WO2022107687A1 - リチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法 - Google Patents

リチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法 Download PDF

Info

Publication number
WO2022107687A1
WO2022107687A1 PCT/JP2021/041657 JP2021041657W WO2022107687A1 WO 2022107687 A1 WO2022107687 A1 WO 2022107687A1 JP 2021041657 W JP2021041657 W JP 2021041657W WO 2022107687 A1 WO2022107687 A1 WO 2022107687A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
composite oxide
lithium composite
electrolyte material
lithium
Prior art date
Application number
PCT/JP2021/041657
Other languages
English (en)
French (fr)
Inventor
邦光 片岡
順二 秋本
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to EP21894561.6A priority Critical patent/EP4249649A1/en
Priority to KR1020237016530A priority patent/KR20230107583A/ko
Priority to US18/252,853 priority patent/US20240003052A1/en
Priority to JP2022563721A priority patent/JPWO2022107687A1/ja
Priority to CN202180076937.5A priority patent/CN116547240A/zh
Publication of WO2022107687A1 publication Critical patent/WO2022107687A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/14Crucibles or vessels
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/28Controlling or regulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium composite oxide single crystal, a lithium composite oxide polycrystal, a lithium composite oxide material, a solid electrolyte material, an all-solid lithium ion secondary battery, and a method for producing a solid electrolyte material.
  • Lithium-ion secondary batteries have a higher energy density than secondary batteries such as NiCad batteries and nickel-metal hydride batteries, and can be operated at high potentials, so they are widely used in small information devices such as mobile phones and laptop computers. Has been done.
  • lithium ion secondary batteries are easy to reduce in size and weight, the demand for them as secondary batteries for hybrid automobiles and electric vehicles is increasing in recent years.
  • the solid electrolyte used in the all-solid-state lithium-ion secondary battery is required to have high ionic conductivity.
  • Patent Document 1 It has been reported that a material having a cubic garnet-type structure has a high ionic conductivity (see Patent Document 1), and research and development of a material having this structure is underway.
  • the material whose chemical composition is represented by Li 7-x La 3 Zr 2-x Ta x O 12 and Li 7-x La 3 Zr 2-x Nb x O 12 has a composition ratio x of 0.5. It has been reported that it has high ionic conductivity in the near case (see Non-Patent Documents 1 and 2).
  • As a material that realizes high ionic conductivity it is necessary to reduce grain boundary resistance and interfacial resistance as much as possible, so a solid material that is a high-density molded body is desirable.
  • the solid material which is a high-density molded body, can prevent short circuits between the positive and negative electrodes during the charge / discharge process and can be sliced, which has the potential for future miniaturization of all-solid-state lithium-ion secondary batteries. give.
  • these polycrystalline materials having a cubic garnet-type structure are difficult to sinter, and it is difficult to produce a high-density molded body.
  • a material that achieves high ionic conductivity it is necessary to reduce grain boundary resistance and interfacial resistance as much as possible, so a solid material that is a high-density molded body is desirable.
  • a high-density molded body that is a single crystal is not affected by grain boundaries, and therefore high lithium ion conductivity is expected.
  • the present invention has been made in view of the above circumstances, and is a lithium composite oxide single crystal, a lithium composite oxide polycrystal, a lithium composite oxide material, a solid electrolyte material, and an all-solid lithium ion having improved lithium ion conductivity. It is an object of the present invention to provide a method for manufacturing a secondary battery and a solid electrolyte material.
  • the present inventors have diligently studied a method of melting and cooling a mixed raw material containing an excess of lithium and gallium at a high temperature based on the composition ratio of the target solid electrolyte material.
  • Li 7-3x-w-v Ga x La 3 Zr 2-w-v Ta W Nb v O 12 (0.02 ⁇ x ⁇ 0.5, 0), which belongs to the cubic system and has a garnet-type structure. It was found that a single crystal of ⁇ W ⁇ 1.0, 0 ⁇ V ⁇ 1.0, 0.05 ⁇ W + V ⁇ 1.0) can be produced, and it is confirmed that this single crystal can be mechanically sliced.
  • the present invention was completed. In order to solve the above problems, the present invention employs the following means.
  • the lithium composite oxide single crystal according to one aspect of the present invention has a chemical composition of Li 7-3x-w-v Ga x La 3 Zr 2-w-v Ta W Nb v O 12 (0.02 ⁇ ).
  • x ⁇ 0.5, 0 ⁇ W ⁇ 1.0, 0 ⁇ V ⁇ 1.0, 0.05 ⁇ W + V ⁇ 1.0), it is a cubic system, belongs to the space group I-43d, and is a garnet type. Has a structure.
  • the lithium composite oxide polycrystal according to one aspect of the present invention has a chemical composition of Li 7-3x-w-v Ga x La 3 Zr 2-w-v Ta W Nb v O 12 (0.02 ⁇ ).
  • x ⁇ 0.5, 0 ⁇ W ⁇ 1.0, 0 ⁇ V ⁇ 1.0, 0.05 ⁇ W + V ⁇ 1.0), it is a cubic system, belongs to the space group I-43d, and is a garnet type. Has a structure.
  • the relative density is preferably 90% or more.
  • the relative density is preferably 95% or more.
  • the lithium composite oxide material according to one aspect of the present invention includes the lithium composite oxide single crystal according to the above aspect or the lithium composite oxide polycrystal according to the above aspect.
  • the solid electrolyte material according to one aspect of the present invention includes the lithium composite oxide single crystal according to the above aspect or the lithium composite oxide polycrystal according to the above aspect.
  • the lithium ion conductivity is preferably 1.0 ⁇ 10 -3 S / cm or more.
  • the all-solid-state lithium ion secondary battery according to one aspect of the present invention includes a positive electrode, a negative electrode, and a solid electrolyte material according to the above aspect.
  • the method for producing a solid electrolyte material according to one aspect of the present invention is the method for producing a solid electrolyte material according to the above aspect, and the chemical composition is Li (7-3x—W) y Ga xz La 3 Zr 2 . -W Ta W Nb v O 12 (0.02 ⁇ x ⁇ 0.5, 1.1 ⁇ y ⁇ 1.4, 1.6 ⁇ z ⁇ 3.3, 0 ⁇ W ⁇ 1.0, 0 ⁇ V
  • a rod-shaped substrate (first) containing a raw material represented by ⁇ 1.0, 0.05 ⁇ W + V ⁇ 1.0, 1.1 ⁇ y ⁇ 1.5, 1.5 ⁇ z ⁇ 3.5). It has a melted portion forming step of melting at least a part of the base material) to form a melted portion, and a melted portion moving step of moving the melted portion at an average speed of 8 mm / h or more.
  • the average speed is preferably 8 mm / h or more and 19 mm / h or less.
  • the melted portion moving step may be performed with the seed crystal of the solid electrolyte attached to the melted portion.
  • the melting part moving step of the method for producing a solid electrolyte material according to the above aspect it is preferable to rotate the melting part at a rotation speed of 2 rpm or more and 8 rpm or less on a surface perpendicular to the longitudinal direction of the base material. ..
  • the method for producing a solid electrolyte material according to another aspect of the present invention is a method for producing a solid electrolyte material according to the above aspect, wherein the chemical composition is Li (7-3x-).
  • It has a melt adhering step of moving the melt adhering to the base material together with the base material, and a melt moving step of moving the melt adhering to the base material to the outside of the pit at an average speed of 8 mm / h or more.
  • the average speed is 8 mm / h or more and 19 mm / h or less.
  • the melt transfer step may be performed with the seed crystal of the solid electrolyte attached to the substrate.
  • the rod-shaped base material is placed on a plane perpendicular to the longitudinal direction at a rotation speed of 2 rpm or more and 8 rpm or less with respect to the melt. It is preferable to rotate it.
  • a lithium composite oxide single crystal with improved lithium ion conductivity a lithium composite oxide polycrystal, a lithium composite oxide material, a solid electrolyte material, an all-solid lithium ion secondary battery, and a solid electrolyte material. Production method can be provided.
  • FIG. 1 is an external photograph of a Li 6 Ga 0.25 La3Zr 1.75 Ta 0.25 O 12 single crystal grown by the FZ method in Example 1. It is a single crystal X-ray diffraction pattern obtained in the Li 6 Ga 0.25 La 3 Zr 1.75 Ta 0.25 O 12 single crystal of FIG. 1. It is a schematic diagram which shows the garnet type structure of the Li 6 Ga 0.25 La 3 Zr 1.75 Ta 0.25 O 12 single crystal of FIG. It is a Nyquist plot obtained by using the AC impedance method in the Li 6 Ga 0.25 La 3 Zr 1.75 Ta 0.25 O 12 single crystal of FIG. It is a powder X-ray diffraction pattern obtained in the Li 6 Ga 0.25 La 3 Zr 1.75 Ta 0.25 O 12 single crystal of FIG.
  • FIG. 3 is an external photograph of Li 6 Ga 0.25 La 3 Zr 1.75 Nb 0.25 O 12 crystals grown by the FZ method in Example 3. It is a single crystal X-ray diffraction pattern obtained in the Li 6 Ga 0.25 La 3 Zr 1.75 Nb 0.25 O 12 single crystal of FIG. 7.
  • FIG. 7 is a schematic diagram showing a garnet-type structure of a Li 6 Ga 0.25 La 3 Zr 1.75 Nb 0.25 O 12 single crystal of FIG. 7.
  • FIG. 7 is a schematic diagram showing a garnet-type structure of a Li 6 Ga 0.25 La 3 Zr 1.75 Nb 0.25 O 12 single crystal of FIG. 7.
  • FIG. 4 is an external photograph of Li 6 Ga 0.25 La 3 Zr 1.75 Ta 0.125 Nb 0.125 O 12 crystals grown by the FZ method in Example 4. It is a single crystal X-ray diffraction pattern obtained in the Li 6 Ga 0.25 La 3 Zr 1.75 Ta 0.125 Nb 0.125 O 12 single crystal of FIG. 10.
  • 11 is a schematic diagram showing a garnet-type structure of a single crystal of Li 6 Ga 0.25 La 3 Zr 1.75 Ta 0.125 Nb 0.125 O 12 in FIG. 11.
  • FIG. 5 is an external photograph of Li 6.125 Ga 0.125 La 3 Zr 1.5 Ta 0.25 Nb 0.25 O 12 crystals grown by the Cz method in Example 5.
  • FIG. 13 is a schematic diagram showing a garnet-type structure of a single crystal of Li 6.125 Ga 0.125 La 3 Zr 1.5 Ta 0.25 Nb 0.25 O 12 in FIG. 13.
  • 6 is an external photograph of Li 5.55 Ga 0.4 La 3 Zr 1.75 Ta 0.125 Nb 0.125 O 12 crystals grown by the FZ method in Example 6.
  • It is a single crystal X-ray diffraction pattern obtained in the Li 5.55 Ga 0.4 La 3 Zr 1.75 Ta 0.125 Nb 0.125 O 12 single crystal of FIG.
  • FIG. 16 is a schematic diagram showing a garnet-type structure of a single crystal of Li 5.55 Ga 0.4 La 3 Zr 1.75 Ta 0.125 Nb 0.125 O 12 in FIG. 16. It is an appearance photograph of the lithium composite oxide polycrystal prepared in Example 7.
  • the solid electrolyte material according to the embodiment of the present invention has a chemical composition of Li 7-3x-w-v Ga x La 3 Zr 2-w-v Ta W Nb v O 12 (0.02 ⁇ x ⁇ 0.5). , 0 ⁇ W ⁇ 1.0, 0 ⁇ V ⁇ 1.0, 0.05 ⁇ W + V ⁇ 1.0), at least one of the lithium composite oxide single crystal and the lithium composite oxide polycrystal include.
  • the solid electrolyte material is a kind of lithium composite oxide material.
  • the use of the lithium composite oxide material is not limited to the use as a solid electrolyte of an all-solid-state battery, and can be applied to various uses.
  • the lithium composite oxide single crystal contained in the solid electrolyte material is a cubic system, belongs to the space group I-43d, and has a garnet-type structure.
  • the lithium composite oxide polycrystal contained in the solid electrolyte material is a cubic crystal system, belongs to the space group I-43d, and is composed of a single crystal having a garnet-type structure.
  • a lithium composite oxide having a relative density of 99% or more is a lithium composite oxide single crystal, and a lithium composite oxide having a relative density of 90% or more and less than 99%, preferably 95% or more and less than 99% is lithium. It is a composite oxide polycrystal.
  • a volatile material is used for the lithium composite oxide single crystal in the manufacturing process described later, and when it is manufactured by the melting method, air may be generated and voids may be generated inside. In such a case, The relative density is less than 100%.
  • the outer shape of the prepared lithium composite oxide sample (slices, etc.) is measured to calculate the apparent volume, and the apparent density calculated from the measured mass is obtained from the single crystal X-ray structure analysis result. It is calculated by dividing by the true density to be obtained. Since the solid electrolyte material of the present embodiment has a high density, it can be easily cut into any thickness by using a diamond cutter or the like.
  • the lithium ion conductivity can be 1.0 ⁇ 10 -3 S / cm or more, and by setting the relative density to almost 100%, 4.0 ⁇ 10 -3 S / cm or more. It can also be. The higher the relative density, the higher the adhesion between the particles, the smaller the grain boundaries, and the better the ionic conductivity.
  • the method for producing the solid electrolyte material of the present embodiment mainly includes a step of forming a molten portion of the raw material of the solid electrolyte material (melted portion forming step) and a step of moving the melted portion (melted portion moving step).
  • the formation and movement of the molten portion can be performed by melting the floating zone (FZ) method, Czochralski (Cz) method, Bridgeman method, pedestal method, etc., depending on the size and shape of the crystal to be manufactured. Use one of the methods.
  • the lithium compound is not particularly limited as long as it contains lithium, and examples thereof include oxides such as Li 2 O and carbonates such as Li 2 CO 3 .
  • the gallium compound is not particularly limited as long as it contains gallium, and examples thereof include oxides such as Ga 2 O 3 and nitrates such as Ga (NO 3 ) 3 .
  • the lanthanum compound is not particularly limited as long as it contains lanthanum, and examples thereof include oxides such as La 2 O 3 and hydroxides such as La (OH) 3 .
  • the zirconium compound is not particularly limited as long as it contains zirconium, and examples thereof include oxides such as ZrO 2 and chlorides such as ZrCl 4 .
  • the tantalum compound is not particularly limited as long as it contains tantalum, and examples thereof include oxides such as Ta 2 O 5 and chlorides such as TaCl 5 .
  • the niobium compound is not particularly limited as long as it contains niobium, and examples thereof include oxides such as Nb 2 O 5 and chlorides such as Nb Cl 5 .
  • Li: Ga: La: Zr: Ta: Nb is (7-3x-w).
  • -V) y: xz: 3: (2-w-v): w: v (0.02 ⁇ x ⁇ 0.5, 0 ⁇ W ⁇ 1.0, 0 ⁇ V ⁇ 1.0, 0.05 Weighing may be performed so as to have a molar ratio of ⁇ W + V ⁇ 1.0, 1.1 ⁇ y ⁇ 1.5, 1.5 ⁇ z ⁇ 3.5).
  • Examples of such two or more kinds of compounds include lanthanum zirconium oxides such as La 2 Zr 2 O 7 , gallium lanthanum oxides such as GaLaO 6 , lithium gallium oxides such as Li 5 GaO 4 , and Li 2 ZrO 3 .
  • Examples thereof include lithium zirconium oxide, lanthanum tantalum compounds such as LaTaO 4 , and lanthanum niobium compounds such as LaNbO 4 .
  • each weighed compound is mixed.
  • the mixing method is not particularly limited as long as each of these compounds can be mixed uniformly, and may be mixed wet or dry using a mixer such as a mixer, for example.
  • the obtained mixture is filled in a crucible with a lid and then calcined at 600 ° C. to 900 ° C., preferably 850 ° C. to obtain a powder as a raw material. It is more preferable to repeat crushing, mixing, and firing the raw material that has been tentatively fired once again.
  • the obtained raw material powder is crushed to make the particle size finer.
  • the pulverization method is not particularly limited as long as the particles can be pulverized, and may be pulverized wet or dry using, for example, a pulverizer such as a planetary ball mill, a pot mill, or a bead mill. Then, after filling the obtained crushed product into a rubber tube, a hydrostatic pressure press is performed to mold it into a rod shape.
  • the obtained rod-shaped molded body is fired at about 700 ° C. to 1300 ° C., preferably 800 ° C. to 1150 ° C. for about 4 hours to obtain a rod-shaped first substrate.
  • the chemical composition of the raw material is Li (7-3x-wv) y Ga xz La 3 Zr2- W Ta W Nb v O 12 (0.02 ⁇ x ⁇ 0.5, 1.1 ⁇ y ⁇ ). 1.4, 1.6 ⁇ z ⁇ 3.3, 0 ⁇ W ⁇ 1.0, 0 ⁇ V ⁇ 1.0, 0.05 ⁇ W + V ⁇ 1.0). In this way, a rod-shaped first substrate can be manufactured.
  • the rod-shaped first base material is housed in an infrared condensing heating furnace, and at least a part of the first base material is melted (melted portion forming step).
  • the chemical composition is Li (7-3x-wv) y Ga xz La 3 Zr 2-w Ta W Nb v O 12 (0.02 ⁇ x ⁇ 0.5, 1.1 ⁇ y). ⁇ 1.4, 1.6 ⁇ z ⁇ 3.3, 0 ⁇ W ⁇ 1.0, 0 ⁇ V ⁇ 1.0, 0.05 ⁇ W + V ⁇ 1.0) At least a part of the first substrate of No.
  • the melting portion forming step may be performed while rotating on a plane perpendicular to the longitudinal direction, that is, rotating around the longitudinal direction of the first base material as the axis center.
  • the raw material in which the melting part is formed is moved in the longitudinal direction thereof (melting part moving step).
  • the raw material having the above chemical composition is moved in parallel with the longitudinal direction, that is, along the longitudinal direction at an average speed of 8 mm / h or more (preferably 8 mm / h or more and 19 mm / h or less).
  • the molten portion moving step may be performed with the seed crystal of the solid electrolyte attached to the molten portion. In this case, the seed crystal also forms a melted portion and starts moving within a few minutes after being combined with the melted portion of the raw material. Along with the movement, the molten portion is rapidly cooled.
  • Li 7-3x-w-v GaxLa 3 Zr 2-w-v Ta W Nb v which is a cubic crystal system with a relative density of 90% or more, belongs to the space group I-43d, and has a garnet-type structure.
  • a solid electrolyte material containing a lithium composite oxide of O 12 (0.02 ⁇ x ⁇ 0.5, 0 ⁇ W ⁇ 1.0, 0 ⁇ V ⁇ 1.0, 0.05 ⁇ W + V ⁇ 1.0) can get.
  • the molten portion of the first base material formed into a rod shape is set to a predetermined rotation speed, preferably 30 rpm or more, more preferably 30 rpm or more and 60 rpm or less, on a plane perpendicular to the longitudinal direction. Rotate so that it becomes. Further, when a seed crystal is used, it is attached to the tip of a rod-shaped first base material, melted together with the first base material, a part thereof is made into a melted portion, and the seed crystal is rotated together with the melted portion at the same rotation speed.
  • bubbles are generated in the molten part as highly volatile lithium tries to volatilize.
  • bubbles derived from raw materials are generated in the manufacturing process, which may cause voids in the lithium composite oxide single crystal as a finished product.
  • the relative density is less than 100%.
  • an infrared condensing heating device if the highly volatile gas stays, the infrared light may be blocked by the highly volatile gas, and it is volatile from the viewpoint of efficiently implementing the FZ method.
  • the molten portion forming step and the melting portion moving step are performed in a dry gas atmosphere.
  • the dry gas for example, the FZ method can be performed while flowing a gas such as oxygen, nitrogen argon, or air.
  • a second base material for growing lithium composite oxide crystals is immersed in the melt in the crucible, and the melt is attached to the second base material (melt adhesion step).
  • the shape of the second base material here is not particularly limited.
  • the melt adhering to the second base material is moved (pulled) out of the crucible at an average speed of 8 mm / h or more (preferably 8 mm / h or more and 19 mm / h or less) (melting). Liquid transfer process).
  • the lithium composite is formed by rotating the second base material at a rotation speed of 2 rpm or more and 8 rpm or less with respect to the melt on a plane perpendicular to the longitudinal direction of the second base material in the process of moving the melt portion. It is possible to promote the growth of oxide crystals.
  • melt adhesion step When the melt adhesion step is performed with the solid electrolyte seed crystal attached to the second substrate, the melt adheres to the seed crystal, and the lithium composite oxide crystal in the melt transfer step. Can be promoted.
  • the lithium composite oxide grown by the melting method has a crystal structure having a relative density of 90% or more and has few grain boundaries, so that it has excellent lithium ion conductivity. Therefore, for example, in an all-solid lithium ion secondary battery provided with a positive electrode, a negative electrode, and a solid electrolyte, the lithium composite oxide (lithium composite oxide single crystal, lithium composite oxide) of the present embodiment is used as the solid electrolyte.
  • a solid electrolyte material containing (polycrystal) can be used.
  • the relative density of the grown lithium composite oxide can be adjusted by changing the production conditions. For example, the higher the heating temperature in the melting portion (melt) forming step and the longer the heating time, the higher the relative density can be.
  • lithium carbonate Li 2 CO 3 (rare metallic, purity 99.99%) 28.024 g, gallium oxide Ga 2 O 3 (rare metallic, purity 99.99%) 3.385 g, and lanthanum oxide La 2 O 3 (rare metallic, purity 99.99%) 44.131 g, zirconium oxide ZrO 2 (rare metallic, purity 99.99%) 19.472 g, and tantalum oxide Ta 2 O 5 (rare metallic, purity) 99.99%) 4.988 g was placed in a Menou dairy pot and mixed uniformly by a wet method using ethanol. The lanthanum oxide was preliminarily fired at 900 ° C.
  • the molar ratio of the metals contained in these mixtures is relative to the stoichiometric ratio of the target Li 6 Ga 0.25 La 3 Zr 1.75 Ta 0.25 O 12 .
  • Lithium was 1.4 times the target composition
  • gallium was 1.6 times the target composition. That is, the chemical composition of the metal contained in the mixture was Li 8.4 Ga 0.4 La 3 Zr 1.75 Ta 0.25 O 12 .
  • an alumina crucible with a lid (manufactured by Nikkato, C3 type) was filled with 100 g of this mixture. Then, this was put into a box type electric furnace (manufactured by Yamato Scientific Co., Ltd., FP100 type) and calcined at 850 ° C. for 6 hours to obtain a powder (first powder). Next, the obtained first powder was pulverized. More specifically, 100 g of the first powder, 300 g of zirconia balls having a diameter of 5 mm, and 50 g of isopropanol are filled in a zirconia crushing container having a capacity of 250 mL, and a planetary ball mill (Fritsch, Germany, model P-6) is formed.
  • the pulverized powder (second powder) was dried at 100 ° C. for 24 hours, and classified using a sieve having a 250 ⁇ m opening.
  • the powder that has passed through the sieve having a 250 ⁇ m opening is referred to as a third powder.
  • a rod-shaped molded product (first base material) was produced by the following procedure. First, a cylindrical rubber mold was filled with about 34 g of the third powder and degassed. Next, this mold was placed in water in a sealed state and maintained at a pressure of 40 MPa for 5 minutes. Then, after reducing the pressure of water, the molded body (first molded body) was taken out from the mold. The first molded body had a cylindrical shape, and the diameter of the bottom surface thereof was about 1.0 cm and the height was about 12.0 cm.
  • the first columnar molded body was fired at 1150 ° C. for 4 hours.
  • the second molded body (first base material), which is the molded body after firing, had a rod shape with a bottom surface diameter of about 0.9 cm and a height of about 11 cm.
  • a rod-shaped second molding obtained in the above step is formed inside a four-elliptical infrared condensing heating furnace (FZ furnace) (FZ-T-10000H type manufactured by Crystal System) equipped with a 1 kW halogen lamp. I installed my body and made the internal space a dry air atmosphere.
  • FZ furnace four-elliptical infrared condensing heating furnace
  • I installed my body and made the internal space a dry air atmosphere.
  • the rod-shaped second molded body is rotated in the extending direction of the second molded body.
  • Example 1 the high-density Li 6 Ga 0. Crystals of 25 La 3 Zr 1.75 Ta 0.25 O 12 (hereinafter sometimes referred to as “Sample 1”) were grown.
  • FIG. 1 is an external photograph of sample 1 grown along the longitudinal direction of the first base material B. As shown in FIG. 1, the length of the sample 1 is about 7 cm.
  • FIG. 2 is an image showing the X-ray diffraction pattern obtained in the sample 1, and the diffraction point D peculiar to the single crystal structure can be clearly confirmed from this image.
  • FIG. 3 schematically shows the structure of sample 1.
  • a cubic garnet-type structure Li 7-3x-y Ga x La 3 Zr 2 produced by sintering a polycrystal of a raw material of a lithium composite oxide.
  • -Y Nby O 12 has a spatial group belonging to Ia-3d (for example, Non-Patent Document 5).
  • the sample 1 obtained by the melting method has a distinctly different space group from that produced by the sintering method as disclosed in Non-Patent Document 5, and has a crystal structure. It turns out that it is a different new substance. Since the R factor indicating the reliability of the crystal structure analysis here was 2.33%, it can be judged that the result of this crystal structure analysis is appropriate.
  • sample 1 having a gallium-substituted cubic garnet-type structure, the distance between the arranged lithium ions is the shortest, and the lithium ion seats are appropriately deleted. Therefore, the lithium ion conductivity of Sample 1 is considered to be higher than that of other cubic garnet-type structural compounds.
  • Sample 1 was cut to prepare a columnar (bottom surface diameter of about 0.50 cm, thickness of about 0.20 cm) flakes. Gold was sputtered onto the two bottom surfaces (front side and back side) of the flakes to form cylindrical electrodes (bottom surface diameter 0.40 cm, thickness 40 nm).
  • FIG. 4 is a graph of the Nyquist plot obtained from the measurement results.
  • the horizontal axis of the graph shows the real part Z'( ⁇ cm) of impedance, and the vertical axis of the graph shows the imaginary part Z'' ( ⁇ cm) of impedance. From this graph, the lithium ion conductivity is calculated as 4.62 ⁇ 10 -3 S / cm.
  • FIG. 5 shows a powder X-ray diffraction pattern obtained as a result of pulverizing the sample 1 and performing powder X-ray diffraction measurement.
  • the powder X-ray diffraction pattern of Sample 1 was similar to the single-phase diffraction pattern of the cubic garnet-type structure.
  • Example 2 (Creation of all-solid-state lithium-ion secondary battery) An all-solid-state lithium-ion secondary battery using the sample 1 obtained in Example 1 as a solid electrolyte material was produced by the following procedure.
  • sample 1 is cut to prepare a columnar thin section having a bottom surface diameter of about 0.6 cm and a thickness of about 0.10 cm, and 10 ⁇ l of the above solution is added dropwise to the thin section at 400 ° C. for 20 minutes. It was fired. After that, it was fired at 850 ° C. for 10 minutes, lithium cobalt oxide was synthesized as a positive electrode on the front surface of sample 1, and metallic lithium was attached as a negative electrode on the back surface of sample 1 (all-solid-state lithium ion secondary battery).
  • Sample 2 Example 2
  • FIG. 6 is a diagram schematically showing the configuration of the evaluation device 10 of the sample 2.
  • the evaluation device 10 is mainly composed of a battery evaluation cell 11 and a sample 2 support means 12 installed therein.
  • the battery evaluation cell 11 is composed of an evaluation cell body 11A that accommodates and supports the support means 12, and an evaluation cell lid 11B that covers from the side opposite to the evaluation cell body 11A side.
  • the evaluation cell body 11A and the evaluation cell lid 11B are bonded via an O-ring 13 made of silicon rubber and an O-ring 14 made of fluororesin, and are configured to fix the sample 1.
  • the supporting means 12 includes a base 12A on which the sample 1 is placed with the metal lithium plate (negative electrode) 15 interposed therebetween, a spring 12B for adjusting the height of the base 12A, and a spring guide 12C for fixing the spring 12B. Consists of.
  • the sample 1 was used as the solid electrolyte material, and the voltage was measured with respect to the sample 2 in which the positive electrode and the negative electrode were synthesized.
  • a sample 2 and a disk-shaped metallic lithium plate (diameter 4 mm, thickness 1 mm) 15 are installed in a commercially available battery evaluation HS cell (manufactured by Hosen Co., Ltd.) 11. Then, when the voltage was measured, it showed 2.9V at the open circuit voltage. As a result, it was confirmed that the sample 2 functions as a battery.
  • Example 3 is different from Example 1 in that a sample containing niobium without tantalum is formed and the mixing ratio of raw materials is different from that of Example 1.
  • the lanthanum oxide was preliminarily fired at 900 ° C.
  • the molar ratio of the metals contained in these mixtures, Li: Ga: La: Zr: Ta, is relative to the stoichiometric ratio of the target Li 6 Ga 0.25 La 3 Zr 1.75 Nb 0.25 O 12 .
  • Lithium was 1.4 times the target composition
  • gallium was 1.6 times the target composition. That is, the chemical composition of the metal contained in the mixture was Li 8.4 Ga 0.4 La 3 Zr 1.75 Nb 0.25 O 12 .
  • FIG. 7 is an external photograph of the sample 3. As shown in FIG. 7, the length of the sample 3 is about 7 cm.
  • FIG. 8 is an image showing the X-ray diffraction pattern obtained in the sample 3, and the diffraction point D peculiar to the single crystal structure can be clearly confirmed from this image.
  • FIG. 9 schematically shows the structure of the sample 3.
  • a cubic garnet-type structure Li 7-3x-y Ga x La 3 Zr 2 produced by sintering a polycrystal of a raw material of a lithium composite oxide.
  • -Y Nby O 12 is considered to have a spatial group belonging to Ia-3d in the same manner as the related compound Li 7-3x-y Ga x La 3 Zr 2-y Tay O 12 (for example, non-patented).
  • Document 5 ).
  • the sample 3 obtained by the melting method has a distinctly different space group from that produced by the sintering method as disclosed in Non-Patent Document 5, and has a crystal structure. It turns out that it is a different new substance. Since the R factor indicating the reliability of the crystal structure analysis here was 2.13%, it can be judged that the result of this crystal structure analysis is appropriate.
  • Example 4 In Example 4, the point at which the sample containing niobium was formed and the mixing ratio of the raw materials are different from those in Example 1. (Mixing of Li 6 Ga 0.25 La 3 Zr 1.75 Ta 0.125 Nb 0.125 O 12 raw materials) First, lithium carbonate Li 2 CO 3 (rare metallic, purity 99.99%) 28.3052 g, gallium oxide Ga 2 O 3 (rare metallic, purity 99.99%) 3.4192 g, and lanthanum oxide La 2 O 3 (rare metallic, purity 99.99%) 44.5737 g, zirconium oxide ZrO 2 (rare metallic, purity 99.99%) 19.6677 g, and tantalum pentoxide Ta 2 O 5 (rare metallic, purity) 99.99%) 2.5190 g and 1.5152 g of niobium oxide Nb 2 O 5 (rare metallic, 99.99% pure) are placed in a Menou dairy pot and mixed uniformly by a wet method using ethanol.
  • the lanthanum oxide was preliminarily fired at 900 ° C.
  • the molar ratio of the metals contained in these mixtures, Li: Ga: La: Zr: Ta, is the stoichiometry of the target Li 6 Ga 0.25 La 3 Zr 1.75 Ta 0.125 Nb 0.125 O 12 .
  • Lithium was 1.4 times the target composition and gallium was 1.6 times the target composition. That is, the chemical composition of the metal contained in the mixture was Li 8.4 Ga 0.4 La 3 Zr 1.75 Ta 0.125 Nb 0.125 O 12 .
  • FIG. 10 is an external photograph of sample 4. As shown in FIG. 10, the length of the sample 10 is about 5 cm.
  • FIG. 11 is an image showing the X-ray diffraction pattern obtained in the sample 4, and the diffraction point D peculiar to the single crystal structure can be clearly confirmed from this image.
  • FIG. 12 schematically shows the structure of the sample 4.
  • a cubic garnet-type structure Li 7-3x-wv Ga x La 3 produced by sintering a polycrystal of a raw material of a lithium composite oxide.
  • Zr 2-w-v Ta W Nb v O 12 has a spatial group belonging to Ia-3d, similar to the related compound Li 7-3x-y Ga x La 3 Zr 2-y Tay O 12 . It is conceivable (eg, Non-Patent Document 5).
  • the sample 4 obtained by the melting method has a distinctly different space group from that produced by the sintering method as disclosed in Non-Patent Document 5, and has a crystal structure. It turns out that it is a different new substance. Since the R factor indicating the reliability of the crystal structure analysis here was 1.88%, it can be judged that the result of this crystal structure analysis is appropriate.
  • Example 5 is different from Example 1 in that a sample containing niobium is formed, a mixing ratio of raw materials, and crystals are grown using the Cz method.
  • Li 6.125 Ga 0.125 La 3 Zr 1.5 Ta 0.25 Nb 0.25 O 12 Raw material mixture First, lithium carbonate Li 2 CO 3 (rare metallic, purity 99.99%) 28.8647 g, gallium oxide Ga 2 O 3 (rare metallic, purity 99.99%) 1.7078 g, and lanthanum oxide La 2 O 3 (rare metallic, purity 99.99%) 44.5271 g, zirconium oxide ZrO 2 (rare metallic, purity 99.99%) 16.8408 g, and tantalum pentoxide Ta 2 O 5 (rare metallic, purity) 99.99%) 5.0327 g and niobium oxide Nb 2 O 5 (rare metallic, 99.99% pure) 3.0273 g are placed in a Menou dairy pot and mixed uniformly by a wet method using ethanol.
  • the lanthanum oxide was preliminarily fired at 900 ° C.
  • the molar ratio of the metals contained in these mixtures, Li: Ga: La: Zr: Ta is the stoichiometric ratio of the target Li 6.125 Ga 0.125 La 3 ZrTa 0.25 Nb 0.25 O 12 .
  • lithium was set to 1.4 times the target composition
  • gallium was set to 1.6 times the target composition. That is, the chemical composition of the metal contained in the mixture was Li 8.575 Ga 0.2 La 3 Zr 1.5 Ta 0.25 Nb 0.25 O 12 .
  • the sintered rod-shaped molded body is cut into an appropriate size, filled in an iridium crucible having an outer diameter of 30 mm, an inner diameter of 28 mm, and a depth of 30 mm, and then subjected to high frequency.
  • An iridium crucible was installed in the center of the high-frequency induction heating coil of a single crystal pulling furnace (Cz furnace) (Technosearch, TCH-3 type) equipped with an induction heating coil.
  • the sintered compact in the iridium crucible was heated until it melted.
  • the iridium rod as the second base material which was previously installed in the upper part of the Cz furnace in the melt, is immersed in the melt, the melt is adhered to the iridium rod, and then the rotation speed is 5 rpm and the plane is perpendicular to the longitudinal direction. That is, it is rotated about the longitudinal direction of the iridium rod, and the iridium rod to which the melt is attached is raised to the outside of the crucible at a moving speed of 8 mm / h in a direction away from the melt in the crucible, resulting in high density. Crystals of Li 6.125 Ga 0.125 La 3 Zr 1.5 Ta 0.25 Nb 0.25 O 12 (hereinafter sometimes referred to as "Sample 5”) were grown.
  • FIG. 13 is an external photograph of the sample 5. As shown in FIG. 13, the diameter of the sample 5 is about 20 mm and the length is about 20 mm.
  • FIG. 14 is an image showing the X-ray diffraction pattern obtained in the sample 5, and the diffraction point D peculiar to the single crystal structure can be clearly confirmed from this image.
  • FIG. 15 schematically shows the structure of the sample 5.
  • a cubic garnet-type structure Li 7-3x-wv Ga x La 3 produced by sintering a polycrystal of a raw material of a lithium composite oxide.
  • Zr 2-w-v Ta W Nb v O 12 has a spatial group belonging to Ia-3d, similar to the related compound Li 7-3x-y Ga x La 3 Zr 2-y Tay O 12 . It is conceivable (eg, Non-Patent Document 5).
  • the sample 5 obtained by the melting method has a distinctly different space group from that produced by the sintering method as disclosed in Non-Patent Document 5, and has a crystal structure. It turns out that it is a different new substance. Since the R factor indicating the reliability of the crystal structure analysis here was 1.62%, it can be judged that the result of this crystal structure analysis is appropriate.
  • Example 6 the mixing ratio of the raw materials is different from that in Example 1. (Li 5.55 Ga 0.4 La 3 Zr 1.75 Ta 0.125 Nb 0.125 O 12 Raw material mixture) First, lithium carbonate Li 2 CO 3 (rare metallic, purity 99.99%) 26.2010 g, gallium oxide Ga 2 O 3 (rare metallic, purity 99.99%) 5.4746 g, and lanthanum oxide La 2 O 3 (rare metallic, purity 99.99%) 44.6055 g, zirconium oxide ZrO 2 (rare metallic, purity 99.99%) 19.6817 g, and tantalum pentoxide Ta 2 O 5 (rare metallic, purity) 99.99%) 2.5208 g and 1.5163 g of niobium oxide Nb 2 O 5 (rare metallic, 99.99% pure) are placed in a Menou dairy pot and mixed uniformly by a wet method using ethanol.
  • the lanthanum oxide was preliminarily fired at 900 ° C.
  • the molar ratio of the metals contained in these mixtures is Li: Ga: La: Zr: Ta, which is the target product, Li 5.55 Ga 0.4 La 3 Zr 1.75 Ta 0.125 Nb 0.125 O 12 .
  • Lithium was 1.4 times the target composition and gallium was 1.6 times the target composition with respect to the chemical quantitative ratio. That is, the chemical composition of the metal contained in the mixture was Li 7.77 Ga 0.64 La 3 Zr 1.75 Ta 0.125 Nb 0.125 O 12 .
  • an alumina crucible with a lid (manufactured by Nikkato, C3 type) was filled with 100 g of this mixture. Then, this was put into a box type electric furnace (manufactured by Yamato Scientific Co., Ltd., FP100 type) and calcined at 850 ° C. for 6 hours to obtain a powder. Then, the obtained powder was pulverized. More specifically, 100 g of powder, 300 g of zirconia balls having a diameter of 5 mm, and 50 g of isopropanol are filled in a zirconia crushing container having a capacity of 250 mL, and a planetary ball mill (Fritsch, Germany, model P-6) is used. , It was pulverized by rotating it at a revolution speed of 200 rpm for a total of 300 minutes. The pulverized powder was dried at 100 ° C. for 24 hours and classified using a sieve having a 250 ⁇ m opening.
  • FIG. 16 is an external photograph of sample 6. As shown in FIG. 16, the diameter of the sample 6 is about 9 mm, and the length is about 45 mm.
  • FIG. 17 is an image showing the X-ray diffraction pattern obtained in the sample 6, and the diffraction point D peculiar to the single crystal structure can be clearly confirmed from this image.
  • FIG. 18 schematically shows the structure of the sample 6.
  • a cubic garnet-type structure Li 7-3x-wv Ga x La 3 produced by sintering a polycrystal of a raw material of a lithium composite oxide.
  • Zr 2-w-v Ta W Nb v O 12 has a spatial group belonging to Ia-3d, similar to the related compound Li 7-3x-y Ga x La 3 Zr 2-y Tay O 12 . It is conceivable (eg, Non-Patent Document 5).
  • the sample 4 obtained by the melting method has a distinctly different space group from that produced by the sintering method as disclosed in Non-Patent Document 5, and has a crystal structure. It turns out that it is a different new substance. Since the R factor indicating the reliability of the crystal structure analysis here was 2.92%, it can be judged that the result of this crystal structure analysis is appropriate.
  • Example 7 The lithium composite oxide single crystal prepared by the same method as in Example 1 was pulverized and calcined by the following procedure to prepare a lithium composite oxide polycrystal.
  • the lithium composite oxide single crystal was roughly crushed in a Menou mortar and then crushed by grinding until it became a powder to form a polycrystalline powder of the lithium composite oxide.
  • about 0.4 g of the powder was filled in a tablet molding machine having a diameter of about 10 mm, and then pressed by a hydraulic press at about 60 MPa to obtain a molded product.
  • the molded product was placed in a platinum crucible and fired at 1150 ° C. for 4 hours using a box-type electric furnace (manufactured by Denken, model number KDF009).
  • FIG. 19 is an external photograph of the lithium composite oxide polycrystal obtained by the firing.
  • the lithium composite oxide polycrystal produced in Example 7 had a diameter of about 10 mm and a thickness of about 1.5 mm.
  • the single crystal before crushing (the same lithium composite oxide single crystal as in Example 1) used for producing the lithium composite oxide polycrystal of Example 7 has a garnet-type structure belonging to the space group I-43d, and is crushed. As shown in FIG. 5, the latter polycrystal has a garnet-type structure and a powder X-ray diffraction pattern can be obtained. Therefore, the polycrystal sintered body produced in this example is also a sintered body having a similar crystal structure. .. As described above, a polycrystal sintered body can be produced by crushing a single crystal to produce a polycrystal, molding it with a tablet molding machine, and then sintering it.
  • High-density Li 7-3x-w-v Ga x La 3 Zr 2-w-v Ta W Nb v O 12 of the present invention (0.02 ⁇ x ⁇ 0.5, 0 ⁇ W ⁇ 1.0, 0 ⁇ V ⁇ 1.0, 0.05 ⁇ W + V ⁇ 1.0)
  • the crystals can be used as a solid electrolyte material for an all-solid lithium-ion secondary battery.
  • Evaluation device 11 Battery evaluation cell 11A ... Evaluation cell body 11B ... Evaluation cell lid 12 ... Support means 12A ... Base 12B ... Spring 12C ... Spring guide 13 ... Silicon rubber O-ring 14 ... Fluororesin O-ring 15 ... Metallic lithium plate 1, 2 ... Sample 2 ... Sample B ... Base material D ... Diffraction point

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

このリチウム複合酸化物単結晶は、化学組成がLi7-3x―w-vGaxLa3Zr2-w―vTaWNbvO12(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)で表され、立方晶系で空間群I-43dに属し、ガーネット型構造を有する。

Description

リチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法
 本発明は、リチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法に関する。
 本願は、2020年11月17日に、日本に出願された特願2020-191100号に基づき優先権を主張し、その内容をここに援用する。
 リチウムイオン二次電池は、ニッカド電池やニッケル水素電池などの二次電池と比較してエネルギー密度が高く、高電位で作動させることができるため、携帯電話やノートパソコンなどの小型情報機器に広く用いられている。また、リチウムイオン二次電池は、小型軽量化が図りやすいため、近年では、ハイブリット自動車や電気自動車用の二次電池としての需要が高まっている。安全性を考慮して、可燃性の電解液を使用しない全固体リチウムイオン二次電池の研究開発が行われている。全固体リチウムイオン二次電池に用いられる固体電解質には、高いイオン伝導率が要求される。
 立方晶ガーネット型構造を有する材料は、高いイオン伝導率を有することが報告され(特許文献1参照)、この構造を有する材料の研究開発が進められている。特に、化学組成が、Li7-xLaZr2-xTa12、Li7-xLaZr2-xNb12で表される材料は、組成比xが0.5に近い場合に高いイオン伝導率を有していることが報告されている(非特許文献1、2参照)。高いイオン伝導率を実現する材料としては、粒界抵抗や界面抵抗を極力低減させる必要があるため、高密度な成型体である固体材料が望ましい。高密度な成型体である固体材料は、充放電過程で正負極間での短絡が防止でき、薄片化が可能であるため、全固体リチウムイオン二次電池の将来的な小型化に可能性を与える。しかしながら、これらの立方晶ガーネット型構造を有する多結晶材料は難焼結性であり、高密度な成型体の作製が困難であることが知られている。
 最近、溶融法を利用し、ガーネット型構造を有するLi7-xLaZr2-xTa12単結晶や、Li7-xLaZr2-xNb12の単結晶を育成した事例が、報告されている(特許文献2、3参照)。
 また、最近、ガリウムを置換した立方晶ガーネット型構造Li7-3xGaLaZr12の焼結体が製造され、高いリチウムイオン導電率が得られた事例が報告されている(非特許文献3、4参照)。さらに、溶融法を利用して製造されるLi7-3xGaLaZr12単結晶は、焼結体よりも高いイオン導電率を有することが報告されている。
 高いイオン伝導率を実現する材料としては、粒界抵抗や界面抵抗を極力低減させる必要があるため、高密度な成型体である固体材料が望ましい。特に、単結晶である高密度な成型体は、粒界の影響を受けないため、高いリチウムイオン導電性が期待される。
特開2011-195373号公報 国際公開2016/068040号 国際公開2017/130622号
Scientific reports、8、9965(2018) Chemelectrochem、5、2551(2018) Chemistry Materials、28、1861-1871(2016) Crystallographic Communications、E72、287-289、(2016) Applied Materials Interfaces、12、25709-25717(2020)
 本発明は上記事情に鑑みてなされたものであり、リチウムイオン伝導率を向上させたリチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法を提供することを目的とする。
 本発明者らは、目的の固体電解質材料の組成比よりリチウムとガリウムを過剰に含む混合原料を、高温で溶融させ冷却する方法について鋭意検討した。その結果、立方晶系に属し、ガーネット型構造を有するLi7-3x-w-vGaLaZr2-w-vTaNb12(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)の単結晶の作製が可能であることを見出し、この単結晶が機械的に薄片化できることを確認して本発明を完成させた。上記課題を解決するため、本発明は以下の手段を採用している。
(1)本発明の一態様に係るリチウム複合酸化物単結晶は、化学組成がLi7-3x-w-vGaLaZr2-w-vTaNb12(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)で表され、立方晶系で空間群I-43dに属し、ガーネット型構造を有する。
(2)本発明の一態様に係るリチウム複合酸化物多結晶は、化学組成がLi7-3x―w-vGaLaZr2-w―vTaNb12(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)で表され、立方晶系で空間群I-43dに属し、ガーネット型構造を有する。
(3)上記態様に係るリチウム複合酸化物多結晶において、相対密度が90%以上であることが好ましい。
(4)上記態様に係るリチウム複合酸化物多結晶において、相対密度が95%以上であることが好ましい。
(5)本発明の一態様に係るリチウム複合酸化物材料は、上記態様に係るリチウム複合酸化物単結晶、または、上記態様に係るリチウム複合酸化物多結晶を含む。
(6)本発明の一態様に係る固体電解質材料は、上記態様に係るリチウム複合酸化物単結晶、または、上記態様に係るリチウム複合酸化物多結晶を含む。
(7)上記態様に係る固体電解質材料において、リチウムイオン伝導率が1.0×10-3S/cm以上であることが好ましい。
(8)本発明の一態様に係る全固体リチウムイオン二次電池は、正極と、負極と、上記態様に係る固体電解質材料と、を備えている。
(9)本発明の一態様に係る固体電解質材料の製造方法は、上記態様に係る固体電解質材料の製造方法であって、化学組成がLi(7-3x-W)yGaxzLaZr2-WTaNb12(0.02≦x<0.5、1.1≦y≦1.4、1.6≦z≦3.3、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0、1.1≦y≦1.5、1.5≦z≦3.5)で表される原料を含む、棒状の基材(第一基材)のうち、少なくとも一部を溶融して溶融部を形成する溶融部形成工程と、前記溶融部を平均速度8mm/h以上で移動させる溶融部移動工程と、を有する。
(10)上記態様に係る固体電解質材料の製造方法において、前記平均速度を8mm/h以上19mm/h以下とすることが好ましい。
(11)上記態様に係る固体電解質材料の製造方法の前記溶融部形成工程において、前記基材を、長手方向と垂直な面で、前記溶融部とともに回転速度30rpm以上で回転させることが好ましい。
(12)上記態様に係る固体電解質材料の製造方法において、前記固体電解質の種結晶を前記溶融部に取り付けた状態で、前記溶融部移動工程を行ってもよい。
(13)上記態様に係る固体電解質材料の製造方法の前記溶融部移動工程において、前記基材の長手方向と垂直な面で、前記溶融部を、回転速度2rpm以上8rpm以下で回転させることが好ましい。
(14)本発明の他の一態様に係る固体電解質材料の製造方法は、上記態様に係る固体電解質材料を製造する、固体電解質材料の製造方法であって、化学組成がLi(7-3x-W)yGaxzLaZr2-WTaNb12(0.02≦x<0.5、1.1≦y≦1.4、1.6≦z≦3.3、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0、1.1≦y≦1.5、1.5≦z≦3.5)で表される原料を、坩堝内で溶融させ、前記原料の融液を形成する融液形成工程と、前記坩堝内の前記融液に基材(第二基材)を浸漬し、前記基材に前記融液を付着させる融液付着工程と、前記基材とともに、前記基材に付着した前記融液を、平均速度8mm/h以上で前記坩堝外に移動させる融液移動工程と、を有する。
(15)上記態様に係る固体電解質材料の製造方法において、前記平均速度を8mm/h以上19mm/h以下とすることが好ましい。
(16)上記態様に係る固体電解質材料の製造方法において、前記固体電解質の種結晶を前記基材に取り付けた状態で、前記融液移動工程を行ってもよい。
(17)上記態様に係る固体電解質材料の製造方法の前記融液部移動工程において、棒状の前記基材を長手方向と垂直な面で、前記融液に対して、回転速度2rpm以上8rpm以下で回転させることが好ましい。
 本発明によれば、リチウムイオン伝導率を向上させたリチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法を提供することができる。
実施例1において、FZ法により育成したLiGa0.25La3Zr1.75Ta0.2512単結晶の外観写真である。 図1のLiGa0.25LaZr1.75Ta0.2512単結晶において、得られた単結晶X線回折パターンである。 図1のLiGa0.25LaZr1.75Ta0.2512単結晶のガーネット型構造を示す模式図である。 図1のLiGa0.25LaZr1.75Ta0.2512単結晶において、交流インピーダンス法を用いて得られたナイキストプロットである。 図1のLiGa0.25LaZr1.75Ta0.2512単結晶において、得られた粉末X線回折パターンである。 図1のLiGa0.25LaZr1.75Ta0.2512を用いて作製した、全固体リチウムイオン二次電池の評価装置の模式図である。 実施例3において、FZ法により育成したLiGa0.25LaZr1.75Nb0.2512晶の外観写真である。 図7のLiGa0.25LaZr1.75Nb0.2512単結晶において、得られた単結晶X線回折パターンである。 図7のLiGa0.25LaZr1.75Nb0.2512単結晶のガーネット型構造を示す模式図である。 実施例4において、FZ法により育成したLiGa0.25LaZr1.75Ta0.125Nb0.12512晶の外観写真である。 図10のLiGa0.25LaZr1.75Ta0.125Nb0.12512単結晶において、得られた単結晶X線回折パターンである。 図11のLiGa0.25LaZr1.75Ta0.125Nb0.12512単結晶のガーネット型構造を示す模式図である。 実施例5において、Cz法により育成したLi6.125Ga0.125LaZr1.5Ta0.25Nb0.2512晶の外観写真である。 図13のLi6.125Ga0.125LaZr1.5Ta0.25Nb0.2512単結晶において、得られた単結晶X線回折パターンである。 図13のLi6.125Ga0.125LaZr1.5Ta0.25Nb0.2512単結晶のガーネット型構造を示す模式図である。 実施例6において、FZ法により育成したLi5.55Ga0.4LaZr1.75Ta0.125Nb0.12512晶の外観写真である。 図16のLi5.55Ga0.4LaZr1.75Ta0.125Nb0.12512単結晶において、得られた単結晶X線回折パターンである。 図16のLi5.55Ga0.4LaZr1.75Ta0.125Nb0.12512単結晶のガーネット型構造を示す模式図である。 実施例7において作製したリチウム複合酸化物多結晶の外観写真である。
 以下、本発明を適用した実施形態に係るリチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法について、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
(固体電解質材料、リチウム複合酸化物単結晶、リチウム複合酸化物多結晶)
 本発明の一実施形態に係る固体電解質材料は、化学組成がLi7-3x-w-vGaLaZr2-w-vTaNb12(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)で表されるリチウム複合酸化物単結晶、リチウム複合酸化物多結晶のうち、少なくとも一方を含む。ここで、固体電解質材料は、リチウム複合酸化物材料の一種である。リチウム複合酸化物材料の用途は、全固体電池の固体電解質としての用途に限定されず、種々の用途に適用できる。
 固体電解質材料に含まれるリチウム複合酸化物単結晶は、立方晶系で空間群I-43dに属し、ガーネット型構造を有する。また、固体電解質材料に含まれるリチウム複合酸化物多結晶は、立方晶系で空間群I-43dに属し、ガーネット型構造を有する単結晶からなる。
 本実施形態では、相対密度が99%以上のリチウム複合酸化物をリチウム複合酸化物単結晶とし、相対密度が90%以上99%未満、好ましくは95%以上99%未満のリチウム複合酸化物をリチウム複合酸化物多結晶としている。リチウム複合酸化物単結晶は、後述する製造過程において、揮発性の材料が用いられており、溶融法で製造した際にエアーが生じ、内部にボイドが生じる場合があり、このような場合に、相対密度が100%未満になる。
 なお、相対密度は、作製したリチウム複合酸化物の試料(薄片等)の外形を測定して見かけの体積を算出し、測定質量から計算した見かけの密度を、単結晶X線構造解析結果から得られる真密度で割ることによって算出される。本実施形態の固体電解質材料は、高密度であるため、ダイヤモンドカッターなどを用いて、任意の厚さに容易に切り分けることができる。
 固体電解質材料では、リチウムイオン伝導率を、1.0×10-3S/cm以上とすることができ、相対密度をほぼ100%とすることにより、4.0×10-3S/cm以上とすることもできる。相対密度が高いほど、粒子同士の密着性が高まって粒界が少なくなり、イオン伝導率を向上させることができる。
(固体電解質材料の製造方法)
 本実施形態の固体電解質材料の製造方法は、主に、固体電解質材料の原料の溶融部を形成する工程(溶融部形成工程)と、その溶融部を移動させる工程(溶融部移動工程)とを有する。
 溶融部の形成と移動は、製造する結晶の大きさ、形状等に応じて、フローティングゾーン(Floating Zone:FZ)法、チョクラルスキー(Czochralski:Cz)法、ブリッジマン法、ペデスタル法等の溶融法うち、いずれかを用いて行う。
[FZ法]
 FZ法を用いて固体電解質材料を製造する場合、具体的な例としては、次の手順で進められる。はじめに、高温でリチウムが揮発することを考慮して、リチウム化合物、ガリウム化合物、ランタン化合物、ジルコニウム化合物、タンタル化合物、ニオブ化合物を秤量する。この秤量は、最終形態の固体電解質材料において、Li:Ga:La:Zr:Ta:Nbが(7-3x-w-v)y:xz:3:2-w-v:w:v(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0、1.1≦y≦1.5、1.5≦z≦3.5)のモル比となるように行う。
 リチウム化合物としては、リチウムを含有するものであれば特に制限されず、LiOなどの酸化物、LiCOなどの炭酸塩などが挙げられる。ガリウム化合物としては、ガリウムを含有するものであれば特に制限されず、Gaなどの酸化物、Ga(NOなどの硝酸塩等が挙げられる。ランタン化合物としては、ランタンを含有するものであれば特に制限されず、Laなどの酸化物、La(OH)などの水酸化物等が挙げられる。ジルコニウム化合物としては、ジルコニウムを含有するものであれば特に制限されず、ZrOなどの酸化物、ZrClなどの塩化物等が挙げられる。タンタル化合物としては、タンタルを含有するものであれば特に制限されず、Taなどの酸化物、TaClなどの塩化物等が挙げられる。ニオブ化合物としては、ニオブを含有するものであれば特に制限されず、Nbなどの酸化物、NbClなどの塩化物等が挙げられる。
 また、リチウム、ガリウム、ランタン、ジルコニウムおよびタンタルまたはニオブまたはその両方の中から選択される二種類以上からなる化合物を用いて、Li:Ga:La:Zr:Ta:Nbが(7-3x-w-v)y:xz:3:(2-w-v):w:v(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0、1.1≦y≦1.5、1.5≦z≦3.5)のモル比となるように秤量してもよい。このような二種類以上からなる化合物として、LaZrなどのランタンジルコニウム酸化物、GaLaOなどのガリウムランタン酸化物、LiGaOなどのリチウムガリウム酸化物、LiZrOなどのリチウムジルコニウム酸化物、LaTaOなどのランタンタンタル化合物、LaNbOなどのランタンニオブ化合物などが挙げられる。
 次に、秤量した各化合物を混合する。混合方法は、これらの各化合物を均一に混合できる限り特に限定されず、例えばミキサー等の混合機を用いて湿式または乾式で混合すればよい。そして、得られた混合物をふた付きルツボに充填した後、600℃~900℃、好ましくは850℃で仮焼成することで原料となる粉末が得られる。なお、一度仮焼成した原料を、再度、粉砕、混合し、焼成することを繰り返すとさらに好ましい。
 次に、成型しやすくするために、得られた原料粉末を粉砕して粒子サイズを細かくする。粉砕方法は、粒子を微細化できる限り特に限定されず、例えば、遊星型ボールミル、ポットミル、ビーズミル等の粉砕装置を用いて、湿式または乾式で粉砕すればよい。そして、得られた粉砕物をラバーチューブに充填した後、静水圧プレスを行って棒状に成型する。
 次に、得られた棒状の成型体を700℃~1300℃程度、好ましくは800℃~1150℃で4時間程度焼成することにより、棒形状の第一基材が得られる。この時点では、原料の化学組成はLi(7-3x-w-v)yGaxzLaZr2-WTaNb12(0.02≦x<0.5、1.1≦y≦1.4、1.6≦z≦3.3、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)である。こうして、棒形状の第一基材を製造することができる。
 そして、この棒形状の第一基材を赤外線集光加熱炉内に収容し、第一基材の少なくとも一部を溶融させる(溶融部形成工程)。溶融部形成工程では、化学組成がLi(7-3x-w-v)yGaxzLaZr2-wTaNb12(0.02≦x<0.5、1.1≦y≦1.4、1.6≦z≦3.3、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)で表される原料を含む、棒状の第一基材のうち、少なくとも一部を、所定の加熱手段(赤外集光加熱装置等)を用いて加熱し、溶融した溶融部を形成する。ここで、溶融部形成工程は、長手方向と垂直な面で回転させながら、即ち第一基材の長手方向を軸中心として自転させながら、行ってもよい。
 続いて、或いは、溶融部形成工程とともに、溶融部が形成された原料を、その長手方向に移動させる(溶融部移動工程)。溶融部移動工程では、例えば上記化学組成の原料を、長手方向と平行に、すなわち長手方向に沿って、平均速度8mm/h以上(好ましくは、8mm/h以上19mm/h以下)で移動させる。リチウム複合酸化物の結晶の育成を効率化する観点から、溶融部に対して固体電解質の種結晶を取り付けた状態で、溶融部移動工程を行ってもよい。この場合、種結晶についても溶融部を形成し、原料の溶融部と結合させてから、数分以内に移動を開始する。当該移動に伴い、溶融部が急冷される。
 急冷後、相対密度が90%以上の立方晶系であり、かつ空間群I-43dに属し、ガーネット型構造を有するLi7-3x-w-vGaxLaZr2-w-vTaNb12(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)のリチウム複合酸化物を含む固体電解質材料が得られる。この製法により、長さ(最大径)が2cm以上の固体電解質材料が得られるため、これを切り分けることによって、同一品質を有する複数の固体電解質材料の薄片を容易に作製することができる。
 ここでの溶融部移動工程では、棒形状に成形された第一基材の溶融部を、長手方向と垂直な面で、所定の回転速度、好ましくは30rpm以上、より好ましくは30rpm以上60rpm以下となるように回転させる。さらに、種結晶を用いる場合には、棒状の第一基材の先端に取り付け、第一基材と共に溶融させ、その一部を溶融部にし、溶融部とともに同程度の回転速度で回転させる。
 FZ法で製造する場合、溶融部では、揮発性の高いリチウムが揮発しようとして気泡が発生する。このように製造過程で原料由来の気泡が発生することにより、完成物としてのリチウム複合酸化物単結晶にボイドが生じる場合がある。このとき、相対密度は、100%未満になる。しかしながら、棒形状の原料(第一基材)の回転速度を30rpm以上と速くすることによって、気泡を取り除きやすい。従って、完成物としてのリチウム複合酸化物単結晶の相対密度を高められる。また、赤外集光加熱装置を用いる場合、揮発性の高いガスが滞ると、赤外光が揮発性の高いガスにより遮られてしまう場合があり、FZ法を効率よく実施する観点から、揮発成分を少なくする、或いは装置外に排出することが求められる。このような観点から、溶融部形成工程および溶融部移動工程は、乾燥ガス雰囲気で行うことが好ましい。乾燥ガスとしては、例えば酸素、窒素アルゴン、空気等のガスを流通させながらFZ法を行うことができる。
[Cz法]
 Cz法を用いて固体電解質材料を製造する場合、具体的な例としては、次の手順で進められる。はじめに、FZ法と同様の手順で、第一基材と同じ原料を、坩堝内で溶融させ、原料の融液を形成する(融液形成工程)。
 次に、坩堝内の融液に、リチウム複合酸化物の結晶を育成するための第二基材を浸漬し、第二基材に融液を付着させる(融液付着工程)。ここでの第二基材の形状は、特に限定されない。次に、第二基材とともに、第二基材に付着した融液を、平均速度8mm/h以上(好ましくは、8mm/h以上19mm/h以下)で坩堝外に移動(引き上げ)させる(融液移動工程)。融液の引き上げ速度(移動速度)を8mm/h以上に高めることによって、リチウムとガリウムの揮発が抑えられ、高密度のLi7-3x-w-vGaLaZr2-w-vTaNb12(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)結晶が得られる。
 例えば第二基材が棒状である場合、融液部移動工程において、第二基材の長手方向と垂直な面で、融液に対して回転速度2rpm以上8rpm以下で回転させることにより、リチウム複合酸化物の結晶の育成を促進することができる。
 固体電解質の種結晶を第二基材に取り付けた状態で、融液付着工程を行った場合、種結晶上に融液が付着することになり、融液移動工程でのリチウム複合酸化物の結晶の育成を促進することができる。
 以上のように、本実施形態の溶融法で育成したリチウム複合酸化物Li7-3x-w-vGaLaZr2-w-vTaNb12(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)は、これまでの固相法で合成されたリチウム複合酸化物と、空間群が異なる。すなわち、固相法で合成されたリチウム複合酸化物は、空間群がIa-3dであるのに対し、溶融法で育成したリチウム複合酸化物は、空間群がI-43dとなる。
 また、溶融法で育成したリチウム複合酸化物は、相対密度が90%以上の結晶構造を有しており、粒界が少ないため、リチウムイオン伝導性に優れている。したがって、例えば、正極と、負極と、固体電解質と、を備えた全固体リチウムイオン二次電池において、固体電解質として、本実施形態のリチウム複合酸化物(リチウム複合酸化物単結晶、リチウム複合酸化物多結晶)を含む固体電解質材料を用いることができる。
 なお、育成されるリチウム複合酸化物の相対密度は、製造条件を変えることにより、調整することができる。例えば、溶融部(融液)形成工程での加熱温度を高くするほど、加熱時間を長くするほど、相対密度を高くすることができる。
 以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
<実施例1>
 本発明のリチウム複合酸化物単結晶を、次の手順で製造した。
(LiGa0.25LaZr1.75Ta0.2512原料の混合)
 まず、炭酸リチウムLiCO(レアメタリック製、純度99.99%)28.024gと、酸化ガリウムGa(レアメタリック製、純度99.99%)3.385gと、酸化ランタンLa(レアメタリック製、純度99.99%)44.131gと、酸化ジルコニウムZrO(レアメタリック製、純度99.99%)19.472gと、酸化タンタルTa(レアメタリック製、純度99.99%)4.988gとを、メノウ製乳鉢に入れて、エタノールを使用した湿式法によって均一に混合した。なお、酸化ランタンについては、あらかじめ900℃で仮焼成したものとした。これらの混合物に含まれる金属のモル比Li:Ga:La:Zr:Taは、目的物であるLiGa0.25LaZr1.75Ta0.2512の化学量論比に対し、リチウムを目的組成の1.4倍量とし、ガリウムを目的組成の1.6倍量とした。すなわち、混合物に含まれる金属の化学組成をLi8.4Ga0.4LaZr1.75Ta0.2512とした。
 次に、蓋付きのアルミナ坩堝(ニッカトー製、C3型)に、この混合物100gを充填した。そして、これをボックス型電気炉(ヤマト科学製、FP100型)に入れて、850℃で6時間仮焼成して粉末(第一粉末)を得た。次に、得られた第一粉末を粉砕した。より詳細には、第一粉末100gと、直径5mmのジルコニアボール300gと、イソプロパノール50gとを、容量250mLのジルコニア製粉砕容器に充填し、遊星型ボールミル(ドイツ・フリッチュ製、型式P-6)を用いて、公転回転数200rpmで合計300分回転させて粉砕した。粉砕後の粉末(第二粉末)を100℃で24時間乾燥させ、250μm目開きのふるいを用いて分級した。以下、250μm目開きのふるいを通過した粉末を第三粉末と呼称する。
(棒形状の成形体の作製)
 上記工程でふるいを通過した第三粉末(原料)を用いて、以下の手順で棒形状の成形体(第一基材)を作製した。まず、円柱形状をしたゴム製の型に、第三粉末約34gを充填して脱気した。次に、この型を密閉した状態で水中に入れて、水の圧力を40MPaとした状態で5分間維持した。そして、水の圧力を下げた後、成形体(第一成形体)を型から取り出した。第一成形体は円柱形状であり、その底面の直径が約1.0cm、高さが約12.0cmであった。次に、箱型電気炉(デンケン製、型番KDF009)を用いて、第一円柱状の成形体を、1150℃で4時間焼成した。焼成後の成形体である第二成形体(第一基材)は、底面の直径が約0.9cm、高さが約11cmの棒形状であった。
(LiGa0.25LaZr1.75Ta0.2512の結晶の育成)
 まず、1kWのハロゲンランプを装備した四楕円型赤外線集光加熱炉(FZ炉)(Crystal System社製、FZ-T-10000H型)の内部に、上記工程で得られた棒形状の第二成形体を設置して、内部空間を乾燥空気雰囲気にした。次に、棒形状の第二成形体を長手方向と垂直な面で、すなわち第二成形体が延在する方向を軸として、回転速度40rpmで回転させながら、第二成形体の延在方向の周りの出力24.4%で加熱した。しばらくすると、多結晶試料である第二成形体(第一基材)の一部が溶融して溶融部を形成した。そして、第一基材への加熱を維持しながら、棒形状の第二成形体の設置台を10mm/hの移動速度で、長手方向に沿って下降させて、高密度のLiGa0.25LaZr1.75Ta0.2512の結晶(以下「試料1」ということがある)を育成した。
 育成した試料1の化学組成を、ICP-AESと単結晶X線結晶構造解析によって分析した。分析の結果、ICP-AESの化学組成は、Li:Ga:La:Zr:Ta=6.0:0.25:3.0:1.75:0.25であった。図1は、第一基材Bの長手方向に沿って育成した試料1の外観写真である。図1に示すように、試料1の長さは約7cmとなっている。
(高密度のLiGa0.25LaZr1.75Ta0.2512の結晶の評価)
 二次元IP検出器を有する単結晶X線回折装置(リガク社製、R-AXIS RAPID-II)を用いて、試料1の構造を調べた。図2は、試料1において、得られたX線回折パターンを示す画像であり、この画像から、単結晶構造に特有の回折点Dをはっきりと確認することができる。
 試料1の回折強度データを収集し、結晶構造解析プログラムJana2006によって結晶構造を調べたところ、試料1は、立方晶で空間群I-43dに属することが分かった。ダイヤモンドカッターを用いて、試料1から厚さ0.1cmの薄片を4枚作製し(切り出し)、上述の方法でこれらの相対密度を算出した。その結果、これらの相対密度は、それぞれ99.8%、99.9%、100%、100%であった。
 図3は試料1の構造を模式的に示している。固体電解質の製造方法として一般的に知られているように、リチウム複合酸化物の原料の多結晶を焼結させて製造した、立方晶ガーネット型構造Li7-3x-yGaLaZr2-yNb12は、空間群がIa-3dに属している(たとえば非特許文献5)。これに対し、上記実施形態に係る溶融法で育成した試料1は、空間群がI-43dに属しており、結晶構造内の24c席(座標x=0.25、y=0.125、Z=0)をランタンが占有し、16a席(x=0、y=0、z=0)をジルコニウムおよびタンタルが占有し、12a席(座標x=0.75、y=0.625、z=0)、12b席(座標x=0.75、y=0.125、z=0)、2種類の48e席(座標x=0.6803、y=0.5651、z=0.1452、座標x=0.6905、y=0.5895、z=0.0818)がリチウム席であり、12a席と12b席がガリウム席であった。このように、溶融法で製造した場合に得られる試料1は、非特許文献5で開示されているような焼結法で製造したものとは、空間群が明確に異なっており、結晶構造が異なる新物質であることが分かる。ここでの結晶構造解析の信頼度を示すR因子が2.33%であったため、この結晶構造解析の結果は妥当であると判断することができる。
 ガリウム置換立方晶ガーネット型構造を有する試料1では、配列されるリチウムイオン同士の距離が最も近く、適度にリチウムイオン席が欠損している。そのため、試料1のリチウムイオン伝導率は、他の立方晶ガーネット型構造化合物よりも高いと考えられる。試料1を切断して、円柱状(底面の直径約0.50cm、厚さ約0.20cm)の薄片を作製した。この薄片の二つの底面(表側、裏側)に、金をスパッタリングして円柱状(底面の直径0.40cm、厚さ40nm)の電極を形成した。
 窒素雰囲気中25℃で、交流インピーダンス法(測定装置:Solarton、1260)により、交流周波数ごとの試料1のインピーダンスを測定した。図4は、測定結果から得られるナイキストプロットのグラフである。グラフの横軸がインピーダンスの実部Z’(Ωcm)を示し、グラフの縦軸がインピーダンスの虚部Z’’(Ωcm)を示している。このグラフから、リチウムイオン伝導率が4.62×10-3S/cmと算出される。
 試料1の単結晶X線回折測定で観測された反射を用いて、最小二乗法により格子定数aを求めたところ、a=1.29646nm±0.00003nmであった。この格子定数から、試料1はガーネット型構造を有するリチウム複合酸化物であることが分かった。図5は、試料1を粉砕して粉末X線回折測定を行った結果、得られる粉末X線回折パターンを示す。試料1の粉末X線回折パターンは、立方晶ガーネット型構造の単一相の回折パターンと同様であった。粉末X線構造解析の結果から算出される格子定数aは、a=1.29691nm±0.00001nmであった。単結晶X線回折測定と粉末X線構造解析の結果を併せると、試料1の格子定数は、1.29646nm≦a≦1.29691nmであることが分かる。
<実施例2>
(全固体リチウムイオン二次電池の作成)
 実施例1で得た試料1を、固体電解質材料として備えた全固体リチウムイオン二次電池を、次の手順で製造した。
 まず、酢酸リチウム2水和物(シグマアルドリッチ製)0.0105モルと、酢酸コバルト4水和物(和光純薬工業製)0.01モルとを、エチレングリコール(和光純薬工業製)100gに溶解させた。これに対し、さらに、ポリビニルピロリドンK-30(和光純薬工業製)10gを加えて溶解させることで、0.1モル/Kgのコバルト酸リチウム前駆体溶液を調製した。酢酸リチウム量を酢酸コバルト量よりもモル比で5%多くしたのは、焼成時のリチウム蒸発分を加味したためである。
 次に、試料1を切断して、底面の直径約0.6cm、厚さ約0.10cmの円柱状の薄片を作製して、薄片に上記溶液を10μl滴下して400℃で20分の仮焼成を行った。その後に、850℃で10分の焼成を行い、試料1の表面に、正極としてコバルト酸リチウムを合成し、試料1の裏面に、負極として金属リチウムを貼りつけた全固体リチウムイオン二次電池(以下「試料2」ということがある)を得た。
 図6は、試料2の評価装置10の構成を模式的に示す図である。ここでは説明のために、評価装置10の各構成要素を分解して示している。評価装置10は、主に、電池評価用セル11と、その中に設置された試料2の支持手段12とで構成される。電池評価用セル11は、支持手段12を収容して支持する評価セルボディ11Aと、評価セルボディ11A側とは反対側から覆う評価セル蓋11Bとで構成される。評価セルボディ11Aと評価セル蓋11Bは、シリコンゴム製Oリング13、フッ素樹脂製Oリング14を介して結合され、試料1を固定するように構成される。支持手段12は、試料1が金属リチウム板(負極)15を挟んで載置される土台12Aと、土台12Aの高さを調整するバネ12Bと、バネ12Bを固定するバネ用ガイド12Cと、とで構成される。
 この評価装置10において、固体電解質材料として試料1を用い、これに正極、負極を合成した試料2に対し、電圧を測定した。具体的には、グローブボックス中で、市販の電池評価用HSセル(宝泉株式会社製)11に、試料2と、円板状の金属リチウム板(直径4mm、厚さ1mm)15とを設置し、電圧を測定したところ、開回路電圧で2.9Vを示した。これにより、試料2が電池として機能することが確認された。
<実施例3>
 実施例3は、タンタルを含まず、ニオブを含む試料を形成した点、および原料の混合比が実施例1と異なる。
(LiGa0.25LaZr1.75Nb0.2512原料の混合)
 まず、炭酸リチウムLiCO(レアメタリック製、純度99.99%)28.5922gと、酸化ガリウムGa(レアメタリック製、純度99.99%)3.4539gと、酸化ランタンLa(レアメタリック製、純度99.99%)45.0257gと、酸化ジルコニウムZrO(レアメタリック製、純度99.99%)19.8671gと、酸化ニオブNb(レアメタリック製、純度99.99%)3.0612gとを、メノウ製乳鉢に入れて、エタノールを使用した湿式法によって均一に混合した。なお、酸化ランタンについては、あらかじめ900℃で仮焼成したものとした。これらの混合物に含まれる金属のモル比Li:Ga:La:Zr:Taは、目的物であるLiGa0.25LaZr1.75Nb0.2512の化学量論比に対し、リチウムを目的組成の1.4倍量とし、ガリウムを目的組成の1.6倍量とした。すなわち、混合物に含まれる金属の化学組成をLi8.4Ga0.4LaZr1.75Nb0.2512とした。
 続いて、実施例1において混合物を用いて試料1を育成した方法と同様の方法で、上記混合物を用いて高密度のLiGa0.25LaZr1.75Nb0.2512の結晶である試料3を育成した。
 育成した試料3の化学組成を、実施例1と同様の方法で分析した。分析の結果、ICP-AESの化学組成は、Li:Ga:La:Zr:Nb=6.0:0.25:3.0:1.75:0.25であった。図7は試料3の外観写真である。図7に示すように、試料3の長さは約7cmとなっている。
(高密度のLiGa0.25LaZr1.75Nb0.2512の結晶の評価)
 実施例1と同様の方法で、試料3の構造を調べた。図8は、試料3において、得られたX線回折パターンを示す画像であり、この画像から、単結晶構造に特有の回折点Dをはっきりと確認することができる。
 試料3の回折強度データを収集し、実施例1と同様の方法で結晶構造を調べたところ、試料3は、立方晶で空間群I-43dに属することが分かった。ダイヤモンドカッターを用いて、試料3から厚さ0.1cmの薄片を4枚作製し(切り出し)、上述の方法でこれらの相対密度を算出した。その結果、これらの相対密度は、それぞれ99.7%、99.8%、100%、100%であった。
 図9は試料3の構造を模式的に示している。固体電解質の製造方法として一般的に知られているように、リチウム複合酸化物の原料の多結晶を焼結させて製造した、立方晶ガーネット型構造Li7-3x-yGaLaZr2-yNb12は、類縁化合物であるLi7-3x-yGaLaZr2-yTa12と同様に空間群がIa-3dに属していると考えられる(たとえば非特許文献5)。これに対し、上記実施形態に係る溶融法で育成した試料3は、空間群がI-43dに属しており、結晶構造内の24c席(座標x=0.25、y=0.125、Z=0)をランタンが占有し、16a席(x=0、y=0、z=0)をジルコニウムおよびニオブが占有し、12a席(座標x=0.75、y=0.625、z=0)、12b席(座標x=0.75、y=0.125、z=0)、2種類の48e席(座標x=0.6801、y=0.5648、z=0.1454、座標x=0.6902、y=0.5890、z=0.0822)がリチウム席であり、12a席と12b席がガリウム席であった。このように、溶融法で製造した場合に得られる試料3は、非特許文献5で開示されているような焼結法で製造したものとは、空間群が明確に異なっており、結晶構造が異なる新物質であることが分かる。ここでの結晶構造解析の信頼度を示すR因子が2.13%であったため、この結晶構造解析の結果は妥当であると判断することができる。
<実施例4>
 実施例4は、ニオブを含む試料を形成した点、および原料の混合比が実施例1と異なる。
(LiGa0.25LaZr1.75Ta0.125Nb0.12512原料の混合)
まず、炭酸リチウムLiCO(レアメタリック製、純度99.99%)28.3052gと、酸化ガリウムGa(レアメタリック製、純度99.99%)3.4192gと、酸化ランタンLa(レアメタリック製、純度99.99%)44.5737gと、酸化ジルコニウムZrO(レアメタリック製、純度99.99%)19.6677gと、酸化タンタルTa(レアメタリック製、純度99.99%)2.5190gと、酸化ニオブNb(レアメタリック製、純度99.99%)1.5152gとを、メノウ製乳鉢に入れて、エタノールを使用した湿式法によって均一に混合した。なお、酸化ランタンについては、あらかじめ900℃で仮焼成したものとした。これらの混合物に含まれる金属のモル比Li:Ga:La:Zr:Taは、目的物であるLiGa0.25LaZr1.75Ta0.125Nb0.12512の化学量論比に対し、リチウムを目的組成の1.4倍量とし、ガリウムを目的組成の1.6倍量とした。すなわち、混合物に含まれる金属の化学組成をLi8.4Ga0.4LaZr1.75Ta0.125Nb0.12512とした。
 続いて、実施例1において混合物を用いて試料1を育成した方法と同様の方法で、上記混合物を用いて高密度のLiGa0.25LaZr1.75Ta0.2512の結晶である試料4を育成した。
 育成した試料4の化学組成を、実施例1とどうようの方法で分析した。分析の結果、ICP-AESの化学組成は、Li:Ga:La:Zr:Ta:Nb=6.0:0.25:3.0:1.75:0.125:0.125であった。図10は試料4の外観写真である。図10に示すように、試料10の長さは約5cmとなっている。
(高密度のLiGa0.25LaZr1.75Ta0.125Nb0.12512の結晶の評価)
 実施例1と同様の方法で、試料4の構造を調べた。図11は、試料4において、得られたX線回折パターンを示す画像であり、この画像から、単結晶構造に特有の回折点Dをはっきりと確認することができる。
 試料4の回折強度データを収集し、実施例1と同様の方法で結晶構造を調べたところ、試料4は、立方晶で空間群I-43dに属することが分かった。ダイヤモンドカッターを用いて、試料4から厚さ0.1cmの薄片を4枚作製し(切り出し)、上述の方法でこれらの相対密度を算出した。その結果、これらの相対密度は、それぞれ99.8%、100%、100%、100%であった。
 図12は試料4の構造を模式的に示している。固体電解質の製造方法として一般的に知られているように、リチウム複合酸化物の原料の多結晶を焼結させて製造した、立方晶ガーネット型構造Li7-3x―w-vGaLaZr2-w―vTaNb12は、類縁化合物であるLi7-3x-yGaLaZr2-yTa12と同様に空間群がIa-3dに属していると考えられる(たとえば非特許文献5)。これに対し、上記実施形態に係る溶融法で育成した試料3は、空間群がI-43dに属しており、結晶構造内の24c席(座標x=0.25、y=0.125、Z=0)をランタンが占有し、16a席(x=0、y=0、z=0)をジルコニウムおよびニオブが占有し、12a席(座標x=0.75、y=0.625、z=0)、12b席(座標x=0.75、y=0.125、z=0)、2種類の48e席(座標x=0.6805、y=0.5652、z=0.1448、座標x=0.6900、y=0.5885、z=0.0818)がリチウム席であり、12a席と12b席がガリウム席であった。このように、溶融法で製造した場合に得られる試料4は、非特許文献5で開示されているような焼結法で製造したものとは、空間群が明確に異なっており、結晶構造が異なる新物質であることが分かる。ここでの結晶構造解析の信頼度を示すR因子が1.88%であったため、この結晶構造解析の結果は妥当であると判断することができる。
<実施例5>
 実施例5は、ニオブを含む試料を形成した点、原料の混合比、およびCz法を用いて結晶を育成した点が実施例1と異なる。
(Li6.125Ga0.125LaZr1.5Ta0.25Nb0.2512原料の混合)
 まず、炭酸リチウムLiCO(レアメタリック製、純度99.99%)28.8647gと、酸化ガリウムGa(レアメタリック製、純度99.99%)1.7078gと、酸化ランタンLa(レアメタリック製、純度99.99%)44.5271gと、酸化ジルコニウムZrO(レアメタリック製、純度99.99%)16.8408gと、酸化タンタルTa(レアメタリック製、純度99.99%)5.0327gと、酸化ニオブNb(レアメタリック製、純度99.99%)3.0273gとを、メノウ製乳鉢に入れて、エタノールを使用した湿式法によって均一に混合した。なお、酸化ランタンについては、あらかじめ900℃で仮焼成したものとした。これらの混合物に含まれる金属のモル比Li:Ga:La:Zr:Taは、目的物であるLi6.125Ga0.125LaZrTa0.25Nb0.2512の化学量論比に対し、リチウムを目的組成の1.4倍量とし、ガリウムを目的組成の1.6倍量とした。すなわち、混合物に含まれる金属の化学組成をLi8.575Ga0.2LaZr1.5Ta0.25Nb0.2512とした。
 続いて、実施例1において棒形状の成形体を作製した方法と同様の方法で、上記混合物を用いて棒形状の成形体を作製した。
(Li6.125Ga0.125LaZr1.5Ta0.25Nb0.2512の結晶の育成)
 焼結により棒形状の成形体を作製後、まず、焼結後の棒形状の成形体を適当なサイズに切断して、外径30mm、内径28mm、深さ30mmのイリジウムるつぼに充填後、高周波誘導加熱コイルを装備した単結晶引き上げ炉(Cz炉)(テクノサーチ社製、TCH-3型)の高周波誘導加熱コイル部中央に、イリジウムるつぼを設置した。次に、イリジウムるつぼ内の焼結後の成形体が溶融するまで加熱した。そして、融液にあらかじめCz炉上部に設置した、第二基材としてのイリジウムロッドを融液に浸漬し、イリジウムロッドに融液を付着させた後、回転速度5rpmで長手方向と垂直な面で、すなわちイリジウムロッドの長手方向を軸として、回転させ、融液が付着したイリジウムロッドを8mm/hの移動速度で、坩堝内の融液から離れる方向に、坩堝外へ上昇させて、高密度のLi6.125Ga0.125LaZr1.5Ta0.25Nb0.2512の結晶(以下「試料5」ということがある)を育成した。
 育成した試料5の化学組成を、実施例1と同様の方法で分析した。分析の結果、ICP-AESの化学組成は、Li:Ga:La:Zr:Ta:Nb=6.1:0.125:3.0:1.5:0.25:0.25であった。図13は試料5の外観写真である。図13に示すように、試料5の直径は約20mm、長さは約20mmとなっている。
(高密度のLi6.125Ga0.125LaZr1.5Ta0.25Nb0.2512の結晶の評価)
 実施例1と同様の方法で、試料5の構造を調べた。図14は、試料5において、得られたX線回折パターンを示す画像であり、この画像から、単結晶構造に特有の回折点Dをはっきりと確認することができる。
 試料5の回折強度データを収集し、実施例1と同様の方法で結晶構造を調べたところ、試料5は、立方晶で空間群I-43dに属することが分かった。ダイヤモンドカッターを用いて、試料3から厚さ0.1cmの薄片を4枚作製し(切り出し)、上述の方法でこれらの相対密度を算出した。その結果、これらの相対密度は、それぞれ99.9%、100%、100%、100%であった。
 図15は試料5の構造を模式的に示している。固体電解質の製造方法として一般的に知られているように、リチウム複合酸化物の原料の多結晶を焼結させて製造した、立方晶ガーネット型構造Li7-3x―w-vGaLaZr2-w―vTaNb12は、類縁化合物であるLi7-3x-yGaLaZr2-yTa12と同様に空間群がIa-3dに属していると考えられる(たとえば非特許文献5)。これに対し、上記実施形態に係る溶融法で育成した試料5は、空間群がI-43dに属しており、結晶構造内の24c席(座標x=0.25、y=0.125、Z=0)をランタンが占有し、16a席(x=0、y=0、z=0)をジルコニウムおよびニオブが占有し、12a席(座標x=0.75、y=0.625、z=0)、12b席(座標x=0.75、y=0.125、z=0)、2種類の48e席(座標x=0.6798、y=0.5651、z=0.1439、座標x=0.6913、y=0.5892、z=0.0816)がリチウム席であり、12a席と12b席がガリウム席であった。このように、溶融法で製造した場合に得られる試料5は、非特許文献5で開示されているような焼結法で製造したものとは、空間群が明確に異なっており、結晶構造が異なる新物質であることが分かる。ここでの結晶構造解析の信頼度を示すR因子が1.62%であったため、この結晶構造解析の結果は妥当であると判断することができる。
<実施例6>
 実施例6は、原料の混合比が実施例1と異なる。
(Li5.55Ga0.4LaZr1.75Ta0.125Nb0.12512原料の混合)
 まず、炭酸リチウムLiCO(レアメタリック製、純度99.99%)26.2010gと、酸化ガリウムGa(レアメタリック製、純度99.99%)5.4746gと、酸化ランタンLa(レアメタリック製、純度99.99%)44.6055gと、酸化ジルコニウムZrO(レアメタリック製、純度99.99%)19.6817gと、酸化タンタルTa(レアメタリック製、純度99.99%)2.5208gと、酸化ニオブNb(レアメタリック製、純度99.99%)1.5163gとを、メノウ製乳鉢に入れて、エタノールを使用した湿式法によって均一に混合した。なお、酸化ランタンについては、あらかじめ900℃で仮焼成したものとした。これらの混合物に含まれる金属のモル比Li:Ga:La:Zr:Taは、目的物であるLi5.55Ga0.4LaZr1.75Ta0.125Nb0.12512の化学量論比に対し、リチウムを目的組成の1.4倍量とし、ガリウムを目的組成の1.6倍量とした。すなわち、混合物に含まれる金属の化学組成をLi7.77Ga0.64LaZr1.75Ta0.125Nb0.12512とした。
 次に、蓋付きのアルミナ坩堝(ニッカトー製、C3型)に、この混合物100gを充填した。そして、これをボックス型電気炉(ヤマト科学製、FP100型)に入れて、850℃で6時間仮焼成して粉末を得た。そして、得られた粉末を粉砕した。より詳細には、粉末100gと、直径5mmのジルコニアボール300gと、イソプロパノール50gとを、容量250mLのジルコニア製粉砕容器に充填し、遊星型ボールミル(ドイツ・フリッチュ製、型式P-6)を用いて、公転回転数200rpmで合計300分回転させて粉砕した。粉砕後の粉末を100℃で24時間乾燥させ、250μm目開きのふるいを用いて分級した。
 続いて、実施例1において混合物を用いて試料1を育成した方法と同様の方法で、上記混合物を用いて高密度のLi5.55Ga0.4LaZr1.75Ta0.125Nb0.12512の結晶である試料6を育成した。
 育成した試料6の化学組成を、実施例1と同様の方法で分析した。分析の結果、ICP-AESの化学組成は、Li:Ga:La:Zr:Ta:Nb=5.57:0.388:3.0:1.75:0.125:0.125であった。図16は試料6の外観写真である。図16に示すように、試料6の直径は約9mm、長さは約45mmとなっている。
(高密度のLi5.55Ga0.4LaZr1.75Ta0.125Nb0.12512の結晶の評価)
 実施例1と同様の方法で、試料6の構造を調べた。図17は、試料6において、得られたX線回折パターンを示す画像であり、この画像から、単結晶構造に特有の回折点Dをはっきりと確認することができる。
 試料6の回折強度データを収集し、実施例1と同様の方法で結晶構造を調べたところ、試料6は、立方晶で空間群I-43dに属することが分かった。ダイヤモンドカッターを用いて、試料6から厚さ0.1cmの薄片を4枚作製し(切り出し)、上述の方法でこれらの相対密度を算出した。その結果、これらの相対密度は、それぞれ99.6%、99.8%、99.9%、100%であった。
 図18は試料6の構造を模式的に示している。固体電解質の製造方法として一般的に知られているように、リチウム複合酸化物の原料の多結晶を焼結させて製造した、立方晶ガーネット型構造Li7-3x―w-vGaLaZr2-w―vTaNb12は、類縁化合物であるLi7-3x-yGaLaZr2-yTa12と同様に空間群がIa-3dに属していると考えられる(たとえば非特許文献5)。これに対し、上記実施形態に係る溶融法で育成した試料3は、空間群がI-43dに属しており、結晶構造内の24c席(座標x=0.25、y=0.125、Z=0)をランタンが占有し、16a席(x=0、y=0、z=0)をジルコニウムおよびニオブが占有し、12a席(座標x=0.75、y=0.625、z=0)、12b席(座標x=0.75、y=0.125、z=0)、2種類の48e席(座標x=0.6784、y=0.5656、z=0.1442、座標x=0.6937、y=0.5903、z=0.0822)がリチウム席であり、12a席と12b席がガリウム席であった。このように、溶融法で製造した場合に得られる試料4は、非特許文献5で開示されているような焼結法で製造したものとは、空間群が明確に異なっており、結晶構造が異なる新物質であることが分かる。ここでの結晶構造解析の信頼度を示すR因子が2.92%であったため、この結晶構造解析の結果は妥当であると判断することができる。
<実施例7>
 上記実施例1と同様の方法で作製したリチウム複合酸化物単結晶を次の手順で、粉砕および焼成し、リチウム複合酸化物多結晶を作製した。
 先ず、リチウム複合酸化物単結晶を、メノウ乳鉢で荒く破砕後、粉末状になるまですりつぶすことにより粉砕することで、リチウム複合酸化物の多結晶の粉体を形成した。次いで、該粉体を直径約10mmの錠剤成形器に約0.4g充填後、油圧プレスで約60MPa加圧することで、成形体を得た。次いで、該成形体を白金るつぼに入れ、箱型電気炉(デンケン製、型番KDF009)を用いて、1150℃で4時間焼成を行った。図19は、当該焼成により得られたリチウム複合酸化物多結晶の外観写真である。実施例7で作製されたリチウム複合酸化物多結晶は、直径約10mm、厚さ約1.5mmであった。実施例7のリチウム複合酸化物多結晶を作製に用いる、破砕前の単結晶(実施例1と同様のリチウム複合酸化物単結晶)が空間群I-43dに属するガーネット型構造を有すること、破砕後の多結晶は図5に示すようにガーネット型構造を粉末X線回折パターンが得られることから、本実施例で作製された多結晶焼結体も同様の結晶構造を有する焼結体である。
 このように、単結晶を破砕して多結晶を作製した後、錠剤成形器で成形後、焼結させることで、多結晶焼結体を作製可能である。
 本発明の高密度Li7-3x―w-vGaLaZr2-w―vTaNb12(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)結晶は、全固体リチウムイオン二次電池の固体電解質材料などに利用することができる。
10・・・評価装置
11・・・電池評価用セル
11A・・・評価セルボディ
11B・・・評価セル蓋
12・・・支持手段
12A・・・土台
12B・・・バネ
12C・・・バネ用ガイド
13・・・シリコンゴム製Oリング
14・・・フッ素樹脂製Oリング
15・・・金属リチウム板
1、2・・・試料
2・・・試料
B・・・基材
D・・・回折点

Claims (17)

  1.  化学組成がLi7-3x―w-vGaLaZr2-w―vTaNb12(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)で表され、
     立方晶系で空間群I-43dに属し、ガーネット型構造を有する、リチウム複合酸化物単結晶。
  2.  化学組成がLi7-3x―w-vGaLaZr2-w―vTaNb12(0.02≦x<0.5、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0)で表され、
    立方晶系で空間群I-43dに属し、ガーネット型構造を有する単結晶からなる、リチウム複合酸化物多結晶。
  3.  相対密度が90%以上である、請求項2に記載のリチウム複合酸化物多結晶。
  4.  相対密度が95%以上である、請求項2または3のいずれかに記載のリチウム複合酸化物多結晶。
  5.  請求項1に記載のリチウム複合酸化物単結晶、または、請求項2~4のいずれか一項に記載のリチウム複合酸化物多結晶を含む、リチウム複合酸化物材料。
  6.  請求項1に記載のリチウム複合酸化物単結晶、または、請求項2~4のいずれか一項に記載のリチウム複合酸化物多結晶を含む、固体電解質材料。
  7.  リチウムイオン伝導率が1.0×10-3S/cm以上である、請求項6に記載の固体電解質材料。
  8.  正極と、負極と、請求項6または7のいずれかに記載の固体電解質材料と、を備えていることを特徴とする全固体リチウムイオン二次電池。
  9.  請求項6または7のいずれかに記載の固体電解質材料を製造する、固体電解質材料の製造方法であって、
     化学組成がLi(7-3x-W)yGaxzLaZr2-WTaNb12(0.02≦x<0.5、1.1≦y≦1.4、1.6≦z≦3.3、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0、1.1≦y≦1.5、1.5≦z≦3.5)で表される原料を含む、棒状の基材のうち、少なくとも一部を溶融して溶融部を形成する溶融部形成工程と、
     前記溶融部を平均速度8mm/h以上で移動させる溶融部移動工程と、を有することを特徴とする固体電解質材料の製造方法。
  10.  前記平均速度を8mm/h以上19mm/h以下とすることを特徴とする請求項9に記載の固体電解質材料の製造方法。
  11.  前記溶融部形成工程において、前記基材を、長手方向と垂直な面で、前記溶融部とともに回転速度30rpm以上で回転させることを特徴とする請求項9または10のいずれかに記載の固体電解質材料の製造方法。
  12.  前記固体電解質の種結晶を前記溶融部に取り付けた状態で、前記溶融部移動工程を行うことを特徴とする請求項9~11のいずれか一項に記載の固体電解質材料の製造方法。
  13.  前記溶融部移動工程において、前記基材の長手方向と垂直な面で、前記溶融部を、回転速度2rpm以上8rpm以下で回転させることを特徴とする請求項9~12のいずれか一項に記載の固体電解質材料の製造方法。
  14.  請求項6または7のいずれかに記載の固体電解質材料を製造する固体電解質材料の製造方法であって、
     化学組成がLi(7-3x-W)yGaxzLaZr2-WTaNb12(0.02≦x<0.5、1.1≦y≦1.4、1.6≦z≦3.3、0≦W≦1.0、0≦V≦1.0、0.05≦W+V≦1.0、1.1≦y≦1.5、1.5≦z≦3.5)で表される原料を、坩堝内で溶融させ、前記原料の融液を形成する融液形成工程と、
     前記坩堝内の前記融液に基材を浸漬し、前記基材に前記融液を付着させる融液付着工程と、
     前記基材とともに、前記基材に付着した前記融液を、平均速度8mm/h以上で前記坩堝外に移動させる融液移動工程と、を有することを特徴とする固体電解質材料の製造方法。
  15.  前記平均速度を8mm/h以上19mm/h以下とすることを特徴とする請求項14に記載の固体電解質材料の製造方法。
  16.  前記固体電解質の種結晶を前記基材に取り付けた状態で、前記融液移動工程を行うことを特徴とする請求項14または15のいずれかに記載の固体電解質材料の製造方法。
  17.  前記融液部移動工程において、棒状の前記基材を長手方向と垂直な面で、前記融液に対して、回転速度2rpm以上8rpm以下で回転させることを特徴とする請求項14~16のいずれか一項に記載の固体電解質材料の製造方法。
PCT/JP2021/041657 2020-11-17 2021-11-12 リチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法 WO2022107687A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21894561.6A EP4249649A1 (en) 2020-11-17 2021-11-12 Lithium composite oxide single crystal, lithium composite oxide polycrystal, lithium composite oxide material, solid electrolyte material, all-solid-state lithium ion secondary battery, and method for producing solid electrolyte material
KR1020237016530A KR20230107583A (ko) 2020-11-17 2021-11-12 리튬 복합 산화물 단결정, 리튬 복합 산화물 다결정, 리튬 복합 산화물 재료, 고체 전해질 재료, 전고체 리튬 이온 2차 전지, 및 고체 전해질 재료의 제조 방법
US18/252,853 US20240003052A1 (en) 2020-11-17 2021-11-12 Lithium composite oxide single crystal, lithium composite oxide polycrystal, lithium composite oxide material, solid electrolyte material, all-solid-state lithium-ion secondary battery, and method for producing solid electrolyte material
JP2022563721A JPWO2022107687A1 (ja) 2020-11-17 2021-11-12
CN202180076937.5A CN116547240A (zh) 2020-11-17 2021-11-12 锂复合氧化物单晶、锂复合氧化物多晶、锂复合氧化物材料、固体电解质材料、全固态锂离子二次电池、以及固体电解质材料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020191100 2020-11-17
JP2020-191100 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022107687A1 true WO2022107687A1 (ja) 2022-05-27

Family

ID=81708075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041657 WO2022107687A1 (ja) 2020-11-17 2021-11-12 リチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法

Country Status (6)

Country Link
US (1) US20240003052A1 (ja)
EP (1) EP4249649A1 (ja)
JP (1) JPWO2022107687A1 (ja)
KR (1) KR20230107583A (ja)
CN (1) CN116547240A (ja)
WO (1) WO2022107687A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195373A (ja) 2010-03-19 2011-10-06 National Institute Of Advanced Industrial Science & Technology リチウムイオン伝導性酸化物及びその製造方法、並びにそれを部材として使用した電気化学デバイス
WO2016017769A1 (ja) * 2014-07-31 2016-02-04 国立研究開発法人産業技術総合研究所 リチウム含有ガーネット結晶体、その製造方法、および全固体リチウムイオン二次電池
WO2016068040A1 (ja) 2014-10-27 2016-05-06 国立研究開発法人産業技術総合研究所 リチウム含有ガーネット結晶体および全固体リチウムイオン二次電池
WO2017033865A1 (ja) * 2015-08-21 2017-03-02 国立研究開発法人産業技術総合研究所 プロトン伝導性複合酸化物およびそれを電解質として使用した燃料電池
WO2017130622A1 (ja) 2016-01-29 2017-08-03 国立研究開発法人産業技術総合研究所 固体電解質材料および全固体リチウムイオン二次電池
JP2020516579A (ja) * 2017-04-17 2020-06-11 コーニング インコーポレイテッド リチウム−ガーネット固体電解質複合材料、テープ製品、及びそれらの方法
JP2020191100A (ja) 2017-11-30 2020-11-26 株式会社日立製作所 システム及びその制御方法並びにプログラム
JP2021046340A (ja) * 2019-09-19 2021-03-25 国立研究開発法人産業技術総合研究所 ガリウム置換型固体電解質材料および全固体リチウムイオン二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2788700C (en) 2010-02-01 2017-08-29 Weir Minerals Australia Ltd Metal alloys for high impact applications
JP2016068040A (ja) 2014-09-30 2016-05-09 スリーエム イノベイティブ プロパティズ カンパニー 帯電フィルタ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195373A (ja) 2010-03-19 2011-10-06 National Institute Of Advanced Industrial Science & Technology リチウムイオン伝導性酸化物及びその製造方法、並びにそれを部材として使用した電気化学デバイス
WO2016017769A1 (ja) * 2014-07-31 2016-02-04 国立研究開発法人産業技術総合研究所 リチウム含有ガーネット結晶体、その製造方法、および全固体リチウムイオン二次電池
WO2016068040A1 (ja) 2014-10-27 2016-05-06 国立研究開発法人産業技術総合研究所 リチウム含有ガーネット結晶体および全固体リチウムイオン二次電池
WO2017033865A1 (ja) * 2015-08-21 2017-03-02 国立研究開発法人産業技術総合研究所 プロトン伝導性複合酸化物およびそれを電解質として使用した燃料電池
WO2017130622A1 (ja) 2016-01-29 2017-08-03 国立研究開発法人産業技術総合研究所 固体電解質材料および全固体リチウムイオン二次電池
JP2020516579A (ja) * 2017-04-17 2020-06-11 コーニング インコーポレイテッド リチウム−ガーネット固体電解質複合材料、テープ製品、及びそれらの方法
JP2020191100A (ja) 2017-11-30 2020-11-26 株式会社日立製作所 システム及びその制御方法並びにプログラム
JP2021046340A (ja) * 2019-09-19 2021-03-25 国立研究開発法人産業技術総合研究所 ガリウム置換型固体電解質材料および全固体リチウムイオン二次電池

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
APPLIED MATERIALS INTERFACES, vol. 12, 2020, pages 25709 - 25717
CHEMELECTROCHEM, vol. 5, 2018, pages 2551
CHEMISTRY MATERIALS, vol. 28, 2016, pages 1861 - 1871
CRYSTALLOGRAPHIC COMMUNICATION, vol. 72, 2016, pages 287 - 289
KATAOKA, KUNIMITSU, NAGATA, HIROSHI, AKIMOTO, JUNJI, ISHIDA, YUSO, ARIGA, TOMOKI: "[3G02] Single crystal growth and evaluation of gallium-substituted garnet-type solid electrolyte", 60TH BATTERY SYMPOSIUM IN JAPAN; NOVEMBER 13-15, 2019, 1 January 2019 (2019-01-01), JP, pages 1 - 1, XP009537154 *
REINHARD WAGNER, GüNTHER J. REDHAMMER, DANIEL RETTENWANDER, ANATOLIY SENYSHYN, WALTER SCHMIDT, MARTIN WILKENING, GEORG AMTHAU: "Crystal Structure of Garnet-Related Li-Ion Conductor Li 7–3 x Ga x La 3 Zr 2 O 12 : Fast Li-Ion Conduction Caused by a Different Cubic Modification?", CHEMISTRY OF MATERIALS, vol. 28, no. 6, 22 March 2016 (2016-03-22), US , pages 1861 - 1871, XP055502570, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.6b00038 *
SCIENTIFIC REPORTS, vol. 8, 2018, pages 9965

Also Published As

Publication number Publication date
CN116547240A (zh) 2023-08-04
JPWO2022107687A1 (ja) 2022-05-27
EP4249649A1 (en) 2023-09-27
KR20230107583A (ko) 2023-07-17
US20240003052A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
JP6278433B2 (ja) リチウム含有ガーネット結晶体および全固体リチウムイオン二次電池
JP6120346B2 (ja) リチウム含有ガーネット結晶体および全固体リチウムイオン二次電池
KR102137801B1 (ko) 저대칭 가닛 관련형 구조 고체 전해질 및 리튬 이온 이차 전지
US10693184B2 (en) Lithium-containing garnet crystal body, method for producing same, and all-solid-state lithium ion secondary battery
US11139504B2 (en) Lithium ion conductive crystal body and all-solid state lithium ion secondary battery
WO2021053923A1 (ja) ガリウム置換型固体電解質材料および全固体リチウムイオン二次電池
WO2022107687A1 (ja) リチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法
JP7442878B2 (ja) 新規結晶構造を備える複合酸化物と、この複合酸化物を固体電解質とする全固体リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563721

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18252853

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180076937.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021894561

Country of ref document: EP

Effective date: 20230619