WO2016006710A1 - 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器 - Google Patents

化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器 Download PDF

Info

Publication number
WO2016006710A1
WO2016006710A1 PCT/JP2015/070046 JP2015070046W WO2016006710A1 WO 2016006710 A1 WO2016006710 A1 WO 2016006710A1 JP 2015070046 W JP2015070046 W JP 2015070046W WO 2016006710 A1 WO2016006710 A1 WO 2016006710A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
substituted
ring
unsubstituted
Prior art date
Application number
PCT/JP2015/070046
Other languages
English (en)
French (fr)
Inventor
加藤 朋希
伸浩 藪ノ内
舟橋 正和
藤山 高広
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US15/308,461 priority Critical patent/US10854822B2/en
Priority to JP2016504820A priority patent/JP6611055B2/ja
Priority to EP15818448.1A priority patent/EP3127894B1/en
Priority to KR1020167002841A priority patent/KR102387509B1/ko
Priority to CN201580001549.5A priority patent/CN105658619A/zh
Publication of WO2016006710A1 publication Critical patent/WO2016006710A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the present invention relates to a compound, a material for an organic electroluminescence device comprising the compound, an organic electroluminescence device using the compound, and an electronic device equipped with the organic electroluminescence device.
  • an organic electroluminescence element (hereinafter also referred to as “organic EL element”) is composed of an anode, a cathode, and one or more organic thin film layers including a light emitting layer sandwiched between the anode and the cathode.
  • organic EL element When a voltage is applied between both electrodes, electrons from the cathode side and holes from the anode side are injected into the light emitting region, and the injected electrons and holes recombine in the light emitting region to generate an excited state, which is excited. Light is emitted when the state returns to the ground state. Therefore, in order to increase the efficiency of the organic EL element, it is important to develop a compound that efficiently transports electrons or holes to the light emitting region and facilitates recombination of electrons and holes.
  • driving the organic EL element with a lower voltage is effective in reducing power consumption, and is also effective in improving luminous efficiency and element life.
  • a charge transport material having a high mobility with respect to electrons and / or holes is required, and various proposals of such charge transport materials have been made.
  • An object of the present invention is to provide an organic EL element that can be driven at a low voltage, has high luminous efficiency, has a long lifetime, and a material for an organic EL element that can realize the organic EL element.
  • the present inventors show that the compound represented by the following general formula (A1) or (B1) has a large energy gap and high hole mobility. I found. Further, it has been found that by using the compound, an organic EL device that can be driven at a low voltage, has high luminous efficiency, and has a long lifetime can be obtained.
  • [1] to [4] are provided.
  • [1] A compound represented by the following general formula (A1) or (B1).
  • R 1 to R 6 are each independently a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 1 ⁇ R 6 of said plurality of may be the same or different from each other.
  • R 5 and R 6 may be bonded to each other to form a ring structure.
  • R 7 and R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, or a cyano group.
  • R 7 and R 8 may combine with each other to form a saturated aliphatic ring.
  • k3 and k4 are each independently an integer of 0 to 5
  • m2 and m6 are each independently an integer of 0 to 4
  • n1 and n5 are each independently an integer of 0 to 3. .
  • L 0 to L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms.
  • Ar is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 40 ring atoms.
  • An organic electroluminescence device comprising a cathode, an anode, and one or more organic thin film layers disposed between the cathode and the anode, wherein the one or more organic thin film layers include a light emitting layer,
  • the organic electroluminescent element whose at least 1 layer of the said one or more organic thin film layers is a layer containing the compound as described in said [1].
  • the compound represented by the general formula (1) As a material for an organic EL element, low voltage driving is possible, and an organic EL element with high luminous efficiency and long life can be obtained. In particular, the effect of improving the life is great.
  • the “carbon number XX to YY” in the expression “substituted or unsubstituted ZZ group having XX to YY” represents the number of carbon atoms in the case where the ZZ group is unsubstituted. The carbon number of the substituent in the case where it is present is not included.
  • “atom number XX to YY” in the expression “ZZ group of substituted or unsubstituted atoms XX to YY” represents the number of atoms when the ZZ group is unsubstituted. In the case of substitution, the number of substituent atoms is not included.
  • the number of ring-forming carbon atoms constitutes the ring itself of a compound having a structure in which atoms are bonded cyclically (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, or a heterocyclic compound). Represents the number of carbon atoms in the atom.
  • the carbon contained in the substituent is not included in the number of ring-forming carbons.
  • the “ring-forming carbon number” described below is the same unless otherwise specified.
  • the benzene ring has 6 ring carbon atoms
  • the naphthalene ring has 10 ring carbon atoms
  • the pyridinyl group has 5 ring carbon atoms
  • the furanyl group has 4 ring carbon atoms.
  • the carbon number of the alkyl group is not included in the number of ring-forming carbons.
  • the carbon number of the fluorene ring as a substituent is not included in the number of ring-forming carbons.
  • the number of ring-forming atoms refers to a compound (for example, a monocyclic compound, a condensed ring compound, a bridged compound, or a carbocyclic compound) having a structure in which atoms are bonded in a cyclic manner (for example, a single ring, a condensed ring, or a ring assembly).
  • a heterocyclic compound represents the number of atoms constituting the ring itself.
  • An atom that does not constitute a ring for example, a hydrogen atom that terminates a bond of an atom that constitutes a ring
  • an atom contained in a substituent when the ring is substituted by a substituent is not included in the number of ring-forming atoms.
  • the “number of ring-forming atoms” described below is the same unless otherwise specified. For example, the number of ring-forming atoms in the pyridine ring is 6, the number of ring-forming atoms in the quinazoline ring is 10, and the number of ring-forming atoms in the furan ring is 5.
  • a hydrogen atom bonded to a carbon atom of a pyridine ring or a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms. Further, when, for example, a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring), the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (deuterium), and tritium (tritium).
  • the “heteroaryl group” and the “heteroarylene group” are groups containing at least one heteroatom as a ring-forming atom, and the heteroatom includes a nitrogen atom, an oxygen atom, and a sulfur atom. It is preferable that it is 1 or more types chosen from a silicon atom and a selenium atom.
  • the substituent in the description of “substituted or unsubstituted” includes an alkyl group having 1 to 50 carbon atoms (preferably 1 to 18, more preferably 1 to 8); 3 to 50 ring carbon atoms (preferably A cycloalkyl group having 3 to 10, more preferably 3 to 8, and even more preferably 5 or 6; an aryl group having 6 to 50 ring carbon atoms (preferably 6 to 25, more preferably 6 to 18); ring formation An aralkyl group having 7 to 51 (preferably 7 to 30, more preferably 7 to 20) carbon atoms having an aryl group having 6 to 50 carbon atoms (preferably 6 to 25, more preferably 6 to 18); an amino group; An alkoxy group having an alkyl group having 1 to 50 carbon atoms (preferably 1 to 18, more preferably 1 to 8); aryl having 6 to 50 ring carbon atoms (preferably 6 to 25, more preferably 6 to 18 carbon atoms) Have group An aryloxy group; an alkyl group having 1 to 50 carbon atoms
  • a group an alkyl group having 1 to 50 carbon atoms (preferably 1 to 18, more preferably 1 to 8) and an aryl group having 6 to 50 ring carbon atoms (preferably 6 to 25, more preferably 6 to 18) Disubstituted phosphoryl groups having selected substituents; alkylsulfonyloxy groups; arylsulfonyloxy groups; alkylcarbonyloxy groups; arylcarbonyloxy groups; boron-containing groups; zinc-containing groups; tin-containing groups; A lithium-containing group, a hydroxy group, an alkyl-substituted or aryl-substituted carbonyl group, a carboxyl group, a vinyl group, a (meth) acryloyl group, an epoxy group, and an oxetanyl group.
  • substituents may be further substituted with the above-mentioned arbitrary substituents.
  • substituents may be bonded to each other to form a ring.
  • unsubstituted in the description of “substituted or unsubstituted” means that a hydrogen atom is bonded without being substituted by these substituents.
  • a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms preferably 1 to 18, more preferably 1 to 8
  • substituted or unsubstituted ring carbon atoms having 3 to 50 carbon atoms Preferably 3 to 10, more preferably 3 to 8, more preferably 5 or 6)
  • a compound represented by the following general formula (A1) (hereinafter also referred to as “compound (A1)”) and a compound represented by the following general formula (B1) (hereinafter referred to as “compound (B1)”) Is also provided).
  • the compound (A1) and the compound (B1) may be collectively referred to as a compound (1).
  • the compound (1) is useful as a material for an organic electroluminescence device.
  • R 1 to R 6 represent a substituent of each benzene ring in the general formula (A1) or (B1), and are bonded to the carbon atom of each benzene ring.
  • R 1 to R 6 are each independently a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms (preferably 1 to 8, more preferably 1 to 3), a substituted or unsubstituted ring carbon number 6 to 50 (preferably 6 to 25, more preferably 6 to 18, more preferably 6 to 12) aryl groups, substituted or unsubstituted 5 to 50 ring atoms (preferably 5 to 10, more preferably 5 to 12) 8, more preferably 5 or 6) a heteroaryl group, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms (preferably 1 to 5, more preferably 1 to 4), substituted or unsubstituted An alkoxy group having 1 to 20 carbon atoms (preferably 1 to 5, more preferably 1 to 4), a substituted or unsubstituted fluoro group having 1 to 20 carbon atoms (preferably 1 to 5, more preferably 1 to 4 carbon atoms). Al It represents a alk
  • R 1 to R 6 each independently represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, and a halogen atom.
  • a group selected from the group consisting of is preferable, and a group selected from the group consisting of substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms is more preferable.
  • k3 and k4 are each independently an integer of 0 to 5, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • m2 and m6 are each independently an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • n1 and n5 are each independently an integer of 0 to 3, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • k3, k4, m2, m6, n1, and n5 are 0, it means that each benzene ring is unsubstituted.
  • R 1 ⁇ R 6 of said plurality of may be the same or different from each other.
  • two members selected from R 1 to R 4 are not bonded to each other to form a ring structure.
  • R 5 and R 6 may be bonded to each other to form a ring structure.
  • R 5 and R 6 are preferably not bonded to each other to form a ring structure.
  • R 7 and R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, or a cyano group.
  • R 7 and R 8 may combine with each other to form a saturated aliphatic ring.
  • R 7 and R 8 are preferably not bonded to each other to form a saturated aliphatic ring.
  • R 7 and R 8 are each independently preferably a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • R 7 and R 8 may be different from each other, but are preferably the same, and more preferably both are substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms.
  • R 7 and R 8 are bonded to each other to form a saturated aliphatic ring, specific examples include the structures shown below. (Wherein R 5 , R 6 , n5 and m6 are the same as those in formula (A1).)
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group (isomer) Body group), hexyl group (including isomer group), heptyl group (including isomer group), octyl group (including isomer group), nonyl group (including isomer group), decyl group (isomer) Body group), undecyl group (including isomer group), dodecyl group (including isomer group), and the like.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, and a pentyl group (including isomer groups) are preferable.
  • Group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group and t-butyl group are more preferred, and methyl group and t-butyl group are still more preferred.
  • aryl group having 6 to 50 ring carbon atoms examples include phenyl group, naphthylphenyl group, biphenylyl group, terphenylyl group, biphenylenyl group, naphthyl group, phenylnaphthyl group, acenaphthylenyl group, anthryl group, benzoan Tolyl group, aceanthryl group, phenanthryl group, benzophenanthryl group, phenalenyl group, fluorenyl group, 9,9-dimethylfluorenyl group, 7-phenyl-9,9-dimethylfluorenyl group, pentacenyl group, picenyl Group, pentaphenyl group, pyrenyl group, chrycenyl group, benzocricenyl group, s-indacenyl group, as-indacenyl group, fluoranthenyl group, perylenyl group
  • a phenyl group, a naphthylphenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, and a 9,9-dimethylfluorenyl group are preferable, and a phenyl group, a biphenylyl group, a naphthyl group, and 9,9 -A dimethylfluorenyl group is more preferred, and a phenyl group is still more preferred.
  • the heteroaryl group having 5 to 50 ring atoms contains at least 1, preferably 1 to 3 identical or different heteroatoms (for example, nitrogen atom, sulfur atom, and oxygen atom).
  • the heteroaryl group include a pyrrolyl group, a furyl group, a thienyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a triazinyl group, an imidazolyl group, an oxazolyl group, a thiazolyl group, an isoxazolyl group, an isothiazolyl group.
  • furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, benzofuranyl group, benzothiophenyl group, dibenzofuranyl group, dibenzothiophenyl group are preferable, benzofuranyl group, benzothiol group A phenyl group, a dibenzofuranyl group, and a dibenzothiophenyl group are more preferable.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom is preferable.
  • fluoroalkyl group having 1 to 20 carbon atoms include, for example, at least one hydrogen atom, preferably 1 to 7 hydrogen atoms or all hydrogen atoms of the above alkyl group having 1 to 20 carbon atoms as a fluorine atom. Group obtained by substituting with.
  • Specific examples of the fluoroalkyl group are preferably a heptafluoropropyl group, a pentafluoroethyl group, a 2,2,2-trifluoroethyl group, and a trifluoromethyl group, and a pentafluoroethyl group, 2,2,2-trifluoro group.
  • a fluoroethyl group and a trifluoromethyl group are more preferable, and a trifluoromethyl group is still more preferable.
  • the alkoxy group having 1 to 20 carbon atoms is a group represented by —OR X , and R X represents the aforementioned alkyl group having 1 to 20 carbon atoms.
  • R X represents the aforementioned alkyl group having 1 to 20 carbon atoms.
  • a t-butoxy group, a propoxy group, an ethoxy group, and a methoxy group are preferable, an ethoxy group and a methoxy group are more preferable, and a methoxy group is still more preferable.
  • the fluoroalkoxy group having 1 to 20 carbon atoms is a group represented by —OR Y , and R Y represents the above-described fluoroalkyl group having 1 to 20 carbon atoms.
  • R Y represents the above-described fluoroalkyl group having 1 to 20 carbon atoms.
  • a heptafluoropropoxy group, a pentafluoroethoxy group, a 2,2,2-trifluoroethoxy group, and a trifluoromethoxy group are preferable, and a pentafluoroethoxy group, 2,2,2-trifluoroethoxy group is preferable.
  • Group and a trifluoromethoxy group are more preferable, and a trifluoromethoxy group is still more preferable.
  • the aryloxy group having 6 to 50 ring carbon atoms is a group represented by —OR Z , and R Z represents the above aryl group having 6 to 50 ring carbon atoms.
  • R Z represents the above aryl group having 6 to 50 ring carbon atoms.
  • a phenyloxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a 4-biphenylyloxy group, a p-terphenyl-4-yloxy group, and a p-tolyloxy group are preferable, and a phenyloxy group And 2-naphthyloxy group is more preferable, and phenyloxy group is still more preferable.
  • L 0 to L 2 each independently represent a single bond, a substituted or unsubstituted ring-forming carbon number of 6 to 50 (preferably 6 to 24, more preferably 6 to 6). 12) an arylene group or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms (preferably 5 to 10, more preferably 5 to 8, more preferably 5 or 6).
  • the arylene group having 6 to 50 ring carbon atoms is a divalent group obtained by removing one hydrogen atom from the aryl group having 6 to 50 ring carbon atoms described above for R 1 to R 8.
  • the group of is mentioned.
  • the arylene group is preferably a terphenyldiyl group (including an isomer group), a biphenyldiyl group (including an isomer group), or a phenylene group (including an isomer group), and a biphenyldiyl group (including an isomer group).
  • phenylene group (including isomer group) are more preferable, 4,4′-biphenyldiyl group, o-phenylene group, m-phenylene group and p-phenylene group are more preferable, and p-phenylene group is more preferable. Even more preferred.
  • the substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms contains at least 1, preferably 1 to 3 identical or different heteroatoms (for example, a nitrogen atom, a sulfur atom, and an oxygen atom).
  • the heteroarylene group include divalent groups obtained by removing one hydrogen atom from the heteroaryl group having 5 to 50 ring atoms described for R 1 to R 8 .
  • the heteroarylene group is preferably a furylene group, a thienylene group, a pyridylene group, a pyridazinylene group, a pyrimidinylene group, a pyrazinylene group, a triazinylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, or a dibenzothiophenylene group.
  • Group, benzothiophenylene group, dibenzofuranylene group and dibenzothiophenylene group are preferred.
  • L 1 the general formula (A1) represented by the following formula in the 9-position to the 1-position of the fluorene skeleton which R 7 and R 8 are bonded, 2, 3, 4 (following formula It binds to any carbon atom of * 1, * 2, * 3, * 4), but preferably binds to the carbon atom at the 2-position (the carbon atom of * 2 in the following formula).
  • L 0 to L 2 are preferably a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, and is a single bond or any one of the following general formulas (i) and (ii) It is more preferably a group represented by a single bond or a group represented by the following general formula (i), and even more preferably a single bond.
  • L 0 is preferably a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • * and ** represent bonding positions. Specifically, one of * and ** indicates the bonding position with the nitrogen atom described in the general formula (A1) or (B1), and the other is Ar in the general formula (A1) or (B1). Or the bonding position with the benzene ring in the fluorene skeleton in the general formula (A1) or (B1) is shown.
  • Each R is independently the same as defined for R 1 in the general formula (A1), and a suitable group is also the same as R 1 .
  • R represents the substituent of each benzene ring in the said general formula (i) and (ii), and couple
  • the plurality of Rs when a plurality of Rs are included, the plurality of Rs may be the same as or different from each other.
  • two members selected from a plurality of R may be bonded to each other to form a ring structure.
  • the ring structure include an aromatic ring and a partially saturated hydrocarbon ring.
  • the number of carbon atoms forming the aromatic ring is not particularly limited, but it is preferably 6 to 14, more preferably 6 to 10, and still more preferably 6.
  • the number of ring-forming carbon atoms of the partially saturated hydrocarbon ring is not particularly limited, but is preferably 5 to 10, more preferably 5 to 8, and still more preferably 5 or 6.
  • m is each independently an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • m when m is 0, it means that each benzene ring is unsubstituted.
  • the group represented by the general formula (i) is preferably a group represented by the following general formula (ia), and the group represented by the general formula (ii) is represented by the following general formula (ii)
  • the group represented by ii-a) is preferred.
  • L 0 to L 2 in the general formulas (A1) and (B1) are each independently a single bond or a group represented by any one of the following general formulas (ia) and (ii-a) It is more preferable that
  • L 1 is a substituted or unsubstituted ring-forming carbon number of 6 to 50 (preferably 6 to 24, more preferably, from the viewpoint of driving at a low voltage and the luminous efficiency and lifetime. 6-12) arylene group, or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms (preferably 5 to 10, more preferably 5 to 8, more preferably 5 or 6). More preferred.
  • L 2 has 6 to 50 (preferably 6 to 24, preferably 6 to 24, substituted or unsubstituted ring-forming carbon atoms from the viewpoint of driving at a low voltage and from the viewpoint of luminous efficiency and lifetime.
  • arylene group, or substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms preferably 5 to 10, more preferably 5 to 8, more preferably 5 or 6. It is more preferable.
  • L 0 is a single bond
  • L 1 is a substituted or unsubstituted ring-forming carbon number of 6 to 50 (preferably 6 to 24, more preferably 6 to 12).
  • An arylene group or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms (preferably 5 to 10, more preferably 5 to 8, and further preferably 5 or 6) is still more preferable.
  • L 1 is a substituted or unsubstituted arylene group having 6 to 50 (preferably 6 to 24, more preferably 6 to 12) ring-forming carbon atoms, or a substituted or unsubstituted group. It is preferably a heteroarylene group having 5 to 50 (preferably 5 to 10, more preferably 5 to 8, and still more preferably 5 or 6) substituted ring-forming atoms.
  • the naphthalene ring, phenanthrene ring, dibenzofuran ring and dibenzothiophene ring are not directly bonded to the nitrogen atom (N) shown in the general formula (B1). preferable.
  • the naphthalene ring, phenanthrene ring, dibenzofuran ring and dibenzothiophene ring are not directly bonded to the nitrogen atom (N) shown in the general formula (A1). preferable.
  • Ar is a substituted or unsubstituted aryl group having 6 to 50 (preferably 6 to 25, more preferably 6 to 18, more preferably 6 to 12) ring-forming carbon atoms, substituted or unsubstituted It represents an unsubstituted heteroaryl group having 5 to 50 ring atoms (preferably 5 to 10, more preferably 5 to 8, and still more preferably 5 or 6).
  • aryl group having 6 to 50 ring carbon atoms and the “heteroaryl group having 5 to 50 ring atoms” include the same aryl groups and hetero groups as those described for R 1 to R 8 above. An aryl group is mentioned.
  • the organic EL element has a hole transport layer, and the hole transport layer is composed of two layers [first hole transport layer (anode side), second hole transport layer (light emitting layer side)].
  • Ar is preferably a heteroaryl group having 5 to 50 ring atoms from the viewpoint of light emission efficiency and lifetime, and low voltage driving viewpoint. From the viewpoint of lifetime, an aryl group having 6 to 50 ring carbon atoms is preferable.
  • Ar is preferably a heteroaryl group having 5 to 50 ring atoms from the viewpoint of luminous efficiency and lifetime, A group represented by any one of formulas (h), (i ′′) and (j ′′) is more preferable.
  • Ar is preferably a group represented by any one of the following general formulas (a) to (k) from the viewpoint of low-voltage driving and from the viewpoint of luminous efficiency and lifetime, A group represented by any one of the following general formulas (b), (c), (f) to (j) is more preferable, and the following general formulas (b), (c), (f), (h ) And (j) are more preferred.
  • R, R a , and R b are each independently the same as defined for R 1 in the general formula (1), and a suitable group is also R 1. Is the same.
  • R represents a substituent of each benzene ring in the general formulas (a) to (k) and is bonded to a carbon atom of each benzene ring.
  • An alkyl group having 1 to 20 (preferably 1 to 8, more preferably 1 to 3), and a substituted or unsubstituted ring-forming carbon number of 6 to 50 (preferably 6 to 25, more preferably 6 to 18;
  • a group selected from the group consisting of 6 to 12) aryl groups is more preferable, and a substituted or unsubstituted alkyl group having 1 to 20 (preferably 1 to 8, more preferably 1 to 3) carbon atoms is still more preferable. .
  • R c is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted ring atom having 5 to 50 ring atoms. Represents a heteroaryl group. Both are described in the same manner as in R 1 .
  • R c is preferably a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. More preferred is an aryl group of 6-50.
  • these several R may mutually be same or different, and two chosen from several R may mutually couple
  • two selected from a plurality of R, R a and R b may be bonded to each other to form a ring structure.
  • k is each independently an integer of 0 to 5, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • Each m is independently an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • n is each independently an integer of 0 to 3, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • k, m, and n are 0, it means that each benzene ring is unsubstituted. * Indicates a bonding position with L 2 or a nitrogen atom.
  • the group represented by the general formula (i) is preferably a group represented by the following general formula (i ′) or (i ′′) from the viewpoint of luminous efficiency and lifetime, It is more preferable that it is group represented by.
  • the group represented by the general formula (j) is preferably a group represented by the following general formula (j ′) or (j ′′) from the viewpoint of luminous efficiency and lifetime, It is more preferable that it is group represented by.
  • the group represented by the general formula (b) that can be selected as Ar includes the following general formula (b-1) from the viewpoint of driving at a low voltage and from the viewpoint of luminous efficiency and lifetime.
  • a group represented by (b-2) and the group represented by the general formula (c) is a group represented by the following general formula ( The group represented by c-1) or (c-2) is preferred, and the group represented by the general formula (d) is, from the viewpoint of driving at a low voltage and from the viewpoint of luminous efficiency and lifetime.
  • a group represented by the following general formula (d-1) is preferable.
  • the group represented by the general formula (f) that can be selected as Ar includes the following general formula (f-) from the viewpoint of low-voltage driving and light emission efficiency and lifetime.
  • the group represented by 1) or (f-2) is preferred, and the group represented by formula (f-2) is more preferred.
  • the plurality of Rs may be the same or different from each other, and two selected from the plurality of Rs may be bonded to each other.
  • a ring structure may be formed. Therefore, the group represented by the general formula (f-1) includes, for example, a group represented by the following general formula (f-3), and a plurality of R are bonded to each other to form a ring structure. Preferably it is not formed.
  • Ar is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms (preferably 6 to 25, more preferably 6 to 18, more preferably 6 to 12), substituted or unsubstituted It represents an unsubstituted heteroaryl group having 5 to 50 ring atoms (preferably 5 to 10, more preferably 5 to 8, and still more preferably 5 or 6).
  • aryl group having 6 to 50 ring carbon atoms and the “heteroaryl group having 5 to 50 ring atoms” include the same aryl groups and hetero groups as those described for R 1 to R 8 above. An aryl group is mentioned.
  • Ar in the general formula (B1) is any one of the following general formulas (a) to (d) and (f) to (j) from the viewpoint of driving at a low voltage and from the viewpoint of light emission efficiency and lifetime. It is preferable that it is group represented by these.
  • R is independently the same as the definition of R 1 described in the general formula (B1), and a plurality of R's
  • the plurality of Rs may be the same or different from each other, and two selected from the plurality of Rs may be bonded to each other to form a ring structure
  • R a and R b Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted ring atom having 5 to 5 carbon atoms.
  • each group in the above formulas (a) to (d) and (f) to (j) is the same as the case of Ar in the general formula (A1).
  • the group represented by the general formula (b) that can be selected as Ar in the general formula (B1) from the viewpoint of driving at a low voltage and the viewpoint of light emission efficiency and lifetime includes the following general formula (b-1 ) Or (b-2) is preferred, and the group represented by the general formula (c) is represented by the following general formula (c-1) or (c-2) It is preferably a group, and the group represented by the general formula (d) is preferably a group represented by the following general formula (d-1).
  • the group represented by the general formula (e) that can be selected as Ar is preferably a group represented by the following general formula (e-1).
  • the plurality of Rs may be the same or different from each other, and two selected from the plurality of Rs are bonded to each other to form a ring structure. It may be formed. Therefore, the group represented by the general formula (e-1) includes a group represented by the following general formula (e-2). Two selected from a plurality of R are preferably not bonded to each other to form a ring structure.
  • R 1 to R 8 , n1, m2, k3, k4, n5, m6, L 1 , L 2 , and Ar are the same as described in the general formula (A1). is there.
  • compound (A1-2) a compound represented by the following general formula (A1-2) (hereinafter, also referred to as “compound (A1-2)”) is preferable.
  • R 1 to R 8 , n1, m2, k3, k4, n5, m6, L 0 to L 2 , and Ar are the same as described in the general formula (A1). is there.
  • compound (A1-2-1) a compound represented by the following general formula (A1-2-1) (hereinafter also referred to as “compound (A1-2-1)”) is included. More preferred.
  • R 1 to R 8 , n1, m2, k3, k4, n5, m6, L 2 , and Ar are the same as described in the general formula (A1). .
  • compound (A1-3) a compound represented by the following general formula (A1-3) (hereinafter also referred to as “compound (A1-3)”) is preferable.
  • R 1 , R 2 , R 5 , R 6 , n1, m2, n5, m6, L 0 to L 2 , and Ar are as defined in the general formula (A1). The same.
  • compound (A1-4) a compound represented by the following general formula (A1-4) (hereinafter, also referred to as “compound (A1-4)”) is preferable.
  • compound (B1-1) a compound represented by the following general formula (B1-1) (hereinafter, also referred to as “compound (B1-1)”) is preferable.
  • L 1 particularly represents a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms (preferably 6 to 24, more preferably 6 to 12), Or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms (preferably 5 to 10, more preferably 5 to 8, more preferably 5 or 6).
  • An arylene group having 6 to 50 carbon atoms (preferably 6 to 24, more preferably 6 to 12) is more preferable.
  • the compound according to another embodiment of the present invention may be a compound represented by the following general formula (B1-2) (hereinafter also referred to as “compound (B1-2)”).
  • R 1 to R 8 , n1, m2, k3, k4, n5, m6, L 2 , and Ar are the same as described in the general formula (B1).
  • compound (B1-3) a compound represented by the following general formula (B1-3) (hereinafter, also referred to as “compound (B1-3)”) is preferable.
  • R 1 , R 2 , R 5 , R 6 , n1, m2, n5, m6, L 0 to L 2 , and Ar are as defined in the general formula (B1). The same.
  • compound (B1-4) a compound represented by the following general formula (B1-4) (hereinafter, also referred to as “compound (B1-4)”) is preferable.
  • the compound (A1) is preferably a compound selected from the following compound group.
  • the compound (B1) is preferably a compound selected from the following compound group.
  • the material for an organic EL device of one embodiment of the present invention comprises at least one of the above-mentioned compound (1), that is, the compounds (A1) and (B1), and the compounds (A1-1) to (A1). ⁇ 6) and a compound selected from (A1-2-1) are preferable, or a compound selected from the compounds (B1-1) to (B1-4). I like it.
  • the description relating to the compound (1) can be read by replacing the compounds (A1-1) to (A1-6), (A1-2-1) and the compounds (B1-1) to (B1-4). .
  • the organic EL device material of one embodiment of the present invention is useful as a material in an organic EL device, for example, as a material of one or more organic thin film layers disposed between an anode and a cathode of an organic EL device.
  • it is more useful as a material for a hole transport layer or a hole injection layer.
  • the hole transport layer has a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (cathode side)
  • the hole transport layer includes the compound (1) of one embodiment of the present invention.
  • the material for an organic EL element is useful for any of the materials for the first hole transport layer and the second hole transport layer.
  • Organic EL element of one embodiment of the present invention is described.
  • typical element configurations of the organic EL element the following (1) to (13) can be mentioned, but the invention is not particularly limited thereto.
  • the element configuration (8) is preferably used.
  • Anode / light emitting layer / cathode (2) Anode / hole injection layer / light emitting layer / cathode (3) Anode / light emitting layer / electron injection layer / cathode (4) Anode / hole injection layer / light emitting layer / electron Injection layer / cathode (5) anode / organic semiconductor layer / light emitting layer / cathode (6) anode / organic semiconductor layer / electron barrier layer / light emitting layer / cathode (7) anode / organic semiconductor layer / light emitting layer / adhesion improving layer / Cathode (8) Anode (/ hole injection layer) / Hole transport layer / Light emitting layer / (Electron transport layer /) Electron injection layer / cathode (9) Anode / insulating layer / light emitting layer / insulating layer / cathode (10) Anode / inorganic semiconductor layer / insulating layer
  • FIG. 1 shows a schematic configuration of an example of the organic EL element of one embodiment of the present invention.
  • the organic EL element 1 includes a substrate 2, an anode 3, a cathode 4, and a light emitting unit 10 disposed between the anode 3 and the cathode 4.
  • the light emitting unit 10 includes a light emitting layer 5 containing a host material and a dopant (light emitting material).
  • electron injection / transport layer (cathode-side organic thin film layer) 7 between the light-emitting layer 5 and the cathode 4 May be formed.
  • an electron barrier layer may be provided on the anode 3 side of the light emitting layer 5, and a hole barrier layer may be provided on the cathode 4 side of the light emitting layer 5.
  • the organic EL device of one embodiment of the present invention includes an anode, a cathode, and one or more organic thin film layers between the cathode and the anode, and the one or more organic thin film layers include a light emitting layer. At least one of the one or more organic thin film layers is a layer containing the compound represented by the general formula (1) (compound (1)).
  • the organic thin film layer containing the compound (1) includes an anode-side organic thin film layer (hole transport layer, hole injection layer, etc.) provided between the anode and the light emitting layer, a light emitting layer, a cathode and a light emitting layer.
  • anode-side organic thin film layer hole transport layer, hole injection layer, etc.
  • Examples include, but are not limited to, a cathode-side organic thin film layer (electron transport layer, electron injection layer, etc.), a space layer, a barrier layer, and the like provided between the layers.
  • the compound (1) may be used for any organic thin film layer of the organic EL element, but is preferably used for the hole injection layer or the hole transport layer from the viewpoint of being driven at a lower voltage. More preferably, it is used for the transport layer.
  • the one or more organic thin film layers include at least one of a hole injection layer containing the compound (1) and a hole transport layer containing the compound (1). More preferably, it is an organic EL element.
  • the content of the compound (1) in the organic thin film layer is preferably 30 to 100 mol%, based on the total molar amount of the components of the organic thin film layer.
  • the amount is preferably 50 to 100 mol%, more preferably 80 to 100 mol%, still more preferably 95 to 100 mol%.
  • the substrate is used as a support for the light emitting element.
  • glass, quartz, plastic, or the like can be used as the substrate.
  • a flexible substrate may be used.
  • the flexible substrate is a substrate that can be bent (flexible), and examples thereof include plastic substrates made of polycarbonate, polyarylate, polyethersulfone, polypropylene, polyester, polyvinyl fluoride, and polyvinyl chloride. .
  • an inorganic vapor deposition film can also be used.
  • anode For the anode formed on the substrate, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a high work function (specifically, 4.0 eV or more). Specifically, for example, indium tin oxide (ITO), indium oxide-tin oxide containing silicon or silicon oxide, indium oxide-zinc oxide, tungsten oxide, and indium oxide containing zinc oxide. And graphene.
  • ITO indium tin oxide
  • ITO indium oxide-tin oxide containing silicon or silicon oxide
  • indium oxide-zinc oxide silicon oxide
  • tungsten oxide tungsten oxide
  • indium oxide containing zinc oxide and graphene.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • a metal material nitride for example, titanium nitride
  • indium oxide-zinc oxide is a target in which 1 to 10% by mass of zinc oxide is added to indium oxide, tungsten oxide, and indium oxide containing zinc oxide is 0.5 wt.
  • a target containing 5% by mass and 0.1-1% by mass of zinc oxide it can be formed by a sputtering method.
  • the hole injection layer formed in contact with the anode is formed using a composite material that facilitates hole injection regardless of the work function of the anode.
  • a material that can be used as an electrode material for example, a metal, an alloy, an electrically conductive compound, a mixture thereof, and other elements belonging to Group 1 or Group 2 of the periodic table) can be used.
  • Elements belonging to Group 1 or Group 2 of the periodic table of elements which are materials having a low work function, that is, alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg), calcium (Ca), and strontium Alkaline earth metals such as (Sr), and alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu), ytterbium (Yb), and alloys containing these can also be used.
  • alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg), calcium (Ca), and strontium Alkaline earth metals such as (Sr), and alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu), ytterbium (Yb), and alloys containing these can also be used.
  • a vacuum evaporation method or a sputtering method can be used.
  • the hole injection layer is a layer containing a substance having a high hole injection property.
  • the hole injection layer of the organic EL device of one embodiment of the present invention is preferably a layer containing the compound (1) of one embodiment of the present invention. Further, the hole injection layer of the organic EL device of one embodiment of the present invention may be a layer containing only the compound (1), or a layer containing a combination of the compound (1) and the following compound. May be.
  • Substances with high hole injection properties include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, Tungsten oxide, manganese oxide, or the like can be used.
  • Polymer compounds (oligomers, dendrimers, polymers, etc.) can also be used.
  • poly (N-vinylcarbazole) (abbreviation: PVK)
  • poly (4-vinyltriphenylamine) (abbreviation: PVTPA)
  • PVTPA poly (4-vinyltriphenylamine)
  • PTPDMA poly [N- (4- ⁇ N ′-[4- (4-diphenylamino)] Phenyl] phenyl-N′-phenylamino ⁇ phenyl) methacrylamide]
  • PTPDMA poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine]
  • High molecular compounds such as Poly-TPD
  • a polymer compound to which an acid such as poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid) (PEDOT / PSS), polyaniline / poly (styrenesulfonic acid) (PAni / PSS) is added is used. You can also.
  • the hole transport layer is a layer containing a substance having a high hole transport property.
  • the hole transport layer of the organic EL device of one embodiment of the present invention is preferably a layer containing the compound (1) of one embodiment of the present invention. Further, the hole transport layer of the organic EL device of one embodiment of the present invention may be a layer containing only the compound (1), or a layer containing a combination of the compound (1) and the following compound. May be.
  • An aromatic amine compound, a carbazole derivative, an anthracene derivative, or the like can be used for the hole transport layer.
  • the aromatic amine compound preferably has a total ring-forming carbon number of the aromatic ring of 30 to 100, more preferably 40 to 80, and preferably an aromatic monoamine compound or an aromatic diamine compound.
  • the aromatic monoamine compound may have a heteroaryl group, and the number of ring-forming atoms of the heteroaryl group is preferably 5 to 50, more preferably 5 to 20, such as a dibenzofuranyl group, A dibenzothiophenyl group etc. are mentioned.
  • NPB 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • NPB 4,4′-bis (3-methylphenyl) -N, N′— Diphenyl- [1,1′-biphenyl] -4,4′-diamine
  • BAFLP 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine
  • BAFLP 4-phenyl-4 ′-bis [N- (9,9-dimethylfluoren-2-yl) -N-phenylamino] biphenyl
  • DFLDPBi 4,4 ′, 4 ′′ -tris (N, N-diphenylamino)
  • TDATA 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-pheny
  • a carbazole derivative such as CBP, CzPA, or PCzPA, or an anthracene derivative such as t-BuDNA, DNA, or DPAnth may be used.
  • a high molecular compound such as poly (N-vinylcarbazole) (abbreviation: PVK) or poly (4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • PVK N-vinylcarbazole
  • PVTPA poly (4-vinyltriphenylamine
  • the layer containing a substance having a high hole-transport property is not limited to a single layer, and two or more layers containing the above substances may be stacked.
  • the hole transport layer may have a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (light emitting layer side).
  • the compound (1) of one embodiment of the present invention may be contained in either the first hole transport layer or the second hole transport layer.
  • the compound (1) of one embodiment of the present invention when the compound (1) of one embodiment of the present invention is contained in the first hole transport layer, an embodiment in which the second hole transport layer contains the aromatic monoamine compound is also preferable.
  • the said compound (1) of 1 aspect of this invention is contained in a 2nd hole transport layer, the aspect in which a 1st hole transport layer contains the said aromatic diamine compound is also preferable.
  • a layer containing an electron-accepting compound may be bonded to the positive hole transport layer or the anode side of the first hole transport layer. This is expected to reduce drive voltage and manufacturing costs.
  • the accepting compound a compound represented by the following formula (A) is preferable.
  • R 311 to R 316 are each independently a cyano group, —CONH 2 , a carboxyl group, or —COOR 317 (R 317 is an alkyl group having 1 to 20 carbon atoms or 3 to 3 carbon atoms) 20 represents a cycloalkyl group, and may be the same or different from each other, provided that one or more pairs of R 311 and R 312 , R 313 and R 314 , and R 315 and R 316 are bonded to each other.
  • a group represented by -CO-O-CO- may be formed.
  • the alkyl group represented by R 317 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and the cycloalkyl group includes For example, a cyclopentyl group, a cyclohexyl group, etc. are mentioned.
  • the thickness of the layer containing the receptive compound is not particularly limited, but is preferably 5 to 20 nm.
  • the light-emitting layer is a layer including a substance having high light-emitting properties, and various materials can be used.
  • a fluorescent compound that emits fluorescence or a phosphorescent compound that emits phosphorescence can be used as the substance having high light-emitting property.
  • a fluorescent compound is a compound that can emit light from a singlet excited state
  • a phosphorescent compound is a compound that can emit light from a triplet excited state.
  • pyrene derivatives As a blue fluorescent material that can be used for the light emitting layer, pyrene derivatives, styrylamine derivatives, chrysene derivatives, fluoranthene derivatives, fluorene derivatives, diamine derivatives, triarylamine derivatives, and the like can be used.
  • N, N′-bis [4- (9H-carbazol-9-yl) phenyl] -N, N′-diphenylstilbene-4,4′-diamine (abbreviation: YGA2S)
  • 4- (9H -Carbazol-9-yl) -4 '-(10-phenyl-9-anthryl) triphenylamine (abbreviation: YGAPA)
  • 4- (10-phenyl-9-anthryl) -4'-(9-phenyl-9H -Carbazol-3-yl) triphenylamine abbreviation: PCBAPA
  • An aromatic amine derivative or the like can be used as a green fluorescent material that can be used for the light emitting layer.
  • Tetracene derivatives, diamine derivatives and the like can be used as red fluorescent materials that can be used for the light emitting layer.
  • N, N, N ′, N′-tetrakis (4-methylphenyl) tetracene-5,11-diamine (abbreviation: p-mPhTD), 7,14-diphenyl-N, N, N ′, And N′-tetrakis (4-methylphenyl) acenaphtho [1,2-a] fluoranthene-3,10-diamine (abbreviation: p-mPhAFD).
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex is used.
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex.
  • FIr 6 bis [2- (4 ′, 6′-difluorophenyl) pyridinato-N, C2 ′] iridium (III) tetrakis (1-pyrazolyl) borate
  • FIrpic bis [2- (4 ', 6'-difluorophenyl) pyridinato-N, C2'] iridium (III) picolinate
  • FIrpic bis [2- (3 ', 5'bistrifluoromethylphenyl) pyridinato-N, C2'] iridium ( III) Picolinate (abbreviation: Ir (CF 3
  • An iridium complex or the like is used as a green phosphorescent material that can be used for the light emitting layer.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, or a europium complex is used.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, or a europium complex is used.
  • iridium complex bis [2- (2′-benzo [4,5- ⁇ ] thienyl) pyridinato-N, C3 ′] iridium (III) acetylacetonate (abbreviation: Ir (btp) 2 (acac)), Bis (1-phenylisoquinolinato-N, C2 ′) iridium (III) acetylacetonate (abbreviation: Ir (piq) 2 (acac)), (acetylacetonato) bis [2,3-bis (4-fluoro Phenyl) quinoxalinato] iridium (III) (abbreviation: Ir (Fdp
  • Tb (acac) 3 (Phen) Tris (1,3-diphenyl-1,3-propanedionate) (monophenanthroline) europium (III) (abbreviation: Eu (DBM
  • the light-emitting layer may have a structure in which the above-described highly light-emitting substance (guest material) is dispersed in another substance (host material).
  • Various materials can be used as a material for dispersing a highly luminescent substance.
  • the lowest vacant orbital level (LUMO level) is higher than that of a highly luminescent substance, and the highest occupied molecular orbital level ( It is preferable to use a substance having a low HOMO level.
  • a substance (host material) for dispersing a highly luminescent substance (1) Metal complexes such as aluminum complexes, beryllium complexes, or zinc complexes, (2) heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, or phenanthroline derivatives, (3) condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, or chrysene derivatives; (4) An aromatic amine compound such as a triarylamine derivative or a condensed polycyclic aromatic amine derivative is used.
  • Metal complexes such as aluminum complexes, beryllium complexes, or zinc complexes
  • heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, or phenanthroline derivatives
  • condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives
  • the electron transport layer is a layer containing a substance having a high electron transport property.
  • (1) Metal complexes such as aluminum complexes, beryllium complexes, zinc complexes, (2) heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives, phenanthroline derivatives, (3) A polymer compound can be used.
  • Alq tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq 3 ), bis (10-hydroxybenzo [h] quinolinato) beryllium (abbreviation: BeBq 2 ),
  • a metal complex such as BAlq, Znq, ZnPBO, ZnBTZ, or the like can be used.
  • the substances described here are mainly substances having an electron mobility of 10 ⁇ 6 cm 2 / Vs or higher. Note that any substance other than the above substances may be used for the electron-transport layer as long as the substance has a higher electron-transport property than the hole-transport property. Further, the electron-transport layer is not limited to a single layer, and two or more layers including the above substances may be stacked. Moreover, a high molecular compound can also be used for an electron carrying layer.
  • poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF-Py)
  • poly [(9,9-dioctylfluorene-2) , 7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy) and the like can be used.
  • the electron injection layer is a layer containing a substance having a high electron injection property.
  • a substance having a high electron injection property lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF2), lithium oxide (LiOx), etc.
  • Such alkali metals, alkaline earth metals, or compounds thereof can be used.
  • a substance containing an electron transporting property containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a substance containing magnesium (Mg) in Alq may be used. In this case, electron injection from the cathode can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer.
  • a composite material is excellent in electron injecting property and electron transporting property because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting the generated electrons.
  • a substance (metal complex, heteroaromatic compound, or the like) constituting the electron transport layer described above is used. be able to.
  • the electron donor may be any substance that exhibits an electron donating property to the organic compound.
  • alkali metals, alkaline earth metals, and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given.
  • Alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxide, calcium oxide, barium oxide, and the like can be given.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
  • cathode It is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less) for the cathode.
  • a cathode material include elements belonging to Group 1 or Group 2 of the periodic table of elements, that is, alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg) and calcium (Ca ), Alkaline earth metals such as strontium (Sr), and alloys containing these (for example, rare earth metals such as MgAg, AlLi), europium (Eu), ytterbium (Yb), and alloys containing these.
  • a vacuum evaporation method or a sputtering method can be used.
  • coating method, the inkjet method, etc. can be used.
  • a cathode is formed using various conductive materials such as indium oxide-tin oxide containing Al, Ag, ITO, graphene, silicon, or silicon oxide regardless of the work function. can do. These conductive materials can be formed by a sputtering method, an inkjet method, a spin coating method, or the like.
  • each layer of the organic EL element any of dry film forming methods such as vacuum deposition, sputtering, plasma, and ion plating, and wet film forming methods such as spin coating, dipping, and flow coating can be used.
  • dry film forming methods such as vacuum deposition, sputtering, plasma, and ion plating
  • wet film forming methods such as spin coating, dipping, and flow coating
  • a thin film is formed using a solution or dispersion obtained by dissolving or dispersing a material for forming each layer in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, or dioxane.
  • the solution or dispersion may contain a resin or an additive for improving film formability, preventing pinholes in the film, and the like.
  • the resin include insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, and cellulose, and copolymers thereof, poly-N-vinylcarbazole, polysilane.
  • photoconductive resins such as polythiophene and polypyrrole.
  • the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
  • the film thickness of each layer is not particularly limited, and may be selected so as to obtain good element performance. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
  • the film thickness is usually 5 nm to 10 ⁇ m, more preferably 10 nm to 0.2 ⁇ m.
  • the thickness of the light emitting layer is not particularly limited, but is preferably 5 to 100 nm, more preferably 7 to 70 nm, and still more preferably 10 to 50 nm.
  • the film thickness of the hole transport layer is preferably 10 nm to 300 nm.
  • the film thickness of the first hole transport layer is preferably 50 to 300 nm, more preferably 50 to 250 nm, and still more preferably 50 to
  • the thickness of the second hole transport layer is preferably 5 to 100 nm, more preferably 5 to 50 nm, still more preferably 5 to 30 nm, and particularly preferably 5 to 20 nm. .
  • An electronic device of one embodiment of the present invention includes the above-described organic EL element of one embodiment of the present invention.
  • Examples of such electronic devices include display components such as organic EL panel modules, display devices such as televisions, mobile phones, and personal computers, and light emitting devices for lighting and vehicle lamps.
  • Synthesis Example A2 (Production of compound (HA2)) The reaction was conducted in the same manner as in Synthesis Example A1 except that 2.3 g of 2-bromobiphenyl was used instead of 4-bromobiphenyl, to obtain 2.6 g of white crystals (yield 38%).
  • the following compound (HA2) was identified by analysis of FD-MS.
  • Synthesis Example A3 (Production of Compound (HA3))
  • the reaction was conducted in the same manner except that 2.7 g of 2-bromo-9,9′-dimethylfluorene was used instead of 4-bromobiphenyl. As a result, 2.9 g of white crystals (yield 40 %).
  • the following compound (HA3) was identified by analysis of FD-MS.
  • Synthesis Example A4 (Production of compound (HA4)) The same reaction as in Synthesis Example A1 except that 3.2 g of the intermediate (1-1) was used instead of 4-bromobiphenyl. As a result, 2.3 g of white crystals (yield 30%) were obtained. Obtained. The following compound (HA4) was identified by analysis of FD-MS.
  • Synthesis Example A5 (Production of compound (HA5)) In Synthesis Example A1, the reaction was conducted in the same manner except that 3.2 g of the intermediate (1-2) was used instead of 4-bromobiphenyl. As a result, 2.5 g of white crystals (yield 33%) were obtained. Obtained. The following compound (HA5) was identified by analysis of FD-MS.
  • Synthesis Example A6 (Production of compound (HA6)) A reaction was conducted in the same manner as in Synthesis Example A1 except that 3.4 g of the intermediate (1-3) was used instead of 4-bromobiphenyl. As a result, 2.0 g of white crystals (yield 25%) was obtained. Obtained. The following compound (HA6) was identified by analysis of FD-MS.
  • Synthesis Example A7 (Production of compound (HA7)) A reaction was conducted in the same manner as in Synthesis Example A1 except that 3.4 g of the intermediate (1-4) was used instead of 4-bromobiphenyl. As a result, 2.0 g of white crystals (yield 25%) was obtained. Obtained. The following compound (HA7) was identified by analysis of FD-MS.
  • Synthesis Example A8 (Production of compound (HA8)) A reaction was conducted in the same manner as in Synthesis Example A1 except that 4.0 g of the intermediate (1-6) was used instead of 4-bromobiphenyl. As a result, 1.7 g of white crystals (yield 20%) was obtained. Obtained. The following compound (HA8) was identified by analysis of FD-MS.
  • Synthesis Example A10 (Production of compound (HA10)) In Synthesis Example A9, instead of N- (biphenyl-4-yl) -9,9′-dimethylfluoren-2-amine, N- (biphenyl-2-yl) -9,9′-dimethylfluorene-2 Reaction was carried out in the same manner except that 3.6 g of amine was used, and 2.6 g of white crystals (yield 35%) were obtained. The following compound (HA10) was identified by analysis of FD-MS.
  • Synthesis Example A11 (Production of compound (HA11))
  • N, N-bis (9,9′-dimethylfluoren-2-yl) amine was used instead of N- (biphenyl-4-yl) -9,9′-dimethylfluoren-2-amine.
  • the reaction was carried out in the same manner except that 4.0 g was used, to obtain 2.1 g of white crystals (yield 27%).
  • the powder was identified as the following compound (HA11) by FD-MS analysis.
  • Synthesis Example A12 (Production of compound (HA12)) The reaction was conducted in the same manner as in Synthesis Example A1 except that 3.1 g of 4-bromoterphenyl was used instead of 4-bromobiphenyl, to obtain 2.6 g of white crystals (yield 34%).
  • the following compound (HA12) was identified by analysis of FD-MS.
  • Synthesis Example A13 (Production of compound (HA13)) The reaction was conducted in the same manner as in Synthesis Example A1 except that 3.1 g of 2-bromotriphenylene was used instead of 4-bromobiphenyl, to obtain 2.6 g of white crystals (yield 35%).
  • the following compound (HA13) was identified by analysis of FD-MS.
  • Synthesis Example A14 (Production of compound (HA14)) A reaction was conducted in the same manner as in Synthesis Example A1 except that 4.0 g of intermediate (1-8) was used instead of 4-bromobiphenyl, to obtain 2.5 g of white crystals (yield 30%). It was. The following compound (HA14) was identified by analysis of FD-MS.
  • Synthesis Example A15 (Production of compound (HA15)) The reaction was conducted in the same manner as in Synthesis Example A1 except that 4.0 g of intermediate (1-9) was used instead of 4-bromobiphenyl, to obtain 2.4 g of white crystals (yield 28%). It was. The following compound (HA15) was identified by analysis of FD-MS.
  • Synthesis Example A17 (Production of compound (HA17)) The reaction was conducted in the same manner as in Synthesis Example A16 except that 2.3 g of 2-bromobiphenyl was used instead of 4-bromobiphenyl, to obtain 2.0 g of white crystals (yield 27%).
  • the following compound (HA17) was identified by analysis of FD-MS.
  • Synthesis Example A18 (Production of compound (HA18)) A reaction was conducted in the same manner as in Synthesis Example A16 except that 3.1 g of 4-bromoterphenyl was used instead of 4-bromobiphenyl, to obtain 2.9 g of white crystals (yield 35%).
  • the following compound (HA18) was identified by analysis of FD-MS.
  • Example 1-1 (Production of Organic EL Device) A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with ITO transparent electrode line (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes and further UV (ultraviolet) ozone cleaned for 30 minutes. A glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and first the following electron-accepting compound (A) is deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed. Then, a film A having a thickness of 10 nm was formed.
  • ITO transparent electrode line manufactured by Geomatic
  • the following aromatic amine derivative (X1) was deposited as a first hole transport material to form a first hole transport layer having a thickness of 80 nm.
  • the following compound (HA1) was deposited as a second hole transport material to form a second hole transport layer having a thickness of 10 nm.
  • a host compound (BH) and a dopant compound (BD) were co-evaporated with a thickness of 25 nm to form a light emitting layer.
  • the concentration of the dopant compound (BD) was 4% by mass.
  • the following compound (ET1) was deposited on the light emitting layer at a thickness of 25 nm, then the following compound (ET2) was deposited at a thickness of 10 nm, and LiF was deposited at a thickness of 1 nm to form an electron transport / injection layer. . Further, metal Al was laminated to a thickness of 80 nm to form a cathode, and an organic EL element was manufactured.
  • Examples 1-2 to 1-18 production of organic EL elements
  • Organic EL devices of Examples 1-2 to 1-18 were produced in the same manner as Example 1-1 except that the following compounds listed in Table 1 were used as the second hole transport material.
  • Comparative Examples 1-1 and 1-2 production of organic EL elements
  • Organic EL elements of Comparative Examples 1-1 and 1-2 were produced in the same manner as Example 1-1 except that the following comparative compounds listed in Table 1 were used as the second hole transport material.
  • the organic EL device fabricated as described above is caused to emit light by direct current drive, and the luminance (L) and current density are measured. From the measurement results, the current efficiency (L / J) at the current density of 10 mA / cm 2 and the drive voltage ( V) was determined. Further, the device lifetime at a current density of 50 mA / cm 2 was determined.
  • the 80% life means the time until the luminance is attenuated to 80% of the initial luminance in constant current driving. The results are shown in Table 1.
  • Example 2-1 Preparation of organic EL device
  • a 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with ITO transparent electrode line manufactured by Geomatic
  • ITO transparent electrode line manufactured by Geomatic
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum vapor deposition apparatus, and the electron-accepting compound (A) is first deposited so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. Then, a film A having a thickness of 10 nm was formed.
  • the compound (HA1) was vapor-deposited as a first hole transport material to form a first hole transport layer having a thickness of 80 nm.
  • the following aromatic amine derivative (Y1) was deposited as a second hole transport material to form a second hole transport layer having a thickness of 10 nm.
  • the host compound (BH) and the dopant compound (BD) were co-evaporated with a thickness of 25 nm to form a light emitting layer.
  • the concentration of the dopant compound (BD) was 4% by mass.
  • the compound (ET1) was deposited to a thickness of 25 nm
  • the compound (ET2) was deposited to a thickness of 10 nm
  • LiF was deposited to a thickness of 1 nm on this light-emitting layer to form an electron transport / injection layer.
  • metal Al was laminated to a thickness of 80 nm to form a cathode, and an organic EL element was manufactured.
  • Examples 2-2 to 2-18 production of organic EL elements
  • Organic EL elements of Examples 2-2 to 2-18 were produced in the same manner as in Example 2-1, except that the compounds shown in Table 2 were used as the first hole transport material.
  • Examples 2-19 and 2-20 production of organic EL elements
  • the organic EL devices of Examples 2-19 and 2-20 were prepared in the same manner as in Examples 2-1 and 2-2 except that the following compound (EA2) was used instead of the electron-accepting compound (A). Produced.
  • Comparative Examples 2-1 and 2-2 production of organic EL elements
  • Organic EL elements of Comparative Examples 2-1 and 2-2 were produced in the same manner as in Example 2-1, except that the comparative compounds listed in Table 2 were used as the first hole transport material.
  • Comparative Examples 2-3 and 2-4 production of organic EL elements
  • Organic EL devices of Comparative Examples 2-3 and 2-4 were produced in the same manner as in Examples 2-19 and 2-20, except that the comparative compounds listed in Table 2 were used as the first hole transport material. .
  • the organic EL device fabricated as described above is caused to emit light by direct current drive, and the luminance (L) and current density are measured. From the measurement results, the current efficiency (L / J) at the current density of 10 mA / cm 2 and the drive voltage ( V) was determined. Further, the device lifetime at a current density of 50 mA / cm 2 was determined.
  • the 80% life means the time until the luminance is attenuated to 80% of the initial luminance in constant current driving. The results are shown in Table 2.
  • Synthesis Example B2 (Production of Compound (HB2)) The reaction was conducted in the same manner as in Synthesis Example B1 except that 2.3 g of 4-bromobiphenyl was used instead of 2-bromobiphenyl, to obtain 2.6 g of white crystals (yield 38%).
  • the following compound (HB2) was identified by analysis of FD-MS.
  • Synthesis Example B3 (Production of Compound (HB3)) A reaction was conducted in the same manner as in Synthesis Example B1 except that 2.7 g of 2-bromo-9,9′-dimethylfluorene was used instead of 2-bromobiphenyl. As a result, 2.5 g of white crystals (yield 35 %). The following compound (HB3) was identified by analysis of FD-MS.
  • Synthesis Example B4 (Production of Compound (HB4))
  • Synthesis Example B1 a reaction was performed in the same manner except that 4.0 g of 2-bromo-9,9′-diphenylfluorene was used instead of 2-bromobiphenyl. As a result, 2.5 g of white crystals (yield 30 %).
  • the following compound (HB4) was identified by analysis of FD-MS.
  • Synthesis Example B5 (Production of compound (HB5)) A reaction was conducted in the same manner as in Synthesis Example B1 except that 3.2 g of the intermediate (1-1) was used instead of 2-bromobiphenyl. As a result, 2.2 g of white crystals (yield 28%) were obtained. Obtained. The following compound (HB5) was identified by analysis of FD-MS.
  • Synthesis Example B6 (Production of compound (HB6)) A reaction was conducted in the same manner as in Synthesis Example B1 except that 3.2 g of the intermediate (1-2) was used instead of 2-bromobiphenyl. As a result, 2.7 g of white crystals (yield 35%) were obtained. Obtained. The following compound (HB6) was identified by analysis of FD-MS.
  • Synthesis Example B7 (Production of compound (HB7)) A reaction was conducted in the same manner as in Synthesis Example B1 except that 3.4 g of the intermediate (1-3) was used instead of 2-bromobiphenyl. As a result, 2.6 g of white crystals (33% yield) were obtained. Obtained. The following compound (HB7) was identified by analysis of FD-MS.
  • Synthesis Example B8 (Production of compound (HB8)) A reaction was conducted in the same manner as in Synthesis Example B1 except that 3.4 g of the intermediate (1-4) was used instead of 2-bromobiphenyl. As a result, 2.2 g of white crystals (yield 28%) were obtained. Obtained. The following compound (HB8) was identified by analysis of FD-MS.
  • Synthesis Example B9 (Production of compound (HB9)) A reaction was conducted in the same manner as in Synthesis Example B1 except that 4.0 g of the intermediate (1-6) was used instead of 2-bromobiphenyl. As a result, 2.5 g of white crystals (yield 30%) were obtained. Obtained. The following compound (HB9) was identified by analysis of FD-MS.
  • Synthesis Example B11 (Production of compound (HB11)) A reaction was conducted in the same manner as in Synthesis Example B10 except that 2.3 g of 4-bromobiphenyl was used instead of 2-bromobiphenyl, to obtain 2.5 g of white crystals (yield 33%).
  • the following compound (HB11) was identified by analysis of FD-MS.
  • Synthesis Example B12 (Production of compound (HB12)) A reaction was conducted in the same manner as in Synthesis Example B10 except that 2.7 g of 2-bromo-9,9′-dimethylfluorene was used instead of 2-bromobiphenyl. As a result, 2.4 g of white crystals (yield 30 %). The following compound (HB12) was identified by analysis of FD-MS.
  • Synthesis Example B13 (Production of compound (HB13)) A reaction was conducted in the same manner as in Synthesis Example B10 except that 4.0 g of 2-bromo-9,9′-diphenylfluorene was used instead of 2-bromobiphenyl. As a result, 2.6 g of white crystals (yield 28) %). The following compound (HB13) was identified by analysis of FD-MS.
  • Synthesis Example B14 (Production of compound (HB14)) The reaction was conducted in the same manner as in Synthesis Example B1 except that 3.1 g of 4-bromoterphenyl was used instead of 2-bromobiphenyl, to obtain 2.6 g of white crystals (yield 35%).
  • the following compound (HB14) was identified by analysis of FD-MS.
  • Synthesis Example B15 (Production of compound (HB15)) The reaction was conducted in the same manner as in Synthesis Example B1 except that 3.1 g of 2-bromotriphenylene was used instead of 2-bromobiphenyl, to obtain 2.7 g of white crystals (yield 36%).
  • the following compound (HB15) was identified by analysis of FD-MS.
  • Synthesis Example B16 (Production of compound (HB16)) The reaction was conducted in the same manner as in Synthesis Example B1 except that 4.0 g of intermediate (1-8) was used instead of 2-bromobiphenyl, to obtain 2.0 g of white crystals (yield 24%). It was. The following compound (HB16) was identified by analysis of FD-MS.
  • Synthesis Example B17 (Production of compound (HB17)) The reaction was conducted in the same manner as in Synthesis Example B1 except that 4.0 g of intermediate (1-9) was used instead of 2-bromobiphenyl, to obtain 1.7 g of white crystals (yield 20%). It was. The following compound (HB17) was identified by analysis of FD-MS.
  • Synthesis Example B19 (Production of compound (HB19)) The reaction was conducted in the same manner as in Synthesis Example B18 except that 2.3 g of 2-bromobiphenyl was used instead of 4-bromobiphenyl, to obtain 2.1 g of white crystals (yield 28%).
  • the following compound (HB19) was identified by analysis of FD-MS.
  • Synthesis Example B20 (Production of compound (HB20)) The reaction was conducted in the same manner as in Synthesis Example B18 except that 3.1 g of 4-bromoterphenyl was used instead of 4-bromobiphenyl, to obtain 2.9 g of white crystals (yield 35%).
  • the following compound (HB20) was identified by analysis of FD-MS.
  • Examples 3-1 to 3-20 production of organic EL elements
  • the organic EL devices of Examples 3-1 to 3-20 were produced in the same manner as in Example 1-1 except that the following compounds listed in Table 3 were used as the second hole transport material.
  • Comparative Examples 3-1 to 3-4 Organic EL devices of Comparative Examples 3-1 to 3-4 were produced in the same manner as in Example 3-1, except that the following comparative compounds 3 to 6 shown in Table 1 were used as the second hole transport material.
  • the organic EL device produced as described above is caused to emit light by direct current drive, and the luminance (L) and current density are measured. From the measurement results, the light emission efficiency (cd / A) at a current density of 10 mA / cm 2 and the drive voltage ( V) was determined. Further, an 80% lifetime at a current density of 50 mA / cm 2 was determined.
  • the 80% life means the time until the luminance is attenuated to 80% of the initial luminance in constant current driving. The results are shown in Table 3.
  • Compounds (HB1) to (HB20) included in the compound (B1) of one embodiment of the present invention have (1) a 9,9-diarylfluorenyl group bonded at the 4-position, (2) at the 2-position (9) an electron condensed aromatic condensed ring (eg, naphthalene ring, phenanthrene ring, etc.) or an electron dense aromatic heterocyclic ring (eg, dibenzofuran ring, dibenzofuran ring)
  • an electron condensed aromatic condensed ring eg, naphthalene ring, phenanthrene ring, etc.
  • an electron dense aromatic heterocyclic ring eg, dibenzofuran ring, dibenzofuran ring
  • HOMO molecular orbitals As one of the factors affecting the durability against electric charge, it can be considered how much the HOMO molecular orbitals are distributed on the molecule. That is, a compound in which HOMO is widely distributed throughout the molecule has high durability against electric charges, and conversely, a compound having a narrow distribution region and a locally high electron density has low durability. Since the 9,9-diphenylfluorenyl group bonded at the 4-position adopts a largely twisted conformation, HOMO is hardly distributed. As a result, the degree of HOMO distribution is considered to depend on the remaining two groups bonded to the nitrogen atom.
  • the compounds (HB1) to (HB20) have the characteristics (1) to (3) described above. Particularly, by satisfying (3), HOMO is widely distributed on the molecule and has a stable structure against charges. It is presumed that the effect of extending the life of the organic EL element was expressed.
  • Examples 4-1 to 4-20 production of organic EL elements
  • the organic EL elements of Examples 4-1 to 4-20 were produced in the same manner as in Example 2-1, except that the compounds shown in Table 4 were used as the first hole transport material.
  • Examples 4-21 and 4-22 production of organic EL elements
  • the organic EL devices of Examples 4-21 and 4-22 were prepared in the same manner except that the following compound (EA2) was used instead of the electron-accepting compound (A). Manufactured.
  • Comparative Examples 4-1 to 4-4 Each organic EL element of Comparative Examples 4-1 to 4-4 was the same as Examples 4-1 to 4-13, except that the comparative compounds 3 to 6 listed in Table 4 were used as the first hole transport material. Was made.
  • Comparative Examples 4-5 to 4-8 Each organic EL element of Comparative Examples 4-5 to 4-8 is the same as Examples 4-21 and 4-22 except that the comparative compounds 3 to 6 shown in Table 4 are used as the first hole transport material. Was made.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Indole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 低電圧駆動が可能であり、発光効率が高く、長寿命の有機EL素子及びこれを実現することができる有機EL素子用材料を提供する。該有機EL素子用材料は、具体的には、下記一般式(A1)又は(B1)で表される化合物である。(上記各式中、R~R、n1、m2、k3、k4、n5、m6、L~L、及びArは、それぞれ、明細書中で定義したとおりである。)

Description

化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
 本発明は、化合物、該化合物からなる有機エレクトロルミネッセンス素子用材料、該化合物を用いた有機エレクトロルミネッセンス素子、及び該有機エレクトロルミネッセンス素子を搭載した電子機器に関する。
 一般に、有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう)は、陽極、陰極、及び陽極と陰極に挟まれた発光層を含む1層以上の有機薄膜層から構成されている。両電極間に電圧が印加されると、陰極側から電子、陽極側から正孔が発光領域に注入され、注入された電子と正孔は発光領域において再結合して励起状態を生成し、励起状態が基底状態に戻る際に光を放出する。そのため、有機EL素子の高効率化のためには、電子又は正孔を効率良く発光領域に輸送し、電子と正孔との再結合を容易にする化合物の開発が重要である。
 また、より低い電圧で有機EL素子を駆動することは、消費電力の低減に効果的であり、更に、発光効率と素子寿命の改善にも効果的である。この駆動電圧の低下には、電子及び/又は正孔に対する高い移動度を有する電荷輸送材料が必要であり、このような電荷輸送材料の提案が様々行われている。
国際公開第2014/015935号 国際公開第2014/015937号 国際公開第2011/021520号
 本発明は、低電圧駆動が可能であり、発光効率が高く、長寿命の有機EL素子及びこれを実現することができる有機EL素子用材料を提供すること目的とする。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記一般式(A1)又は(B1)で表される化合物のエネルギーギャップが大きく、且つ高い正孔移動度を示すことを見出した。また、該化合物を用いることにより、低電圧駆動が可能であり、発光効率が高く、長寿命の有機EL素子が得られることを見出した。
 すなわち、本発明の一態様によれば、下記[1]~[4]が提供される。
[1]下記一般式(A1)又は(B1)で表される、化合物。
Figure JPOXMLDOC01-appb-C000022

〔式(A1)及び(B1)において、R1~R6は、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、又はシアノ基を表す。
 R1~R6を複数有する場合、該複数のR1~R6は、互いに同一でも異なっていてもよい。また、R5及びR6は、互いに結合して、環構造を形成してもよい。
 R7及びR8は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、又はシアノ基を表す。R及びRは、互いに結合して、飽和脂肪族環を形成してもよい。
 k3、k4は、それぞれ独立に、0~5の整数であり、m2、m6は、それぞれ独立に、0~4の整数であり、n1、n5は、それぞれ独立に、0~3の整数である。
 L0~L2は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。
 Arは、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~40のヘテロアリール基である。〕
[2]上記[1]に記載の化合物からなる、有機エレクトロルミネッセンス素子用材料。
[3]陰極、陽極、及び該陰極と該陽極の間に配置された一層以上の有機薄膜層を有し、該一層以上の有機薄膜層が発光層を含む有機エレクトロルミネッセンス素子であって、
 前記一層以上の有機薄膜層の少なくとも1層が、上記[1]に記載の化合物を含む層である、有機エレクトロルミネッセンス素子。
[4]上記[3]に記載の有機エレクトロルミネッセンス素子を搭載した、電子機器。
 前記一般式(1)で表される化合物を有機EL素子用材料として用いることで、低電圧駆動が可能であり、発光効率が高く、長寿命の有機EL素子が得られる。特に、寿命の向上効果が大きい。
本発明の一態様の有機EL素子の概略構成を示す図である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表すものであり、置換されている場合の置換基の炭素数は含めない。
 また、本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表すものであり、置換されている場合の置換基の原子数は含めない。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
 また、本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば環を構成する原子の結合手を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
 また、本明細書において、「水素原子」とは、中性子数が異なる同位体、すなわち、軽水素(protium)、重水素(deuterium)及び三重水素(tritium)を包含する。
 本明細書中において、「ヘテロアリール基」及び「ヘテロアリーレン基」は、環形成原子として、少なくとも1つのヘテロ原子を含む基であり、該へテロ原子としては、窒素原子、酸素原子、硫黄原子、ケイ素原子及びセレン原子から選ばれる1種以上であることが好ましい。
 また、「置換もしくは無置換」との記載における置換基としては、炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基;環形成炭素数3~50(好ましくは3~10、より好ましくは3~8、更に好ましくは5又は6)のシクロアルキル基;環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基;環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基を有する炭素数7~51(好ましくは7~30、より好ましくは7~20)のアラルキル基;アミノ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基を有するアルコキシ基;環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基を有するアリールオキシ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基;環形成原子数5~50(好ましくは5~24、より好ましくは5~13)のヘテロアリール基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のハロアルキル基;ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子);シアノ基;ニトロ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するスルホニル基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するジ置換ホスフォリル基;アルキルスルホニルオキシ基;アリールスルホニルオキシ基;アルキルカルボニルオキシ基;アリールカルボニルオキシ基;ホウ素含有基;亜鉛含有基;スズ含有基;ケイ素含有基;マグネシウム含有基;リチウム含有基;ヒドロキシ基;アルキル置換又はアリール置換カルボニル基;カルボキシル基;ビニル基;(メタ)アクリロイル基;エポキシ基;並びにオキセタニル基からなる群より選ばれる基であることが好ましい。
 これらの置換基は、更に上述の任意の置換基により置換されていてもよい。また、これらの置換基は、複数の置換基が互いに結合して環を形成していてもよい。
 また、「置換もしくは無置換」との記載における「無置換」とは、これらの置換基で置換されておらず、水素原子が結合していることを意味する。
 上記置換基の中でも、より好ましくは、置換もしくは無置換の炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基、置換もしくは無置換の環形成炭素数3~50(好ましくは3~10、より好ましくは3~8、更に好ましくは5又は6)のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基、置換もしくは無置換の環形成原子数5~50(好ましくは5~24、より好ましくは5~13)のヘテロアリール基、ハロゲン原子、シアノ基である。
 本明細書中、好ましいとする規定は任意に選択することができる。
[化合物]
 本発明の一態様において、下記一般式(A1)で表される化合物(以下、「化合物(A1)」ともいう)及び下記一般式(B1)で表される化合物(以下、「化合物(B1)」ともいう)が提供される。以下、該化合物(A1)と化合物(B1)を総称して、化合物(1)と称することがある。当該化合物(1)は、有機エレクトロルミネッセンス素子用材料として有用である。
Figure JPOXMLDOC01-appb-C000023
<一般式(A1)及び(B1)中のR~Rについて>
 R~R6は、一般式(A1)又は(B1)中のそれぞれのベンゼン環の置換基を表し、各ベンゼン環の炭素原子と結合する。
 R~R6は、それぞれ独立に、置換もしくは無置換の炭素数1~20(好ましくは1~8、より好ましくは1~3)のアルキル基、置換もしくは無置換の環形成炭素数6~50(好ましくは6~25、より好ましくは6~18、更に好ましくは6~12)のアリール基、置換もしくは無置換の環形成原子数5~50(好ましくは5~10、より好ましくは5~8、更に好ましくは5又は6)のヘテロアリール基、ハロゲン原子、置換もしくは無置換の炭素数1~20(好ましくは1~5、より好ましくは1~4)のフルオロアルキル基、置換もしくは無置換の炭素数1~20(好ましくは1~5、より好ましくは1~4)のアルコキシ基、置換もしくは無置換の炭素数1~20(好ましくは1~5、より好ましくは1~4)のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50(好ましくは6~25、より好ましくは6~18、更に好ましくは6~12)のアリールオキシ基、又はシアノ基を表す。
 これらの中でも、R~R6としては、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、及びハロゲン原子からなる群より選ばれる基が好ましく、置換もしくは無置換の炭素数1~20のアルキル基からなる群より選ばれる基がより好ましい。
 k3、k4は、それぞれ独立に、0~5の整数であり、好ましくは0~2の整数、より好ましくは0又は1、更に好ましくは0である。
 m2、m6は、それぞれ独立に、0~4の整数であり、好ましくは0~2の整数、より好ましくは0又は1、更に好ましくは0である。
 n1、n5は、それぞれ独立に、0~3の整数であり、好ましくは0~2の整数、より好ましくは0又は1、更に好ましくは0である。
 なお、k3、k4、m2、m6、n1、n5が0である場合、それぞれのベンゼン環は、無置換であることを意味する。
 なお、R~R6を複数有する場合、該複数のR~R6は、互いに同一でも異なっていてもよい。
 また、本発明の一態様において、R~Rから選ばれる2つが互いに結合して環構造を形成することはない。
 一方、本発明の一態様において、R及びR6は互いに結合して環構造を形成してもよい。なお、R及びR6は互いに結合して環構造を形成しないことが好ましい。
 R7及びR8は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、又はシアノ基を表す。R及びRは、互いに結合して、飽和脂肪族環を形成してもよい。なお、R及びRは、互いに結合して飽和脂肪族環を形成しないことが好ましい。
 これらの中でも、R7及びR8としては、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基が好ましい。R7及びR8はそれぞれ異なっていてもよいが、同一であることが好ましく、両方が置換もしくは無置換の炭素数1~20のアルキル基であることがより好ましい。
 RとRが互いに結合して、飽和脂肪族環を形成する場合、具体的には、例えば、以下に示すような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000024

(式中、R、R、n5及びm6は、式(A1)中のものと同じである。)
 前記炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体基を含む)、ヘキシル基(異性体基を含む)、ヘプチル基(異性体基を含む)、オクチル基(異性体基を含む)、ノニル基(異性体基を含む)、デシル基(異性体基を含む)、ウンデシル基(異性体基を含む)、及びドデシル基(異性体基を含む)等が挙げられる。
 これらの中でも、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、及びペンチル基(異性体基を含む)が好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、及びt-ブチル基がより好ましく、メチル基及びt-ブチル基が更に好ましい。
 前記環形成炭素数6~50のアリール基としては、例えば、フェニル基、ナフチルフェニル基、ビフェニルイル基、ターフェニルイル基、ビフェニレニル基、ナフチル基、フェニルナフチル基、アセナフチレニル基、アントリル基、ベンゾアントリル基、アセアントリル基、フェナントリル基、ベンゾフェナントリル基、フェナレニル基、フルオレニル基、9,9-ジメチルフルオレニル基、7-フェニル-9,9-ジメチルフルオレニル基、ペンタセニル基、ピセニル基、ペンタフェニル基、ピレニル基、クリセニル基、ベンゾクリセニル基、s-インダセニル基、as-インダセニル基、フルオランテニル基、及びペリレニル基等が挙げられる。
 これらの中でも、フェニル基、ナフチルフェニル基、ビフェニルイル基、ターフェニルイル基、ナフチル基、及び9,9-ジメチルフルオレニル基が好ましく、フェニル基、ビフェニルイル基、ナフチル基、及び9,9-ジメチルフルオレニル基がより好ましく、フェニル基が更に好ましい。
 前記環形成原子数5~50のヘテロアリール基は、少なくとも1個、好ましくは1~3個の同一又は異なるヘテロ原子(例えば、窒素原子、硫黄原子、及び酸素原子)を含む。
 該ヘテロアリール基としては、例えば、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、及びキサンテニル基等が挙げられる。
 これらの中でも、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、ベンゾフラニル基、ベンゾチオフェニル基、ジベンゾフラニル基、ジベンゾチオフェニル基が好ましく、ベンゾフラニル基、ベンゾチオフェニル基、ジベンゾフラニル基、及びジベンゾチオフェニル基がより好ましい。
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。これらの中でも、フッ素原子が好ましい。
 前記炭素数1~20のフルオロアルキル基としては、例えば、上述の炭素数1~20のアルキル基の少なくとも1個の水素原子、好ましくは1~7個の水素原子又はすべての水素原子をフッ素原子で置換して得られる基が挙げられる。
 具体的なフルオロアルキル基としては、ヘプタフルオロプロピル基、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、及びトリフルオロメチル基が好ましく、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、及びトリフルオロメチル基がより好ましく、トリフルオロメチル基が更に好ましい。
 前記炭素数1~20のアルコキシ基は、-ORで表される基であって、Rは、上述の炭素数1~20のアルキル基を表す。
 該アルコキシ基としては、t-ブトキシ基、プロポキシ基、エトキシ基、及びメトキシ基が好ましく、エトキシ基、及びメトキシ基がより好ましく、メトキシ基が更に好ましい。
 前記炭素数1~20のフルオロアルコキシ基は、-ORで表される基であって、Rは、上述の炭素数1~20のフルオロアルキル基を表す。
 該フルオロアルコキシ基としては、ヘプタフルオロプロポキシ基、ペンタフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、及びトリフルオロメトキシ基が好ましく、ペンタフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、及びトリフルオロメトキシ基がより好ましく、トリフルオロメトキシ基が更に好ましい。
 前記環形成炭素数6~50のアリールオキシ基は、-ORで表される基であって、Rは上述の環形成炭素数6~50のアリール基を表す。
 該アリールオキシ基としては、フェニルオキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、4-ビフェニルイルオキシ基、p-ターフェニル-4-イルオキシ基、p-トリルオキシ基が好ましく、フェニルオキシ基、及び2-ナフチルオキシ基がより好ましく、フェニルオキシ基が更に好ましい。
<一般式(A1)及び(B1)中のL~Lについて>
 前記一般式(A1)及び(B1)において、L~Lは、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50(好ましくは6~24、より好ましくは6~12)のアリーレン基、又は置換もしくは無置換の環形成原子数5~50(好ましくは5~10、より好ましくは5~8、更に好ましくは5又は6)のヘテロアリーレン基である。
 前記環形成炭素数6~50のアリーレン基としては、前記R~Rに関して記載した、上述の環形成炭素数6~50のアリール基から1個の水素原子を除くことにより得られる2価の基が挙げられる。
 該アリーレン基としては、ターフェニルジイル基(異性体基を含む)、ビフェニルジイル基(異性体基を含む)、及びフェニレン基(異性体基を含む)が好ましく、ビフェニルジイル基(異性体基を含む)、及びフェニレン基(異性体基を含む)がより好ましく、4,4’-ビフェニルジイル基、o-フェニレン基、m-フェニレン基、及びp-フェニレン基が更に好ましく、p-フェニレン基がより更に好ましい。
 前記置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基は、少なくとも1個、好ましくは1~3個の同一又は異なるヘテロ原子(例えば、窒素原子、硫黄原子、及び酸素原子)を含む。
 当該へテロアリーレン基としては、前記R~Rに関して記載した環形成原子数5~50のヘテロアリール基から1個の水素原子を除くことにより得られる2価の基が挙げられる。
 該へテロアリーレン基としては、フリレン基、チエニレン基、ピリジレン基、ピリダジニレン基、ピリミジニレン基、ピラジニレン基、トリアジニレン基、ベンゾフラニレン基、ベンゾチオフェニレン基、ジベンゾフラニレン基、ジベンゾチオフェニレン基が好ましく、ベンゾフラニレン基、ベンゾチオフェニレン基、ジベンゾフラニレン基、及びジベンゾチオフェニレン基が好ましい。
 なお、Lは、前記一般式(A1)中の下記式で表される、9位にR及びRが結合したフルオレン骨格中の1位、2位、3位、4位(下記式中の*1、*2、*3、*4)のいずれかの炭素原子と結合するが、2位の炭素原子(下記式中の*2の炭素原子)と結合することが好ましい。
Figure JPOXMLDOC01-appb-C000025
 L~Lは、単結合、又は置換もしくは無置換の環形成炭素数6~50のアリーレン基であることが好ましく、単結合、又は下記一般式(i)及び(ii)のいずれかで表される基であることがより好ましく、単結合、又は下記一般式(i)で表される基であることが更に好ましく、単結合であることがより更に好ましい。
 特に、Lは、単結合、又は置換もしくは無置換の環形成炭素数6~50のアリーレン基のいずれの場合も好ましい。
Figure JPOXMLDOC01-appb-C000026
 上記一般式(i)及び(ii)中、*、**は、結合位置を示す。具体的には、*及び**の一方が前記一般式(A1)又は(B1)中に記載の窒素原子との結合位置を示し、他方が前記一般式(A1)もしくは(B1)中のAr又は前記一般式(A1)又は(B1)中のフルオレン骨格中のベンゼン環との結合位置を示す。
 Rは、それぞれ独立に、前記一般式(A1)中のRの規定と同じであり、好適な基もRと同じである。なお、Rは、上記一般式(i)及び(ii)中のそれぞれのベンゼン環の置換基を表し、各ベンゼン環の炭素原子と結合する。
 本発明の一態様において、Rを複数有する場合、該複数のRは、互いに同一でも異なっていてもよい。また、本発明の一態様において、複数のRから選ばれる2つが、互いに結合して、環構造を形成してもよい。該環構造としては、芳香族環、一部飽和の炭化水素環等が挙げられる。芳香族環の環形成炭素数に特に制限はないが、好ましくは6~14、より好ましくは6~10、更に好ましくは6である。一部飽和の炭化水素環の環形成炭素数に特に制限はないが、好ましくは5~10、より好ましくは5~8、更に好ましくは5又は6である。
 上記の環構造を形成した一般式(i)で表される基としては、例えば、以下に示す構造が挙げられる。
Figure JPOXMLDOC01-appb-C000027

(上記式中の*、及び**は、前記一般式(i)中の記載と同じである。)
 上記の環構造を形成した一般式(ii)で表される基としては、例えば、以下に示す構造が挙げられる。
Figure JPOXMLDOC01-appb-C000028

(上記式中の*、及び**は、前記一般式(ii)中の記載と同じである。)
 上記一般式(i)及び(ii)中、mは、それぞれ独立に、0~4の整数であり、好ましくは0~2の整数、より好ましくは0又は1、更に好ましくは0である。
 なお、mが0である場合、それぞれのベンゼン環は、無置換であることを意味する。
 また、上記一般式(i)で表される基としては、下記一般式(i-a)で表される基が好ましく、上記一般式(ii)で表される基としては、下記一般式(ii-a)で表される基が好ましい。特に、上記一般式(A1)及び(B1)中のL~Lは、それぞれ独立に、単結合、下記一般式(i-a)及び(ii-a)のいずれかで表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000029

〔上記一般式(i-a)、(ii-a)中、R、m、*、及び**は、前記一般式(i)及び(ii)中の記載と同じである。〕
 上記一般式(B1)においては、Lが、低電圧駆動とする観点並びに発光効率及び寿命の観点から、置換もしくは無置換の環形成炭素数6~50(好ましくは6~24、より好ましくは6~12)のアリーレン基、又は置換もしくは無置換の環形成原子数5~50(好ましくは5~10、より好ましくは5~8、更に好ましくは5又は6)のヘテロアリーレン基であることがより好ましい。
 また、上記一般式(B1)においては、Lが、低電圧駆動とする観点並びに発光効率及び寿命の観点から、置換もしくは無置換の環形成炭素数6~50(好ましくは6~24、より好ましくは6~12)のアリーレン基、又は置換もしくは無置換の環形成原子数5~50(好ましくは5~10、より好ましくは5~8、更に好ましくは5又は6)のヘテロアリーレン基であることがより好ましい。
 更に、上記一般式(B1)においては、Lが単結合であり、且つLが置換もしくは無置換の環形成炭素数6~50(好ましくは6~24、より好ましくは6~12)のアリーレン基、又は置換もしくは無置換の環形成原子数5~50(好ましくは5~10、より好ましくは5~8、更に好ましくは5又は6)のヘテロアリーレン基であることが更に好ましい。つまり、後述の一般式(B1-1)において、Lが置換もしくは無置換の環形成炭素数6~50(好ましくは6~24、より好ましくは6~12)のアリーレン基、又は置換もしくは無置換の環形成原子数5~50(好ましくは5~10、より好ましくは5~8、更に好ましくは5又は6)のヘテロアリーレン基であることが好ましい。
 特に、上記一般式(B1)においては、一般式(B1)中に示されている窒素原子(N)にナフタレン環及びフェナントレン環のいずれも直接結合していないことが好ましい。更に、上記一般式(B1)においては、一般式(B1)中に示されている窒素原子(N)にナフタレン環、フェナントレン環、ジベンゾフラン環及びジベンゾチオフェン環のいずれも直接結合していないことが好ましい。このことは、一般式(A1)においても同様であり、つまり、一般式(A1)中に示されている窒素原子(N)にナフタレン環及びフェナントレン環のいずれも直接結合していないことが好ましい。更に、上記一般式(A1)においては、一般式(A1)中に示されている窒素原子(N)にナフタレン環、フェナントレン環、ジベンゾフラン環及びジベンゾチオフェン環のいずれも直接結合していないことが好ましい。
<一般式(A1)中のArについて>
 前記一般式(A1)において、Arは、置換もしくは無置換の環形成炭素数6~50(好ましくは6~25、より好ましくは6~18、更に好ましくは6~12)のアリール基、置換もしくは無置換の環形成原子数5~50(好ましくは5~10、より好ましくは5~8、更に好ましくは5又は6)のヘテロアリール基を表す。
 「環形成炭素数6~50のアリール基」及び「環形成原子数5~50のヘテロアリール基」の具体的な基としては、前記R~Rに関して記載したものと同じアリール基及びヘテロアリール基が挙げられる。
 特に、有機EL素子が正孔輸送層を有し、該正孔輸送層が2層[第1正孔輸送層(陽極側)、第2正孔輸送層(発光層側)]からなり、本発明の化合物が第2正孔輸送層の材料として用いられる場合、Arとしては、発光効率及び寿命の観点からは、環形成原子数5~50のヘテロアリール基が好ましく、低電圧駆動とする観点及び寿命の観点からは、環形成炭素数6~50のアリール基が好ましい。一方、本発明の化合物が第1正孔輸送層の材料として用いられる場合、Arとしては、発光効率及び寿命の観点からは、環形成原子数5~50のヘテロアリール基が好ましく、後述する一般式(h)、(i’’)及び(j’’)のいずれかで表される基がより好ましい。
 本発明の一態様において、Arとしては、低電圧駆動とする観点並びに発光効率及び寿命の観点から、下記一般式(a)~(k)のいずれかで表される基であることが好ましく、下記一般式(b)、(c)、(f)~(j)のいずれかで表される基であることがより好ましく、下記一般式(b)、(c)、(f)、(h)及び(j)のいずれかで表される基であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000030
 上記一般式(a)~(k)において、R、R、及びRは、それぞれ独立に、前記一般式(1)に記載のRの規定と同じであり、好適な基もRと同じである。なお、Rは、上記一般式(a)~(k)中のそれぞれのベンゼン環の置換基を表し、各ベンゼン環の炭素原子と結合する。
 上記一般式(f)中のR及びRとしては、水素原子、置換もしくは無置換の炭素数1~20(好ましくは1~8、より好ましくは1~3)のアルキル基、及び置換もしくは無置換の環形成炭素数6~50(好ましくは6~25、より好ましくは6~18、更に好ましくは6~12)のアリール基からなる群より選ばれる基が好ましく、置換もしくは無置換の炭素数1~20(好ましくは1~8、より好ましくは1~3)のアルキル基、及び置換もしくは無置換の環形成炭素数6~50(好ましくは6~25、より好ましくは6~18、更に好ましくは6~12)のアリール基からなる群より選ばれる基がより好ましく、置換もしくは無置換の炭素数1~20(好ましくは1~8、より好ましくは1~3)のアルキル基が更に好ましい。
 Rcは、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基を表す。いずれも、R1の場合と同様に説明される。これらの中でも、Rcとしては、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基が好ましく、置換もしくは無置換の環形成炭素数6~50のアリール基がより好ましい。
 なお、Rを複数有する場合、該複数のRは、互いに同一でも異なっていてもよく、複数のRから選ばれる2つが、互いに結合して、環構造を形成してもよい。
 また、式(f)において、複数のR、R、及びRから選ばれる2つが、互いに結合して、環構造を形成してもよい。なお、複数のR、R、及びRから選ばれる2つが互いに結合して環構造を形成しないことが好ましい。
 上記一般式(a)~(k)において、kは、それぞれ独立に、0~5の整数であり、好ましくは0~2の整数、より好ましくは0又は1、更に好ましくは0である。
 mは、それぞれ独立に、0~4の整数であり、好ましくは0~2の整数、より好ましくは0又は1、更に好ましくは0である。
 nは、それぞれ独立に、0~3の整数であり、好ましくは0~2の整数、より好ましくは0又は1、更に好ましくは0である。
 なお、k、m、nが0である場合、それぞれのベンゼン環は、無置換であることを意味する。
 *は、L又は窒素原子との結合位置を示す。
 前記一般式(i)で表される基としては、発光効率及び寿命の観点から、下記一般式(i')又は(i’’)で表される基であることが好ましく、(i’’)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000031
 前記一般式(j)で表される基としては、発光効率及び寿命の観点から、下記一般式(j')又は(j’’)で表される基であることが好ましく、(j’’)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000032
 本発明の一態様として、Arとして選択し得る、前記一般式(b)で表される基としては、低電圧駆動とする観点並びに発光効率及び寿命の観点から、下記一般式(b-1)又は(b-2)で表される基であることが好ましく、前記一般式(c)で表される基としては、低電圧駆動とする観点並びに発光効率及び寿命の観点から、下記一般式(c-1)又は(c-2)で表される基であることが好ましく、前記一般式(d)で表される基としては、低電圧駆動とする観点並びに発光効率及び寿命の観点から、下記一般式(d-1)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000033

(上記式中、R、k、m、n、及び*は、前記一般式(a)~(k)中の記載と同じである。)
 また、本発明の一態様として、Arとして選択し得る、前記一般式(f)で表される基としては、低電圧駆動とする観点並びに発光効率及び寿命の観点から、下記一般式(f-1)又は(f-2)で表される基であることが好ましく、一般式(f-2)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000034

(上記式(f-1)及び(f-2)中、R、k、m、n、及び*は、前記一般式(a)~(k)中の記載と同じである。)
 なお、上記一般式(f-1)又は(f-2)中のRを複数有する場合、該複数のRは、互いに同一でも異なっていてもよく、複数のRから選ばれる2つが、互いに結合して、環構造を形成してもよい。そのため、上記一般式(f-1)で表される基には、例えば、下記一般式(f-3)で表される基も含まれるが、複数のRは、互いに結合して環構造を形成していないことが好ましい。
Figure JPOXMLDOC01-appb-C000035

(上記式(f-3)中、R、m、n、及び*は、前記一般式(a)~(j)中の記載と同じである。)
<一般式(B1)中のArについて>
 前記一般式(B1)において、Arは、置換もしくは無置換の環形成炭素数6~50(好ましくは6~25、より好ましくは6~18、更に好ましくは6~12)のアリール基、置換もしくは無置換の環形成原子数5~50(好ましくは5~10、より好ましくは5~8、更に好ましくは5又は6)のヘテロアリール基を表す。
 「環形成炭素数6~50のアリール基」及び「環形成原子数5~50のヘテロアリール基」の具体的な基としては、前記R~Rに関して記載したものと同じアリール基及びヘテロアリール基が挙げられる。
 これらの中でも、前記一般式(B1)におけるArとしては、低電圧駆動とする観点並びに発光効率及び寿命の観点から、下記一般式(a)~(d)及び(f)~(j)のいずれかで表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000036
(上記式(a)~(d)及び(f)~(j)において、Rは、それぞれ独立に、前記一般式(B1)に記載のR1の規定と同じであり、Rを複数有する場合、該複数のRは、互いに同一でも異なっていてもよく、複数のRから選ばれる2つが、互いに結合して、環構造を形成してもよい。式(f)において、Ra及びRbは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、又はシアノ基を表す。また、式(f)において、複数のR、Ra、及びRbから選ばれる2つが、互いに結合して、環構造を形成してもよい。
 kは、それぞれ独立に、0~5の整数であり、mは、それぞれ独立に、0~4の整数であり、nは、それぞれ独立に、0~3の整数である。
 *は、前記一般式(B1)中のL2又は窒素原子との結合位置を示す。)
 上記式(a)~(d)及び(f)~(j)における各基の説明は、前記一般式(A1)中のArの場合と同じである。
 中でも、低電圧駆動とする観点並びに発光効率及び寿命の観点から、一般式(B1)においてArとして選択し得る、前記一般式(b)で表される基としては、下記一般式(b-1)又は(b-2)で表される基であることが好ましく、前記一般式(c)で表される基としては、下記一般式(c-1)又は(c-2)で表される基であることが好ましく、前記一般式(d)で表される基としては、下記一般式(d-1)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000037

(上記式中、R、k、m、n、及び*は、前記一般式(a)~(d)及び(f)~(j)中の記載と同じである。)
 また、本発明の一態様として、Arとして選択し得る好ましい具体例として、下記のいずれかで表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000038

(*は、前記一般式(a)~(d)及び(f)~(j)中の記載と同じである。)
 また、本発明の一態様として、Arとして選択し得る、前記一般式(e)で表される基としては、下記一般式(e-1)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000039

(上記式(e-1)中、R、k、m、n、及び*は、前記一般式(a)~(d)及び(f)~(j)中の記載と同じである。)
 なお、上記一般式(e-1)中のRを複数有する場合、該複数のRは、互いに同一でも異なっていてもよく、複数のRから選ばれる2つが、互いに結合して、環構造を形成してもよい。そのため、上記一般式(e-1)で表される基には、下記一般式(e-2)で表される基も含まれる。複数のRから選ばれる2つは、互いに結合して環構造を形成していないことが好ましい。
Figure JPOXMLDOC01-appb-C000040

(上記式(e-2)中、R、m、n、及び*は、前記一般式(a)~(d)及び(f)~(j)中の記載と同じである。)
 なお、一般式(A1)及び(B1)において、-L2-Arが下記の基(*は窒素原子との結合位置を示す。また、Rは、前記式(k)中のRと同じである。)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000041
(本発明の一態様の化合物)
 本発明の一態様の化合物として、下記一般式(A1-1)で表される化合物(以下、「化合物(A1-1)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000042
 前記一般式(A1-1)において、R1~R8、n1、m2、k3、k4、n5、m6、L1、L2、及びArは、前記一般式(A1)中の記載と同じである。
 また、本発明の別の一態様の化合物として、下記一般式(A1-2)で表される化合物(以下、「化合物(A1-2)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000043
 前記一般式(A1-2)において、R1~R8、n1、m2、k3、k4、n5、m6、L0~L2、及びArは、前記一般式(A1)中の記載と同じである。
 なお、本発明の一態様である化合物(A1-2)の中でも、下記一般式(A1-2-1)で表される化合物(以下、「化合物(A1-2-1)」ともいう)がより好ましい。
Figure JPOXMLDOC01-appb-C000044
 前記一般式(A1-2-1)において、R1~R8、n1、m2、k3、k4、n5、m6、L2、及びArは、前記一般式(A1)中の記載と同じである。
 また、本発明の別の一態様の化合物として、下記一般式(A1-3)で表される化合物(以下、「化合物(A1-3)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000045
 前記一般式(A1-3)において、R1、R2、R5、R6、n1、m2、n5、m6、L0~L2、及びArは、前記一般式(A1)中の記載と同じである。
 また、本発明の別の一態様の化合物として、下記一般式(A1-4)で表される化合物(以下、「化合物(A1-4)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000046
 前記一般式(A1-4)において、L0~L2、及びArは、前記一般式(A1)中の記載と同じである。
 本発明の一態様の化合物として、下記一般式(B1-1)で表される化合物(以下、「化合物(B1-1)」ともいう)も好ましい。
Figure JPOXMLDOC01-appb-C000047
 前記一般式(B1-1)において、R1~R8、n1、m2、k3、k4、n5、m6、L1、L2、及びArは、前記一般式(B1)中の記載と同じである。
 前述のとおり、一般式(B1-1)においては、Lは、特に、置換もしくは無置換の環形成炭素数6~50(好ましくは6~24、より好ましくは6~12)のアリーレン基、又は置換もしくは無置換の環形成原子数5~50(好ましくは5~10、より好ましくは5~8、更に好ましくは5又は6)のヘテロアリーレン基であることが好ましく、置換もしくは無置換の環形成炭素数6~50(好ましくは6~24、より好ましくは6~12)のアリーレン基であることがより好ましい。
 また、本発明の別の一態様の化合物として、下記一般式(B1-2)で表される化合物(以下、「化合物(B1-2)」ともいう)であってもよい。
Figure JPOXMLDOC01-appb-C000048
 前記一般式(B1-2)において、R1~R8、n1、m2、k3、k4、n5、m6、L2、及びArは、前記一般式(B1)中の記載と同じである。
 また、本発明の別の一態様の化合物として、下記一般式(B1-3)で表される化合物(以下、「化合物(B1-3)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000049
 前記一般式(B1-3)において、R1、R2、R5、R6、n1、m2、n5、m6、L0~L2、及びArは、前記一般式(B1)中の記載と同じである。
 また、本発明の別の一態様の化合物として、下記一般式(B1-4)で表される化合物(以下、「化合物(B1-4)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000050
 前記一般式(B1-4)において、L0~L2、及びArは、前記一般式(B1)中の記載と同じである。
 以下に本発明の一態様の化合物(A1)の具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053

 
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
 化合物(A1)としては、以上の中でも、好ましくは下記化合物群から選択される化合物である。
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
 以下に本発明の一態様の化合物(B1)の具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
 化合物(B1)としては、以上の中でも、好ましくは下記化合物群から選択される化合物である。
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
[有機EL素子用材料]
 本発明の一態様の有機EL素子用材料は、上述の前記化合物(1)、つまり化合物(A1)及び(B1)の少なくとも1つからなるものであり、前記化合物(A1-1)~(A1-6)及び(A1-2-1)から選ばれる化合物からなるものであることが好ましく、又は、前記化合物(B1-1)~(B1-4)から選ばれる化合物からなるものであることが好まし。以下、化合物(1)に関する記載は、化合物(A1-1)~(A1-6)、(A1-2-1)及び化合物(B1-1)~(B1-4)に置き換えて読むことができる。
 本発明の一態様の有機EL素子用材料は、有機EL素子における材料として有用であり、例えば、有機EL素子の陽極と陰極との間に配置された一層以上の有機薄膜層の材料として有用であり、特に、正孔輸送層の材料又は正孔注入層の材料としてより有用である。
 なお、正孔輸送層が、第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)の2層構造とする場合、本発明の一態様の前記化合物(1)からなる有機EL素子用材料は、第1正孔輸送層の材料及び第2正孔輸送層の材料のいずれの用途でも有用である。
[有機EL素子]
 次に、本発明の一態様の有機EL素子について説明する。
 有機EL素子の代表的な素子構成としては、以下の(1)~(13)を挙げることができるが、特にこれらに限定されるものではない。なお、(8)の素子構成が好ましく用いられる。
(1)陽極/発光層/陰極
(2)陽極/正孔注入層/発光層/陰極
(3)陽極/発光層/電子注入層/陰極
(4)陽極/正孔注入層/発光層/電子注入層/陰極
(5)陽極/有機半導体層/発光層/陰極
(6)陽極/有機半導体層/電子障壁層/発光層/陰極
(7)陽極/有機半導体層/発光層/付着改善層/陰極
(8)陽極(/正孔注入層)/正孔輸送層/発光層/(電子輸送層/)電子注入層/陰極
(9)陽極/絶縁層/発光層/絶縁層/陰極
(10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
(11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
(12)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
(13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/(電子輸送層/)電子注入層/陰極
 図1に、本発明の一態様の有機EL素子の一例の概略構成を示す。
 有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット10とを有する。発光ユニット10は、ホスト材料とドーパント(発光材料)を含む発光層5を有する。発光層5と陽極3との間に正孔注入・輸送層(陽極側有機薄膜層)6等、発光層5と陰極4との間に電子注入・輸送層(陰極側有機薄膜層)7等を形成してもよい。また、発光層5の陽極3側に電子障壁層を、発光層5の陰極4側に正孔障壁層を、それぞれ設けてもよい。これにより、電子や正孔を発光層5に閉じ込めて、発光層5における励起子の生成確率を高めることができる。
 本発明の一態様の有機EL素子は、陽極、陰極、及び該陰極と該陽極の間に一層以上の有機薄膜層を有し、該一層以上の有機薄膜層が発光層を含む構成を有し、この一層以上の有機薄膜層の少なくとも1層が、前記一般式(1)で表される化合物(化合物(1))を含む層である。
 前記化合物(1)が含まれる有機薄膜層としては、陽極と発光層との間に設けられる陽極側有機薄膜層(正孔輸送層、正孔注入層等)、発光層、陰極と発光層との間に設けられる陰極側有機薄膜層(電子輸送層、電子注入層等)、スペース層、障壁層等が挙げられるが、これらに限定されるものではない。
 前記化合物(1)は、有機EL素子のいずれの有機薄膜層に用いてもよいが、より低電圧で駆動させるという観点から、正孔注入層又は正孔輸送層に用いることが好ましく、正孔輸送層に用いることがより好ましい。
 つまり、本発明の一態様の有機EL素子としては、前記一層以上の有機薄膜層が、前記化合物(1)を含む正孔注入層及び前記化合物(1)を含む正孔輸送層の少なくとも一方を含む有機EL素子であることがより好ましい。
 前記化合物(1)の有機薄膜層、好ましくは正孔注入層又は正孔輸送層中の含有量は、その有機薄膜層の成分の全モル量に対して、好ましくは30~100モル%、より好ましくは50~100モル%、更に好ましくは80~100モル%であり、より更に好ましくは95~100モル%である。
(基板)
 基板は、発光素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチックなどを用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、及びこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、及び酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、又は金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1~10質量%の酸化亜鉛を加えたターゲットを、酸化タングステン、及び酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5~5質量%、酸化亜鉛を0.1~1質量%含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
 陽極上に形成されるEL層のうち、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、及びこれらの混合物、その他、元素周期表の第1族又は第2族に属する元素も含む)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族又は第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、及びマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、及びこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、及びこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。更に、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
(正孔注入層)
 正孔注入層は、正孔注入性の高い物質を含む層である。
 本発明の一態様の有機EL素子の当該正孔注入層は、本発明の一態様の前記化合物(1)を含む層であることが好ましい。また、本発明の一態様の有機EL素子の正孔注入層は、前記化合物(1)のみ含む層であってもよいし、前記化合物(1)と下記の化合物とを組み合わせて含む層であってもよい。
 正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。
 低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等も挙げられる。
 高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
(正孔輸送層)
 正孔輸送層は、正孔輸送性の高い物質を含む層である。
 本発明の一態様の有機EL素子の正孔輸送層は、本発明の一態様の前記化合物(1)を含む層であることが好ましい。また、本発明の一態様の有機EL素子の正孔輸送層は、前記化合物(1)のみ含む層であってもよいし、前記化合物(1)と下記の化合物とを組み合わせて含む層であってもよい。
 正孔輸送層には、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。なお、芳香族アミン化合物は、芳香環の環形成炭素数の合計が好ましくは30~100、より好ましくは40~80であり、好ましくは、芳香族モノアミン化合物、芳香族ジアミン化合物である。該芳香族モノアミン化合物は、ヘテロアリール基を有していてもよく、該ヘテロアリール基の環形成原子数は好ましくは5~50、より好ましくは5~20であり、例えば、ジベンゾフラニル基、ジベンゾチオフェニル基等が挙げられる。
 具体的には、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10-6cm/Vs以上の正孔移動度を有する物質である。
 正孔輸送層には、CBP、CzPA、PCzPAのようなカルバゾール誘導体や、t-BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いてもよい。ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。例えば、正孔輸送層は第1正孔輸送層(陽極側)と第2正孔輸送層(発光層側)の2層構造にしてもよい。この場合、本発明の一態様の前記化合物(1)は第1正孔輸送層と第2正孔輸送層のいずれに含まれていてもよい。特に制限されるわけではないが、本発明の一態様の前記化合物(1)が第1正孔輸送層に含まれるとき、第2正孔輸送層が前記芳香族モノアミン化合物を含有する態様も好ましく、また、本発明の一態様の前記化合物(1)が第2正孔輸送層に含まれるとき、第1正孔輸送層が前記芳香族ジアミン化合物を含有する態様も好ましい。
 本発明の一実施態様の有機EL素子では、正孔輸送層又は第1正孔輸送層の陽極側に電子受容性化合物(アクセプター材料)を含有する層を接合してもよい。これにより駆動電圧の低下及び製造コストの低減が期待される。
 受容性化合物としては、下記式(A)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000081
(上記式(A)中、R311~R316は、それぞれ独立に、シアノ基、-CONH、カルボキシル基、又は-COOR317(R317は炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表す)を表し、互いに同一でも異なっていてもよい。ただし、R311及びR312、R313及びR314、並びにR315及びR316の1又は2以上の対が互いに結合し、-CO-O-CO-で示される基を形成してもよい。)
 R317で表されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等が挙げられ、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等が挙げられる。
 受容性化合物を含有する層の膜厚は特に限定されないが、5~20nmであるのが好ましい。
(発光層のゲスト材料)
 発光層は、発光性の高い物質を含む層であり、種々の材料を用いることができる。例えば、発光性の高い物質としては、蛍光を発光する蛍光性化合物や燐光を発光する燐光性化合物を用いることができる。蛍光性化合物は一重項励起状態から発光可能な化合物であり、燐光性化合物は三重項励起状態から発光可能な化合物である。
 発光層に用いることができる青色系の蛍光発光材料として、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が使用できる。具体的には、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)などが挙げられる。
 発光層に用いることができる緑色系の蛍光発光材料として、芳香族アミン誘導体等を使用できる。具体的には、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)]-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)等が挙げられる。
 発光層に用いることができる赤色系の蛍光発光材料として、テトラセン誘導体、ジアミン誘導体等が使用できる。具体的には、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)等が挙げられる。
 発光層に用いることができる青色系の燐光発光材料として、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が使用される。具体的には、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス[2-(3’,5’ビストリフルオロメチルフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:Ir(CFppy)(pic))、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)などが挙げられる。
 発光層に用いることができる緑色系の燐光発光材料として、イリジウム錯体等が使用される。トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:Ir(ppy))、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)(acac))、ビス(1,2-ジフェニル-1H-ベンゾイミダゾラト)イリジウム(III)アセチルアセトナート(略称:Ir(pbi)(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)(acac))などが挙げられる。
 発光層に用いることができる赤色系の燐光発光材料として、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等の金属錯体が使用される。具体的には、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3’]イリジウム(III)アセチルアセトナート(略称:Ir(btp)(acac))、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)(acac))、(アセチルアセトナト)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)(acac))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)等の有機金属錯体が挙げられる。
 また、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)(Phen))、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)(Phen))、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)(Phen))等の希土類金属錯体は、希土類金属イオンからの発光(異なる多重度間の電子遷移)であるため、燐光性化合物として用いることができる。
(発光層のホスト材料)
 発光層としては、上述した発光性の高い物質(ゲスト材料)を他の物質(ホスト材料)に分散させた構成としてもよい。発光性の高い物質を分散させるための物質としては、各種のものを用いることができ、発光性の高い物質よりも最低空軌道準位(LUMO準位)が高く、最高占有分子軌道準位(HOMO準位)が低い物質を用いることが好ましい。
 発光性の高い物質を分散させるための物質(ホスト材料)としては、
(1)アルミニウム錯体、ベリリウム錯体、若しくは亜鉛錯体等の金属錯体、
(2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、若しくはフェナントロリン誘導体等の複素環化合物、
(3)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、
(4)トリアリールアミン誘導体、若しくは縮合多環芳香族アミン誘導体等の芳香族アミン化合物が使用される。
 具体的には、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)などの複素環化合物や、9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:DPCzPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,9’-ビアントリル(略称:BANT)、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン(略称:DPNS)、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン(略称:DPNS2)、3,3’,3’’-(ベンゼン-1,3,5-トリイル)トリピレン(略称:TPB)、9,10-ジフェニルアントラセン(略称:DPAnth)、6,12-ジメトキシ-5,11-ジフェニルクリセンなどの縮合芳香族化合物、N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)トリフェニルアミン(略称:DPhPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン(略称:PCAPBA)、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、NPB(又はα-NPD)、TPD、DFLDPBi、BSPBなどの芳香族アミン化合物などを用いることができる。また、発光性の高い物質(ゲスト材料)を分散させるための物質(ホスト材料)は複数種用いることができる。
(電子輸送層)
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、
(1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、
(2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、
(3)高分子化合物を使用することができる。
 具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、ZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。ここに述べた物質は、主に10-6cm/Vs以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
 また、電子輸送層には、高分子化合物を用いることもできる。例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)などを用いることができる。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)、リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、又はそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、又はそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性及び電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、及びこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族又は第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、及びマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、及びこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
 有機EL素子の各層の形成には、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を用いることができる。
 湿式成膜法の場合、各層を形成する材料を、エタノール、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解又は分散させた溶液又は分散液を用いて薄膜を形成する。また、該溶液又は分散液は成膜性向上、膜のピンホール防止等のために樹脂や添加剤を含んでいてもよい。該樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリ-N-ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂が挙げられる。また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等が挙げられる。
 各層の膜厚は特に限定されるものではなく、良好な素子性能が得られるように選択すればよい。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。膜厚は通常5nm~10μmであり、10nm~0.2μmがより好ましい。
 特に、発光層の膜厚は、特に限定されるものではないが、好ましくは5~100nm、より好ましくは7~70nm、更に好ましくは10~50nmである。また、正孔輸送層の膜厚は、10nm~300nmであるのが好ましい。なお、正孔輸送層が前記2層構造である場合は、特に限定されないが、第1正孔輸送層の膜厚は、好ましくは50~300nm、より好ましくは50~250nm、更に好ましくは50~200nm、特に好ましくは50~150nmであり、第2正孔輸送層の膜厚は、好ましくは5~100nm、より好ましくは5~50nm、更に好ましくは5~30nm、特に好ましくは5~20nmである。
[電子機器]
 本発明の一態様の電子機器は、上述の本発明の一態様の有機EL素子を搭載したものである。
 このような電子機器としては、例えば、有機ELパネルモジュール等の表示部品、テレビ、携帯電話、パーソナルコンピュータ等の表示装置、及び、照明、車両用灯具の発光装置等が挙げられる。
 次に、実施例及び比較例を挙げて本発明を更に詳しく説明するが、本発明はこれらの実施例の記載内容に何ら制限されるものではない。
 なお、以下の合成反応を参照し、目的物に合わせた公知の代替反応や原料を用いることによって、本願の特許請求の範囲で規定の化合物を合成することが可能である。
〔化合物(A1)の合成〕
中間体合成例1-1(中間体1-1の合成)
 アルゴン雰囲気下、4-ヨードブロモベンゼンを28.3g(100.0mmol)、ジベンゾフラン-4-ボロン酸を22.3g(105.0mmol)、Pd[PPhを2.31g(2.00mmol)それぞれ秤量し、トルエン150ml、ジメトキシエタン150ml、及び2MのNaCO水溶液150ml(300.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温まで冷却し、反応物を分液ロートに移し、ジクロロメタンにて抽出した。有機層をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、26.2gの白色固体(収率81%)を得た。
 FD-MS分析(電界脱離質量分析)により、下記中間体1-1と同定した。
Figure JPOXMLDOC01-appb-C000082
中間体合成例1-2(中間体1-2の合成)
 中間体合成例1-1において、ジベンゾフラン-4-ボロン酸の代わりにジベンゾフラン-2-ボロン酸を22.3g用いた以外は同様に反応を行ったところ、27.4gの白色固体(収率85%)を得た。
 FD-MSの分析により、下記中間体1-2と同定した。
Figure JPOXMLDOC01-appb-C000083
中間体合成例1-3(中間体1-3の合成)
 アルゴン雰囲気下、4-ヨードブロモベンゼンを28.3g(100.0mmol)、ジベンゾチオフェン-4-ボロン酸を23.9g(105.0mmol)、Pd[PPhを2.31g(2.00mmol)それぞれ秤量し、トルエン150ml、ジメトキシエタン150ml、及び2MのNaCO水溶液150ml(300.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温まで冷却し、反応物を分液ロートに移しジクロロメタンにて抽出した。有機層をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、27.1gの白色固体(収率80%)を得た。
 FD-MS分析により、下記中間体1-3と同定した。
Figure JPOXMLDOC01-appb-C000084
中間体合成例1-4(中間体1-4の合成)
 中間体合成例1-3において、ジベンゾチオフェン-4-ボロン酸の代わりにジベンゾチオフェン-2-ボロン酸を23.9g用いた以外は同様に反応を行ったところ、27.2gの白色固体(収率80%)を得た。
 FD-MSの分析により、下記中間体1-4と同定した。
Figure JPOXMLDOC01-appb-C000085
中間体合成例1-5(中間体1-5の合成)
 アルゴン雰囲気下、4-ブロモビフェニルを47.0g(201.6mmol)、ヨウ素を23g(90.6mmol)、過ヨウ素酸2水和物を9.4g(41.2mmol)それぞれ秤量し、水42ml、酢酸360ml、及び硫酸11mlを加え、65℃で30分撹拌後、90℃で6時間撹拌した。
 反応終了後、反応物を氷水に注入し、ろ過した。水で洗浄後、メタノールで洗浄することにより67gの白色粉末(収率93%)を得た。
 FD-MSの分析により、下記中間体1-5と同定した。
Figure JPOXMLDOC01-appb-C000086
中間体合成例1-6(中間体1-6の合成)
 アルゴン雰囲気下、前記中間体1-5を35.9g(100.0mmol)、カルバゾールを16.7g(100.0mmol)、ヨウ化銅(CuI)を0.2g(1.00mmol)、燐酸三カリウムを42.4g(210.0mmol)それぞれ秤量し、trans-1,2-シクロヘキサンジアミン2ml及び1,4-ジオキサン300mlを加え、100℃で20時間撹拌した。
 反応終了後、反応物に水300mlを加えた後、分液し、水層を除去した。有機層を硫酸ナトリウムで乾燥させた後、濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し、白色結晶23.1g(収率58%)を得た。
 FD-MSの分析により、中間体1-6と同定した。
Figure JPOXMLDOC01-appb-C000087
中間体合成例A1-7(中間体A1-7の合成)
 アルゴン雰囲気下、3-ブロモ-9,9’-ジフェニルフルオレンを39.7g(100.0mmol)、4-クロロフェニルボロン酸を16.4g(105.0mmol)、Pd[PPhを2.31g(2.00mmol)それぞれ秤量し、トルエン150ml、ジメトキシエタン150ml、及び2MのNaCO水溶液150ml(300.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温まで冷却し、反応物を分液ロートに移し、ジクロロメタンにて抽出した。有機層をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、34.3gの白色固体(収率80%)を得た。
 FD-MS分析により、下記中間体A1-7と同定した。
Figure JPOXMLDOC01-appb-C000088
中間体合成例1-8(中間体(1-8)の合成)
 アルゴン雰囲気下、4-ヨードブロモベンゼンを28.3g(100.0mmol)、3-(9H-カルバゾール-9-イル)フェニルボロン酸を30.1g(105.0mmol)、Pd[PPhを2.31g(2.00mmol)それぞれ秤量し、トルエン150ml、ジメトキシエタン150ml、及び2MのNaCO水溶液150ml(300.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温まで冷却し、反応物を分液ロートに移し、ジクロロメタンにて抽出した。有機層をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、27.2gの白色固体(収率68%)を得た。
 FD-MS分析により、下記中間体(1-8)と同定した。
Figure JPOXMLDOC01-appb-C000089
中間体合成例1-9(中間体(1-9)の合成)
 中間体合成例1-8において、3-(9H-カルバゾール-9-イル)フェニルボロン酸の代わりに3-(ジベンゾフラン-4-イル)フェニルボロン酸を30.3g用いた以外は同様に反応を行ったところ、24.0gの白色固体(収率60%)を得た。
 FD-MSの分析により、下記中間体(1-9)と同定した。
Figure JPOXMLDOC01-appb-C000090
中間体合成例A2-1(中間体A2-1の合成)
 アルゴン雰囲気下、3-ブロモ-9,9’-ジフェニルフルオレンを19.9g(50.0mmol)、2-アミノ-9,9’-ジメチルフルオレンを10.5g(50.0mmol)、t-ブトキシナトリウムを9.6g(100.0mmol)それぞれ秤量し、脱水トルエン250mlを加え、撹拌した。酢酸パラジウム225mg(1.0mmol)及びトリ-t-ブチルホスフィン202mg(1.0mmol)を加え、80℃にて8時間反応した。
 冷却後、反応物をセライト/シリカゲルを通して濾過し、濾液を減圧下で濃縮した。得られた残渣をトルエンで再結晶し、それを濾取した後、乾燥し、17.1gの白色結晶(収率65%)を得た。
 FD-MSの分析により、下記中間体A2-1と同定した。
Figure JPOXMLDOC01-appb-C000091
中間体合成例A2-2(中間体(A2-2)の合成)
