WO2016017769A1 - リチウム含有ガーネット結晶体、その製造方法、および全固体リチウムイオン二次電池 - Google Patents

リチウム含有ガーネット結晶体、その製造方法、および全固体リチウムイオン二次電池 Download PDF

Info

Publication number
WO2016017769A1
WO2016017769A1 PCT/JP2015/071681 JP2015071681W WO2016017769A1 WO 2016017769 A1 WO2016017769 A1 WO 2016017769A1 JP 2015071681 W JP2015071681 W JP 2015071681W WO 2016017769 A1 WO2016017769 A1 WO 2016017769A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
lithium
producing
raw material
containing garnet
Prior art date
Application number
PCT/JP2015/071681
Other languages
English (en)
French (fr)
Inventor
邦光 片岡
秋本 順二
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to CN201580040313.2A priority Critical patent/CN107075722B/zh
Priority to JP2016538443A priority patent/JP6524089B2/ja
Priority to EP15826797.1A priority patent/EP3176291B1/en
Priority to KR1020177005190A priority patent/KR101969657B1/ko
Priority to US15/329,750 priority patent/US10693184B2/en
Publication of WO2016017769A1 publication Critical patent/WO2016017769A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/28Controlling or regulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/42(bi)pyramid-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a high-density lithium-containing garnet crystal, a manufacturing method thereof, and an all-solid-state lithium ion secondary battery using the lithium-containing garnet crystal as a solid electrolyte.
  • Lithium ion secondary batteries are used in small information devices such as mobile phones and laptop computers because of their high energy density and operation at high potentials. In consideration of safety, all-solid-state lithium ion secondary batteries that do not use flammable electrolytes are being researched and developed. High ion conductivity is required for a solid electrolyte used in an all-solid lithium ion secondary battery.
  • Li 7 La 3 Zr 2 O 12 having a tetragonal garnet-type crystal structure is known as a high lithium ion conductive oxide (Patent Document 1).
  • the solid electrolyte In order for a solid electrolyte to achieve high ionic conductivity, it is necessary to reduce grain boundary resistance and interface resistance. For this reason, it is desirable that the solid electrolyte is a high-density dense molded body. Moreover, if the solid electrolyte is a dense molded body having a high density, it is possible to prevent a short circuit between the positive and negative electrodes during the charge / discharge process. Furthermore, since the high-density dense molded body can be thinned, if the solid electrolyte is a high-density dense molded body, the all-solid lithium ion secondary battery can be downsized. However, since Li 7 La 3 Zr 2 O 12 having a garnet-type crystal structure is difficult to sinter, it is difficult to produce a dense compact with high density (Non-patent Document 1).
  • the present invention has been made in view of such circumstances, and has a high-density lithium-containing garnet crystal and a method for producing the same, and an all-solid-state lithium ion secondary battery using the lithium-containing garnet crystal as a solid electrolyte.
  • the purpose is to provide.
  • the inventors of the present invention thought that a high-density Li 7 La 3 Zr 2 O 12 crystal having no grain boundary can be obtained by devising a method for producing a crystal, and the above problem can be solved. Then, the polycrystalline Li 7 La 3 Zr 2 O 12 samples the melted at a high temperature cooling Li 7 La 3 Zr 2 O 12 results manufacturing method of intensive studies for the crystal, high density garnet related structure Li 7 La 3 The present invention was completed by confirming that a Zr 2 O 12 crystal can be grown and that this Li 7 La 3 Zr 2 O 12 crystal can be mechanically thinned.
  • the lithium-containing garnet crystal of the present invention for example, a Li 7 La 3 Zr 2 O 12 crystal has a relative density of 99% or more, belongs to a tetragonal system, and has a garnet-related structure.
  • the method for producing a Li 7 La 3 Zr 2 O 12 crystal of the present invention melts at least a part of a raw material composed of polycrystalline Li 7 La 3 Zr 2 O 12 to form a molten part, and moves the molten part A Li 7 La 3 Zr 2 O 12 crystal having a garnet-related structure, wherein the moving speed of the molten part is 8 mm / h or more, and the relative density of the Li 7 La 3 Zr 2 O 12 crystal Is 99% or more.
  • the all solid lithium ion secondary battery of the present invention has a positive electrode, a negative electrode, and a solid electrolyte, and the solid electrolyte is composed of the lithium-containing garnet crystal of the present invention.
  • a high-density lithium-containing garnet crystal and an all-solid-state lithium ion secondary battery using the lithium-containing garnet crystal as a solid electrolyte can be obtained.
  • the lithium-containing garnet crystal according to the embodiment of the present invention has a relative density of 99% or more, belongs to a tetragonal system, and has a garnet-related structure.
  • the relative density is calculated by measuring the outer shape of the manufactured flakes, calculating the apparent volume, and dividing the apparent density calculated from the measured mass by the true density obtained from the single crystal X-ray structural analysis result. .
  • the lithium-containing garnet crystal of the present embodiment is more preferable as the relative density is higher. In the lithium-containing garnet crystal of the present embodiment, it is not necessary that all crystal domains are oriented in the same direction.
  • FIG. 1 is a single crystal X-ray diffraction pattern of a tetragonal Li 7 La 3 Zr 2 O 12 crystal produced in an experiment in which the orientation of crystal domains is not uniform.
  • This sample is a tetragonal Li 7 La 3 Zr 2 O 12 single crystal produced by moving the melting part at 100 mm / h in the FZ method. Since the cooling rate of the melted part is too high, the crystal domain cannot be grown in a uniform direction in the sample.
  • the diffraction spots become complicated, or diffraction from various domains overlap and the diffraction spots become close to a ring shape.
  • the lithium-containing garnet crystal of the present embodiment include Li 7 La 3 Zr 2 O 12 crystal, tetragonal Li 7 La 3 Hf 2 O 12 crystal, or tetragonal Li 7 La 3 Sn 2 O 12 crystal. Can be mentioned.
  • the Nyquist plot based on AC impedance measurement shows two resistance components, a resistance component due to grain boundaries and a resistance component due to the material itself (non-patent literature). 1).
  • the Nyquist plot of the lithium-containing garnet crystal of the present embodiment does not show a resistance component due to crystal grain boundaries, but shows only the resistance component of the material itself, as shown in FIG.
  • the lithium-containing garnet crystal of the present embodiment in the X-ray diffraction measurement, neutron diffraction measurement, or electron diffraction measurement using a single crystal, as shown in FIG. Appears at
  • the lithium-containing garnet crystal of the present invention is excellent in lithium ion conductivity, it can be used as a solid electrolyte of an all-solid lithium ion secondary battery. That is, the all solid lithium ion secondary battery of the present invention has a positive electrode, a negative electrode, and a solid electrolyte, and the solid electrolyte is a lithium-containing garnet crystal of the present invention, for example, a relative density of 99% or more, and a square It consists of Li 7 La 3 Zr 2 O 12 crystals belonging to the crystal system and having a garnet-related structure. Further, Li 7 La 3 Zr 2 O 12 crystal having a relative density of 100%, that is, the original Li 7 La 3 Zr 2 O 12 single crystal is particularly excellent in lithium ion conductivity.
  • the method for producing a Li 7 La 3 Zr 2 O 12 crystal forms a molten part by melting at least a part of a raw material composed of polycrystalline Li 7 La 3 Zr 2 O 12 ,
  • the relative density of the crystals is 99% or more.
  • the Li 7 La 3 Zr 2 O 12 crystal production method of this embodiment is a method of growing Li 7 La 3 Zr 2 O 12 crystal from a raw material melt, specifically, a floating zone (FZ) method, Examples include the Czochralski (CZ) method, the Bridgeman method, and the pedestal method. An appropriate method may be selected from these methods according to the size and shape of the Li 7 La 3 Zr 2 O 12 crystal to be produced.
  • FZ floating zone
  • CZ Czochralski
  • Bridgeman method Bridgeman method
  • pedestal method An appropriate method may be selected from these methods according to the size and shape of the Li 7 La 3 Zr 2 O 12 crystal to be produced.
  • Li 7 La 3 Zr 2 O 12 crystals When producing Li 7 La 3 Zr 2 O 12 crystals by the FZ method, part of the rod-shaped raw material is melted while rotating on a plane perpendicular to the longitudinal direction, and the molten part is moved in the longitudinal direction. To grow Li 7 La 3 Zr 2 O 12 crystals.
  • a rod-shaped raw material composed of polycrystalline Li 7 La 3 Zr 2 O 12 is produced as follows. First, lithium compounds, lanthanum compounds, and zirconium compounds are weighed so that the molar ratio of Li: La: Zr is 7 to 8: 3: 2 in consideration of the volatilization of lithium at a high temperature.
  • the lithium compound is not particularly limited as long as it contains lithium, and examples thereof include Li 2 O and Li 2 CO 3 .
  • the lanthanum compound is not particularly limited as long as it contains lanthanum, and examples thereof include La 2 O 3 and La (OH) 3 .
  • the zirconium compound is not particularly limited as long as it contains zirconium, and examples thereof include ZrO 2 and ZrCl 4 .
  • the molar ratio of Li: La: Zr is 7 to 8: 3: 2. You may weigh so that it may become a ratio.
  • each weighed compound is mixed.
  • the mixing method is not particularly limited as long as these compounds can be uniformly mixed, and may be mixed by a wet method or a dry method using a mixer such as a mixer.
  • the powder of polycrystalline Li 7 La 3 Zr 2 O 12 as a raw material is calcined at 900 ° C. to 1000 ° C., preferably 930 ° C. to 990 ° C. Is obtained.
  • This polycrystalline Li 7 La 3 Zr 2 O 12 powder belongs to the tetragonal system.
  • the obtained polycrystalline Li 7 La 3 Zr 2 O 12 powder is pulverized to reduce the particle size.
  • the pulverization method is not particularly limited as long as the powder can be refined.
  • the pulverization method may be wet or dry using a pulverizer such as a planetary ball mill, pot mill, or bead mill.
  • a pulverizer such as a planetary ball mill, pot mill, or bead mill.
  • the obtained molded body is fired at about 800 ° C. to 1300 ° C., preferably 900 ° C. to 1100 ° C., a rod-shaped polycrystalline Li 7 La 3 Zr 2 O 12 raw material is obtained.
  • This rod-shaped polycrystalline Li 7 La 3 Zr 2 O 12 belongs to the tetragonal system.
  • a rod-shaped polycrystalline Li 7 La 3 Zr 2 O 12 raw material belonging to the tetragonal system is melted in an infrared condensing heating furnace and then rapidly cooled to thereby form a Li 7 La 3 Zr 2 having a garnet-related structure. O 12 crystals are produced.
  • the produced Li 7 La 3 Zr 2 O 12 crystal belongs to the tetragonal system.
  • the bubbles are generated as lithium is volatilized, but the bubbles can be removed by increasing the rotational speed of the rod-shaped polycrystalline Li 7 La 3 Zr 2 O 12 material to 30 rpm or more.
  • the rotation speed of the raw material is preferably 30 rpm or more and 60 rpm or less.
  • it is preferable that the raw material is melted and the molten part is moved in a dry air atmosphere. In this way, a high-density Li 7 La 3 Zr 2 O 12 crystal having a relative density of 99% or more can be produced. Li 7 La 3 Zr 2 O 12 crystals having a relative density of 100% can also be produced.
  • Li 7 La 3 Zr 2 O 12 crystal by FZ method (1) Production of polycrystalline Li 7 La 3 Zr 2 O 12 powder First, lithium carbonate Li 2 CO 3 (rare metallic, purity 99.99%) 10.1175 g as a starting material and lanthanum oxide La 2 O 3 (rare metallic) , 97.4% purity) 17.4606 g and zirconium oxide ZrO 2 (rare metallic, purity 99.99% purity) 8.7648 g were put in an agate mortar and mixed uniformly by a wet method using ethanol. The lanthanum oxide used was pre-baked at 900 ° C. in advance. Next, an alumina crucible with a lid (made by Nikkato, C5 type) was charged with 36 g of this mixture.
  • this polycrystalline Li 7 La 3 Zr 2 O 12 powder was pulverized. That is, 30 g of polycrystalline Li 7 La 3 Zr 2 O 12 powder, 50 g of zirconia balls with a diameter of 5 mm, and 14 mL of ion-exchanged water were filled in a zirconia grinding vessel with a capacity of 45 mL, Using P-6), the mixture was pulverized by rotating at a revolution speed of 200 rpm for a total of 300 minutes. The pulverized polycrystalline powder was dried at 100 ° C. for 24 hours, and classified using a sieve having an opening of 250 ⁇ m.
  • the obtained fired body had a rod shape with a width of 1 cm and a length of 7 cm close to a cylinder, and its mass was 26 g. From the powder X-ray diffraction pattern by a powder X-ray diffractometer (manufactured by Rigaku Corporation, Smart Lab), it was found that this fired body was polycrystalline Li 7 La 3 Zr 2 O 12 belonging to the tetragonal system.
  • FIG. 2 shows the appearance of a Li 7 La 3 Zr 2 O 12 crystal (hereinafter sometimes referred to as “sample 1”) obtained at a moving speed of the installation table of 19 mm / h.
  • Sample 1 was examined using a single crystal X-ray diffractometer (Rigaku Corporation, R-AXIS RAPID-II). The X-ray diffraction pattern of Sample 1 is shown in FIG. As shown in FIG. 3, a clear diffraction point could be measured.
  • RAPID AUTO attached to the single crystal X-ray diffractometer and the crystal structure of the sample 1 was examined by the crystal structure analysis program Jana2006, it was found that the sample 1 belonged to a tetragonal crystal.
  • Sample 1 was cut with a diamond cutter to produce four thin pieces having a thickness of 0.1 mm. And these relative densities were computed by the above-mentioned method. As a result, their relative densities were 99.0%, 99.4%, 99.7% and 100%, respectively.
  • FIG. 4 shows the results of collecting the diffraction intensity data by the program RAPID AUTO attached to the single crystal X-ray diffractometer and analyzing the crystal structure of the sample 1 by the crystal structure analysis program Jana2006. Compared with the tetragonal garnet-related structure reported so far, Sample 1 is different in the arrangement of lithium ions in the crystal structure and the occupied state of lithium seats.
  • the tetragonal Li 7 La 3 Zr 2 O 12 reported so far has three types of lithium ion seats (8a seat, 16f seat, 32g seat) in the crystal structure, and each seat occupancy rate is 100
  • the sample 1 has four types of lithium ion seats (8a seat, 16f seat, two 32g seats, 16e seat) in the crystal structure, and the occupancy rate of each seat is 30-50% there were.
  • the powder X-ray diffraction pattern of Sample 1 was similar to the pattern of Li 7 La 3 Zr 2 O 12 having a tetragonal garnet-related structure reported so far.
  • sample 1 was cut to produce a cylindrical thin piece having a diameter of about 1.0 cm and a thickness of about 0.19 cm.
  • a rectangular parallelepiped gold having a bottom surface of 0.18 cm on a side and a thickness of 40 nm was sputtered on both sides of the thin piece to form electrodes.
  • the impedance of the sample 1 was measured by an alternating current impedance method (measuring device: Solartron, 1260) at 25 ° C. in a nitrogen atmosphere.
  • the Nyquist plot at this time is shown in FIG.
  • the lithium ion conductivity was calculated from the Nyquist plot shown in FIG. 6 and found to be 4.6 ⁇ 10 ⁇ 5 S / cm.
  • this tungsten rod was rotated at 10 rpm in a plane perpendicular to the longitudinal direction and placed in the molten portion of Li 7 La 3 Zr 2 O 12 , and then the tungsten rod was raised at a moving speed of 10 mm / h to make Li 7 La 3 Zr 2 O 12 crystals were grown.
  • the appearance of the grown Li 7 La 3 Zr 2 O 12 crystal (hereinafter sometimes referred to as “sample 2”) is shown in FIG.
  • the result of having pulverized Sample 2 and performing powder X-ray diffraction measurement is shown in FIG.
  • the powder X-ray diffraction pattern of Sample 2 was similar to the pattern of Li 7 La 3 Zr 2 O 12 having a tetragonal garnet-related structure reported so far.
  • the lattice constants of the Li 7 La 3 Zr 2 O 12 crystal are 1.3052 nm ⁇ a ⁇ 1.31323 nm and 1.26702 nm ⁇ c ⁇ 1.3024 nm.
  • the lithium-containing garnet crystal of the present invention can be used as a solid electrolyte material for an all-solid lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 高密度のリチウム含有ガーネット結晶体を提供する。 リチウム含有ガーネット結晶体は、相対密度が99%以上で、正方晶系に属し、ガーネット関連型構造を有する。このリチウム含有ガーネット結晶体の一例であるLi7La3Zr2O12 結晶の製造方法は、正方晶系に属する多結晶Li7La3Zr2O12 から構成される棒形状の原料を、長手方向と垂直な面で回転させながらその一部を溶融して溶融部を形成し、溶融部を長手方向に移動する。溶融部の移動速度は8mm/h 以上19mm/h 以下が、原料の回転速度は30rpm 以上60rpm 以下が好ましい。溶融部の移動を速くすることによって、リチウムの揮発に伴う原料の分解を避けられ、原料の回転を速くすることによって、気泡を取り除くことができる。

Description

リチウム含有ガーネット結晶体、その製造方法、および全固体リチウムイオン二次電池
 本発明は、高密度のリチウム含有ガーネット結晶体およびその製造方法と、このリチウム含有ガーネット結晶体を固体電解質として用いる全固体リチウムイオン二次電池に関する。
 エネルギー密度が高く、高電位で作動させられるため、携帯電話やノートパソコンなどの小型情報機器にリチウムイオン二次電池が用いられている。安全性を考慮して、可燃性の電解液を使用しない全固体リチウムイオン二次電池の研究開発が行われている。全固体リチウムイオン二次電池に用いられる固体電解質には、高いイオン伝導率が要求される。高いリチウムイオン伝導性酸化物として正方晶ガーネット型の結晶構造を有するLi7La3Zr2O12が知られている(特許文献1)。
 固体電解質が高いイオン伝導率を実現するためには、粒界抵抗や界面抵抗を低減させる必要がある。このため、固体電解質は高密度の緻密成型体であることが望ましい。また、固体電解質が高密度の緻密成型体であれば、充放電過程での正負極間の短絡を防止できる。さらに、高密度の緻密成型体は薄片化が可能であるため、固体電解質が高密度の緻密成型体であれば、全固体リチウムイオン二次電池の小型化が図れる。しかしながら、ガーネット型結晶構造のLi7La3Zr2O12は難焼結性であるため、高密度の緻密成型体の作製は困難である(非特許文献1)。
特許第5131854号公報
J.Awaka, N.Kijima, H.Hayakawa, J.Akimoto, Journal of Solid State Chemistry, 182, P2046-2052 (2009)
 本発明は、このような事情に鑑みてなされたものであり、高密度のリチウム含有ガーネット結晶体およびその製造方法と、このリチウム含有ガーネット結晶体を固体電解質として用いた全固体リチウムイオン二次電池を提供することを目的とする。
 本発明者らは、結晶体の製造方法を工夫することで、粒界が存在しない高密度のLi7La3Zr2O12結晶が得られ、上記問題を解決できると考えた。そして、多結晶Li7La3Zr2O12試料を高温で溶融し冷却するLi7La3Zr2O12結晶の製造方法について鋭意検討した結果、高密度のガーネット関連型構造のLi7La3Zr2O12結晶が育成できること、このLi7La3Zr2O12結晶は機械的に薄片化できることを確認して、本発明を完成させた。
 本発明のリチウム含有ガーネット結晶体、例えばLi7La3Zr2O12結晶は、相対密度が99%以上で、正方晶系に属し、ガーネット関連型構造を有する。
 本発明のLi7La3Zr2O12結晶の製造方法は、多結晶Li7La3Zr2O12から構成される原料の少なくとも一部を溶融して溶融部を形成し、溶融部を移動してガーネット関連型構造を有するLi7La3Zr2O12結晶を製造する方法であって、溶融部の移動速度が8mm/h以上であり、Li7La3Zr2O12結晶の相対密度が99%以上である。
 本発明の全固体リチウムイオン二次電池は、正極と、負極と、固体電解質とを有し、固体電解質が本発明のリチウム含有ガーネット結晶体から構成される。
 本発明によれば、高密度のリチウム含有ガーネット結晶体と、このリチウム含有ガーネット結晶体を固体電解質として用いた全固体リチウムイオン二次電池が得られる。
複数のドメインがある正方晶Li7La3Zr2O12結晶の単結晶X線回折パターン。 実施例のFZ法で得られた正方晶Li7La3Zr2O12結晶の外観写真。 実施例のFZ法で得られた正方晶Li7La3Zr2O12結晶の単結晶X線回折パターン。 実施例のFZ法で得られた正方晶Li7La3Zr2O12結晶のガーネット関連型構造を示す模式図。 実施例のFZ法で得られた正方晶Li7La3Zr2O12結晶の粉末X線回折パターン。 実施例のFZ法で得られた正方晶Li7La3Zr2O12結晶のナイキストプロット。 実施例のCZ法で得られた正方晶Li7La3Zr2O12結晶の外観写真。 実施例のCZ法で得られた正方晶Li7La3Zr2O12結晶の粉末X線回折パターン。
 以下、本発明のリチウム含有ガーネット結晶体、Li7La3Zr2O12結晶の製造方法、および全固体リチウムイオン二次電池について、実施形態と実施例に基づいて詳細に説明する。なお、重複説明は適宜省略する。
 本発明の実施形態に係るリチウム含有ガーネット結晶体は、相対密度が99%以上で、正方晶系に属し、ガーネット関連型構造を有する。相対密度は、作製した薄片の外形を測定して、見かけの体積を算出して、測定質量から計算した見かけの密度を、単結晶X線構造解析結果から得られる真密度で割ることによって算出する。本実施形態のリチウム含有ガーネット結晶体は相対密度が高いほど好ましい。なお、本実施形態のリチウム含有ガーネット結晶体は、結晶ドメインが全て同一方向を向いている必要がない。
 リチウム含有ガーネット結晶体の結晶ドメインが同一方向に揃っている割合が高い場合は、後述する図3に示すように、単結晶を用いたX線回折測定において、回折スポットが明瞭な点として観測される。図1は、結晶ドメインの向きが揃っていない実験で作製された正方晶Li7La3Zr2O12結晶の単結晶X線回折パターンである。この試料は、FZ法において、溶融部を100mm/hで移動させて作製した正方晶Li7La3Zr2O12単結晶である。溶融部の冷却速度が速すぎるため、試料内で結晶ドメインの向きが均一になるように育成できていない。
 リチウム含有ガーネット結晶体の結晶ドメインの向きが揃っていない場合は、図1に示すように、回折スポットが繁雑になったり、様々なドメインからの回折が重なり合って回折スポットがリング状に近くなったりする。本実施形態のリチウム含有ガーネット結晶体としては、例えば、Li7La3Zr2O12結晶、正方晶Li7La3Hf2O12結晶、または正方晶Li7La3Sn2O12結晶などが挙げられる。
 多結晶体は相対密度を上げることが困難であるため、交流インピーダンス測定において、多結晶体中の多くの空隙が測定結果に反映される。既に報告されているLi7La3Zr2O12の多結晶体では、交流インピーダンス測定によるナイキストプロットが、結晶粒界による抵抗成分と材料自体の抵抗成分の2つの抵抗成分を示す(非特許文献1参照)。これに対して、本実施形態のリチウム含有ガーネット結晶体のナイキストプロットは、後述する図6に示すように、結晶粒界による抵抗成分を示さず、材料自体の抵抗成分のみを示す。また、本実施形態のリチウム含有ガーネット結晶体は、単結晶を用いたX線回折測定、中性子回折測定、または電子回折測定において、後述する図3に示すように、回折パターンに回折スポットがリング状で現れる。
 本発明のリチウム含有ガーネット結晶体は、リチウムイオン伝導性に優れているため、全固体リチウムイオン二次電池の固体電解質に使用できる。すなわち、本発明の全固体リチウムイオン二次電池は、正極と、負極と、固体電解質とを有し、固体電解質が本発明のリチウム含有ガーネット結晶体、例えば、相対密度が99%以上で、正方晶系に属し、ガーネット関連型構造を有するLi7La3Zr2O12結晶から構成されている。また、相対密度が100%であるLi7La3Zr2O12結晶、すなわち本来のLi7La3Zr2O12単結晶は、リチウムイオン伝導性が特に優れている。
 本発明の実施形態に係るLi7La3Zr2O12結晶の製造方法は、多結晶Li7La3Zr2O12から構成される原料の少なくとも一部を溶融して溶融部を形成し、溶融部を移動してガーネット関連型構造を有するLi7La3Zr2O12結晶を製造する方法であって、溶融部の移動速度が8mm/h以上であり、Li7La3Zr2O12結晶の相対密度が99%以上である。本実施形態のLi7La3Zr2O12結晶の製造方法は、原料の融液からLi7La3Zr2O12結晶を育成する方法で、具体的にはフローティングゾーン(FZ)法、チョクラルスキー(Czochralski:CZ)法、ブリッジマン法、ペデスタル法などが該当する。製造するLi7La3Zr2O12結晶の大きさや形状等に応じて、これらの方法の中から適切な方法を選択すればよい。
 FZ法によってLi7La3Zr2O12結晶を製造する場合には、棒形状の原料を長手方向と垂直な面で回転させながらその一部を溶融し、溶融部を長手方向に移動することによってLi7La3Zr2O12結晶を育成する。多結晶Li7La3Zr2O12から構成される棒形状の原料は、以下のようにして作製する。まず、リチウム化合物、ランタン化合物、およびジルコニウム化合物を、高温でリチウムが揮発することを考慮して、Li:La:Zrが7~8:3:2のモル比となるように秤量する。
 リチウム化合物としては、リチウムを含有するものであれば特に制限されず、Li2OやLi2CO3などが挙げられる。ランタン化合物としては、ランタンを含有するものであれば特に制限されず、La2O3やLa(OH)3などが挙げられる。ジルコニウム化合物としては、ジルコニウムを含有するものであれば特に制限されず、ZrO2やZrCl4などが挙げられる。また、リチウム、ランタン、およびジルコニウムのうちの二種類以上を含む化合物、例えばLa2Zr2O7やLi2ZrO3などを用いて、Li:La:Zrが7~8:3:2のモル比となるように秤量してもよい。
 つぎに、秤量した各化合物を混合する。混合方法は、これらの各化合物を均一に混合できる限り特に限定されず、例えばミキサー等の混合機を用いて湿式または乾式で混合すればよい。そして、得られた混合物をふた付きルツボに充填した後、900℃~1000℃、好ましくは930℃~990℃で仮焼成することで、原料となる多結晶Li7La3Zr2O12の粉末が得られる。なお、一度仮焼成した生成物を、再度、粉砕、混合し、焼成することを繰り返すとさらに好ましい。この多結晶Li7La3Zr2O12粉末は正方晶系に属する。
 つぎに、成型しやすくするために、得られた多結晶Li7La3Zr2O12粉末を粉砕して粒子サイズを細かくする。粉砕方法は、粉末を微細化できる限り特に限定されず、例えば、遊星型ボールミル、ポットミル、ビーズミル等の粉砕装置を用いて湿式または乾式で粉砕すればよい。そして、得られた粉砕物をラバーチューブに充填した後、静水圧プレスによって棒形状に成形する。つぎに、得られた成形体を800℃~1300℃程度、好ましくは900℃~1100℃で焼成すれば、棒形状の多結晶Li7La3Zr2O12の原料が得られる。この棒形状の多結晶Li7La3Zr2O12は正方晶系に属する。
 そして、正方晶系に属する棒形状の多結晶Li7La3Zr2O12原料を、赤外線集光加熱炉で溶融させた後に急冷することによって、ガーネット関連型構造を有するLi7La3Zr2O12結晶が製造される。製造されるLi7La3Zr2O12結晶は正方晶系に属する。溶融部の移動速度を8mm/h以上と速くすることによって、リチウムの揮発に伴う原料の分解が避けられる。この溶融部の移動速度は8mm/h以上19mm/h以下であることが好ましい。
 溶融部ではリチウムが揮発しようとして気泡が発生するが、棒形状の多結晶Li7La3Zr2O12の原料の回転速度を30rpm以上と速くすることによって、気泡を取り除くことができる。原料の回転速度は30rpm以上60rpm以下であることが好ましい。また、原料の溶融および溶融部の移動を乾燥空気雰囲気で行うことが好ましい。このようにして、相対密度が99%以上である高密度のLi7La3Zr2O12結晶が製造できる。相対密度が100%であるLi7La3Zr2O12結晶も製造可能である。
 CZ法によってLi7La3Zr2O12結晶を製造する場合は、以下の手順で行う。まず、原料の多結晶Li7La3Zr2O12をるつぼに入れて加熱し溶融する。つぎに、種結晶を原料の融液につけて回転しながら引き上げる。溶融部の移動速度、すなわち種結晶の引き上げ速度を8mm/h以上と速くすることによって、リチウムの揮発が抑えられ、高密度のLi7La3Zr2O12結晶が得られると考えられる。
1.FZ法によるLi7La3Zr2O12結晶の製造
(1)多結晶Li7La3Zr2O12粉末の作製
 まず、出発原料として炭酸リチウムLi2CO3(レアメタリック製、純度99.99%)10.1175gと、酸化ランタンLa2O3(レアメタリック製、純度99.99%)17.4606gと、酸化ジルコニウムZrO2(レアメタリック製、純度99.99%)8.7648gをメノウ製乳鉢に入れて、エタノールを使用した湿式法によって均一に混合した。なお、酸化ランタンは、あらかじめ900℃で仮焼成したものを使用した。つぎに、ふた付きのアルミナるつぼ(ニッカトー製、C5型)にこの混合物36gを充填した。そして、これをボックス型電気炉(ヤマト科学製、FP100型)に入れて、950℃で5時間仮焼成して粉末を得た。つぎに、得られた粉末を、乳鉢で粉砕した後に980℃で10時間焼成することを2回行い、多結晶Li7La3Zr2O12粉末を作製した。
 そして、この多結晶Li7La3Zr2O12粉末を粉砕した。すなわち、多結晶Li7La3Zr2O12粉末30gと、直径5mmのジルコニアボール50gと、イオン交換水14mLを容量45mLのジルコニア製粉砕容器に充填し、遊星型ボールミル(ドイツ・フリッチュ製、型式P-6)を用いて、公転回転数200rpmで合計300分回転させて粉砕した。粉砕後の多結晶粉末を100℃で24時間乾燥させ、250μm目開きのふるいを用いて分級した。
(2)棒形状の多結晶Li7La3Zr2O12の作製
 上記工程でふるいを通過した多結晶Li7La3Zr2O12粉末を用いて、以下の手順で棒形状の多結晶Li7La3Zr2O12を作製した。まず、ゴム製の型にこの多結晶Li7La3Zr2O12粉末26gを充填して脱気した。つぎに、この型を密閉した状態で水中に入れて、40MPaで5分間維持した。そして、水の圧力を下げた後、成形体を型から取り出した。成形体は、直径1.2cm、高さ7cmの円柱形状をしていた。つぎに、箱型電気炉(デンケン製、型番KDF009)を用いて、この成形体を1150℃で8時間焼成した。得られた焼成体は、円柱に近い幅1cm、長さ7cmの棒形状をしており、その質量は26gであった。粉末X線回折装置(リガク社製、Smart Lab)による粉末X線回折パターンによって、この焼成体は正方晶系に属する多結晶Li7La3Zr2O12であることがわかった。
(3)Li7La3Zr2O12結晶の育成
 まず、100kWのハロゲンランプを装備した四楕円型赤外線集光加熱炉(FZ炉)(Crystal System社製、FZ-T-10000H型)に、上記工程で得られた棒形状の多結晶Li7La3Zr2O12原料を設置して、乾燥空気雰囲気にした。つぎに、棒形状の多結晶Li7La3Zr2O12原料を長手方向と垂直な面で原料を45rpmで回転させながら、出力51.9%で加熱した。しばらくすると、多結晶Li7La3Zr2O12原料の一部が溶融して溶融部を形成した。そして、多結晶Li7La3Zr2O12原料の設置台を8mm/hと19mm/hの移動速度で下降させてLi7La3Zr2O12結晶を育成した。設置台の移動速度を19mm/hとして得られたLi7La3Zr2O12結晶(以下「試料1」ということがある)の外観を図2に示す。
 単結晶X線回折装置(リガク社製、R-AXIS RAPID-II)を用いて、試料1の構造を調べた。試料1のX線回折パターンを図3に示す。図3に示すように、明瞭な回折点が測定できた。単結晶X線回折装置付属のプログラムRAPID AUTOにより回折強度データを収集し、結晶構造解析プログラムJana2006によって試料1の結晶構造を調べたところ、試料1は正方晶に属することがわかった。試料1をダイヤモンドカッターで切断して厚さ0.1mmの薄片を4枚作製した。そして、上述の方法でこれらの相対密度を算出した。その結果、これらの相対密度はそれぞれ99.0%、99.4%、99.7%、100%であった。
 また、試料1の単結晶X線回折測定で観測された反射を用いて、最小二乗法により格子定数を求めたところ、a=1.3061nm±0.0009nm、c=1.3012nm±0.0012nmであった。これらの格子定数から、試料1はガーネット関連型構造を有するリチウム複合酸化物であることがわかった。また、これらの格子定数から、試料1は、これまでに報告されている正方晶Li7La3Zr2O12の格子と比較して、より立方晶に近い格子を有する新規正方晶ガーネット関連型構造Li7La3Zr2O12であることもわかった。なお、多結晶Li7La3Zr2O12原料の回転速度を30rpmおよび60rpmとした場合でも、相対密度が99%以上で、正方晶系に属し、ガーネット関連型構造を有するLi7La3Zr2O12結晶が得られた。
 単結晶X線回折装置付属のプログラムRAPID AUTOにより回折強度データを収集し、結晶構造解析プログラムJana2006によって試料1の結晶構造解析を行った結果を図4に示す。これまでに報告されている正方晶ガーネット関連型構造と比較して、試料1は結晶構造内でのリチウムイオンの配列、リチウム席の占有状況が異なる。これまでに報告されている正方晶Li7La3Zr2O12は、結晶構造内に3種類のリチウムイオン席(8a席,16f席,32g席)を有し、各席の占有率が100%であるが、試料1は、結晶構造内に4種類5つのリチウムイオン席(8a席,16f席,2つの32g席,16e席)を有し、各席の占有率は30~50%であった。
 すなわち、試料1は、Liが8a席、16f席、32g席、および16e席の4種類のイオン席に存在していた。このリチウムイオンの配列変化はこれまでに報告されている立方晶ガーネット関連型構造のLi7La3Zr2O12のリチウムイオンの配列に近い。このため、試料1の格子定数が立方晶に近い値になったと考えられる。本結晶構造解析の信頼度を示すR因子は7.46%であったため、結晶構造解析は妥当な結果であると言える。試料1を粉砕して粉末X線回折測定を行った結果を図5に示す。試料1の粉末X線回折パターンは、これまでに報告されている正方晶ガーネット関連型構造のLi7La3Zr2O12のパターンと同様であった。粉末X線構造解析の結果から算出される格子定数は、a=1.31270nm±0.00002nm、c=1.26882nm±0.00003nmであった。
(4)Li7La3Zr2O12結晶のリチウムイオン伝導率の測定
 まず、試料1を切断して、直径約1.0cm、厚さ約0.19cmの円柱状の薄片を作製した。つぎに、底面が一辺0.18cmの正方形で、厚さが40nmの直方体状の金を、この薄片の両面にスパッタリングして電極を形成した。そして、窒素雰囲気中25℃で、交流インピーダンス法(測定装置:Solartron、1260)によって、試料1のインピーダンスを測定した。このときのナイキストプロットを図6に示す。図6に示すナイキストプロットからリチウムイオン伝導率を算出したところ4.6×10-5S/cmであった。
2.CZ法によるLi7La3Zr2O12結晶の製造
(1)多結晶Li7La3Zr2O12粉末の作製
 上記「FZ法によるLi7La3Zr2O12結晶の製造」での「多結晶Li7La3Zr2O12粉末の作製」と同様の手順で、ふるいを通過した多結晶Li7La3Zr2O12粉末を作製した。
(2)Li7La3Zr2O12結晶の育成
 まず、内径2.6cm、深さ2.8cmの円筒状のイリジウム容器に、上記工程で得られた多結晶Li7La3Zr2O12粉末38gを充填した。つぎに、高周波誘導加熱機能を備える単結晶引き上げ炉(CZ炉)(テクノサーチ社製、TCH-3)に、このイリジウム容器を設置した。そして、長さ0.8mmのタングステンロッドを引き上げ部に設置して、CZ炉内を乾燥窒素雰囲気にした。つぎに、高周波出力を少しずつ上げていき、出力76.2%でイリジウム容器を加熱し続けた。しばらくすると、イリジウム容器に充填したLi7La3Zr2O12粉末が溶融した。
 そして、長手方向と垂直な面でこのタングステンロッドを10rpmで回転させながらLi7La3Zr2O12の溶融部に入れた後、タングステンロッドを10mm/hの移動速度で上昇させてLi7La3Zr2O12結晶を育成した。育成したLi7La3Zr2O12結晶(以下「試料2」ということがある)の外観を図7に示す。また、試料2を粉砕して粉末X線回折測定を行った結果を図8に示す。
 試料2の粉末X線回折パターンは、これまでに報告されている正方晶ガーネット関連型構造のLi7La3Zr2O12のパターンと同様であった。粉末X線構造解析の結果から算出される格子定数は、a=1.31322nm±0.00001nm、c=1.26703nm±0.00001nmであった。FZ法で製造したLi7La3Zr2O12結晶の単結晶X線回折測定と粉末X線構造解析、およびCZ法で製造したLi7La3Zr2O12結晶の粉末X線構造解析の結果を併せると、Li7La3Zr2O12結晶の格子定数は、1.3052nm≦a≦1.31323nm、1.26702nm≦c≦1.3024nmである。
 本発明のリチウム含有ガーネット結晶体は、全固体リチウムイオン二次電池の固体電解質の材料などに利用できる。

Claims (15)

  1.  相対密度が99%以上で、正方晶系に属し、ガーネット関連型構造を有するリチウム含有ガーネット結晶体。
  2.  請求項1において、
     Li7La3Zr2O12結晶であるリチウム含有ガーネット結晶体。
  3.  請求項1または2において、
     前記相対密度が100%であるリチウム含有ガーネット結晶体。
  4.  請求項1から3のいずれかにおいて、
     下記(1)および(2)の少なくとも一方を満たすリチウム含有ガーネット結晶体。
     (1)交流インピーダンス測定によるナイキストプロットが、結晶粒界による抵抗成分を示さず、材料自体の抵抗成分のみを示す。
     (2)単結晶を用いたX線回折測定、中性子回折測定、または電子回折測定において、回折パターンに回折スポットがリング状で現れる。
  5.  請求項1から4のいずれかにおいて、
     格子定数が1.3052nm≦a≦1.31323nm、1.26702nm≦c≦1.3024nmであるリチウム含有ガーネット結晶体。
  6.  請求項5において、
     Liが8a席、16f席、32g席、および16e席の4種類のイオン席に存在するリチウム含有ガーネット結晶体。
  7.  多結晶Li7La3Zr2O12から構成される原料の少なくとも一部を溶融して溶融部を形成し、前記溶融部を移動してガーネット関連型構造を有するLi7La3Zr2O12結晶を製造する方法であって、
     前記溶融部の移動速度が8mm/h以上であり、
     前記Li7La3Zr2O12結晶の相対密度が99%以上であるLi7La3Zr2O12結晶の製造方法。
  8.  請求項7において、
     前記移動速度が8mm/h以上19mm/h以下であるLi7La3Zr2O12結晶の製造方法。
  9.  請求項7または8において、
     棒形状の前記原料を長手方向と垂直な面で回転させながらその一部を溶融し、
     前記溶融部を前記長手方向に移動するLi7La3Zr2O12結晶の製造方法。
  10.  請求項9において、
     前記原料の回転速度が30rpm以上であるLi7La3Zr2O12結晶の製造方法。
  11.  請求項10において、
     前記原料の回転速度が30rpm以上60rpm以下であるLi7La3Zr2O12結晶の製造方法。
  12.  請求項7から11のいずれかにおいて、
     前記多結晶Li7La3Zr2O12および前記Li7La3Zr2O12結晶が正方晶系に属するLi7La3Zr2O12結晶の製造方法。
  13.  請求項7から12のいずれかにおいて、
     前記Li7La3Zr2O12結晶の相対密度が100%であるLi7La3Zr2O12結晶の製造方法。
  14.  請求項7から13のいずれかにおいて、
     前記原料の溶融および前記溶融部の移動を乾燥空気雰囲気で行うLi7La3Zr2O12結晶の製造方法。
  15.  正極と、負極と、固体電解質とを有する全固体リチウムイオン二次電池であって、
     前記固体電解質が請求項1から6のいずれかのリチウム含有ガーネット結晶体から構成される全固体リチウムイオン二次電池。
PCT/JP2015/071681 2014-07-31 2015-07-30 リチウム含有ガーネット結晶体、その製造方法、および全固体リチウムイオン二次電池 WO2016017769A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580040313.2A CN107075722B (zh) 2014-07-31 2015-07-30 含锂石榴石晶体及其制造方法、以及全固体锂离子二次电池
JP2016538443A JP6524089B2 (ja) 2014-07-31 2015-07-30 リチウム含有ガーネット単結晶体の製造方法
EP15826797.1A EP3176291B1 (en) 2014-07-31 2015-07-30 Lithium-containing garnet crystal body, method for producing same, and all-solid-state lithium ion secondary battery
KR1020177005190A KR101969657B1 (ko) 2014-07-31 2015-07-30 리튬 함유 가닛 결정체, 그의 제조 방법 및 전고체 리튬 이온 이차 전지
US15/329,750 US10693184B2 (en) 2014-07-31 2015-07-30 Lithium-containing garnet crystal body, method for producing same, and all-solid-state lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-156038 2014-07-31
JP2014156038 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017769A1 true WO2016017769A1 (ja) 2016-02-04

Family

ID=55217665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071681 WO2016017769A1 (ja) 2014-07-31 2015-07-30 リチウム含有ガーネット結晶体、その製造方法、および全固体リチウムイオン二次電池

Country Status (6)

Country Link
US (1) US10693184B2 (ja)
EP (1) EP3176291B1 (ja)
JP (1) JP6524089B2 (ja)
KR (1) KR101969657B1 (ja)
CN (1) CN107075722B (ja)
WO (1) WO2016017769A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178321A1 (ja) * 2015-05-07 2016-11-10 株式会社豊田自動織機 ガーネット型イオン伝導体を含む構造体
KR20190002660A (ko) * 2016-05-26 2019-01-08 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 저대칭 가닛 관련형 구조 고체 전해질 및 리튬 이온 이차 전지
JP2021046340A (ja) * 2019-09-19 2021-03-25 国立研究開発法人産業技術総合研究所 ガリウム置換型固体電解質材料および全固体リチウムイオン二次電池
WO2022074959A1 (ja) * 2020-10-09 2022-04-14 国立研究開発法人産業技術総合研究所 新規結晶構造を備える複合酸化物と、この複合酸化物を固体電解質とする全固体リチウムイオン二次電池
WO2022107687A1 (ja) * 2020-11-17 2022-05-27 国立研究開発法人産業技術総合研究所 リチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119573B (zh) * 2018-08-02 2022-06-07 山东理工大学 锂离子电池改性隔膜的制备方法
KR20190038776A (ko) 2019-04-01 2019-04-09 창원대학교 산학협력단 카본 함량이 감소된 황 복합 전극을 포함하는 전고체전지
CN112647131B (zh) * 2020-12-11 2022-02-22 枣庄学院 一种锆酸钆锂化合物及其单晶体制备方法与应用
US11728511B2 (en) * 2021-03-01 2023-08-15 Toyota Motor Engineering & Manufacturing North America, Inc. Uniform organic-ceramic composites including a hard-inorganic lithium ion electrolyte and a plurality of soft electrolytes, solid-state batteries including the same, and methods of preparing the same
CN113880577B (zh) * 2021-10-13 2023-03-17 上海交通大学 一种固体电解质的干法制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249399A (ja) * 2001-02-21 2002-09-06 Murata Mfg Co Ltd 単結晶の製造方法および単結晶
JP2010102929A (ja) * 2008-10-23 2010-05-06 Toyota Central R&D Labs Inc リチウム含有ガーネット型酸化物、リチウム二次電池及び固体電解質の製造方法
JP2010143785A (ja) * 2008-12-18 2010-07-01 National Institute Of Advanced Industrial Science & Technology リチウムイオン伝導性酸化物およびその製造方法、並びに該酸化物により構成された固体電解質
JP2013107779A (ja) * 2011-11-17 2013-06-06 Honda Motor Co Ltd 焼結体及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131854B2 (ja) 1973-10-18 1976-09-09
JPS5131854A (ja) 1974-09-13 1976-03-18 Oki Electric Ind Co Ltd Bureekugatashinguruendoriidosuitsuchi
US20050023710A1 (en) * 1998-07-10 2005-02-03 Dmitri Brodkin Solid free-form fabrication methods for the production of dental restorations
JP5133798B2 (ja) 2008-07-07 2013-01-30 東芝キヤリア株式会社 給湯装置
CN201321505Y (zh) * 2008-11-21 2009-10-07 中国科学院上海光学精密机械研究所 用提拉法生长铝酸锂晶体的装置
JP2011195372A (ja) * 2010-03-19 2011-10-06 National Institute Of Advanced Industrial Science & Technology リチウムイオン伝導性酸化物の単結晶及びその製造方法、並びにそれを部材として使用した電気化学デバイス
JP5649033B2 (ja) * 2010-03-19 2015-01-07 独立行政法人産業技術総合研究所 リチウムイオン伝導性酸化物及びその製造方法、並びにそれを部材として使用した電気化学デバイス
EP2843753B1 (en) * 2012-04-26 2017-06-28 NGK Insulators, Ltd. Lithium air secondary cell
KR101982422B1 (ko) * 2014-10-31 2019-05-27 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 리튬 이온 전도성 결정체 및 전고체 리튬 이온 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249399A (ja) * 2001-02-21 2002-09-06 Murata Mfg Co Ltd 単結晶の製造方法および単結晶
JP2010102929A (ja) * 2008-10-23 2010-05-06 Toyota Central R&D Labs Inc リチウム含有ガーネット型酸化物、リチウム二次電池及び固体電解質の製造方法
JP2010143785A (ja) * 2008-12-18 2010-07-01 National Institute Of Advanced Industrial Science & Technology リチウムイオン伝導性酸化物およびその製造方法、並びに該酸化物により構成された固体電解質
JP2013107779A (ja) * 2011-11-17 2013-06-06 Honda Motor Co Ltd 焼結体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176291A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178321A1 (ja) * 2015-05-07 2016-11-10 株式会社豊田自動織機 ガーネット型イオン伝導体を含む構造体
KR20190002660A (ko) * 2016-05-26 2019-01-08 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 저대칭 가닛 관련형 구조 고체 전해질 및 리튬 이온 이차 전지
EP3466888A4 (en) * 2016-05-26 2020-01-29 National Institute of Advanced Industrial Science and Technology STRUCTURED SOLID ELECTROLYTE RELATED TO A LOW SYMMETRIC GARNET AND LITHIUM ACCUMULATOR
KR102137801B1 (ko) 2016-05-26 2020-07-24 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 저대칭 가닛 관련형 구조 고체 전해질 및 리튬 이온 이차 전지
JP2021046340A (ja) * 2019-09-19 2021-03-25 国立研究開発法人産業技術総合研究所 ガリウム置換型固体電解質材料および全固体リチウムイオン二次電池
WO2021053923A1 (ja) * 2019-09-19 2021-03-25 国立研究開発法人産業技術総合研究所 ガリウム置換型固体電解質材料および全固体リチウムイオン二次電池
JP7361299B2 (ja) 2019-09-19 2023-10-16 国立研究開発法人産業技術総合研究所 ガリウム置換型固体電解質材料および全固体リチウムイオン二次電池
WO2022074959A1 (ja) * 2020-10-09 2022-04-14 国立研究開発法人産業技術総合研究所 新規結晶構造を備える複合酸化物と、この複合酸化物を固体電解質とする全固体リチウムイオン二次電池
JP7442878B2 (ja) 2020-10-09 2024-03-05 国立研究開発法人産業技術総合研究所 新規結晶構造を備える複合酸化物と、この複合酸化物を固体電解質とする全固体リチウムイオン二次電池
WO2022107687A1 (ja) * 2020-11-17 2022-05-27 国立研究開発法人産業技術総合研究所 リチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法

Also Published As

Publication number Publication date
CN107075722A (zh) 2017-08-18
CN107075722B (zh) 2019-12-31
KR20170036045A (ko) 2017-03-31
EP3176291A4 (en) 2018-01-24
JPWO2016017769A1 (ja) 2017-06-22
EP3176291B1 (en) 2019-03-27
JP6524089B2 (ja) 2019-06-05
KR101969657B1 (ko) 2019-04-16
EP3176291A1 (en) 2017-06-07
US20170222258A1 (en) 2017-08-03
US10693184B2 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2016017769A1 (ja) リチウム含有ガーネット結晶体、その製造方法、および全固体リチウムイオン二次電池
JP6278433B2 (ja) リチウム含有ガーネット結晶体および全固体リチウムイオン二次電池
JP6120346B2 (ja) リチウム含有ガーネット結晶体および全固体リチウムイオン二次電池
JP6667182B2 (ja) 低対称ガーネット関連型構造固体電解質およびリチウムイオン二次電池
US11139504B2 (en) Lithium ion conductive crystal body and all-solid state lithium ion secondary battery
WO2021053923A1 (ja) ガリウム置換型固体電解質材料および全固体リチウムイオン二次電池
WO2022074959A1 (ja) 新規結晶構造を備える複合酸化物と、この複合酸化物を固体電解質とする全固体リチウムイオン二次電池
CN116547240A (zh) 锂复合氧化物单晶、锂复合氧化物多晶、锂复合氧化物材料、固体电解质材料、全固态锂离子二次电池、以及固体电解质材料的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826797

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015826797

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015826797

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016538443

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15329750

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177005190

Country of ref document: KR

Kind code of ref document: A