WO2016021630A1 - 変成シリコーン樹脂発泡体 - Google Patents

変成シリコーン樹脂発泡体 Download PDF

Info

Publication number
WO2016021630A1
WO2016021630A1 PCT/JP2015/072212 JP2015072212W WO2016021630A1 WO 2016021630 A1 WO2016021630 A1 WO 2016021630A1 JP 2015072212 W JP2015072212 W JP 2015072212W WO 2016021630 A1 WO2016021630 A1 WO 2016021630A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified silicone
silicone resin
resin foam
weight
foam according
Prior art date
Application number
PCT/JP2015/072212
Other languages
English (en)
French (fr)
Inventor
千秋 片野
未秋 柴谷
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2016540259A priority Critical patent/JPWO2016021630A1/ja
Priority to EP15829799.4A priority patent/EP3178872B1/en
Priority to US15/501,555 priority patent/US20170226305A1/en
Priority to CN201580041522.9A priority patent/CN106574068A/zh
Publication of WO2016021630A1 publication Critical patent/WO2016021630A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/10Block- or graft-copolymers containing polysiloxane sequences
    • C08J2383/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Definitions

  • the present invention relates to a polymer having a hydrolyzable group bonded to a silicon atom and having a silicon group that can be crosslinked by forming a siloxane bond (hereinafter referred to as “reactive silicon group”), a silanol condensation catalyst,
  • the present invention also relates to a modified silicone resin foam obtained by curing a foamable liquid resin composition containing a chemical foaming agent.
  • foams of polymer compounds foams using thermoplastic resins such as polystyrene, polyethylene, polypropylene, and polyvinyl chloride are used as beads, sheets, or boards, and have characteristics such as heat insulation, lightness, and buffering properties. It is used in the civil engineering and construction field, packaging field, home appliance field, and automobile field. All of these require a large-scale facility to form a molded body. These are also generally rigid foams.
  • a polyurethane foam is well known as a foam using a thermosetting resin obtained by curing and foaming a liquid resin composition.
  • a polyurethane foam can be easily molded with a small-scale facility, and a soft foam can be produced (Patent Document 1).
  • Patent Document 1 the polyurethane foam cannot be said to have sufficient flexibility and has a tactile sensation. It's not good. Therefore, there is a demand for a foam that is easy to mold and that is flexible and has good tactile sensation.
  • Patent Document 2 discloses a cured product containing a modified silicone resin and hollow particles previously foamed, but the produced cured product is not a foam but has high hardness and lacks flexibility.
  • Patent Document 3 it has better tactile sensation than polyurethane foam, which is a conventional soft foam, and has excellent flexibility such as low hardness and low rebound resilience, and is used as a material for bedding and various cushion materials.
  • Modified silicone resin foams that are suitable are disclosed. However, a hydrosilylation reaction is used for the curing reaction, and depending on the form of use, hydrogen gas, which has a high risk of explosion, may be generated as a by-product during foam production.
  • an object of the present invention is to provide a modified silicone resin foam capable of foam molding without generation of hydrogen as a by-product while maintaining excellent tactile sensation and flexibility.
  • the present inventors combined a polymer having a reactive silicon group and a unit comprising a main chain of an oxyalkylene unit with a silanol condensation catalyst and a chemical blowing agent.
  • a modified silicone resin foam having high flexibility can be obtained without generating hydrogen gas as a by-product having a high risk of explosion during the production of the foam, and the present invention has been completed.
  • the present invention has the following configuration. 1) A foamable liquid resin composition containing 100 parts by weight of a base resin (A), 0.1 to 5 parts by weight of a silanol condensation catalyst (B), and 2 to 40 parts by weight of a chemical foaming agent (C) is cured. A modified silicone resin foam,
  • the base resin (A) has a hydrolyzable group bonded to a silicon atom, has at least one silicon group in the molecular chain that can be crosslinked by forming a siloxane bond, and the main chain is an oxyalkylene group Consisting of a polymer composed of units,
  • the modified silicone resin foam, wherein the foam has an ASKER FP hardness of 60 or less in an atmosphere at 25 ° C.
  • the silanol condensation catalyst (B) is a compound represented by the general formula (1): (C m H 2m + 1 O) n —P ( ⁇ O) (— OH) 3-n where m is an integer of 4 to 10, n is an integer of 0 to 3.)
  • the chemical blowing agent (C) is any combination selected from bicarbonate, organic acid and organic acid salt, bicarbonate and organic acid, and bicarbonate and organic acid salt.
  • the modified silicone resin foam of the present invention does not generate hydrogen as a by-product during molding while maintaining excellent tactile sensation and flexibility. Since the modified silicone resin foam of the present invention has excellent tactile sensation and flexibility, it is suitably used as a material for applications such as bedding and various cushion materials. In addition, when producing a foam, hydrogen gas that has a high risk of explosion is not generated even during the reaction. Therefore, it is possible to produce the foam with equipment having a small equipment burden.
  • the modified silicone resin foam of the present invention comprises (A) 100 parts by weight of a base resin, (B) 0.1 to 5 parts by weight of a silanol condensation catalyst, and (C) 2 to 40 parts by weight of a chemical foaming agent.
  • the base resin (A) has a hydrolyzable group bonded to a silicon atom and has at least a silicon group that can be crosslinked by forming a siloxane bond in the molecular chain. It is characterized in that it has one polymer and the main chain is made of a polymer composed of oxyalkylene units. Further, the ASKER FP hardness of the foam in an atmosphere at 25 ° C. is 60 or less.
  • the polymer having at least one reactive silicon group in the molecular chain and the main chain composed of oxyalkylene units is a component that is cured by the silanol condensation catalyst (B), Since it has at least one reactive silicon group, it undergoes silanol condensation reaction to cross-link to form a polymer and cure.
  • the number of reactive silicon groups contained in the polymer is required to be at least one on average in one molecule of the polymer, preferably 1.1 or more, from the point that the condensation reaction is caused by the silanol condensation catalyst (B). More preferably, it should be 1.2 or more. Moreover, it is preferable that it is 2.5 or less on average, and it is more preferable that it is 2 or less. If the average is less than 1, the curability is insufficient, and if it exceeds 2.5, the cured product may be hard. From the viewpoint of curability and flexibility, it is preferable that reactive silicon groups exist at both ends of the main chain or branched molecular chain.
  • the average number of reactive silicon groups can be determined by a method of quantification using a 1 H-NMR instrument.
  • the reactive silicon group contained in the polymer is a group having a hydroxy group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond by a reaction accelerated by a silanol condensation catalyst. is there.
  • the reactive silicon group As the reactive silicon group, the general formula (2): -SiR 1 3-a X a (2) (R 1 is independently an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or —OSi (R ′) 3 (R ′ Are each independently a triorganosiloxy group having 1 to 20 carbon atoms, and X is each independently a hydroxy group or a hydrolyzable group. A group represented by 1 to 3).
  • hydrolysable group What is necessary is just a conventionally well-known hydrolysable group.
  • Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group.
  • a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable. From the viewpoint that hydrolysis is mild and easy to handle.
  • the group is particularly preferred.
  • As the alkoxy group a methoxy group and an ethoxy group are preferable.
  • Hydrolyzable groups and hydroxy groups can be bonded to one silicon atom in the range of 1 to 3. When two or more hydrolyzable groups or hydroxy groups are bonded to the reactive silicon group, they may be the same or different.
  • a is preferably 2 or 3 from the viewpoint of curability, and is particularly preferably 3 when quick curability is required, and when stability during storage is required. Is preferably 2.
  • R 1 in the general formula (2) include, for example, an alkyl group such as a methyl group and an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, Examples thereof include a triorganosiloxy group, a chloromethyl group and a methoxymethyl group represented by —OSi (R ′) 3 in which R ′ is a methyl group, a phenyl group or the like. Of these, a methyl group is particularly preferred.
  • the reactive silicon group include a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group, and a diisopropoxymethylsilyl group.
  • a trimethoxysilyl group, a triethoxysilyl group, and a dimethoxymethylsilyl group are preferable because of high activity and good curability.
  • the polymer structure may be linear or may have a branched structure in a range where the branching is smaller than the molecular weight of the main chain, but the linear structure is preferable from the viewpoint of flexibility. .
  • the number average molecular weight Mn is preferably 3000 or more, more preferably 10,000 or more, from the viewpoint of the balance between flexibility, touch and reactivity.
  • the upper limit of the number average molecular weight Mn is not particularly limited, but is preferably 100,000 or less, more preferably 50000 or less, and still more preferably 30000 or less. If Mn is less than 3000, the viscosity will be low and not only the curing reaction will be difficult to proceed, but also the tactile sensation may be adversely affected. If it exceeds 100,000, not only will the tactile sensation be adversely affected, but the viscosity will be high. Workability may deteriorate.
  • the number average molecular weight is calculated by a standard polystyrene conversion method using GPC.
  • the base resin (A) may be a combination of two or more types of polymers.
  • the base resin (A) is a mixture of two or more types of polymers, the number average molecular weight of the mixture is preferably in the above range.
  • a polymer having a main chain composed of oxyalkylene units can be produced by using a compound having two or more active hydrogens as a starting material for forming the main chain and polymerizing alkylene oxide.
  • a compound having two or more active hydrogens for example, it can be produced by polymerizing C 2 -C 4 alkylene oxide using ethylene glycol, propylene glycol, bisphenol compound, glycerin, trimethylolpropane, pentaerythritol or the like as a starting material.
  • main chain of the polymer in the present invention examples include, for example, polyethylene oxide, polypropylene oxide, polybutylene oxide; a random or block copolymer of two or more monomers selected from ethylene oxide, propylene oxide, and butylene oxide; Etc.
  • the repeating unit of the main chain is more preferably oxypropylene.
  • the method for introducing a reactive silicon group into the main chain skeleton of the polymer is not particularly limited, and for example, a known method described in International Publication No. 2014/073593 can be used.
  • silanol condensation catalyst (B) There is no restriction
  • Specific examples of such a silanol condensation catalyst (B) include, for example, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin diethylhexanoate, dibutyltin dioctate, dibutyltin dimethylmalate, dibutyltin diethylmalate, dibutyl Tin dibutyl maleate, dibutyl tin diisooctyl malate, dibutyl tin ditridecyl maleate, dibutyl tin dibenzyl maleate, dibutyl tin maleate, dioctyl tin diacetate, dioctyl tin distearate, dioct
  • Silanol condensation such as silane coupling agents having amino groups such as amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, etc., which are derivatives of these modified
  • the catalyst include further known silanol condensation catalysts such as fatty acids such as versatic acid, other acidic catalysts such as organic acidic phosphoric acid ester compounds, and basic catalysts. These may be used alone or in combination of two or more.
  • Examples of the organic acidic phosphate compound of the acidic catalyst include (CH 3 O) 2 —P ( ⁇ O) (— OH), (CH 3 O) —P ( ⁇ O) (— OH) 2 , (C 2 H 5 O) 2 —P ( ⁇ O) (— OH), (C 2 H 5 O) —P ( ⁇ O) (— OH) 2 , (C 3 H 7 O) 2 —P ( ⁇ O) (— OH), (C 3 H 7 O) —P ( ⁇ O) (— OH) 2 , (C 4 H 9 O) 2 —P ( ⁇ O) (— OH), (C 4 H 9 O) —P ( ⁇ O) (— OH) 2 , (C 8 H 17 O) 2 —P ( ⁇ O) (— OH), (C 8 H 17 O) —P ( ⁇ O) (— OH) 2 , (C 10 H 21 O) 2 —P ( ⁇ O) (— OH), (C 10 H 21 O) —P ( ⁇
  • silanol condensation catalysts (B) mentioned above from the viewpoint that the foaming reaction by the chemical foaming agent (C) is not inhibited and the curing reaction is not inhibited, that is, both the foaming reaction and the curing reaction are advanced in a balanced manner.
  • An organic acidic phosphoric acid ester compound is preferred, and general formula (1): (C m H 2m + 1 O) n —P ( ⁇ O) (— OH) 3-n where m is an integer of 4 to 10, n Is an integer of 0 to 3.)
  • n is more preferably 1 or 2.
  • the content of the silanol condensation catalyst (B) in the foamable liquid resin composition is 0.1 to 5 parts by weight, preferably 0.1 to 3 parts by weight, based on 100 parts by weight of the base resin (A). More preferred is 0.1 to 2.5 parts by weight. If the content of the silanol condensation catalyst (B) is less than 0.1 parts by weight, curing may not proceed sufficiently. Moreover, when there is more content of a silanol condensation catalyst (B) than 5 weight part, control of hardening of a liquid resin composition may be difficult, and the obtained modified silicone resin foam may be colored.
  • the chemical foaming agent (C) is not particularly limited, but any one selected from bicarbonate, organic acid and organic acid salt, bicarbonate and organic acid, and bicarbonate and organic acid salt. A combination is preferred.
  • the chemical foaming agent comprising bicarbonate and organic acid and organic acid salt, bicarbonate and organic acid, or bicarbonate and organic acid salt is a silanol condensation catalyst (B) of the base resin (A) in the present invention. ) Is a compound that generates carbon dioxide in parallel with the curing reaction (silanol condensation reaction), and does not generate flammable gases such as hydrogen. be able to.
  • bicarbonate Although it does not specifically limit as bicarbonate, since it is preferable to decompose
  • the organic acid is preferably a polyvalent carboxylic acid, and examples thereof include citric acid, oxalic acid, fumaric acid, phthalic acid, malic acid, and tartaric acid.
  • the organic acid salt include metal salts such as sodium, potassium, calcium, magnesium, ammonium, aluminum, and zinc of the organic acid.
  • Each of the bicarbonate, organic acid, and organic acid salt may be used alone or in combination of two or more.
  • the content of the chemical foaming agent (C) in the foamable liquid resin composition is 2 to 40 parts by weight with respect to 100 parts by weight of the base resin (A), and preferably 5 to 30 parts by weight.
  • the content of the chemical foaming agent (C) is less than 2 parts by weight, curing proceeds without sufficient foaming, and a foam having a low foaming ratio with poor flexibility may be obtained.
  • foaming will arise remarkably compared with hardening and it may become a bad foam, such as a foaming cell becoming large.
  • the content of bicarbonate with respect to 100 parts by weight of the base resin (A) is preferably 1 to 36 parts by weight, and more preferably 2 to 25 parts by weight.
  • the weight ratio of bicarbonate to organic acid and / or organic acid salt ((bicarbonate) / (organic acid + organic acid salt), (bicarbonate) / (organic acid), or (bicarbonate) ) / (Organic acid salt)) is preferably 1/10 or more and 10 or less, and more preferably 1/5 or more and 5 or less.
  • the bicarbonate content is less than 1 part by weight, or when the weight ratio of bicarbonate to organic acid and / or organic acid salt is less than 1/10, the amount of carbon dioxide generated by thermal decomposition is small, and the expansion ratio is low. It tends to decrease.
  • the content of bicarbonate is more than 36 parts by weight, or when the weight ratio of bicarbonate to organic acid and / or organic acid salt exceeds 10, the amount of carbon dioxide generated by thermal decomposition is large, and foaming and curing The balance may be lost and the foamed cells may become large, resulting in a defective foam.
  • Other chemical blowing agents include organic pyrolytic foaming agents such as azo compounds, nitroso compounds, hydrazine derivatives, semicarbazide compounds, tetrazole compounds, and trihydrazinotriazine, and inorganic pyrolytic foams such as carbonates and nitrites. Agents and the like.
  • Examples of the azo compound include azodicarbonamide (ADCA), azobisisobutyronitrile (AIBN), barium azodicarboxylate, diazoaminobenzene, and the like.
  • Examples of the nitroso compound include dinitrosopentamethylenetetramine (DPT).
  • Examples of the hydrazine derivative include p, p′-oxybis (benzenesulfonylhydrazide) (OBSH), paratoluenesulfonyl hydrazide (TSH), hydrazodicarbonamide (HDCA), and the like.
  • Examples of the semicarbazide compound include p-toluenesulfonyl semicarbazide.
  • Examples of the tetrazole compound include 5-phenyltetrazole, 1-H tetrazole salt, 1,4-bistetrazole and the like.
  • Examples of the carbonate include sodium carbonate and ammonium carbonate.
  • Examples of nitrites include ammonium nitrite. These may be used alone or in combination of two or more.
  • Thermally expandable microcapsules can also be used as the chemical foaming agent (C) in the present invention.
  • Thermally expandable microcapsules contain a volatile liquid that becomes gaseous at a temperature below the softening point of the shell polymer in a thermoplastic shell polymer, and when heated, the volatile liquid becomes gaseous. At the same time, the shell polymer softens and expands.
  • a plasticizer can be added for the purpose of adjusting the flexibility and moldability of the modified silicone resin foam.
  • a plasticizer for example, during the curing of the modified silicone resin foam, a cross-linking reaction (post-crosslinking) derived from unreacted silicon groups present in the foam occurs, and the hardness is increased to obtain the modified silicone resin foam. It is possible to prevent deterioration of the inherent flexibility and tactile sensation.
  • plasticizers to be used those in which the repeating unit constituting the main chain is composed of an oxyalkylene-based unit are preferable, and examples thereof include polyether polyols and derivatives obtained by converting the hydroxy groups of polyether polyols to ester groups, ethyl groups and the like.
  • Specific examples of the main chain include polyethylene oxide, polypropylene oxide, polybutylene oxide; a random or block copolymer of two or more monomers selected from ethylene oxide, propylene oxide, and butylene oxide. You may use, and may use 2 or more types together. Of these, polypropylene oxide is preferable from the viewpoint of compatibility with the base resin (A).
  • the plasticizer is not particularly limited as long as it can impart flexibility to the modified silicone resin foam, whether linear or branched.
  • the molecular weight of the plasticizer is preferably 1000 or more and more preferably 3000 or more in terms of number average molecular weight from the viewpoint of flexibility of the resulting modified silicone resin foam and prevention of outflow of the plasticizer to the outside of the system. If it is less than 1000, the plasticizer may flow out of the system over time due to heat, compression, etc., and the initial physical properties cannot be maintained over a long period of time, and the tactile sensation may be adversely affected.
  • the upper limit is not particularly limited, but the number average molecular weight is preferably 50000 or less, more preferably 30000 or less. When it exceeds 50000, the viscosity becomes high and workability may be deteriorated.
  • the addition amount of the plasticizer is preferably 5 parts by weight or more and 150 parts by weight or less, more preferably 10 parts by weight or more and 120 parts by weight or less, and still more preferably 20 parts by weight with respect to 100 parts by weight of the base resin (A).
  • the amount is 100 parts by weight or less. If the amount is less than 5 parts by weight, the effect of adjusting flexibility and molding processability may be difficult to develop. If the amount exceeds 150 parts by weight, the mechanical strength of the modified silicone resin foam tends to be insufficient, or the expansion ratio tends to decrease. is there.
  • the manufacturing method of a plasticizer is not specifically limited, A well-known manufacturing method can be applied, and also a commercially available compound may be used.
  • the modified silicone resin foam of the present invention may be added with a light-resistant stabilizer, an ultraviolet absorber, a storage stabilizer, a cell regulator, a lubricant, and the like as necessary.
  • the light-resistant stabilizer examples include hindered phenol antioxidants and hindered amine light stabilizers that do not contain sulfur atoms, phosphorus atoms, primary amines, and secondary amines.
  • the light-resistant stabilizer is a function that absorbs light having a wavelength in the ultraviolet region and suppresses the generation of radicals, or a function that captures radicals generated by light absorption and converts them into heat energy to render them harmless. And a compound that enhances stability to light.
  • the ultraviolet absorber is not particularly limited, and examples thereof include benzoxazine ultraviolet absorbers, benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers, and triazine ultraviolet absorbers.
  • the ultraviolet absorber is a compound having a function of absorbing light having a wavelength in the ultraviolet region and suppressing generation of radicals.
  • the addition amount of the light-resistant stabilizer and the ultraviolet absorber in the present invention it is easy to obtain the effect of suppressing the increase in surface tack over time, and therefore, with respect to 100 parts by weight of the base resin (A), respectively. 0.01 part by weight or more and 5 parts by weight or less are preferable, 0.1 part by weight or more and 3 parts by weight or less are more preferable, and 0.3 part by weight or more and 2.0 parts by weight or less are more preferable.
  • the storage stability improver include, for example, a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, an organic sulfur compound, a nitrogen-containing compound, a tin-based compound, and an organic peroxide. These may be used alone or in combination of two or more.
  • the type of cell regulator there are no particular limitations on the type of cell regulator, and commonly used, for example, inorganic solid powders such as talc, calcium carbonate, magnesium oxide, titanium oxide, zinc oxide, carbon black, silica, polyether modified silicone oil, etc. Silicone oil compounds, fluorine compounds, and the like. These may be used alone or in combination of two or more.
  • the amount of use of the cell regulator is preferably 0.1 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of the total amount of the base resin (A) and the silanol condensation catalyst (B). More preferably, it is at least 50 parts by weight.
  • the lubricant can improve the compatibility of the foamable liquid resin composition comprising the base resin (A), the silanol condensation catalyst (B), and the chemical foaming agent (C).
  • a lubricant by using a lubricant, it is possible to obtain a foam having desired tactile sensation and flexibility by reducing friction and adhesion in a foam cell of a foam obtained by foaming a foamable liquid resin composition.
  • the lubricant is held in a three-dimensional network structure formed by a silanol condensation reaction between the base resin (A) and tends to suppress bleeding out of the foam system. And flexibility can be maintained.
  • liquid lubricant As the lubricant, a liquid lubricant is preferable.
  • liquid lubricants include animal and vegetable oils such as paraffinic mineral oil, naphthenic mineral oil and fatty acid glyceride; olefinic lubricants having an alkyl structure such as poly-1-decene and polybutene; alkyl having an aralkyl structure Aromatic compound lubricants; polyalkylene glycol lubricants; ether lubricants such as polyalkylene glycol ethers, perfluoropolyethers, polyphenyl ethers; fatty acid esters, fatty acid diesters, polyol esters, silicate esters, phosphate esters Ester lubricants having an ester structure such as: dimethyl silicone (namely, dimethylpolysiloxane blocked with trimethylsiloxy groups at both ends), and a part of methyl groups of dimethylsilicone are polyether groups, phenyl groups, alkyl groups,
  • a silicone-based lubricant is particularly preferable from the viewpoints of reduction in coefficient of friction in the foamed cell, dispersibility, workability, safety, and the like.
  • the amount of the lubricant added is preferably 1 part by weight or more, more preferably 2 parts by weight or more, and still more preferably 3 parts by weight or more with respect to 100 parts by weight of the base resin (A). If it is less than 1 part by weight, the suppression of friction and adhesion in the foam cell becomes insufficient, and it is difficult to obtain desired tactile sensation and flexibility.
  • the upper limit of the lubricant is not particularly limited, but is preferably 25 parts by weight or less, and more preferably 20 parts by weight or less. If it exceeds 25 parts by weight, the expansion ratio of the foam tends to decrease, or the bleed out of the lubricant to the outside of the system tends to occur.
  • the modified silicone resin foam of the present invention has an ASKER FP hardness of 60 or less in a 25 ° C. atmosphere.
  • the ASKER FP hardness is a value obtained by measurement with an ASKER FP hardness meter.
  • the ASKER FP hardness is preferably 50 or less, and more preferably 40 or less. If it is 60 or less, it can be said that it is a flexible tactile sensation.
  • Modified silicone resin foam of the present invention preferably has a density of 900 kg / m 3 or less, 500 kg / m 3 or less is more preferable.
  • the density is 900 kg / m 3 or less, for example, when it is commercialized as a bedding or a cushion, it is assumed that it is relatively lightweight and easy to carry on a daily basis.
  • the lower limit of the density of the foam is not particularly limited, but is preferably 10 kg / m 3 or more, and more preferably 70 kg / m 3 or more. When it is less than 10 kg / m 3 , it may bottom out due to compression when used as bedding or a cushion.
  • the form of the modified silicone resin foam of the present invention is not particularly limited, and examples thereof include a plate shape, a sheet shape, an indeterminate lump shape, a bead shape, or a bag shape or a shape formed in a clothing. .
  • the foam may be used alone, or may be used integrally with other types of foams such as urethane foams, gels, plastics, rubbers, films, textiles such as cloth and non-woven fabric, and materials such as paper.
  • foams such as urethane foams, gels, plastics, rubbers, films, textiles such as cloth and non-woven fabric, and materials such as paper.
  • a cloth or a nonwoven fabric made of cotton, acrylic fiber, hair, polyester fiber or the like may be appropriately bonded to the surface of the modified silicone resin foam of the present invention using an adhesive. By sticking together in this way, the tactile feel of the foam can be further improved, and depending on the application, a sweat-absorbing action can be applied by the bonded fabric during sweating at the time of exercise or high temperature / humidity.
  • the shape of the modified silicone resin foam of the present invention is not particularly limited, but a polygon such as a rectangle, square, circle, ellipse or rhombus, or a rectangular or doughnut-shaped interior is hollowed out. And those with arbitrary irregularities on the surface. Moreover, you may make a through-hole suitably in order to give air permeability.
  • the method for producing the modified silicone resin foam is not particularly limited, but the foamable liquid resin composition may be injected into a mold and then foamed and cured.
  • the foamable liquid resin composition may be foamed before or simultaneously with curing. Specifically, it can be produced as follows.
  • the production method of the foamable liquid resin composition is not particularly limited, and the base resin (A), the silanol condensation catalyst (B) and the chemical foaming agent (C) are mixed with other additives as necessary. Manufactured.
  • the order of mixing is not particularly limited, and these components may be mixed together.
  • the base resin (A) and the chemical foaming agent (C) and other additives may be mixed as necessary.
  • base resin (A), and other additives as necessary are mixed, and finally silanol condensation catalyst (B) is added. That's fine. What is necessary is just to add simultaneously, when using combining several base resin (A).
  • the modified silicone resin foam of the present invention The body is obtained.
  • the heating temperature is not particularly limited.
  • the heating time is not particularly limited, and the heating time is not particularly limited.
  • the modified silicone of the present invention can be heated by heating for 1 minute to 6 hours, preferably 10 minutes to 3 hours. A resin foam is obtained.
  • the modified silicone resin foam of the present invention has high flexibility and good tactile sensation, it can be used in various applications that can effectively exhibit such physical properties.
  • isocyanate since is not used, it is suitable for applications such as transportation equipment, bedding / bedding, furniture, various equipment, building materials, packaging materials, medical / nursing care, etc. Available to:
  • Examples of applications that can effectively demonstrate the excellent tactile sensation and flexibility of the modified silicone resin foam of the present invention include, for example, transportation equipment applications such as seats for automobiles, construction machinery, railway vehicles, ships, and aircraft, child seats, headrests, armrests. , Footrests, headliners, saddles / rider cushions for motorcycles / bicycles, custom car bed mats, camper cushions, etc., skin materials / skin lining materials, ceiling materials, handles, door trims, instrument panels, dashes Boards, door panels, pillars, console boxes, quarter trims, sun visors, flexible containers, front mirrors, harnesses, dust covers and other core materials and skin / skin lining materials, floor cushions and other damping and sound absorbing materials, helmet linings, Rush pad, a cushioning material such as center Pila garnish, energy absorbing bumpers, guard acoustic insulation, vehicle wax sponge, and the like.
  • transportation equipment applications such as seats for automobiles, construction machinery, railway vehicles, ships, and aircraft, child seats, headrests, arm
  • cushion materials such as pillows, comforters, mattresses, beds, mattresses, bed mats, bed pads, cushions, cribs, baby neck pillows, and skin / skin lining materials may be used.
  • Furniture applications include cushions such as chairs, seat chairs, cushions, sofas, sofa cushions / seat cushions, carpets / mats, tatami mats / comforters, toilet mats, and skin / skin lining materials. It is done.
  • various equipment applications include seals and cushioning materials for liquid crystals and electronic parts, robot skin, conductive cushion materials, antistatic cushion materials, pressure sensing materials, and the like.
  • building materials include heat insulating materials such as floors and roofs, and shock absorbers such as floors and walls.
  • packaging materials include packaging materials such as cushioning materials, cushion materials, and shock absorbers.
  • cell sheets for regenerative medicine artificial skin, artificial bone, artificial cartilage, artificial organs, other biocompatible materials, chemical solution exuding pads, hemostatic pads, gas-liquid separation filters (indwelling needle filters), patching Agent, medical liquid absorbing device, mask, compression pad, surgical disposable product, electrode pad for low frequency treatment device, bed slip prevention mattress, posture change cushion, wheelchair cushion, wheelchair seat, shower chair and other care products, bathing Pillows for nursing care, palm protectors for contracture, taping, liners for casts, liners for artificial limbs and prostheses, denture bases, other dental products, shock absorbing pads, hip protectors, elbow / knee protectors, wound dressings, etc. It can be done.
  • Various cleaning sponge applications include cleaning cleaners, dishwashing cleaners, body cleaning cleaners, shoe polish cleaners, car wash cleaners, and the like.
  • toiletries include absorbent materials such as diapers and sanitary napkins, side gathers and various liquid filters.
  • footwear applications include shoe skin materials, linings, insoles, shoe rub prevention pads, various shoe pads, inner boots, slippers, slipper cores, sandals, sandal insoles, and the like.
  • cosmetic tools include cosmetic puffs and eye color chips.
  • bath products such as bath pillows, massage puffs, mouse pads, keyboard armrests, anti-slip cushions, stationery (pen grips, penetrating seals), desk pillows, earplugs, cotton swabs, hot pack seats , Cold pack seats, compresses, glasses pads, underwater spectacles pads, face protectors, watch pads, headphone ear pads, earphones, ice pillow covers, folding pillows and other core materials, cushion materials, skin materials / skin lining materials, both sides
  • Adsorption media such as a tape base material, a fragrance
  • Apparel applications include pad materials such as shoulders and bras, liners such as cold protection materials, and heat insulating materials.
  • Sports applications include sports protectors, bouldering (climbing and mini-climbing climbing rocks of 2 to 3 m) mats, beat boards, high jump cushions, gymnastics and athletic landing mats, kids mats, etc.
  • Examples thereof include liners for materials, skin materials, skin lining materials, ski boots, snowboard boots, and the like.
  • toys and playground equipment hand exercisers, healing goods, key holders, stuffed animals, mannequin bodies, balls, cushioning materials such as massage balls, padding materials, skin materials, skin lining materials, special shapes such as ornaments and monsters, various types Examples include casting materials for article shape molding and model production, article shape molding materials in casting methods, model sample preparation materials from molds, decorative article preparation materials, monster special moldings and moldings, etc. .
  • ⁇ Tactile sense> The tactile sensation when the obtained modified silicone resin foam was compressed with palm was evaluated according to the following criteria. ⁇ : It is soft and comfortable to touch, and can be deformed with low force when pushed to the side with a finger and shifted to the side. Same as gel material. ⁇ : Pushing with a finger until a feeling of bottoming is felt, and when it is shifted to the side, if it is a strong force, it can be laterally deformed. ⁇ : Pushing with a finger until a feeling of bottoming is felt, and when it is shifted to the side, it cannot be laterally deformed even with a strong force.
  • ⁇ Foam density> A cube of about 30 mm square is cut out from the obtained modified silicone resin foam, and the volume (m 3 ) is calculated by measuring the size of three sides, and is removed from the measured weight (kg). / M 3 ) was calculated.
  • Base resin (A) Trimethoxysilyl group-terminated polypropylene oxide polymer, number average molecular weight 29000, number of reactive silicon groups 1.4 in one molecule
  • Base resin 2 Trimethoxysilyl group-terminated polypropylene oxide polymer, number average molecular weight 29000, number of reactive silicon groups in one molecule 1.7
  • Base resin 3 methyldimethoxysilyl group-terminated polypropylene oxide polymer, number average molecular weight 29000, number of reactive silicon groups 1.8 in one molecule
  • Base resin 4 methyldimethoxysilyl group-terminated polypropylene oxide polymer, number average molecular weight 8000, number of reactive silicon groups in one molecule 0.9
  • Silanol condensation catalyst (B)] AP-1 (trade name): Methyl Acid Phosphate, manufactured by Daihachi Chemical Co., Ltd.
  • AP-4 (trade name): Butyl Acid Phosphate, AP-8 (trade name) manufactured by Daihachi Chemical Co., Ltd .: 2-ethylhexyl acid Phosphate, manufactured by Daihachi Chemical Co., Ltd.
  • AP-10 (trade name): Isodecyl Acid Phosphate, manufactured by Daihachi Chemical Co., Ltd. VT: tin neodecanoate, U-50 (trade name), manufactured by Nitto Kasei Co., Ltd. : Tin octylate, U-28 (trade name), manufactured by Nitto Kasei Co., Ltd.
  • VA Neodecanoic acid, Versatic 10 (trade name), Japan Epoxy Resin Co., Ltd.
  • Example 1 The chemical foaming agent (C) was added to the base resin (A) and mixed well. Thereafter, the silanol condensation catalyst (B) was added and mixed thoroughly. The obtained mixture was poured into a mold and heat-cured for 90 minutes in an oven set at 100 ° C. to obtain a modified silicone resin foam.
  • Example 2 The chemical foaming agent (C) was added to the base resin (A) and mixed well. Thereafter, the plasticizer was mixed, and finally the silanol condensation catalyst (B) was added and mixed thoroughly. The obtained mixture was poured into a mold and heat-cured for 90 minutes in an oven set at 100 ° C. to obtain a modified silicone resin foam.
  • Example 3 The chemical foaming agent (C) was added to the base resin (A) and mixed well. Thereafter, the plasticizer and the lubricant were mixed, and finally the silanol condensation catalyst (B) was added and mixed thoroughly. The obtained mixture was poured into a mold and heat-cured for 90 minutes in an oven set at 100 ° C. to obtain a modified silicone resin foam.
  • Example 5 to 9 The chemical foaming agent (C) was added to the base resin (A) and mixed well. Thereafter, the lubricant was mixed, and finally the silanol condensation catalyst (B) was added and mixed thoroughly. The obtained mixture was poured into a mold and heat-cured for 90 minutes in an oven set at 100 ° C. to obtain a modified silicone resin foam.
  • Example 10 The chemical foaming agent (C) was added to the base resin (A) and mixed well. Thereafter, the plasticizer and the lubricant were mixed, and finally the silanol condensation catalyst (B) was added and mixed thoroughly. The obtained mixture was poured into a mold and heat-cured for 90 minutes in an oven set at 100 ° C. to obtain a modified silicone resin foam.
  • Example 12 The chemical foaming agent (C) was added to the base resin (A) and mixed well. Thereafter, the lubricant was mixed, and finally the silanol condensation catalyst (B) was added and mixed thoroughly. The obtained mixture was poured into a mold and heat-cured for 90 minutes in an oven set at 100 ° C. to obtain a modified silicone resin foam.
  • the aqueous dispersion medium and the oily mixture were mixed, and the obtained mixed liquid was dispersed for 2 minutes with a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd., TK homomixer, rotation speed: 12000 rpm) to prepare a suspension.
  • the suspension was transferred to a pressure reactor having a capacity of 1.5 liters, and purged with nitrogen. Then, the initial reaction pressure was 0.5 MPa, and polymerization was performed at a polymerization temperature of 70 ° C. for 20 hours while stirring at 80 rpm.
  • the polymer solution obtained after polymerization was filtered and dried to obtain thermally expandable microcapsules.
  • the obtained thermally expandable microcapsules were expanded to produce hollow particles having a true specific gravity of 0.064 and an average particle diameter of 39 ⁇ m.
  • a methyldimethoxysilyl group-terminated polypropylene oxide polymer manufactured by Kaneka Corporation, trade name: Kaneka MS Polymer S203
  • a phthalate ester plasticizer manufactured by Jay Plus Co., Ltd., trade name: DINP
  • 60 parts by weight 120 parts by weight of surface-treated colloidal calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd., trade name: Shiraka Hana CCR)
  • an anti-sagging agent manufactured by Enomoto Kasei Co., Ltd., trade name: Disparon 6500
  • Tables 1 and 2 show the raw materials, blending weight parts, and evaluation results of each Example and Comparative Example.
  • the foams of the examples were superior in flexibility and tactile sensation compared to the comparative examples. Accordingly, it has been clarified that the present invention can provide a modified silicone resin foam that is excellent in flexibility, has good tactile sensation, and does not discharge hydrogen gas that has a risk of explosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の目的は、優れた触感や柔軟性を維持しつつ、副生成物として水素の発生を伴わない発泡成形が可能な変成シリコーン樹脂発泡体を提供することである。 本発明は、基材樹脂(A)100重量部、シラノール縮合触媒(B)0.1~5重量部、化学発泡剤(C)2~40重量部を含む発泡性液状樹脂組成物を硬化してなる変成シリコーン樹脂発泡体であって、基材樹脂(A)が、ケイ素原子に結合した加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素基を分子鎖中に少なくとも1個有し、主鎖がオキシアルキレン系単位から構成される重合体からなり、該発泡体が、25℃雰囲気下においてASKER FP硬度が60以下であることを特徴とする変成シリコーン樹脂発泡体である。

Description

変成シリコーン樹脂発泡体
本発明は、ケイ素原子に結合した加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素基(以下、「反応性ケイ素基」という。)を有する重合体、シラノール縮合触媒、および、化学発泡剤を含む発泡性液状樹脂組成物を硬化してなる変成シリコーン樹脂発泡体に関する。
高分子化合物の発泡体としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ塩化ビニルなどの熱可塑性樹脂を用いた発泡体が、ビーズ、シート、あるいはボードとして、その断熱性、軽量性、緩衝性などの特性を活かし、土木建築分野、包装分野、家電分野、自動車分野などに利用されている。これらはいずれも、成形体とするのに大規模な設備を必要とする。これらはまた、一般的に硬質の発泡体である。
液状樹脂組成物を硬化・発泡してなる熱硬化性樹脂を用いた発泡体として、ポリウレタンの発泡体がよく知られている。ポリウレタンの発泡体は、小規模な設備で簡単に成形でき、軟質の発泡体も作製可能であるが(特許文献1)、該ポリウレタン発泡体は充分な柔軟性があるとは言えず、触感が良い物とは言えない。そこで、成形が容易であり、かつ柔軟で触感の良い発泡体が望まれている。
一方、変成シリコーン樹脂を用いても、条件によっては発泡体を作製することが可能である。特許文献2では、変成シリコーン樹脂と予め発泡させた中空粒子とを含む硬化物が開示されているが、作製された硬化物は発泡体ではなく、高硬度で柔軟性に欠ける。特許文献3では、従来の軟質発泡体であるポリウレタンの発泡体よりも触感が良好で、低硬度、低反発弾性率といった優れた柔軟性を有しており、寝具や各種クッション材等の素材として好適である変成シリコーン樹脂発泡体が開示されている。ただし、硬化反応にはヒドロシリル化反応を用いており、使用形態によっては、発泡体作製時に爆発の危険性が高い水素ガスが副生成物として発生する可能性がある。
特開2006-131755号公報 特開2013-237815号公報 特開2009-114300号公報
以上に鑑み、本発明の目的は、優れた触感や柔軟性を維持しつつ、副生成物として水素の発生を伴わない発泡成形が可能な変成シリコーン樹脂発泡体を提供することにある。
本発明者らは、上記課題に関して鋭意検討を行った結果、反応性ケイ素基を有し、主鎖を構成する単位がオキシアルキレン系単位からなる重合体を、シラノール縮合触媒及び化学発泡剤と組み合わせることにより、発泡体作製時に爆発の危険性が高い水素ガスを副生成物として発生することなく高い柔軟性を有する変成シリコーン樹脂発泡体が得られることを見出し、発明を完成させるに至った。
すなわち、本発明は、以下の構成を有するものである。
1)基材樹脂(A)100重量部、シラノール縮合触媒(B)0.1~5重量部、化学発泡剤(C)2~40重量部を含む発泡性液状樹脂組成物を硬化してなる変成シリコーン樹脂発泡体であって、
基材樹脂(A)が、ケイ素原子に結合した加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素基を分子鎖中に少なくとも1個有し、主鎖がオキシアルキレン系単位から構成される重合体からなり、
該発泡体が、25℃雰囲気下においてASKER FP硬度が60以下であることを特徴とする変成シリコーン樹脂発泡体。
2)前記重合体の主鎖を構成する繰り返し単位がオキシプロピレンであることを特徴とする1)に記載の変成シリコーン樹脂発泡体。
3)前記重合体が、数平均分子量3000以上100000以下の重合体であることを特徴とする1)又は2)に記載の変成シリコーン樹脂発泡体。
4)シラノール縮合触媒(B)が有機酸性リン酸エステル化合物であることを特徴とする1)~3)のいずれかに記載の変成シリコーン樹脂発泡体。
5)前記シラノール縮合触媒(B)が、一般式(1):(C2m+1O)-P(=O)(-OH)3-n(式中、mは4~10の整数、nは0~3の整数である。)で示される有機酸性リン酸エステル化合物であることを特徴とする1)~4)のいずれかに記載の変成シリコーン樹脂発泡体。
6)前記化学発泡剤(C)が、重炭酸塩と有機酸と有機酸塩、重炭酸塩と有機酸、および、重炭酸塩と有機酸塩から選ばれるいずれかの組み合わせであることを特徴とする1)~5)のいずれかに記載の変成シリコーン樹脂発泡体。
7)前記有機酸が、多価カルボン酸であることを特徴とする6)に記載の変成シリコーン樹脂発泡体。
8)前記有機酸塩が多価カルボン酸の金属塩であることを特徴とする6)または7)に記載の変成シリコーン樹脂発泡体。
9)密度が10kg/m以上900kg/m以下であることを特徴とする1)~8)のいずれかに記載の変成シリコーン樹脂発泡体。
10)1)~9)のいずれかに記載の変成シリコーン樹脂発泡体の製造方法。
11)前記発泡性液状樹脂組成物を、型枠に注入してから発泡および硬化させることを特徴とする10)に記載の変成シリコーン樹脂発泡体の製造方法。
12)前記発泡性液状樹脂組成物を硬化させる前、又は、硬化させると同時に発泡させることを特徴とする10)または11)に記載の変成シリコーン樹脂発泡体の製造方法。
本発明の変成シリコーン樹脂発泡体は、優れた触感や柔軟性を維持しつつ、成形時に副生成物として水素の発生を伴わない。
本発明の変成シリコーン樹脂発泡体は、優れた触感・柔軟性を有することからから寝具、各種クッション材、等の用途向け素材として好適に使用される。また、発泡体作製の際に、反応中においても爆発の危険性が高い水素ガスが発生しないため、設備的な負担が小さい設備にて発泡体を作製することが可能である。
以下、本発明について詳しく説明する。
本発明の変成シリコーン樹脂発泡体は、(A)基材樹脂100重量部、(B)シラノール縮合触媒0.1~5重量部、および、(C)化学発泡剤2~40重量部を含む発泡性液状樹脂組成物を硬化してなり、基材樹脂(A)は、ケイ素原子に結合した加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素基を分子鎖中に少なくとも1個有し、主鎖がオキシアルキレン系単位から構成される重合体からなることを特徴とする。また、該発泡体の25℃雰囲気下におけるASKER FP硬度は60以下である。
<発泡性液状樹脂組成物>
まず、発泡性液状樹脂組成物の構成成分である、基材樹脂(A)、シラノール縮合触媒(B)、化学発泡剤(C)について記述する。
<基材樹脂(A)>
本発明における分子鎖中に少なくとも1個の反応性ケイ素基を有し、主鎖がオキシアルキレン系単位から構成される重合体は、シラノール縮合触媒(B)によって硬化する成分であり、分子鎖中に少なくとも1個の反応性ケイ素基を有するため、シラノール縮合反応が起こって架橋して高分子状となり、硬化する。
重合体に含まれる反応性ケイ素基の数は、シラノール縮合触媒(B)によって縮合反応するという点から、重合体1分子中に平均して少なくとも1個必要であり、好ましくは1.1個以上、より好ましくは1.2個以上存在するのがよい。また、平均2.5個以下であることが好ましく、2個以下であることがより好ましい。平均1個未満の場合、硬化性が不十分になり、2.5個を超えると、硬化物が硬くなることがある。また、硬化性、柔軟性の点からは、主鎖もしくは分岐部の分子鎖の両末端に反応性ケイ素基が存在するのが好ましい。
反応性ケイ素基の平均個数は、H-NMR機器を用いて定量する方法により求めることができる。
重合体中に含有される反応性ケイ素基は、ケイ素原子に結合したヒドロキシ基または加水分解性基を有し、シラノール縮合触媒によって加速される反応によりシロキサン結合を形成することにより架橋しうる基である。反応性ケイ素基としては、一般式(2):
-SiR 3-a  (2)
(Rは、それぞれ独立に炭素原子数1から20のアルキル基、炭素原子数6から20のアリール基、炭素原子数7から20のアラルキル基、または、-OSi(R’)(R’は、それぞれ独立に炭素原子数1から20の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは、それぞれ独立にヒドロキシ基または加水分解性基である。更に、aは1から3の整数である)で表される基があげられる。
加水分解性基としては、特に限定されず、従来公知の加水分解性基であればよい。具体的には、例えば水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、および、アルケニルオキシ基が好ましく、加水分解性が穏やかで取扱いやすいという観点からアルコキシ基が特に好ましい。アルコキシ基としては、メトキシ基およびエトキシ基が好ましい。
加水分解性基やヒドロキシ基は、1個のケイ素原子に1から3個の範囲で結合することができる。加水分解性基やヒドロキシ基が反応性ケイ素基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。
上記一般式(2)におけるaは、硬化性の点から、2または3であることが好ましく、特に速硬化性を求める場合には3であることが好ましく、貯蔵中の安定性を求める場合には2であることが好ましい。
また上記一般式(2)におけるRの具体例としては、例えばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R’がメチル基、フェニル基等である-OSi(R’)で示されるトリオルガノシロキシ基、クロロメチル基、メトキシメチル基等があげられる。これらの中ではメチル基が特に好ましい。
反応性ケイ素基のより具体的な例示としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジイソプロポキシメチルシリル基が挙げられる。活性が高く良好な硬化性が得られることから、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基が好ましい。
重合体の構造としては、直鎖状であっても、分岐が主鎖の分子量よりも少ない範囲で分岐構造を有していても構わないが、直鎖状であるほうが柔軟性の観点から好ましい。
重合体の分子量は、柔軟性・触感および反応性のバランスの点から、数平均分子量Mnが3000以上であることが好ましく、10000以上であることがより好ましい。数平均分子量Mnの上限値には特に限定は無いが、100000以下が好ましく、50000以下がより好ましく、30000以下がさらに好ましい。Mnが3000未満であると、粘度が低くなり、硬化反応が進み難いだけでなく、触感にも悪影響を及ぼす可能性があり、100000を超えると、触感に悪影響を及ぼすだけでなく、粘度が高くなり作業性が悪化する可能性がある。
なお、数平均分子量は、GPCを用いた標準ポリスチレン換算法により算出する。
また、基材樹脂(A)は、2種類以上の重合体の組み合わせからなるものでも良い。基材樹脂(A)が2種類以上の重合体の混合物である場合は、混合物の数平均分子量が上記の範囲であることが好ましい。
なお、柔軟性、触感、架橋構造等の調整を目的として、基材樹脂(A)に、上記以外の重合体を添加してもよい。
主鎖がオキシアルキレン系単位から構成される重合体は、主鎖を形成する出発物質として活性水素を2個以上有する化合物を使用し、アルキレンオキシドを重合させることにより製造することができる。例えば、エチレングリコール、プロピレングリコール、ビスフェノール化合物、グリセリン、トリメチロールプロパン、ペンタエリストール等を出発物質として用い、C~Cのアルキレンオキシドを重合させることにより製造することができる。
本発明における重合体の主鎖の具体例としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシド;エチレンオキシド、プロピレンオキシド、及びブチレンオキシドから選ばれる2種以上のモノマーのランダムまたはブロック共重合体、等が挙げられる。柔軟性、及び触感の点から、主鎖の繰返し単位は、オキシプロピレンであることがより好ましい。
重合体の主鎖骨格に反応性ケイ素基を導入する方法としては、特に限定されず、例えば、国際公開第2014/073593号に記載された公知の方法で行うことができる。
<シラノール縮合触媒(B)>
本発明におけるシラノール縮合触媒(B)としては、シラノール縮合触媒として使用し得るものである限り、特に制限はなく、任意のものを使用し得る。
このようなシラノール縮合触媒(B)の具体例としては、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジエチルヘキサノエート、ジブチル錫ジオクテート、ジブチル錫ジメチルマレート、ジブチル錫ジエチルマレート、ジブチル錫ジブチルマレート、ジブチル錫ジイソオクチルマレート、ジブチル錫ジトリデシルマレート、ジブチル錫ジベンジルマレート、ジブチル錫マレエート、ジオクチル錫ジアセテート、ジオクチル錫ジステアレート、ジオクチル錫ジラウレート、ジオクチル錫ジエチルマレート、ジオクチル錫ジイソオクチルマレート等のジアルキル錫ジカルボキシレート類、ジブチル錫ジメトキシド、ジブチル錫ジフェノキシド等のジアルキル錫アルコキサイド類、ジブチル錫ジアセチルアセトナート、ジブチル錫ジエチルアセトアセテートなどのジアルキル錫の分子内配位性誘導体類、ジブチル錫オキサイドやジオクチル錫オキサイド等のジアルキル錫オキサイドとジオクチルフタレート、ジイソデシルフタレート、メチルマレエート等のエステル化合物との反応物、ジアルキル錫オキサイド、カルボン酸およびアルコール化合物を反応させて得られる錫化合物、ジブチル錫ビストリエトキシシリケート、ジオクチル錫ビストリエトキシシリケート等のジアルキル錫オキサイドとシリケート化合物との反応物、およびこれらジアルキル錫化合物のオキシ誘導体(スタノキサン化合物)等の4価の錫化合物類;オクチル酸錫、ナフテン酸錫、ステアリン酸錫、バーサチック酸錫等の2価の錫化合物類、あるいはこれらと後述のラウリルアミン等のアミン系化合物との反応物および混合物;モノブチル錫トリスオクトエートやモノブチル錫トリイソプロポキシド等のモノブチル錫化合物やモノオクチル錫化合物等のモノアルキル錫類;テトラブチルチタネート、テトラプロピルチタネート、テトラ(2-エチルヘキシル)チタネート、イソプロポキシチタンビス(エチルアセトアセテート)等のチタン酸エステル類;アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジ-イソプロポキシアルミニウムエチルアセトアセテート等の有機アルミニウム化合物類;カルボン酸ビスマス、カルボン酸鉄、カルボン酸チタニウム、カルボン酸鉛、カルボン酸バナジウム、カルボン酸ジルコニウム、カルボン酸カルシウム、カルボン酸カリウム、カルボン酸バリウム、カルボン酸マンガン、カルボン酸セリウム、カルボン酸ニッケル、カルボン酸コバルト、カルボン酸亜鉛、カルボン酸アルミニウム等のカルボン酸(2-エチルヘキサン酸、ネオデカン酸、バーサチック酸、オレイン酸、ナフテン酸等)金属塩、あるいはこれらと後述のラウリルアミン等のアミン系化合物との反応物および混合物;ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシアセチルアセトナート、ジブトキシジルコニウムジアセチルアセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテート)、チタンテトラアセチルアセトナート等のキレート化合物類;メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、アミルアミン、ヘキシルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ラウリルアミン、ペンタデシルアミン、セチルアミン、ステアリルアミン、シクロヘキシルアミン等の脂肪族第一アミン類;ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジアミルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、ジデシルアミン、ジラウリルアミン、ジセチルアミン、ジステアリルアミン、メチルステアリルアミン、エチルステアリルアミン、ブチルステアリルアミン等の脂肪族第二アミン類;トリアミルアミン、トリヘキシルアミン、トリオクチルアミン等の脂肪族第三アミン類;トリアリルアミン、オレイルアミン、などの脂肪族不飽和アミン類;ラウリルアニリン、ステアリルアニリン、トリフェニルアミン等の芳香族アミン類;および、その他のアミン類として、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン、オレイルアミン、シクロヘキシルアミン、ベンジルアミン、ジエチルアミノプロピルアミン、キシリレンジアミン、エチレンジアミン、ヘキサメチレンジアミン、トリエチレンジアミン、グアニジン、ジフェニルグアニジン、2,4,6-トリス(ジメチルアミノメチル)フェノール、モルホリン、N-メチルモルホリン、2-エチル-4-メチルイミダゾール、1,8-ジアザビシクロ(5,4,0)ウンデセン-7(DBU)等のアミン系化合物、あるいはこれらのアミン系化合物のカルボン酸等との塩;ラウリルアミンとオクチル酸錫の反応物あるいは混合物のようなアミン系化合物と有機錫化合物との反応物および混合物;過剰のポリアミンと多塩基酸とから得られる低分子量ポリアミド樹脂;過剰のポリアミンとエポキシ化合物との反応生成物;γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル)アミノプロピルトリメトキシシラン、N-(β-アミノエチル)アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)アミノプロピルトリエトキシシラン、N-(β-アミノエチル)アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-ウレイドプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン等を挙げることができる。また、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン等のアミノ基を有するシランカップリング剤;等のシラノール縮合触媒、さらにはバーサチック酸等の脂肪酸や有機酸性リン酸エステル化合物等他の酸性触媒、塩基性触媒等の公知のシラノール縮合触媒等が例示できる。
これらは、単独で使用してもよいし、2種以上を併用してもよい。
酸性触媒の有機酸性リン酸エステル化合物としては、(CHO)-P(=O)(-OH)、(CHO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(C17O)-P(=O)(-OH)、(C17O)-P(=O)(-OH)、(C1021O)-P(=O)(-OH)、(C1021O)-P(=O)(-OH)、(C1327O)-P(=O)(-OH)、(C1327O)-P(=O)(-OH)、(C1633O)-P(=O)(-OH)、(C1633O)-P(=O)(-OH)、(HO-C12O)-P(=O)(-OH)、(HO-C12O)-P(=O)(-OH)、(HO-C16O)-P(=O)(-OH)、(HO-C16O)-P(=O)(-OH)、[(CHOH)(CHOH)CHO]-P(=O)(-OH)、[(CHOH)(CHOH)CHO]-P(=O)(-OH)、[(CHOH)(CHOH)CO]-P(=O)(-OH)、[(CHOH)(CHOH)CO]-P(=O)(-OH)などが挙げられるが、例示物質に限定されるものではない。
化学発泡剤(C)による発泡反応を阻害せず硬化反応も阻害されない、すなわち、発泡反応と硬化反応の両方をバランス良く進行させるという観点からは、上記に挙げられるシラノール縮合触媒(B)の中でも、有機酸性リン酸エステル化合物が好ましく、一般式(1):(C2m+1O)-P(=O)(-OH)3-n(式中、mは4~10の整数、nは0~3の整数である。)で表される構造を有する有機酸性リン酸エステル化合物がより好ましい。mが4より小さいと、硬化反応の進行が遅く、発泡反応とのバランス調整が困難となり未硬化の発泡体となる傾向がある。また、式(1)において、nは1または2であることがさらに好ましい。
発泡性液状樹脂組成物におけるシラノール縮合触媒(B)の含有量は、基材樹脂(A)100重量部に対して0.1~5重量部であり、0.1~3重量部が好ましく、0.1~2.5重量部がより好ましい。シラノール縮合触媒(B)の含有量が0.1重量部より少ないと、十分に硬化が進行しない場合がある。また、シラノール縮合触媒(B)の含有量が5重量部よりも多いと、液状樹脂組成物の硬化の制御が困難な場合や、得られた変成シリコーン樹脂発泡体が着色する場合がある。
<化学発泡剤(C)>
本発明では、化学発泡剤(C)としては特に限定されないが、重炭酸塩と有機酸と有機酸塩、重炭酸塩と有機酸、および、重炭酸塩と有機酸塩から選ばれるいずれかの組み合わせが好ましい。重炭酸塩と有機酸と有機酸塩、重炭酸塩と有機酸、または、重炭酸塩と有機酸塩からなる化学発泡剤は、本発明での基材樹脂(A)のシラノール縮合触媒(B)による硬化反応(シラノール縮合反応)と併行して、炭酸ガスを発生する化合物であり、水素等の可燃性ガスが発生しないため、防火・防爆仕様の設備にすることなく、発泡体を製造することができる。
重炭酸塩としては、特に限定されないが、基材樹脂(A)のシラノール縮合触媒(B)による硬化反応(シラノール縮合反応)が適切に進行する温度領域で分解することが好ましいことから、炭酸水素ナトリウム、および、炭酸水素アンモニウムが好ましい。
有機酸としては多価カルボン酸が好ましく、例えば、クエン酸、シュウ酸、フマル酸、フタル酸、リンゴ酸、酒石酸等が挙げられる。
有機酸塩としては、前記有機酸のナトリウム、カリウム、カルシウム、マグネシウム、アンモニウム、アルミニウム、亜鉛等の金属塩等が挙げられる。
重炭酸塩、有機酸、及び、有機酸塩は、それぞれ、1種を使用してもよいし、2種以上を併用してもよい。
発泡性液状樹脂組成物における化学発泡剤(C)の含有量は、基材樹脂(A)100重量部に対して2~40重量部であり、5~30重量部が好ましい。化学発泡剤(C)の含有量が2重量部より少ないと、十分な発泡が起こらないまま硬化が進行し、柔軟性に乏しい発泡倍率の低い発泡体となる場合がある。また、化学発泡剤(C)の含有量が40重量部よりも多いと、硬化に比べ発泡が著しく起こり、発泡セルが大きくなる等不良な発泡体となる場合がある。
基材樹脂(A)100重量部に対する重炭酸塩の含有量は、1重量部以上36重量部以下が好ましく、2重量部以上25重量部以下がより好ましい。
また、重炭酸塩と有機酸および/または有機酸塩の重量比率((重炭酸塩)/(有機酸+有機酸塩)、(重炭酸塩)/(有機酸)、または、(重炭酸塩)/(有機酸塩))が1/10以上10以下であることが好ましく、1/5以上5以下であることがより好ましい。重炭酸塩の含有量が1重量部未満、又は、重炭酸塩と有機酸および/または有機酸塩の重量比率が1/10未満では、熱分解による炭酸ガスの発生量が少なく、発泡倍率が低下する傾向にある。重炭酸塩の含有量が36重量部より多い、又は、重炭酸塩と有機酸および/または有機酸塩の重量比率が10を超えると、熱分解による炭酸ガスの発生量が多く、発泡と硬化のバランスが崩れ、発泡セルが大きくなる等不良な発泡体となる場合がある。
他の化学発泡剤としては、アゾ化合物、ニトロソ化合物、ヒドラジン誘導体、セミカルバジド化合物、テトラゾール化合物、トリヒドラジノトリアジン等の有機系熱分解型発泡剤、炭酸塩、亜硝酸塩等の無機系熱分解型発泡剤等が挙げられる。
アゾ化合物としては、例えば、アゾジカルボンアミド(ADCA)、アゾビスイソブチロニトリル(AIBN)、バリウムアゾジカルボキシレート、ジアゾアミノベンゼン等が挙げられる。
ニトロソ化合物としては、例えば、ジニトロソペンタメチレンテトラミン(DPT)が挙げられる。
ヒドラジン誘導体としては、例えば、p,p’-オキシビス(ベンゼンスルホニルヒドラジド)(OBSH)、パラトルエンスルホニルヒドラジド(TSH)、ヒドラゾジカルボンアミド(HDCA)等が挙げられる。
セミカルバジド化合物としては、例えば、p-トルエンスルホニルセミカルバジドが挙げられる。
テトラゾール化合物としては、例えば、5-フェニルテトラゾール、1-Hテトラゾール塩、1,4-ビステトラゾール等が挙げられる。
炭酸塩としては、炭酸ナトリウム、炭酸アンモニウム等が挙げられる。
亜硝酸塩としては、例えば亜硝酸アンモニウムが挙げられる。
これらは、単独で使用してもよいし、2種以上を併用してもよい。
本発明における化学発泡剤(C)として、熱膨張性マイクロカプセルを用いることもできる。熱膨張性マイクロカプセルは、熱可塑性のシェルポリマーの中に、シェルポリマーの軟化点以下の温度でガス状になる揮発性液体を内包しており、加熱されると、揮発性液体がガス状になるとともに、シェルポリマーが軟化して膨張する。
<その他の添加剤>
本発明において、変成シリコーン樹脂発泡体の柔軟性や成形加工性を調整する目的で可塑剤を添加することができる。
可塑剤を添加すると、例えば、変成シリコーン樹脂発泡体の養生中に、発泡体中に存在する未反応ケイ素基由来の架橋反応(後架橋)が起こり、硬度が上昇して変成シリコーン樹脂発泡体が元来有している柔軟性や触感が悪化するのを防ぐことができる。
用いる可塑剤としては、主鎖を構成する繰り返し単位がオキシアルキレン系単位からなるものが好ましく、ポリエーテルポリオールやポリエーテルポリオールのヒドロキシ基をエステル基、エチル基などに変換した誘導体が挙げられる。主鎖の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシド;エチレンオキシド、プロピレンオキシド、及びブチレンオキシドから選ばれる2種以上のモノマーのランダムまたはブロック共重合体等が挙げられ、これらは単独で使用しても良く、2種類以上を併用しても良い。これらのうち、基材樹脂(A)との相溶性の点で、ポリプロピレンオキシドが好ましい。なお、可塑剤は、変成シリコーン樹脂発泡体に柔軟性を付与できるものであれば、直鎖状でも分岐状でも特に限定はない。
可塑剤の分子量は、得られる変成シリコーン樹脂発泡体の柔軟性や、可塑剤の系外への流出防止の観点から数平均分子量で1000以上が好ましく、3000以上がより好ましい。1000未満であると、熱や圧縮等により可塑剤が経時的に系外に流出し、初期の物性を長期にわたり維持できないだけでなく、触感に悪影響を及ぼす可能性がある。また、上限値は特に限定は無いが、数平均分子量50000以下が好ましく、30000以下がより好ましい。50000を超えると粘度が高くなり、作業性が悪化する可能性がある。
可塑剤の添加量は、基材樹脂(A)100重量部に対して、好ましくは、5重量部以上150重量部以下、より好ましくは10重量部以上120重量部以下、さらに好ましくは20重量部以上100重量部以下である。5重量部未満では、柔軟性や成形加工性を調整する効果が発現し難い場合があり、150重量部を超えると変成シリコーン樹脂発泡体の機械強度が不足したり、発泡倍率が低下する傾向がある。
可塑剤の製造方法は特に限定なく、公知の製造方法を適用することができ、さらに市販の化合物を用いてもよい。
本発明の変成シリコーン樹脂発泡体には、本発明の効果を損なわない限り、耐光性安定剤、紫外線吸収剤、貯蔵安定剤、気泡調整剤、潤滑剤等を必要に応じて添加しても良い。
前記耐光性安定剤としては、ヒンダードフェノール系酸化防止剤、及びイオウ原子、リン原子、1級アミン、2級アミンを含まないヒンダードアミン系光安定剤が挙げられる。ここで、耐光性安定剤とは、紫外線領域の波長の光を吸収してラジカルの生成を抑制する機能、または、光吸収により生成したラジカルを捕捉して熱エネルギーに変換し無害化する機能等を有し、光に対する安定性を高める化合物である。
前記紫外線吸収剤としては、特に限定されるものではないが、ベンゾオキサジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤等が例示される。ここで、紫外線吸収剤とは、紫外線領域の波長の光を吸収してラジカルの生成を抑制する機能を有する化合物である。
本発明における耐光性安定剤、紫外線吸収剤の添加量としては、経時的な表面粘着性の上昇を抑制する効果が得やすいことから、それぞれ、基材樹脂(A)100重量部に対して、0.01重量部以上5重量部以下が好ましく、0.1重量部以上3重量部以下がより好ましく、0.3重量部以上2.0重量部以下がさらに好ましい。
前記貯蔵安定性改良剤の好ましい例としては、例えば、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機硫黄化合物、チッ素含有化合物、スズ系化合物、有機過酸化物等が挙げられる。これらを単独使用、または2種以上併用してもよい。具体的には、2-ベンゾチアゾリルサルファイド、ベンゾチアゾール、チアゾール、ジメチルアセチレンダイカルボキシレート、ジエチルアセチレンダイカルボキシレート、2,6-ジ-t-ブチル-4-メチルフェノール、ブチルヒドロキシアニソール、ビタミンE、2-(4-モルフォジニルジチオ)ベンゾチアゾール、3-メチル-1-ブテン-3-オール、アセチレン性不飽和基含有オルガノシロキサン、アセチレンアルコール、3-メチル-1-ブチン-3-オール、2-メチル-3-ブチン-2-オール、ジアリルフマレート、ジアリルマレエート、ジエチルフマレート、ジエチルマレエート、ジメチルマレエート、2-ペンテンニトリル、2,3-ジクロロプロペン等が挙げられる。
気泡調整剤の種類には特に限定はなく、通常使用される、例えば、タルク、炭酸カルシウム、酸化マグネシウム、酸化チタン、酸化亜鉛、カーボンブラック、シリカ等の無機固体粉末や、ポリエーテル変成シリコーンオイル等のシリコーンオイル系化合物、フッ素系化合物等が挙げられる。これらは、単独で使用してもよいし、2種以上を併用してもよい。
本発明における気泡調整剤の使用量は、基材樹脂(A)とシラノール縮合触媒(B)の合計量100重量部に対して、0.1重量部以上100重量部以下が好ましく、0.5重量部以上50重量部以下がより好ましい。
潤滑剤は、基材樹脂(A)、シラノール縮合触媒(B)、化学発泡剤(C)を含んでなる発泡性液状樹脂組成物の相溶性を向上させることができる。また、潤滑剤を使用することで、発泡性液状樹脂組成物を発泡してなる発泡体の発泡セル内における摩擦や粘着を少なくし、所望の触感や柔軟性を有する発泡体を得ることができる。また、潤滑剤は、基材樹脂(A)間のシラノール縮合反応によって形成される三次元網目構造体に保持されて、発泡体系外へのブリードアウトが抑えられる傾向にあるため、長期間にわたって触感や柔軟性を維持することが可能となる。
潤滑剤としては、液状の潤滑剤が好ましい。液状の潤滑剤の具体的な例としては、パラフィン系鉱油、ナフテン系鉱油、脂肪酸グリセライドなどの動植物油;ポリ-1-デセン、ポリブテンなどのアルキル構造を有するオレフィン系潤滑剤;アラルキル構造を有するアルキル芳香族化合物系潤滑剤;ポリアルキレングリコール系潤滑剤;ポリアルキレングリコールエーテル、パーフロロポリエーテル、ポリフェニルエーテルなどのエーテル系潤滑剤;脂肪酸エステル、脂肪酸ジエステル、ポリオールエステル、ケイ酸エステル、リン酸エステルなどのエステル構造を有するエステル系潤滑剤;ジメチルシリコーン(即ち、両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン)、およびジメチルシリコーンのメチル基の一部をポリエーテル基、フェニル基、アルキル基、アラルキル基、フッ素化アルキル基等で置換したシリコーンオイル等のシリコーン系潤滑剤;クロロフルオロカーボンなどのフッ素原子含有系潤滑剤などが挙げられる。これらは、単独で使用してもよいし、2種以上を併用してもよい。
これらのうち本発明では、発泡セル内における摩擦係数の低下や分散性、加工性、安全性等の観点から、特にシリコーン系潤滑剤が好ましい。
潤滑剤の添加量は、基材樹脂(A)100重量部に対して、1重量部以上が好ましく、2重量部以上がより好ましく、3重量部以上が更に好ましい。1重量部未満では、発泡セル内の摩擦や粘着の抑制が不十分となり、所望の触感や柔軟性が得られ難い。潤滑剤の上限値は特に制限はないが、25重量部以下、さらには20重量部以下が好ましい。25重量部を超えると、発泡体の発泡倍率が低下したり、潤滑剤の系外へのブリードアウトが発生する傾向がある。
<変成シリコーン樹脂発泡体>
本発明の変成シリコーン樹脂発泡体の25℃雰囲気下におけるASKER FP硬度は60以下である。ASKER FP硬度は、ASKER FP硬度計による測定で得られる値である。ASKER FP硬度は、50以下であることが好ましく、40以下であることがより好ましい。60以下であれば、柔軟な触感であるといえる。
本発明の変成シリコーン樹脂発泡体は、密度が900kg/m以下であることが好ましく、500kg/m以下がより好ましい。密度が900kg/m以下であると、例えば、寝具やクッション等として製品化した場合、比較的軽量であり日常的な持ち運びが楽になるものと想定される。発泡体の密度の下限は、特に限定するものではないが、10kg/m以上が好ましく、70kg/m以上がよりに好ましい。10kg/m未満であると、寝具やクッション等として使用する際、圧縮により底付きする場合がある。
本発明の変成シリコーン樹脂発泡体の形態としては、特に限定するものではないが、例えば板状、シート状、不定形塊状、ビーズ状、あるいは袋状や衣服の形態に成形したもの等が挙げられる。
また、発泡体は単独で用いても良く、ウレタン発泡体等の他種発泡体やゲル、プラスチック、ゴム、フィルム、布や不織布等の繊維製品、紙等の素材と一体として用いても良い。
またさらには、本発明の変成シリコーン樹脂発泡体の表面に綿、アクリル繊維、毛、ポリエステル繊維等でできた布や不織布を、適宜、接着剤を使って貼り合わせても良い。この様に貼り合わせることで、発泡体の触感をさらに良好にし、さらに、用途によっては運動時や高温・多湿時の発汗時にこの張り合わされた生地によって吸汗作用を施すことができる。
本発明の変成シリコーン樹脂発泡体の形状としては、特に限定されるものではないが、長方形、正方形、円形、楕円形、ひし形等の多角形や、短冊状やドーナツ型の内部がくりぬいてあるもの、表面に任意の凹凸を付けたもの等が挙げられる。
また、通気性を持たせるために、適宜貫通孔をあけても良い。
変成シリコーン樹脂発泡体の製造方法は、特に限定はないが、発泡性液状樹脂組成物を型枠に注入してから発泡および硬化させてもよい。また、発泡性液状樹脂組成物を硬化させる前、又は、硬化させると同時に発泡させてもよい。
具体的には、以下のように製造できる。
発泡性液状樹脂組成物の製造方法は特に限定されず、基材樹脂(A)、シラノール縮合触媒(B)および化学発泡剤(C)、さらに、必要に応じてその他の添加剤を攪拌混合して製造する。混合順序も特に限定されず、これらの成分を一緒に混合してもよいが、基材樹脂(A)と化学発泡剤(C)、さらに、必要に応じてその他の添加剤を混合しておき、最後にシラノール縮合触媒(B)を加えることが好ましい。複数の基材樹脂(A)を組み合わせて使用する場合は、同時に添加すればよい。
硬化前に発泡させる場合、例えば、予め膨張済みの熱膨張性マイクロカプセル、基材樹脂(A)、さらに、必要に応じてその他の添加剤を混合し、最後にシラノール縮合触媒(B)を加えればよい。複数の基材樹脂(A)を組み合わせて使用する場合は、同時に添加すればよい。
続いて、発泡性液状樹脂組成物を型枠に注入する、或いは、ベルトコンベア上の基材に垂らす、等した後、加熱することで、硬化と発泡が進行し、本発明の変成シリコーン樹脂発泡体が得られる。
加熱温度は特に制約はないが、例えば25℃以上250℃以下、加熱時間は特に制約はないが、例えば1分以上6時間以下、好ましくは10分以上3時間以下の加熱で本発明の変成シリコーン樹脂発泡体が得られる。
本発明の変成シリコーン樹脂発泡体は、柔軟性が高く触感が良いため、このような物性を有効に発揮できる様々な用途に使用することが可能である。また、イソシアネートを使用していないことから、例えば、防音材、制振材、クッション材等として、輸送機器、寝具・寝装品、家具、各種機器、建材、包装材、医療・介護等の用途に好適に利用できる。
本発明の変成シリコーン樹脂発泡体の優れた触感や柔軟性を有効に発揮できる用途として、例えば輸送機器用途としては、自動車・建築機械・鉄道車両・船舶・航空機等の座席、チャイルドシート、ヘッドレスト、アームレスト、フットレスト、ヘッドライナー、バイク・自転車等のサドル・ライダークッション、カスタムカー用のベッドマット、キャンピングカー用クッション等のクッション材や表皮材・表皮裏打ち材、天井材、ハンドル、ドアトリム、インストルメントパネル、ダッシュボード、ドアパネル、ピラー、コンソールボックス、クォータートリム、サンバイザー、フレキシブルコンテナー、フロントミラー、ハーネス、ダストカバー等の芯材や表皮材・表皮裏打ち材、フロアクッション等の制振吸音材、ヘルメット内張り、クラッシュパッド、センタピラガーニッシュ等の緩衝材、エネルギー吸収バンパー、ガード防音材、車両ワックス用スポンジ等が挙げられる。
寝具・寝装品用途としては、枕、掛け布団、敷布団、ベッド、マットレス、ベッドマット、ベッドパッド、クッション、ベビーベッド、ベビー用首まくら等のクッション材や表皮材・表皮裏打ち材等が挙げられる。
家具用途としては、椅子、座イス、座布団、ソファー、ソファークッション・シートクッション等の各種クッション、カーペット・マット類、コタツ敷・掛け布団、便座マット等のクッション材や表皮材・表皮裏打ち材等が挙げられる。
各種機器用途としては、液晶、電子部品等のシール・緩衝材、ロボットの皮膚、導電性クッション材、帯電防止性クッション材、圧力感知材等が挙げられる。
建材用途としては、床や屋根等の断熱材、床や壁等の衝撃吸収材等が挙げられる。
包装材用途としては、緩衝材、クッション材、衝撃吸収材等の梱包資材が挙げられる。
医療・介護用途としては、再生医療用細胞シート、人工皮膚、人工骨、人工軟骨、人工臓器、その他生体適合材料、薬液染み出しパッド、止血パッド、気液分離フィルター(留置針フィルター)、貼布剤、医療用液体吸収用具、マスク、圧迫パッド、手術用ディスポ製品、低周波治療器用電極パッド、床ずれ予防マットレス、体位変換クッション、車椅子用クッション、車椅子の座面、シャワー椅子等の介護用品、入浴介護用枕、拘縮用手のひらプロテクター、テーピング、ギブス用ライナー、義肢・義足用ライナー、入れ歯台、その他、歯科用品、衝撃吸収パッド、ヒッププロテクター、肘・膝用プロテクター、創傷被覆材等にも利用できるものである。
その他、例えば下記の用途を挙げることができる。
各種洗浄用スポンジ用途としては、清掃用クリーナー、食器洗浄用クリーナー、身体洗浄用クリーナー、靴磨クリーナー、洗車用クリーナー等が挙げられる。
トイレタリー用途としては、オムツ、生理用ナプキン等の吸収材、サイドギャザーや各種液体フィルター等が挙げられる。
履物用途としては、靴の表皮材、裏打ち、中敷、靴擦れ防止パッド、各種靴パッド、インナブーツ、スリッパ、スリッパ芯、サンダル、サンダル中敷等が挙げられる。
化粧用具用途としては、化粧用パフ、アイカラーチップ等が挙げられる。
各種雑貨用途としては、バスピロー等の風呂用品、マッサージ用パフ、マウスパッド、キーボード用アームレスト、滑り止めクッション、文具(ペングリップ、浸透印材)、デスク用小まくら、耳栓、綿棒、ホットパック用シート、コールドパック用シート、湿布、めがねパッド、水中眼鏡用パッド、顔面プロテクター、腕時計パッド、ヘッドホーンイヤーパット、イヤホン、氷枕カバー、折りたたみまくら等の芯材、クッション材や表皮材・表皮裏打ち材、両面テープ基材、芳香剤、スタンプ台等の吸着媒体等が挙げられる。
衣料用途としては、肩・ブラジャー等のパッド材や、防寒材等のライナーや断熱材等が挙げられる。
スポーツ用途としては、スポーツ用プロテクター類、ボルダリング(2~3mの岩を登るクライミング・ミニ岩登り)マット、ビート板、高飛び用のクッション材、体操競技や運動用の着地マット、キッズマット等のクッション材や表皮材・表皮裏打ち材、スキーブーツ、スノーボードブーツ等のライナー等が挙げられる。
玩具・遊具用途としては、ハンドエクササイザー、ヒーリンググッズ、キーホルダー、ぬいぐるみ、マネキンボデイー、ボール、マッサージボール等のクッション材や詰め物、表皮材・表皮裏打ち材、装飾品や怪獣等の特殊形状物、各種物品形状の型取りやモデル作製用等の注型材料、注型法における物品形状の型取り材料、型からのモデルサンプル作製材料、装飾品作製材料、怪獣の特殊造型・造型物等が挙げられる。
以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
実施例、及び比較例中の測定、評価は、次の条件・方法により行った。
<柔軟性>
25℃雰囲気下において、ASKER FP硬度計[高分子計器(株)製]を、得られた変成シリコーン樹脂発泡体底面の平らな部分の上に載せて、その指示値により評価した。試料によっては、経時的に指示値が下がっていく場合があるため、硬度計を載せた直後の値を読み取った。
<触感>
得られた変成シリコーン樹脂発泡体を掌で圧縮した際の触感を、以下の基準で評価した。
○:やわらかくてさわり心地がよく、さらに、指で底づき感を感じるまで押して、横にずらした際に、低い力で横ずり変形ができる。ゲル素材と同程度。
△:指で底づき感を感じるまで押して、横にずらした際に、強い力だと横ずり変形ができる。
×:指で底づき感を感じるまで押して、横にずらした際に、強い力でも横ずり変形ができない。
<発泡体の密度>
得られた変成シリコーン樹脂発泡体から30mm角程度の立方体を切り出し、3辺のサイズを測定して体積(m)を算出し、測定した重さ(kg)から除することにより、密度(kg/m)を算出した。
<原料>
実施例、比較例で使用した原料類は以下のとおりである。
[基材樹脂(A)]
基材樹脂1:トリメトキシシリル基末端ポリプロピレンオキシド系重合体、数平均分子量29000、1分子中の反応性ケイ素基数1.4
基材樹脂2:トリメトキシシリル基末端ポリプロピレンオキシド系重合体、数平均分子量29000、1分子中の反応性ケイ素基数1.7
基材樹脂3:メチルジメトキシシリル基末端ポリプロピレンオキシド系重合体、数平均分子量29000、1分子中の反応性ケイ素基数1.8
基材樹脂4:メチルジメトキシシリル基末端ポリプロピレンオキシド系重合体、数平均分子量8000、1分子中の反応性ケイ素基数0.9
[シラノール縮合触媒(B)]
AP-1(商品名):メチルアシッドホスフェート、大八化学(株)製
AP-4(商品名):ブチルアシッドホスフェート、大八化学(株)製
AP-8(商品名):2-エチルヘキシルアシッドホスフェート、大八化学(株)製
AP-10(商品名):イソデシルアシッドホスフェート、大八化学(株)製
VT:ネオデカン酸錫、U-50(商品名)、日東化成(株)製
OT:オクチル酸錫、U-28(商品名)、日東化成(株)製
VA:ネオデカン酸、バーサチック10(商品名)、ジャパンエポキシレジン(株)製
2-EHA:2-エチルヘキサン酸
LA:ラウリルアミン
[化学発泡剤(C)]
炭酸水素ナトリウム:FE-507(商品名)、永和化成工業(株)製
クエン酸:クエン酸(無水)(商品名)、磐田化学工業(株)製
[可塑剤]
ポリエーテルポリオール:SHP-3900(商品名)、三井化学(株)製
[潤滑剤]
ジメチルポリシロキサン:KF-96-100cs(商品名)、信越化学工業(株)製
(実施例1)
基材樹脂(A)へ、化学発泡剤(C)を添加し、十分に混合した。その後、シラノール縮合触媒(B)を添加して十分に混合した。得られた混合物を型枠に注入し、100℃に設定したオーブンで90分加熱硬化し、変成シリコーン樹脂発泡体を得た。
(実施例2)
基材樹脂(A)へ、化学発泡剤(C)を添加し、十分に混合した。その後、可塑剤を混合し、最後にシラノール縮合触媒(B)を添加して十分に混合した。得られた混合物を型枠に注入し、100℃に設定したオーブンで90分加熱硬化し、変成シリコーン樹脂発泡体を得た。
(実施例3、4)
基材樹脂(A)へ、化学発泡剤(C)を添加し、十分に混合した。その後、可塑剤、および、潤滑剤を混合し、最後にシラノール縮合触媒(B)を添加して十分に混合した。得られた混合物を型枠に注入し、100℃に設定したオーブンで90分加熱硬化し、変成シリコーン樹脂発泡体を得た。
(実施例5~9)
基材樹脂(A)へ、化学発泡剤(C)を添加し、十分に混合した。その後、潤滑剤を混合し、最後にシラノール縮合触媒(B)を添加して十分に混合した。得られた混合物を型枠に注入し、100℃に設定したオーブンで90分加熱硬化し、変成シリコーン樹脂発泡体を得た。
(実施例10、11)
基材樹脂(A)へ、化学発泡剤(C)を添加し、十分に混合した。その後、可塑剤、および、潤滑剤を混合し、最後にシラノール縮合触媒(B)を添加して十分に混合した。得られた混合物を型枠に注入し、100℃に設定したオーブンで90分加熱硬化し、変成シリコーン樹脂発泡体を得た。
(実施例12、13)
基材樹脂(A)へ、化学発泡剤(C)を添加し、十分に混合した。その後、潤滑剤を混合し、最後にシラノール縮合触媒(B)を添加して十分に混合した。得られた混合物を型枠に注入し、100℃に設定したオーブンで90分加熱硬化し、変成シリコーン樹脂発泡体を得た。
(比較例1)
まず、特許文献2(特開2013-237815号公報)に記載の合成例1、製造例1に基づき、以下の方法で中空粒子を作成した。
塩化ナトリウム120g、シリカ有効成分20重量%であるコロイダルシリカ100g、ポリビニルピロリドン1.0gおよびカルボキシメチル化ポリエチレンイミン・Na塩の5%水溶液の1.0gを、イオン交換水600gに加えた後、得られた混合物のpHを2.8~3.2に調整し、水性分散媒を調製した。これとは別に、アクリロニトリル130g、メタクリロニトリル106g、メチルメタクリレート3g(以上、単量体成分);エチレングリコールジメタクリレート1.0g(架橋剤);イソペンタン50g(発泡剤、沸点:27.7℃);およびアゾビスイソブチロニトリル1.5g(重合開始剤)を混合して油性混合物を調製した。水性分散媒および油性混合物を混合し、得られた混合液をホモミキサー(特殊機化工業社製、TKホモミキサー、回転数12000rpm)で2分間分散して、縣濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.5MPaにし、80rpmで攪拌しつつ重合温度70℃で20時間重合した。重合後に得られた重合液を濾過、乾燥して、熱膨張性マイクロカプセルを得た。得られた熱膨張性マイクロカプセルを膨張させることによって、真比重が0.064、平均粒子径が39μmである中空粒子を製造した。
100重量部のメチルジメトキシシリル基末端ポリプロピレンオキシド系重合体((株)カネカ製、商品名:カネカMSポリマーS203)へ、フタル酸エステル系可塑剤(ジェイ・プラス(株)製、商品名:DINP)60重量部、表面処理膠質炭酸カルシウム(白石工業(株)製、商品名:白艶華CCR)120重量部、タレ防止剤(楠本化成(株)製、商品名:ディスパロン6500)2重量部、を混合して充分混練りした後、3本ペイントロールに3回通して分散させた。その後、ミキサーにて120℃に加熱しながら減圧にて2時間攪拌することによって、上記組成物中の水分を除去し、500ppm以下であることを確認した。その後、50℃以下になるまで冷却した後、上述の中空粒子を3.63重量部、脱水剤としてビニルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:Silquest A-171)2重量部、接着性付与剤としてγ-(2-アミノエチル)アミノプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:Silquest A-1120)3重量部、硬化触媒としてジブチル錫ビスアセチルアセトナート(日東化成(株)製、商品名:ネオスタンU-220H)1重量部を加えて混練し、硬化性組成物を得た。
この硬化性組成物を容量330mlの密閉容器に充填して、放置することにより硬化させた。
(比較例2)
基材樹脂(A)へ、シラノール縮合触媒(B)を添加して十分に混合した。得られた混合物を型枠に注入し、100℃に設定したオーブンで90分加熱硬化した。
(比較例3)
基材樹脂(A)へ、化学発泡剤(C)を添加し、十分に混合した。その後、シラノール縮合触媒(B)を添加して十分に混合した。混合中に硬化が始まり、オーブンでの加熱以前に硬化物となった。
(比較例4~7)
基材樹脂(A)へ、化学発泡剤(C)を添加し、十分に混合した。その後、シラノール縮合触媒(B)を予め表1の重量比で混合しておいたものを添加し、十分に混合した。得られた混合物を型枠に注入し、100℃に設定したオーブンにて120分加熱硬化を試みたが、硬化しなかった。
(比較例8)
基材樹脂(A)へ、化学発泡剤(C)を添加し、十分に混合した。その後、シラノール縮合触媒(B)を添加して十分に混合した。得られた混合物を型枠に注入し、100℃に設定したオーブンにて120分加熱硬化を試みたが、硬化しなかった。
各実施例および比較例の原料、配合重量部数および評価結果を表1、2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
上記結果より、実施例の発泡体は、比較例に比べ柔軟性に優れ、触感が良いことが判明した。従って、本発明によって、柔軟性に優れ、触感が良く、爆発の危険性がある水素ガスを排出しない変成シリコーン樹脂発泡体が提供可能であることが明らかとなった。 

Claims (12)

  1. 基材樹脂(A)100重量部、シラノール縮合触媒(B)0.1~5重量部、化学発泡剤(C)2~40重量部を含む発泡性液状樹脂組成物を硬化してなる変成シリコーン樹脂発泡体であって、
    基材樹脂(A)が、ケイ素原子に結合した加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素基を分子鎖中に少なくとも1個有し、主鎖がオキシアルキレン系単位から構成される重合体からなり、
    該発泡体が、25℃雰囲気下においてASKER FP硬度が60以下であることを特徴とする変成シリコーン樹脂発泡体。
  2. 前記重合体の主鎖を構成する繰り返し単位がオキシプロピレンであることを特徴とする請求項1に記載の変成シリコーン樹脂発泡体。
  3. 前記重合体が、数平均分子量3000以上100000以下の重合体であることを特徴とする請求項1または2に記載の変成シリコーン樹脂発泡体。
  4. シラノール縮合触媒(B)が有機酸性リン酸エステル化合物であることを特徴とする請求項1~3のいずれかに記載の変成シリコーン樹脂発泡体。
  5. 前記シラノール縮合触媒(B)が、一般式(1):(C2m+1O)-P(=O)(-OH)3-n(式中、mは4~10の整数、nは0~3の整数である。)で示される有機酸性リン酸エステル化合物であることを特徴とする請求項1~4のいずれかに記載の変成シリコーン樹脂発泡体。
  6. 前記化学発泡剤(C)が、重炭酸塩と有機酸と有機酸塩、重炭酸塩と有機酸、および、重炭酸塩と有機酸塩から選ばれるいずれかの組み合わせであることを特徴とする請求項1~5のいずれかに記載の変成シリコーン樹脂発泡体。
  7. 前記有機酸が、多価カルボン酸であることを特徴とする請求項6に記載の変成シリコーン樹脂発泡体。
  8. 前記有機酸塩が多価カルボン酸の金属塩であることを特徴とする請求項6または7に記載の変成シリコーン樹脂発泡体。
  9. 密度が10kg/m以上900kg/m以下であることを特徴とする請求項1~8のいずれかに記載の変成シリコーン樹脂発泡体。
  10. 請求項1~9のいずれかに記載の変成シリコーン樹脂発泡体の製造方法。
  11. 前記発泡性液状樹脂組成物を、型枠に注入してから発泡および硬化させることを特徴とする請求項10に記載の変成シリコーン樹脂発泡体の製造方法。
  12. 前記発泡性液状樹脂組成物を硬化させる前、または、硬化させると同時に発泡させることを特徴とする請求項10または11に記載の変成シリコーン樹脂発泡体の製造方法。
PCT/JP2015/072212 2014-08-06 2015-08-05 変成シリコーン樹脂発泡体 WO2016021630A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016540259A JPWO2016021630A1 (ja) 2014-08-06 2015-08-05 変成シリコーン樹脂発泡体
EP15829799.4A EP3178872B1 (en) 2014-08-06 2015-08-05 Modified silicone resin foamed body
US15/501,555 US20170226305A1 (en) 2014-08-06 2015-08-05 Modified silicone resin foamed body
CN201580041522.9A CN106574068A (zh) 2014-08-06 2015-08-05 改性有机硅树脂发泡体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014160198 2014-08-06
JP2014-160198 2014-08-06

Publications (1)

Publication Number Publication Date
WO2016021630A1 true WO2016021630A1 (ja) 2016-02-11

Family

ID=55263891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072212 WO2016021630A1 (ja) 2014-08-06 2015-08-05 変成シリコーン樹脂発泡体

Country Status (5)

Country Link
US (1) US20170226305A1 (ja)
EP (1) EP3178872B1 (ja)
JP (1) JPWO2016021630A1 (ja)
CN (1) CN106574068A (ja)
WO (1) WO2016021630A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119396A1 (ja) * 2016-01-08 2017-07-13 株式会社カネカ 変成シリコーン樹脂発泡体
WO2018105704A1 (ja) 2016-12-07 2018-06-14 株式会社カネカ 液状樹脂組成物
JP2019137827A (ja) * 2018-02-13 2019-08-22 株式会社カネカ 吸音方法、及び吸音材
JP2019156931A (ja) * 2018-03-09 2019-09-19 株式会社カネカ 断熱材、及び、断熱材の製造方法
WO2019235034A1 (ja) 2018-06-07 2019-12-12 株式会社カネカ 発泡体用樹脂組成物、発泡体、及び発泡体の製造方法
JP2020158711A (ja) * 2019-03-27 2020-10-01 株式会社カネカ 発泡体、吸音材、建築物、及び車両
JP2020158695A (ja) * 2019-03-27 2020-10-01 株式会社カネカ 発泡体用樹脂組成物、発泡体、及び発泡体の製造方法
WO2020196864A1 (ja) * 2019-03-27 2020-10-01 株式会社カネカ 発泡体、吸音材、樹脂組成物、吸音方法、吸音構造体、吸音構造体の製造方法、吸音材の製造方法、建築物、及び車両
US11859037B2 (en) 2018-03-30 2024-01-02 Kaneka Corporation Reactive silicon group-containing polymer and curable composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11123903B2 (en) * 2018-10-25 2021-09-21 Biosense Webster (Israel) Ltd. Controlling bubble formation in silicone foam filler of breast implants
US20230134127A1 (en) * 2021-11-01 2023-05-04 Rogers Corporation Filled silicone foam layer, compositions and methods for their manufacture, and articles including the filled silicone foam layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095942A (ja) * 1998-09-18 2000-04-04 Sunstar Eng Inc 熱硬化型変性ポリマー系組成物
JP2001098098A (ja) * 1999-09-30 2001-04-10 Sekisui Plastics Co Ltd ポリオレフィン系樹脂発泡体とその製造方法
WO2003087204A1 (en) * 2002-04-05 2003-10-23 Henkel Corporation Curable foam elastomeric compositions
WO2005007745A1 (ja) * 2003-07-18 2005-01-27 Kaneka Corporation 硬化性組成物
JP2005105180A (ja) * 2003-09-30 2005-04-21 Sekisui Chem Co Ltd 室温硬化性接着剤及び床構造体
JP2013076047A (ja) * 2011-09-13 2013-04-25 Kaneka Corp 発泡性液状樹脂組成物および発泡体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095942A (ja) * 1998-09-18 2000-04-04 Sunstar Eng Inc 熱硬化型変性ポリマー系組成物
JP2001098098A (ja) * 1999-09-30 2001-04-10 Sekisui Plastics Co Ltd ポリオレフィン系樹脂発泡体とその製造方法
WO2003087204A1 (en) * 2002-04-05 2003-10-23 Henkel Corporation Curable foam elastomeric compositions
WO2005007745A1 (ja) * 2003-07-18 2005-01-27 Kaneka Corporation 硬化性組成物
JP2005105180A (ja) * 2003-09-30 2005-04-21 Sekisui Chem Co Ltd 室温硬化性接着剤及び床構造体
JP2013076047A (ja) * 2011-09-13 2013-04-25 Kaneka Corp 発泡性液状樹脂組成物および発泡体

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3398986A4 (en) * 2016-01-08 2018-11-07 Kaneka Corporation Modified silicone resin foam
WO2017119396A1 (ja) * 2016-01-08 2017-07-13 株式会社カネカ 変成シリコーン樹脂発泡体
CN110050031B (zh) * 2016-12-07 2021-07-20 株式会社钟化 液态树脂组合物
WO2018105704A1 (ja) 2016-12-07 2018-06-14 株式会社カネカ 液状樹脂組成物
CN110050031A (zh) * 2016-12-07 2019-07-23 株式会社钟化 液态树脂组合物
JPWO2018105704A1 (ja) * 2016-12-07 2019-10-24 株式会社カネカ 液状樹脂組成物
JP7046830B2 (ja) 2016-12-07 2022-04-04 株式会社カネカ 液状樹脂組成物
US11104776B2 (en) 2016-12-07 2021-08-31 Kaneka Corporation Liquid resin composition
JP2019137827A (ja) * 2018-02-13 2019-08-22 株式会社カネカ 吸音方法、及び吸音材
JP7141269B2 (ja) 2018-02-13 2022-09-22 株式会社カネカ 吸音方法、及び吸音材
JP7053315B2 (ja) 2018-03-09 2022-04-12 株式会社カネカ 断熱材、及び、断熱材の製造方法
JP2019156931A (ja) * 2018-03-09 2019-09-19 株式会社カネカ 断熱材、及び、断熱材の製造方法
US11859037B2 (en) 2018-03-30 2024-01-02 Kaneka Corporation Reactive silicon group-containing polymer and curable composition
EP3816216A4 (en) * 2018-06-07 2022-02-09 Kaneka Corporation RESIN COMPOSITION FOR FOAM, FOAM AND METHOD OF MAKING FOAM
WO2019235034A1 (ja) 2018-06-07 2019-12-12 株式会社カネカ 発泡体用樹脂組成物、発泡体、及び発泡体の製造方法
WO2020196864A1 (ja) * 2019-03-27 2020-10-01 株式会社カネカ 発泡体、吸音材、樹脂組成物、吸音方法、吸音構造体、吸音構造体の製造方法、吸音材の製造方法、建築物、及び車両
JP2020158695A (ja) * 2019-03-27 2020-10-01 株式会社カネカ 発泡体用樹脂組成物、発泡体、及び発泡体の製造方法
JP2020158711A (ja) * 2019-03-27 2020-10-01 株式会社カネカ 発泡体、吸音材、建築物、及び車両
JP7320364B2 (ja) 2019-03-27 2023-08-03 株式会社カネカ 発泡体用樹脂組成物、発泡体、及び発泡体の製造方法
JP7412891B2 (ja) 2019-03-27 2024-01-15 株式会社カネカ 発泡体、吸音材、建築物、及び車両

Also Published As

Publication number Publication date
CN106574068A (zh) 2017-04-19
JPWO2016021630A1 (ja) 2017-05-18
EP3178872A1 (en) 2017-06-14
EP3178872A4 (en) 2018-03-14
EP3178872B1 (en) 2019-06-19
US20170226305A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
EP3178872B1 (en) Modified silicone resin foamed body
JP6669778B2 (ja) 変成シリコーン樹脂発泡体
US11104776B2 (en) Liquid resin composition
CN112424269B (zh) 发泡体用树脂组合物、发泡体及发泡体的制造方法
JP5823878B2 (ja) 発泡性液状樹脂組成物および発泡体
JP2009074041A (ja) 発泡体及びその製造方法
JP2018162368A (ja) 変成シリコーン樹脂発泡体
JP5620247B2 (ja) 発泡性液状樹脂組成物および発泡体
JP2019163436A (ja) 樹脂組成物、発泡体及び発泡体の連続製造方法
WO2020196864A1 (ja) 発泡体、吸音材、樹脂組成物、吸音方法、吸音構造体、吸音構造体の製造方法、吸音材の製造方法、建築物、及び車両
JP2009091541A (ja) 軟質発泡体及びその製造方法
JP7320364B2 (ja) 発泡体用樹脂組成物、発泡体、及び発泡体の製造方法
JP7412891B2 (ja) 発泡体、吸音材、建築物、及び車両
JP2019210425A (ja) 多孔体の製造方法、及び多孔体
JP5611856B2 (ja) 発泡性液状樹脂組成物および発泡体
JP5756624B2 (ja) 発泡性液状樹脂組成物および発泡体
JP2019210424A (ja) 液状樹脂組成物、及び発泡体
JP2024017371A (ja) 発泡体用樹脂組成物およびその利用
JP2022054103A (ja) 発泡体用樹脂組成物、発泡体、及び発泡体の製造方法
JP2024032476A (ja) 樹脂組成物の製造方法
JP2024032477A (ja) 樹脂組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015829799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829799

Country of ref document: EP