 アルゴン雰囲気下、4-ブロモアニリンを17.2g(100.0mmol)、9,9’-ジメチルフルオレン-2-ボロン酸を25.0g(105.0mmol)、Pd[PPhを2.31g(2.00mmol)それぞれ秤量し、トルエン150ml、ジメトキシエタン150ml、及び2MのNaCO水溶液150ml(300.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温まで冷却し、反応物を分液ロートに移し、ジクロロメタンにて抽出した。有機層をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、11.4gの白色固体(収率40%)を得た。
 FD-MS分析により、下記中間体(A2-2)と同定した。
Figure JPOXMLDOC01-appb-C000092
中間体合成例A2-3(中間体(A2-3)の合成)
 アルゴン雰囲気下、3-ブロモ-9,9’-ジフェニルフルオレンを19.9g(50.0mmol)、前記中間体(A2-2)を14.3g(50.0mmol)、t-ブトキシナトリウムを9.6g(100.0mmol)それぞれ秤量し、脱水トルエン250mlを加え、撹拌した。さらに、酢酸パラジウム225mg(1.0mmol)、トリ-t-ブチルホスフィン202mg(1.0mmol)を加え、80℃にて8時間反応した。
 冷却後、反応混合物をセライト/シリカゲルを通して濾過し、濾液を減圧下で濃縮した。得られた残渣をトルエンで再結晶化し、析出した結晶を濾取した後、乾燥し、16.5gの白色固体(収率55%)を得た。
 FD-MSの分析により、当該白色固体を下記中間体(A2-3)と同定した。
Figure JPOXMLDOC01-appb-C000093
合成実施例A1(化合物(HA1)の製造)
 アルゴン雰囲気下、4-ブロモビフェニルを2.3g(10.0mmol)、中間体(A2-1)を5.3g(10.0mmol)、Pd(dba)を0.14g(0.15mmol)、P(Bu)HBFを0.087g(0.3mmol)、t-ブトキシナトリウムを1.9g(20.0mmol)それぞれ秤量し、無水キシレン50mlを加えて8時間加熱還流した。ここで、dbaはジベンジリデンアセトン、Buはtert-ブチルを意味する。
 反応終了後、反応液を50℃に冷却し、セライト/シリカゲルを通して濾過を行い、濾液を濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し白色固体を得た。粗生成物をトルエンにて再結晶し、2.3gの白色結晶(収率34%)を得た。
 FD-MSの分析により、下記化合物(HA1)と同定した。
Figure JPOXMLDOC01-appb-C000094
合成実施例A2(化合物(HA2)の製造)
 合成実施例A1において、4-ブロモビフェニルの代わりに2-ブロモビフェニルを2.3g用いた以外は同様に反応を行ったところ、2.6gの白色結晶(収率38%)を得た。
 FD-MSの分析により、下記化合物(HA2)と同定した。
Figure JPOXMLDOC01-appb-C000095
合成実施例A3(化合物(HA3)の製造)
 合成実施例A1において、4-ブロモビフェニルの代わりに2-ブロモ-9,9’-ジメチルフルオレンを2.7g用いた以外は同様に反応を行ったところ、2.9gの白色結晶(収率40%)を得た。
 FD-MSの分析により、下記化合物(HA3)と同定した。
Figure JPOXMLDOC01-appb-C000096
合成実施例A4(化合物(HA4)の製造)
 合成実施例A1において、4-ブロモビフェニルの代わりに前記中間体(1-1)を3.2g用いた以外は同様に反応を行ったところ、2.3gの白色結晶(収率30%)を得た。
 FD-MSの分析により、下記化合物(HA4)と同定した。
Figure JPOXMLDOC01-appb-C000097
合成実施例A5(化合物(HA5)の製造)
 合成実施例A1において、4-ブロモビフェニルの代わりに前記中間体(1-2)を3.2g用いた以外は同様に反応を行ったところ、2.5gの白色結晶(収率33%)を得た。
 FD-MSの分析により、下記化合物(HA5)と同定した。
Figure JPOXMLDOC01-appb-C000098
合成実施例A6(化合物(HA6)の製造)
 合成実施例A1において、4-ブロモビフェニルの代わりに前記中間体(1-3)を3.4g用いた以外は同様に反応を行ったところ、2.0gの白色結晶(収率25%)を得た。
 FD-MSの分析により、下記化合物(HA6)と同定した。
Figure JPOXMLDOC01-appb-C000099
合成実施例A7(化合物(HA7)の製造)
 合成実施例A1において、4-ブロモビフェニルの代わりに前記中間体(1-4)を3.4g用いた以外は同様に反応を行ったところ、2.0gの白色結晶(収率25%)を得た。
 FD-MSの分析により、下記化合物(HA7)と同定した。
Figure JPOXMLDOC01-appb-C000100
合成実施例A8(化合物(HA8)の製造)
 合成実施例A1において、4-ブロモビフェニルの代わりに前記中間体(1-6)を4.0g用いた以外は同様に反応を行ったところ、1.7gの白色結晶(収率20%)を得た。
 FD-MSの分析により、下記化合物(HA8)と同定した。
Figure JPOXMLDOC01-appb-C000101
合成実施例A9(化合物(HA9)の製造)
 アルゴン雰囲気下、前記中間体(A1-7)を4.3g(10.0mmol)、N-(ビフェニル-4-イル)-9,9’-ジメチルフルオレン-2-アミンを3.6g(10.0mmol)、Pd(dba)を0.14g(0.15mmol)、P(Bu)HBFを0.087g(0.3mmol)、t-ブトキシナトリウムを1.9g(20.0mmol)それぞれ秤量し、無水キシレン50mlを加えて8時間加熱還流した。
 反応終了後、50℃に冷却し、セライト/シリカゲルを通して濾過を行い、濾液を濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し白色固体を得た。粗生成物をトルエンにて再結晶し、2.6gの白色結晶(収率35%)を得た。
 FD-MSの分析により、下記化合物(HA9)と同定した。
Figure JPOXMLDOC01-appb-C000102
合成実施例A10(化合物(HA10)の製造)
 合成実施例A9において、N-(ビフェニル-4-イル)-9,9’-ジメチルフルオレン-2-アミンの代わりに、N-(ビフェニル-2-イル)-9,9’-ジメチルフルオレン-2-アミンを3.6g用いた以外は同様に反応を行ったところ、2.6gの白色結晶(収率35%)を得た。
 FD-MSの分析により、下記化合物(HA10)と同定した。
Figure JPOXMLDOC01-appb-C000103
合成実施例A11(化合物(HA11)の製造)
 合成実施例A9において、N-(ビフェニル-4-イル)-9,9’-ジメチルフルオレン-2-アミンの代わりに、N,N-ビス(9,9’-ジメチルフルオレン-2-イル)アミンを4.0g用いた以外は同様に反応を行ったところ、2.1gの白色結晶(収率27%)を得た。
 FD-MSの分析により、下記化合物(HA11)と同定した。
Figure JPOXMLDOC01-appb-C000104
合成実施例A12(化合物(HA12)の製造)
 合成実施例A1において、4-ブロモビフェニルの代わりに4-ブロモターフェニルを3.1g用いた以外は同様に反応を行ったところ、2.6gの白色結晶(収率34%)を得た。
 FD-MSの分析により、下記化合物(HA12)と同定した。
Figure JPOXMLDOC01-appb-C000105
合成実施例A13(化合物(HA13)の製造)
 合成実施例A1において、4-ブロモビフェニルの代わりに2-ブロモトリフェニレンを3.1g用いた以外は同様に反応を行ったところ、2.6gの白色結晶(収率35%)を得た。
 FD-MSの分析により、下記化合物(HA13)と同定した。
Figure JPOXMLDOC01-appb-C000106
合成実施例A14(化合物(HA14)の製造)
 合成実施例A1において、4-ブロモビフェニルの代わりに中間体(1-8)を4.0g用いた以外は同様に反応を行ったところ、2.5gの白色結晶(収率30%)を得た。
 FD-MSの分析により、下記化合物(HA14)と同定した。
Figure JPOXMLDOC01-appb-C000107
合成実施例A15(化合物(HA15)の製造)
 合成実施例A1において、4-ブロモビフェニルの代わりに中間体(1-9)を4.0g用いた以外は同様に反応を行ったところ、2.4gの白色結晶(収率28%)を得た。
 FD-MSの分析により、下記化合物(HA15)と同定した。
Figure JPOXMLDOC01-appb-C000108
合成実施例A16(化合物(HA16)の製造)
 アルゴン雰囲気下、4-ブロモビフェニル2.3g(10.0mmol)、前記中間体(A2-3)を6.0g(10.0mmol)、Pd(dba)を0.14g(0.15mmol)、P(Bu)HBFを0.087g(0.3mmol)、t-ブトキシナトリウムを1.9g(20.0mmol)それぞれ秤量し、無水キシレン50mlを加えて8時間加熱還流した。
 反応終了後、50℃に冷却し、セライト/シリカゲルを通して濾過を行い、濾液を濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し白色固体を得た。粗生成物をトルエンにて再結晶し、2.3gの白色結晶(収率30%)を得た。
 FD-MSの分析により、下記化合物(HA16)と同定した。
Figure JPOXMLDOC01-appb-C000109
合成実施例A17(化合物(HA17)の製造)
 合成実施例A16において、4-ブロモビフェニルの代わりに2-ブロモビフェニル2.3g用いた以外は同様に反応を行ったところ、2.0gの白色結晶(収率27%)を得た。
 FD-MSの分析により、下記化合物(HA17)と同定した。
Figure JPOXMLDOC01-appb-C000110
合成実施例A18(化合物(HA18)の製造)
 合成実施例A16において、4-ブロモビフェニルの代わりに4-ブロモターフェニル3.1g用いた以外は同様に反応を行ったところ、2.9gの白色結晶(収率35%)を得た。
 FD-MSの分析により、下記化合物(HA18)と同定した。
Figure JPOXMLDOC01-appb-C000111
実施例1-1(有機EL素子の作製)
 25mm×75mm×1.1mmのITO透明電極ライン付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で5分間超音波洗浄し、更に、30分間UV(Ultraviolet)オゾン洗浄した。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている面上に前記透明電極を覆うようにして下記電子受容性化合物(A)を蒸着し、膜厚10nmの膜Aを成膜した。
 この膜A上に、第1正孔輸送材料として下記芳香族アミン誘導体(X1)を蒸着し、膜厚80nmの第1正孔輸送層を成膜した。第1正孔輸送層の成膜に続けて、第2正孔輸送材料として下記化合物(HA1)を蒸着し、膜厚10nmの第2正孔輸送層を成膜した。
 この正孔輸送層上に、ホスト化合物(BH)とドーパント化合物(BD)とを厚さ25nmで共蒸着し、発光層を成膜した。ドーパント化合物(BD)の濃度は4質量%であった。
 続いて、この発光層上に、下記化合物(ET1)を厚さ25nm、続いて下記化合物(ET2)を厚さ10nm、及びLiFを厚さ1nmで蒸着し、電子輸送/注入層を成膜した。更に、金属Alを厚さ80nmに積層して陰極を形成し、有機EL素子を製造した。
Figure JPOXMLDOC01-appb-C000112
実施例1-2~1-18(有機EL素子の作製)
 第2正孔輸送材料として表1に記載の下記化合物を用いた以外は実施例1-1と同様にして実施例1-2~1-18の各有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
比較例1-1、1-2(有機EL素子の作製)
 第2正孔輸送材料として表1に記載の下記の比較化合物を用いた以外は実施例1-1と同様にして比較例1-1、1-2の各有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000115
(有機EL素子の発光性能評価)
 以上のようにして作製した有機EL素子を直流電流駆動により発光させ、輝度(L)、電流密度を測定し、測定結果から電流密度10mA/cmにおける電流効率(L/J)、駆動電圧(V)を求めた。更に電流密度50mA/cmにおける素子寿命を求めた。ここで、80%寿命とは、定電流駆動時において、輝度が初期輝度の80%に減衰するまでの時間をいう。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000116
 表1の結果から、本発明の一態様の化合物(A1)に包含される化合物(HA1)~(HA18)を用いることにより、低電圧駆動が可能であり、高発光効率、かつ、長寿命の有機EL素子が得られることがわかる。
実施例2-1(有機EL素子の作製)
 25mm×75mm×1.1mmのITO透明電極ライン付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で5分間超音波洗浄し、更に、30分間UV(Ultraviolet)オゾン洗浄した。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている面上に前記透明電極を覆うようにして前記電子受容性化合物(A)を蒸着し、膜厚10nmの膜Aを成膜した。
 この膜A上に、第1正孔輸送材料として前記化合物(HA1)を蒸着し、膜厚80nmの第1正孔輸送層を成膜した。第1正孔輸送層の成膜に続けて、第2正孔輸送材料として下記芳香族アミン誘導体(Y1)を蒸着し、膜厚10nmの第2正孔輸送層を成膜した。
 この正孔輸送層上に、前記ホスト化合物(BH)と前記ドーパント化合物(BD)とを厚さ25nmで共蒸着し、発光層を成膜した。ドーパント化合物(BD)の濃度は4質量%であった。
 続いて、この発光層上に、前記化合物(ET1)を厚さ25nm、続いて前記化合物(ET2)を厚さ10nm、及びLiFを厚さ1nmで蒸着し、電子輸送/注入層を成膜した。更に、金属Alを厚さ80nmに積層して陰極を形成し、有機EL素子を製造した。
Figure JPOXMLDOC01-appb-C000117
実施例2-2~2-18(有機EL素子の作製)
 第1正孔輸送材料として表2に記載の化合物を用いた以外は実施例2-1と同様にして実施例2-2~2-18の各有機EL素子を作製した。
実施例2-19及び2-20(有機EL素子の作製)
 実施例2-1、2-2において、電子受容性化合物(A)の代わりに下記化合物(EA2)を用いた以外は同様にして、実施例2-19及び2-20の各有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000118
比較例2-1、2-2(有機EL素子の作製)
 第1正孔輸送材料として表2に記載の比較化合物を用いた以外は実施例2-1と同様にして比較例2-1、2-2の各有機EL素子を作製した。
比較例2-3、2-4(有機EL素子の作製)
 第1正孔輸送材料として表2に記載の比較化合物を用いた以外は実施例2-19、2-20と同様にして、比較例2-3、2-4の各有機EL素子を作製した。
(有機EL素子の発光性能評価)
 以上のようにして作製した有機EL素子を直流電流駆動により発光させ、輝度(L)、電流密度を測定し、測定結果から電流密度10mA/cmにおける電流効率(L/J)、駆動電圧(V)を求めた。更に電流密度50mA/cmにおける素子寿命を求めた。ここで、80%寿命とは、定電流駆動時において、輝度が初期輝度の80%に減衰するまでの時間をいう。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000119
 表2の結果から、本発明の化合物(A1)に包含される化合物(HA1)~(HA18)を用いることにより、低電圧駆動が可能であり、発光効率が高く、かつ、長寿命の有機EL素子が得られることがわかる。
〔化合物(B1)の合成〕
 中間体1-1~1-6、中間体1-8及び中間体1-9については、化合物(A1)の合成に関する前記説明と同じである。
中間体合成例B1-7(中間体(B1-7)の合成)
 アルゴン雰囲気下、4-ブロモ-9,9'-ジフェニルフルオレンを39.7g(100.0mmol)、4-クロロフェニルボロン酸を16.4g(105.0mmol)、Pd[PPhを2.31g(2.00mmol)それぞれ秤量し、トルエン150ml、ジメトキシエタン150ml、及び2MのNaCO水溶液150ml(300.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機層をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、32.2gの白色固体(収率75%)を得た。
 FD-MSの分析により、下記中間体(B1-7)と同定した。
Figure JPOXMLDOC01-appb-C000120
中間体合成例B2-1(中間体(B2-1)の合成)
 アルゴン雰囲気下、4-ブロモ-9,9'-ジフェニルフルオレン19.9g(50.0mmol)、2-アミノ-9,9'-ジメチルフルオレン10.5g(50.0mmol)、t-ブトキシナトリウム9.6g(100.0mmol)に脱水トルエン250mlを加え、撹拌した。酢酸パラジウム225mg(1.0mmol)、トリ-t-ブチルホスフィン202mg(1.0mmol)を加え、80℃にて8時間反応した。
 冷却後、反応混合物をセライト/シリカゲルを通して濾過し、濾液を減圧下で濃縮した。得られた残渣をトルエンで再結晶し、それを濾取した後、乾燥し、19.7gの白色固体(収率75%)を得た。FD-MSの分析により、下記中間体(B2-1)と同定した。
Figure JPOXMLDOC01-appb-C000121
中間体合成例B2-2(中間体(B2-2)の合成)
 中間体合成例B2-1において、4-ブロモ-9,9'-ジフェニルフルオレンの代わりに中間体(B1-7)を21.4g用いた以外は同様に反応を行ったところ、21.1gの白色固体(収率70%)を得た。FD-MSの分析により、下記中間体(B2-2)と同定した。
Figure JPOXMLDOC01-appb-C000122
中間体合成例B2-3(中間体(B2-3)の合成)
 アルゴン雰囲気下、4-ブロモアニリンを17.2g(100.0mmol)、9,9'-ジメチルフルオレン-2-ボロン酸を25.0g(105.0mmol)、Pd[PPhを2.31g(2.00mmol)それぞれ秤量し、トルエン150ml、ジメトキシエタン150ml、及び2MのNaCO水溶液150ml(300.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温まで冷却し、反応物を分液ロートに移し、ジクロロメタンにて抽出した。有機層をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、11.4gの白色固体(収率40%)を得た。
 FD-MS分析により、下記中間体(B2-3)と同定した。
Figure JPOXMLDOC01-appb-C000123
中間体合成例B2-4(中間体(B2-4)の合成)中間体
 アルゴン雰囲気下、4-ブロモ-9,9'-ジフェニルフルオレンを19.9g(50.0mmol)、前記中間体(B2-3)を14.3g(50.0mmol)、t-ブトキシナトリウムを9.6g(100.0mmol)それぞれ秤量し、脱水トルエン250mlを加え、撹拌した。さらに、酢酸パラジウム225mg(1.0mmol)、トリ-t-ブチルホスフィン202mg(1.0mmol)を加え、80℃にて8時間反応した。
 冷却後、反応混合物をセライト/シリカゲルを通して濾過し、濾液を減圧下で濃縮した。得られた残渣をトルエンで再結晶化し、析出した結晶を濾取した後、乾燥し、19.0gの白色固体(収率63%)を得た。
 FD-MSの分析により、下記中間体(B2-4)と同定した。
Figure JPOXMLDOC01-appb-C000124
合成実施例B1(化合物(HB1)の製造)
 アルゴン雰囲気下、2-ブロモビフェニルを2.3g(10.0mmol)、前記中間体(B2-1)を5.3g(10.0mmol)、Pd(dba)を0.14g(0.15mmol)、P(Bu)HBFを0.087g(0.3mmol)、t-ブトキシナトリウムを1.9g(20.0mmol)それぞれ秤量し、無水キシレン50mlを加えて8時間加熱還流した。
 反応終了後、反応液を50℃に冷却し、セライト/シリカゲルを通して濾過を行い、濾液を濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し白色固体を得た。粗生成物をトルエンにて再結晶し、2.0gの白色結晶(収率30%)を得た。FD-MSの分析により、下記化合物(HB1)と同定した。
Figure JPOXMLDOC01-appb-C000125
合成実施例B2(化合物(HB2)の製造)
 合成実施例B1において、2-ブロモビフェニルの代わりに4-ブロモビフェニルを2.3g用いた以外は同様に反応を行ったところ、2.6gの白色結晶(収率38%)を得た。FD-MSの分析により、下記化合物(HB2)と同定した。
Figure JPOXMLDOC01-appb-C000126
合成実施例B3(化合物(HB3)の製造)
 合成実施例B1において、2-ブロモビフェニルの代わりに2-ブロモ-9,9’-ジメチルフルオレンを2.7g用いた以外は同様に反応を行ったところ、2.5gの白色結晶(収率35%)を得た。FD-MSの分析により、下記化合物(HB3)と同定した。
Figure JPOXMLDOC01-appb-C000127
合成実施例B4(化合物(HB4)の製造)
 合成実施例B1において、2-ブロモビフェニルの代わりに2-ブロモ-9,9’-ジフェニルフルオレンを4.0g用いた以外は同様に反応を行ったところ、2.5gの白色結晶(収率30%)を得た。FD-MSの分析により、下記化合物(HB4)と同定した。
Figure JPOXMLDOC01-appb-C000128
合成実施例B5(化合物(HB5)の製造)
 合成実施例B1において、2-ブロモビフェニルの代わりに前記中間体(1-1)を3.2g用いた以外は同様に反応を行ったところ、2.2gの白色結晶(収率28%)を得た。FD-MSの分析により、下記化合物(HB5)と同定した。
Figure JPOXMLDOC01-appb-C000129
合成実施例B6(化合物(HB6)の製造)
 合成実施例B1において、2-ブロモビフェニルの代わりに前記中間体(1-2)を3.2g用いた以外は同様に反応を行ったところ、2.7gの白色結晶(収率35%)を得た。FD-MSの分析により、下記化合物(HB6)と同定した。
Figure JPOXMLDOC01-appb-C000130
合成実施例B7(化合物(HB7)の製造)
 合成実施例B1において、2-ブロモビフェニルの代わりに前記中間体(1-3)を3.4g用いた以外は同様に反応を行ったところ、2.6gの白色結晶(収率33%)を得た。FD-MSの分析により、下記化合物(HB7)と同定した。
Figure JPOXMLDOC01-appb-C000131
合成実施例B8(化合物(HB8)の製造)
 合成実施例B1において、2-ブロモビフェニルの代わりに前記中間体(1-4)を3.4g用いた以外は同様に反応を行ったところ、2.2gの白色結晶(収率28%)を得た。FD-MSの分析により、下記化合物(HB8)と同定した。
Figure JPOXMLDOC01-appb-C000132
合成実施例B9(化合物(HB9)の製造)
 合成実施例B1において、2-ブロモビフェニルの代わりに前記中間体(1-6)を4.0g用いた以外は同様に反応を行ったところ、2.5gの白色結晶(収率30%)を得た。FD-MSの分析により、下記化合物(HB9)と同定した。
Figure JPOXMLDOC01-appb-C000133
合成実施例B10(化合物(HB10)の製造)
 アルゴン雰囲気下、2-ブロモビフェニルを2.3g(10.0mmol)、前記中間体(B2-2)を6.0g(10.0mmol)、Pd(dba)を0.14g(0.15mmol)、P(Bu)HBFを0.087g(0.3mmol)、t-ブトキシナトリウムを1.9g(20.0mmol)それぞれ秤量し、無水キシレン50mlを加えて8時間加熱還流した。
 反応終了後、反応液を50℃に冷却し、セライト/シリカゲルを通して濾過を行い、濾液を濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し白色固体を得た。粗生成物をトルエンにて再結晶し、2.0gの白色結晶(収率27%)を得た。FD-MSの分析により、下記化合物(HB10)と同定した。
Figure JPOXMLDOC01-appb-C000134
合成実施例B11(化合物(HB11)の製造)
 合成実施例B10において、2-ブロモビフェニルの代わりに4-ブロモビフェニルを2.3g用いた以外は同様に反応を行ったところ、2.5gの白色結晶(収率33%)を得た。FD-MSの分析により、下記化合物(HB11)と同定した。
Figure JPOXMLDOC01-appb-C000135
合成実施例B12(化合物(HB12)の製造)
 合成実施例B10において、2-ブロモビフェニルの代わりに2-ブロモ-9,9’-ジメチルフルオレンを2.7g用いた以外は同様に反応を行ったところ、2.4gの白色結晶(収率30%)を得た。FD-MSの分析により、下記化合物(HB12)と同定した。
Figure JPOXMLDOC01-appb-C000136
合成実施例B13(化合物(HB13)の製造)
 合成実施例B10において、2-ブロモビフェニルの代わりに2-ブロモ-9,9’-ジフェニルフルオレンを4.0g用いた以外は同様に反応を行ったところ、2.6gの白色結晶(収率28%)を得た。FD-MSの分析により、下記化合物(HB13)と同定した。
Figure JPOXMLDOC01-appb-C000137
合成実施例B14(化合物(HB14)の製造)
 合成実施例B1において、2-ブロモビフェニルの代わりに4-ブロモターフェニルを3.1g用いた以外は同様に反応を行ったところ、2.6gの白色結晶(収率35%)を得た。FD-MSの分析により、下記化合物(HB14)と同定した。
Figure JPOXMLDOC01-appb-C000138
合成実施例B15(化合物(HB15)の製造)
 合成実施例B1において、2-ブロモビフェニルの代わりに2-ブロモトリフェニレンを3.1g用いた以外は同様に反応を行ったところ、2.7gの白色結晶(収率36%)を得た。FD-MSの分析により、下記化合物(HB15)と同定した。
Figure JPOXMLDOC01-appb-C000139
合成実施例B16(化合物(HB16)の製造)
 合成実施例B1において、2-ブロモビフェニルの代わりに中間体(1-8)を4.0g用いた以外は同様に反応を行ったところ、2.0gの白色結晶(収率24%)を得た。FD-MSの分析により、下記化合物(HB16)と同定した。
Figure JPOXMLDOC01-appb-C000140
合成実施例B17(化合物(HB17)の製造)
 合成実施例B1において、2-ブロモビフェニルの代わりに中間体(1-9)を4.0g用いた以外は同様に反応を行ったところ、1.7gの白色結晶(収率20%)を得た。FD-MSの分析により、下記化合物(HB17)と同定した。
Figure JPOXMLDOC01-appb-C000141
合成実施例B18(化合物(HB18)の製造)
 アルゴン雰囲気下、4-ブロモビフェニルを2.3g(10.0mmol)、中間体(B2-4)を6.0g(10.0mmol)、Pd(dba)を0.14g(0.15mmol)、P(Bu)HBFを0.087g(0.3mmol)、t-ブトキシナトリウムを1.9g(20.0mmol)それぞれ秤量し、無水キシレン50mlを加えて8時間加熱還流した。
 反応終了後、反応液を50℃に冷却し、セライト/シリカゲルを通して濾過を行い、濾液を濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色固体を得た。粗生成物をトルエンにて再結晶し、2.6gの白色結晶(収率34%)を得た。FD-MSの分析により、下記化合物(HB18)と同定した。
Figure JPOXMLDOC01-appb-C000142
合成実施例B19(化合物(HB19)の製造)
 合成実施例B18において、4-ブロモビフェニルの代わりに2-ブロモビフェニルを2.3g用いた以外は同様に反応を行ったところ、2.1gの白色結晶(収率28%)を得た。FD-MSの分析により、下記化合物(HB19)と同定した。
Figure JPOXMLDOC01-appb-C000143
合成実施例B20(化合物(HB20)の製造)
 合成実施例B18において、4-ブロモビフェニルの代わりに4-ブロモターフェニルを3.1g用いた以外は同様に反応を行ったところ、2.9gの白色結晶(収率35%)を得た。FD-MSの分析により、下記化合物(HB20)と同定した。
Figure JPOXMLDOC01-appb-C000144
実施例3-1~3-20(有機EL素子の作製)
 実施例1-1において、第2正孔輸送材料として表3に記載の下記化合物を用いた以外は同様にして、実施例3-1~3-20の各有機EL素子を製造した。
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
比較例3-1~3-4
 第2正孔輸送材料として表1に記載の下記比較化合物3~6を用いた以外は実施例3-1と同様にして比較例3-1~3-4の各有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000147
(有機EL素子の発光性能評価)
 以上のようにして作製した有機EL素子を直流電流駆動により発光させ、輝度(L)、電流密度を測定し、測定結果から電流密度10mA/cmにおける発光効率(cd/A)、駆動電圧(V)を求めた。更に電流密度50mA/cmにおける80%寿命を求めた。ここで、80%寿命とは、定電流駆動時において、輝度が初期輝度の80%に減衰するまでの時間をいう。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000148
 
 表3の結果から、本発明の一態様の化合物(B1)に包含される化合物(HB1)~(HB20)を用いることにより、高水準の発光効率を維持しながら、低電圧で駆動でき、且つ、長寿命の有機EL素子が得られることがわかる。特に寿命の向上効果が大きい。
 本発明の一態様の化合物(B1)に包含される化合物(HB1)~(HB20)は、(1)4位で結合する9,9-ジアリールフルオレニル基を有する、(2)2位で結合する9,9-ジアルキルフルオレニル基を有する、及び(3)電子密度の高い芳香族縮合環(例えばナフタレン環、フェナントレン環等)又は電子密度の高い芳香族複素環(例えばジベンゾフラン環、ジベンゾチオフェン環等)が窒素原子に直接結合しない、という構造的な特徴を有する。
 これら(1)~(3)の特徴を併せ持つことで、化合物(HB1)~(HB20)は電荷に対する耐久性が高くなり、有機EL素子を長寿命化させることにつながっているものと推察する。
 電荷に対する耐久性に影響する因子の一つとして、HOMO分子軌道が分子上にどの程度分布するかが考えられる。即ち、HOMOが分子全体に広く分布する化合物は、電荷に対する耐久性が高く、逆に、分布領域が狭く局所的に電子密度が高い部位を有する化合物は、耐久性が低いと考えられる。
 4位で結合する9,9-ジフェニルフルオレニル基は、大きく捻じれた立体配座を取るため、HOMOはほぼ分布しない。その結果、HOMOの分布の程度は、窒素原子に結合する残り2つの基に依存すると考えられる。それら残り2つの基として、電子密度の高い芳香族炭素縮合環又は電子密度の高い芳香族複素環が窒素原子に直接結合する場合、HOMOの分布は中心窒素原子周辺で局所的に高くなり、その結果、電荷に対する耐久性は低くなるものと考える。
 前記比較化合物5は、電子密度の高い芳香族炭素縮合環であるフェナントレン環が直接窒素原子に結合する構造であるため、上記の理由により耐久性が劣ったものと考える。
 一方、化合物(HB1)~(HB20)は上記(1)~(3)の特徴を併せ持ち、特に(3)を満たすことにより、HOMOが分子上に広く分布し、電荷に対して安定な構造となり、有機EL素子を長寿命化させる効果が発現したものと推察する。
実施例4-1~4-20(有機EL素子の作製)
 実施例2-1において、第1正孔輸送材料として表4に記載の化合物を用いた以外は同様にして、実施例4-1~4-20の各有機EL素子を製造した。
実施例4-21、4-22(有機EL素子の作製)
 実施例4-1、4-2において、電子受容性化合物(A)の代わりに下記化合物(EA2)を用いた以外は同様にして、実施例4-21、4-22の各有機EL素子を製造した。
Figure JPOXMLDOC01-appb-C000149
比較例4-1~4-4
 第1正孔輸送材料として表4に記載の前記比較化合物3~6を用いた以外は実施例4-1~4-13と同様にして比較例4-1~4-4の各有機EL素子を作製した。
比較例4-5~4-8
 第1正孔輸送材料として表4に記載の前記比較化合物3~6を用いた以外は実施例4-21、4-22と同様にして比較例4-5~4-8の各有機EL素子を作製した。
(有機EL素子の発光性能評価)
 以上のようにして作製した有機EL素子について、実施例3-1と同様にして、電流密度10mA/cmにおける発光効率(cd/A)、駆動電圧(V)、及び電流密度50mA/cmにおける80%寿命を求めた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000150
 
 表4の結果から、本発明の一態様の化合物(B1)に包含される化合物(HB1)~(HB20)を用いることにより、高水準の発光効率を維持しながら、低電圧で駆動でき、且つ、長寿命の有機EL素子が得られることがわかる。
  1 有機EL素子
  2 基板
  3 陽極
  4 陰極
  5 発光層
  6 陽極側有機薄膜層
  7 陰極側有機薄膜層
 10 発光ユニット

Claims (29)

  1.  下記一般式(A1)又は(B1)で表される、化合物。
    Figure JPOXMLDOC01-appb-C000001

    〔式(A1)及び(B1)において、R1~R6は、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、又はシアノ基を表す。
     R1~R6を複数有する場合、該複数のR1~R6は、互いに同一でも異なっていてもよい。また、R5及びR6は、互いに結合して、環構造を形成してもよい。
     R7及びR8は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、又はシアノ基を表す。R及びRは、互いに結合して、飽和脂肪族環を形成してもよい。
     k3、k4は、それぞれ独立に、0~5の整数であり、m2、m6は、それぞれ独立に、0~4の整数であり、n1、n5は、それぞれ独立に、0~3の整数である。
     L0~L2は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。
     Arは、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~40のヘテロアリール基である。〕
  2.  下記一般式(A1-1)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002

    〔式(A1-1)において、R1~R8、n1、m2、k3、k4、n5、m6、L1、L2、及びArは、請求項1の記載と同じである。〕
  3.  下記一般式(A1-2)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003

    〔式(A1-2)において、R1~R8、n1、m2、k3、k4、n5、m6、L0~L2、及びArは、請求項1の記載と同じである。〕
  4.  下記一般式(A1-2-1)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004

    〔式(A1-2-1)において、R1~R8、n1、m2、k3、k4、n5、m6、L2、及びArは、請求項1の記載と同じである。〕
  5.  下記一般式(A1-3)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005

    〔式(A1-3)において、R1、R2、R5、R6、n1、m2、n5、m6、L0~L2、及びArは、請求項1の記載と同じである。〕
  6.  下記一般式(A1-4)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006

    〔式(A1-4)において、L0~L2、及びArは、請求項1の記載と同じである。〕
  7.  Arが、下記一般式(a)~(k)のいずれかで表される基である、請求項1~6のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007

    〔式(a)~(k)において、R、Ra、及びRbは、それぞれ独立に、請求項1に記載のR1の規定と同じであり、Rを複数有する場合、該複数のRは、互いに同一でも異なっていてもよく、複数のRから選ばれる2つが、互いに結合して、環構造を形成してもよい。Rcは、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基を表す。
     また、式(f)において、複数のR、Ra、及びRbから選ばれる2つが、互いに結合して、環構造を形成してもよい。
     kは、それぞれ独立に、0~5の整数であり、mは、それぞれ独立に、0~4の整数であり、nは、それぞれ独立に、0~3の整数である。
     *は、L又は窒素原子との結合位置を示す。〕
  8.  前記一般式(B1)中、Arが、下記一般式(a)~(i)のいずれかで表される基である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008

    (上記式において、Rは、それぞれ独立に、前記一般式(B1)に記載のR1の規定と同じであり、Rを複数有する場合、該複数のRは、互いに同一でも異なっていてもよく、複数のRから選ばれる2つが、互いに結合して、環構造を形成してもよい。式(f)において、Ra及びRbは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、又はシアノ基を表す。また、式(f)において、複数のR、Ra、及びRbから選ばれる2つが、互いに結合して、環構造を形成してもよい。
     kは、それぞれ独立に、0~5の整数であり、mは、それぞれ独立に、0~4の整数であり、nは、それぞれ独立に、0~3の整数である。
     *は、前記一般式(B1)中のL2又は窒素原子との結合位置を示す。)
  9.  Lが置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である、請求項8に記載の化合物。
  10.  Lが置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である、請求項8又は9に記載の化合物。
  11.  下記一般式(B1-1)で表される、請求項8に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009

    〔式(B1-1)において、R1~R8、n1、m2、k3、k4、n5、m6、L1及びL2は、請求項1の記載と同じであり、Arは請求項8の記載と同じである。〕
  12.  前記一般式(B1-1)中、Lが置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である、請求項11に記載の化合物。
  13.  下記一般式(B1-2)で表される、請求項8に記載の化合物。
    Figure JPOXMLDOC01-appb-C000010

    〔式(B1-2)において、R1~R8、n1、m2、k3、k4、n5、m6及びL2は、請求項1の記載と同じであり、Arは、請求項8の記載と同じである。〕
  14.  下記一般式(B1-3)で表される、請求項8に記載の化合物。
    Figure JPOXMLDOC01-appb-C000011

    〔式(B1-3)において、R1、R2、R5、R6、n1、m2、n5、m6、L0~L2は、請求項1の記載と同じであり、Arは、請求項8の記載と同じである。〕
  15.  下記一般式(B1-4)で表される、請求項8に記載の化合物。
    Figure JPOXMLDOC01-appb-C000012

    〔式(B1-4)において、L0~L2は、請求項1の記載と同じであり、Arは、請求項8の記載と同じである。〕
  16.  Lが置換もしくは無置換の環形成炭素数6~50のアリーレン基である、請求項1、3、5~10、14及び15のいずれか1項に記載の化合物。
  17.  Arが、下記一般式(b-1)、(b-2)、(c-1)、(c-2)、及び(d-1)のいずれかで表される基である、請求項7~16のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000013

    〔式中、R、k、m、n、及び*は、請求項7に記載の規定と同じである。〕
  18.  L0~L2が、それぞれ独立に、単結合、又は下記一般式(i)及び(ii)のいずれかで表される基である、請求項1~8、11及び13~15のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000014

    〔式中、Rは、それぞれ独立に、請求項1に記載のR1の規定と同じであり、Rを複数有する場合、該複数のRは、互いに同一でも異なっていてもよく、複数のRから選ばれる2つが、互いに結合して、環構造を形成してもよい。mは、それぞれ独立に、0~4の整数である。*、**は、結合位置を示す。〕
  19.  L0~L2が、それぞれ独立に、単結合、下記一般式(i-a)及び(ii-a)のいずれかで表される基である、請求項18に記載の化合物。
    Figure JPOXMLDOC01-appb-C000015

    〔上記一般式(i-a)、(ii-a)中、R、m、*、及び**は、請求項18に記載の規定と同じである。〕
  20.  Arが下記のいずれかで表される基である、請求項8~19のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000016

    〔式中、*は、L又は窒素原子との結合位置を示す。〕
  21.  -L2-Arが下記の基のいずれかである、請求項1~20のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000017

    (式中、*は窒素原子との結合位置を示す。Rは、請求項7に記載の式(k)中のRと同じである。)
  22.  下記化合物群から選択されるいずれかである、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000018

    Figure JPOXMLDOC01-appb-C000019
  23.  下記化合物群から選択されるいずれかである、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000020

    Figure JPOXMLDOC01-appb-C000021
  24.  請求項1~23のいずれか1項に記載の化合物からなる、有機エレクトロルミネッセンス素子用材料。
  25.  陰極、陽極、及び該陰極と該陽極の間に配置された一層以上の有機薄膜層を有し、該一層以上の有機薄膜層が発光層を含む有機エレクトロルミネッセンス素子であって、
     前記一層以上の有機薄膜層の少なくとも1層が、請求項1~23のいずれか1項に記載の化合物を含む層である、有機エレクトロルミネッセンス素子。
  26.  前記一層以上の有機薄膜層が、前記化合物を含む正孔注入層及び前記化合物を含む正孔輸送層の少なくとも一方を含む、請求項25に記載の有機エレクトロルミネッセンス素子。
  27.  前記一層以上の有機薄膜層が、陽極側から順に第1正孔輸送層及び第2正孔輸送層を有し、第1正孔輸送層が前記化合物を含む、請求項25に記載の有機エレクトロルミネッセンス素子。
  28.  前記一層以上の有機薄膜層が、陽極側から順に第1正孔輸送層及び第2正孔輸送層を有し、第2正孔輸送層が前記化合物を含む、請求項25に記載の有機エレクトロルミネッセンス素子。
  29.  請求項25~28のいずれか1項に記載の有機エレクトロルミネッセンス素子を搭載した、電子機器。
PCT/JP2015/070046 2014-07-11 2015-07-13 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器 WO2016006710A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/308,461 US10854822B2 (en) 2014-07-11 2015-07-13 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
JP2016504820A JP6611055B2 (ja) 2014-07-11 2015-07-13 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
EP15818448.1A EP3127894B1 (en) 2014-07-11 2015-07-13 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
KR1020167002841A KR102387509B1 (ko) 2014-07-11 2015-07-13 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자, 및 전자 기기
CN201580001549.5A CN105658619A (zh) 2014-07-11 2015-07-13 化合物、有机电致发光元件用材料、有机电致发光元件和电子仪器

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2014-143249 2014-07-11
JP2014143249 2014-07-11
JP2014-143248 2014-07-11
JP2014143248 2014-07-11
JP2014255565 2014-12-17
JP2014-255559 2014-12-17
JP2014-255562 2014-12-17
JP2014-255565 2014-12-17
JP2014255562 2014-12-17
JP2014255559 2014-12-17

Publications (1)

Publication Number Publication Date
WO2016006710A1 true WO2016006710A1 (ja) 2016-01-14

Family

ID=55064333

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2015/070046 WO2016006710A1 (ja) 2014-07-11 2015-07-13 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
PCT/JP2015/070045 WO2016006709A1 (ja) 2014-07-11 2015-07-13 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
PCT/JP2015/070047 WO2016006711A1 (ja) 2014-07-11 2015-07-13 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/070045 WO2016006709A1 (ja) 2014-07-11 2015-07-13 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
PCT/JP2015/070047 WO2016006711A1 (ja) 2014-07-11 2015-07-13 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器

Country Status (6)

Country Link
US (3) US10516112B2 (ja)
EP (3) EP3018128B1 (ja)
JP (3) JP6611043B2 (ja)
KR (3) KR102545858B1 (ja)
CN (3) CN105431408B (ja)
WO (3) WO2016006710A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580993B2 (en) 2016-10-25 2020-03-03 Samsung Display Co., Ltd. Amine compound and organic electroluminescence device including the same
JP2022541787A (ja) * 2020-01-23 2022-09-27 エルジー・ケム・リミテッド 有機発光素子

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034795A1 (ja) * 2012-08-31 2014-03-06 出光興産株式会社 芳香族アミン誘導体およびこれを用いた有機エレクトロルミネッセンス素子
EP3077477B1 (de) 2013-12-06 2018-02-28 Merck Patent GmbH Verbindungen und organische elektronische vorrichtungen
KR102627527B1 (ko) 2016-03-03 2024-01-22 메르크 파텐트 게엠베하 유기 전계 발광 장치용 재료
KR102700186B1 (ko) * 2016-12-27 2024-08-29 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2018154740A1 (ja) * 2017-02-24 2018-08-30 富士電機株式会社 電子写真用感光体、その製造方法およびそれを用いた電子写真装置
CN110382488B (zh) 2017-03-08 2023-11-03 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
JP2020093979A (ja) 2017-03-08 2020-06-18 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
KR102154386B1 (ko) 2017-06-16 2020-09-09 주식회사 엘지화학 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
KR102142676B1 (ko) * 2017-10-24 2020-08-07 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2019083122A1 (ko) * 2017-10-24 2019-05-02 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR102578544B1 (ko) 2017-12-11 2023-09-13 엘지디스플레이 주식회사 전계발광 표시장치
EP3502107B1 (en) * 2017-12-20 2022-01-26 Samsung Display Co., Ltd. 1-aminodibenzofuran-based compound and organic light-emitting device including the same
KR102240075B1 (ko) * 2018-02-28 2021-04-13 주식회사 엘지화학 유기 발광 소자
CN110317140B (zh) * 2018-03-29 2022-05-13 江苏三月科技股份有限公司 一种以芳胺接双二甲基芴为核心的化合物及其应用
WO2019185060A1 (zh) * 2018-03-29 2019-10-03 江苏三月光电科技有限公司 一种以芳胺接双二甲基芴为核心的化合物及其应用
WO2019192954A1 (de) * 2018-04-04 2019-10-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
JP2021167278A (ja) * 2018-05-10 2021-10-21 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
KR102559633B1 (ko) * 2018-05-31 2023-08-02 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기발광 소자
WO2020075964A1 (ko) * 2018-10-10 2020-04-16 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
CN109293516B (zh) * 2018-11-03 2022-01-14 长春海谱润斯科技股份有限公司 一种三芳胺类化合物及其有机发光器件
CN113227083A (zh) 2018-11-30 2021-08-06 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
CN117343078A (zh) 2021-11-25 2024-01-05 北京夏禾科技有限公司 有机电致发光材料和器件
CN116283725A (zh) * 2023-01-16 2023-06-23 烟台显华科技集团股份有限公司 一种芳胺取代的二苯并五元环化合物及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182263A1 (de) * 2012-06-06 2013-12-12 Merck Patent Gmbh Phenanthrenverbindungen für organische elektronische vorrichtungen
WO2014015937A1 (de) * 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektrolumineszierende vorrichtungen
KR20140098502A (ko) * 2013-01-31 2014-08-08 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20150007476A (ko) * 2013-07-11 2015-01-21 덕산하이메탈(주) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2015041428A1 (ko) * 2013-09-17 2015-03-26 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2015082056A1 (de) * 2013-12-06 2015-06-11 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
KR101535606B1 (ko) * 2015-01-29 2015-07-09 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2981348B2 (ja) 1992-09-21 1999-11-22 キヤノン株式会社 電子写真感光体、該電子写真感光体を備えた電子写真装置並びにファクシミリ
JP3824385B2 (ja) 1996-08-02 2006-09-20 三井化学株式会社 有機電界発光素子
JP3838766B2 (ja) * 1997-11-06 2006-10-25 三井化学株式会社 有機電界発光素子
JPH11184119A (ja) * 1997-12-17 1999-07-09 Canon Inc 電子写真感光体、該電子写真感光体を有するプロセスカ−トリッジ及び電子写真装置
KR100577179B1 (ko) * 2001-10-30 2006-05-10 엘지전자 주식회사 유기 전계 발광 소자
KR20040072004A (ko) 2003-02-07 2004-08-16 삼성에스디아이 주식회사 유기 전계 발광 소자용 발광 화합물 및 그를 이용한 유기전계발광 소자
KR101267114B1 (ko) 2005-04-18 2013-05-23 이데미쓰 고산 가부시키가이샤 방향족 트라이아민 화합물 및 그것을 이용한 유기 전기발광소자
JP5268247B2 (ja) * 2005-12-20 2013-08-21 キヤノン株式会社 4−アミノフルオレン化合物及び有機発光素子
EP2011790B1 (en) 2006-04-26 2016-06-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence element using the same
JP2009010364A (ja) 2007-05-30 2009-01-15 Sony Corp 有機電界発光素子および表示装置
JP2008300503A (ja) 2007-05-30 2008-12-11 Sony Corp 有機電界発光素子および表示装置
DE202010018533U1 (de) 2009-08-19 2017-06-08 Idemitsu Kosan Co., Ltd. Aromatische Amin-Derivate und diese verwendende organische Elektrolumineszenzelemente
TWI498350B (zh) 2009-10-01 2015-09-01 Hitachi Chemical Co Ltd 有機電子用材料、有機電子元件、有機電激發光元件、及使用其之顯示元件、照明裝置、顯示裝置
KR101097339B1 (ko) 2010-03-08 2011-12-23 삼성모바일디스플레이주식회사 유기 발광 소자 및 이의 제조 방법
KR101311935B1 (ko) 2010-04-23 2013-09-26 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2012011642A1 (ko) 2010-07-23 2012-01-26 고려대학교 산학협력단 염료감응 태양전지용 준고체 고분자 전해질, 그에 포함되는 정공수송물질, 및 그 전해질을 포함하는 염료감응 태양전지
KR20120011445A (ko) 2010-07-29 2012-02-08 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
JP2012224618A (ja) 2011-04-08 2012-11-15 Fujifilm Corp 有機材料の精製方法、有機エレクトロニクス用材料、光電変換素子、光センサ、撮像素子、及び有機電界発光素子
KR20130096334A (ko) * 2011-06-24 2013-08-30 덕산하이메탈(주) 유기전기소자, 및 유기전기소자용 화합물
JP6570834B2 (ja) 2011-12-12 2019-09-04 メルク パテント ゲーエムベーハー 電子素子のための化合物
WO2013120577A1 (en) * 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
KR102098061B1 (ko) * 2012-03-19 2020-04-08 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20130121597A (ko) 2012-04-27 2013-11-06 (주)위델소재 트리페닐아민을 사용한 정공 수송 물질 및 이를 포함한 유기 전계 발광 소자
KR101703016B1 (ko) 2012-07-23 2017-02-06 메르크 파텐트 게엠베하 플루오렌 및 이를 함유하는 전자 소자
US9291301B2 (en) * 2012-08-06 2016-03-22 Donald Allan Brinkmann Support device
KR102128702B1 (ko) 2012-08-21 2020-07-02 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014034795A1 (ja) 2012-08-31 2014-03-06 出光興産株式会社 芳香族アミン誘導体およびこれを用いた有機エレクトロルミネッセンス素子
WO2014088285A1 (ko) * 2012-12-06 2014-06-12 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101453424B1 (ko) 2013-01-17 2014-10-22 희성소재 (주) 질소함유 다환고리 화합물 및 이를 이용한 유기발광소자
KR102034819B1 (ko) 2013-03-26 2019-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 표시 장치, 전자 기기 및 조명 장치
KR101389527B1 (ko) 2013-09-17 2014-04-25 덕산하이메탈(주) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
CN103755574A (zh) 2014-01-26 2014-04-30 黑龙江省科学院石油化学研究院 一种具有多光子吸收性质的三(9,9-二烷基-9h-芴基)胺的合成方法
JP2017135127A (ja) * 2014-04-21 2017-08-03 出光興産株式会社 有機エレクトロルミネッセンス素子
KR102283457B1 (ko) 2014-06-03 2021-07-30 삼성디스플레이 주식회사 유기 발광 소자
KR101530049B1 (ko) 2014-10-24 2015-06-18 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182263A1 (de) * 2012-06-06 2013-12-12 Merck Patent Gmbh Phenanthrenverbindungen für organische elektronische vorrichtungen
WO2014015937A1 (de) * 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektrolumineszierende vorrichtungen
KR20140098502A (ko) * 2013-01-31 2014-08-08 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20150007476A (ko) * 2013-07-11 2015-01-21 덕산하이메탈(주) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2015041428A1 (ko) * 2013-09-17 2015-03-26 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2015082056A1 (de) * 2013-12-06 2015-06-11 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
KR101535606B1 (ko) * 2015-01-29 2015-07-09 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3127894A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580993B2 (en) 2016-10-25 2020-03-03 Samsung Display Co., Ltd. Amine compound and organic electroluminescence device including the same
JP2022541787A (ja) * 2020-01-23 2022-09-27 エルジー・ケム・リミテッド 有機発光素子
JP7310067B2 (ja) 2020-01-23 2023-07-19 エルジー・ケム・リミテッド 有機発光素子

Also Published As

Publication number Publication date
JPWO2016006710A1 (ja) 2017-04-27
EP3018120A1 (en) 2016-05-11
US10944057B2 (en) 2021-03-09
EP3018128A4 (en) 2016-12-28
WO2016006709A1 (ja) 2016-01-14
JP6611043B2 (ja) 2019-11-27
EP3018128A1 (en) 2016-05-11
US20180190904A1 (en) 2018-07-05
WO2016006711A1 (ja) 2016-01-14
US20160176801A1 (en) 2016-06-23
KR20170027691A (ko) 2017-03-10
US10516112B2 (en) 2019-12-24
JPWO2016006711A1 (ja) 2017-04-27
CN105431408A (zh) 2016-03-23
EP3127894A4 (en) 2018-02-21
KR102398726B1 (ko) 2022-05-16
EP3018120A4 (en) 2017-06-07
EP3127894B1 (en) 2021-04-28
KR20170026318A (ko) 2017-03-08
EP3018128B1 (en) 2018-10-24
US10854822B2 (en) 2020-12-01
CN105431417A (zh) 2016-03-23
KR102387509B1 (ko) 2022-04-15
EP3127894A1 (en) 2017-02-08
JP6611055B2 (ja) 2019-11-27
JP6601627B2 (ja) 2019-11-06
CN105658619A (zh) 2016-06-08
KR20170030449A (ko) 2017-03-17
EP3018120B1 (en) 2020-04-15
JPWO2016006709A1 (ja) 2017-04-27
CN105431408B (zh) 2022-04-15
KR102545858B1 (ko) 2023-06-21
US20160181525A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP6611055B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP6696091B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP6454226B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP7253502B2 (ja) 化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP6419874B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP2017141167A (ja) 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子、照明装置並びに表示装置
WO2016204150A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2016056640A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2016133097A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016504820

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20167002841

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818448

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015818448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015818448

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE