WO2016013445A1 - 方向制御弁 - Google Patents

方向制御弁 Download PDF

Info

Publication number
WO2016013445A1
WO2016013445A1 PCT/JP2015/070104 JP2015070104W WO2016013445A1 WO 2016013445 A1 WO2016013445 A1 WO 2016013445A1 JP 2015070104 W JP2015070104 W JP 2015070104W WO 2016013445 A1 WO2016013445 A1 WO 2016013445A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure chamber
pilot
valve
spool
pressure
Prior art date
Application number
PCT/JP2015/070104
Other languages
English (en)
French (fr)
Inventor
太志 吉田
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to US15/125,613 priority Critical patent/US9970556B2/en
Priority to CN201580013792.9A priority patent/CN106133422B/zh
Priority to AU2015293278A priority patent/AU2015293278B2/en
Priority to EP15825298.1A priority patent/EP3109528A4/en
Publication of WO2016013445A1 publication Critical patent/WO2016013445A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • F15B13/0435Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves the pilot valves being sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/42Actuating devices; Operating means; Releasing devices actuated by fluid by means of electrically-actuated members in the supply or discharge conduits of the fluid motor
    • F16K31/423Actuating devices; Operating means; Releasing devices actuated by fluid by means of electrically-actuated members in the supply or discharge conduits of the fluid motor the actuated members consisting of multiple way valves
    • F16K31/426Actuating devices; Operating means; Releasing devices actuated by fluid by means of electrically-actuated members in the supply or discharge conduits of the fluid motor the actuated members consisting of multiple way valves the actuated valves being cylindrical sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0402Valve members; Fluid interconnections therefor for linearly sliding valves, e.g. spool valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B2013/0409Position sensing or feedback of the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/06Use of special fluids, e.g. liquid metal; Special adaptations of fluid-pressure systems, or control of elements therefor, to the use of such fluids

