WO2016029861A1 - 一种稀土系储氢合金及其用途 - Google Patents

一种稀土系储氢合金及其用途 Download PDF

Info

Publication number
WO2016029861A1
WO2016029861A1 PCT/CN2015/088274 CN2015088274W WO2016029861A1 WO 2016029861 A1 WO2016029861 A1 WO 2016029861A1 CN 2015088274 W CN2015088274 W CN 2015088274W WO 2016029861 A1 WO2016029861 A1 WO 2016029861A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
rare earth
storage alloy
alloy
formula
Prior art date
Application number
PCT/CN2015/088274
Other languages
English (en)
French (fr)
Inventor
闫慧忠
王利
熊玮
李宝犬
李金�
Original Assignee
包头稀土研究院
瑞科稀土冶金及功能材料国家工程研究中心有限公司
天津包钢稀土研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410429202.8A external-priority patent/CN104532095B/zh
Priority claimed from CN201410427281.9A external-priority patent/CN104513925B/zh
Priority claimed from CN201410427199.6A external-priority patent/CN104152749B/zh
Priority claimed from CN201410427259.4A external-priority patent/CN104518204B/zh
Priority claimed from CN201410429187.7A external-priority patent/CN104532062A/zh
Priority claimed from CN201410427179.9A external-priority patent/CN104513915B/zh
Priority claimed from CN201410427220.2A external-priority patent/CN104513916B/zh
Application filed by 包头稀土研究院, 瑞科稀土冶金及功能材料国家工程研究中心有限公司, 天津包钢稀土研究院有限责任公司 filed Critical 包头稀土研究院
Priority to US15/507,133 priority Critical patent/US10566614B2/en
Priority to CN201580046681.8A priority patent/CN107075617B/zh
Priority to JP2017530386A priority patent/JP6464268B2/ja
Publication of WO2016029861A1 publication Critical patent/WO2016029861A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/04Hydrogen absorbing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of hydrogen storage alloys and relates to a rare earth hydrogen storage alloy and its use.
  • Hydrogen storage alloys are a kind of functional materials with high hydrogen storage density discovered in the late 1960s.
  • the existing hydrogen storage alloys can be roughly divided into six categories: rare earth AB 5 type such as LaNi 5 ; magnesium series such as Mg 2 Ni, MgNi, La 2 Mg 17 ; rare earth-magnesium-nickel type AB 3-4 type such as La 2 MgNi 9 , La 5 Mg 2 Ni 23 , La 3 MgNi 14 ; titanium type AB such as TiNi, TiFe; zirconium,
  • the titanium Laves phase AB 2 type is ZrNi 2 ;
  • the vanadium solid solution type is (V 0.9 Ti 0.1 ) 1-x Fe x .
  • the hydrogen storage material currently widely used is a LaNi 5 type hydrogen storage alloy.
  • the alloy is mainly used as a negative electrode material for metal hydride-nickel secondary battery (MH/Ni), and its theoretical electrochemical capacity is 373 mAh ⁇ g -1 .
  • the maximum capacity of the rare earth metal is about 350 mAh ⁇ g -1 .
  • the theoretical electrochemical capacity of magnesium-based hydrogen storage alloy materials is high, especially the research on rare earth-magnesium-nickel-based AB 3 type, A 2 B 7 type, and A 5 B 19 type hydrogen storage alloys has made important progress and entered industrialization. Application phase. Zirconium, titanium and vanadium hydrogen storage materials have not been widely used due to difficulties in activation and high cost.
  • CN201310228766.0 discloses an A 2 B 7 hydrogen storage alloy for nickel-hydrogen battery and a preparation method thereof, which has the structural formula: Ln a Mg b Ni x Y y Z z , wherein Ln is one or more Rare earth element, Y is one or several elements of Al, Co, Nb, V, Fe, Cu, Zn, As, Ga, Mo, Sn, In, W, Si, P, and Z is Ag, Sr, Ge One or several elements in the middle, 0.5 ⁇ a ⁇ 2, 0 ⁇ b ⁇ 1, 5 ⁇ X + Y + Z ⁇ 9, 0 ⁇ Y ⁇ 3, 0 ⁇ Z ⁇ 1.
  • CN101210294A discloses an A 5 B 19 type alloy, the composition of which conforms to the general formula X 5-a Y a Z b , wherein X is one or more of rare earth metals, and Y is one of alkaline earth metals or Several, Z is one or more of Mn, Al, V, Fe, Si, Sn, Ni, Co, Cr, Cu, Mo, Zn and B, 0 ⁇ a ⁇ 2, 17.5 ⁇ b ⁇ 22.5.
  • CN102195041A discloses a hydrogen storage alloy for an alkaline storage battery having a composition formula of La x Re y Mg 1-xy Ni nmv Al m T v , wherein Re is at least a rare earth element (excluding La) including Y ( ⁇ ).
  • An element, T is at least one of Co, Mn, and Zn; 0.17 ⁇ x ⁇ 0.64, 3.5 ⁇ n ⁇ 3.8, 0.06 ⁇ m ⁇ 0.22, v ⁇ 0, and the crystal structure of the main phase is A 5 B 19 Type construction.
  • CN101238231A discloses a hydrogen storage alloy having a phase represented by A (4-w) B (1+w) C 19 and containing a crystal structure of a Pr 5 Co 19 type, wherein A is selected from the group consisting of Y ( ⁇ ).
  • A is selected from the group consisting of Y ( ⁇ ).
  • B is a Mg element
  • C is one or two or more elements selected from the group consisting of Ni, Co, Mn, and Al
  • w is -0.1 to 0.8.
  • R1 is one or two or more elements selected from the group consisting of rare earth elements including Y (yttrium)
  • R2 is a Mg element
  • R3 is one or two selected from the group consisting of Ni, Co, Mn, and Al.
  • the above z indicates that the value of Mn+Al is 0.5 or more, and the value of Al is 4.1 or less.
  • CN102660700A discloses an AB 3 type hydrogen storage alloy and a preparation method thereof.
  • CN102195041A discloses a hydrogen storage alloy for alkaline storage batteries, having a composition formula of La x Re y Mg 1-xy Ni nmv Al m T v (Re: rare earth element including Y; T: Co, Mn, Zn; 0.17 ⁇ x ⁇ 0.64, 3.5 ⁇ n ⁇ 3.8, 0.06 ⁇ m ⁇ 0.22, v ⁇ 0), and the crystal structure of the main phase is an A 5 B 19 type structure.
  • CN103326004A discloses an A 2 B 7 type hydrogen storage alloy for a nickel-hydrogen battery and a preparation method thereof. Its structural formula is: Ln a Mg b Ni x Y y Z z , wherein Ln is at least one element selected from rare earth elements, and Y is Al, Co, Nb, V, Fe, Cu, Zn, As, At least one element selected from Ga, Mo, Sn, In, W, Si, P, and Z is at least one element selected from Ag, Sr, and Ge, 0.5 ⁇ a ⁇ 2, 0 ⁇ b ⁇ 1, 5 ⁇ X+Y+Z ⁇ 9, 0 ⁇ Y ⁇ 3, 0 ⁇ Z ⁇ 1.
  • the alloy component does not contain a Y element, does not contain a Zr element, or does not contain a Ti element, but must contain an alkaline earth metal or a magnesium element. Due to the high vapor pressure of the active metal element magnesium, the manufacturing difficulty is increased, the alloy composition is difficult to control, and the volatilized fine magnesium powder is flammable and explosive, and there is a safety hazard.
  • An object of the present invention is to provide a rare earth hydrogen storage alloy having a high hydrogen storage capacity. It is still another object of the present invention to provide a rare earth hydrogen storage alloy having a high electrochemical capacity. Still another object of the present invention is to provide a hydrogen storage alloy that is easy to manufacture, or that is easy to control, or that is safe to prepare.
  • a first aspect of the present invention provides a rare earth hydrogen storage alloy having a composition as shown in the general formula (I):
  • RE is La and/or Ce.
  • RE is La.
  • RE is Ce
  • RE is a mixed rare earth metal of La and Ce, and preferably has an atomic ratio of La and Ce of 0.8:0.2.
  • RE is a cerium-rich mixed rare earth metal containing about 64% by weight of La and about 25 weights of Ce.
  • the amount %, Pr is about 3% by weight, and Nd is about 8% by weight.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein 2.5 ⁇ A + B > 0.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein 11>z ⁇ 9.5, 4.5 ⁇ a+b>0.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein 12.5 ⁇ z ⁇ 11, 5.5 ⁇ a + b > 0.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein 9.5 > z ⁇ 8.5; 3.5 ⁇ a + b > 0.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein 3.5 ⁇ a + b ⁇ 0; 3.0 ⁇ c > 0.
  • the composition of the rare earth hydrogen storage alloy of the formula (I) can be represented by the formula (I-1):
  • the rare earth hydrogen storage alloy represented by the formula (I-1) 2.5 ⁇ x ⁇ 0.5, preferably 2.0 ⁇ x ⁇ 0.5, further preferably 1.2 ⁇ x ⁇ 0.8.
  • the rare earth hydrogen storage alloy represented by the formula (I-1) 2.5 ⁇ a ⁇ 0, preferably 2.5 ⁇ a ⁇ 0.5, further preferably 0.6 ⁇ a ⁇ 0.4.
  • the rare earth hydrogen storage alloy represented by the general formula (I-1) In the case, 1.0 ⁇ b ⁇ 0, preferably 1.0 ⁇ b ⁇ 0.2, or preferably 0.3 ⁇ b ⁇ 0.
  • the composition of the rare earth hydrogen storage alloy of the formula (I) can also be represented by the formula (I-1):
  • the hydrogen storage alloy is a stoichiometric ratio A 5 B 19 type; when z ⁇ 11.4, the hydrogen storage alloy is a non-stoichiometric ratio A 5 B 19 type.
  • the rare earth hydrogen storage alloy represented by the formula (I-1) 2.5 ⁇ x ⁇ 0.5, preferably 2.0 ⁇ x ⁇ 0.5, further preferably 1.5 ⁇ x ⁇ 1.
  • the rare earth hydrogen storage alloy represented by the formula (I-1) 3.0 ⁇ a ⁇ 0, preferably 3.0 ⁇ a ⁇ 0.5, further preferably 1.0 ⁇ a ⁇ 0.5.
  • the rare earth hydrogen storage alloy represented by the general formula (I-1) 1.5 ⁇ b ⁇ 0, preferably 1.5 ⁇ b ⁇ 0.3, further preferably 0.5 ⁇ b ⁇ 0;
  • the composition of the rare earth hydrogen storage alloy of the formula (I) can also be represented by the formula (I-1):
  • the hydrogen storage alloy is a stoichiometric ratio AB 3 type; when z ⁇ 9, the hydrogen storage alloy is a non-stoichiometric ratio AB 3 type.
  • the rare earth hydrogen storage alloy represented by the formula (I-1) 2.5 ⁇ x ⁇ 0.5, preferably 2.0 ⁇ x ⁇ 0.5.
  • the rare earth hydrogen storage alloy represented by the formula (I-1) 2 ⁇ a ⁇ 0; preferably 2 ⁇ a ⁇ 0.5.
  • the rare earth hydrogen storage alloy represented by the formula (I-1) in another preferred embodiment, 1.0 ⁇ b ⁇ 0, preferably 1.0 ⁇ b ⁇ 0.2.
  • RE is La and/or Ce.
  • RE is La.
  • RE is Ce
  • RE is a mixed rare earth metal of La and Ce, and preferably, the atomic ratio of La and Ce is 0.8:0.2.
  • RE is a cerium-rich mixed rare earth metal containing La of about 64% by weight and Ce of about 25% by weight. Pr is about 3% by weight and Nd is about 8% by weight.
  • the composition of the rare earth hydrogen storage alloy of the formula (I) can be expressed by the formula (I-2):
  • RE is one or more elements selected from the group consisting of La, Ce, Pr, Nd, Sm, and Gd
  • the rare earth hydrogen storage alloy represented by the formula (I-2) 2.5 ⁇ x ⁇ 0.5, preferably 2.0 ⁇ x ⁇ 0.5, further preferably 1.2 ⁇ x ⁇ 1.
  • the rare earth hydrogen storage alloy represented by the formula (I-2) 2.0 ⁇ a ⁇ 0.5, preferably 1 ⁇ a ⁇ 0.5.
  • the rare earth hydrogen storage alloy represented by the formula (I-2) in another preferred embodiment, 1.0 ⁇ b ⁇ 0.3; preferably 0.5 ⁇ b ⁇ 0.3.
  • the rare earth hydrogen storage alloy represented by the formula (I-2) 12.5 ⁇ z ⁇ 8.5, preferably 11.4 ⁇ z ⁇ 9, more preferably 11 ⁇ z ⁇ 10.
  • the rare earth hydrogen storage alloy represented by the formula (I-2) 2.5 ⁇ c ⁇ 0.1, preferably 1 ⁇ c ⁇ 0.5.
  • RE is La and/or Ce.
  • RE is La.
  • RE is Ce
  • RE is a mixed rare earth metal of La and Ce, and preferably an atomic ratio of La and Ce is 0.8:0.2.
  • RE is a cerium-rich mixed rare earth metal containing about 64% by weight of La and about 25% by weight of Ce. Pr is about 3% by weight and Nd is about 8% by weight.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein 12.5 ⁇ z ⁇ 11, 4 ⁇ a + b > 0.
  • 1.0 ⁇ b ⁇ 0, still more preferably 1.0 ⁇ b ⁇ 0.2, still more preferably 0.5 ⁇ b ⁇ 0;
  • 1.0 ⁇ A ⁇ 0, still more preferably 1.0 ⁇ A ⁇ 0.1, still more preferably 0.5 ⁇ A ⁇ 0.1;
  • 1.0 ⁇ B ⁇ 0, still more preferably 1.0 ⁇ B ⁇ 0.1, still more preferably 0.3 ⁇ B ⁇ 0;
  • the rare earth hydrogen storage alloy of the formula (I), wherein RE is one or more elements selected from the group consisting of La, Ce, Pr, Nd, Sm, and Gd; Is one or more elements selected from the group consisting of Cu, Fe, Co, Sn, V, W, 2.0 ⁇ x ⁇ 0.5, 2.5 ⁇ a ⁇ 0.5, 1.0 ⁇ b ⁇ 0.2, 2.5 ⁇ c ⁇ 0.1, 1.0 ⁇ A ⁇ 0.1, 1.0 ⁇ B ⁇ 0.1, z 11.4.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein 11>z ⁇ 9.5; 3.5 ⁇ a+b>0; 3 ⁇ c ⁇ 0.
  • 1.0 ⁇ b ⁇ 0, still more preferably 1.0 ⁇ b ⁇ 0.2, still more preferably 0.5 ⁇ b ⁇ 0;
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein 9.5 > z ⁇ 8.5; 3 ⁇ a + b > 0; 2.5 ⁇ c ⁇ 0.
  • 1.0 ⁇ b ⁇ 0, still more preferably 1.0 ⁇ b ⁇ 0.2, still more preferably 0.5 ⁇ b ⁇ 0;
  • 1.0 ⁇ A ⁇ 0, still more preferably 1.0 ⁇ A ⁇ 0.1, still more preferably 0.5 ⁇ A ⁇ 0.1;
  • 1.0 ⁇ B ⁇ 0, still more preferably 1.0 ⁇ B ⁇ 0.1, still more preferably 0.3 ⁇ B ⁇ 0.2;
  • 9.4 ⁇ z ⁇ 8.5, still more preferably 9.4 ⁇ z ⁇ 9, and still more preferably Z 9.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein x may be 0.1, 0.2, 0.3 or 0.4, x may also be 0.5, 0.6 or 0.7, and x may also be 0.8, 0.9. Or 1, x can also be 1.1, 1.2 or 1.3, x can also be 1.4, 1.5 or 1.6, x can also be 1.7, 1.8 or 1.9, x can also be 2, 2.1 or 2.2, x can also be 2.3, 2.4 Or 2.5.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein y may be 0.5, 0.6 or 0.7, y may also be 0.8, 0.9 or 1, y may also be 1.1, 1.2 or 1.3. , y can also be 1.4, 1.5 or 1.6, y can also be 1.7, 1.8 or 1.9, y can also be 2, 2.1 or 2.2, y can also be 2.3, 2.4 or 2.5, y can also be 2.6, 2.7, 2.8 Or 2.9.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein a may be 0, a may also be 0.1, 0.2, 0.3, 0.4 or 0.5, and a may also be 0.6, 0.7, 0.8. , 0.9 or 1, a can also be 1.1, 1.2, 1.3, 1.4 or 1.5, a can also be 1.6, 1.7, 1.8, 1.9 or 2, a can also be 2.1, 2.2, 2.3, 2.4 or 2.5, a can also It is 2.6, 2.7, 2.8, 2.9 or 3.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein b may be 0, b may also be 0.1, 0.2 or 0.3, b may also be 0.4, 0.5 or 0.6, b may also Is 0.7, 0.8 or 0.9, b can also be 1.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein It can be 8.5, 8.6, 8.7, 8.8, 8.9 or 9, z can also be 9.1, 9.2, 9.3, 9.4 or 9.5, z can also be 9.6, 9.7, 9.8, 9.9 or 10, z can also be 10.1, 10.2, 10.3, 10.4 or 10.5, z may also be 10.6, 10.7, 10.8, 10.9 or 11, z may also be 11.1, 11.2, 11.3, 11.4 or 11.5, z may also be 11.6, 11.7, 11.8, 11.9 or 12, z also It can be 12.1, 12.2, 12.3, 12.4 or 12.5.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein c may be 0, c may also be 0.1, 0.2, 0.3, 0.4 or 0.5, and c may also be 0.6, 0.7, 0.8. , 0.9 or 1, c can also be 1.1, 1.2, 1.3, 1.4 or 1.5, c can also be 1.6, 1.7, 1.8, 1.9 or 2, c can also be 2.1, 2.2, 2.3, 2.4 or 2.5, c can also It is 2.6, 2.7, 2.8, 2.9 or 3, and c can also be 3.1, 3.2, 3.3, 3.4 or 3.5.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein A may be 0, A may also be 0.1, 0.2 or 0.3, and A may also be 0.4, 0.5 or 0.6, and A may also It is 0.7, 0.8 or 0.9, and A can also be 1.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein B may be 0, B may also be 0.1, 0.2 or 0.3, B may also be 0.4, 0.5 or 0.6, and B may also It is 0.7, 0.8 or 0.9, and B can also be 1.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein x may be 0.5, 1, 1.2, 1.5, 2 or 2.5, and x may also be 1, 1.2 or 1.5.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein y may be 0.5, 1, 1.5, 1.8, 2 or 2.5, and y may also be 1.5, 1.8 or 2.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein a may be 0, 0.5, 0.8, 1, 1.5, 2, 2.5 or 3, and a may also be 0.5, 0.8, 1 , 1.5, 2 or 2.5.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein b may be 0, 0.2, 0.3, 0.5, 0.8, 1 or 1.5, and b may also be 0, 0.2, 0.3 or 0.5. .
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein c may be 0, 0.1, 0.2, 0.5, 1, 1.5, 2 or 2.5, and c may also be 0, 0.1 or 0.5. .
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein A It can be 0, 0.1, 0.2, 0.3, 0.5 or 1, and A can also be 0.1, 0.3 or 0.5.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention wherein B may be 0, 0.1, 0.2, 0.3, 0.5 or 1, and B may also be 0, 0.1, 0.2 or 0.3.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention contains one or more of the following phases: Y 2 Ni 7 , La 2 Ni 7 , LaNi 5 , Ni 5 Y, Ce 2 Ni 7 , Al 2 Ni 6 Y 3 or LaY 2 Ni 9 .
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention contains one or more of the following phases: Y 2 Ni 7 , La 2 Ni 7 , LaNi 5 , Ce 2 Ni 7 .
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention contains one or more of the following phases: Y 2 Ni 7 , La 2 Ni 7 , LaNi 5 , Al 2 Ni 6 Y 3 .
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention contains one or more of the following phases: Y 2 Ni 7 , LaY 2 Ni 9 .
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention contains one or more of the following phases: Y 2 Ni 7 , La 2 Ni 7 , Ni 5 Y.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention contains a LaY 2 Ni 9 phase.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention contains one or more of the following phases: Y 2 Ni 7 , La 2 Ni 7 .
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention contains a Y 2 Ni 7 phase.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention The maximum hydrogen storage capacity at a temperature of 313 K is 1.2 to 1.5% by weight, preferably 1.3 to 1.5% by weight, and may be 1.2 to 1.4% by weight, or 1.3 to 1.4% by weight.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention as a negative electrode of a nickel hydrogen battery, has a maximum discharge capacity of 300 to 400 mAh/g, preferably 350 to 400 mAh at a current of 70 mA/g. g is more preferably 370 to 400 mAh/g, still more preferably 380 to 400 mAh/g.
  • the discharge cutoff voltage can be 1.0V.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention is preferably used as a nickel hydrogen battery negative electrode at a charge/discharge current of 70 mA/g, and has a capacity retention ratio of 85% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more.
  • the discharge cutoff voltage can be 1.0V.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention as a hydrogen storage medium.
  • the third aspect of the present invention provides the use of the rare earth hydrogen storage alloy of the formula (I) of the present invention for preparing an electrode in a secondary battery.
  • the rare earth hydrogen storage alloy of the general formula (I) of the present invention can be prepared as an electrode as a hydrogen storage medium, and can be combined with other suitable materials to form a secondary battery.
  • the secondary battery made of the rare earth hydrogen storage alloy of the general formula (I) of the present invention can achieve multiple charge and discharge.
  • the rare earth hydrogen storage alloy of the general formula (I) of the present invention can be obtained by the following preparation method:
  • the linear speed of the copper roll rotation in the step (iii) is 3-4 m/s, and the copper roll is passed through the cooling water.
  • the method for preparing a rare earth hydrogen storage alloy according to the present invention wherein, after the rapid solidification step is finished, the alloy is annealed and heat treated at 700 to 800 ° C for 6 to 10 hours under vacuum or inert gas protection, for example, Annealing heat treatment at 750 ° C for 8 hours.
  • the rare earth hydrogen storage alloy of the present invention can be prepared by a high temperature smelting-rapid quenching process, wherein the purity of each elemental metal or intermediate alloy material in the composition is >99.0%, according to the chemical formula.
  • the ratio is calculated and accurately weighed, and the raw materials are sequentially placed in Al 2 O 3 ⁇ , vacuumed to 3.0 Pa, and charged with inert gas Ar to 0.055 MPa.
  • the temperature is smelted, and the temperature is kept for about 6 minutes.
  • the speed of the quick-setting copper roller is 3.4 m/s.
  • the copper roller is always passed through cooling water, and the cooling water temperature is 25 °C.
  • the method for preparing a rare earth hydrogen storage alloy according to the present invention wherein the easily burnt raw material needs an appropriate amount to increase the ratio, and the increase ratio is as follows:
  • the rare earth hydrogen storage alloy of the general formula (I) according to the present invention can also be prepared by other hydrogen storage alloy preparation methods in the art, for example, high temperature smelting casting method and mechanical alloying (MA) method. , powder sintering method, high temperature melting - gas atomization method, reduction diffusion method, displacement diffusion method, combustion synthesis (CS) method or self-propagating high temperature synthesis method (SHS).
  • high temperature smelting casting method and mechanical alloying (MA) method for example, high temperature smelting casting method and mechanical alloying (MA) method.
  • powder sintering method high temperature melting - gas atomization method
  • reduction diffusion method reduction diffusion method
  • displacement diffusion method displacement diffusion method
  • CS combustion synthesis
  • SHS self-propagating high temperature synthesis method
  • a fourth aspect of the invention relates to a rare earth hydrogen storage alloy of the formula (I) which can be used as a hydrogen storage medium.
  • the fifth aspect of the invention relates to a rare earth hydrogen storage alloy of the formula (I) which can be used for preparing an electrode in a secondary battery.
  • the rare earth hydrogen storage alloy of the general formula (I) according to the present invention can also be combined with other hydrogen storage materials in different proportions to prepare a new hydrogen storage material.
  • the rare earth hydrogen storage alloy of the general formula (I) of the present invention can be improved in heat treatment to improve its structure and properties, such as: eliminating alloy structural stress and component segregation, improving alloy absorption/desorption platform characteristics or charging/discharging of alloy electrodes Platform characteristics, increased hydrogen absorption and cycle life.
  • Various surface treatment methods can also be used to improve the performance, such as: improving the hydrogen absorption/desorption/discharge kinetics of the alloy, enhancing the oxidation resistance of the alloy or improving the electrical and thermal conductivity of the alloy.
  • Y represents a lanthanum element
  • Ni represents a nickel element
  • Mn represents a manganese element
  • Al represents an aluminum element
  • Zr represents a zirconium element
  • Ti represents a titanium element.
  • the rare earth hydrogen storage alloy of the formula (I) of the present invention has one or more of the following advantages:
  • the composition of the rare earth hydrogen storage alloy of the present invention does not contain magnesium, so the manufacturing method is simple and safe compared with the conventional rare earth-magnesium-nickel hydrogen storage alloy.
  • the rare earth hydrogen storage alloy of the present invention has good activation performance, rate discharge capability, charge and discharge or hydrogen absorption cycle stability, and can be used in a wide temperature range, and self-discharge is small.
  • the ytterbium (Y) element in the hydrogen storage alloy of the present invention is one of the main components, and the rare earth minerals in China are rich in strontium resources, and the use of the element is beneficial to balance the comprehensive utilization of rare earth resources in China.
  • Figure 1-1 is an XRD pattern of a LaCe 0.5 Y 1.5 Ni 9.7 Mn 0.5 Al 0.3 hydrogen storage alloy (Example A23);
  • Figure 1-2 is an XRD pattern of a LaCe 0.5 Y 1.5 Ni 9.7 Mn 0.5 Al 0.3 hydrogen storage alloy redrawn according to the raw data of Figure 1-1 (Example A23);
  • Figure 1-3 is a PcT curve of a LaY 2 Ni 9.5 Mn 0.5 Al 0.5 hydrogen storage alloy (Example A13);
  • Figure 2-1 is an XRD pattern of a LaY 2 Ni 10.6 Mn 0.5 Al 0.3 hydrogen storage alloy (Example B2);
  • Example B2 is an XRD pattern of a LaY 2 Ni 10.6 Mn 0.5 Al 0.3 hydrogen storage alloy redrawn according to the raw data of FIG. 2-1 (Example B2);
  • Figure 2-3 is a PcT curve of a LaY 2 Ni 10.6 Mn 0.5 Al 0.3 hydrogen storage alloy (Example B2);
  • Figure 3-1 is an XRD pattern of a LaY 2 Ni 8 Mn 0.5 Al 0.5 hydrogen storage alloy (Example C13);
  • Figure 3-2 is an XRD pattern of a LaY 2 Ni 8 Mn 0.5 Al 0.5 hydrogen storage alloy redrawn according to the raw data of Figure 3-1 (Example C13);
  • Figure 4-1 is an XRD pattern of a La 1.2 Y 1.8 Ni 9.2 Mn 0.5 Al 0.3 Co 0.5 hydrogen storage alloy (Example D28);
  • Figure 4-2 is an XRD pattern of a La 1.2 Y 1.8 Ni 9.2 Mn 0.5 Al 0.3 Co 0.5 hydrogen storage alloy redrawn according to the raw data of Figure 4-1 (Example D28);
  • Figure 4-3 is a pressure-composition isotherm (PcT curve) of LaY 2 Ni 9.5 Mn 0.5 Al 0.3 CU 0.2 alloy (Example D38);
  • Figure 5-1 is an XRD pattern of a La 1.2 Y 1.8 Ni 9.2 Mn 0.5 Al 0.3 Co 0.5 Zr 0.1 Ti 0.1 hydrogen storage alloy (Example E18);
  • Figure 5-2 is a redraw based on the original data in Figure 5-1.
  • Figure 6-1 is an X-ray diffraction spectrum of the alloy LaY 2 Ni 10.6 Mn 0.5 Al 0.3 Zr 0.1 (Example F35);
  • Figure 7-1 is an XRD pattern of a LaY 2 Ni 8.3 Mn 0.5 Al 0.2 Zr 0.1 hydrogen storage alloy (Example G18);
  • Figure 7-2 is an XRD pattern of a LaY 2 Ni 8.3 Mn 0.5 Al 0.2 Zr 0.1 hydrogen storage alloy redrawn according to the raw data of Figure 7-1 (Example G18).
  • Phase structure analysis was carried out on an X-ray diffractometer (XRD).
  • the experimental conditions were: Cu target, K ⁇ ray, tube voltage 40 kV, tube current 100 mA, scanning angle 2 ⁇ : 20-80°, scanning speed: 3°/min, Sampling step size: 0.02°.
  • the experimental equipment used for the hydrogen storage test of the alloy includes: hydrogen storage alloy PCT tester, constant temperature water bath, analytical balance. The purity of hydrogen used in the experiment was 99.999%.
  • the experimental steps include: crushing the alloy flakes, passing 14 mesh (1200 ⁇ m) and 200 mesh (74 ⁇ m) sieves, taking about 2.5 g of alloy powder of 200 mesh or more, loading into the sample tank, and vacuuming for 5 min to charge hydrogen using the ideal gas equation calibration test.
  • the volume of the reaction chamber was then vacuumed for 30 min to stabilize the pressure below 0.001 MPa, and after 3 times of activation at 353 K, vacuum was applied for 2 h, and the hydrogen absorption-component isothermal (PCT) curve was started at 313 K.
  • PCT hydrogen absorption-component isothermal
  • the rare earth hydrogen storage alloy is prepared by high temperature smelting-quick quenching method. The process is as follows: the purity of each elemental metal or intermediate alloy material in the composition is >99.0%, and the raw materials are calculated according to the chemical formula ratio and accurately weighed. The raw materials were sequentially placed in an Al 2 O 3 crucible, evacuated to 3.0 Pa, and charged with an inert gas Ar to 0.055 MPa. The temperature is smelted, and the temperature is kept for about 6 minutes. The speed of the quick-setting copper roller is 3.4 m/s. The copper roller is always passed through cooling water, and the cooling water temperature is 25 °C.
  • the following embodiments of electrochemical parameters involved in the embodiment comprises: N is the number of cycles required for activation electrodes; C max is the maximum discharge capacity; S 100 cycle capacity retention rate is 100 times; HRD 350 is the discharge current I d is the density The rate discharge capacity at 350 mA ⁇ g -1 ; LTD 243 is the discharge capacity retention rate at a low temperature of 243 K; and SD 72 is the capacity retention ratio (self-discharge characteristics) after storage for 72 hours.
  • the high rate discharge capacity (HRD 350 ) mainly reflects the dynamic performance of the hydrogen storage alloy electrode, and the HRD 350 is calculated as follows:
  • the discharge current density I d is 350 mA ⁇ g -1 , it is HRD 350 .
  • LTD 243 refers to the discharge performance of 243K at low temperature.
  • the low temperature discharge performance (LTD) is calculated by the following formula:
  • C T is the maximum discharge capacity at a current density of 70 mA/g and a low temperature (243 K)
  • C 298 is a maximum discharge capacity at a current density of 70 mA/g and a normal temperature (298 K).
  • SD 72 refers to the self-discharge rate of the hydrogen storage electrode after the battery is left for 72 hours, and characterizes the self-discharge performance (charge retention capability) of the material.
  • the test conditions were as follows: after the battery was activated, it was charged at 0.2 C for 6 h, left for 10 min, and discharged at 0.2 C to 1.0 V to measure its discharge capacity C a , then the battery was charged at 0.2 C for 6 h, and allowed to stand at room temperature for 72 h, then discharged at 0.2 C to 1.0V is used to measure the discharge capacity C b , and then the battery is charged and discharged once at 0.2 C.
  • the discharge capacity C c is maintained at room temperature for 72 h.
  • the charge retention ratio SD 72 is:
  • the A 2 B 7 type RE x Y y Ni zab Mn a Al b hydrogen storage alloy described in Examples A1 to A23 was obtained by the aforementioned high-temperature melting-rapid quenching method.
  • the alloys described in Example A13 and Example A14 were prepared using the same raw material ratio.
  • the alloy described in Example A13 is prepared by the aforementioned high-temperature smelting-rapid quenching method, wherein the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, and each raw material is accurately calculated according to the chemical molecular formula ratio ( The easily burnt raw material needs to increase the ratio in an appropriate amount.
  • the raw materials are sequentially placed in Al 2 O 3 ⁇ , vacuumed to 3.0 Pa, and the inert gas Ar is charged to 0.055 MPa. The temperature is smelted, and the temperature is kept for about 6 minutes.
  • the speed of the quick-setting copper roller is 3.4 m/s.
  • the copper roller is always passed through cooling water, and the cooling water temperature is 25 °C.
  • the alloy of the embodiment A14 is also prepared by a high-temperature smelting-rapid quenching method, and an annealing heat treatment step is added in the process, specifically: the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, calculated according to the chemical molecular formula ratio And accurately weigh each raw material (easy to burn the raw materials need to increase the proportion), the raw materials are placed in Al 2 O 3 ⁇ , vacuumed to 3.0Pa, filled with inert gas Ar to 0.055MPa. The temperature is smelted, and the temperature is kept for about 6 minutes. The speed of the quick-setting copper roller is 3.4 m/s. The copper roller is always passed through cooling water, and the cooling water temperature is 25 °C. The quick-setting alloy sheet was annealed at 750 ° C for 8 h under vacuum or inert gas protection.
  • Ml in Example A20 is a cerium-rich mixed rare earth metal containing about 64% of La, about 25% of Ce, about 3% of Pr, and about 8% of Nd.
  • the test electrode is prepared by mechanically breaking the alloy of Examples A1 to A23 into a powder of 200-300 mesh, mixing the alloy powder with the nickel carbonyl powder in a mass ratio of 1:4, and making it under a pressure of 16 MPa.
  • MH electrode sheet the electrode sheet was placed between two pieces of foamed nickel, and a nickel strip as a tab was sandwiched, and a hydrogen storage negative electrode (MH electrode) for testing was prepared again under a pressure of 16 MPa, around the electrode sheet. The intimate contact between the electrode sheet and the nickel mesh is ensured by spot welding.
  • the negative electrode is a MH electrode
  • the positive electrode is a sintered Ni(OH) 2 /NiOOH electrode having an excess capacity
  • the electrolyte is a 6 mol ⁇ L -1 KOH solution
  • the assembled battery is left for 24 hours.
  • the electrochemical performance of the alloy electrode (activation number, maximum capacity, high rate discharge capacity HRD, cycle stability, etc.) was measured by a galvanic current tester using a LAND battery tester, and the test ambient temperature was 298K.
  • the charging current density is 70 mA ⁇ g -1
  • the charging time is 6 h
  • the discharge current density is 70 mA ⁇ g -1
  • the discharge cut-off potential is 1.0 V
  • the charging and discharging intermittent time is 10 min.
  • Table 1 below lists the A 2 B 7 type RE x Y y Ni zab Mn a Al b hydrogen storage alloys described in Examples A1 to A23 and their electrochemical properties.
  • Example A23LaCe 0.5 Y 1.5 Ni 9.7 Mn 0.5 Al 0.3 alloy was analyzed using an X-ray diffractometer, and Figure 1-1 is an XRD-derived diagram of the instrument obtained by analysis. As shown, the alloy may contain a Ce 2 Ni 7 phase or a Y 2 Ni 7 phase or a LaNi 5 phase or a LaY 2 Ni 9 phase or a La 0.5 Ce 0.5 Y 2 Ni 9 phase.
  • 1-2 is an XRD diffraction pattern plotted on raw data of an XRD diffraction test according to Example A23. As shown, the alloy contains Y 2 Ni 7 , La 2 Ni 7 , LaNi 5 and Ce 2 Ni 7 phases.
  • 1-3 are pressure-composition isotherms (PcT curves) of the LaY 2 Ni 9.5 Mn 0.5 Al 0.5 alloy of Example A13 measured at 313 K by the Sievert method.
  • the maximum hydrogen storage capacity of the alloy can reach 1.36 wt%, and the pressure of the hydrogen release platform is about 0.05 MPa.
  • A31212482001 represents the hydrogen absorption curve of the alloy
  • D31212482001 represents the hydrogen release curve of the alloy.
  • the A 5 B 19 type RE x Y y Ni zab Mn a Al b hydrogen storage alloy described in Examples B1 to B22 was obtained by the aforementioned high-temperature melting-rapid quenching method.
  • Example B13 and Example B14 were prepared using the same raw material ratio.
  • the alloy described in Example B13 is prepared by the above-mentioned high-temperature smelting-rapid quenching method, wherein the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, and each raw material is accurately calculated according to the chemical molecular formula ratio ( The easily burnt raw material needs to increase the ratio in an appropriate amount.
  • the raw materials are sequentially placed in Al 2 O 3 ⁇ , vacuumed to 3.0 Pa, and the inert gas Ar is charged to 0.055 MPa. The temperature is smelted, and the temperature is kept for about 6 minutes.
  • the speed of the quick-setting copper roller is 3.4 m/s.
  • the copper roller is always passed through cooling water, and the cooling water temperature is 25 °C.
  • the alloy of the embodiment B14 can also be prepared by a high-temperature smelting-rapid quenching method, and an annealing heat treatment step is added in the process, specifically: the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, according to the chemical molecular formula ratio Calculate and accurately weigh each raw material (the easy-to-burn raw materials need to increase the ratio), put the raw materials into Al 2 O 3 ⁇ , vacuum to 3.0Pa, and fill the inert gas Ar to 0.055MPa. The temperature is smelted, and the temperature is kept for about 6 minutes. The speed of the quick-setting copper roller is 3.4 m/s. The copper roller is always passed through cooling water, and the cooling water temperature is 25 °C. The quick-setting alloy sheet was annealed at 750 ° C for 8 h under vacuum or inert gas protection.
  • M1 in Example B20 is a cerium-rich mixed rare earth metal containing about 64% of La, about 25% of Ce, about 3% of Pr, and about 8% of Nd.
  • test electrode was prepared in the same manner as in Examples A1 to A23.
  • the structure of the LaY 2 Ni 10.6 Mn 0.5 Al 0.3 alloy (Example B2) was analyzed using an X-ray diffractometer, and Figure 2-1 is an XRD-derived diagram of the obtained instrument.
  • the alloy in the figure may contain MnNi 8 Y 3 phase or YNi 3.912 Al 1.088 phase or LaNi 5 phase or Ni 7 Y 2 phase or LaY 2 Ni 9 equal. It is also possible to include the YNi 3 phase, the Y 2 Ni 7 phase or the LaY 2 Ni 9 phase, the LaNi 5 phase, the Pr 5 Co 19 phase or the Ce 5 Co 19 equivalent.
  • 2-2 is a graph of XRD diffraction plotted on raw data of an XRD diffraction test of an alloy of Example B2.
  • Fig. 2 shows that the alloy contains Y 2 Ni 7 , La 2 Ni 7 , LaNi 5 and Al 2 Ni 6 Y 3 phases.
  • Figure 2-3 is a pressure-composition isotherm (PcT curve) of a LaY 2 Ni 10.6 Mn 0.5 Al 0.3 alloy (Example B2) measured at 313 K using the Sievert method.
  • the maximum hydrogen storage capacity of the alloy can reach 1.33wt.%, and the pressure of the hydrogen release platform is about 0.1MPa.
  • A32512333001 represents the hydrogen absorption curve of the alloy
  • D32512333001 represents the hydrogen release curve of the alloy.
  • the AB 3 type RE x Y y Ni zab Mn a Al b hydrogen storage alloys described in Examples C1 to C22 were prepared by the aforementioned high-temperature melting-rapid quenching method.
  • the alloys described in Example C13 and Example C14 were prepared using the same raw material ratio.
  • the alloy described in Example C13 is prepared by the aforementioned high-temperature smelting-rapid quenching method, wherein the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, and each raw material is accurately calculated according to the chemical molecular formula ratio ( The easily burnt raw material needs to increase the ratio in an appropriate amount.
  • the raw materials are sequentially placed in Al 2 O 3 ⁇ , vacuumed to 3.0 Pa, and the inert gas Ar is charged to 0.055 MPa. The temperature is smelted, and the temperature is kept for about 6 minutes.
  • the speed of the quick-setting copper roller is 3.4 m/s.
  • the copper roller is always passed through cooling water, and the cooling water temperature is 25 °C.
  • the alloy described in the embodiment C14 is also prepared by a high-temperature smelting-rapid quenching method, and an annealing heat treatment step is added in the process, specifically: the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, and is calculated according to the chemical molecular formula ratio. And accurately weigh each raw material (easy to burn the raw materials need to increase the proportion), the raw materials are placed in Al 2 O 3 ⁇ , vacuumed to 3.0Pa, filled with inert gas Ar to 0.055MPa. The temperature is smelted, and the temperature is kept for about 6 minutes. The speed of the quick-setting copper roller is 3.4 m/s. The copper roller is always passed through cooling water, and the cooling water temperature is 25 °C. The quick-setting alloy sheet was annealed at 750 ° C for 8 h under vacuum or inert gas protection.
  • Ml in Example C20 is a cerium-rich mixed rare earth metal containing about 64% of La, about 25% of Ce, about 3% of Pr, and about 8% of Nd.
  • test electrode was prepared in the same manner as in Examples A1 to A23.
  • Table 3 lists the RE x Y y Ni zab Mn a Al b hydrogen storage alloys described in Examples C1 to C22 and their electrochemical properties.
  • the structure of the LaY 2 Ni 8 Mn 0.5 Al 0.5 alloy (Example C13) was analyzed using an X-ray diffractometer, and Figure 3-1 is an XRD-derived diagram of the instrument obtained by the analysis.
  • the alloy in the figure may contain MnNi 8 Y 3 phase or Al 0.20 LaNi 2.80 phase or LaMn 0.17 Ni 2.83 . It is also possible to include YNi 3 phase or LaNi 3 equal.
  • 3-2 is an XRD diffraction plot of raw data plotted according to the XRD diffraction test of the alloy of Example C13.
  • Fig. 2 shows that the alloy contains a LaY 2 Ni 9 phase and a Ni 7 Y 2 phase.
  • the alloys of Examples D7 and D8 and Examples D28 and D29 were prepared using the same raw material ratios, respectively.
  • the alloys of Examples D7 and D28 are prepared by the aforementioned high-temperature smelting-rapid quenching method, wherein the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, and the chemical molecular formula ratio is calculated and accurately weighed.
  • the raw materials (the easily burnt raw materials need to be appropriately increased in proportion), the raw materials are sequentially placed in Al 2 O 3 ⁇ , vacuumed to 3.0 Pa, and the inert gas Ar is charged to 0.055 MPa.
  • the temperature is smelted, and the temperature is kept for about 6 minutes.
  • the speed of the quick-setting copper roller is 3.4 m/s.
  • the copper roller is always passed through cooling water, and the cooling water temperature is 25 °C.
  • the alloys of Examples D8 and D29 can also be prepared by high-temperature smelting-rapid quenching method, and the annealing heat treatment step is added in the process, specifically: the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, according to the chemical formula Calculate and accurately weigh each raw material (the easy-to-burn raw materials need to increase the ratio), put the raw materials into Al 2 O 3 ⁇ , vacuum to 3.0Pa, and fill the inert gas Ar to 0.055MPa. The temperature is smelted, and the temperature is kept for about 6 minutes. The speed of the quick-setting copper roller is 3.4 m/s. The copper roller is always passed through cooling water, and the cooling water temperature is 25 °C. The quick-setting alloy sheet was annealed at 750 ° C for 8 h under vacuum or inert gas protection.
  • Ml in Example D37 is a cerium-rich mixed rare earth metal containing about 64% of La, about 25% of Ce, about 3% of Pr, and about 8% of Nd.
  • test electrode was prepared in the same manner as in Examples A1 to A23.
  • 4-2 is a plot of XRD diffraction plotted on raw data for an XRD diffraction test of an alloy of Example D28.
  • the alloy contains Y 2 Ni 7 , La 2 Ni 7 , and Ni 5 Y phases.
  • the pressure-composition isotherm (PcT curve) of the LaY 2 Ni 9.5 Mn 0.5 Al 0.3 Cu 0.2 alloy was measured at 313 K by the Sievert method, and the maximum hydrogen storage capacity was 1.28 wt. .%, the pressure of the hydrogen release platform is about 0.03MPa.
  • A32513142001 represents the hydrogen absorption curve of the alloy
  • D32513142001 represents the hydrogen release curve of the alloy.
  • the RE x Y y Ni zabc Mn a Al b M c Zr A Ti B hydrogen storage alloys described in Examples E1 to E34 were prepared by the aforementioned high-temperature melting-rapid quenching method.
  • Example E14 and Example E15 were prepared using the same raw material ratio.
  • the alloy of the embodiment E14 is prepared by the above-mentioned high-temperature smelting-rapid quenching method, wherein the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, and the raw materials are accurately calculated according to the chemical molecular formula ratio ( The easily burnt raw material needs to increase the ratio in an appropriate amount.
  • the raw materials are sequentially placed in Al 2 O 3 ⁇ , vacuumed to 3.0 Pa, and the inert gas Ar is charged to 0.055 MPa. The temperature is smelted, and the temperature is kept for about 6 minutes.
  • the speed of the quick-setting copper roller is 3.4 m/s.
  • the copper roller is always passed through cooling water, and the cooling water temperature is 25 °C.
  • the alloy of the embodiment E15 can also be prepared by a high-temperature smelting-rapid quenching method, and an annealing heat treatment step is added in the process, specifically: the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, according to the chemical molecular formula ratio Calculate and accurately weigh each raw material (the easy-to-burn raw materials need to increase the ratio), put the raw materials into Al 2 O 3 ⁇ , vacuum to 3.0Pa, and fill the inert gas Ar to 0.055MPa. The temperature is smelted, and the temperature is kept for about 6 minutes. The speed of the quick-setting copper roller is 3.4 m/s. The copper roller is always passed through cooling water, and the cooling water temperature is 25 °C. The quick-setting alloy was annealed at 750 ° C for 8 h under vacuum or inert gas protection.
  • Ml in the embodiment E28 is a cerium-rich mixed rare earth metal containing La about 64%, Ce is about 25%, Pr is about 3%, and Nd is about 8%.
  • test electrode was prepared in the same manner as in Examples A1 to A23.
  • the structure of La 1.2 Y 1.8 Ni 9.2 Mn 0.5 Al 0.3 Co 0.5 Zr 0.1 Ti 0.1 alloy (Example E18) was analyzed by X-ray diffractometer, and Figure 5-1 shows the XRD derived diagram of the instrument obtained as shown in the figure.
  • the alloy may contain a La 2 Ni 7 phase or a LaY 2 Ni 9 phase or a Y 2 Ni 7 phase or a Ni 5 La phase or LaNi 5 equal. It is also possible to include a Ce 2 Ni 7 or Y 2 Ni 7 phase.
  • Figure 5-2 is an XRD diffraction plot of raw data plotted according to the XRD diffraction test of Example E18 alloy. As shown in the figure, the alloy contains Y 2 Ni 7 , La 2 Ni 7 , and Ni 5 Y phases.
  • the RE x Y y Ni zabc Mn a Al b M c Zr A Ti B hydrogen storage alloys described in Examples F1 to F35 were prepared by the aforementioned high-temperature melting-rapid quenching method.
  • Example F12 and Example F13 were prepared using the same raw material ratio.
  • the alloy of the embodiment F12 is prepared by the above-mentioned high-temperature smelting-rapid quenching method, wherein the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, and the raw materials are accurately calculated according to the chemical molecular formula ratio ( The easily burnt raw material needs to increase the ratio in an appropriate amount.
  • the raw materials are sequentially placed in Al 2 O 3 ⁇ , vacuumed to 3.0 Pa, and the inert gas Ar is charged to 0.055 MPa. The temperature is smelted, and the temperature is kept for about 6 minutes.
  • the speed of the quick-setting copper roller is 3.4 m/s.
  • the copper roller is always passed through cooling water, and the cooling water temperature is 25 °C.
  • the alloy of the embodiment F13 can also be prepared by a high-temperature smelting-rapid quenching method, and an annealing heat treatment step is added in the process, specifically: the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, according to the chemical molecular formula ratio Calculate and accurately weigh each raw material (the easy-to-burn raw materials need to increase the ratio), put the raw materials into Al 2 O 3 ⁇ , vacuum to 3.0Pa, and fill the inert gas Ar to 0.055MPa. The temperature is smelted, and the temperature is kept for about 6 minutes. The speed of the quick-setting copper roller is 3.4 m/s. The copper roller is always passed through cooling water, and the cooling water temperature is 25 °C. The quick-setting alloy sheet was annealed at 750 ° C for 8 h under vacuum or inert gas protection.
  • Ml in Example F24 is a cerium-rich mixed rare earth metal containing about 64% of La, about 25% of Ce, about 3% of Pr, and about 8% of Nd.
  • test electrode was prepared in the same manner as in Examples A1 to A23.
  • Table 6 lists the RE x Y y Ni zabc Mn a Al b M c Zr A Ti B hydrogen storage alloys described in Examples F1 to F35 and their electrochemical properties.
  • FIG. 6-1 shows the XRD diffraction curve plotted according to the diffraction data, as shown in Figure 6-1.
  • the alloy main phase is a Y 2 Ni 7 phase or a La 2 Ni 7 phase, a Pr 5 Co 19 phase or a Ce 5 Co 19 phase, and a LaNi 5 phase.
  • the RE x Y y Ni zabc Mn a Al b M c Zr A Ti B type hydrogen storage alloys described in Examples G1 to G34 were prepared by the aforementioned high-temperature melting-rapid quenching method.
  • Example G15 and Example G16 were prepared using the same raw material ratio.
  • the alloy described in Example G15 is prepared by the aforementioned high-temperature smelting-rapid quenching method, wherein the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, and each raw material is accurately calculated according to the chemical molecular formula ratio ( The easily burnt raw material needs to increase the ratio in an appropriate amount.
  • the raw materials are sequentially placed in Al 2 O 3 ⁇ , vacuumed to 3.0 Pa, and the inert gas Ar is charged to 0.055 MPa. The temperature is smelted, and the temperature is kept for about 6 minutes.
  • the speed of the quick-setting copper roller is 3.4 m/s.
  • the copper roller is always passed through cooling water, and the cooling water temperature is 25 °C.
  • the alloy of the embodiment G16 can also be prepared by a high-temperature smelting-rapid quenching method, and an annealing heat treatment step is added in the process, specifically: the purity of each elemental metal or intermediate alloy raw material in the composition is >99.0%, according to the chemical molecular formula ratio Calculate and accurately weigh each raw material (the easy-to-burn raw materials need to increase the ratio), put the raw materials into Al 2 O 3 ⁇ , vacuum to 3.0Pa, and fill the inert gas Ar to 0.055MPa. The temperature is smelted, and the temperature is kept for about 6 minutes. The speed of the quick-setting copper roller is 3.4 m/s. The copper roller is always passed through cooling water, and the cooling water temperature is 25 °C. The quick-setting alloy sheet was annealed at 750 ° C for 8 h under vacuum or inert gas protection.
  • Ml in Example G25 is a cerium-rich mixed rare earth metal containing about 64% of La, about 25% of Ce, about 3% of Pr, and about 8% of Nd.
  • test electrode was prepared in the same manner as in Examples A1 to A23.
  • Example G18 The structure of the LaY 2 Ni 8.3 Mn 0.5 Al 0.2 Zr 0.1 alloy (Example G18) was analyzed by X-ray diffractometry.
  • Figure 7-1 shows the XRD derived of the obtained instrument.
  • the alloy may contain LaY 2 Ni. 9 phase or LaNi phase.
  • Example 7-2 is an XRD diffraction pattern plotted on raw data of an XRD diffraction test of an alloy of Example G18, which contains a LaY 2 Ni 9 phase as shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种稀土系储氢合金,其组成如通式(I)所示:RE xY yNi z-a-b-cMn aAl bM cZr ATi B (I) 其中RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素;M为Cu、Fe、Co、Sn、V、W中的一种或几种元素。该合金具有良好的压力-组成-等温特性,储氢量较高,电化学容量较大,且其组成中不含有镁元素,制造过程简单且安全。

Description

一种稀土系储氢合金及其用途 技术领域
本发明属于储氢合金领域,涉及一种稀土系储氢合金及其用途。
背景技术
储氢合金是上世纪60年代末发现的一类具有高储氢密度的功能材料,已有储氢合金从组成上大致可分为六类:稀土系AB5型如LaNi5;镁系如Mg2Ni、MgNi、La2Mg17;稀土-镁-镍系AB3-4型如La2MgNi9,La5Mg2Ni23,La3MgNi14;钛系AB型如TiNi、TiFe;锆、钛系Laves相AB2型如ZrNi2;钒系固溶体型如(V0.9Ti0.1)1-xFex
目前广泛使用的储氢材料是LaNi5型储氢合金。该合金主要用作金属氢化物-镍二次电池(MH/Ni)的负极材料,其理论电化学容量为373mAh·g-1,实际应用的商品负极材料Mm(NiCoMnAl)5(其中Mm为混合稀土金属)的最大容量约为350mAh·g-1。为了开发电化学性能更好或储氢量更大的储氢合金,对镁基合金的研究成为热点。镁基储氢合金材料的理论电化学容量高,尤其是稀土-镁-镍系AB3型、A2B7型、A5B19型储氢合金的研究取得了重要进展,并进入产业化应用阶段。锆、钛系以及钒系储氢材料由于活化困难、成本太高等原因都未被广泛应用。
CN201310228766.0中公开了一种镍氢电池用A2B7型储氢合金及其制备方法,其结构通式为:LnaMgbNixYyZz,其中Ln是一种或多种稀土元素,Y为Al、Co、Nb、V、Fe、Cu、Zn、As、Ga、Mo、Sn、In、W、Si、P中的一种或几种元素,Z为Ag、Sr、Ge中的一种或几种元素,0.5≤a<2,0<b<1,5<X+Y+Z<9,0<Y<3,0<Z<1。
CN101210294A公开了一种A5B19型合金,该合金的组成符合通式X5-aYaZb,其中X为稀土金属中的一种或几种,Y为碱土金属中的一种或几种,Z为Mn、Al、V、Fe、Si、Sn、Ni、Co、Cr、Cu、Mo、Zn和B中的一种或几种,0<a≤2,17.5≤b≤22.5。
CN102195041A公开了一种碱性蓄电池用储氢合金,组成式为 LaxReyMg1-x-yNin-m-vAlmTv,其中Re为包括Y(钇)的稀土类元素(除了La)中的至少一种元素,T为Co、Mn、Zn中的至少一种元素;0.17≤x≤0.64、3.5≤n≤3.8、0.06≤m≤0.22、v≥0,主相的结晶构造是A5B19型构造。
CN101238231A公开了一种储氢合金,其通式为A(4-w)B(1+w)C19表示的含有Pr5Co19型晶体结构的相,其中A为选自包括Y(钇)在内的稀土类元素中的1种或2种以上的元素,B为Mg元素,C为选自Ni、Co、Mn和Al中的1种或2种以上的元素,w表示-0.1~0.8的范围的数;并且,合金整体的组成由通式:R1xR2yR3z表示,其中,15.8≤x≤17.8,3.4≤y≤5.0,78.8≤z≤79.6,x+y+z=100,R1为选自包括Y(钇)在内的稀土类元素中的1种或2种以上的元素,R2为Mg元素,R3为选自Ni、Co、Mn和Al中的1种或2种以上的元素,上述z中表示Mn+Al的值为0.5以上、表示Al的值为4.1以下。
CN102660700A公开了一种AB3型储氢合金及制备方法。AB3型储氢合金的化学式为:La0.35Pr0.30MgxNi2.90Al0.30,其中x=0.30~0.35。
CN102195041A中公开了一种碱性蓄电池用储氢合金,组成式为LaxReyMg1-x-yNin-m-vAlmTv(Re:包括Y的稀土类元素;T:Co、Mn、Zn;0.17≤x≤0.64、3.5≤n≤3.8、0.06≤m≤0.22、v≥0),主相的结晶构造是A5B19型构造。
CN103326004A公开了一种镍氢电池用A2B7型储氢合金及其制备方法。其结构通式为:LnaMgbNixYyZz,其中Ln是从稀土元素中选出的至少一种元素,Y为Al、Co、Nb、V、Fe、Cu、Zn、As、Ga、Mo、Sn、In、W、Si、P选出的至少一种元素,Z为Ag、Sr、Ge中选出的至少一种元素,0.5≤a<2,0<b<1,5<X+Y+Z<9,0<Y<3,0<Z<1。
上述合金成份中或者不含有Y元素、或者不含有Zr元素、或者不含有Ti元素,但必需含有碱土金属或镁元素。由于活泼金属元素镁的蒸汽压高,使得制造难度增大,合金成分难以控制,同时挥发的微细镁粉易燃易爆而存在安全隐患。
文献《An electrochemical study of new La1-xCexY2Ni9(0≤x≤1)hydrogen storage alloys》(Electrochimica Acta,46(2001):2385-2393)和文献《New ternary intermetallic compounds belonging to the  R-Y-Ni(R=La,Ce)system as negative electrodes for Ni-MH batteries》(Journal of Alloys and Compounds,330-332(2002):782-786)报道了AB3型La-Y-Ni储氢合金,但合金中不含有Mn和Al元素,且储氢容量最高只有260mAh·g-1
发明内容
本发明的一个目的是提供一种储氢量高的稀土系储氢合金。本发明的再一个目的是提供一种电化学容量高的稀土系储氢合金。本发明又一个目的是提供一种容易制造的,或者容易控制成分的、或者制备过程安全的储氢合金。
为实现上述一个或多个目的,本发明第一方面提供一种稀土系储氢合金,其组成如通式(I)所示:
RExYyNiz-a-b-cMnaAlbMcZrATiB
(I)
其中RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素;M为选自Cu、Fe、Co、Sn、V、W中的一种或几种元素;x>0,y≥0.5,且x+y=3,13≥z≥7;6≥a+b>0,5≥c≥0,4≥A+B≥0。
在一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,x>0,y≥0.5,x+y=3;12.5≥z≥8.5;5.5≥a+b>0,3.5≥c≥0,2.5≥A+B≥0。
在一个优选的实施方案中,通式(I)所示的稀土系储氢合金中,RE为La和/或Ce。
在另一个优选的实施方案中,通式(I)所示的稀土系储氢合金中,RE为La。
在另一个优选的实施方案中,通式(I)所示的稀土系储氢合金中,RE为Ce。
在另一个优选的实施方案中,通式(I)所示的稀土系储氢合金中,RE为La和Ce的混合稀土金属,优选La和Ce的原子比例为0.8∶0.2。
在另一个优选的实施方案中,通式(I)所示的稀土系储氢合金中,RE为富镧混合稀土金属,其中含La约为64重量%、Ce约为25重 量%、Pr约为3重量%、Nd约为8重量%。
在一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,2.5≥A+B>0。
在一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,c=0,A=B=0。
在一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,11>z≥9.5,4.5≥a+b>0。
在一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,12.5≥z≥11,5.5≥a+b>0。
在一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,9.5>z≥8.5;3.5≥a+b>0。
在一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,A=B=0,c>0。
在另一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,3.5≥a+b≥0;3.0≥c>0。
在一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,c=0,A=B=0,11>z≥9.5,4.5≥a+b>0。此时,通式(I)的稀土系储氢合金,其组成可以用通式(I-1)表示:
RExYyNiz-a-bMnaAlb (I-1)
其中:RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素;x>0,y≥0.5,x+y=3;11>z≥9.5;4.5≥a+b>0。当z=10.5时该储氢合金为为化学计量比A2B7型;z≠10.5时该储氢合金为非化学计量比A2B7型。
在一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,2.5≥x≥0.5,优选2.0≥x≥0.5,进一步优选1.2≥x≥0.8。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,2.5≥a≥0,优选2.5≥a≥0.5,进一步优选0.6≥a≥0.4。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金 中,1.0≥b≥0,优选1.0≥b≥0.2,或者优选0.3≥b≥0。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,10.8≥z≥9.5,优选z=10.5。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,2.0≥x≥0.5,2.5≥a≥0.5,1.0≥b≥0.2,z=10.5。
在一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,c=0,A=B=0,12.5≥z≥11。此时,通式(I)的稀土系储氢合金,其组成也可以用通式(I-1)表示:
RExYyNiz-a-bMnaAlb (I-1)
其中RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素;x>0,y≥0.5,x+y=3;12.5≥z≥11;5.5≥a+b>0。当z=11.4时,该储氢合金为化学计量比A5B19型;当z≠11.4时,该储氢合金为非化学计量比A5B19型。
在一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,2.5≥x≥0.5,优选2.0≥x≥0.5,进一步优选1.5≥x≥1。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,3.0≥a≥0,优选3.0≥a≥0.5,进一步优选1.0≥a≥0.5。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,1.5≥b≥0,优选1.5≥b≥0.3,进一步优选0.5≥b≥0;
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,12.5≥z≥11,优选11.4≥z≥11.0进一步优选z=11.4。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,2.0≥x≥0.5,3.0≥a≥0.5,1.5≥b≥0.3,z=11.4。
在另一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,c=0,A=B=0,9.5>z≥8.5;3.5≥a+b>0。此时,通式(I)的稀土系储氢合金,其组成也可以用通式(I-1)表示:
RExYyNiz-a-bMnaAlb (I-1)
其中,RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素,x>0,y≥0.5,x+y=3;9.5>z≥8.5,3.5≥a+b>0。当z=9时,该储氢合金为化学计量比AB3型;当z≠9时,该储氢合金为非化学计量比AB3型。
在一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,2.5≥x≥0.5,优选2.0≥x≥0.5。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,2≥a≥0;优选2≥a≥0.5。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,1.0≥b≥0,优选1.0≥b≥0.2。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,9.5≥z≥8.5,优选z=9。
在另一个更优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,2.0≥x≥0.5,2.0≥a≥0.5,1.0≥b≥0.2,z=9。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,RE为La和/或Ce。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,RE为La。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,RE为Ce。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,RE为La和Ce的混合稀土金属,优选La和Ce的原子比例为0.8∶0.2。
在另一个优选的实施方案中,通式(I-1)所示的稀土系储氢合金中,RE为富镧混合稀土金属,其中含La约为64重量%、Ce约为25重量%、Pr约为3重量%、Nd约为8重量%。
在另一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,A=B=0,3.5≥a+b≥0;3.0≥c>0。此时,通式(I)的稀土系储氢合金,其组成可以用通式(I-2)表示:
RExYyNiz-a-b-cMnaAlbMc (I-2)
其中,RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素,M为选自Cu、Fe、Co、Sn、V、W中的一种或几种元素;x>0,y≥0.5,x+y=3;12.5≥z≥8.5,3.5≥a+b>0,3.0≥c>0。
在一个优选的实施方案中,通式(I-2)所示的稀土系储氢合金中,2.5≥x≥0.5,优选2.0≥x≥0.5,进一步优选1.2≥x≥1。
在另一个优选的实施方案中,通式(I-2)所示的稀土系储氢合金中,2.0≥a≥0.5,优选1≥a≥0.5。
在另一个优选的实施方案中,通式(I-2)所示的稀土系储氢合金中,1.0≥b≥0.3;优选0.5≥b≥0.3。
在另一个优选的实施方案中,通式(I-2)所示的稀土系储氢合金中,12.5≥z≥8.5,优选11.4≥z≥9,进一步优选11≥z≥10。
在另一个优选的实施方案中,通式(I-2)所示的稀土系储氢合金中,2.5≥c≥0.1,优选1≥c≥0.5。
在另一个优选的实施方案中,通式(I-2)所示的稀土系储氢合金中,2.0≥x≥0.5,2.0≥a≥0.5,1.0≥b≥0.3,2.5≥c≥0.1,11.4≥z≥9。
在另一个优选的实施方案中,通式(I-2)所示的稀土系储氢合金中,RE为La和/或Ce。
在另一个优选的实施方案中,通式(I-2)所示的稀土系储氢合金中,RE为La。
在另一个优选的实施方案中,通式(I-2)所示的稀土系储氢合金中,RE为Ce。
在另一个优选的实施方案中,通式(I-2)所示的稀土系储氢合金中,RE为La和Ce的混合稀土金属,优选La和Ce的原子比例为0.8∶0.2
在另一个优选的实施方案中,通式(I-2)所示的稀土系储氢合金中,RE为富镧混合稀土金属,其中含La约为64重量%、Ce约为25重量%、Pr约为3重量%、Nd约为8重量%。
在一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,12.5≥z≥11,4≥a+b>0。
在另一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素,x>0,y≥0.5,x+y=3;M为选自Cu、Fe、Co、Sn、V、W中的一种或几种元素,12.5≥z≥11(z=11.4时为化学计量比A5B19型;z≠11.4时为非化学计量比A5B19型),4≥a+b>0,3.5≥c≥0,2.5≥A+B>0;
进一步优选2.5≥x≥0.5,更进一步优选2.0≥x≥0.5;
进一步优选2.5≥a≥0,更进一步优选2.5≥a≥0.5;
进一步优选1.0≥b≥0,更进一步优选1.0≥b≥0.2,更进一步优选0.5≥b≥0;
进一步优选2.5≥a≥0.5,1.0≥b≥0.2;
进一步优选2.5≥c≥0,更进一步优选2.5≥c≥0.1,更进一步优选0.5≥c≥0;
进一步优选1.0≥A≥0,更进一步优选1.0≥A≥0.1,再进一步优选0.5≥A≥0.1;
进一步优选1.0≥B≥0,更进一步优选1.0≥B≥0.1,再进一步优选0.3≥B≥0;
进一步优选z=11.4。
在一个更优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素;M为选自Cu、Fe、Co、Sn、V、W中的一种或几种元素,2.0≥x≥0.5,2.5≥a≥0.5,1.0≥b≥0.2,2.5≥c≥0.1,1.0≥A≥0.1,1.0≥B≥0.1,z=11.4。
在一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,11>z≥9.5;3.5≥a+b>0;3≥c≥0。
在另一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素,x>0,y≥0.5,x+y=3;M为选自Cu、Fe、Co、Sn、V、W中的一种或几种元素,11>z≥9.5(z=10.5时为化学计量比A2B7型;z≠10.5时为非化学 计量比A2B7型),3.5≥a+b>0,3≥c≥0,2≥A+B>0;
进一步优选2.5≥x≥0.5,更进一步优选2.0≥x≥0.5;
进一步优选2.0≥a≥0,更进一步优选2.0≥a≥0.5,再进一步优选1.0≥a≥0.5;
进一步优选1.0≥b≥0,更进一步优选1.0≥b≥0.2,再进一步优选0.5≥b≥0;
进一步优选2.0≥c≥0,更进一步优选2.0≥c≥0.1,再进一步优选0.5≥c≥0;
进一步优选1.0≥A≥0.1,更进一步优选0.5≥A≥0.1;
进一步优选1.0≥B≥0.1,更进一步优选0.3≥B≥0.1;
进一步优选10.8≥z≥9.5,更进一步优选z=10.5。
在另一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素,M为选自Cu、Fe、Co、Sn、V、W中的一种或几种元素,2.0≥x≥0.5,2.0≥a≥0.5,1.0≥b≥0.2,2.0≥c≥0.1,1.0≥A≥0.1,1.0≥B≥0.1,z=10.5。
在一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,9.5>z≥8.5;3≥a+b>0;2.5≥c≥0。
在另一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素,x>0,y≥0.5,x+y=3;M为选自Cu、Fe、Co、Sn、V、W中的一种或几种元素,9.5>z≥8.5(z=9时为化学计量比AB3型;z≠9时为非化学计量比AB3型),3≥a+b>0,2.5≥c≥0,2≥A+B>0;
进一步优选2.5≥x≥0.5,更进一步优选2.0≥x≥0.5,再进一步优选1.2≥x≥0.8,例如x=1;
进一步优选2.0≥a≥0,更进一步优选2.0≥a≥0.5,再进一步优选0.6≥a≥0.4,例如a=0.5;
进一步优选1.0≥b≥0,更进一步优选1.0≥b≥0.2,再进一步优选0.5≥b≥0;
进一步优选2.0≥c≥0,更进一步优选2.0≥c≥0.1,再进一步优选0.5≥c≥0;
进一步优选1.0≥A≥0,更进一步优选1.0≥A≥0.1,再进一步优选0.5≥A≥0.1;
进一步优选1.0≥B≥0,更进一步优选1.0≥B≥0.1,再进一步优选0.3≥B≥0.2;
进一步优选9.4≥z≥8.5,更进一步优选9.4≥z≥9,再进一步优选Z=9。
在另一个优选的实施方案中,本发明通式(I)的稀土系储氢合金,其中,RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素;M为选自Cu、Fe、Co、Sn、V、W中的一种或几种元素,2.0≥x≥0.5,2.0≥a≥0.5,1.0≥b≥0.2,2.0≥c≥0.1,1.0≥A≥0.1,1.0≥B≥0.1,z=9。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,x可以是0.1、0.2、0.3或0.4,x还可以是0.5、0.6或0.7,x还可以是0.8、0.9或1,x还可以是1.1、1.2或1.3,x还可以是1.4、1.5或1.6,x还可以是1.7、1.8或1.9,x还可以是2、2.1或2.2,x还可以是2.3、2.4或2.5。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,y可以是0.5、0.6或0.7,y还可以是0.8、0.9或1,y还可以是1.1、1.2或1.3,y还可以是1.4、1.5或1.6,y还可以是1.7、1.8或1.9,y还可以是2、2.1或2.2,y还可以是2.3、2.4或2.5,y还可以是2.6、2.7、2.8或2.9。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,a可以是0,a还可以是0.1、0.2、0.3、0.4或0.5,a还可以是0.6、0.7、0.8、0.9或1,a还可以是1.1、1.2、1.3、1.4或1.5,a还可以是1.6、1.7、1.8、1.9或2,a还可以是2.1、2.2、2.3、2.4或2.5,a还可以是2.6、2.7、2.8、2.9或3。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,b可以是0,b还可以是0.1、0.2或0.3,b还可以是0.4、0.5或0.6,b还可以是0.7、0.8或0.9,b还可以是1.
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,z 可以是8.5、8.6、8.7、8.8、8.9或9,z还可以是9.1、9.2、9.3、9.4或9.5,z还可以是9.6、9.7、9.8、9.9或10,z还可以是10.1、10.2、10.3、10.4或10.5,z还可以是10.6、10.7、10.8、10.9或11,z还可以是11.1、11.2、11.3、11.4或11.5,z还可以是11.6、11.7、11.8、11.9或12,z还可以是12.1、12.2、12.3、12.4或12.5。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,c可以是0,c还可以是0.1、0.2、0.3、0.4或0.5,c还可以是0.6、0.7、0.8、0.9或1,c还可以是1.1、1.2、1.3、1.4或1.5,c还可以是1.6、1.7、1.8、1.9或2,c还可以是2.1、2.2、2.3、2.4或2.5,c还可以是2.6、2.7、2.8、2.9或3,c还可以是3.1、3.2、3.3、3.4或3.5。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,A可以是0,A还可以是0.1、0.2或0.3,A还可以是0.4、0.5或0.6,A还可以是0.7、0.8或0.9,A还可以是1。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,B可以是0,B还可以是0.1、0.2或0.3,B还可以是0.4、0.5或0.6,B还可以是0.7、0.8或0.9,B还可以是1。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,x可以是0.5、1、1.2、1.5、2或2.5,x还可以是1、1.2或1.5。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,y可以是0.5、1、1.5、1.8、2或2.5,y还可以是1.5、1.8或2。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,a可以是0、0.5、0.8、1、1.5、2、2.5或3,a还可以是0.5、0.8、1、1.5、2或2.5。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,b可以是0、0.2、0.3、0.5、0.8、1或1.5,b还可以是0、0.2、0.3或0.5。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,c可以是0、0.1、0.2、0.5、1、1.5、2或2.5,c还可以是0、0.1或0.5。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,A 可以是0、0.1、0.2、0.3、0.5或1,A还可以是0.1、0.3或0.5。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其中,B可以是0、0.1、0.2、0.3、0.5或1,B还可以是0、0.1、0.2或0.3。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,z=9时该合金为化学计量比AB3型;z≠9时该合金为为非化学计量比AB3型。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,z=10.5时该合金为化学计量比A2B7型;z≠10.5时该合金为非化学计量比A2B7型。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,z=11.4时该合金为化学计量比A5B19型;z≠11.4时该合金为非化学计量比A5B19型。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其含有以下一种或多种相:Y2Ni7、La2Ni7、LaNi5、Ni5Y、Ce2Ni7、Al2Ni6Y3或LaY2Ni9
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其含有以下一种或多种相:Y2Ni7、La2Ni7、LaNi5、Ce2Ni7
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其含有以下一种或多种相:Y2Ni7、La2Ni7、LaNi5、Al2Ni6Y3
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其含有以下一种或多种相:Y2Ni7、LaY2Ni9
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其含有以下一种或多种相:Y2Ni7、La2Ni7、Ni5Y。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其含有LaY2Ni9相。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其含有以下一种或多种相:Y2Ni7、La2Ni7
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其含有Y2Ni7相。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其在 313K温度下,最大储氢量为1.2~1.5重量%,优选为1.3~1.5重量%,也可以为1.2~1.4重量%,或者1.3~1.4重量%。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其作为镍氢电池负极,在70mA/g电流下,最大放电容量为300~400mAh/g,优选为350~400mAh/g,再优选为370~400mAh/g,更优选为380~400mAh/g。放电截止电压可以是1.0V。
在一个实施方案中,本发明通式(I)的稀土系储氢合金,其作为镍氢电池负极,在70mA/g充放电电流下,循环100次的容量保持率为85%以上,优选为90%以上,再优选为95%以上,更优选为98%以上。放电截止电压可以是1.0V。
本发明第二方面提供本发明通式(I)的稀土系储氢合金作为储氢介质的用途。
本发明第三方面提供本发明通式(I)的稀土系储氢合金在制备二次电池中电极的用途。
本发明通式(I)的稀土系储氢合金可以作为储氢介质制备成电极,与其他合适的物质组合制成二次电池。由本发明通式(I)的稀土系储氢合金制成的二次电池能够实现多次充放电。
本发明通式(I)的稀土系储氢合金可以由以下制备方法制备获得:
(i)按目标合金的化学组成配比原料;
(ii)将原料熔炼;
(iii)将熔炼后的原料在铜辊上快速凝固;
优选地,步骤(iii)中铜辊旋转的线速度为3-4m/s,并且铜辊通有冷却水。
在一个实施方案中,本发明稀土系储氢合金的制备方法,其中,在快速凝固步骤结束后,将合金在真空或惰性气体保护下,700~800℃下退火热处理6~10小时,例如在750℃下退火热处理8小时。
在一个实施方案中,本发明所述稀土系储氢合金可采用高温熔炼-快淬法制备得到,其工艺过程为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料,将原料依次 放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。
在一个实施方案中,本发明稀土系储氢合金的制备方法,其中,易烧损原料需适量增加配比,增加比例如下表:
原料 RE Y Mn Al
增加比例 2% 1% 5% 3%
除上述制备方法外,本发明所述的通式(I)的稀土系储氢合金还可以采用本领域其它储氢合金制备方法进行制备,例如:高温熔炼浇铸法、机械合金化(MA)法、粉末烧结法、高温熔炼-气体雾化法、还原扩散法、置换扩散法、燃烧合成(CS)法或自蔓延高温合成法(SHS)等。
本发明第四方面涉及通式(I)的稀土系储氢合金,其可以作为储氢介质。
本发明第五方面涉及通式(I)的稀土系储氢合金,其可以用于制备二次电池中的电极。
本发明所述的通式(I)的稀土系储氢合金也可以与其它储氢材料按不同比例复合,制备得到新的储氢材料。
本发明通式(I)的稀土系储氢合金可以采用热处理方法改善其组织结构和性能,如:消除合金结构应力和组分偏析、改善合金吸/放氢平台特性或合金电极的充/放电平台特性、提高吸氢量和循环寿命等。也可以采用各种表面处理方法以改善其性能,如:改善合金的吸/放氢或充/放电动力学性能、增强合金的抗氧化能力或改善合金的导电导热性能等。
本发明中,无特殊说明时,各种元素符号代表的元素与元素周期表中一致。在本发明的通式(I)中,Y代表钇元素,Ni代表镍元素,Mn代表锰元素,Al代表铝元素,Zr代表锆元素,Ti代表钛元素。
本发明的有益效果
本发明所述通式(I)的稀土系储氢合金具有以下一项或多项优点:
(1)具有良好的压力-组成-等温(P-c-T)特性,在通常条件下,储氢量能够达到1.28wt%以上,最大储氢量能够达到1.36wt%以上。
(2)本发明稀土系储氢合金作为储氢电极的电化学性能以及作为储 氢材料的气相吸放氢性能优于传统LaNi5型储氢合金;
(3)本发明稀土系储氢合金组成中不含有镁元素,故与传统的稀土-镁-镍系储氢合金相比,制造方法简单且安全。
(4)本发明稀土系储氢合金具有良好的活化性能、倍率放电能力、充放电或吸放氢循环稳定性,可以在较宽的温度范围内使用,自放电小。
(5)本发明所述的储氢合金中钇(Y)元素是主要成分之一,我国的稀土矿藏中钇资源丰富,该元素的使用有利于平衡我国稀土资源的综合利用。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,在附图中:
图1-1为LaCe0.5Y1.5Ni9.7Mn0.5Al0.3储氢合金的XRD图(实施例A23);
图1-2为根据图1-1原始数据重新绘制的LaCe0.5Y1.5Ni9.7Mn0.5Al0.3储氢合金的XRD图(实施例A23);
图1-3为LaY2Ni9.5Mn0.5Al0.5储氢合金的P-c-T曲线(实施例A13);
图2-1为LaY2Ni10.6Mn0.5Al0.3储氢合金的XRD图(实施例B2);
图2-2为根据图2-1原始数据重新绘制的LaY2Ni10.6Mn0.5Al0.3储氢合金的XRD图(实施例B2);
图2-3为LaY2Ni10.6Mn0.5Al0.3储氢合金的P-c-T曲线(实施例B2);
图3-1为LaY2Ni8Mn0.5Al0.5储氢合金的XRD图(实施例C13);
图3-2为根据图3-1原始数据重新绘制的LaY2Ni8Mn0.5Al0.5储氢合金的XRD图(实施例C13);
图4-1为La1.2Y1.8Ni9.2Mn0.5Al0.3Co0.5储氢合金的XRD图(实施例D28);
图4-2为根据图4-1原始数据重新绘制的La1.2Y1.8Ni9.2Mn0.5Al0.3Co0.5储氢合金的XRD图(实施例D28);
图4-3为LaY2Ni9.5Mn0.5Al0.3CU0.2合金的压力-组成等温线(P-c-T曲线)(实施例D38);
图5-1为La1.2Y1.8Ni9.2Mn0.5Al0.3Co0.5Zr0.1Ti0.1储氢合金的XRD图(实施 例E18);
图5-2为根据图5-1原始数据重新绘制的
La1.2Y1.8Ni9.2Mn0.5Al0.3Co0.5Zr0.1Ti0.1储氢合金的XRD图(实施例E18);
图6-1为合金LaY2Ni10.6Mn0.5Al0.3Zr0.1的X-射线衍射谱图(实施例F35);
图7-1为LaY2Ni8.3Mn0.5Al0.2Zr0.1储氢合金的XRD图(实施例G18);
图7-2为根据图7-1原始数据重新绘制的LaY2Ni8.3Mn0.5Al0.2Zr0.1储氢合金的XRD图(实施例G18)。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的限定。
下述实施例中:
1、相结构分析在X射线衍射仪(XRD)上进行,实验条件:Cu靶,Kα射线,管电压40kV,管电流100mA,扫描角度2θ:20~80°,扫描速度:3°/min,采样步长:0.02°。
2、合金储氢量测试采用的实验设备包括:储氢合金PCT测试仪,恒温水浴,分析天平。实验所用氢气纯度为99.999%。
实验步骤包括:将合金片破碎,过14目(1200μm)和200目(74μm)筛,取200目以上合金粉2.5g左右,装入试样罐,抽真空5min充氢利用理想气体方程标定试样反应室体积,然后抽真空30min使其压力稳定在0.001MPa以下,在353K下活化3次后抽真空2h,开始在313K下测试吸氢-成分等温(PCT)曲线。
3、稀土系储氢合金采用高温熔炼-快淬法制备得到,其工艺过程为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料,将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。
4、下述实施例中涉及的电化学参数包括:N是电极活化需要的循 环次数;Cmax是最大放电容量;S100是循环100次的容量保持率;HRD350是放电电流密度Id为350mA·g-1时的倍率放电能力;LTD243是低温243K时的放电容量保持率;SD72是存放72小时后的容量保持率(自放电特性)。
高倍率放电能力(HRD350)主要反映储氢合金电极的动力学性能,HRD350按下式计算:
Figure PCTCN2015088274-appb-000001
其中:Cd是大电流密度Id放电时截止电压1.0V(相对于Ni(OH)2/NiOOH对电极)的放电容量,C60是合金电极在大电流密度(Id)完全放电后在放电电流密度I=60mA·g-1时截止电压1.0V的残余放电容量。放电电流密度Id为350mA·g-1时,即为HRD350
LTD243是指低温243K的放电性能。低温放电性能(LTD)由下式计算:
Figure PCTCN2015088274-appb-000002
其中CT是在电流密度70mA/g、低温(243K)下的最大放电容量,C298是在电流密度70mA/g、常温(298K)下的最大放电容量。
SD72是指电池搁置72小时后储氢电极的自放电率,表征材料的自放电性能(荷电保持能力)。测试条件为:电池活化后0.2C充电6h,搁置10min,以0.2C放电至1.0V测其放电容量Ca,再将电池以0.2C充电6h,常温下静置72h后,以0.2C放电至1.0V测其放电容量Cb,再将电池以0.2C充放电循环一次,其放电容量Cc,则常温静置72h的荷电保持率SD72为:
2Cb/(Ca+Cc)×100%
实施例A1~A23
采用前述高温熔炼-快淬法制备得到实施例A1~A23所述的A2B7型RExYyNiz-a-bMnaAlb储氢合金。
其中实施例A13和实施例A14所述合金采用相同的原料比制得。实施例A13所述合金采用前述高温熔炼-快淬法制备,其工艺过程为:组成 中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。
实施例A14所述合金也采用高温熔炼-快淬法制备,其工艺过程中增加退火热处理步骤,具体为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。速凝合金片在真空或惰性气体保护下,750℃下退火热处理8h。
实施例A20中的Ml为富镧混合稀土金属,其中含La约为64%、Ce约为25%、Pr约为3%、Nd约为8%。
试验电极的制备方法是:实施例A1~A23合金经机械破碎成200-300目的粉末,合金粉与羰基镍粉以1∶4的质量比混合,在16MPa压力下制成
Figure PCTCN2015088274-appb-000003
的MH电极片,将该电极片置于两片泡沫镍之间,同时夹入作为极耳的镍带,再次在16MPa压力下制成用于测试的储氢负极(MH电极),电极片周围通过点焊保证电极片与镍网之间的紧密接触。
测试电化学性能的开口式二电极体系中,负极为MH电极,正极采用容量过剩的烧结Ni(OH)2/NiOOH电极,电解液为6mol·L-1KOH溶液,装配好的电池搁置24h,应用LAND电池测试仪以恒电流法测定合金电极的电化学性能(活化次数、最高容量、高倍率放电能力HRD、循环稳定性等),测试环境温度为298K。充电电流密度70mA·g-1,充电时间6h,放电电流密度70mA·g-1,放电截止电位为1.0V,充、放电间歇时间10min。
下表1列出了实施例A1~A23所述A2B7型RExYyNiz-a-bMnaAlb储氢合金及其电化学性能。
表1 A2B7型RExYyNiz-a-bMnaAlb储氢合金及其电化学性能
Figure PCTCN2015088274-appb-000004
从表1可见,实施例A13和A14所述合金LaY2Ni9.5Mn0.5Al0.5的电化学性能相比,经过退火热处理的实施例A14合金电极的电化学容量有所提高,循环寿命、倍率放电能力、低温放电特性、自放电性能均有所改善。
使用X-射线衍射仪分析实施例A23LaCe0.5Y1.5Ni9.7Mn0.5Al0.3合金的组织结构,图1-1为分析得到的仪器XRD导出图。如图所示,合金可能含有Ce2Ni7相或Y2Ni7相或LaNi5相或LaY2Ni9相或La0.5Ce0.5Y2Ni9相。
图1-2为根据实施例A23的XRD衍射测试的原始数据绘制的XRD衍射曲线图。如图所示,该合金中含有Y2Ni7、La2Ni7、LaNi5和Ce2Ni7 相。
图1-3为应用Sievert法在313K测量实施例A13的LaY2Ni9.5Mn0.5Al0.5合金的压力-组成等温线(P-c-T曲线)。如图所示,合金的最大储氢量能够达到1.36wt%,放氢平台压力在0.05MPa左右。图中A31212482001表示合金的吸氢曲线,D31212482001表示合金的放氢曲线。
实施例B1~B22
采用前述高温熔炼-快淬法制备得到实施例B1~B22所述的A5B19型RExYyNiz-a-bMnaAlb储氢合金。
实施例B13和实施例B14所述合金采用相同的原料比制得。实施例B13所述合金采用前述高温熔炼-快淬法制备,其工艺过程为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。
实施例B14所述合金也可采用高温熔炼-快淬法制备,其工艺过程中增加退火热处理步骤,具体为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。速凝合金片在真空或惰性气体保护下,750℃下退火热处理8h。
实施例B20中的Ml为富镧混合稀土金属,其中含La约为64%、Ce约为25%、Pr约为3%、Nd约为8%。
试验电极的制备方法是:同实施例A1~A23。
测试电化学性能的方法:同实施例A1~A23。
下表列出了实施例B1~B22所述A5B19型RExYyNiz-a-bMnaAlb储氢 合金及其电化学性能。
表2 A5B19型RExYyNiz-a-bMnaAlb储氢合金及其电化学性能
Figure PCTCN2015088274-appb-000005
从表2可见,实施例B13和B14所述合金LaY2Ni9.9MnAl0.5的电化学性能相比,经过退火热处理的实施例B14合金电极的电化学容量有所提高,循环寿命、倍率放电能力、低温放电特性、自放电性能均有所改善。
使用X-射线衍射仪分析LaY2Ni10.6Mn0.5Al0.3合金(实施例B2)的组织结构,图2-1为得到的仪器XRD导出图。图中合金可能包含MnNi8Y3相或YNi3.912Al1.088相或LaNi5相或Ni7Y2相或LaY2Ni9相等。还可能包含YNi3相、Y2Ni7相或LaY2Ni9相、LaNi5相、Pr5Co19相或Ce5Co19相等。
图2-2为根据实施例B2合金的XRD衍射测试的原始数据绘制的 XRD衍射曲线图。图2示出该合金中含有Y2Ni7、La2Ni7、LaNi5和Al2Ni6Y3相。
图2-3为应用Sievert法在313K测量LaY2Ni10.6Mn0.5Al0.3合金(实施例B2)的压力-组成等温线(P-c-T曲线)。如图所示,该合金最大储氢量能够达到1.33wt.%,放氢平台压力在0.1MPa左右。图中A32512333001表示合金的吸氢曲线,D32512333001表示合金的放氢曲线。
实施例C1~C22
采用前述高温熔炼-快淬法制备得到实施例C1~C22所述的AB3型RExYyNiz-a-bMnaAlb储氢合金。
实施例C13和实施例C14所述合金采用相同的原料比制得。实施例C13所述合金采用前述高温熔炼-快淬法制备,其工艺过程为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。
实施例C14所述合金也采用高温熔炼-快淬法制备,其工艺过程中增加退火热处理步骤,具体为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。速凝合金片在真空或惰性气体保护下,750℃下退火热处理8h。
实施例C20中的Ml为富镧混合稀土金属,其中含La约为64%、Ce约为25%、Pr约为3%、Nd约为8%。
试验电极的制备方法是:同实施例A1~A23。
测试电化学性能的方法:同实施例A1~A23。
下表3列出了实施例C1~C22所述RExYyNiz-a-bMnaAlb储氢合金及其电化学性能。
表3 RExYyNiz-a-bMnaAlb储氢合金及其电化学性能
Figure PCTCN2015088274-appb-000006
从表3可见,实施例C13和C14所述合金LaY2Ni8Mn0.5Al0.5的电化学性能相比,经过退火热处理的实施例C14合金电极的电化学容量有所提高,循环寿命、倍率放电能力、低温放电特性、自放电性能均有所改善。
使用X-射线衍射仪分析LaY2Ni8Mn0.5Al0.5合金(实施例C13)的组织结构,图3-1为分析得到的仪器XRD导出图。图中合金可能含有MnNi8Y3相或Al0.20LaNi2.80相或LaMn0.17Ni2.83相等。还可能包含YNi3相或LaNi3相等。
图3-2为根据实施例C13合金的XRD衍射测试的原始数据绘制的XRD衍射曲线图。图2示出该合金中含有LaY2Ni9相和Ni7Y2相。
实施例D1~D38
采用前述高温熔炼-快淬法制备得到实施例D1~D38所述的RExYyNiz-a-b-cMnaAlbMc储氢合金。
实施例D7和D8以及实施例D28和D29所述合金分别采用相同的原料比制得。实施例D7和D28所述合金采用前述高温熔炼-快淬法制备,其工艺过程为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。
实施例D8和D29所述合金也可采用高温熔炼-快淬法制备,其工艺过程中增加退火热处理步骤,具体为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。速凝合金片在真空或惰性气体保护下,750℃下退火热处理8h。
实施例D37中的Ml为富镧混合稀土金属,其中含La约为64%、Ce约为25%、Pr约为3%、Nd约为8%。
试验电极的制备方法是:同实施例A1~A23。
测试电化学性能的方法:同实施例A1~A23。
下表列出了实施例D1~D38所述RExYyNiz-a-b-cMnaAlbMc储氢合金及其电化学性能。
表4 RExYyNiz-a-b-cMnaAlbMc储氢合金及其电化学性能
Figure PCTCN2015088274-appb-000007
Figure PCTCN2015088274-appb-000008
从表4可见,实施例D7和D8相比,实施例D28和D29相比,经过退火热处理的实施例合金电极的电化学容量有所提高,循环寿命、倍 率放电能力、低温放电特性、自放电性能均有所改善。
使用X-射线衍射仪分析La1.2Y1.8Ni9.2Mn0.5Al0.3Co0.5合金(实施例D28所述合金)的组织结构,图4-1为得到的仪器XRD导出图,图中合金主要包含La2Ni7相。
图4-2为根据实施例D28合金的XRD衍射测试的原始数据绘制的XRD衍射曲线图。该合金中含有Y2Ni7、La2Ni7、Ni5Y相。
如图11所示,应用Sievert法在313K测量LaY2Ni9.5Mn0.5Al0.3Cu0.2合金(实施例D38所述合金)的压力-组成等温线(P-c-T曲线),最大储氢量能够达到1.28wt.%,放氢平台压力在0.03MPa左右。图中A32513142001表示合金的吸氢曲线,D32513142001表示合金的放氢曲线。
实施例E1~E34
采用前述高温熔炼-快淬法制备得到实施例E1~E34所述的RExYyNiz-a-b-cMnaAlbMcZrATiB储氢合金。
实施例E14和实施例E15所述合金采用相同的原料比制得。实施例E14所述合金采用前述高温熔炼-快淬法制备,其工艺过程为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。
实施例E15所述合金也可采用高温熔炼-快淬法制备,其工艺过程中增加退火热处理步骤,具体为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。速凝合金在真空或惰性气体保护下,750℃下退火热处理8h。
实施例E28中的Ml为富镧混合稀土金属,其中含La约为64%、 Ce约为25%、Pr约为3%、Nd约为8%。
试验电极的制备方法是:同实施例A1~A23。
测试电化学性能的方法:同实施例A1~A23。
下表列出了实施例E1~E34所述RExYyNiz-a-b-cMnaAlbMcZrATiB储氢合金及其电化学性能。
表5 RExYyNiz-a-b-cMnaAlbMcZrATiB储氢合金及其电化学性能
Figure PCTCN2015088274-appb-000009
Figure PCTCN2015088274-appb-000010
从表5可见,实施例E14和E15所述合金LaY2Ni9.5Mn0.5Al0.5Zr0.5Ti0.3的电化学性能相比,经过退火热处理的实施例E15合金电极的电化学容量有所提高,循环寿命、倍率放电能力、低温放电特性、自放电性能均有所改善。
使用X-射线衍射仪分析La1.2Y1.8Ni9.2Mn0.5Al0.3Co0.5Zr0.1Ti0.1合金(实施例E18)的组织结构,图5-1为分析得到的仪器XRD导出图,如图所示,合金可能含有La2Ni7相或LaY2Ni9相或Y2Ni7相或Ni5La相或LaNi5相等。还可能包含Ce2Ni7或Y2Ni7相。
图5-2为根据实施例E18合金的XRD衍射测试的原始数据绘制的XRD衍射曲线图。如图所示,该合金中含有Y2Ni7、La2Ni7、Ni5Y相。
实施例F1~F35
采用前述高温熔炼-快淬法制备得到实施例F1~F35所述的RExYyNiz-a-b-cMnaAlbMcZrATiB储氢合金。
实施例F12和实施例F13所述合金采用相同的原料比制得。实施例F12所述合金采用前述高温熔炼-快淬法制备,其工艺过程为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。
实施例F13所述合金也可采用高温熔炼-快淬法制备,其工艺过程中增加退火热处理步骤,具体为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。速凝合金片在真空 或惰性气体保护下,750℃下退火热处理8h。
实施例F24中的Ml为富镧混合稀土金属,其中含La约为64%、Ce约为25%、Pr约为3%、Nd约为8%。
试验电极的制备方法是:同实施例A1~A23。
测试电化学性能的方法:同实施例A1~A23。
下表6列出了实施例F1~F35所述RExYyNiz-a-b-cMnaAlbMcZrATiB储氢合金及其电化学性能。
表6 RExYyNiz-a-b-cMnaAlbMcZrATiB储氢合金及其电化学性能
Figure PCTCN2015088274-appb-000011
Figure PCTCN2015088274-appb-000012
从表6可见,实施例F12和F13所述合金LaY2Ni9.9MnAl0.5Zr0.5Ti0.3的电化学性能相比,经过退火热处理的实施例F13合金电极的电化学容量有所提高,循环寿命、倍率放电能力、低温放电特性、自放电性能均有所改善。
使用X-射线衍射仪分析LaY2Ni10.6Mn0.5Al0.3Zr0.1合金(实施例F35所述合金)的组织结构,图6-1为根据衍射数据绘制的XRD衍射曲线图,如图6-1所示,合金主相为Y2Ni7相或La2Ni7相、Pr5Co19相或Ce5Co19相、LaNi5相。
实施例G1~G34
采用前述高温熔炼-快淬法制备得到实施例G1~G34所述的RExYyNiz-a-b-cMnaAlbMcZrATiB型储氢合金。
实施例G15和实施例G16所述合金采用相同的原料比制得。实施例G15所述合金采用前述高温熔炼-快淬法制备,其工艺过程为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。
实施例G16所述合金也可采用高温熔炼-快淬法制备,其工艺过程中增加退火热处理步骤,具体为:组成中各单质金属或中间合金原料的纯度均>99.0%,按照化学分子式配比计算并准确称取各原料(易烧损原料需适量增加配比),将原料依次放入Al2O3坩埚,抽真空至3.0Pa,充入惰性气体Ar至0.055MPa。升温熔炼,保温约6min后速凝。速凝铜辊线速度为3.4m/s。铜辊常通冷却水,冷却水温25℃。速凝合金片在真 空或惰性气体保护下,750℃下退火热处理8h。
实施例G25中的Ml为富镧混合稀土金属,其中含La约为64%、Ce约为25%、Pr约为3%、Nd约为8%。
试验电极的制备方法是:同实施例A1~A23。
测试电化学性能的方法:同实施例A1~A23。。
下表列出了实施例G1-G34所述RExYyNiz-a-b-cMnaAlbMcZrATiB储氢合金及其电化学性能。
表7 RExYyNiz-a-b-cMnaAlbMcZrATiB储氢合金及其电化学性能
Figure PCTCN2015088274-appb-000013
Figure PCTCN2015088274-appb-000014
从表7可见,实施例G15和G16所述合金LaY2Ni8Mn0.5Al0.5Zr0.5Ti0.3的电化学性能相比,经过退火热处理的实施例G16合金电极的电化学容量有所提高,循环寿命、倍率放电能力、低温放电特性均有所改善。
使用X-射线衍射仪分析LaY2Ni8.3Mn0.5Al0.2Zr0.1合金(实施例G18)的组织结构,图7-1为得到的仪器XRD导出图,如图所示,合金可能含有LaY2Ni9相或LaNi相。
图7-2为根据实施例G18合金的XRD衍射测试的原始数据绘制的XRD衍射曲线图,如图所示,该合金中含有LaY2Ni9相。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (22)

  1. 一种稀土系储氢合金,其组成如通式(I)所示:
    RExYyNiz-a-b-cMnaAlbMcZrATiB
    (I)
    其中RE为选自La、Ce、Pr、Nd、Sm、Gd中的一种或几种元素;M为选自Cu、Fe、Co、Sn、V、W中的一种或几种元素;x>0,y≥0.5,且x+y=3,13≥z≥7;6≥a+b>0,5≥c≥0,4≥A+B≥0。
  2. 权利要求1的稀土系储氢合金,其中;x>0,y≥0.5,x+y=3;12.5≥z≥8.5;5.5≥a+b>0,3.5≥c≥0,2.5≥A+B≥0。
  3. 权利要求2的稀土系储氢合金,其中,c=0,A=B=0。
  4. 权利要求3稀土系储氢合金,其中,12.5≥z≥11。
  5. 权利要求3稀土系储氢合金,其中,11>z≥9.5;4.5≥a+b>0。
  6. 权利要求3稀土系储氢合金,其中,9.5>z≥8.5;3.5≥a+b>0。
  7. 权利要求2的稀土系储氢合金,其中,A=B=0,c>0。
  8. 权利要求7的稀土系储氢合金,其中,3.5≥a+b≥0;3.0≥c>0。
  9. 权利要求2的稀土系储氢合金,其中,2.5≥A+B>0。
  10. 权利要求9的稀土系储氢合金,其中,12.5≥z≥11,4≥a+b>0。
  11. 权利要求9的稀土系储氢合金,其中,11>z≥9.5;3.5≥a+b>0;3≥c≥0。
  12. 权利要求9的稀土系储氢合金,其中,9.5>z≥8.5;3≥a+b>0;2.5≥c≥0。
  13. 权利要求1~12任一项的稀土系储氢合金,其特征在于以下i)至iv)中的一项或多项:
    i)2.0≥x≥0.5;
    ii)3.0≥a≥0.5;
    iii)1.5≥b≥0.3;
    iv)z=11.4。
  14. 权利要求1~12任一项的稀土系储氢合金,其特征在于以下i) 至iv)中的一项或多项:
    i)2.0≥x≥0.5;
    ii)2.5≥a≥0.5;
    iii)1.0≥b≥0.2;
    iv)z=10.5。
  15. 权利要求1~12任一项的稀土系储氢合金,其特征在于以下i)至iv)中的一项或多项:
    i)2.0≥x≥0.5;
    ii)2.0≥a≥0.5;
    iii)1.0≥b≥0.2;
    iv)z=9。
  16. 权利要求1、2或7~12任一项的稀土系储氢合金,其特征在于以下i)至v)中的一项或多项:
    i)2.0≥x≥0.5;
    ii)2.0≥a≥0.5;
    iii)1.0≥b≥0.3;
    iv)11.4≥z≥9;
    v)2.5≥c≥0.1。
  17. 权利要求1、2或9~12任一项的稀土系储氢合金,其特征在于以下i)至vii)中的一项或多项:
    i)2≥x≥0.5;
    ii)2.5≥a≥0.5;
    iii)1.0≥b≥0.2;
    iv)z=11.4;
    v)2.5≥c≥0.1;
    vi)1.0≥A≥0.1;
    vii)1.0≥B≥0.1。
  18. 权利要求1、2或9~12任一项的稀土系储氢合金,其特征在于以下i)至vii)中的一项或多项:
    i)2.0≥x≥0.5;
    ii)2.0≥a≥0.5;
    iii)1.0≥b≥0.2;
    iv)z=10.5;
    v)2.0≥c≥0.1;
    vi)1.0≥A≥0.1;
    vii)1.0≥B≥0.1。
  19. 权利要求1、2或9~12任一项的稀土系储氢合金,其特征在于以下i)至vii)中的一项或多项:
    i)2.0≥x≥0.5;
    ii)2.0≥a≥0.5;
    iii)1.0≥b≥0.2;
    iv)z=9;
    v)2.0≥c≥0.1;
    vi)1.0≥A≥0.1;
    vii)1.0≥B≥0.1。
  20. 权利要求1~19任一项的稀土系储氢合金,其特征在于以下i)至iii)中的一项或多项:
    i)其在313K温度下,最大储氢量为1.2~1.5重量%,优选为1.3~1.5重量%;
    ii)其作为镍氢电池负极,在70mA/g电流下,最大放电容量为300~400mAh/g,优选为350~400mAh/g,再优选为370~400mAh/g,更优选为380~400mAh/g;
    iii)在70mA/g充放电电流下,循环100次的容量保持率为85%以上,优选为90%以上,再优选为95%以上。
  21. 权利要求1~20任一项的稀土系储氢合金作为储氢介质的用途。
  22. 权利要求1~20任一项的稀土系储氢合金作为二次电池中电极材料的用途。
PCT/CN2015/088274 2014-08-28 2015-08-27 一种稀土系储氢合金及其用途 WO2016029861A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/507,133 US10566614B2 (en) 2014-08-28 2015-08-27 Rare earth based hydrogen storage alloy and application thereof
CN201580046681.8A CN107075617B (zh) 2014-08-28 2015-08-27 一种稀土系储氢合金及其用途
JP2017530386A JP6464268B2 (ja) 2014-08-28 2015-08-27 希土類系水素吸蔵合金およびその用途

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN201410429202.8A CN104532095B (zh) 2014-08-28 2014-08-28 一种钇‑镍稀土系储氢合金
CN201410427281.9A CN104513925B (zh) 2014-08-28 2014-08-28 一种钇‑镍稀土系储氢合金及含该储氢合金的二次电池
CN201410429202.8 2014-08-28
CN201410427199.6 2014-08-28
CN201410427199.6A CN104152749B (zh) 2014-08-28 2014-08-28 添加锆、钛元素的a5b19型稀土‑钇‑镍系储氢合金
CN201410427220.2 2014-08-28
CN201410427259.4A CN104518204B (zh) 2014-08-28 2014-08-28 一种稀土-钇-镍系储氢合金及含该储氢合金的二次电池
CN201410429187.7A CN104532062A (zh) 2014-08-28 2014-08-28 一种钇-镍稀土系储氢合金
CN201410427179.9A CN104513915B (zh) 2014-08-28 2014-08-28 添加锆、钛元素的ab3型稀土‑钇‑镍系储氢合金
CN201410427281.9 2014-08-28
CN201410429187.7 2014-08-28
CN201410427259.4 2014-08-28
CN201410427179.9 2014-08-28
CN201410427220.2A CN104513916B (zh) 2014-08-28 2014-08-28 添加锆、钛元素的a2b7型稀土‑钇‑镍系储氢合金

Publications (1)

Publication Number Publication Date
WO2016029861A1 true WO2016029861A1 (zh) 2016-03-03

Family

ID=55398767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088274 WO2016029861A1 (zh) 2014-08-28 2015-08-27 一种稀土系储氢合金及其用途

Country Status (4)

Country Link
US (1) US10566614B2 (zh)
JP (1) JP6464268B2 (zh)
CN (1) CN107075617B (zh)
WO (1) WO2016029861A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561092A4 (en) * 2016-12-26 2020-05-13 Mitsui Mining & Smelting Co., Ltd. HYDROGEN STORAGE ALLOY
CN114164368A (zh) * 2020-09-10 2022-03-11 厦门稀土材料研究所 一种稀土储氢合金及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114000030B (zh) * 2021-11-05 2022-08-30 包头稀土研究院 钛铬锰系储氢合金及其制备方法和用途
CN116065055A (zh) * 2023-02-27 2023-05-05 包头稀土研究院 钇镍系储氢合金及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101855A1 (en) * 2001-06-11 2002-12-19 Santoku Corporation Method for fabricating negative electrode for secondary cell
CN101170173A (zh) * 2006-10-26 2008-04-30 北京有色金属研究总院 一种低成本稀土系储氢合金及其制备方法和用途
CN104152749A (zh) * 2014-08-28 2014-11-19 包头稀土研究院 添加锆、钛元素的a5b19型稀土-钇-镍系储氢合金
CN104513915A (zh) * 2014-08-28 2015-04-15 包头稀土研究院 添加锆、钛元素的ab3型稀土-钇-镍系储氢合金
CN104513916A (zh) * 2014-08-28 2015-04-15 包头稀土研究院 添加锆、钛元素的a2b7型稀土-钇-镍系储氢合金
CN104513925A (zh) * 2014-08-28 2015-04-15 包头稀土研究院 一种钇-镍稀土系储氢合金及含该储氢合金的二次电池
CN104518204A (zh) * 2014-08-28 2015-04-15 包头稀土研究院 一种稀土-钇-镍系储氢合金及含该储氢合金的二次电池
CN104532095A (zh) * 2014-08-28 2015-04-22 包头稀土研究院 一种钇-镍稀土系储氢合金
CN104532062A (zh) * 2014-08-28 2015-04-22 包头稀土研究院 一种钇-镍稀土系储氢合金

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005247B2 (ja) * 1990-05-31 2000-01-31 三洋電機株式会社 水素吸蔵合金
JPH08120364A (ja) * 1994-10-18 1996-05-14 Toshiba Corp 電池用水素吸蔵合金,その製造方法およびニッケル水素二次電池
JP3737163B2 (ja) * 1995-07-10 2006-01-18 株式会社三徳 希土類金属−ニッケル系水素吸蔵合金及びニッケル水素2次電池用負極
US5805958A (en) * 1996-03-27 1998-09-08 Xerox Corporation Seal bearing assembly for a development system
JPH10321223A (ja) * 1996-09-12 1998-12-04 Toshiba Corp 水素吸蔵電極及び金属酸化物・水素二次電池
JPH11181536A (ja) * 1997-12-22 1999-07-06 Suiso Energy Kenkyusho:Kk 水素吸蔵材料用組成物
JP2001266864A (ja) * 2000-03-15 2001-09-28 Santoku Corp 水素吸蔵合金、ニッケル水素2次電池負極用合金粉末及びニッケル水素2次電池用負極
CN101355155A (zh) 2007-07-27 2009-01-28 比亚迪股份有限公司 贮氢合金及其制备方法以及使用该合金的负极和电池
JP5773878B2 (ja) * 2008-11-21 2015-09-02 バオトウ リサーチ インスティチュート オブ レア アース RE−Fe−B系水素貯蔵合金及びその使用
CN102828069B (zh) 2012-09-26 2015-05-20 鞍山鑫普电池材料有限公司 一种无镨钕的低成本超长寿命型储氢合金及其制备方法
JP5716969B2 (ja) 2012-09-27 2015-05-13 株式会社Gsユアサ ニッケル水素蓄電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101855A1 (en) * 2001-06-11 2002-12-19 Santoku Corporation Method for fabricating negative electrode for secondary cell
CN101170173A (zh) * 2006-10-26 2008-04-30 北京有色金属研究总院 一种低成本稀土系储氢合金及其制备方法和用途
CN104152749A (zh) * 2014-08-28 2014-11-19 包头稀土研究院 添加锆、钛元素的a5b19型稀土-钇-镍系储氢合金
CN104513915A (zh) * 2014-08-28 2015-04-15 包头稀土研究院 添加锆、钛元素的ab3型稀土-钇-镍系储氢合金
CN104513916A (zh) * 2014-08-28 2015-04-15 包头稀土研究院 添加锆、钛元素的a2b7型稀土-钇-镍系储氢合金
CN104513925A (zh) * 2014-08-28 2015-04-15 包头稀土研究院 一种钇-镍稀土系储氢合金及含该储氢合金的二次电池
CN104518204A (zh) * 2014-08-28 2015-04-15 包头稀土研究院 一种稀土-钇-镍系储氢合金及含该储氢合金的二次电池
CN104532095A (zh) * 2014-08-28 2015-04-22 包头稀土研究院 一种钇-镍稀土系储氢合金
CN104532062A (zh) * 2014-08-28 2015-04-22 包头稀土研究院 一种钇-镍稀土系储氢合金

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561092A4 (en) * 2016-12-26 2020-05-13 Mitsui Mining & Smelting Co., Ltd. HYDROGEN STORAGE ALLOY
CN114164368A (zh) * 2020-09-10 2022-03-11 厦门稀土材料研究所 一种稀土储氢合金及其制备方法和应用

Also Published As

Publication number Publication date
US10566614B2 (en) 2020-02-18
CN107075617B (zh) 2019-04-23
JP2017532455A (ja) 2017-11-02
JP6464268B2 (ja) 2019-02-06
CN107075617A (zh) 2017-08-18
US20170288217A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
CN104532095B (zh) 一种钇‑镍稀土系储氢合金
CN110317974B (zh) 一种钇-镍稀土系储氢合金
CN104518204B (zh) 一种稀土-钇-镍系储氢合金及含该储氢合金的二次电池
CN104152749B (zh) 添加锆、钛元素的a5b19型稀土‑钇‑镍系储氢合金
CN104513925B (zh) 一种钇‑镍稀土系储氢合金及含该储氢合金的二次电池
CN104513915B (zh) 添加锆、钛元素的ab3型稀土‑钇‑镍系储氢合金
CN104513916B (zh) 添加锆、钛元素的a2b7型稀土‑钇‑镍系储氢合金
CN111471895B (zh) 含钆和镍的储氢合金、负极、电池及制备方法
WO2016029861A1 (zh) 一种稀土系储氢合金及其用途
CN111471894B (zh) 掺杂的a5b19型含钐储氢合金、电池及制备方法
JPWO2006085542A1 (ja) 低Co水素吸蔵合金
JPWO2013118806A1 (ja) 水素吸蔵合金粉末、負極およびニッケル水素二次電池
He et al. Preparation and electrochemical hydrogen storage property of alloy CoSi
CN108172817B (zh) 一种单相Gd2Co7型稀土镁镍系贮氢合金、制备方法及其应用
CN106544535B (zh) 一种含有钇、镍元素储氢合金的制备方法
CN102383011A (zh) 一种低成本长寿命稀土镁基贮氢合金及其应用
CN102181751B (zh) 一种低自放电贮氢合金及其制备方法
Fan et al. Microstructures and electrochemical hydrogen storage performances of La0. 75Ce0. 25Ni3. 80Mn0. 90Cu0. 30 (V0. 81Fe0. 19) x (x= 0–0.20) alloys
Liu et al. Electrochemical properties of Ti-based Quasicrystal and ZrV2 Laves phase alloy composite materials as negative electrode for Ni–MH secondly batteries
CN111411262B (zh) A5b19型含钆储氢合金、负极及制备方法
WEI et al. Phase structure and electrochemical properties of La1. 7+ xMg1. 3− x (NiCoMn) 9.3 (x= 0–0.4) hydrogen storage alloys
WO2010057367A1 (zh) RE-Fe-B系储氢合金及其用途
Inoue et al. Effect of Ni Content on Rate Capability of Mg0. 9Ti0. 06 V 0.04 Ni x Negative Electrodes for Nickel/Metal Hydride Batteries
Liu et al. Electrochemical hydrogen storage properties of TixV65− xNi35 (x= 45, 55) alloys produced by rapid-quenching
KR100237137B1 (ko) 니켈과 수소저장합금으로 구성된 2차 전지용 전극재료 합금

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530386

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15507133

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836031

Country of ref document: EP

Kind code of ref document: A1