WO2016031641A1 - 金属パターンの形成方法及び導電体 - Google Patents

金属パターンの形成方法及び導電体 Download PDF

Info

Publication number
WO2016031641A1
WO2016031641A1 PCT/JP2015/073196 JP2015073196W WO2016031641A1 WO 2016031641 A1 WO2016031641 A1 WO 2016031641A1 JP 2015073196 W JP2015073196 W JP 2015073196W WO 2016031641 A1 WO2016031641 A1 WO 2016031641A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
pattern
fluorine
forming
substrate
Prior art date
Application number
PCT/JP2015/073196
Other languages
English (en)
French (fr)
Inventor
智史 宮崎
勇一 牧田
久保 仁志
達生 長谷川
寿一 山田
Original Assignee
田中貴金属工業株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 田中貴金属工業株式会社
Priority to US15/506,586 priority Critical patent/US10892065B2/en
Priority to EP15836285.5A priority patent/EP3196894A4/en
Priority to CN201580046158.5A priority patent/CN106796829B/zh
Priority to KR1020177007838A priority patent/KR101923330B1/ko
Publication of WO2016031641A1 publication Critical patent/WO2016031641A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/107Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • B05D1/42Distributing applied liquids or other fluent materials by members moving relatively to surface by non-rotary members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/062Pretreatment
    • B05D3/063Pretreatment of polymeric substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods

Definitions

  • the present invention relates to a method of forming a metal pattern on the surface of an arbitrary substrate. Specifically, the present invention relates to a method capable of applying a dispersion in which metal particles protected with a predetermined protective agent are dispersed to form a fine metal pattern on a substrate with high efficiency at a low temperature.
  • the wiring and electrode circuits used in these devices have a process that can form patterns with higher definition than ever before in a large area. It has been demanded.
  • a transparent electrode material such as ITO has been applied to the wiring pattern of the touch panel so far. That is, in order to increase the panel size, it is necessary to reduce the resistance value of the wiring in order to cope with the increase in the wiring length. ITO is not originally a material with low electrical resistance, so it is necessary to increase the film thickness in order to reduce the resistance value. However, this may cause loss of transparency, making it meaningless as a transparent electrode.
  • the necessity for weight reduction per unit area is increasing as the panel is increased in size, it is considered to change the substrate material from conventional glass to resin.
  • it is necessary to bake at about 300 ° C. after coating the substrate, and the resin substrate cannot withstand this baking temperature. Therefore, it has been pointed out that the use of ITO has a limit from the viewpoint of weight reduction.
  • Patent Document 1 a pattern is formed using a liquid material containing a conductive material constituting a pattern called a functional liquid.
  • a substrate having a lyophilic portion with respect to a functional liquid is used, and droplets containing a material that becomes a liquid repellent material with respect to the functional liquid are ejected and applied to the substrate to form a liquid repellent portion.
  • the pattern of the conductive material is formed by discharging and applying the functional liquid to the lyophilic part between the liquid repellent parts.
  • a pattern is formed using a conductive layer forming coating liquid containing noble metal fine particles.
  • a water repellent transparent layer having a predetermined pattern is formed on a substrate, and a pattern is formed by applying and drying a conductive layer forming coating liquid in a space between the water repellent transparent layers.
  • a uniform water-repellent transparent layer is formed on the substrate, and after forming a water-repellent disappearance portion of a predetermined pattern on the surface of the water-repellent transparent layer, a pattern is formed by applying and drying a coating liquid for forming a conductive layer.
  • the organic polymer resin to be a resist can be printed in a desired pattern shape and etched.
  • Patent Document 1 performs the formation of the liquid repellent portion and the application of the functional liquid by a so-called ink jet method.
  • the ink jet method discharges a liquid material with a nozzle.
  • a liquid material containing conductive material particles such as a functional liquid may cause clogging of nozzle holes, and forms an extremely fine line pattern stably. Is difficult.
  • the ink jet method forms a desired pattern by moving and scanning the nozzle, and it is difficult to achieve both miniaturization and large area for the metal pattern.
  • the pattern forming method by photolithography which generally involves the use of a resist, such as the technique described in Patent Document 2, requires more steps for resist processing, which is not efficient and causes an increase in cost.
  • the base material when the base material is changed from a hard material such as glass or ceramic to a soft material such as resin or plastic in accordance with the weight reduction of equipment, there is a concern that the metal pattern may be peeled or damaged due to deformation of the substrate. Therefore, in the future, it is expected that a bonding force between the base material and the metal pattern will be required more than ever.
  • the pattern forming portion of the base material in the conventional metal pattern forming method described above, the pattern forming portion of the base material is made lyophilic or hydrophilic, but this is for retaining the liquid to be applied in the part, and the metal in the liquid There is no effect until the binding between the component and the substrate is increased. For this reason, it is considered that it is difficult to obtain a strong bond having followability with respect to deformation of the base material with the above-described conventional technology.
  • the present invention proposes a method capable of efficiently producing a high-definition metal pattern as a method for forming a metal pattern on a substrate.
  • the metal pattern to be formed can be formed at a relatively low temperature and aims to be able to be firmly bonded to the substrate.
  • the point of using the dispersion liquid in which the metal fine particles are dispersed, which is applied in the above-described prior art, is a suitable matter for carrying out pattern formation at a low temperature. If such a liquid is used, the surface of the substrate is used. It can also be said that it is useful to make the portion where the pattern is not formed water-repellent.
  • the problem is how to easily form a region where the dispersion liquid is applied and the metal fine particles are fixed, and how to increase the bonding force between the metal fine particles and the substrate.
  • the present inventors considered that it is optimal to improve both the treatment for the base material and the dispersion liquid in which the metal fine particles are dispersed, and intensively studied to arrive at the present invention.
  • the present invention relates to a method for forming a metal pattern in a pattern forming portion set in a part or all of a region on a base material, wherein the base material contains at least a fluorine-containing resin on a surface including the pattern forming portion.
  • a metal fine particle comprising a layer and having a functional group formed on the pattern forming portion on the surface of the fluorine-containing resin layer, and then protected by an amine compound as a first protective agent and a fatty acid as a second protective agent
  • a method of forming a metal pattern comprising the steps of: applying a metal fine particle dispersion in which is dispersed in a solvent to the surface of the substrate, and fixing the metal fine particles to the pattern forming portion.
  • a base material having a liquid-repellent fluorine-containing resin layer is selected, and (2) a predetermined treatment is performed on the surface of the base material.
  • the configuration of the metal fine particle dispersion that is a treatment liquid for fixing the metal particles to the base material is optimized.
  • the predetermined treatment for the substrate surface in (2) is to form a functional group by modifying the metal pattern forming portion on the surface of the fluorine-containing resin. Then, as described in (3), a dispersion liquid containing metal particles bonded with a predetermined protective agent is brought into contact.
  • the metal pattern can be formed by spreading the metal fine particle dispersion on the surface of the substrate by the selective binding action of the metal particles to the site where the functional group is formed as described above.
  • This method is more efficient than a method of forming a metal pattern by drawing such as an inkjet method.
  • the number of steps can be reduced.
  • formation of a functional group is possible by ultraviolet irradiation or the like, and therefore, formation of a pattern with a very small width is easy.
  • a substrate having a fluorine-containing resin layer on the surface is applied.
  • a substrate having a fluorine-containing resin layer on the surface is applied.
  • Metal base materials and glass / ceramic base materials can be applied, and resin and plastic base materials can also be applied.
  • the metal pattern can be formed at a low temperature in the present invention, resins, plastics, and the like can be applied without any problem.
  • region which forms a metal pattern on a base material may be set in the whole surface of a base material, may be a part, and may be further set in several places on a base material.
  • the fluororesin layer may be the one formed in advance on the above various base materials. Further, as a step of forming the metal pattern, it may be formed by coating or the like on a base material without a fluororesin layer. As long as the fluororesin layer includes the pattern forming portion, it may be formed on the entire surface of the substrate, or may be formed on a part of the surface.
  • limiting in particular about the thickness of a fluorine-containing resin layer In general, liquid application can be exerted by application of 0.01 ⁇ m or more.
  • the upper limit of the thickness is not particularly limited, but when transparency is required, the upper limit is about 5 ⁇ m.
  • a fluorine-containing resin which is a polymer having one or more repeating units based on a fluorine-containing monomer containing a fluorine atom can be applied. Moreover, even if it is fluorine-containing resin which is a polymer which has a repeating unit based on a fluorine-containing monomer, and a repeating unit based on a fluorine non-containing monomer which does not contain a fluorine atom, respectively, one or more. good. Furthermore, the fluorine-containing resin in the present invention may contain a heteroatom such as oxygen, nitrogen, chlorine or the like in part.
  • fluorine-containing resins include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), tetrafluoroethylene-perfluoroalkyl.
  • Vinyl ether copolymer PFA
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • TFE / PDD tetrafluoroethylene -Perfluorodioxole copolymer
  • fluorine-containing resin having a cyclic perfluoroalkyl structure or a cyclic perfluoroalkyl ether structure, and the like.
  • the fluorine-containing resin used in the present invention is preferably a ratio of the number of fluorine atoms to the number of carbon atoms (F / C) is a fluorine-containing resin comprising a polymer having at least one repeating unit of 1.0 or more.
  • the F / C of the repeating unit based on this fluorine-containing monomer is more preferably 1.5 or more.
  • F / C sets 2.0 as an upper limit from the reason of liquid repellency and availability.
  • a particularly preferred fluorine-containing resin in relation to this requirement is a perfluoro resin having a repeating unit based on a monomer of a perfluoro compound, and a perfluoro resin having an F / C of 1.5 or more in the repeating unit. It is a fluororesin.
  • a suitable fluorine-containing resin can be selected in consideration of application of a transparent substrate and characteristics of a metal pattern.
  • the fluorine-containing resin is preferably a perfluoro resin having a cyclic structure in the main chain.
  • transparency is required for the fluororesin layer, it is more preferable to apply an amorphous perfluororesin.
  • Preferred fluorine-containing resins in consideration of these properties include perfluorobutenyl vinyl ether polymer (CYTOP (registered trademark): Asahi Glass Co., Ltd.), tetrafluoroethylene-perfluorodioxole copolymer (TFE-PDD), Teflon (registered trademark) AF: Mitsui DuPont (Fluorochemical Co., Ltd.).
  • contact exposure is a means for forming a high-definition pattern.
  • contact exposure can be suitably performed by selecting a fluorine-containing resin in the present invention.
  • a fluorine-containing resin containing at least one oxygen atom in a repeating unit based on a fluorine-containing monomer constituting the polymer is preferable.
  • the present inventors predict that by applying a fluorine-containing resin containing oxygen, the oxygen acts as a radical in the exposure process and contributes to functional group formation.
  • this fluorine-containing resin containing oxygen perfluorobutenyl vinyl ether polymer (CYTOP (registered trademark): Asahi Glass Co., Ltd.), tetrafluoroethylene-perfluorodioxole copolymer (TFE-PDD), tetrafluoroethylene- A perfluoroalkyl vinyl ether copolymer (PFA) may be mentioned.
  • CYTOP perfluorobutenyl vinyl ether polymer
  • TFE-PDD tetrafluoroethylene-perfluorodioxole copolymer
  • PFA perfluoroalkyl vinyl ether copolymer
  • the fluororesin layer When the fluororesin layer is formed on the substrate, it can be dealt with by applying a solution in which a fluorine-containing resin is dissolved in an appropriate solvent. After application, the fluorine-containing resin layer is formed by firing.
  • the method for applying the fluorine-containing resin is not particularly limited, such as dipping, spin coating, and roll coater. After applying the fluorine-containing resin, post-treatment (drying treatment and baking treatment) according to the type of resin is performed to form a fluorine-containing resin layer.
  • a functional group is formed on the surface of the fluorine-containing resin layer on the substrate.
  • This functional group is a functional group formed by cleaving the CF bond of the fluorine-containing resin. Specifically, a carboxy group, a hydroxy group, and a carbonyl group are formed.
  • ultraviolet irradiation corona discharge treatment, plasma discharge treatment, or excimer laser irradiation is used. These treatments cause a photochemical reaction on the surface of the fluorine-containing resin to break the CF bond, and it is necessary to apply an appropriate energy.
  • the amount of energy applied to the pattern forming portion is preferably 1 mJ / cm 2 or more and 4000 mJ / cm 2 or less.
  • ultraviolet irradiation with a wavelength in the range of 10 nm to 380 nm is preferable, and ultraviolet irradiation with a wavelength in the range of 100 nm to 200 nm is particularly preferable.
  • the exposure processing using a photomask is generally performed.
  • a photomask reticle
  • any of a non-contact exposure method (proximity exposure, projection exposure) and a contact exposure method (contact exposure) can be applied.
  • the distance between the mask and the fluorine-containing resin layer surface is preferably 10 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the fluorine-containing resin layer is formed on the substrate and the functional group is formed on the pattern forming portion, and the substrate is brought into contact with the metal fine particle dispersion.
  • the configuration of the metal fine particle dispersion is suitable for forming a metal pattern suitably.
  • the metal fine particle dispersion applied in the present invention is obtained by dispersing metal fine particles formed by binding a predetermined protective agent in a solvent.
  • Metal fine particles correspond to the constituent material of the metal pattern to be formed.
  • the metal fine particles are preferably made of at least one of silver, gold, platinum, palladium, copper, and alloys of these metals. These metals have excellent conductivity and are useful as electrode materials.
  • the metal fine particles preferably have an average particle size of 5 nm to 100 nm. In order to form a fine wiring pattern, a particle size of 30 nm or less is required. On the other hand, excessively fine metal particles are likely to aggregate and have poor handleability.
  • the protective agent suppresses the aggregation and coarsening of the metal fine particles and stabilizes the dispersed state. Agglomeration and coarsening of fine metal particles must be avoided because they not only cause dispersion of the metal during storage and use, but also affect the sintering properties after bonding to the substrate. .
  • a protective agent also has the effect
  • an amine is applied as the first protective agent, and a fatty acid is applied as the second protective agent. That is, in the present invention, the metal particles are protected in a state where two types of compounds having different basic structures are combined.
  • the amine compound as the first protective agent preferably has a total carbon number of 4 or more and 12 or less. This is because the carbon number of the amine affects the stability of the metal particles and the sintering characteristics during pattern formation. With amines having less than 4 carbon atoms, it is difficult for metal fine particles to be present stably, and it becomes difficult to form a uniform sintered body. On the other hand, amines having more than 12 carbon atoms excessively increase the stability of the metal particles and require heating at a high temperature for pattern formation. From these, the protective agent of the present invention is preferably an amine compound having a total carbon number of 4 or more and 12 or less.
  • the number of amino groups in the amine compound as the protective agent (mono) amine having one amino group or diamine having two amino groups can be applied.
  • the number of hydrocarbon groups bonded to the amino group is preferably one or two, that is, primary amine (RNH 2 ) or secondary amine (R 2 NH) is preferable.
  • RNH 2 primary amine
  • R 2 NH secondary amine
  • the thing whose at least 1 or more amino group is a primary amine or a secondary amine is preferable.
  • the hydrocarbon group bonded to the amino group may be a hydrocarbon group having a cyclic structure in addition to a chain hydrocarbon having a linear structure or a branched structure. Further, oxygen may be partially included.
  • the protective agent applied in the present invention include the following amine compounds.
  • the amine compound as the first protective agent may be used by mixing and combining a plurality of types of amine compounds for the purpose of adjusting the dispersibility of the metal particles in the dispersion and the low temperature sintering property. Further, it is sufficient that at least one amine compound having a total carbon number of 4 to 12 is included, and if so, an amine compound having a carbon number outside the range may be present.