Definitions

  • the present invention relates to a directional control valve that controls a direction in which a working fluid flows.
  • JP2006-300195A includes a main valve that switches the direction in which the working fluid flows, and a pilot valve that switches the main valve according to the pilot pressure, and the direction in which the working fluid is supplied from the pressure source to both the main valve and the pilot valve.
  • a control valve is disclosed.
  • the two control ports of the pilot valve communicate with the pressure chambers respectively formed on both sides of the main spool of the main valve.
  • the pilot spool of the pilot valve is moved by the solenoid and the supply port of the pilot valve to which the working fluid is supplied communicates with one of the two control ports, a differential pressure is generated in the two pressure chambers of the main valve.
  • the main spool moves.
  • the two control ports of the main valve are alternatively communicated with the supply port of the main valve to which the working fluid is supplied.
  • the pressure of the pressure chamber is controlled by adjusting the flow rate of the working fluid supplied from the pilot valve to the pressure chamber of the main valve. That is, the directional control valve is a meter-in circuit. For this reason, there is room for improvement in the controllability of the directional control valve.
  • the object of the present invention is to improve the controllability of the directional control valve.
  • a directional control valve comprising: a main valve that switches a direction in which a working fluid flows; and a pilot valve that switches the main valve according to a pilot pressure, the main valve being operated from a pressure source.
  • the main spool is connected to the first main valve control port, and when moved to the other side, the main spool is connected to the supply port and the second main valve control port, and formed on both sides in the axial direction of the main spool,
  • a first pressure chamber and a second pressure chamber to which a working fluid is supplied from a pressure source, and the working fluid supplied from the pressure source to the first pressure chamber is the main spool.
  • the working fluid supplied to the first pressure chamber via a hydrostatic bearing provided at the end of the first pressure chamber and supplied from the pressure source to the second pressure chamber is supplied to the main spool.
  • the pilot valve is supplied to the second pressure chamber via a hydrostatic bearing provided at an end portion on the second pressure chamber side, and the pilot valve alternatively selects the first pressure chamber and the second pressure chamber.
  • a directional control valve is provided in communication with the tank.
  • FIG. 1 is a schematic diagram showing a directional control valve according to an embodiment of the present invention.
  • the direction control valve 100 is a control valve that is applied to a fluid pressure device (not shown) such as an actuator and controls the operation of the fluid pressure device by switching the direction in which the working water as the working fluid flows.
  • the direction control valve 100 includes a main valve 10 that switches a direction in which the working water flows, and a pilot valve 20 that switches the main valve 10 using a pilot pressure.
  • the main valve 10 includes a main housing 11 and a main spool 12.
  • the main housing 11 includes a supply port 11a to which working water is supplied from the pressure source 13, a first main valve control port 11b (hereinafter referred to as a control port 11b) and a second main valve for supplying and discharging the working water to and from the fluid pressure device.
  • a valve control port 11c (hereinafter referred to as a control port 11c) and discharge ports 11d and 11e communicating with the tank 14 are provided.
  • a supply port 11a is provided at the center of the main housing 11, control ports 11b and 11c are provided on both sides of the supply port 11a, and discharge ports 11d are provided on both outer sides. 11e are provided.
  • the main spool 12 is accommodated in the main housing 11 so as to be movable in the axial direction.
  • the main spool 12 has a land portion 12a provided at the center and land portions 12b and 12c provided at both ends.
  • the hydrostatic bearings 15 and 16 are provided at both ends of the main spool 12, respectively.
  • the hydrostatic bearings 15 and 16 are supplied with working water from the pressure source 13.
  • a water film is formed between the main housing 11 and the land portions 12b and 12c of the main spool 12, and the main spool 12 is supported by the main housing 11 in a floating state. Therefore, even when working water is used as the working fluid, it is possible to prevent galling between the main spool 12 and the main housing 11, and to operate the main spool 12 smoothly.
  • a first pressure chamber 17 (hereinafter referred to as a pressure chamber 17) and a second pressure chamber 18 (hereinafter referred to as a pressure chamber 18) are provided by the main spool 12 and the main housing 11. Are formed respectively.
  • the working water supplied from the pressure source 13 to the hydrostatic bearing 15 flows into the pressure chamber 17 through the gap between the main housing 11 and the land 12b of the main spool 12.
  • the working water supplied from the pressure source 13 to the hydrostatic bearing 16 flows into the pressure chamber 18 through the gap between the main housing 11 and the land portion 12 c of the main spool 12.
  • the main valve 10 is configured as described above. As shown in FIG. 1, when the main spool 12 is located at the center of the main housing 11, the land portion 12a closes the supply port 11a, and the land portion 12b has a discharge port. 11d is closed, and the land portion 12c closes the discharge port 11e.
  • the pilot valve 20 includes a pilot housing 21, a pilot spool 22, and a solenoid 23.
  • the pilot housing 21 includes a first pilot valve control port 21a (hereinafter referred to as a control port 21a) that communicates with the pressure chamber 17 of the main valve 10, and a second pilot valve control port 21b that communicates with the pressure chamber 18 of the main valve 10. (Hereinafter referred to as a control port 21b) and a discharge port 21c communicating with the tank 14.
  • a discharge port 21c is provided at the center of the pilot housing 21, and control ports 21a and 21b are provided on both sides of the discharge port 21c.
  • the pilot spool 22 is accommodated in the pilot housing 21 so as to be movable in the axial direction.
  • the pilot spool 22 has a land portion 22a provided at the center and land portions 22b and 22c provided at both ends.
  • the hydrostatic bearings 24 and 25 are provided at both ends of the pilot spool 22, respectively. Working water is supplied to the hydrostatic bearing 24 from the pressure chamber 18 of the main valve 10. Further, working water is supplied to the hydrostatic bearing 25 from the pressure chamber 17 of the main valve 10.
  • the pilot spool 22 can be smoothly operated even when working water is used as the working fluid.
  • the directional control valve 100 excellent in hygiene, safety, and environment can be provided. Therefore, it is possible to suppress the risk management cost when the directional control valve 100 is applied to a food machine, a semiconductor device, an underwater work machine, or the like.
  • a third pressure chamber 26 (hereinafter referred to as a pressure chamber 26) and a fourth pressure chamber 27 (hereinafter referred to as a pressure chamber 27) are provided by the pilot spool 22 and the pilot housing 21. Are formed respectively.
  • the working water supplied from the pressure chamber 17 of the main valve 10 to the hydrostatic bearing 25 flows into the pressure chamber 26 through a gap between the pilot housing 21 and the land portion 22c of the pilot spool 22.
  • the working water supplied from the pressure chamber 18 of the main valve 10 to the hydrostatic bearing 24 flows into the pressure chamber 27 through the gap between the pilot housing 21 and the land portion 22 b of the pilot spool 22.
  • the pressure chamber 26 communicates with the tank 14 through the throttle passage 28. Further, the pressure chamber 27 communicates with the tank 14 through the throttle passage 29.
  • the pilot valve 20 is configured as described above. As shown in FIG. 1, when the pilot spool 22 is located at the center of the pilot housing 21, the land portion 22a closes the discharge port 21c.
  • the pressure chamber 26 is reduced when the pilot spool 22 moves to the pressure chamber 26 side. At this time, the working water corresponding to the reduced volume in the pressure chamber 26 passes through the throttle passage 28 and is discharged to the tank 14.
