗さについては一切開示されていない。そのため、特許文献1から6のCuカラムを使用した場合には、Cuカラムを基板上に配列する際のCuカラムの流動性が低下してしまったり、実装時におけるCuカラムと電極の密着性が低下してしまったりする等の問題が発生する場合があった。
 そこで、本発明は、上記課題を解決するために、ビッカース硬さが低く、かつ、算術平均粗さが小さいCuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極を提供することを目的とする。
 本発明者らは、Cuカラムについて選定を行った。Cuカラムのビッカース硬さが20HV以上60HV以下であって、かつ、算術平均粗さが0.3μm以下であれば、本発明の課題解決のための好ましいCuカラム等が得られることを知見した。
 ここに、本発明は次の通りである。
 (1)純度が99.9%以上99.995%以下であり、算術平均粗さが0.3μm以下であり、ビッカース硬さが20HV以上60HV以下であるCuカラム。
 (2)α線量が0.0200cph/cm以下である上記(1)に記載のCuカラム。
 (3)上面および底面の径が1~1000μmであり、高さが1~3000μmである柱体からなる上記(1)または(2)に記載のCuカラム。
 (4)フラックス層が被覆されている上記(1)~(3)のいずれか一つに記載のCuカラム。
 (5)イミダゾール化合物を含有する有機被膜が被覆されている上記(1)~(3)のいずれか1項に記載のCuカラム。
 (6)上記(1)~(4)のいずれか一つに記載のCuカラムと、前記Cuカラムを被覆するはんだ層とを備えるCu核カラム。
 (7)上記(1)~(4)のいずれか一つに記載のCuカラムと、前記Cuカラムを被覆するNi、FeおよびCoから選択される1元素以上からなるめっき層と備えるCu核カラム。
 (8)前記めっき層を被覆するはんだ層をさらに備える上記(7)に記載のCu核カラム。
 (9)α線量が0.0200cph/cm以下である上記(6)~(8)のいずれか一つに記載のCu核カラム。
 (10)フラックス層が被覆されている上記(6)~(9)のいずれか一つに記載のCu核カラム。
 (11)上記(1)~(5)のいずれか一つに記載のCuカラムを使用したはんだ継手。
(12)上記(1)~(5)のいずれか一つに記載のCuカラムを使用したシリコン貫通電極。
 (13)上記(6)~(10)のいずれか一つに記載のCu核カラムを使用したはんだ継手。
 (14)上記(6)~(10)のいずれか一つに記載のCu核カラムを使用したシリコン貫通電極。
 本発明によれば、Cuカラムのビッカース硬さが20HV以上60HV以下であるので、耐落下衝撃性を向上させることができると共に基板間の適切な空間を保持できる。また、Cuカラムの算術平均粗さが0.3μm以下であるので、Cuカラムを基板上に配列する際の流動性を向上させることができると共に、実装時におけるCuカラムと電極の密着性を向上させることができる。
図1は、本発明に係るCuカラムの構成例を示す図である。 図2は、本発明に係るCu核カラムの構成例を示す図である。 図3は、アニーリング処理時における温度と時間の関係を示す図である。
 本発明を以下により詳しく説明する。本明細書において、Cuカラムの組成に関する単位(ppm、ppb、および%)は、特に指定しない限りCuカラムの質量に対する割合(質量ppm、質量ppb、および質量%)を表す。
 図1に示す本発明に係るCuカラム1は、純度が99.9%以上99.995%以下であり、算術平均粗さが0.3μm以下であり、ビッカース硬さが20HV以上60HV以下である。Cuカラム1は、例えば円柱形状からなる。Cuカラム1は、はんだ付けの温度で溶融せず、一定のスタンドオフ高さ(基板間の空間)を確保できるので、三次元実装や狭ピッチ実装に好適に用いることができる。
 ・Cuカラムの算術平均粗さ:0.3μm以下
 Cuカラム1の算術平均粗さは、0.3μm以下であり、より好ましくは、0.2μm以下である。Cuカラム1の算術平均粗さが0.3μm以下である場合、Cuカラム1の結晶粒の大きさも小さくなるので、Cuカラム1の表面をより滑らか(平坦)にすることができる。これにより、Cuカラム1をマウンター等により基板上に配列する際のCuカラム1の流動性を向上させることができると共に、実装時におけるCuカラム1と基板上の電極の密着性の向上を図ることもできる。
 ・ビッカース硬さ20HV以上60HV以下
 本発明に係るCuカラム1のビッカース硬さは、60HV以下であることが好ましい。ビッカース硬さが60HV以下である場合、外部からの応力に対する耐久性が高くなり、耐落下衝撃性が向上すると共にクラックが発生しにくくなるからである。また、三次元実装のバンプや継手の形成時に加圧等の補助力を付与した場合において、柔軟性の高いCuカラム1を使用することで、電極潰れ等を引き起こす可能性を低下させることができるからである。
 また、本発明に係るCuカラム1のビッカース硬さは、少なくとも一般的なはんだのビッカース硬さ10~20HVよりも大きい値であることが必要であり、好ましくは20HV以上である。Cuカラム1のビッカース硬さが20HV以上である場合、3次元実装において半導体チップ等の自重によるCuカラム1自体の変形(潰れ)を防止し、基板間の適切な空間(スタンドオフ高さ)を保持できる。また、Cuピラー等のように、めっき工程が不要であるため、Cuカラム1のビッカース硬さを20HV以上とすることにより電極等の狭ピッチ化を実現できる。
 本実施例では、Cuカラム1を製造した後、製造したCuカラム1の結晶成長を促進させることによりビッカース硬さが60HV以下となるCuカラム1を製造する。Cuカラム1の結晶成長を促進させる手段としては、例えば、アニーリング処理が挙げられる。製造後のCuカラム1をアニーリング処理すると、Cu組織が再結晶化して結晶粒が成長することで、Cuカラム1の柔軟性が向上する。一方で、不純物を一定量含有したCuカラム1、例えば純度が3N,4N,4N5のCuカラム1を使用する場合には、含有した不純物がCuカラム1表面において結晶粒の過度な成長を抑制するので結晶粒は一定値以下の大きさに抑えられる。これにより、低ビッカース硬さであって、かつ、低算術平均粗さの二つの条件を両立したCuカラムを提供することができる。
 ・U:5ppb以下、Th:5ppb以下
 UおよびThは放射性元素であり、ソフトエラーを抑制するにはこれらの含有量を抑える必要がある。UおよびThの含有量は、Cuカラム1のα線量を0.0200cph/cm以下とするため、各々5ppb以下にする必要がある。また、現在または将来の高密度実装でのソフトエラーを抑制する観点から、UおよびThの含有量は、好ましくは、各々2ppb以下である。
 ・Cuカラムの純度:99.9%以上99.995%以下
 本発明を構成するCuカラム1は純度が99.9%以上99.995%以下であることが好ましい。Cuカラム1の純度がこの範囲であると、十分な量の不純物元素の結晶核をCu中に確保することができるので、Cuカラム1の算術平均粗さを小さくできる。一方、不純物元素が少ないと、相対的に結晶核となるものが少なく、粒成長が抑制されずにある方向性をもって成長するので、Cuカラム1の算術平均粗さが大きくなってしまう。Cuカラム1の純度の下限値は特に限定されないが、α線量を抑制し、純度の低下によるCuカラム1の電気伝導度や熱伝導率の劣化を抑制する観点から、好ましくは99.9%以上である。不純物元素としては、Sn、Sb、Bi、Zn、As、Ag、Cd、Ni、Pb、Au、P、S、In、Co、Fe、U、Thなどが挙げられる。
 ・α線量:0.0200cph/cm以下
 本発明を構成するCuカラム1のα線量は、0.0200cph/cm以下である。これは、電子部品の高密度実装においてソフトエラーが問題にならない程度のα線量である。α線量は、更なる高密度実装でのソフトエラーを抑制する観点から、より好ましくは0.0010cph/cm以下である。
 ・不純物元素の含有量が合計で1ppm以上
 本発明を構成するCuカラム1は、不純物元素としてSn、Sb、Bi、Zn、As、Ag、Cd、Ni、Pb、Au、P、S、In、Co、Fe、U、Thなどを含有するが、不純物元素の含有量が合計で1ppm以上含有する。なお、不純物元素であるPbおよびBiの含有量は、極力低い方が好ましい。
 ・Cuカラムの上面および底面の径:1~1000μm,Cuカラムの高さ:1~3000μm
 本発明に係るCuカラム1の上面および底面の径φは1~1000μmであることが好ましく、特にファインピッチに用いる場合は1~300μがより好ましく、さらに好ましくは1~200μmであり、最も好ましいのは1~100μmである。そして、Cuカラム1の高さLは1~3000μmであることが好ましく、特にファインピッチに用いる場合は1~300μがより好ましく、さらに好ましくは1~200μmであり、最も好ましいのは1~100μmである(図1参照)。Cuカラム1の径φおよび高さLが上記範囲である場合、端子間を狭ピッチとした実装が可能となるので、接続短絡を抑制することができると共に半導体パッケージの小型化および高集積化を図ることができる。
 また、本発明に係るCuカラム1の最表面の算術平均粗さが0.3μm以下となるように、はんだめっき層やNiめっき層、Feめっき層、Coめっき層、イミダゾール化合物を含有する有機被膜層を、Cuカラム1の最表面に被覆してもよい。本発明に係るCuカラム1に算術平均粗さが0.3μm以下となるような最表面層を設ければ、マウンター等により基板上に配列する際のCuカラム1の流動性を向上させ、実装時におけるCuカラム1と基板上の電極の密着性の向上を図ることができると共に、Cuカラム1自体のビッカース硬さが20HV以上60HV以下であるため、Cuカラム1実装後の耐落下衝撃性を向上させ、基板間の適切な空間を保持するという本願の課題解決を達成することができる。
 さらに、本発明に係るCuカラム1または、Cu核カラムの最表面をフラックス層で被覆する場合は、フラックス層ははんだ層やNiめっき層に比べて軟性があるので、流動性に大きく影響を与えず、実装時におけるCuカラム1と基板上の電極の密着性についても、フラックス層が電極に押し当てられた際、フラックス層は変形するので、フラックス層の算術平均粗さではなく、Cuカラム1または、Cu核カラム自体の算術平均粗さが関係する。よって、フラックスで被覆したCuカラム1または、Cu核カラムの算術平均粗さが0.3μm以下であれば、フラックス層で被覆したCuカラム1または、Cu核カラムの算術平均粗さが0.3μmを超えていたとしても、基板上に配列する際のCuカラム1の流動性はあまり悪化することがなく、実装時におけるCuカラム1と基板上の電極の密着性の向上を図ることができると共に、Cuカラム1自体のビッカース硬さが20HV以上60HV以下であるため、Cuカラム1実装後の耐落下衝撃性を向上させ、基板間の適切な空間を保持するという本願の課題解決を達成することができる。
 例えば、本発明に係るCuカラム1の表面を単一の金属または合金からなる金属層により被覆することにより、Cuカラム1および金属層からなるCu核カラムを構成することができる。図2に示すように、Cu核カラム3は、Cuカラム1と、このCuカラム1の表面を被覆するはんだ層2(金属層)とを備えている。はんだ層2の組成は、合金の場合、Snを主成分とするはんだ合金の合金組成であれば特に限定されない。また、はんだ層2としては、Snめっき被膜であってもよい。例えば、Sn、Sn-Ag合金、Sn-Cu合金、Sn-Ag-Cu合金、Sn-In合金、およびこれらに所定の合金元素を添加したものが挙げられる。いずれもSnの含有量が40質量%以上である。また、特にα線量を指定しない場合には、はんだ層2として、Sn-Bi合金、Sn-Pb合金も使用できる。添加する合金元素としては、例えばAg、Cu、In、Ni、Co、Sb、Ge、P、Feなどがある。これらの中でも、はんだ層2の合金組成は、落下衝撃特性の観点から、好ましくはSn-3Ag-0.5Cu合金である。はんだ層2の厚さは特に制限されないが、好ましくは片側で100μm以下であれば十分である。一般には片側で20~50μmであればよい。
 また、Cu核カラムにおいて、Cuカラム1の表面とはんだ層2との間に予めNiめっき層、Feめっき層やCoめっき層等を設けることができる。これにより、電極への接合時においてはんだ中へのCuの拡散を低減することができ、Cuカラム1のCu食われを抑制することができる。Niめっき層、Feめっき層やCoめっき層等の膜厚は一般的には片側0.1~20μmである。
 また、上述したCu核カラムにおいて、はんだ層2のUおよびThの含有量は、Cu核カラムのα線量を0.0200cph/cm以下とするため、各々5ppb以下である。また、現在または将来の高密度実装でのソフトエラーを抑制する観点から、UおよびThの含有量は、好ましくは、各々2ppb以下である。
 本発明に係るCu核カラムは、Cuカラム1と、このCuカラム1を被覆するNi、FeおよびCoから選択される1元素以上からなるめっき層(金属層)により構成することもできる。また、Cu核カラムを構成するめっき層の表面に、はんだ層を被覆しても良い。はんだ層は、上述したはんだ層と同様のものを採用することができる。
 本発明に係るCuカラム1またはCu核カラム3は、電極間を接合するはんだ継手の形成に使用することもできる。本例では、例えば、はんだバンプをプリント基板の電極上に実装した構造をはんだ継手と呼ぶ。はんだバンプとは、半導体チップの電極上にCuカラム1が実装された構造である。
 また、本発明に係るCuカラム1またはCu核カラム3は、積層される半導体チップ間の電極を接続するためのシリコン貫通電極(through-silicon via:TSV)に使用することもできる。TSVは、シリコンにエッチングで穴を開け、穴の中に絶縁層、その上より貫通導電体の順に形成し、シリコンの上下面を研磨して、貫通導電体を上下面で露出させて製造される。この工程のうち貫通導電体は、従来、Cu等をめっき法によって穴の中に充填して形成する方法がとられているが、この方法では、シリコン全面をめっき液に浸漬させるため、不純物の吸着や吸湿の恐れがある。そこで本発明のカラムを直接、シリコンに形成された穴に高さ方向に差し込んで、貫通導電体として使用することができる。Cuカラム1をシリコンに差し込む際は、はんだペースト等のはんだ材料によって接合するようにしても良く、またCu核カラムをシリコンに差し込む際は、フラックスのみで接合させることもできる。これにより不純物の吸着や吸湿等の不良を防止でき、めっき工程を省略することによって、製造コストや製造時間も削減することができる。
 また、上述したCuカラム1やCu核カラムの最表面をフラックス層により被覆しても良い。上述したフラックス層は、Cuカラム1やはんだ層等の金属表面の酸化を防止すると共にはんだ付け時に金属酸化膜の除去を行う活性剤として作用する化合物を含む1種類あるいは複数種類の成分により構成される。例えば、フラックス層は、活性剤として作用する化合物と、活性補助剤として作用する化合物等からなる複数の成分により構成されていても良い。
 フラックス層を構成する活性剤としては、本発明で要求される特性に応じてアミン、有機酸、ハロゲンのいずれか、複数のアミンの組み合わせ、複数の有機酸の組み合わせ、複数のハロゲンの組み合わせ、単一あるいは複数のアミン、有機酸、ハロゲンの組み合わせが添加される。
 フラックス層を構成する活性補助剤としては、活性剤の特性に応じてエステル、アミド、アミノ酸のいずれか、複数のエステルの組み合わせ、複数のアミドの組み合わせ、複数のアミノ酸の組み合わせ、単一あるいは複数のエステル、アミド、アミノ酸の組み合わせが添加される。
 また、フラックス層は、活性剤として作用する化合物等を、リフロー時の熱から保護するため、ロジンや樹脂を含むものであっても良い。更に、フラックス層は、活性剤として作用する化合物等を、はんだ層に固着させる樹脂を含むものであっても良い。
 フラックス層は、単一あるいは複数の化合物からなる単一の層で構成されても良い。また、フラックス層は、複数の化合物からなる複数の層で構成されても良い。フラックス層を構成する成分は、固体の状態ではんだ層の表面に付着するが、フラックスをはんだ層に付着させる工程では、フラックスが液状またはガス状となっている必要がある。
 このため、フラックス層を構成する成分は、溶液でコーティングするには溶剤に可溶である必要があるが、例えば、塩を形成すると、溶剤中で不溶となる成分が存在する。液状のフラックス中で不溶となる成分が存在することで、沈殿物が形成される等の難溶解性の成分を含むフラックスでは、均一な吸着が困難になる。このため、従来、塩を形成するような化合物を混合して、液状のフラックスを構成することはできない。
 これに対し、本発明のフラックス層を備えたCuカラム1やCu核カラムでは、1層ずつフラックス層を形成して固体の状態とし、多層のフラックス層を形成することができる。これにより、塩を形成するような化合物を使用する場合であって、液状のフラックスでは混合できない成分であっても、フラックス層を形成することができる。
 酸化しやすいCuカラム1やCu核カラムの表面が、活性剤として作用するフラックス層で被覆されることで、保管時等に、Cuカラム1の表面およびCu核カラムのはんだ層または金属層の表面の酸化を抑制することができる。
 ここで、フラックスと金属の色は一般的に異なり、Cuカラム1等とフラックス層の色も異なることから、色彩度、例えば、明度、黄色度、赤色度でフラックスの吸着量を確認できる。なお、着色を目的に、フラックス層を構成する化合物に色素を混合しても良い。
 上述したCuカラム1をイミダゾール化合物を含有する有機被膜により被覆しても良い。これにより、Cuカラム1の最表面のCu層とイミダゾール化合物とが結合することで、Cuカラム1の表面にOSP被膜(イミダゾール銅錯体)が形成され、Cuカラム1の表面が酸化するのを抑制することができる。
 次に、本発明に係るCuカラム1の製造方法の一例を説明する。材料となる銅線を用意し、用意した銅線をダイスを通すことにより伸ばし、その後、切断機により所定の長さで銅線を切断する。このようにして、円柱形状からなる所定の径φおよび所定の長さ(高さL)のCuカラム1を作製する。なお、Cuカラム1の製造方法は、本実施の形態に限定されることはなく、他の公知の方法を採用しても良い。
 本実施例では、低算術平均粗さおよび低ビッカース硬さのCuカラム1を得るために、作製したCuカラム1に対してアニーリング処理を施す。アニーリング処理では、アニーリング可能な700℃にてCuカラム1を所定時間加熱し、その後、加熱したCuカラム1を長い時間をかけて徐冷する。これにより、Cuカラム1の再結晶を行うことができ、緩やかな結晶成長を促進できる。一方で、Cuカラム1に含有される不純物元素が結晶粒の過度な成長を抑制するので、Cuカラム1の極度な算術平均粗さの低下は起こらない。
 本実施の形態によれば、Cuカラム1のビッカース硬さが20HV以上60HV以下であるので、耐落下衝撃性を向上させることができると共に基板間の適切な空間を保持できる。また、Cuカラム1の算術平均粗さが0.3μm以下であるので、Cuカラム1を基板上に配列する際の流動性を向上させることができると共に、実装時におけるCuカラム1と電極の密着性を向上させることができる。
 以下に本発明の実施例を説明するが、本発明はこれらに限定されるものではない。以下に示す実施例では、純度の異なる複数の銅線を使用して複数のCuカラムを作製し、これら作製した各Cuカラムのビッカース硬さ、算術平均粗さおよびα線量を測定した。
 ・Cuカラムの作製
 純度が99.9%、99.99%、99.995%の銅線を準備した。次に、これら銅線をダイスを通過させることにより、上面および底面の径φが200μmとなるように銅線を伸ばし、その後、200μmの長さ(高さL)となる位置にて銅線を切断することにより、目的とするCuカラムを作製した。
・算術平均粗さ
 Cuカラムの算術平均粗さの評価(画像評価)は、KEYENCE社製のレーザ顕微鏡(型番VK-9510/JISB0601-1994対応)を使用して行った。本実施例では、Cuカラムの上面の最も平坦な部分を中心として、10×10μmの範囲で測定した。Cuカラムのz軸上(高さ方向)における測定ピッチは0.01μmである。このような条件でCuカラムの算術平均粗さRaとして、任意の10個所の算術平均粗さRaを測定し、それらの算術平均を真の算術平均粗さとして使用した。
 なお、算術平均粗さRaは、Cuカラムの底面や周面を測定しても良いし、Cuカラムの上面、底面および周面の各測定値を平均した値を測定値として使用しても良い。また、上記例では、Cuカラムの表面を平坦化するために超音波を利用したが、これに限定されることはない。例えば、Cuカラムの表面を軽く溶解して平滑化加工を促進する溶解性の液体にCuカラムを浸漬させることもできる。液体としては、スルホン酸系(メタンスルホン酸など)やカルボン酸系(シュウ酸など)の酸性溶液を用いることができる。
 ・ビッカース硬さ
 Cuカラムのビッカース硬さは、「ビッカース硬さ試験-試験方法 JIS Z2244」に準じて測定した。装置は、明石製作所製のマイクロビッカース硬度試験器、AKASHI微小硬度計MVK-F 12001-Qを使用した。
 ・α線量
 α線量の測定方法は以下の通りである。α線量の測定にはガスフロー比例計数器のα線測定装置を使用した。測定サンプルは300mm×300mmの平面浅底容器にCuカラムを容器の底が見えなくなるまで敷き詰めたものである。この測定サンプルをα線測定装置内に入れ、PR-10ガスフローにて24時間放置した後、α線量を測定した。
 なお、測定に使用したPR-10ガス(アルゴン90%-メタン10%)は、PR-10ガスをガスボンベに充填してから3週間以上経過したものである。3週間以上経過したボンベを使用したのは、ガスボンベに進入する大気中のラドンによりα線が発生しないように、JEDEC(Joint Electron Device Engineering Council)で定められたJEDEC STANDARD-Alpha Radiation Measurement in Electronic Materials JESD221に従ったためである。
 ・実施例1
 純度99.9%の銅線を使用して製造したCuカラムをカーボン製バットに入れた後、このバットを連続コンベア式電気抵抗加熱炉に搬入してアニーリング処理を行った。このときの、アニーリング条件を図3に示す。なお、炉内は、Cuカラムの酸化を防止するために窒素ガス雰囲気にした。室温は25℃とした。
 アニーリング条件としては、図3に示すように、室温から700℃に加熱する昇温時間を60分間とし、700℃で保持する保持時間を60分間とし、700℃から室温に冷却する冷却時間を120分間とした。炉内の冷却は、炉内に設置した冷却ファンを用いて行った。次に、アニーリング処理が施されたCuカラムを希硫酸に浸漬させることで酸処理を行った。これは、アニーリング処理によりCuカラム表面に形成された酸化膜を除去するためである。このようにして得られたCuカラムのアニーリング処理前後におけるビッカース硬さ、算術平均粗さおよびα線量を下記表1に示す。
 ・実施例2
 実施例2では、純度が99.99%の銅線により作製されたCuカラムに対し、実施例1と同様の方法により、アニーリング処理を行うと共に酸化膜除去処理を行った。そして、得られたCuカラムのビッカース硬さ、算術平均粗さおよびα線量を測定した。これらの測定結果を下記表1に示す。
 実施例3では、純度が99.995%の銅線により作製されたCuカラムに対し、実施例1と同様の方法により、アニーリング処理を行うと共に酸化膜除去処理を行った。そして、得られたCuカラムのビッカース硬さ、算術平均粗さおよびα線量を測定した。これらの測定結果を下記表1に示す。
 ・比較例1
 比較例1では、純度が99.9%の銅線により作製されたCuカラムのビッカース硬さ、算術平均粗さおよびα線量をそれぞれ測定した。これらの測定結果を下記表1に示す。
 ・比較例2
 比較例2では、純度が99.99%の銅線により作製されたCuカラムのビッカース硬さ、算術平均粗さおよびα線量をそれぞれ測定した。これらの測定結果を下記表1に示す。
 ・比較例3
 比較例3では、純度が99.995%の銅線により作製されたCuカラムのビッカース硬さ、算術平均粗さおよびα線量をそれぞれ測定した。これらの測定結果を下記表1に示す。
 ・比較例4
 比較例4では、純度が99.995%を超える銅線により作製されたCuカラムのビッカース硬さ、算術平均粗さおよびα線量をそれぞれ測定した。これらの測定結果を下記表1に示す。
 ・比較例5
 比較例5では、純度が99.995%を超える銅線により作製されたCuカラムに対し、実施例1と同様の方法により、アニーリング処理を行うと共に酸化膜除去処理を行った。そして、得られたCuカラムのビッカース硬さ、算術平均粗さおよびα線量を測定した。これらの測定結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1ではCuカラムの算術平均粗さが0.10μmとなり、実施例2ではCuカラムの算術平均粗さが0.17μmとなり、実施例3ではCuカラムの算術平均粗さが0.28μmとなり、何れの実施例でも算術平均粗さが0.3μm以下となった。また、実施例1ではCuカラムのビッカース硬さが57.1となり、実施例2ではCuカラムのビッカース硬さが52.9となり、実施例3ではCuカラムのビッカース硬さが50.2となり、何れの実施例でもビッカース硬さが20HV以上60HV以下となった。これらの結果から、製造時のCuカラムに対してアニーリング処理を施すことにより、低ビッカース硬さでかつ低算術平均粗さの両方の物性を有するCuカラムが得られることが確認された。
 一方、アニーリング処理をCuカラムに施さない比較例1~4では、Cuカラムの算術平均粗さについては0.3μm以下となったが、ビッカース硬さが60HV超となり、ビッカース硬さが20HV以上60HV以下に関する条件を満たさないことが確認された。また、比較例5では、Cuカラムのビッカース硬さは20HV以上60HV以下の範囲内となったが、算術平均粗さが0.3μm超となった。これにより、作製時のCuカラムにアニーリング処理を施した場合でも高純度のCuカラムを使用した場合には、算術平均粗さが0.3μm以下に関する条件を満たさないことが確認された。
 また、実施例1~3のCuカラムでは、Cuカラムのα線量が0.0010cph/cm以下未満となり、これは<0.0200cph/cmを満たし、さらには<0.0010cph/cmを満たす結果であることが確認された。
 次に、上述した実施例1のアニーリング処理後のCuカラムの表面にSn-3Ag-0.5Cu合金からなるはんだめっき層を被覆してCu核カラムを作製し、このCu核カラムとCu核カラム製造時に使用しためっき液をそのまま300ccのビーカーに採取して超音波機に掛けて超音波を60分間照射した。超音波機は市販の超音波洗浄機(アズワン社製US-CLEANER)を使用して、出力80W、40kHzの周波数で行った。60分経過後イオン交換水で洗浄し、その後温風乾燥させて、作製したCu核カラムの算術平均粗さおよびα線量をそれぞれ測定した。実施例1~3と同様に、Cu核カラムの算術平均粗さが0.3μm以下となった。また、実施例1のCuカラムの表面にNiめっき層を被覆したCu核カラムや、実施例1のCuカラムの表面にNiめっき層およびはんだめっき層を順番に被覆したCu核カラムについても、前記と同じ条件で超音波処理を行い、算術平均粗さおよびα線量をそれぞれ測定した所、実施例1~3と同様に、Cu核カラムの算術平均粗さが0.3μm以下となった。また、何れの場合でも、α線量が0.0010cph/cm未満となり、これは<0.0200cph/cmを満たし、さらには<0.0010cph/cmを満たす結果であることが確認された。
 なお、上記Niめっき層に代えて、Feめっき層、Coめっき層を被覆した場合でも、Niめっき層を被覆したCu核カラムと同様に、算術平均粗さが0.3μm以下となった。また、α線量も0.0010cph/cm未満となり、これは<0.0200cph/cmを満たし、さらには<0.0010cph/cmを満たす結果であることが確認された。
 次に、上述した実施例1のアニーリング処理後のCuカラムの表面にフラックスを被覆してフラックスコートCuカラムを作製し、作製したフラックスコートCuカラムの算術平均粗さおよびα線量をそれぞれ測定した。実施例1~3と同様に、フラックスコートCuカラムでは、算術平均粗さが0.3μm以下となった。さらに、フラックスコートCuカラムにおいても、α線量が0.0010cph/cm未満となり、これは<0.0200cph/cmを満たし、さらには<0.0010cph/cmを満たす結果であることが確認された。
 また、上述したCu核カラムの表面にフラックスを被覆したフラックスコートCu核カラムについても、フラックスコートCuカラムと同様に、算術平均粗さが0.3μm以下となった。さらに、フラックスコートCu核カラムにおいても、α線量が0.0010cph/cm未満となり、これは<0.0200cph/cmを満たし、さらには<0.0010cph/cmを満たす結果であることが確認された。
 別途、実施例1のアニーリング処理後のCuカラムの表面にイミダゾール化合物を含有する有機被膜を被覆してOSP処理Cuカラムを作製し、作製したOSP処理Cuカラムの算術平均粗さおよびα線量をそれぞれ測定した。実施例1~3と同様に、OSP処理Cuカラムでは、算術平均粗さが0.3μm以下となり、α線量が0.0010cph/cm以下となることが確認された。
 なお、本発明のカラムは実施例と比較例において、円柱状のものを挙げたが、形状が円柱に限定されるわけではなく、三角柱や四角柱等、基板に直接、接する上下面が3辺以上で構成されている柱体ならば本発明の効果を得ることができる。

Claims (14)

  1.  純度が99.9%以上99.995%以下であり、
     算術平均粗さが0.3μm以下であり、
     ビッカース硬さが20HV以上60HV以下であるCuカラム。
  2.  α線量が0.0200cph/cm以下である
     請求項1に記載のCuカラム。
  3.  上面および底面の径が1~1000μmであり、高さが1~3000μmである柱体からなる請求項1または2に記載のCuカラム。
  4.  フラックス層が被覆されている請求項1~3のいずれか1項に記載のCuカラム。
  5.  イミダゾール化合物を含有する有機被膜が被覆されている請求項1~3のいずれか1項に記載のCuカラム。
  6.  請求項1~4のいずれか一項に記載のCuカラムと、
     前記Cuカラムを被覆するはんだ層とを備えるCu核カラム。
  7.  請求項1~4のいずれか一項に記載のCuカラムと、
     前記Cuカラムを被覆するNi、FeおよびCoから選択される1元素以上からなるめっき層と備えるCu核カラム。
  8.  前記めっき層を被覆するはんだ層をさらに備える請求項7に記載のCu核カラム。
  9.  α線量が0.0200cph/cm以下である
     請求項6~8のいずれか一項に記載のCu核カラム。
  10.  フラックス層が被覆されている請求項6~9のいずれか1項に記載のCu核カラム。
  11.  請求項1~5のいずれか1項に記載のCuカラムを使用したはんだ継手。
  12.  請求項1~5のいずれか1項に記載のCuカラムを使用したシリコン貫通電極。
  13.  請求項6~10のいずれか1項に記載のCu核カラムを使用したはんだ継手。
  14.  請求項6~10のいずれか1項に記載のCu核カラムを使用したシリコン貫通電極。
PCT/JP2014/073808 2014-09-09 2014-09-09 Cuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極 WO2016038686A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US15/509,333 US10811376B2 (en) 2014-09-09 2014-09-09 Cu column, Cu core column, solder joint, and through-silicon via
KR1020187004667A KR102315758B1 (ko) 2014-09-09 2014-09-09 Cu 칼럼, Cu 핵 칼럼, 납땜 조인트 및 실리콘 관통 전극
PCT/JP2014/073808 WO2016038686A1 (ja) 2014-09-09 2014-09-09 Cuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極
EP14901571.1A EP3193360B1 (en) 2014-09-09 2014-09-09 Cu column, cu core column, solder joint, and through-silicon via
JP2015507277A JP5733486B1 (ja) 2014-09-09 2014-09-09 Cuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極
CN201480081816.XA CN106688085B (zh) 2014-09-09 2014-09-09 Cu柱、Cu芯柱、钎焊接头及硅穿孔电极
PT149015711T PT3193360T (pt) 2014-09-09 2014-09-09 Coluna em cu, coluna com núcleo em cu, junta de solda e via de passagem de silício
KR1020177009272A KR20170042372A (ko) 2014-09-09 2014-09-09 Cu 칼럼, Cu 핵 칼럼, 납땜 조인트 및 실리콘 관통 전극
TW104128958A TWI566650B (zh) 2014-09-09 2015-09-02 Copper pillars, copper core posts, welded joints and silicon through electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073808 WO2016038686A1 (ja) 2014-09-09 2014-09-09 Cuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極

Publications (1)

Publication Number Publication Date
WO2016038686A1 true WO2016038686A1 (ja) 2016-03-17

Family

ID=53486901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073808 WO2016038686A1 (ja) 2014-09-09 2014-09-09 Cuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極

Country Status (8)

Country Link
US (1) US10811376B2 (ja)
EP (1) EP3193360B1 (ja)
JP (1) JP5733486B1 (ja)
KR (2) KR20170042372A (ja)
CN (1) CN106688085B (ja)
PT (1) PT3193360T (ja)
TW (1) TWI566650B (ja)
WO (1) WO2016038686A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191945A (ja) * 2017-05-25 2017-10-19 千住金属工業株式会社 金属核カラムの実装方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600461B (zh) * 2019-08-30 2022-04-22 荣耀终端有限公司 封装结构及电子设备
KR102579479B1 (ko) * 2022-09-06 2023-09-21 덕산하이메탈(주) 접속핀
KR102579478B1 (ko) * 2022-09-06 2023-09-21 덕산하이메탈(주) 전기접속용 금속핀
KR102485393B1 (ko) * 2022-09-30 2023-01-09 씨피에스 주식회사 합금 와이어를 이용하여 필라를 제조하기 위한 장치 및 이에 의하여 제조된 필라

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260933A (ja) * 1999-03-05 2000-09-22 Seiko Epson Corp 半導体装置の製造方法
JP2003249598A (ja) * 2002-02-26 2003-09-05 Kyocera Corp 半導体素子収納用パッケージおよび半導体装置
JP2007115857A (ja) * 2005-10-20 2007-05-10 Nippon Steel Chem Co Ltd マイクロボール

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS444063B1 (ja) 1965-06-28 1966-02-19
US4705205A (en) * 1983-06-30 1987-11-10 Raychem Corporation Chip carrier mounting device
JPH0766209A (ja) 1993-08-23 1995-03-10 Furukawa Electric Co Ltd:The バンプ材並びにその製造方法及びそれを用いた光部品実装方法
US5591941A (en) * 1993-10-28 1997-01-07 International Business Machines Corporation Solder ball interconnected assembly
JP3344295B2 (ja) 1997-09-25 2002-11-11 イビデン株式会社 半田部材及びプリント配線板
JP2000232119A (ja) 1999-02-10 2000-08-22 Shinko Electric Ind Co Ltd 半導体チップの接続部材及びその製造方法とその接続部材を用いた半導体チップの接続方法
KR100825354B1 (ko) * 2003-08-26 2008-04-28 가부시끼가이샤 도꾸야마 소자 접합용 기판, 소자 접합 기판 및 그 제조 방법
US7036710B1 (en) * 2004-12-28 2006-05-02 International Business Machines Corporation Method and structures for implementing impedance-controlled coupled noise suppressor for differential interface solder column array
JP4404063B2 (ja) 2006-03-24 2010-01-27 株式会社村田製作所 接続構造、その形成方法、回路基板、および実装基板に表面実装された電子部品
US20080164300A1 (en) * 2007-01-08 2008-07-10 Endicott Interconnect Technologies, Inc. Method of making circuitized substrate with solder balls having roughened surfaces, method of making electrical assembly including said circuitized substrate, and method of making multiple circuitized substrate assembly
JP4945815B2 (ja) 2007-06-25 2012-06-06 Dowaエレクトロニクス株式会社 酸化銅粉末
JP5763887B2 (ja) 2010-02-24 2015-08-12 千住金属工業株式会社 銅カラム及びその製造方法
JP5633776B2 (ja) * 2010-03-30 2014-12-03 日立金属株式会社 電子部品用複合ボールの製造方法
CN102148215B (zh) * 2011-01-21 2012-06-06 哈尔滨理工大学 提高ccga 器件软钎焊焊点可靠性的互连结构及实现方法
SG192717A1 (en) 2011-03-07 2013-09-30 Jx Nippon Mining & Metals Corp Copper or copper alloy, bonding wire, method of producing the copper, method of producing the copper alloy, and method of producing the bonding wire.
JP6076020B2 (ja) * 2012-02-29 2017-02-08 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
JP2014024082A (ja) * 2012-07-26 2014-02-06 Sumitomo Metal Mining Co Ltd はんだ合金
KR102016864B1 (ko) * 2012-12-06 2019-08-30 센주긴조쿠고교 가부시키가이샤 Cu 볼
JP5590259B1 (ja) 2014-01-28 2014-09-17 千住金属工業株式会社 Cu核ボール、はんだペーストおよびはんだ継手
WO2015114770A1 (ja) 2014-01-30 2015-08-06 千住金属工業株式会社 OSP処理Cuボール、はんだ継手、フォームはんだ、およびはんだペースト
EP3103565B1 (en) 2014-02-04 2018-10-24 Senju Metal Industry Co., Ltd Cu BALL, Cu CORE BALL, SOLDER JOINT, SOLDER PASTE, AND SOLDER FOAM
JP5534122B1 (ja) 2014-02-04 2014-06-25 千住金属工業株式会社 核ボール、はんだペースト、フォームはんだ、フラックスコート核ボールおよびはんだ継手
JP6761690B2 (ja) 2016-07-28 2020-09-30 アスリートFa株式会社 柱状部材搭載装置、柱状部材搭載方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260933A (ja) * 1999-03-05 2000-09-22 Seiko Epson Corp 半導体装置の製造方法
JP2003249598A (ja) * 2002-02-26 2003-09-05 Kyocera Corp 半導体素子収納用パッケージおよび半導体装置
JP2007115857A (ja) * 2005-10-20 2007-05-10 Nippon Steel Chem Co Ltd マイクロボール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3193360A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191945A (ja) * 2017-05-25 2017-10-19 千住金属工業株式会社 金属核カラムの実装方法
TWI655985B (zh) * 2017-05-25 2019-04-11 日商千住金屬工業股份有限公司 Metal core column assembly method

Also Published As

Publication number Publication date
EP3193360A4 (en) 2018-04-04
KR20180021222A (ko) 2018-02-28
US20170287862A1 (en) 2017-10-05
CN106688085A (zh) 2017-05-17
TW201630485A (zh) 2016-08-16
KR102315758B1 (ko) 2021-10-20
PT3193360T (pt) 2020-08-25
US10811376B2 (en) 2020-10-20
TWI566650B (zh) 2017-01-11
EP3193360A1 (en) 2017-07-19
EP3193360B1 (en) 2020-07-01
KR20170042372A (ko) 2017-04-18
JP5733486B1 (ja) 2015-06-10
JPWO2016038686A1 (ja) 2017-04-27
CN106688085B (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
JP5585751B1 (ja) Cuボール、Cu核ボール、はんだ継手、はんだペースト、およびフォームはんだ
JP5967316B2 (ja) Cu核ボール、はんだペースト、フォームはんだ及びはんだ継手
JP5733486B1 (ja) Cuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極
JP5534122B1 (ja) 核ボール、はんだペースト、フォームはんだ、フラックスコート核ボールおよびはんだ継手
JP5846341B1 (ja) はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法
JP2009054790A (ja) 半導体装置
JP5585750B1 (ja) Cu核ボール、はんだ継手、フォームはんだ、およびはんだペースト
JP5692467B1 (ja) 金属球の製造方法、接合材料及び金属球
TWI753220B (zh) Cu球、OSP處理Cu球、Cu核球、焊接接頭、焊膏、泡沫焊料及Cu球的製造方法
JP5585752B1 (ja) Niボール、Ni核ボール、はんだ継手、はんだペースト、およびフォームはんだ
JP5056674B2 (ja) 接合不良のないバンプの形成方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015507277

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901571

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15509333

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014901571

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014901571

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177009272

Country of ref document: KR

Kind code of ref document: A