  • the fatty acid applied as the second protective agent acts as an auxiliary protective agent for the amine compound in the dispersion and increases the stability of the metal fine particles.
  • the action of the fatty acid clearly appears after the metal particles are applied to the substrate, and a metal pattern having a uniform film thickness can be formed by adding the fatty acid. This effect can be remarkably understood by comparing with the case where metal fine particles without fatty acid are applied, and a stable metal pattern cannot be formed with metal fine particles without fatty acid.
  • the fatty acid is preferably an unsaturated fatty acid having 4 to 20 carbon atoms and a saturated fatty acid. Since unsaturated fatty acids and saturated fatty acids having 3 or less carbon atoms reduce the dispersibility of the metal fine particles in the dispersion medium, the metal fine particles are likely to aggregate and it is difficult to form a stable metal pattern. On the other hand, unsaturated fatty acids and saturated fatty acids having more than 20 carbon atoms generally have a low vapor pressure and are difficult to evaporate. Therefore, they cannot be sufficiently removed from metal fine particles when forming a metal pattern, and the resistance value of the metal pattern. Tend to be higher.
  • preferable fatty acids include butanoic acid (carbon number 4), pentanoic acid (carbon number 5), hexanoic acid (carbon number 6), heptanoic acid (carbon number 7), octanoic acid (carbon number 8), Nonanoic acid (9 carbon atoms), decanoic acid (alias: capric acid, 10 carbon atoms), undecanoic acid (alias: undecyl acid, 11 carbon atoms), dodecanoic acid (alias: lauric acid, 12 carbon atoms), tridecanoic acid ( Also known as: tridecylic acid, 13 carbon atoms, tetradecanoic acid (also known as myristic acid, 14 carbon atoms), pentadecanoic acid (also known as pentadecylic acid, 15 carbon atoms), hexadecanoic acid (also known as palmitic acid, 16 carbon atoms), heptadecane Acid (alias: margaric acid, carbon
  • oleic acid particularly preferred are oleic acid, linoleic acid, stearic acid, lauric acid and butanoic acid.
  • fatty acid which is the second protective agent described above, a plurality of types may be used in combination.
  • what is necessary is just to contain at least 1 sort (s) of unsaturated fatty acid or saturated fatty acid with 4 or more and 20 or less carbon atoms, and if so, other fatty acids may exist.
  • a metal fine particle dispersion is formed by dispersing metal fine particles protected by the first and second protective agents in a solvent.
  • the applicable solvent here is an organic solvent, for example, alcohol, benzene, toluene, alkane and the like. These may be mixed.
  • Preferred solvents are alkanes such as hexane, heptane, octane, nonane and decane, alcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol and decanol, and more preferably It is a mixed solvent of 1 type, or 2 or more types of alcohol selected from 1 type, or 2 or more types of alkane.
  • the content of the metal particles in the dispersion is preferably 20% by weight or more and 60% by weight or less in terms of the metal mass with respect to the mass of the dispersion.
  • the content of the metal fine particles in the dispersion is less than 20%, a metal pattern with a uniform film thickness for ensuring sufficient conductivity cannot be formed in the pattern forming portion, and the resistance value of the metal pattern Becomes higher.
  • the content of the metal fine particles in the dispersion exceeds 60%, it becomes difficult to form a stable metal pattern due to aggregation and enlargement of the metal fine particles. Accordingly, the content of the metal particles in the dispersion of the present invention is preferably 20% by weight or more and 60% by weight or less in terms of the metal mass with respect to the dispersion mass.
  • the content of the protective agent in the dispersion is the ratio of the number of moles of amine (mol amine ) to the number of moles of metal (mol metal ) in the dispersion for the amine compound that is the first protective agent (mol amine / mol).
  • metal is preferably 0.01 or more and 0.32 or less.
  • the content of the fatty acid as the second protective agent is 0.001 or more and 0.05 in terms of the ratio of the number of moles of fatty acid (mol fatty acid ) to the number of moles of metal (mol metal ) (mol fatty acid / mol metal ). The following is preferable. Even if the content of the protective agent in the dispersion exceeds the above preferable range, the dispersibility of the metal particles is not affected.
  • the excessive protective agent is low-temperature sinterability of the metal particles and the metal pattern to be formed.
  • the above range is preferable because it affects the resistance value.
  • about the number-of-moles of said protective agent when using multiple types of amine compounds and a fatty acid, a total number-of-moles is applied, respectively.
  • the metal fine particle dispersion described above is applied to a substrate having a fluorine-containing resin layer.
  • dipping, spin coating and roll coater can be applied, but the metal fine particle dispersion may be dropped and spread using an application member such as a blade, squeegee or spatula.
  • a functional group for selectively fixing metal particles to a pattern forming portion is formed in advance, and a pattern can be formed by spreading a dispersion liquid all at once, which is efficient.
  • the metal fine particle dispersion is repelled due to its liquid repellency on the surface of a fluorine-containing resin having no functional group.
  • an application member such as a blade
  • the repelled dispersion is removed from the substrate surface.
  • a substitution reaction between the protective agent for the metal fine particles and the metal particles occurs, and the metal fine particles are fixed to the substrate. Thereafter, the solvent of the dispersion liquid volatilizes, and the metal fine particles on the base material self-sinter to form a metal film, thereby forming a metal pattern.
  • this self-sintering is a phenomenon that occurs even at room temperature, heating the base material is not an essential step in forming the metal pattern.
  • the protective agent amine compound, fatty acid
  • This baking treatment is preferably performed at 40 ° C. or higher and 250 ° C. or lower. If it is less than 40 degreeC, since removal
  • the firing time is preferably from 10 minutes to 120 minutes. Note that the firing step may be performed in an air atmosphere or a vacuum atmosphere.
  • a metal pattern made of metal is formed by applying the above metal fine particle dispersion, self-sintering the metal fine particles, and firing as necessary.
  • substrate is equipped with the metal pattern which has a high-definition and suitable electrical property. That is, the conductor according to the present invention includes a base material in which a pattern forming portion is set in a part or all of the region, and a fluororesin layer formed on a surface including at least the pattern forming portion of the base material. And a metal pattern formed by fixing metal fine particles on the pattern forming portion of the fluororesin layer, wherein the functional group is formed on the pattern forming portion. It is.
  • the conductor according to the present invention having a high-definition metal pattern can act as a transparent conductor, and can be expected to be applied to displays and touch panels.
  • the metal pattern method according to the present invention can efficiently form a high-definition metal pattern. Since this metal pattern is formed of a metal film, it has a low resistance value and can be suitably used as an electrode / wiring.
  • a metal pattern can be formed by a relatively simple process of applying and printing a metal fine particle dispersion after forming a functional group on a substrate.
  • the present invention is simpler than a photolithography method that generally uses a resist, and more efficient than an ink jet method.
  • a fine and high-definition metal pattern can be formed.
  • This metal pattern can exhibit the same translucency as a transparent electrode.
  • the metal pattern forming method according to the present invention on a transparent substrate, it is possible to produce a transparent conductor.
  • the photograph which shows the external appearance of the metal pattern formed in 1st Embodiment The figure which shows the Raman spectrum in the interface measured from the board
  • First Embodiment A preferred embodiment of the present invention will be described below.
  • fluorine-containing resin layer formation and functional group formation were performed as a pretreatment of the base material, and a dispersion in which silver fine particles were dispersed as metal particles was manufactured, and the dispersion was applied and a metal pattern was formed.
  • a resin substrate (dimensions: 20 mm ⁇ 20 mm) made of polyethylene naphthalate was prepared as a base material.
  • an amorphous perfluorobutenyl ether polymer (CYTOP (registered trademark): manufactured by Asahi Glass Co., Ltd.) as a fluorine-containing resin to the resin substrate by a spin coating method (rotation speed 2000 rpm, 20 sec), 50 ° C. For 10 minutes, followed by heating at 80 ° C. for 10 minutes, followed by baking in an oven at 100 ° C. for 60 minutes.
  • CYTOP amorphous perfluorobutenyl ether polymer
  • VUV light ultraviolet rays
  • the silver particles were produced by a thermal decomposition method using a silver complex as a precursor.
  • This thermal decomposition method uses a silver compound having thermal decomposability such as silver oxalate (Ag 2 C 2 0 4 ) as a starting material, and reacts the silver compound with a protective agent to form a silver complex, which is then used as a precursor. It is a method of obtaining silver particles by heating and decomposing as a body.
  • silver particles were produced using silver oxalate as a raw material.
  • N, N-dimethyl-1,3-diaminopropane as an amine serving as a protective agent was kneaded with silver oxalate previously wetted with decane to produce a silver oxalate amine complex serving as a precursor.
  • the amount of N, N-dimethyl-1,3-diaminopropane added was 0.76 (mol / mol) with respect to silver.
  • oleic acid was added as a second protective agent and kneaded.
  • the addition amount of hexylamine is 1.14 (mol / mol) with respect to silver
  • the addition amount of dodecylamine is 0.095 (mol / mol) with respect to silver
  • the addition amount of oleic acid is with respect to silver. 0.012 (mol / mol).
  • the addition of hexylamine and dodecylamine after N, N-dimethyl-1,3-diaminopropane complements the protective action of silver particles by N, N-dimethyl-1,3-diaminopropane. This is to suppress aggregation.
  • the kneaded product was heated and stirred at 110 ° C. to decompose the complex.
  • the kneaded material gradually turned from brown to brown and finally black.
  • bubbles carbon dioxide
  • the silver concentration of this silver fine particle dispersion was 40% by weight.
  • the silver fine particle dispersion produced above was applied to a pretreated substrate.
  • the coating was performed by sweeping the blade in one direction after wetting and spreading the dispersion in advance on the contact portion between the substrate and the blade (made of glass). Here, the sweep speed was 2 mm / sec. By applying with this blade, it was confirmed that the dispersion was adhered only to the ultraviolet irradiation portion (functional group forming portion) of the substrate.
  • the dispersion was naturally dried at room temperature (25 ° C.) to form a metal pattern.
  • the element bonding state of the metal pattern forming part on the substrate surface was examined by micro Raman spectroscopy.
  • the metal pattern on the substrate surface is irradiated with laser light (wavelength: 532 nm) from the back surface of the substrate, and the Raman spectrum of the interface between the silver particle layer and the fluorine-containing resin layer is measured and analyzed.
  • the chemical species in FIG. 2 shows a Raman spectrum at the interface by laser irradiation from the back surface of the substrate.
  • the Raman spectrum measured by irradiation from the back surface shows a unique vibration structure that cannot be seen when laser irradiation is performed from the substrate surface measured in advance, around 1370 cm ⁇ 1 and 1570 cm ⁇ 1 .
  • a vibrating structure was seen. This vibration structure is considered to originate from the COO bond. Therefore, in this embodiment, it has confirmed that the carboxy group was formed as a functional group on the fluorine-containing resin layer surface.
  • this embodiment is a value that can be sufficiently used as an electrical wiring. is there.
  • the substrate was heated at 80 ° C. to fire the metal pattern.
  • the resistance value was measured in the same manner, it was confirmed that the sheet resistance was 66 ⁇ / ⁇ and the volume resistance was 16 ⁇ ⁇ cm, and a decrease in the resistance value was observed.
  • Second Embodiment silver particles were produced by pyrolysis using another silver compound as a starting material, and a metal pattern was formed using the dispersion.
  • silver carbonate was used instead of silver oxalate in the first embodiment.
  • N N-dimethyl-1,3-diaminopropane was kneaded with dry silver carbonate as in the first embodiment to produce a silver carbonate amine complex as a precursor.
  • hexylamine, dodecylamine and oleic acid were added and kneaded.
  • the mixing amount (mixing ratio) of each amine compound and oleic acid was the same as in the first embodiment.
  • the kneaded product was heated and stirred at 110 ° C. to decompose the complex, and centrifuged and washed to obtain silver fine particles.
  • the silver concentration of this silver fine particle dispersion was also 40% by weight.
  • the manufactured silver fine particle dispersion was applied to the same pretreated substrate as in the first embodiment under the same conditions to form a metal pattern.
  • the resistance value of the metal pattern formed in this embodiment was a surface resistance of 300 ⁇ / ⁇ and a volume resistance of 80 ⁇ ⁇ cm.
  • the resistance value was 80 ⁇ / ⁇ in surface resistance and 20 ⁇ ⁇ cm in volume resistance. Therefore, it was confirmed that these metal patterns formed in the second embodiment are also useful as electrical wiring.
  • the technical significance of the fatty acid constituting the protective agent together with the amine was examined for the protective agent for the silver fine particle dispersion.
  • silver particles are produced by adding other fatty acids (stearic acid, butanoic acid, propanoic acid) instead of adding oleic acid or without adding fatty acids.
  • a dispersion was produced.
  • the same pretreatment as in the first embodiment was applied with a silver fine particle dispersion by the same operation, dried and fired to form a metal pattern. Thereafter, the substrate surface was observed to confirm the presence or absence of pattern formation.
  • a metal fine particle dispersion using various metals as a constituent material of a metal pattern is manufactured and applied to a substrate to form a metal pattern.
  • the metal fine particle dispersion is prepared by preparing platinum, palladium, gold, and copper metal salt raw materials, dissolving the raw materials in a solvent (toluene or ethanol), and adding an amine (hexylamine or decylamine) as the first protective agent. Further, a reducing agent (sodium borohydride) was added to reduce the metal ions to produce a mixed solution in which the amine-protected metal fine particles were dispersed. Next, after separating and recovering the metal fine particles from this mixed solution and washing, toluene to which oleic acid as the second protective agent was added in advance was added to produce a metal fine particle dispersion.
  • a solvent toluene or ethanol
  • an amine hexylamine or decylamine
  • a reducing agent sodium borohydride
  • This metal fine particle dispersion was applied to a substrate.
  • the configuration of the substrate, the contents of pretreatment, and the coating method are the same as in the first embodiment. Also in this embodiment, it was confirmed that the dispersion was attached only to the functional group forming part of the substrate by the dispersion application. And this dispersion liquid was naturally dried at room temperature (25 degreeC), and the metal pattern was formed. The appearance of the formed metal pattern was observed, and the line width of the pattern was measured. Moreover, the resistance value was measured about the formed metal pattern. The measurement was performed before and after the heat treatment (80 ° C.), and a value of 400 ⁇ / ⁇ or less was determined to be acceptable. Table 2 shows the results regarding the metal pattern formed by each metal fine particle dispersion.
  • a suitable metal pattern similar to silver can be formed also from a metal fine particle solution of platinum, palladium, gold, and copper. These metal patterns had sufficiently small line widths and passed resistance values.
  • an extremely fine metal pattern can be efficiently formed.
  • the present invention is not only useful for forming electrodes / wirings of various semiconductor devices, but also can be effectively applied to forming wirings on the panel surface of touch panels that require translucency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 本発明は、基材上の一部又は全部の領域に設定されたパターン形成部に金属パターンを形成する方法において、前記基材は、少なくとも前記パターン形成部を含む表面上にフッ素含有樹脂層を備えるものであり、前記フッ素含有樹脂層表面のパターン形成部に紫外線照射等の処理により官能基を形成した後、第1の保護剤であるアミン化合物と、第2の保護剤である脂肪酸により保護された金属微粒子が溶媒に分散してなる金属微粒子分散液を前記基材表面に塗布し、前記金属微粒子を前記パターン形成部に固定する工程を含むことを特徴とする金属パターンの形成方法である。

Description

金属パターンの形成方法及び導電体
 本発明は、任意の基材表面に金属パターンを形成する方法に関する。詳しくは、所定の保護剤で保護された金属粒子が分散する分散液を適用し、基材上に微細な金属パターンを低温にて高効率で形成することのできる方法に関する。
 半導体装置の高密度化やディスプレイ、タッチパネルの大画面化に伴い、これらの機器で使用される配線・電極回路には、これまで以上に高精細化されたパターンを大面積で形成可能なプロセスが求められている。
 また、上記機器に対する各種の要求事項は、適用材料の変更の必要性を示唆するほどまで切迫したものとなっている。例えば、タッチパネルの配線パターンには、ITO等の透明電極材料がこれまで適用されてきたが、パネル大型化の要求等によりITOでは対応しきれない状況となっている。即ち、パネル大型化のためには、配線長の増大に対応するために配線の抵抗値を下げる必要がある。ITOは、本来、電気抵抗の低い材料ではないため、抵抗値低減のためには膜厚を厚くする必要があるが、これにより透明度を失う可能性があり透明電極として意味を成さなくなる。また、パネルが大型化した分、単位面積当たりの軽量化の必要性が高まっていることから、基板材料をこれまでのガラスから樹脂に変更することが検討される。しかし、ITO電極の形成工程では、基板塗布後に300℃程度で焼成する必要があり、樹脂基板はこの焼成温度に耐えることはできない。よって、軽量化の観点からもITOの使用には限界があることが指摘されている。
 そして、上記タッチパネルの例等から、各種電極・配線材料として銅や銀等の金属からなる極細・高密度の高精細パターンの適用が検討されている。これらの金属は良好な導電性を有しており、配線パターンの大面積化による抵抗値についての要求に余裕で対応できる。また、これらの金属は微粒子化して適宜の溶媒に分散させて塗布することで、自在な形状・パターンを形成することができ、塗布後に比較的低温で加熱することで凝集・焼結して金属膜を形成することができる。そのため、基板材料も広範な範囲から選択できる。更に、これらの金属は透明ではないが、人間の可視領域を超えたミクロンオーダーの細線にすることで、透明電極と同等に透光性を発揮する。
 ここで、金属パターンの形成方法としては、例えば、特許文献1や特許文献2に記載された技術がある。特許文献1記載の方法では、機能液と称するパターンを構成する導電材料を含む液状体を用いてパターン形成をするものである。この方法では、機能液に対して親液部を有する基板を用い、機能液に対して撥液材料となる材料を含む液滴を基板に吐出し塗布して撥液部を形成し、形成された撥液部の間の親液部に機能液を吐出し塗布することで導電材料のパターンを形成するものである。
 また、特許文献2記載の方法では、貴金属微粒子を含有する導電層形成用塗液を使用してパターン形成をするものである。この方法では、基板上に所定パターンの撥水性透明層を形成し、撥水性透明層の間の空間に導電層形成用塗液を塗布・乾燥してパターンを形成する。また、基板上に均一な撥水性透明層を形成し、この撥水性透明層表面に所定のパターンの撥水性消失部を形成した後、導電層形成用塗液を塗布・乾燥してパターンを形成する。これらの技術において、撥水性透明層や撥水性消失部を形成する際に、レジストとなる有機高分子樹脂を所望のパターン形状に印刷してエッチングして形成することができる。
特開2009-600号公報 特開2003-123543号公報
 しかし、特許文献1記載の技術は、撥液部の形成及び機能液の塗布をいわゆるインクジェット方式にて行うものである。インクジェット方式は、液状体をノズルにて吐出するが、機能液のような導電材料粒子を含む液状体はノズル穴の目詰まりを生じさせるおそれがあり、極細のラインパターンを安定的に形成するのが困難である。また、インクジェット方式は、ノズルの移動・走査により所望のパターンを形成するものであり、金属パターンについて微細化と大面積化との両立を図ることは困難である。
 また、特許文献2記載の技術のような、一般的にレジストの使用を伴うフォトリソグラフィによるパターン形成法は、レジストの処理の分だけ工程が多くなり効率的ではなくコスト増の要因となる。
 更に、機器等の軽量化に伴い、基材をガラスやセラミック等の硬質材から樹脂、プラスチック等の軟質材に変更する場合、基板の変形による金属パターンの剥離・損傷が懸念される。従って、今後は、基材と金属パターンとの結合力が従来以上に要求されると予測される。この点、上記した従来の金属パターン形成法では、基材のパターン形成部を親液性或いは親水性としているが、これは塗布する液体を当該部位に滞留させるためであって、液中の金属成分と基材との結合性を高めるまでの作用は無い。そのため、上記従来技術では、基材の変形に対して追従性を有するほどの強固な結合を得ることは困難であると考えられる。
 そこで、本発明は、基材上に金属パターンを形成する方法について、高精細な金属パターンを効率的に製造することができる方法を提案する。この課題において、形成される金属パターンは、比較的低温で形成可能であり、且つ、基材に対して強固に結合することのできるものであることを目指した。
 上記従来技術で適用されている、金属微粒子が分散する分散液を利用する点はパターン形成を低温で実施する上で好適な事項であり、そのような液体を使用するのであれば、基材表面のパターンを形成しない部分を撥水性にすることも有用であるといえる。問題になるのは、分散液を塗布し金属微粒子を固定する領域を如何に簡易に形成するか、及び、金属微粒子と基材との結合力を増大させる方法である。ここで本発明者等は、基材に対する処理と金属微粒子が分散する分散液の双方に対して改良を行うことが最適であると考え、鋭意検討を行い本発明に想到した。
 即ち、本発明は、基材上の一部又は全部の領域に設定されたパターン形成部に金属パターンを形成する方法において、前記基材は、少なくとも前記パターン形成部を含む表面上にフッ素含有樹脂層を備えるものであり、前記フッ素含有樹脂層表面のパターン形成部に官能基を形成した後、第1の保護剤であるアミン化合物と、第2の保護剤である脂肪酸により保護された金属微粒子が溶媒に分散してなる金属微粒子分散液を前記基材表面に塗布し、前記金属微粒子を前記パターン形成部に固定する工程を含むことを特徴とする金属パターンの形成方法である。
 本発明では、高精細な金属パターンを形成可能とするため、(1)撥液性のあるフッ素含有樹脂層を有する基材を選択し、(2)この基材表面に対して所定の処理を行い、(3)金属粒子を基材に固定するための処理液である金属微粒子分散液の構成を好適化したこと、のそれぞれにおいて特徴を有する。ここで、(2)の基材表面に対する所定の処理とは、フッ素含有樹脂表面の金属パターン形成部を変質させて官能基を形成するものである。そして、(3)で述べたように、所定の保護剤が結合した金属粒子を含む分散液を接触させる。これにより、金属パターン形成部において金属粒子の保護剤と基材表面の官能基との置換反応が生じ、官能基を介して金属粒子が基材表面に結合する。一方、本発明では、(1)で説明した通り、基材としてフッ素含有樹脂層を有するものが適用されている。そのため、官能基のない基材表面は撥液性が残存しているので分散液が弾かれる。
 本発明では、以上のような官能基が形成された部位に対する金属粒子の選択的結合作用により、金属微粒子分散液を基材表面に塗り広げることで金属パターンの形成が可能となる。この方法は、インクジェット方式のような描画により金属パターンを形成する方法よりも効率的である。また、レジストも不要であるので工程数も低減できる。そして、後述の通り、官能基の形成は紫外線照射等で可能であるので微小幅のパターン形成も容易である。
 以下、本発明の各特徴について詳細に説明する。本発明では、まず、基材として表面にフッ素含有樹脂層を有するものを適用する。ここで、基材の構成材料については、特に制限はない。金属製の基材やガラス製・セラミック製の基材が適用でき、更に、樹脂、プラスチック製の基材も適用可能である。後述するように、本発明では低温で金属パターンを形成することができることから、樹脂やプラスチック等も全く問題なく適用できる。尚、基材上に金属パターンを形成する領域は、基材の全面に設定されていても良いし、一部でも良く、更に、基材上で複数個所に設定されていても良い。
 フッ素樹脂層は、上記各種の基材に予め形成されたものを対象としても良い。また、金属パターン形成の一工程として、フッ素樹脂層のない基材に塗布等により形成しても良い。フッ素樹脂層は、パターン形成部を包含しているのであれば、基材全面に形成されていても良く、その一部の面に形成されていても良い。フッ素含有樹脂層の厚さについては特に制限はない。一般に0.01μm以上の塗布で、発液性を発揮することができる。厚さ上限も特に限定はされないが、透明性が要求される場合においては、5μm程度を上限とする。
 フッ素含有樹脂としては、フッ素原子を含むフッ素含有単量体に基づく繰り返し単位を1種又は2種以上有する重合体であるフッ素含有樹脂が適用できる。また、フッ素含有単量体に基づく繰り返し単位と、フッ素原子を含まないフッ素非含有単量体に基づく繰り返し単位とを、それぞれ1種又は2種以上有する重合体であるフッ素含有樹脂であっても良い。更に、本発明におけるフッ素含有樹脂は、その一部に酸素、窒素、塩素等のヘテロ原子を含んでいてもよい。
 このようなフッ素含有樹脂の具体例としては、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、テトラフルオロエチレン-パーフルオロジオキソール共重合体(TFE/PDD)、環状パーフルオロアルキル構造又は環状パーフルオロアルキルエーテル構造を有するフッ素含有樹脂等が挙げられる。
 そして、撥液性の観点から、本発明で用いるフッ素含有樹脂として好ましいのは、重合体を構成するフッ素含有単量体に基づく繰り返し単位に関して、フッ素原子数と炭素原子数との比(F/C)が1.0以上である繰り返し単位を少なくとも1種有する重合体からなるフッ素含有樹脂である。このフッ素含有単量体に基づく繰り返し単位のF/Cは、1.5以上であるものがより好ましい。尚、F/Cの上限については、撥液性、入手容易性の理由からF/Cは2.0を上限とするのが好ましい。また、この要件に関連して特に好ましいフッ素含有樹脂は、パーフルオロ化合物の単量体に基づく繰り返し単位を有するパーフルオロ樹脂であって、当該繰り返し単位におけるF/Cが1.5以上であるパーフルオロ樹脂である。
 また、撥液性に加えて、透明基材の適用や金属パターンの特性を考慮し、好適なフッ素含有樹脂を選択できる。例えば、フッ素含有樹脂層形成のための溶媒への可溶性を考慮する場合、フッ素含有樹脂としては、主鎖に環状構造を有するパーフルオロ樹脂が好ましい。また、フッ素樹脂層に透明性が要求される場合には、非晶質のパーフルオロ樹脂を適用するのがより好ましい。これらの特性を考慮した好ましいフッ素含有樹脂としては、パーフルオロブテニルビニルエーテル重合体(CYTOP(登録商標):旭硝子株式会社)、テトラフルオロエチレンーパーフルオロジオキソール共重合体(TFE-PDD)、テフロン(登録商標)AF:三井・デュポン フロロケミカル株式会社)が挙げられる。
 更に、本発明においては、フッ素樹脂層のパターン形成部に官能基を形成することを要するが、後述の通り、官能基形成のための処理として紫外線照射等が挙げられる。このような光エネルギーを露光する操作において、高精細なパターンを形成する手段としてコンタクト露光が挙げられる。本発明者等によれば、本発明においてフッ素含有樹脂を選択することでコンタクト露光を好適に行うことができる。具体的な要件として、その重合体を構成するフッ素含有単量体に基づく繰り返し単位に少なくとも1つの酸素原子を含むフッ素含有樹脂が好ましい。その要因は定かではないが、本発明者等は、酸素を含有するフッ素含有樹脂を適用することで、露光過程で当該酸素がラジカルとして作用し、官能基形成に寄与すると予測している。この酸素を含むフッ素含有樹脂として、パーフルオロブテニルビニルエーテル重合体(CYTOP(登録商標):旭硝子株式会社)、テトラフルオロエチレンーパーフルオロジオキソール共重合体(TFE-PDD)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)が挙げられる。
 フッ素樹脂層を基材に形成する際には、フッ素含有樹脂を適宜の溶媒に溶解させたものを塗布することで対応できる。塗布後は焼成することでフッ素含有樹脂層が形成される。フッ素含有樹脂の塗布方法としては、ディッピング、スピンコート、ロールコーター等特に限定されない。フッ素含有樹脂を塗布した後は、樹脂の種類に応じた後処理(乾燥処理、焼成処理)を行い、フッ素含有樹脂層を形成する。
 次に、基材上のフッ素含有樹脂層表面に官能基を形成する。この官能基とは、フッ素含有樹脂のCF結合を切断することで形成される官能基である。具体的には、カルボキシ基、ヒドロキシ基、カルボニル基が形成される。
 フッ素含有樹脂層表面への官能基形成の処理方法としては、紫外線照射、コロナ放電処理、プラズマ放電処理、エキシマレーザー照射による。これらの処理は、フッ素含有樹脂表面に光化学反応を生じさせてCF結合を切断するものであり、適度なエネルギーの印加処理であることが必要である。パターン形成部に対する印加エネルギー量は、1mJ/cm以上4000mJ/cm以下を目安とするのが好ましい。例えば、紫外線照射による場合、波長が10nm以上380nm以下の範囲の紫外線照射が好ましく、特に好ましくは、波長が100nm以上200nm以下の範囲の紫外線を照射する。
 フッ素含有樹脂層表面への紫外線照射等においては、一般にフォトマスク(レチクル)を使用した露光処理がなされる。本発明では露光方式に関しては、非接触の露光方式(プロキシミティ露光、プロジェクション露光)と接触の露光方式(コンタクト露光)のいずれも適用できる。プロキシミティ露光においては、マスクとフッ素含有樹脂層表面との間隔は、10μm以下とするのが好ましく、3μm以下とするのがより好ましい。
 以上のようにして、基材にフッ素含有樹脂層形成及びパターン形成部に対する官能基形成処理を行い、この基材を金属微粒子分散液に接触させる。本発明では、金属パターン形成を好適に行うために金属微粒子分散液の構成を好適なものとしている。本発明で適用される金属微粒子分散液は、所定の保護剤が結合してなる金属微粒子を溶媒に分散させたものである。
 金属微粒子は、形成する金属パターンの構成材料に相当する。この金属微粒子は、好ましくは、銀、金、白金、パラジウム、銅、及びこれらの金属の合金の少なくともいずれかよりなるものである。これらの金属は、導電性に優れ電極材料等として有用である。
 金属微粒子については、その平均粒径が、5nm以上100nm以下であるものが好ましい。微細な配線パターンを形成するためには30nm以下の粒径とすることが求められる。一方、過度に微細な金属粒子は凝集し易く取り扱い性に劣ることとなる。
 保護剤は、金属微粒子が凝集・粗大化するのを抑制し、分散状態を安定させるものである。金属微粒子の凝集・粗大化は、分散液の保管や使用時の金属の沈殿の要因になるばかりでなく、基材に結合させた後の焼結特性に影響を及ぼすことから回避されなければならない。また、本発明においては、保護剤は、基材(フッ素含有樹脂層)表面の官能基と置換することで金属を固定するためのマーカーとしての作用も有する。本発明における金属粒子の保護剤は、第1の保護剤としてアミンを、第2の保護剤として脂肪酸を適用する。つまり、本発明では基本構造の相違する2系統の化合物が複合した状態で金属粒子を保護する。
 第1の保護剤であるアミン化合物は、その炭素数の総和が4以上12以下であるものが好ましい。これは、アミンの炭素数が金属粒子の安定性、パターン形成時の焼結特性に影響を及ぼすからである。炭素数4未満のアミンは金属微粒子を安定的に存在させるのが困難であり、均一な焼結体を形成させるのが困難となる。一方、炭素数12を超えるアミンは、金属粒子の安定性を過度に増大させ、パターン形成のために高温で加熱する必要が生じる。これらから、本発明の保護剤としては炭素数の総和が4以上12以下のアミン化合物が好ましい。
 保護剤であるアミン化合物中のアミノ基の数としては、アミノ基が1つである(モノ)アミンや、アミノ基を2つ有するジアミンを適用できる。また、アミノ基に結合する炭化水素基の数は、1つ又は2つが好ましく、すなわち、1級アミン(RNH)、又は2級アミン(RNH)が好ましい。そして、保護剤としてジアミンを適用する場合、少なくとも1以上のアミノ基が1級アミン又は2級アミンのものが好ましい。アミノ基に結合する炭化水素基は、直鎖構造又は分枝構造を有する鎖式炭化水素の他、環状構造の炭化水素基であっても良い。また、一部に酸素を含んでいても良い。本発明で適用する保護剤の好適な具体例としては、下記のアミン化合物が挙げられる。尚、第1の保護剤であるアミン化合物は、分散液中での金属粒子の分散性や低温焼結性を調節する目的で複数種のアミン化合物を混合・組合せて使用しても良い。また、炭素数の総和が4以上12以下のアミン化合物を少なくとも1種含んでいればよく、そうであれば当該範囲外の炭素数のアミン化合物が存在していても良い。
Figure JPOXMLDOC01-appb-T000001
 第2の保護剤として適用される脂肪酸は、分散液中ではアミン化合物の補助的な保護剤として作用し金属微粒子の安定性を高める。そして、脂肪酸の作用が明確に現れるのは、金属粒子を基材に塗布した後であり、脂肪酸を添加することで均一な膜厚の金属パターンを形成することができる。この作用は脂肪酸の無い金属微粒子を塗布した場合と対比することで顕著に理解でき、脂肪酸の無い金属微粒子では安定した金属パターンを形成することができない。
 脂肪酸は、好ましくは、炭素数4以上20以下の不飽和脂肪酸、飽和脂肪酸が好ましい。炭素数が3以下の不飽和脂肪酸、飽和脂肪酸は、金属微粒子の分散媒への分散性を低下させるため金属微粒子の凝集が起こり易くなり、安定した金属パターンを形成することが困難となる。一方、炭素数が20を超える不飽和脂肪酸、飽和脂肪酸は、一般に蒸気圧が低く蒸発し難いことから、金属パターンを形成する際金属微粒子から十分に除去することができず、金属パターンの抵抗値が高くなる傾向にある。
 好ましい脂肪酸としては、具体的には、ブタン酸(炭素数4)、ペンタン酸(炭素数5)、ヘキサン酸(炭素数6)、ヘプタン酸(炭素数7)、オクタン酸(炭素数8)、ノナン酸(炭素数9)、デカン酸(別名:カプリン酸、炭素数10)、ウンデカン酸(別名:ウンデシル酸、炭素数11)、ドデカンサン酸(別名:ラウリン酸、炭素数12)、トリデカン酸(別名:トリデシル酸、炭素数13)、テトラデカン酸(別名:ミリスチン酸、炭素数14)、ペンタデカン酸(別名:ペンタデシル酸、炭素数15)、ヘキサデカン酸(別名:パルミチン酸、炭素数16)、ヘプタデカン酸(別名:マルガリン酸、炭素数17)、オクタデカン酸(別名:ステアリン酸、炭素数18)、ノナデカン酸(別名:ノナデシル酸、炭素数19)、エイコサン酸(別名:アラキジン酸、炭素数20)等の飽和脂肪酸、パルミトレイン酸(炭素数16)、オレイン酸(炭素数18)、リノール酸(炭素数18)、リノレン酸(炭素数18)、アラキドン酸(炭素数20)等の不飽和脂肪酸が挙げられる。特に好ましいのは、オレイン酸、リノール酸、ステアリン酸、ラウリン酸、ブタン酸である。尚、以上説明した第2の保護剤である脂肪酸に関しても、複数種のものを組合せて使用しても良い。また、炭素数が4以上20以下の不飽和脂肪酸又は飽和脂肪酸を少なくとも1種含んでいればよく、そうであればそれ以外の脂肪酸が存在していても良い。
 上記した第1、第2の保護剤で保護された金属微粒子を溶媒に分散することで金属微粒子分散液を構成する。ここで適用可能な溶媒は、有機溶媒であり、例えば、アルコール、ベンゼン、トルエン、アルカン等である。これらを混合しても良い。好ましい溶媒は、ヘキサン、ヘプタン、オクタン、ノナン、デカン等のアルカン、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール等のアルコールであり、より好ましくは、これらの中から選択される1種又は2種以上のアルコールと1種又は2種以上のアルカンとの混合溶媒である。
 分散液の金属粒子の含有量は、分散液質量に対する金属質量で20重量%以上60重量%以下とするのが好ましい。分散液の金属微粒子の含有量が20%未満の場合は、パターン形成部に、十分な導電性を確保するための均一な膜厚の金属パターンを形成することができず、金属パターンの抵抗値が高くなる。分散液の金属微粒子の含有量が60%を超える場合は、金属微粒子の凝集・肥大化により安定した金属パターンを形成することが困難となる。これらから、本発明の分散液の金属粒子の含有量としては、分散液質量に対する金属質量で20重量%以上60重量%以下とするのが好ましい。
 分散液の保護剤の含有量は、第1の保護剤であるアミン化合物については、分散液中の金属のモル数(molmetal)に対するアミンのモル数(molアミン)の比(molアミン/molmetal)で、0.01以上0.32以下とするのが好ましい。また、第2の保護剤である脂肪酸の含有量は、金属のモル数(molmetal)に対する脂肪酸のモル数(mol脂肪酸)の比(mol脂肪酸/molmetal)で、0.001以上0.05以下とするのが好ましい。分散液中の保護剤の含有量は、上記好適範囲を超えても金属粒子の分散性には影響が生じないが、過剰な保護剤は、金属粒子の低温焼結性や形成される金属パターンの抵抗値に影響を及ぼすことから上記範囲にするのが好ましい。尚、上記の保護剤のモル数については、複数種のアミン化合物、脂肪酸を使用する場合には、それぞれ、合計モル数を適用する。
 以上説明した金属微粒子分散液を、フッ素含有樹脂層を有する基材に塗布する。金属微粒子分散液の塗布については、ディッピング、スピンコート、ロールコーターも適用できるが、ブレード、スキージ、ヘラのような塗布部材を用いて、金属微粒子分散液を滴下して塗り広げても良い。本発明は、予めパターン形成部に金属粒子を選択的に固定するための官能基が形成されており、一気に分散液を塗り広げることでパターン形成ができ効率的である。
 金属微粒子分散液は、官能基のないフッ素含有樹脂の素地面ではその撥液性により弾かれる。ブレード等の塗布部材を使用した場合、弾かれた分散液は基材表面から除去される。一方、官能基が形成されたパターン形成部では、金属微粒子の保護剤と金属粒子との置換反応が生じ、金属微粒子が基材に固定される。その後、分散液の溶剤が揮発すると共に、基材上の金属微粒子同士が自己焼結して金属膜となり金属パターンが形成される。
 この自己焼結は室温であっても生じる現象であるので、金属パターン形成に際して基材の加熱は必須の工程ではない。但し、自己焼結後の金属パターンを焼成することで、金属膜中に残存する保護剤(アミン化合物、脂肪酸)を完全に除去することができ、これにより抵抗値の低減を図ることができる。この焼成処理は、40℃以上250℃以下で行うことが好ましい。40℃未満では保護剤の脱離や揮発に長時間を要するため好ましくない。また、250℃を超えると樹脂基材等について変形の要因となる。焼成時間は、10分以上120分以下が好ましい。尚、焼成工程は、大気雰囲気で行っても良いし、真空雰囲気でも良い。
 以上の金属微粒子分散液の塗布、金属微粒子の自己焼結、及び、必要に応じた焼成により金属からなる金属パターンが形成される。
 そして、本発明に係る方法により形成される金属パターンを基板上に有する導電体は、高精細で好適な電気特性を有する金属パターンを備えるものとなる。即ち、本発明に係る導電体は、その一部又は全部の領域にパターン形成部が設定された基材と、前記基材の少なくとも前記パターン形成部を含む表面上に形成されたフッ素樹脂層と、前記フッ素樹脂層の前記パターン形成部上に金属微粒子が固定されることで形成された金属パターンと、を含む導電体であって、前記パターン形成部上に官能基が形成されている導電体である。
 特に、基材が透明体からなる場合、高精細な金属パターンを有する本発明に係る導電体は透明導電体として作用させることができ、ディスプレイ、タッチパネルへの応用が期待できる。
 本発明に係る金属パターン方法によれば、高精細の金属パターンを効率的に形成することができる。この金属パターンは、金属膜で形成されているので抵抗値も低く、電極・配線として好適に使用可能である。本発明は、基材に対して官能基を形成した後、金属微粒子分散液を塗布・印刷する比較的簡易な工程で金属パターンを形成することができる。本発明は、レジストを一般的に使用するフォトリソグラフィ法よりも簡便であり、また、インクジェット方式よりも効率的な方法である。
 そして、本発明によれば、微細で高精彩な金属パターンを形成することができる。この金属パターンは、透明電極と同等の透光性を発揮することができる。そこで、透明な基材上に本発明に係る金属パターン形成法を利用することで、透明導電体の製造も可能である。
第1実施形態で形成した金属パターンの外観を示す写真。 第1実施形態の金属パターンに関して基板裏面から測定した界面におけるラマンスペクトルを示す図。 第2実施形態において、各種脂肪酸を保護剤とした金属粒子(銀粒子)により形成された金属パターンの外観を示す写真。
第1実施形態:以下、本発明の好適な実施形態について説明する。本実施形態では、基材の前処理としてフッ素含有樹脂層形成及び官能基形成を行うと共に、金属粒子として銀微粒子が分散する分散液を製造し、分散液の塗布、金属パターン形成を行った。
[基材の用意、フッ素含有樹脂層の形成]
 基材としてポリエチレンナフタレートからなる樹脂基板(寸法:20mm×20mm)を用意した。この樹脂基板にフッ素含有樹脂として非晶質性パーフルオロブテニルエーテル重合体(CYTOP(登録商標):旭硝子(株)製)をスピンコート法(回転数2000rpm、20sec)で塗布した後、50℃で10分、続いて80℃で10分加熱し、更にオーブンにて100℃で60分加熱して焼成した。これにより1μmのフッ素含有樹脂層が形成された。
[基材前処理]
 次に、このフッ素含有樹脂層が形成された基板に、格子パターン(線幅3μm、線間隔50μm)のフォトマスクを密着し、ここに紫外線(VUV光)を照射した(マスク-基板間距離0のコンタクト露光)。VUV光は、波長172nm、11mW/cm-2で20秒照射した。
[銀微粒子分散液の製造、塗布]
 銀微粒子分散液の製造について、銀粒子は、銀錯体を前駆体とする熱分解法により製造した。この熱分解法は、シュウ酸銀(Ag)等の熱分解性を有する銀化合物を出発原料とし、銀化合物と保護剤とを反応させて銀錯体を形成し、これを前駆体として加熱し分解することで銀粒子を得る方法である。
 本実施形態では、シュウ酸銀を原料として銀粒子を製造した。予めデカンで湿潤されたシュウ酸銀に、保護剤となるアミンとしてN,N-ジメチル-1,3-ジアミノプロパンを混練し、前駆体となるシュウ酸銀アミン錯体を製造した。N,N-ジメチル-1,3-ジアミノプロパンの添加量は、銀に対して0.76(mol/mol)とした。ここに更に、ヘキシルアミン及びドデシルアミンの2つのアミン化合物を添加した後、第2の保護剤としてオレイン酸を添加して混練した。ヘキシルアミンの添加量は、銀に対して1.14(mol/mol)、ドデシルアミンの添加量は、銀に対して0.095(mol/mol)、オレイン酸の添加量は、銀に対して0.012(mol/mol)とした。尚、N,N-ジメチル-1,3-ジアミノプロパンに続いてヘキシルアミン及びドデシルアミンを追加したのは、N,N-ジメチル-1,3-ジアミノプロパンによる銀粒子の保護作用を補完して凝集を抑制するためである。
 その後、混練物を110℃で加熱攪拌して錯体を分解した。この加熱攪拌により、混練物はクリーム色から徐々に褐色になり、最後は黒色となった。また、加熱攪拌中は気泡(二酸化炭素)が発生するが、気泡消失時点で反応終了とした。
 反応終了後、メタノールを加えて攪拌し、遠心分離を行い上澄み液を除去した。このメタノール洗浄を行い、黒色の銀微粒子を得た。この洗浄及び遠心分離により、銀微粒子から過剰なアミン化合物が除去され、好適範囲の保護剤を含む銀粒子を得ることができる。
 そして、銀微粒子に、オクタンとブタノールとの混合溶媒(オクタン:ブタノール=4:1)を添加し、銀微粒子分散液を得た。この銀微粒子分散液の銀濃度は40重量%とした。
 以上で製造した銀微粒子分散液を前処理した基板に塗布した。塗布は、基板とブレード(ガラス製)との接触部分に予め分散液を濡れ広がらせた後、ブレードを一方向に掃引した。ここでは、掃引速度を2mm/secとした。このブレードによる塗布により、基板の紫外線照射部(官能基形成部)のみに分散液が付着しているのが確認された。この分散液を室温(25℃)で自然乾燥させて金属パターンを形成した。
 形成した金属パターンについて、その外観観察を行った。その結果を図1に示すが、本実施形態では明確な線幅3μmの銀膜からなるパターンが形成されているのがわかる。
 次に、顕微ラマン分光分析により基板表面の金属パターン形成部の元素結合状態を検討した。この分析は、基板表面の金属パターンに対して、基板の裏面からレーザー光(波長:532nm)を照射し、銀粒子層とフッ素含有樹脂層との界面についてのラマンスペクトルを測定・解析して界面における化学種を検討するものである。図2は、基板裏面からのレーザー照射による界面におけるラマンスペクトルを示す。この図によれば、裏面からの照射で測定されるラマンスペクトルには、予め測定した基板表面からレーザー照射した場合には見られない特異な振動構造として、1370cm-1付近及び1570cm-1付近の振動構造が見られた。この振動構造はCOO結合に由来したものとみられる。したがって、本実施形態では、フッ素含有樹脂層表面にカルボキシ基が官能基として形成されていたことが確認できた。
 そして、この金属パターンについて抵抗値を測定したところ、面抵抗280Ω/□、体積抵抗68μΩ・cmであった。この抵抗値について、タッチパネルフィルムに用いられる透明導電膜に一般的に求められる抵抗値の基準範囲(200Ω/□以上400Ω/□以下)と対比すると、本実施形態は電気配線として十分使用できる値である。
 また、この基板を80℃で加熱して金属パターンを焼成した。そして、同様に抵抗値を測定したところ、面抵抗66Ω/□、体積抵抗16μΩ・cmとなり、抵抗値の低下がみられることが確認された。
第2実施形態:ここでは、他の銀化合物を出発原料として熱分解法により銀粒子を製造し、その分散液を用いて金属パターンを形成した。銀粒子の製造は、第1実施形態においてシュウ酸銀に替えて炭酸銀を用いた。乾燥状態の炭酸銀に、第1実施形態と同様N,N-ジメチル-1,3-ジアミノプロパンを混練し、前駆体となる炭酸銀アミン錯体を製造した。その後、第1実施形態と同様、ヘキシルアミン及びドデシルアミンとオレイン酸を添加・混練した。各アミン化合物、オレイン酸の混合量(混合比)は第1実施形態と同様とした。その後、混練物を110℃で加熱攪拌して錯体を分解し、遠心分離・洗浄して銀微粒子を得た。この銀微粒子に、オクタンとブタノールとの混合溶媒(オクタン:ブタノール=4:1)を添加し、銀微粒子分散液を得た。この銀微粒子分散液の銀濃度も40重量%とした。
 製造した銀微粒子分散液を、第1実施形態と同様の前処理した基板に対し、同様の条件で塗布して金属パターンを形成した。本実施形態で形成した金属パターンについての抵抗値は、面抵抗300Ω/□、体積抵抗80μΩ・cmであった。この基板を80℃で加熱して金属パターンを焼成した場合の抵抗値は、面抵抗80Ω/□、体積抵抗20μΩ・cmであった。よって、第2実施形態で形成したこれらの金属パターンも電気配線として有用であることが確認できた。
第3実施形態:本実施形態では、銀微粒子分散液の保護剤について、アミンと共に保護剤を構成する脂肪酸の技術的意義について検討した。第1実施形態の銀微粒子分散液の製造工程において、オレイン酸の添加に替えて他の脂肪酸(ステアリン酸、ブタン酸、プロパン酸)を添加、又は、脂肪酸を添加せずに銀粒子を製造し、分散液を製造した。その後、第1実施形態と同じ前処理をした基板について、同様の操作で銀微粒子分散液を塗布し、乾燥・焼成して金属パターンを形成した。その後基板表面を観察し、パターン形成の有無を確認した。
 この結果を図3に示す。図3から、銀微粒子の保護剤として脂肪酸を添加しない場合、遠距離から一見すると金属パターンは形成されているものの、拡大視すると銀粒子の凝集が見られる。このような状態は実質的に断線が生じているのと同様であり抵抗値は極大となる。また、保護剤として炭素数の小さい脂肪酸であるプロパン酸(炭素数3)を使用しても同様の現象が見られる。これに対し、脂肪酸の炭素数を調整しオレイン酸、ステアリン酸、ブタン酸を使用することで、金属パターンはより鮮明になり、安定した銀膜を形成する。よって、金属パターン形成という金属微粒子分散液の用途に際して、銀微粒子の保護剤として脂肪酸の適用が必要であることが確認された。
第4実施形態:本実施形態では、金属パターンの構成材料として各種金属を適用した金属微粒子分散液を製造し、これを基板に塗布して金属パターンを形成した。
 金属微粒子分散液の製造は、白金、パラジウム、金、銅の金属塩原料を用意し、原料を溶媒(トルエン又はエタノール)に溶解して第1の保護剤としてアミン(ヘキシルアミン又はデシルアミン)を添加して、更に、還元剤(水素化ホウ素ナトリウム)を添加して金属イオンを還元してアミン保護金属微粒子が分散する混合溶液を製造した。次に、この混合溶液から金属微粒子を分離回収して洗浄後、第2の保護剤であるオレイン酸を予め添加したトルエンを加えて金属微粒子分散液を製造した。
 この金属微粒子分散液を、基板に塗布した。基板の構成、前処理内容、塗布方法は第1実施形態と同様である。本実施形態でも、分散液塗布により、基板の官能基形成部のみに分散液が付着しているのが確認された。そして、この分散液を室温(25℃)で自然乾燥させて金属パターンを形成した。形成した金属パターンについて、その外観観察を行いパターンの線幅を測定した。また、形成した金属パターンについて抵抗値を測定した。測定は熱処理(80℃)前後で行い、400Ω/□以下を合格「○」とした。各金属微粒子分散液により形成された金属パターンに関する結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1から、白金、パラジウム、金、銅の金属微粒子溶液からも、銀と同様の好適な金属パターンが形成できることが確認できる。これらの金属パターンは、線幅も十分小さく、抵抗値も合格であった。
 以上説明したように、本発明によれば、極めて精細な金属パターンを効率的に形成することができる。本発明は、各種半導体デバイスの電極・配線形成に有用である他、透光性が要求されるタッチパネルのパネル面の配線形成にも有効に適用できる。

Claims (13)

  1.  基材上の一部又は全部の領域に設定されたパターン形成部に金属パターンを形成する方法において、
     前記基材は、少なくとも前記パターン形成部を含む表面上にフッ素含有樹脂層を備えるものであり、
     前記フッ素含有樹脂層表面のパターン形成部に官能基を形成した後、
     第1の保護剤であるアミン化合物と、第2の保護剤である脂肪酸により保護された金属微粒子が溶媒に分散してなる金属微粒子分散液を前記基材表面に塗布し、
     前記金属微粒子を前記パターン形成部に固定する工程を含むことを特徴とする金属パターンの形成方法。
  2.  フッ素含有樹脂層は、その重合体を構成するフッ素含有単量体に基づく繰り返し単位として、フッ素原子数と炭素原子数との比(F/C)が1.0以上の繰り返し単位を少なくとも1種有する重合体からなる請求項1記載の金属パターンの形成方法。
  3.  フッ素含有樹脂層表面に官能基を形成する工程は、フッ素含有樹脂層表面のパターン形成部に1mJ/cm以上4000mJ/cm以下のエネルギーを印加するものである請求項1又は請求項2記載の金属パターンの形成方法。
  4.  官能基として、カルボキシ基、ヒドロキシ基、カルボニル基の少なくともいずれかが形成される請求項1~請求項3いずれかに記載の金属パターンの形成方法。
  5.  第1の保護剤であるアミン化合物は、炭素数4以上12以下のアミン化合物の少なくとも1種を含むものである請求項1~請求項4のいずれかに記載の金属パターンの形成方法。
  6.  第2の保護剤である脂肪酸は、炭素数4以上20以下の脂肪酸の少なくとも1種を含むものである請求項1~請求項5のいずれかに記載の金属パターンの形成方法。
  7.  脂肪酸は、オレイン酸、ステアリン酸、リノール酸、ラウリン酸、ブタン酸の少なくともいずれかを含むものであるである請求項6に記載の金属パターンの形成方法。
  8.  金属微粒子分散液の溶媒は、炭素数3以上8以下のアルコール溶媒、炭素数6以上10以下の炭化水素溶媒、又はこれらの混合溶媒である請求項1~請求項7のいずれかに記載の金属パターンの形成方法。
  9.  金属微粒子をパターン形成部に固定後、基材を40℃以上250℃以下に加熱する工程を含む請求項1~請求項8のいずれかに記載の金属パターンの形成方法。
  10.  金属微粒子は、銀、金、白金、パラジウム、銅、及びこれらの金属の合金の少なくともいずれかよりなる請求項1~請求項9のいずれかに記載の金属パターンの形成方法。
  11.  その一部又は全部の領域にパターン形成部が設定された基材と、
     前記基材の少なくとも前記パターン形成部を含む表面上に形成されたフッ素樹脂層と、
     前記フッ素樹脂層の前記パターン形成部上に金属微粒子が固定されることで形成された金属パターンと、を含む導電体であって、
     前記パターン形成部上に官能基が形成されている導電体。
  12.  官能基として、カルボキシ基、ヒドロキシ基、カルボニル基の少なくともいずれかが形成されている請求項11に記載の導電体。
  13.  基材が透明体からなる請求項11又は請求項12記載の導電体。
     
PCT/JP2015/073196 2014-08-27 2015-08-19 金属パターンの形成方法及び導電体 WO2016031641A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/506,586 US10892065B2 (en) 2014-08-27 2015-08-19 Method for forming metal pattern, and electric conductor
EP15836285.5A EP3196894A4 (en) 2014-08-27 2015-08-19 Method for forming metal pattern, and electric conductor
CN201580046158.5A CN106796829B (zh) 2014-08-27 2015-08-19 金属图案的形成方法及导电体
KR1020177007838A KR101923330B1 (ko) 2014-08-27 2015-08-19 금속 패턴의 형성 방법 및 도전체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014172347A JP5916159B2 (ja) 2014-08-27 2014-08-27 金属パターンの形成方法及び導電体
JP2014-172347 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031641A1 true WO2016031641A1 (ja) 2016-03-03

Family

ID=55399536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073196 WO2016031641A1 (ja) 2014-08-27 2015-08-19 金属パターンの形成方法及び導電体

Country Status (7)

Country Link
US (1) US10892065B2 (ja)
EP (1) EP3196894A4 (ja)
JP (1) JP5916159B2 (ja)
KR (1) KR101923330B1 (ja)
CN (1) CN106796829B (ja)
TW (1) TWI590262B (ja)
WO (1) WO2016031641A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200101907A (ko) 2017-12-25 2020-08-28 에이지씨 가부시키가이샤 금속 패턴이 형성된 기재의 제조 방법
WO2023120512A1 (ja) * 2021-12-22 2023-06-29 田中貴金属工業株式会社 導電性積層体及びその製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181436A (ja) * 2017-04-04 2018-11-15 株式会社タッチパネル研究所 導電性フィルムの製造方法および導電性フィルム
CN110832660B (zh) 2017-05-17 2023-07-28 Oti照明公司 在图案化涂层上选择性沉积传导性涂层的方法和包括传导性涂层的装置
JP6496775B2 (ja) * 2017-05-18 2019-04-03 田中貴金属工業株式会社 金属配線を備える導電基板、及び、該導電基板の製造方法
EP3663087A4 (en) 2017-08-04 2021-04-21 Daikin Industries, Ltd. SUBSTRATE INTENDED FOR PATTERN FORMATION
JP6530019B2 (ja) 2017-08-08 2019-06-12 田中貴金属工業株式会社 金属インク
JP6496784B2 (ja) * 2017-08-08 2019-04-03 田中貴金属工業株式会社 導電シート及び該導電シートの製造方法
WO2020027166A1 (ja) * 2018-07-30 2020-02-06 旭化成株式会社 導電性フィルム、並びに、それを用いた導電性フィルムロール、電子ペーパー、タッチパネル及びフラットパネルディスプレイ
JP7320515B2 (ja) * 2018-08-30 2023-08-03 田中貴金属工業株式会社 低温焼成用の銀インク
JP7120890B2 (ja) * 2018-11-16 2022-08-17 田中貴金属工業株式会社 金属配線を備える導電基板及び該導電基板の製造方法、並びに金属配線形成用の金属インク
TWI698507B (zh) 2018-12-06 2020-07-11 財團法人工業技術研究院 改質的金屬奈米片及包括其之導電漿料
JP7291553B2 (ja) 2019-06-20 2023-06-15 田中貴金属工業株式会社 金属パターンの形成方法
JP7365491B2 (ja) 2020-03-24 2023-10-19 富士フイルム株式会社 金属パターンの形成方法
TWI774439B (zh) 2020-07-03 2022-08-11 日商田中貴金屬工業股份有限公司 耐彎折性優異之金屬配線及導電薄片以及為形成該金屬配線之金屬糊

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207450A (ja) * 1994-01-13 1995-08-08 Nitto Denko Corp フッ素樹脂製部分メッキ多孔質シートの製法
JP2004296424A (ja) * 2003-03-11 2004-10-21 Advanced Lcd Technologies Development Center Co Ltd 金属層の形成方法、金属層、及び金属層を用いた表示装置
JP2013133488A (ja) * 2011-12-26 2013-07-08 Toyota Central R&D Labs Inc 金属ナノ粒子およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148024A1 (en) * 2001-10-05 2003-08-07 Kodas Toivo T. Low viscosity precursor compositons and methods for the depositon of conductive electronic features
JP3864211B2 (ja) * 2000-11-07 2006-12-27 独立行政法人産業技術総合研究所 真空紫外レーザーを用いたフッ素系高分子成型品の表面改質方法
JP2003123543A (ja) 2001-10-11 2003-04-25 Sumitomo Metal Mining Co Ltd 透明導電性基材及びその製造方法
US6967159B2 (en) 2002-08-28 2005-11-22 Micron Technology, Inc. Systems and methods for forming refractory metal nitride layers using organic amines
JP2005227718A (ja) 2004-02-16 2005-08-25 Daikin Ind Ltd 微細パターン形成方法
JP2009000600A (ja) 2007-06-20 2009-01-08 Seiko Epson Corp パターン形成方法及び電気光学装置製造方法並びに電子機器製造方法
CN102019267B (zh) * 2010-11-15 2013-04-17 北京二七轨道交通装备有限责任公司 金属表面防护处理方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207450A (ja) * 1994-01-13 1995-08-08 Nitto Denko Corp フッ素樹脂製部分メッキ多孔質シートの製法
JP2004296424A (ja) * 2003-03-11 2004-10-21 Advanced Lcd Technologies Development Center Co Ltd 金属層の形成方法、金属層、及び金属層を用いた表示装置
JP2013133488A (ja) * 2011-12-26 2013-07-08 Toyota Central R&D Labs Inc 金属ナノ粒子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196894A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200101907A (ko) 2017-12-25 2020-08-28 에이지씨 가부시키가이샤 금속 패턴이 형성된 기재의 제조 방법
WO2023120512A1 (ja) * 2021-12-22 2023-06-29 田中貴金属工業株式会社 導電性積層体及びその製造方法

Also Published As

Publication number Publication date
EP3196894A1 (en) 2017-07-26
JP2016048601A (ja) 2016-04-07
KR101923330B1 (ko) 2018-11-28
CN106796829B (zh) 2019-04-05
EP3196894A4 (en) 2018-05-02
JP5916159B2 (ja) 2016-05-11
KR20170044708A (ko) 2017-04-25
US10892065B2 (en) 2021-01-12
US20170256332A1 (en) 2017-09-07
TWI590262B (zh) 2017-07-01
TW201616520A (zh) 2016-05-01
CN106796829A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5916159B2 (ja) 金属パターンの形成方法及び導電体
JP5623861B2 (ja) 金属ナノ粒子分散組成物
JP5993812B2 (ja) 導電膜の製造方法
JP7094331B2 (ja) 分散体並びにこれを用いた導電性パターン付構造体の製造方法及び導電性パターン付構造体
JPWO2019022230A1 (ja) 酸化銅インク及びこれを用いた導電性基板の製造方法、塗膜を含む製品及びこれを用いた製品の製造方法、導電性パターン付製品の製造方法、並びに、導電性パターン付製品
JP6562196B2 (ja) 銅微粒子焼結体と導電性基板の製造方法
KR101947633B1 (ko) 전도성 구리 복합잉크 및 이를 이용한 광소결 방법
JP5369456B2 (ja) インクジェット用低粘度分散液
JP6496775B2 (ja) 金属配線を備える導電基板、及び、該導電基板の製造方法
JP2006269557A (ja) 回路パターン形成方法並びに、それを用いて形成した回路パターン及び積層体
JP6847994B2 (ja) 分散体の製造方法
JP7176847B2 (ja) 分散体、塗膜を含む製品、導電性パターン付き構造体の製造方法、及び、導電性パターン付き構造体
JP5353248B2 (ja) 配線基板及び配線基板の製造方法
KR20170107625A (ko) 이종크기의 구리 나노입자가 혼합된 전도성 구리 잉크 및 이를 이용한 구리 전극 제조방법
JP2010097808A (ja) 低粘度分散液、これを用いた銅ナノ粒子配線及び複合材料
JP7263124B2 (ja) インクジェット用酸化銅インク及びこれを用いて導電性パターンを付与した導電性基板の製造方法
KR100679072B1 (ko) 기판의 표면처리방법, 기판의 제조방법 및 기판
JP7120890B2 (ja) 金属配線を備える導電基板及び該導電基板の製造方法、並びに金属配線形成用の金属インク
TW201503163A (zh) 導電膜形成用組成物及使用其的導電膜的製造方法
JP2011140598A (ja) ナノ粒子分散液の製造方法、及びインクジェット用分散液
JP2015144089A (ja) 導電膜の製造方法
JP5578128B2 (ja) 導電性パターン部材形成方法
CN111970843A (zh) 线路基材的制备方法、线路基材以及电路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836285

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015836285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15506586

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177007838

Country of ref document: KR

Kind code of ref document: A