  • the pressure chamber 27 is reduced when the pilot spool 22 moves to the pressure chamber 27 side.
  • the reduced amount of working water in the pressure chamber 27 passes through the throttle passage 29 and is discharged to the tank 14.
  • the directional control valve 100 includes the throttle passages 28 and 29 through which the working water discharged from the pressure chambers 26 and 27 passes, so that the vibration of the pilot spool 22 generated as the pilot spool 22 moves is attenuated.
  • the pilot valve 20 can be operated stably.
  • a spring 30 is disposed in the pressure chamber 26.
  • the spring 30 always urges the pilot spool 22 toward the pressure chamber 27.
  • the solenoid 23 is provided at the end of the pilot spool 22 opposite to the spring 30.
  • the solenoid 23 causes the pilot spool 22 to exert a thrust in the direction of moving toward the pressure chamber 26 according to the energization current. As a result, the pilot spool 22 moves toward the pressure chamber 26 against the urging force of the spring 30.
  • the thrust acting on the pilot spool 22 increases as the energizing current of the solenoid 23 increases. Accordingly, the pilot spool 22 moves more toward the pressure chamber 26 as the energization current of the solenoid 23 is increased.
  • the pilot spool 22 moves to the pressure chamber 27 side by the biasing force of the spring 30 as the energization current of the solenoid 23 is reduced.
  • the pilot spool 22 is most moved to the pressure chamber 27 side.
  • displacement gauges 40 and 41 are attached to the main spool 12 and the pilot spool 22, respectively. Output signals from the displacement meters 40 and 41 are input to the controller 50.
  • the controller 50 changes the energization current of the solenoid 23 based on the output signals of the displacement meters 40 and 41.
  • the thrust acting on the pilot spool 22 varies depending on the energizing current of the solenoid 23 as described above. Therefore, by changing the energization current of the solenoid 23 by the controller 50, the position where the thrust acting on the pilot spool 22 and the urging force of the spring 30 are balanced, that is, the position of the pilot spool 22 can be changed.
  • the flow passage area when the discharge port 21c of the pilot valve 20 and the control port 21a communicate with each other increases as the pilot spool 22 moves to the pressure chamber 26 side. Further, the flow passage area when the discharge port 21c and the control port 21b communicate with each other increases as the pilot spool 22 moves to the pressure chamber 27 side.
  • the pilot valve 20 shown in FIG. 1 is in a state in which the controller 50 controls the energizing current of the solenoid 23 so that the pilot spool 22 is positioned at the center of the pilot housing 21.
  • the pilot spool 22 moves to the pressure chamber 26 side.
  • the pilot spool 22 moves to the pressure chamber 27 side.
  • the directional control valve 100 exhibits a symmetric operation when the pilot spool 22 moves to the pressure chamber 26 side and when it moves to the pressure chamber 27 side. Therefore, in the following description, the case where the pilot spool 22 moves to the pressure chamber 26 side will be described, and the case where the pilot spool 22 moves to the pressure chamber 27 side will be omitted.
  • the pressure in the pressure chamber 17 decreases. That is, since a differential pressure is generated in the pressure chambers 17 and 18, the main spool 12 moves to the pressure chamber 17 side, which is the low pressure side. As a result, the supply port 11a and the control port 11c communicate with each other, and the control port 11b and the discharge port 11d communicate with each other.
  • the communication between the discharge port 21c and the control port 21a is cut off and the pressure in the pressure chamber 17 is increased. Therefore, if the energizing current of the solenoid 23 is reduced and the pilot spool 22 is moved to the position shown in FIG. 1 to close the discharge port 21c, the pressure in the pressure chamber 17 rises and the pressure chamber 17 and the pressure chamber 18 Since the differential pressure is eliminated, the movement of the main spool 12 can be stopped.
  • the pressure chamber 17 of the main valve 10 and the pressure chamber 26 of the pilot valve 20 are communicated with each other.
  • the thrust in the direction of moving to the 26 side acts.
  • the solenoid 23 can be reduced in size and the cost can be suppressed. Since the same applies when the pilot spool 22 moves to the pressure chamber 27 side, the spring 30 can also be reduced in size.
  • the working fluid is supplied from the pressure source to both the main valve and the pilot valve, and the working fluid supplied from the pilot valve to the pressure chamber of the main valve is used.
  • the structure which controls the pressure of a pressure chamber by adjusting a flow volume can be considered.
  • working water is supplied from the pressure source 13 to the pressure chambers 17 and 18 of the main valve 10. Then, the control ports 21a and 21b of the pilot valve 20 communicating with the pressure chambers 17 and 18 are selectively communicated with the discharge port 21c, and the working water is discharged from the pressure chambers 17 and 18 to the tank 14, thereby The pressure in the chambers 17 and 18 is changed.
  • the direction control valve 100 is a meter-out circuit that controls the pressure in the pressure chambers 17 and 18 by adjusting the flow rate of the working water discharged from the pressure chambers 17 and 18. Therefore, controllability can be improved as compared with the direction control valve of the meter-in circuit.
  • the working water is supplied from the pressure source 13 to the pressure chambers 17 and 18 of the main valve 10.
  • the pressure chambers 17 and 18 communicate with the tank 14 alternatively by the pilot valve 20.
  • the direction control valve 100 becomes a meter-out circuit that controls the pressure of the pressure chambers 17 and 18 by adjusting the flow rate of the working water discharged from the pressure chambers 17 and 18. Therefore, the controllability of the direction control valve 100 can be improved.
  • the hydrostatic bearings 15 and 16 for supporting the main spool 12 and the hydrostatic bearings 24 and 25 for supporting the pilot spool 22 it is possible to use working water as the working fluid. According to this, the direction control valve 100 excellent in hygiene, safety, and environmental performance can be provided. Therefore, it is possible to suppress the risk management cost when the directional control valve 100 is applied to a food machine, a semiconductor device, an underwater work machine, or the like.
  • the pressure chamber 17 (18) of the main valve 10 and the pressure chamber 26 (27) of the pilot valve 20 are communicated with each other, when the working water is discharged from the pressure chamber 17 (18) to the tank 14, the pressure chamber 26 , 27 acts on the pilot spool 22 with a thrust in the direction of movement toward the pressure chamber 26 (27), which is the traveling direction. According to this, since the thrust required to move the pilot spool 22 can be reduced, the solenoid 23 and the spring 30 can be reduced in size, and the cost can be suppressed.
  • working water is used as the working fluid, but other liquids or gases such as working oil may be used.
  • the hydrostatic bearings 15, 16, 24, and 25 may not be provided.
  • the hydraulic oil may be directly supplied from the pressure source 13 to the pressure chambers 17 and 18 of the main valve 10, and the hydraulic oil may be directly supplied from the pressure chambers 17 and 18 to the pressure chambers 26 and 27 of the pilot valve 20.
  • the working water is supplied from the pressure chambers 17 and 18 of the main valve 10 to the hydrostatic bearings 24 and 25 of the pilot spool 22, but may be supplied directly from the pressure source 13. In this case, the working water may be directly supplied from the pressure chambers 17 and 18 of the main valve 10 to the pressure chambers 26 and 27 of the pilot valve 20.
  • the main valve 10 includes the main housing 11 and the pilot valve 20 includes the pilot housing 21.
  • the main housing 11 and the pilot housing 21 may be provided integrally.
  • the solenoid 23 and the spring 30 are used as the drive mechanism for moving the pilot spool 22.
  • the solenoid 23 may be provided on both sides of the pilot spool 22 without using the spring 30.
  • a servo motor may be used in place of the solenoid 23 and the spring 30.
  • the displacement meter 40 is attached so that the position of the main spool 12 can be controlled.
  • a spring is provided in the pressure chambers 17 and 18 so that the main spool 12 It may be automatically positioned at the center of the main housing 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Driven Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Servomotors (AREA)

Abstract

 方向制御弁(100)では、第1圧力室(17)に供給される作動流体は、メインスプール(12)の第1圧力室(17)側の端部に設けられた静圧軸受(15)を介して第1圧力室(17)に供給され、第2圧力室(18)に供給される作動流体は、メインスプール(12)の第2圧力室(18)側の端部に設けられた静圧軸受(16)を介して第2圧力室(18)に供給され、パイロット弁(20)は、第1圧力室(17)と第2圧力室(18)とを択一的にタンク(14)と連通させる。

Description

方向制御弁
 本発明は、作動流体の流れる方向を制御する方向制御弁に関する。
 JP2006-300195Aには、作動流体の流れる方向を切り換える主弁と、主弁をパイロット圧によって切り換えるパイロット弁と、を備え、主弁とパイロット弁との両方に圧力源から作動流体が供給される方向制御弁が開示されている。
 上記の方向制御弁では、パイロット弁の2つの制御ポートが、主弁のメインスプールの両側にそれぞれ形成された圧力室と連通している。ソレノイドでパイロット弁のパイロットスプールを移動させ、作動流体が供給されるパイロット弁の供給ポートと2つの制御ポートのいずれか一方とを連通させると、主弁の2つの圧力室に差圧が発生してメインスプールが移動する。これにより、主弁の2つの制御ポートが、作動流体が供給される主弁の供給ポートと択一的に連通する。
 上記の方向制御弁では、パイロット弁から主弁の圧力室に供給する作動流体の流量を調整することで、圧力室の圧力を制御している。つまり、上記の方向制御弁はメータイン回路になっている。このため、方向制御弁の制御性については向上の余地がある。
 本発明は、方向制御弁の制御性の向上を図ることを目的とする。
 本発明のある態様によれば、作動流体の流れる方向を切り換える主弁と、前記主弁をパイロット圧によって切り換えるパイロット弁と、を備える方向制御弁であって、前記主弁は、圧力源から作動流体が供給される供給ポートと、外部に作動流体を給排する第1主弁制御ポートおよび第2主弁制御ポートと、軸線方向に移動自在に設けられ、一方側に移動すると前記供給ポートと前記第1主弁制御ポートとを連通させ、他方側に移動すると前記供給ポートと前記第2主弁制御ポートとを連通させるメインスプールと、前記メインスプールの軸線方向における両側にそれぞれ形成され、前記圧力源から作動流体が供給される第1圧力室および第2圧力室と、を備え、前記圧力源から前記第1圧力室に供給される作動流体は、前記メインスプールの前記第1圧力室側の端部に設けられた静圧軸受を介して前記第1圧力室に供給され、前記圧力源から前記第2圧力室に供給される作動流体は、前記メインスプールの前記第2圧力室側の端部に設けられた静圧軸受を介して前記第2圧力室に供給され、前記パイロット弁は、前記第1圧力室と前記第2圧力室とを択一的にタンクと連通させる方向制御弁が提供される。
図1は、本発明の実施形態に係る方向制御弁を示す模式図である。
 以下、添付図面を参照しながら本発明の実施形態に係る方向制御弁100について説明する。
 方向制御弁100は、アクチュエータ等の流体圧機器(図示せず)に適用され、作動流体としての作動水の流れる方向を切り換えることで流体圧機器の動作を制御する制御弁である。
 方向制御弁100は、作動水の流れる方向を切り換える主弁10と、主弁10をパイロット圧によって切り換えるパイロット弁20と、を備える。
 主弁10は、メインハウジング11と、メインスプール12と、を備える。
 メインハウジング11は、圧力源13から作動水が供給される供給ポート11aと、流体圧機器に作動水を給排する第1主弁制御ポート11b(以下、制御ポート11bという。)および第2主弁制御ポート11c(以下、制御ポート11cという。)と、タンク14と連通する排出ポート11d、11eと、を有する。
 本実施形態では、図1に示すように、メインハウジング11の中央部に供給ポート11aが設けられ、供給ポート11aの両側に制御ポート11b、11cがそれぞれ設けられ、さらに両外側に排出ポート11d、11eがそれぞれ設けられる。
 メインスプール12は、メインハウジング11に軸線方向に移動自在に収容される。
 メインスプール12は、中央部に設けられたランド部12aと、両端部にそれぞれ設けられたランド部12b、12cと、を有する。
 メインスプール12の両端には、静圧軸受15、16がそれぞれ設けられる。静圧軸受15、16には、圧力源13から作動水が供給される。
 これによれば、メインハウジング11とメインスプール12のランド部12b、12cとの間に水膜が形成され、メインスプール12がメインハウジング11に浮動状態で支持される。したがって、作動流体として作動水を用いても、メインスプール12とメインハウジング11との間にかじりが発生することを防止でき、メインスプール12を滑らかに作動させることができる。
 メインスプール12の軸線方向における両側には、メインスプール12とメインハウジング11とにより、第1圧力室17(以下、圧力室17という。)および第2圧力室18(以下、圧力室18という。)がそれぞれ形成される。
 圧力室17には、圧力源13から静圧軸受15に供給された作動水が、メインハウジング11とメインスプール12のランド部12bとの隙間を通過して流入する。同様に、圧力室18には、圧力源13から静圧軸受16に供給された作動水が、メインハウジング11とメインスプール12のランド部12cとの隙間を通過して流入する。
 主弁10は上記のように構成され、図1に示すように、メインスプール12がメインハウジング11の中央に位置する状態では、ランド部12aが供給ポート11aを閉塞し、ランド部12bが排出ポート11dを閉塞し、ランド部12cが排出ポート11eを閉塞する。
 図1に示す状態から、メインスプール12が圧力室18側に移動すると、供給ポート11aと制御ポート11bとが連通するとともに、制御ポート11cと排出ポート11eとが連通する。これにより、流体圧機器に制御ポート11bから作動水が供給され、流体圧機器から流出した作動水が制御ポート11cと排出ポート11eとを介してタンク14に排出される。
 反対に、メインスプール12が圧力室17側に移動すると、供給ポート11aと制御ポート11cとが連通するとともに、制御ポート11bと排出ポート11dとが連通する。これにより、流体圧機器に制御ポート11cから作動水が供給され、流体圧機器から流出した作動水が制御ポート11bと排出ポート11dとを介してタンク14に排出される。
 続いて、パイロット弁20について説明する。
 パイロット弁20は、パイロットハウジング21と、パイロットスプール22と、ソレノイド23と、を備える。
 パイロットハウジング21は、主弁10の圧力室17と連通する第1パイロット弁制御ポート21a(以下、制御ポート21aという。)と、主弁10の圧力室18と連通する第2パイロット弁制御ポート21b(以下、制御ポート21bという。)と、タンク14と連通する排出ポート21cと、を有する。
 本実施形態では、図1に示すように、パイロットハウジング21の中央部に排出ポート21cが設けられ、排出ポート21cの両側に制御ポート21a、21bがそれぞれ設けられる。
 パイロットスプール22は、パイロットハウジング21に軸線方向に移動自在に収容される。
 パイロットスプール22は、中央部に設けられたランド部22aと、両端部にそれぞれ設けられたランド部22b、22cと、を有する。
 パイロットスプール22の両端には、静圧軸受24、25がそれぞれ設けられる。静圧軸受24には、主弁10の圧力室18から作動水が供給される。また、静圧軸受25には、主弁10の圧力室17から作動水が供給される。
 これによれば、主弁10と同様に、作動流体として作動水を用いても、パイロットスプール22を滑らかに作動させることができる。
 このように、本実施形態では、メインスプール12を支持する静圧軸受15、16およびパイロットスプール22を支持する静圧軸受24、25を設けることで、作動流体として作動水を用いることを可能にしている。
 これによれば、衛生性、安全性、環境性に優れた方向制御弁100を提供できる。したがって、食品機械や半導体装置、水中作業機械等に方向制御弁100を適用した場合のリスク管理費用を抑制できる。
 パイロットスプール22の軸線方向における両側には、パイロットスプール22とパイロットハウジング21とにより、第3圧力室26(以下、圧力室26という。)および第4圧力室27(以下、圧力室27という。)がそれぞれ形成される。
 圧力室26には、主弁10の圧力室17から静圧軸受25に供給された作動水が、パイロットハウジング21とパイロットスプール22のランド部22cとの隙間を通過して流入する。同様に、圧力室27には、主弁10の圧力室18から静圧軸受24に供給された作動水が、パイロットハウジング21とパイロットスプール22のランド部22bとの隙間を通過して流入する。
 圧力室26は、絞り通路28を介してタンク14と連通している。また、圧力室27は、絞り通路29を介してタンク14と連通している。
 パイロット弁20は上記のように構成され、図1に示すように、パイロットスプール22がパイロットハウジング21の中央に位置する状態では、ランド部22aが排出ポート21cを閉塞する。
 図1に示す状態から、パイロットスプール22が圧力室26側に移動すると、排出ポート21cと制御ポート21aとが連通する。これにより、制御ポート21aと連通する圧力室17から、作動水がタンク14に排出される。
 反対に、パイロットスプール22が圧力室27側に移動すると、排出ポート21cと制御ポート21bとが連通する。これにより、制御ポート21bと連通する圧力室18から、作動水がタンク14に排出される。
 圧力室26は、パイロットスプール22が圧力室26側に移動すると縮小される。このとき、圧力室26における縮小された容積分の作動水は、絞り通路28を通過してタンク14に排出される。
 同様に、圧力室27は、パイロットスプール22が圧力室27側に移動すると縮小される。圧力室27における縮小された容積分の作動水は、絞り通路29を通過してタンク14に排出される。
 このように、方向制御弁100は、圧力室26、27から排出される作動水が通過する絞り通路28、29を備えるので、パイロットスプール22の移動にともなって発生するパイロットスプール22の振動を減衰させることができ、パイロット弁20を安定して作動させることができる。
 圧力室26には、スプリング30が配設される。スプリング30は、パイロットスプール22を圧力室27側へ常に付勢する。
 ソレノイド23は、パイロットスプール22のスプリング30とは反対側の端部に設けられる。
 ソレノイド23は、通電電流に応じて、圧力室26側へ移動する方向の推力をパイロットスプール22に作用させる。これにより、パイロットスプール22がスプリング30の付勢力に対抗して圧力室26側へ移動する。
 パイロットスプール22に作用する推力は、ソレノイド23の通電電流を大きくするほど大きくなる。したがって、ソレノイド23の通電電流を大きくするほど、パイロットスプール22が圧力室26側に大きく移動する。
 反対に、ソレノイド23の通電電流を小さくするほど、スプリング30の付勢力により、パイロットスプール22が圧力室27側に移動する。ソレノイド23の非通電時には、パイロットスプール22が圧力室27側に最も移動した状態となる。
 本実施形態では、メインスプール12とパイロットスプール22とに、変位計40、41がそれぞれ取り付けられる。変位計40、41の出力信号は、コントローラ50に入力される。コントローラ50は、変位計40、41の出力信号に基づいて、ソレノイド23の通電電流を変化させる。
 パイロットスプール22に作用する推力は、上記のように、ソレノイド23の通電電流により変化する。したがって、コントローラ50でソレノイド23の通電電流を変化させることで、パイロットスプール22に作用する推力とスプリング30の付勢力とが均衡する位置、すなわちパイロットスプール22の位置を変化させることができる。
 パイロット弁20の排出ポート21cと制御ポート21aとが連通したときの流路面積は、パイロットスプール22が圧力室26側に移動するほど大きくなる。また、排出ポート21cと制御ポート21bとが連通したときの流路面積は、パイロットスプール22が圧力室27側に移動するほど大きくなる。
 したがって、パイロットスプール22の位置を変化させることで、主弁10の圧力室17、18からタンク14に作動水が排出される流路面積を任意に変化させることができ、主弁10の切り換え速度をコントロールできる。
 続いて、方向制御弁100の動作について説明する。
 図1に示すパイロット弁20は、コントローラ50がソレノイド23の通電電流を制御して、パイロットスプール22をパイロットハウジング21の中央に位置させた状態になっている。
 この状態からソレノイド23の通電電流を大きくすると、パイロットスプール22が圧力室26側に移動する。また、通電電流を小さくすると、パイロットスプール22が圧力室27側に移動する。なお、パイロットスプール22が圧力室26側に移動する場合と、圧力室27側に移動する場合とでは、方向制御弁100は対称の動作を呈する。したがって、以降の説明では、パイロットスプール22が圧力室26側に移動する場合について説明し、圧力室27側に移動する場合については説明を省略する。
 図1に示す状態では、パイロット弁20の排出ポート21cが、制御ポート21a、21bのいずれとも連通していない。このため、制御ポート21a、21bとそれぞれ連通する主弁10の圧力室17、18の圧力が、圧力源13から作動水が供給されることで一様に上昇した状態となる。このとき、圧力室17、18には差圧が発生しないので、メインスプール12は図1の位置から移動しない。
 そして、この状態からソレノイド23の通電電流を大きくすると、パイロットスプール22に作用する推力が大きくなり、パイロットスプール22が圧力室26側に移動する。これにより、排出ポート21cが開口して制御ポート21aと連通し、制御ポート21aと連通する圧力室17から、作動水がタンク14に排出される。
 作動水がタンク14に排出されると、圧力室17の圧力が低下する。つまり、圧力室17、18に差圧が発生するので、メインスプール12が、低圧側である圧力室17側に移動する。これにより、供給ポート11aと制御ポート11cとが連通するとともに、制御ポート11bと排出ポート11dとが連通する。
 メインスプール12の移動を停止させるには、排出ポート21cと制御ポート21aとの連通を遮断して、圧力室17の圧力を上昇させればよい。したがって、ソレノイド23の通電電流を小さくし、図1に示す位置までパイロットスプール22を移動させて排出ポート21cを閉塞すれば、圧力室17の圧力が上昇して圧力室17と圧力室18との差圧がなくなるので、メインスプール12の移動を停止させることができる。
 ところで、圧力室17から作動水をタンク14に排出すると、圧力室17の圧力が低下するとともに、圧力室17と静圧軸受25を介して連通する圧力室26の圧力も低下する。このため、パイロットスプール22には、圧力室26、27の差圧により、圧力室26側に移動する方向の推力が作用する。
 ここで、パイロット弁20の圧力室26、27に作動水を供給する他の構成としては、主弁10の圧力室18とパイロット弁20の圧力室26とを連通させ、主弁10の圧力室17とパイロット弁20の圧力室27とを連通させる構成も考えられる。
 しかしながら、この構成の場合は、パイロットスプール22を圧力室26側に移動させて圧力室17から作動水をタンク14に排出すると、圧力室17の圧力が低下するとともに、圧力室27の圧力が低下する。つまり、パイロットスプール22には、圧力室26、27の差圧により、圧力室27側に移動する方向の推力が作用することになる。
 この場合は、パイロットスプール22を圧力室26側に移動させるために必要な推力が大きくなるので、より出力が大きな大型のソレノイドが必要となり、コストも増加する。
 これに対して、本実施形態では、上記のように、主弁10の圧力室17とパイロット弁20の圧力室26とを連通させているので、パイロットスプール22には、進行方向である圧力室26側に移動する方向の推力が作用する。
 これによれば、パイロットスプール22を移動させるために必要な推力を小さくできるので、ソレノイド23を小型化でき、コストも抑制できる。パイロットスプール22が圧力室27側に移動する場合も同様であるので、スプリング30も小型化できる。
 また、上記のような方向制御弁の他の構成としては、例えば、主弁とパイロット弁との両方に圧力源から作動流体を供給し、パイロット弁から主弁の圧力室に供給する作動流体の流量を調整することで、圧力室の圧力を制御する構成が考えられる。
 しかしながら、この構成の場合は、方向制御弁がメータイン回路となる。このため、制御性については向上の余地がある。
 これに対して、本実施形態では、主弁10の圧力室17、18に圧力源13から作動水を供給している。そして、圧力室17、18とそれぞれ連通するパイロット弁20の制御ポート21a、21bを択一的に排出ポート21cと連通させ、圧力室17、18から作動水をタンク14に排出することで、圧力室17、18の圧力を変化させている。
 つまり、方向制御弁100は、圧力室17、18から排出される作動水の流量を調整することで圧力室17、18の圧力を制御するメータアウト回路になっている。したがって、メータイン回路の方向制御弁よりも制御性を向上させることができる。
 以上述べたように、本実施形態によれば、主弁10の圧力室17、18に、圧力源13から作動水が供給される。そして、圧力室17、18が、パイロット弁20により択一的にタンク14と連通する。これによれば、方向制御弁100が、圧力室17、18から排出される作動水の流量を調整することで圧力室17、18の圧力を制御するメータアウト回路となる。したがって、方向制御弁100の制御性を向上させることができる。
 また、メインスプール12を支持する静圧軸受15、16およびパイロットスプール22を支持する静圧軸受24、25を設けることで、作動流体として作動水を用いることを可能にしている。これによれば、衛生性、安全性、環境性に優れた方向制御弁100を提供できる。したがって、食品機械や半導体装置、水中作業機械等に方向制御弁100を適用した場合のリスク管理費用を抑制できる。
 また、主弁10の圧力室17(18)とパイロット弁20の圧力室26(27)とを連通させているので、圧力室17(18)から作動水をタンク14に排出すると、圧力室26、27の差圧により、パイロットスプール22には、進行方向である圧力室26(27)側に移動する方向の推力が作用する。これによれば、パイロットスプール22を移動させるために必要な推力を小さくできるので、ソレノイド23およびスプリング30を小型化でき、コストも抑制できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体例に限定する趣旨ではない。
 例えば、上記実施形態では、作動流体として作動水を用いているが、作動油等のその他の液体や気体を用いてもよい。
 また、作動流体として作動油を用いることで、メインスプール12およびパイロットスプール22を滑らかに作動させるための潤滑油膜を形成できる場合は、静圧軸受15、16、24、25を設けなくともよい。この場合は、圧力源13から主弁10の圧力室17、18に作動油を直接供給し、圧力室17、18からパイロット弁20の圧力室26、27に作動油を直接供給すればよい。
 また、上記実施形態では、パイロットスプール22の静圧軸受24、25に、主弁10の圧力室17、18から作動水を供給しているが、圧力源13から直接供給してもよい。この場合は、主弁10の圧力室17、18からパイロット弁20の圧力室26、27に作動水を直接供給すればよい。
 また、上記実施形態では、主弁10がメインハウジング11を備え、パイロット弁20がパイロットハウジング21を備えているが、メインハウジング11とパイロットハウジング21とを一体に設けてもよい。
 また、上記実施形態では、パイロットスプール22を移動させる駆動機構として、ソレノイド23とスプリング30とを用いているが、スプリング30を用いずに、パイロットスプール22の両側にソレノイド23を備える構成としてもよい。また、ソレノイド23とスプリング30とに代えて、サーボモータを用いてもよい。
 また、上記実施形態では、変位計40を取り付けて、メインスプール12の位置を制御できるようにしているが、位置制御を行わずに、圧力室17、18にスプリングを設けて、メインスプール12が自動的にメインハウジング11の中央に位置するようにしてもよい。
 本願は2014年7月24日に日本国特許庁に出願された特願2014-150797に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (3)

  1.  作動流体の流れる方向を切り換える主弁と、前記主弁をパイロット圧によって切り換えるパイロット弁と、を備える方向制御弁であって、
     前記主弁は、
     圧力源から作動流体が供給される供給ポートと、
     外部に作動流体を給排する第1主弁制御ポートおよび第2主弁制御ポートと、
     軸線方向に移動自在に設けられ、一方側に移動すると前記供給ポートと前記第1主弁制御ポートとを連通させ、他方側に移動すると前記供給ポートと前記第2主弁制御ポートとを連通させるメインスプールと、
     前記メインスプールの軸線方向における両側にそれぞれ形成され、前記圧力源から作動流体が供給される第1圧力室および第2圧力室と、
    を備え、
     前記圧力源から前記第1圧力室に供給される作動流体は、前記メインスプールの前記第1圧力室側の端部に設けられた静圧軸受を介して前記第1圧力室に供給され、
     前記圧力源から前記第2圧力室に供給される作動流体は、前記メインスプールの前記第2圧力室側の端部に設けられた静圧軸受を介して前記第2圧力室に供給され、
     前記パイロット弁は、前記第1圧力室と前記第2圧力室とを択一的にタンクと連通させる、
    方向制御弁。
  2.  請求項1に記載の方向制御弁であって、
     前記パイロット弁は、
     前記第1圧力室と連通する第1パイロット弁制御ポートと、
     前記第2圧力室と連通する第2パイロット弁制御ポートと、
     前記タンクと連通する排出ポートと、
     軸線方向に移動自在に設けられ、一方側に移動すると前記第1パイロット弁制御ポートと前記排出ポートとを連通させ、他方側に移動すると前記第2パイロット弁制御ポートと前記排出ポートとを連通させるパイロットスプールと、
     前記パイロットスプールを移動させる駆動機構と、
    を備える方向制御弁。
  3.  請求項2に記載の方向制御弁であって、
     前記パイロット弁は、
     前記パイロットスプールの軸線方向における前記一方側に形成され、前記パイロットスプールの前記一方側の端部に設けられた静圧軸受を介して前記第1圧力室から作動流体が供給される第3圧力室と、
     前記パイロットスプールの軸線方向における前記他方側に形成され、前記パイロットスプールの前記他方側の端部に設けられた静圧軸受を介して前記第2圧力室から作動流体が供給される第4圧力室と、
    を備える方向制御弁。
PCT/JP2015/070104 2014-07-24 2015-07-14 方向制御弁 WO2016013445A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/125,613 US9970556B2 (en) 2014-07-24 2015-07-14 Directional control valve
CN201580013792.9A CN106133422B (zh) 2014-07-24 2015-07-14 方向控制阀
AU2015293278A AU2015293278B2 (en) 2014-07-24 2015-07-14 Directional control valve
EP15825298.1A EP3109528A4 (en) 2014-07-24 2015-07-14 Directional control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-150797 2014-07-24
JP2014150797A JP6286307B2 (ja) 2014-07-24 2014-07-24 方向制御弁

Publications (1)

Publication Number Publication Date
WO2016013445A1 true WO2016013445A1 (ja) 2016-01-28

Family

ID=55162972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070104 WO2016013445A1 (ja) 2014-07-24 2015-07-14 方向制御弁

Country Status (6)

Country Link
US (1) US9970556B2 (ja)
EP (1) EP3109528A4 (ja)
JP (1) JP6286307B2 (ja)
CN (1) CN106133422B (ja)
AU (1) AU2015293278B2 (ja)
WO (1) WO2016013445A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10969035B2 (en) 2016-03-03 2021-04-06 Woodward, Inc. Redundant vehicle control systems
CN107191623A (zh) * 2017-06-14 2017-09-22 无锡市锡蒙机电科技有限公司 一种自动往复流体阀
FR3079009B1 (fr) * 2018-03-13 2020-03-27 Db Industries Distributeur hydraulique a tiroir rotatif proportionnel pour fluides aqueux
DE102020101031B4 (de) * 2020-01-17 2022-11-03 Hanon Systems Vorrichtung zum Regeln eines Durchflusses und Verteilen eines Fluids in einem Fluidkreislauf
JP2022092363A (ja) * 2020-12-10 2022-06-22 住友重機械工業株式会社 スプール型流量制御弁およびその製造方法
CN113236623B (zh) * 2021-06-16 2022-03-25 太原理工大学 一种阀口独立控制的电液比例方向阀

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705059A (en) * 1985-06-10 1987-11-10 Centre Technique Des Industries Mecaniques Electrofluidic transducer of the nozzle/plate type and hydraulic servo-valve equipped with such a transducer
JPH0988908A (ja) * 1995-07-14 1997-03-31 Ebara Corp 液圧サーボ弁
JPH09273654A (ja) * 1996-04-03 1997-10-21 Ebara Corp 水圧電磁比例制御弁

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209782A (en) * 1955-05-25 1965-10-05 Bell Acrospace Corp Flapper valves
US3023782A (en) * 1959-11-13 1962-03-06 Moog Servocontrols Inc Mechanical feedback flow control servo valve
US3513753A (en) * 1967-10-20 1970-05-26 Tydeman Machine Works Inc Servo arrangement
US3581772A (en) * 1969-06-30 1971-06-01 Chandler Evans Inc Frictionless spool valve
DE2114639A1 (de) * 1971-03-26 1972-10-05 Bosch Gmbh Robert Elektrohydraulische Steuerungsvorrichtung für einen hydraulischen Verbraucher
US3698437A (en) * 1971-07-15 1972-10-17 Sli Ind Control valve assembly with mechanical feedback
US3736958A (en) * 1972-04-13 1973-06-05 Lockheed Aircraft Corp Four-way solenoid selector valve
US4257456A (en) * 1979-10-29 1981-03-24 Hydra-Rig, Inc. Pressure compensated spool valve
US4527772A (en) * 1982-11-22 1985-07-09 International Telephone & Telegraph Corp. Modulating control valve
DE3245259A1 (de) * 1982-12-07 1984-06-07 Mannesmann Rexroth GmbH, 8770 Lohr Elektrohydraulisches wegeventil
JPH01112005A (ja) 1987-10-26 1989-04-28 Eizo Urata 水圧サーボ弁
JP3169257B2 (ja) * 1992-04-17 2001-05-21 日立建機株式会社 パイロット切換弁
JP3468471B2 (ja) 1993-04-22 2003-11-17 暎三 浦田 水圧サーボ弁
US5697401A (en) * 1995-07-14 1997-12-16 Ebara Corporation Hydraulic servovalve
US5769545A (en) * 1996-12-04 1998-06-23 Bently Nevada Corporation Hydrostatic bearing for supporting rotating equipment, a fluid handling system associated therewith, a control system therefore, method and apparatus
JPH10169805A (ja) * 1996-12-05 1998-06-26 Smc Corp パイロット式切換弁
JP3959565B2 (ja) * 1997-12-16 2007-08-15 Smc株式会社 電磁パイロット式3位置切換弁
JP2001074162A (ja) * 1999-09-01 2001-03-23 Ebara Corp 流体制御弁及びフィルタ付きプレート
JP2001074158A (ja) * 1999-09-02 2001-03-23 Ebara Corp ソレノイド及び流体制御弁
JP2006300195A (ja) 2005-04-20 2006-11-02 Yuken Kogyo Co Ltd パイロット操作形電磁切換弁
JP5505843B2 (ja) * 2011-04-07 2014-05-28 Smc株式会社 パイロット式3位置切換弁
US9488285B2 (en) * 2011-10-24 2016-11-08 Eaton Corporation Line pressure valve to selectively control distribution of pressurized fluid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705059A (en) * 1985-06-10 1987-11-10 Centre Technique Des Industries Mecaniques Electrofluidic transducer of the nozzle/plate type and hydraulic servo-valve equipped with such a transducer
JPH0988908A (ja) * 1995-07-14 1997-03-31 Ebara Corp 液圧サーボ弁
JPH09273654A (ja) * 1996-04-03 1997-10-21 Ebara Corp 水圧電磁比例制御弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3109528A4 *

Also Published As

Publication number Publication date
CN106133422A (zh) 2016-11-16
US20170002937A1 (en) 2017-01-05
JP6286307B2 (ja) 2018-02-28
CN106133422B (zh) 2018-08-03
US9970556B2 (en) 2018-05-15
EP3109528A1 (en) 2016-12-28
AU2015293278A1 (en) 2016-09-29
EP3109528A4 (en) 2017-11-29
AU2015293278B2 (en) 2018-01-18
JP2016023791A (ja) 2016-02-08

Similar Documents

Publication Publication Date Title
WO2016013445A1 (ja) 方向制御弁
KR101763280B1 (ko) 건설기계용 유량 제어밸브
JP5452993B2 (ja) 圧力補償付き電磁比例方向流量制御弁
KR101783566B1 (ko) 건설 기계의 다연 방향 전환 밸브
JP6730798B2 (ja) 油圧駆動装置
JP6773418B2 (ja) 方向切換弁及び油圧システム
JP2016156426A (ja) アンロード弁および油圧ショベルの油圧駆動システム
CN107532619B (zh) 流体压控制装置
WO2018180367A1 (ja) 電磁比例弁
KR102580339B1 (ko) 안티 캐비테이션 유압 회로
WO2016072322A1 (ja) ロードセンシングバルブ装置
JP6190315B2 (ja) パイロット式流量制御弁
JP6248144B2 (ja) ポンプ装置
JP5164631B2 (ja) 建設車両用バルブ装置
JP2013185668A (ja) アクチュエータ
JP2015098936A (ja) 油圧制御弁
JP6761283B2 (ja) ポンプ装置
JP6484152B2 (ja) サスペンション装置
JP2018025253A (ja) 流体制御システム
JP2014130076A (ja) 材料試験機
WO2019058711A1 (ja) 液圧モータ制御装置
JP3957664B2 (ja) 油圧制御装置
JP2008298184A (ja) 油圧駆動装置
JP6510910B2 (ja) 油圧駆動装置
JP5450147B2 (ja) 建設機械のロードセンシング制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825298

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015825298

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15125613

Country of ref document: US

Ref document number: 2015825298

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015293278

Country of ref document: AU

Date of ref document: 20150714

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE