WO2016002668A1 - 多孔質炭素材料及び多孔質炭素材料の製造方法 - Google Patents

多孔質炭素材料及び多孔質炭素材料の製造方法 Download PDF

Info

Publication number
WO2016002668A1
WO2016002668A1 PCT/JP2015/068553 JP2015068553W WO2016002668A1 WO 2016002668 A1 WO2016002668 A1 WO 2016002668A1 JP 2015068553 W JP2015068553 W JP 2015068553W WO 2016002668 A1 WO2016002668 A1 WO 2016002668A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
carbon material
resin
continuous structure
preferable
Prior art date
Application number
PCT/JP2015/068553
Other languages
English (en)
French (fr)
Inventor
堀口智之
田中健太郎
竹内康作
三原崇晃
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020167036669A priority Critical patent/KR102383873B1/ko
Priority to US15/322,944 priority patent/US10270082B2/en
Priority to EP15815088.8A priority patent/EP3165506A4/en
Priority to JP2015532994A priority patent/JP6641998B2/ja
Priority to CN201580036049.5A priority patent/CN106660797B/zh
Publication of WO2016002668A1 publication Critical patent/WO2016002668A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/36Reactivation or regeneration
    • C01B32/366Reactivation or regeneration by physical processes, e.g. by irradiation, by using electric current passing through carbonaceous feedstock or by using recyclable inert heating bodies
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/08Addition of substances to the spinning solution or to the melt for forming hollow filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a porous carbon material that can be developed for various uses and a method for producing the porous carbon material.
  • Porous carbon material is a material that can be used in a wide range of areas such as adsorption materials, separation membranes, electrode materials, and catalyst carriers, such as activated carbon, carbon nanotubes, mesoporous silica, zeolite, and template carbon produced from molds such as fine particles.
  • catalyst carriers such as activated carbon, carbon nanotubes, mesoporous silica, zeolite, and template carbon produced from molds such as fine particles.
  • activated carbon is widely used mainly for industrial materials such as adsorbent materials and catalyst carriers by utilizing its large specific surface area.
  • activated carbon is obtained by forming pores by activating a carbon material obtained by carbonizing cellulose or resin.
  • the pores do not become continuous communication holes. Therefore, even when activation is advanced and a high specific surface area material is obtained, there are problems such as poor fluidity in the pores of the material to be adsorbed and it takes time for the adsorbed material to reach the surface.
  • the activated carbon particles are aggregated, the pores do not communicate with each other, so that the pores inside the aggregate are not utilized, and the original surface area cannot be sufficiently utilized. Therefore, continuous pores have been desired.
  • Patent Document 1 describes a technique for activating porous carbon fibers to form pores to form activated carbon fibers, but continuous activation cannot form continuous pores.
  • Patent Document 2 describes a technique for obtaining a porous carbon fiber by mixing a carbonizable material and a disappearing material.
  • the carbonizable material and the disappearing material consist of a combination of incompatible systems, By simply adding a compatibilizer, continuous pores cannot be formed.
  • Patent Document 3 forms continuous pores by mixing a thermosetting resin and a thermoplastic resin, curing the thermosetting resin, and then carbonizing after removing the thermoplastic resin.
  • An example is shown. However, since the surface area is small, there is a limit to applications that can be utilized.
  • Patent Document 4 discloses porous carbon having mesopores and micropores and having a three-dimensional network structure on the carbon wall constituting the outline of the mesopores.
  • the carbon walls were continuous, the voids formed by the template particles were only partially continuous, and no communication holes could be formed.
  • the conventional porous carbon material has a structure in which a large surface area on which an adsorbent and the like can act and a continuous carbon skeleton in addition to a continuous hole in which the adsorbent and the like can easily access the surface
  • the present invention provides a porous carbon material having a co-continuous porous structure composed of a carbon skeleton and voids and having a large surface area, thereby being excellent in electrical conductivity, thermal conductivity, adsorptivity, and the like. is there.
  • the present invention has a co-continuous structure portion having a structure period of 0.002 ⁇ m to 3 ⁇ m in which a carbon skeleton and voids each form a continuous structure, has pores with an average diameter of 0.01 to 10 nm on the surface, and a BET ratio It is a porous carbon material having a surface area of 100 m 2 / g or more.
  • the production method of the present invention for producing the porous carbon material is as follows: Step 1: a step of making 10 to 90% by weight of carbonizable resin and 90 to 10% by weight of disappearing resin compatible to form a resin mixture; Step 2: Step of phase separation and immobilization by a method not involving chemical reaction; Step 3: Carbonizing by firing; Process 4: The process of activating; In this order.
  • the porous carbon material of the present invention has a large surface area in the co-continuous structure portion, the area on which the adsorbed substance, the active substance, etc. can act increases, so that electrode materials such as lithium ion batteries and capacitors, purification, medical treatment, etc. High performance can be exerted on the adsorbing material, the heat conductor, etc. used in the above.
  • the carbon skeleton is continuous, it is possible to increase the performance of transmitting functions generated on the carbon surface and the like, for example, electrical conductivity and thermal conductivity.
  • due to the effect of the carbon skeletons supporting each other's structures they have some resistance to deformation such as tension and compression.
  • the portions other than the carbon skeleton are continuous as voids, adsorption and action effects on the carbon surface of adsorbed substances and active substances can be improved.
  • FIG. 2 is a scanning electron micrograph of the porous carbon material of Example 1.
  • FIG. 4 is a scanning electron micrograph of a porous carbon material of Comparative Example 3.
  • the porous carbon material of the present invention (hereinafter sometimes simply referred to as “material”) has a co-continuous structure portion in which a carbon skeleton and voids each form a continuous structure. That is, for example, when a surface of a sample that has been sufficiently cooled in liquid nitrogen is cleaved with tweezers or the like, when the surface is observed with a scanning electron microscope (SEM) or the like, the carbon skeleton and voids formed as portions other than the skeleton are formed. As shown in the scanning electron micrograph of the porous carbon material of Example 1 in FIG. 1, specifically, a carbon skeleton and voids are continuous in the depth direction. Has an observed part.
  • SEM scanning electron microscope
  • the porous carbon material of the present invention by filling and / or flowing a fluid into the voids of the co-continuous structure portion, it is possible to exert fractionation characteristics such as separation, adsorption, and desorption of substances, or use an electrolytic solution.
  • a function as a battery material can be imparted.
  • the carbon skeleton is continuous, electrical conductivity and thermal conductivity are increased. Therefore, a material with low resistance and low loss can be provided as a battery material.
  • the generated heat can be quickly transferred outside the system, and high temperature uniformity can be maintained.
  • the material due to the effect of the carbon parts supporting the structure, the material can be made highly resistant to deformation such as tension and compression.
  • co-continuous structures include a lattice shape and a monolith shape, and are not particularly limited.
  • a monolith shape is preferable in that the above effect can be exhibited.
  • the monolithic shape refers to a form in which the carbon skeleton forms a three-dimensional network structure in a co-continuous structure, and a structure in which individual particles are aggregated and connected, or conversely, aggregated and connected template particles are removed. It is distinguished from the irregular structure such as the void formed by this and the structure formed by the surrounding skeleton.
  • the structural period of the co-continuous structure portion in the porous carbon material of the present invention is 0.002 ⁇ m to 3 ⁇ m.
  • the structural period is calculated by the following formula from the scattering angle ⁇ at a position where the X-ray is incident and the scattering intensity has a peak value with respect to the porous carbon material sample of the present invention. is there.
  • Structure period L, ⁇ : wavelength of incident X-ray
  • the structural period is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • a high surface area and physical property can be acquired as a structural period is 3 micrometers or less.
  • the structural period is preferably 2 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the flow resistance can be reduced, and it can be used as an ideal fractionation material.
  • the part having no co-continuous structure has a structural period outside the above range, and thus has no effect on the analysis.
  • the structure period of the continuous structure forming portion is assumed.
  • the structure period of a co-continuous structure part can be suitably adjusted according to the use to be used.
  • the porous carbon material of the present invention is suitable as an adsorbent because the structure size distribution of the portion having a continuous void structure is small.
  • it is suitable for use as a column material for HPLC having high fractionation characteristics. Further, it can be applied to a substrate carrying a catalyst on the surface of a skeleton portion having a continuous structure.
  • the co-continuous structure portion preferably has an average porosity of 10 to 80%.
  • the average porosity is an enlargement ratio adjusted to be 1 ⁇ 0.1 (nm / pixel) of a cross section in which an embedded sample is precisely formed by a cross section polisher method (CP method).
  • the image is calculated by the following expression from an image observed at a resolution of at least a pixel, where the area of interest required for calculation is set in 512 pixels square, the area of the area of interest is A, and the area of the hole is B.
  • Average porosity (%) B / A ⁇ 100
  • the average porosity of the co-continuous structure portion is preferably in the range of 15 to 75%, and more preferably in the range of 18 to 70%.
  • the porous carbon material of the present invention has pores having an average diameter of 0.01 to 10 nm on the surface.
  • the surface refers to a contact surface with any outside of the porous carbon material including the surface of the carbon skeleton in the co-continuous structure portion of the carbon material.
  • the pores can be formed on the surface of the carbon skeleton in the co-continuous structure portion and / or in the portion substantially not having the co-continuous structure described later, but at least formed on the surface of the carbon skeleton in the portion having the co-continuous structure. It is preferable.
  • the average diameter of such pores is preferably 0.1 nm or more, and more preferably 0.5 nm or more. Moreover, it is preferable that it is 5 nm or less, and it is more preferable that it is 2 nm or less.
  • the average diameter of the pores is 0.01 nm or more, it can function with respect to an adsorbed substance or an active substance. Moreover, functions, such as adsorption
  • the pore volume of the porous carbon material of the present invention is preferably 0.1 cm 3 / g or more.
  • the pore volume is more preferably 1.0 cm 3 / g or more, and further preferably 1.5 cm 3 / g or more.
  • the upper limit is not particularly limited, but if it exceeds 10 cm 3 / g, the strength of the porous carbon material tends to decrease and the handling property tends to deteriorate, such being undesirable.
  • the average diameter of a pore means the measured value by any method of BJH method or MP method. That is, if either one of the measured values by the BJH method or the MP method falls within the range of 0.01 to 10 nm, it is determined that the surface has pores having an average diameter of 0.01 to 10 nm. The same applies to the preferable range of the pore diameter.
  • the BJH method and the MP method are widely used as a pore size distribution analysis method, and can be obtained based on a desorption isotherm obtained by adsorbing and desorbing nitrogen on a porous carbon material.
  • the BJH method is a method of analyzing the pore volume distribution with respect to the pore diameter assumed to be cylindrical according to the Barrett-Joyner-Halenda standard model, and can be applied mainly to pores having a diameter of 2 to 200 nm. (For details, see J. Amer. Chem. Soc., 73, 373, 1951 etc.).
  • the MP method is based on the external surface area and adsorption layer thickness (corresponding to the pore radius because the pore shape is cylindrical) obtained from the change in the tangential slope at each point of the adsorption isotherm.
  • all values obtained by rounding off the second decimal place to the first decimal place are used.
  • the voids in the co-continuous structure portion may affect the pore size distribution and pore volume measured by the BJH method or the MP method. That is, there is a possibility that these measured values may be obtained as values that reflect not only the pores but also the presence of voids. Even in this case, the measured values obtained by these methods are used in the present invention. Assume that the average diameter and the pore volume of the pores. Moreover, if the pore volume measured by BJH method or MP method is less than 0.05 cm ⁇ 3 > / g, it will be judged that the pore is not formed in the material surface.
  • the porous carbon material of the present invention has a BET specific surface area of 100 m 2 / g or more.
  • the BET specific surface area is preferably 1000 m 2 / g or more, more preferably 1500 m 2 / g or more, and further preferably 2000 m 2 / g or more.
  • an upper limit is not specifically limited, When it exceeds 4500 m ⁇ 2 > / g, there exists a tendency for the intensity
  • the BET specific surface area in the present invention can be calculated based on the BET equation by measuring the adsorption isotherm by adsorbing and desorbing nitrogen to and from the porous carbon material according to JISR 1626 (1996). it can.
  • the porous carbon material of the present invention includes a portion that does not substantially have a co-continuous structure (hereinafter, simply referred to as “portion that does not have a co-continuous structure”).
  • portion having substantially no co-continuous structure is a portion below the resolution when a cross section formed by the cross section polisher method (CP method) is observed at an enlargement ratio of 1 ⁇ 0.1 (nm / pixel). This means that a part where no clear air gap is observed exists in an area equal to or larger than a square region corresponding to three times the structural period L calculated from the X-ray described later.
  • the portion having substantially no co-continuous structure is densely filled with carbon, so the electron conductivity is high. Therefore, electrical conductivity and thermal conductivity can be kept above a certain level. For example, when used as a battery material, the reaction heat can be quickly discharged out of the system, and the resistance during electron transfer can be reduced. Is possible. In addition, since there is a portion that does not have a co-continuous structure, it is possible to increase resistance to compression fracture.
  • the proportion of the portion that does not have a co-continuous structure can be appropriately adjusted according to each application.
  • the fluid is co-continuous by making the part not to have a co-continuous structure 5% by volume or more. It is preferable because it is possible to prevent leakage from the structural portion and to maintain electrical conductivity and thermal conductivity at a high level.
  • co-continuous structure portion is a flow path and the portion not having the co-continuous structure is a functional portion. And can be separated at a portion having no co-continuous structure.
  • the co-continuous structure portion is referred to as a core layer
  • the portion that does not substantially have the co-continuous structure formed so as to cover the core layer is referred to as a skin layer.
  • the continuous structure of the core layer is preferably formed so that the structural period in the center is 0.002 ⁇ m to 3 ⁇ m.
  • the average porosity in the central part is preferably 10 to 80%.
  • the central portion refers to the center of gravity when the mass distribution in the cross-section of the material is assumed to be uniform in the porous carbon material.
  • the center is the center of gravity, and the form of the material is round.
  • a fiber having a cross section it refers to a point where the distance from the fiber surface is the same in a cross section perpendicular to the fiber axis.
  • a perpendicular line is drawn from the film surface in a cross section orthogonal to the TD or MD direction, and the set of points that are one-half the film thickness on the perpendicular line Is the center.
  • a perpendicular line is drawn from the tangent line of the outer surface of the hollow fiber, and a set of points on the perpendicular line that is one-half the thickness of the material is used as the central part.
  • the structural period can be measured by the X-ray described above.
  • the skin layer is a portion that does not substantially have a co-continuous structure formed around the core layer so as to cover the core layer.
  • the thickness of the skin layer is not particularly limited, and can be appropriately selected according to the use of the material. However, if the thickness is too thick, the porosity tends to decrease as a porous carbon material, so that the thickness is 100 ⁇ m or less. Preferably, it is 50 ⁇ m or less, and most preferably 20 ⁇ m or less. Although it does not specifically limit about a lower limit here, It is preferable that it is 1 nm or more from a viewpoint of maintaining the form of material and exhibiting the function distinguished from the core layer.
  • the shape of the porous carbon material of the present invention is not particularly limited, and examples thereof include a lump shape, a rod shape, a flat plate shape, a disc shape, and a spherical shape. Among them, a fibrous shape, a film shape, or a powder shape is preferable.
  • the fibrous form refers to one having an average length of 100 times or more with respect to the average diameter, and may be a filament, a long fiber, a staple, a short fiber, or a chopped fiber.
  • the shape of the cross section is not limited at all, and can be an arbitrary shape such as a multi-leaf cross section such as a round cross section or a triangular cross section, a flat cross section or a hollow cross section.
  • the core layer may be filled with fluid and / or flowed.
  • an efficient electrochemical reaction can be performed within the co-continuous structure.
  • the carbon skeletons of the co-continuous structure part support each other, thus exhibiting high compression resistance and enabling efficient filling and / or flowing of the fluid. become.
  • the average diameter of the fiber is not particularly limited, and can be arbitrarily determined according to the use, but is preferably 10 nm or more from the viewpoint of maintaining handleability and porosity. Moreover, it is preferable that it is 5000 micrometers or less from a viewpoint of ensuring bending rigidity and improving a handleability.
  • the film-like form can be suitably used for applications such as an electrode of a battery material or an electromagnetic wave shielding material because it can be used as a sheet by combining other materials with the co-continuous structure portion.
  • the skin layer maintains a high level of electrical and thermal conductivity. This is a preferable mode because it functions as an interface suitable for bonding with other materials.
  • the skin layer is formed only on one surface of the film because the core layer as a co-continuous structure portion and other materials can be easily combined.
  • the thickness of the film is not particularly limited and can be arbitrarily determined according to the use, but when handling is considered, it is preferably 10 nm or more, and 5000 ⁇ m or less from the viewpoint of preventing breakage due to bending. It is preferable that
  • the particulate form is suitably used for battery material applications such as electrodes.
  • the portion that does not have a co-continuous structure occupies a part of one particle, so that it is possible to increase the electrical conductivity and thermal conductivity in the particle, and to increase the compressive strength of the particle itself under high pressure. This is preferable because an effect such as a decrease in performance degradation can be expected.
  • the diameter of the particles is not particularly limited and can be appropriately selected depending on the application. However, the range of 10 nm to 10 mm is preferable because it is easy to handle. In particular, when the thickness is 10 ⁇ m or less, for example, a very smooth solid content for forming the paste can be obtained. Therefore, it is possible to prevent defects such as peeling and cracking in the process such as coating. On the other hand, when the thickness is 0.1 ⁇ m or more, when a composite material with a resin is used, a strength improvement effect as a filler can be sufficiently exhibited, which is preferable.
  • the porous carbon material of the present invention includes, as an example, a step (Step 1) in which 10 to 90% by weight of carbonizable resin and 90 to 10% by weight of disappearing resin are mixed to form a resin mixture, It can be produced by a production method having a step of phase separation and immobilization of the resin mixture (step 2), a step of carbonization by heating and baking (step 3), and a step of activating the carbide (step 4).
  • Step 1 is a step in which 10 to 90% by weight of the carbonizable resin and 90 to 10% by weight of the disappearing resin are mixed to form a resin mixture.
  • the carbonizable resin is a resin that is carbonized by firing and remains as a carbon material, and preferably has a carbonization yield of 40% or more.
  • a thermoplastic resin and a thermosetting resin can be used, and examples of the thermoplastic resin include polyphenylene oxide, polyvinyl alcohol, polyacrylonitrile, phenol resin, wholly aromatic polyester, and thermosetting resin. Examples of these include unsaturated polyester resins, alkyd resins, melamine resins, urea resins, polyimide resins, diallyl phthalate resins, lignin resins, urethane resins, and the like. In view of cost and productivity, polyacrylonitrile and phenol resin are preferable, and polyacrylonitrile is more preferable.
  • polyacrylonitrile is a preferred embodiment because a high specific surface area can be obtained. These may be used alone or in a mixed state.
  • the carbonization yield here is the difference between the weight at room temperature and the weight at 800 ° C. by measuring the change in weight when the temperature is raised at 10 ° C./min in a nitrogen atmosphere by the thermogravimetry (TG) method. Is divided by the weight at room temperature.
  • the disappearing resin is a resin that can be removed after Step 2 described later, and is preferably a resin that can be removed at least in any stage of the infusibilization treatment, the infusibilization treatment, or the firing. .
  • the removal rate is preferably 80% by weight or more, and more preferably 90% by weight or more when finally becoming a porous carbon material.
  • the method for removing the disappearing resin is not particularly limited, and is a method of chemically removing the polymer by depolymerizing it with a chemical, a method of removing the disappearing resin with a solvent that dissolves, or by thermal decomposition by heating. A method of removing the lost resin by reducing the molecular weight is preferably used. These methods can be used singly or in combination, and when implemented in combination, each may be performed simultaneously or separately.
  • a method of hydrolyzing with an acid or alkali is preferable from the viewpoints of economy and handleability.
  • the resin that is susceptible to hydrolysis by acid or alkali include polyester, polycarbonate, and polyamide.
  • the mixed carbonizable resin and the disappearing resin are continuously supplied with a solvent to dissolve and remove the disappearing resin, or mixed in a batch system.
  • a suitable example is a method of dissolving and removing the disappearing resin.
  • the disappearing resin suitable for the removal method using a solvent include polyolefins such as polyethylene, polypropylene, and polystyrene, acrylic resins, methacrylic resins, polyvinylpyrrolidone, aliphatic polyesters, and polycarbonates.
  • polyolefins such as polyethylene, polypropylene, and polystyrene
  • acrylic resins methacrylic resins
  • polyvinylpyrrolidone aliphatic polyesters
  • polycarbonates examples include polystyrene, methacrylic resin, polycarbonate, and polyvinylpyrrolidone.
  • a method of removing the lost resin by reducing the molecular weight by thermal decomposition a method in which the mixed carbonizable resin and the lost resin are heated in a batch manner to thermally decompose, or a continuously mixed carbonized resin and the lost resin are removed.
  • a method of heating and thermally decomposing while continuously supplying to a heat source a method in which the mixed carbonizable resin and the lost resin are heated in a batch manner to thermally decompose, or a continuously mixed carbonized resin and the lost resin are removed.
  • the disappearing resin is preferably a resin that disappears by thermal decomposition when carbonizing the carbonizable resin by firing in Step 3 described later, and is large during the infusibilization treatment of the carbonizable resin described later.
  • a resin that does not cause a chemical change and has a carbonization yield after firing of less than 10% is preferable.
  • Specific examples of such disappearing resins include polyolefins such as polyethylene, polypropylene and polystyrene, acrylic resins, methacrylic resins, polyacetals, polyvinylpyrrolidones, aliphatic polyesters, aromatic polyesters, aliphatic polyamides, polycarbonates and the like. These may be used alone or in a mixed state.
  • step 1 the carbonizable resin and the disappearing resin are mixed to form a resin mixture (polymer alloy).
  • “Compatibilized” as used herein refers to creating a state in which the phase separation structure of the carbonizable resin and the disappearing resin is not observed with an optical microscope by appropriately selecting the temperature and / or solvent conditions.
  • the carbonizable resin and the disappearing resin may be compatible by mixing only the resins, or may be compatible by adding a solvent or the like.
  • a system in which a plurality of resins are compatible includes a phase diagram of an upper critical eutectic temperature (UCST) type that is in a phase separation state at a low temperature but has one phase at a high temperature, and conversely, a phase separation state at a high temperature.
  • UCT upper critical eutectic temperature
  • LCST lower critical solution temperature
  • the solvent to be added is not particularly limited, but the absolute value of the difference from the average value of the solubility parameter (SP value) of the carbonizable resin and the disappearing resin, which is a solubility index, is within 5.0. It is preferable. Since it is known that the smaller the absolute value of the difference from the average value of SP values, the higher the solubility, it is preferable that there is no difference. Further, the larger the absolute value of the difference from the average SP value, the lower the solubility, and it becomes difficult to take a compatible state between the carbonizable resin and the disappearing resin. Therefore, the absolute value of the difference from the average value of SP values is preferably 3.0 or less, and most preferably 2.0 or less.
  • carbonizable resins and disappearing resins are polyphenylene oxide / polystyrene, polyphenylene oxide / styrene-acrylonitrile copolymer, wholly aromatic polyester / polyethylene as long as they do not contain solvents.
  • examples include terephthalate, wholly aromatic polyester / polyethylene naphthalate, wholly aromatic polyester / polycarbonate.
  • combinations of systems containing solvents include polyacrylonitrile / polyvinyl alcohol, polyacrylonitrile / polyvinylphenol, polyacrylonitrile / polyvinylpyrrolidone, polyacrylonitrile / polylactic acid, polyvinyl alcohol / vinyl acetate-vinyl alcohol copolymer, polyvinyl Examples include alcohol / polyethylene glycol, polyvinyl alcohol / polypropylene glycol, and polyvinyl alcohol / starch.
  • the method of mixing the carbonizable resin and the disappearing resin is not limited, and various known mixing methods can be adopted as long as uniform mixing is possible. Specific examples include a rotary mixer having a stirring blade and a kneading extruder using a screw.
  • the temperature (mixing temperature) when mixing the carbonizable resin and the disappearing resin is equal to or higher than the temperature at which both the carbonizable resin and the disappearing resin are softened.
  • the softening temperature may be appropriately selected as the melting point if the carbonizable resin or disappearing resin is a crystalline polymer, and the glass transition temperature if it is an amorphous resin.
  • the mixing temperature is preferably 400 ° C. or lower from the viewpoint of preventing deterioration of the resin due to thermal decomposition and obtaining a precursor of a porous carbon material having excellent quality.
  • Step 1 90 to 10% by weight of the disappearing resin is mixed with 10 to 90% by weight of the carbonizable resin. It is preferable that the carbonizable resin and the disappearing resin are within the above-mentioned range since an optimum void size and void ratio can be arbitrarily designed. If the carbonizable resin is 10% by weight or more, it is possible to maintain the mechanical strength of the carbonized material and improve the yield. Further, if the carbonizable material is 90% by weight or less, it is preferable because the lost resin can efficiently form voids.
  • the mixing ratio of the carbonizable resin and the disappearing resin can be arbitrarily selected within the above range in consideration of the compatibility of each material. Specifically, in general, the compatibility between resins deteriorates as the composition ratio approaches 1: 1, so when a system that is not very compatible is selected as a raw material, the amount of carbonizable resin is increased. It is also preferable to improve the compatibility by reducing it so that it approaches a so-called uneven composition.
  • a solvent when mixing the carbonizable resin and the disappearing resin. Addition of a solvent lowers the viscosity of the carbonizable resin and the disappearing resin to facilitate molding, and facilitates compatibilization of the carbonizable resin and the disappearing resin.
  • the solvent here is not particularly limited as long as it is a liquid at room temperature that can dissolve and swell at least one of carbonizable resin and disappearing resin. Any resin that dissolves the resin is more preferable because the compatibility between the two can be improved.
  • the addition amount of the solvent should be 20% by weight or more based on the total weight of the carbonizable resin and the disappearing resin from the viewpoint of improving the compatibility between the carbonizable resin and the disappearing resin and reducing the viscosity to improve the fluidity. preferable. On the other hand, from the viewpoint of costs associated with recovery and reuse of the solvent, it is preferably 90% by weight or less based on the total weight of the carbonizable resin and the disappearing resin.
  • Step 2 is a step of forming a fine structure by immobilizing the resin mixture in the state of compatibility in Step 1 by a method not involving a chemical reaction, and immobilizing.
  • Phase separation of mixed carbonizable resin and disappearing resin can be induced by various physical and chemical methods, for example, by thermally induced phase separation method that induces phase separation by temperature change, by adding non-solvent Non-solvent induced phase separation to induce phase separation, flow induced phase separation to induce phase separation by physical field, orientation induced phase separation, electric field induced phase separation, magnetic field induced phase separation, pressure induced phase separation
  • thermally induced phase separation method that induces phase separation by temperature change
  • Non-solvent induced phase separation to induce phase separation
  • flow induced phase separation to induce phase separation by physical field
  • orientation induced phase separation to induce phase separation by physical field
  • orientation induced phase separation electric field induced phase separation
  • magnetic field induced phase separation magnetic field induced phase separation
  • pressure induced phase separation There are various methods such as a reaction-induced phase separation method that induces phase separation using a chemical reaction or a chemical reaction. In the production method of the present invention, reaction-induced phase separation is excluded for the reasons described later.
  • phase separation methods can be used alone or in combination.
  • Specific methods for use in combination include, for example, a method in which non-solvent induced phase separation is caused through a coagulation bath and then heated to cause heat-induced phase separation, or a temperature in the coagulation bath is controlled to control a non-solvent induced phase.
  • Examples thereof include a method of causing separation and thermally induced phase separation at the same time, a method of bringing the material discharged from the die into cooling and causing thermally induced phase separation, and then contacting with a non-solvent.
  • the primary structure refers to a chemical structure that constitutes a carbonizable resin or a disappearing resin.
  • the resin mixture in which the microstructure after phase separation is fixed in Step 2 is subjected to the removal treatment of the lost resin before being subjected to the carbonization step (Step 3), simultaneously with the carbonization step, or both.
  • the method for the removal treatment is not particularly limited as long as the disappearing resin can be removed. Specifically, the method of removing the lost resin by chemically decomposing and reducing the molecular weight using acid, alkali or enzyme, the method of removing by dissolving with a solvent that dissolves the lost resin, electron beam, gamma ray, ultraviolet ray, infrared ray A method of decomposing and removing the disappearing resin using radiation or heat such as is suitable.
  • a heat treatment can be performed at a temperature at which 80% by weight or more of the disappearance resin disappears in advance, and a carbonization step (step 3) or infusibilization described later.
  • the lost resin can be removed by pyrolysis and gasification. From the viewpoint of increasing the productivity by reducing the number of steps, it is more preferable to select a method in which the lost resin is thermally decomposed and gasified and removed simultaneously with the heat treatment in the carbonization step (step 3) or infusibilization treatment described later. It is.
  • the precursor material which is a resin mixture in which the microstructure after phase separation is fixed in step 2
  • the infusible treatment method is not particularly limited, and a known method can be used.
  • Specific methods include a method of causing oxidative crosslinking by heating in the presence of oxygen, a method of forming a crosslinked structure by irradiating high energy rays such as electron beams and gamma rays, and impregnating a substance having a reactive group, Examples thereof include a method of forming a crosslinked structure by mixing, and a method of causing oxidative crosslinking by heating in the presence of oxygen is preferable because the process is simple and the production cost can be kept low. These methods may be used singly or in combination, and each may be used simultaneously or separately.
  • the heating temperature in the method of causing oxidative crosslinking by heating in the presence of oxygen is preferably 150 ° C. or higher from the viewpoint of efficiently proceeding with the crosslinking reaction, and it can be recovered from weight loss due to thermal decomposition, combustion, etc. of carbonizable resin. From the viewpoint of preventing rate deterioration, the temperature is preferably 350 ° C. or lower.
  • the oxygen concentration during the treatment is not particularly limited, but it is preferable to supply a gas having an oxygen concentration of 18% or more, particularly air, as it is because manufacturing costs can be kept low.
  • the method for supplying the gas is not particularly limited, and examples thereof include a method for supplying air directly into the heating device and a method for supplying pure oxygen into the heating device using a cylinder or the like.
  • the carbonizable resin is irradiated with an electron beam or gamma ray using a commercially available electron beam generator or gamma ray generator. And a method of inducing cross-linking.
  • the lower limit of the irradiation intensity is preferably 1 kGy or more from the efficient introduction of a crosslinked structure by irradiation, and is preferably 1000 kGy or less from the viewpoint of preventing the material strength from being lowered due to the decrease in molecular weight due to cleavage of the main chain.
  • a method of forming a crosslinked structure by impregnating and mixing a substance having a reactive group is a method in which a low molecular weight compound having a reactive group is impregnated in a resin mixture, and a crosslinking reaction is advanced by irradiation with heat or high energy rays. And a method in which a low molecular weight compound having a reactive group is mixed in advance and the crosslinking reaction is advanced by heating or irradiation with high energy rays.
  • Step 3 is a step in which the resin mixture in which the microstructure after phase separation is fixed in Step 2 or the carbonizable resin is baked and carbonized to obtain a carbide when the disappearing resin has already been removed.
  • Calcination is preferably performed by heating to 600 ° C. or higher in an inert gas atmosphere.
  • the inert gas refers to one that is chemically inert during heating, and specific examples include helium, neon, nitrogen, argon, krypton, xenon, carbon dioxide, and the like. Of these, nitrogen and argon are preferably used from the economical viewpoint.
  • nitrogen and argon are preferably used from the economical viewpoint.
  • the carbonization temperature is 1500 ° C. or higher
  • argon is preferably used from the viewpoint of suppressing nitride formation.
  • the flow rate of the inert gas may be an amount that can sufficiently reduce the oxygen concentration in the heating device, and an optimal value can be selected as appropriate depending on the size of the heating device, the amount of raw material supplied, the heating temperature, and the like. preferable.
  • the upper limit of the flow rate is not particularly limited, but is preferably set appropriately in accordance with the temperature distribution and the design of the heating device, from the viewpoint of economy and the temperature change in the heating device being reduced. Further, if the gas generated during carbonization can be sufficiently discharged out of the system, a porous carbon material excellent in quality can be obtained, which is a more preferable embodiment. From this, the generated gas concentration in the system is 3,000 ppm. It is preferable to determine the flow rate of the inert gas so as to be as follows.
  • the upper limit of the heating temperature is not limited, but if it is 3000 ° C. or lower, no special processing is required for the equipment, which is preferable from an economical viewpoint. Moreover, in order to raise a BET specific surface area, it is preferable that it is 1500 degrees C or less, and it is more preferable that it is 1000 degrees C or less.
  • the heating method in the case of continuously performing carbonization treatment, it is a method to take out the material while continuously supplying the material using a roller, a conveyor, or the like in a heating device maintained at a constant temperature. It is preferable because it can be increased.
  • the lower limit of the rate of temperature rise and the rate of temperature drop when performing batch processing in the heating device is not particularly limited, but productivity can be increased by shortening the time required for temperature rise and temperature drop, and 1 ° C. It is preferable that the speed is at least 1 minute.
  • the upper limit of the temperature increase rate and the temperature decrease rate is not particularly limited, it is preferable to make it slower than the thermal shock resistance of the material constituting the heating device.
  • Step 4 is a step of activating the carbide obtained in Step 3 to obtain a porous carbon material.
  • the activation method is not particularly limited, such as a gas activation method or a chemical activation method.
  • the gas activation method is a method of forming pores by heating at 400 to 1500 ° C., preferably 500 to 900 ° C. for several minutes to several hours, using oxygen, water vapor, carbon dioxide gas, air or the like as an activator.
  • the chemical activation method is one or two kinds of activator such as zinc chloride, iron chloride, calcium phosphate, calcium hydroxide, potassium hydroxide, magnesium carbonate, sodium carbonate, potassium carbonate, sulfuric acid, sodium sulfate, potassium sulfate, etc. This is a method of heat treatment for several minutes to several hours using the above, and after washing with water or hydrochloric acid as necessary, the pH is adjusted and dried.
  • the BET specific surface area increases and the pore diameter tends to increase by further increasing the activation or increasing the amount of the activator mixed.
  • the mixing amount of the activator is preferably 0.5 parts by weight or more, more preferably 1.0 parts by weight or more, and further preferably 4 parts by weight or more with respect to the target carbon raw material. Although an upper limit is not specifically limited, 10 weight part or less is common.
  • the pore diameter tends to be larger in the chemical activation method than in the gas activation method.
  • the chemical activation method is preferably employed because the pore diameter can be increased or the BET specific surface area can be increased.
  • a method of activating with an alkaline agent such as calcium hydroxide, potassium hydroxide, potassium carbonate is preferably employed.
  • the porous carbon material that has been activated in step 4 after pulverizing the carbide carbonized through step 3 or the porous carbon material in which pores have been formed through the activation in step 4 is pulverized to form particles.
  • the porous carbon material described above is also an embodiment of the porous carbon material of the present invention.
  • a conventionally known method can be selected for the pulverization treatment, and it is preferable that the pulverization treatment is appropriately selected according to the particle size and the processing amount after the pulverization treatment. Examples of the pulverization method include a ball mill, a bead mill, and a jet mill.
  • the pulverization may be continuous or batch, but is preferably continuous from the viewpoint of production efficiency.
  • the filler to be filled in the ball mill is selected as appropriate, but for applications where mixing of metal materials is not preferred, it is made of a metal oxide such as alumina, zirconia or titania, or stainless steel, iron or the like as a core, nylon or polyolefin It is preferable to use a material coated with fluorinated polyolefin or the like. For other uses, metals such as stainless steel, nickel and iron are preferably used.
  • the grinding aid is arbitrarily selected from water, alcohol or glycol, ketone and the like.
  • the alcohol ethanol and methanol are preferable from the viewpoint of availability and cost, and in the case of glycol, ethylene glycol, diethylene glycol, propylene glycol and the like are preferable.
  • a ketone acetone, ethyl methyl ketone, diethyl ketone and the like are preferable.
  • the pulverized carbide has a uniform particle size by classification, and a uniform structure can be formed by, for example, a filler or an additive to the paste. For this reason, it becomes possible to stabilize the filling efficiency and the paste coating process, and it can be expected to increase the production efficiency and reduce the cost.
  • a particle size it is preferable to select suitably according to the use of the carbide
  • Average porosity (%) B / A ⁇ 100 [BET specific surface area, pore diameter]
  • nitrogen adsorption / desorption at a temperature of 77K was measured by a multipoint method using “BELSORP-18PLUS-HT” manufactured by Bell Japan Ltd. using liquid nitrogen.
  • the surface area was determined by the BET method, and the pore distribution analysis (pore diameter, pore volume) was performed by the MP method or BJH method.
  • Example 1 70 g of polyacrylonitrile (MW 150,000, carbon yield 58%), 70 g of polyvinyl pyrrolidone (MW 40,000) manufactured by Sigma-Aldrich, and 400 g of dimethyl sulfoxide (DMSO) manufactured by Waken Pharmaceutical as a solvent are separated. A uniform and transparent solution was prepared at 150 ° C. while stirring and refluxing for 3 hours. At this time, the concentration of polyacrylonitrile and the concentration of polyvinylpyrrolidone were 13% by weight, respectively.
  • DMSO dimethyl sulfoxide
  • the solution After cooling the obtained DMSO solution to 25 ° C., the solution is discharged at a rate of 3 ml / min from a 0.6 mm ⁇ 1-hole cap and led to a pure water coagulation bath maintained at 25 ° C., and then 5 m / min.
  • the yarn was taken up at a speed and deposited on the bat to obtain a raw yarn. At this time, the air gap was 5 mm, and the immersion length in the coagulation bath was 15 cm.
  • the obtained raw yarn was translucent and caused phase separation.
  • the obtained yarn is dried for 1 hour in a circulation drier kept at 25 ° C. to dry the moisture on the surface of the yarn, followed by vacuum drying at 25 ° C. for 5 hours.
  • Raw material yarn was obtained.
  • the raw yarn as a precursor material was put into an electric furnace maintained at 250 ° C. and infusibilized by heating in an oxygen atmosphere for 1 hour.
  • the raw yarn that had been infusibilized changed to black.
  • Carbon fiber having a co-continuous structure is obtained by carbonizing the obtained infusible raw material under the conditions of a nitrogen flow rate of 1 liter / min, a heating rate of 10 ° C./min, an ultimate temperature of 850 ° C., and a holding time of 1 min. did.
  • the cross section was analyzed, the fiber diameter was 150 ⁇ m, and the thickness of the skin layer, which is a portion having no co-continuous structure, was 5 ⁇ m.
  • a uniform co-continuous structure was formed at the center of the fiber.
  • Example 2 The activation treatment was performed in the same manner as in Example 1 except that sodium hydroxide was used instead of potassium hydroxide.
  • the obtained porous carbon particles had an average porosity of the co-continuous structure portion of 40% and a structural period of 76 nm as in Example 1. Moreover, it had the structure which included the part which does not have a co-continuous structure in some particle
  • the BET specific surface area was almost equivalent to 2554 m 2 / g, but the average diameter of the pores by the MP method doubled to 1.5 nm, and the pore volume was 1.9 cm 3 / g. The results are shown in Table 1.
  • Example 3 In Example 1, water vapor activation was performed instead of alkali activation. That is, the carbon fiber obtained in the same manner as in Example 1 was pulverized with a ball mill, then charged into a rotary kiln and heated to 850 ° C. under a nitrogen flow. After reaching 850 ° C., steam was supplied into the rotary kiln together with nitrogen, and steam activation was performed for 2 hours. After the activation treatment, washing was performed in the same manner as in Example 1. The obtained porous carbon powder had an average porosity of the co-continuous structure portion of 40% and a structural period of 76 nm as in Example 1. Moreover, it had the structure which included the part which does not have a co-continuous structure in some particle
  • the BET specific surface area was as low as 405 m 2 / g
  • the average diameter of the pores by the MP method was about half as 0.4 nm
  • the pore volume was as small as 0.2 cm 3 / g.
  • Example 4 Carbon fibers were obtained in the same manner as in Example 1 except that the concentration of polyacrylonitrile and the concentration of polyvinylpyrrolidone were 7.5% by weight, respectively.
  • the average porosity of the central part of the obtained porous carbon fiber, that is, the porous carbon material was 45%, and the structural period of the co-continuous structure part was 230 nm, which was larger than Example 1.
  • Example 5 In Example 1, porous carbon particles were obtained in the same manner as in Example 1 except that the water was applied by spraying instead of the coagulation bath. The average porosity of the co-continuous structure portion was 50%, and the structure period was 1800 nm. Moreover, it had the structure which included the part which does not have a co-continuous structure in some particle
  • the average porosity of the co-continuous structure portion was 40%, and the structure period was 76 nm. Moreover, it had the structure which included the part which does not have a co-continuous structure in some particle
  • the BET specific surface area was 378 m 2 / g, the average pore diameter by the MP method was 1.4 nm, and the pore volume was 0.2 cm 3 / g. The results are shown in Table 1.
  • Example 1 Using this DMF mixed solution, spinning, infusibilization, and carbonization were performed in the same manner as in Example 1 to obtain carbon fibers.
  • the obtained carbon fiber was not uniform in pore shape and size in the cross section, and the skin layer was unclear. In particular, since a large number of holes were formed in the skin layer portion, it was difficult to use as a composite with other materials or as a separation membrane material. Further, calculation of the structure period was attempted, but the obtained spectrum had no peak and was inferior in the uniformity of the structure. The results are shown in Table 1.
  • Example 3 It carried out similarly to Example 1 except not performing an activation process.
  • the obtained porous carbon particles had an average porosity of the co-continuous structure portion of 40% and a structural period of 76 nm as in Example 1. Moreover, it had the structure which included the part which does not have a co-continuous structure in some particle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Textile Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 炭素骨格および空隙による共連続多孔構造を有し、かつ大きな表面積を付与することにより、電気伝導性、熱伝導性、吸着性、等に優れた多孔質炭素材料を提供する。 【解決手段】 炭素骨格と空隙とがそれぞれ連続構造をなして構造周期0.002μm~3μmの共連続構造を形成する部分を有するとともに、表面に平均直径0.01~10nmの細孔を有し、かつBET比表面積が100m/g以上である多孔質炭素材料。

Description

多孔質炭素材料及び多孔質炭素材料の製造方法
 本発明は、様々な用途に展開可能な多孔質炭素材料及び多孔質炭素材料の製造方法に関するものである。
 多孔質炭素材料は、吸着材料、分離膜、電極材料、触媒担体など幅広い領域で利用可能な材料であり、活性炭、カーボンナノチューブ、メソポーラスシリカやゼオライト、微粒子等の鋳型から製造される鋳型カーボンなど、種々検討されている。
 中でも活性炭は、その大きな比表面積を活かして吸着材料や触媒担体等の工業材料を中心に広く用いられている。一般に、活性炭はセルロースや樹脂等を炭化して得た炭素材料を、賦活することにより細孔を形成して得る。しかしながら賦活過程では、細孔が炭素材料の表面から内部へと一方向へ形成されるため、細孔が互いに連続した連通孔にはならない。したがって、賦活を進行させて高比表面積材料が得られた場合でも、被吸着材等の細孔内流動性が劣り、表面に吸着物質等が到達するのに時間がかかる等の課題があった。また、活性炭粒子が凝集すると、細孔は連通していないために凝集内部の細孔が活用されず、本来の表面積を十分活用できない等の課題もある。従って、連続した細孔が望まれていた。
 例えば、特許文献1には、多孔質炭素繊維を賦活して細孔を形成させ、活性炭繊維とする技術について記載されているが、単に賦活しても連続した細孔を形成させることはできない。
 また、特許文献2には、炭化可能材料と消失材料を混合することで多孔質炭素繊維を得る技術について記載されているが、炭化可能材料と消失材料は非相溶の系の組合せからなり、単に相溶剤を添加するのみでは、やはり連続した細孔を形成できない。
 一方、特許文献3には、熱硬化性樹脂と熱可塑性樹脂を混合し、熱硬化性樹脂を硬化させた後、熱可塑性樹脂を除去してから炭化することで、連続した細孔を形成する例が示されている。しかし、表面積が小さいため活用できる用途に制限があった。
 また、特許文献4には、メソ孔とミクロ孔を有し、メソ孔の外郭を構成する炭素壁が三次元網目構造である多孔質炭素が開示されている。しかし、炭素壁は連続するものの、鋳型粒子により形成した空隙は部分的にしか連続しておらず、連通孔は形成できていなかった。
特開平2-160924号公報 特開平2-160923号公報 特開2004-26954号公報 特開2010-208887号公報
 上記したように、これまでの多孔質炭素材料は、吸着物質等が作用できる大きな表面積と、炭素骨格が連続することに加え、その吸着物質等が容易に表面にアクセスできる連通孔が存在した構造とを、両立したものがなかった。本発明は、炭素骨格および空隙による共連続多孔構造を有し、かつ大きな表面積を付与することにより、電気伝導性、熱伝導性、吸着性、等に優れた多孔質炭素材料を提供するものである。
 本発明は、炭素骨格と空隙とがそれぞれ連続構造をなす構造周期0.002μm~3μmの共連続構造部分を有するとともに、表面に平均直径0.01~10nmの細孔を有し、かつBET比表面積が100m/g以上である多孔質炭素材料である。
 また、当該多孔質炭素材料を製造するための本発明の製造方法は、
工程1:炭化可能樹脂10~90重量%と、消失樹脂90~10重量%を相溶させ、樹脂混合物とする工程;
工程2:化学反応を伴わない方法で相分離させ、固定化する工程;
工程3:焼成により炭化する工程;
工程4:賦活する工程;
をこの順に有する多孔質炭素材料の製造方法である。
 本発明の多孔質炭素材料は、共連続構造部分が大きな表面積を有することによって、吸着物質や作用物質等が作用できる面積が大きくなり、リチウムイオン電池やキャパシタ等の電極材料や、浄化や医療等に用いられる吸着材料、熱伝導体等に高い性能を発揮することが可能となる。また、炭素骨格が連続することによって、炭素表面等で生じた機能を伝える性能、例えば電気伝導性や熱伝導性を高くすることができる。加えて炭素骨格がそれぞれお互いに構造体を支えあう効果により、引張、圧縮などの変形に対しても、ある程度耐性を有する。さらに、炭素骨格以外の部分が空隙として連続していることにより、吸着物質や作用物質等の炭素表面への吸着や作用効果が向上できる。
実施例1の多孔質炭素材料の走査型電子顕微鏡写真である。 比較例3の多孔質炭素材料の走査型電子顕微鏡写真である。
 <多孔質炭素材料>
 〔共連続構造部分〕
 本発明の多孔質炭素材料(以下、単に「材料」ということがある。)は、炭素骨格と空隙とがそれぞれ連続構造をなす共連続構造部分を有する。すなわち、例えば液体窒素中で充分に冷却した試料をピンセット等により割断した断面を走査型電子顕微鏡(SEM)などによって表面観察した際に、炭素骨格とその骨格以外の部分として形成された空隙とがいわゆる共連続構造となっており、具体的には図1の実施例1の多孔質炭素材料の走査型電子顕微鏡写真に例示される通り、奥行き方向に炭素骨格と空隙とがそれぞれ連続した構造として観察される部分を有する。
 本発明の多孔質炭素材料においては、共連続構造部分の空隙に流体を充填及び/又は流すことで、物質の分離、吸着、脱離などの分画特性を発揮させることや、電解液を用いることで電池材料としての機能を付与することも可能となる。また炭素骨格が連続することで、電気伝導性や熱伝導性が高くなる。従って、電池材料として抵抗の低い、損失の少ない材料を提供することができる。また、発生した熱を速やかに系外へ授受し、高い温度均一性を保つことも可能となる。加えて炭素部分がそれぞれお互いに構造体を支えあう効果により、引張、圧縮などの変形に対しても、大きな耐性を有する材料とできる。
 これらの共連続構造としては、格子状やモノリス状が挙げられ、特に限定するものではないが、上記効果を発揮できる点ではモノリス状であることが好ましい。本発明でいうモノリス状とは、共連続構造において炭素骨格が三次元網目構造をなす形態をいい、個別の粒子が凝集・連結した構造や、あるいは逆に、凝集・連結した鋳型粒子を除去することにより生じた空隙とその周囲の骨格により形成された構造、のような不規則な構造とは区別される。
 また、本発明の多孔質炭素材料における共連続構造部分の構造周期は0.002μm~3μmである。本発明において、構造周期とは、本発明の多孔質炭素材料試料に対して、X線を入射し、散乱強度がピーク値を持つ位置の散乱角度θより、下記の式で算出されるものである。
Figure JPOXMLDOC01-appb-M000001
構造周期:L、λ:入射X線の波長
 共連続構造部分の構造周期が0.002μm以上であると、空隙部に流体を充填及び/又は流すことができるほか、炭素骨格を通じて電気伝導性、熱伝導性を向上することが可能となる。構造周期は0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。また、構造周期が3μm以下であると、高い表面積や物性を得ることができる。構造周期は2μm以下であることが好ましく、1μm以下であることがより好ましい。さらに、均一な連続構造を有することで、流動抵抗を低減でき、理想的な分画材料としても利用が可能である。なお、X線による構造周期の解析に際して、共連続構造を有しない部分については、構造周期が上記範囲外となるため解析には影響なく、上記式で算出される構造周期を以って、共連続構造形成部の構造周期とするものとする。
 構造周期は小さいほど構造が細かく、単位体積あるいは単位重量当りの表面積が大きく、例えば触媒を担持する場合などには触媒と流体との接触効率が高まる。また、構造周期は大きいほど圧力損失を低減し、流体を多く充填及び/又は流すことが可能となる。これらのことから、共連続構造部分の構造周期は、使用する用途に応じて適宜調整することができる。
 本発明の多孔質炭素材料は、連続空隙構造を有する部分の構造サイズの分布が小さいため、吸着材として好適である。特に、高度な分画特性を有するHPLC用カラム材料用として好適である。更には連続構造を有する骨格部分の表面に触媒を担持する基材などへの応用も可能となる。
 また、共連続構造部分は、平均空隙率が10~80%であることが好ましい。平均空隙率とは、包埋した試料をクロスセクションポリッシャー法(CP法)により精密に形成させた断面を、1±0.1(nm/画素)となるよう調整された拡大率で、70万画素以上の解像度で観察した画像から、計算に必要な着目領域を512画素四方で設定し、着目領域の面積をA、孔部分の面積をBとして、以下の式で算出されたものを言う。
 平均空隙率(%)=B/A×100
 平均空隙率は、高いほど他素材との複合の際に充填効率を高められるほか、ガスや液体の流路として圧力損失が小さく、流速を高めることができる一方、低いほど圧縮や曲げといった断面方向にかかる力に強くなるため、取り扱い性や加圧条件での使用に際して有利となる。これらのことを考慮し、共連続構造部分の平均空隙率は15~75%の範囲であることが好ましく、18~70%の範囲がさらに好ましい。
 〔細孔〕
 さらに、本発明の多孔質炭素材料は、表面に平均直径0.01~10nmの細孔を有する。表面とは、炭素材料の共連続構造部分における炭素骨格の表面も含め、多孔質炭素材料のあらゆる外部との接触面を指す。細孔は、共連続構造部分における炭素骨格の表面および/または後述する共連続構造を実質的に有しない部分に形成することができるが、少なくとも共連続構造を有する部分における炭素骨格の表面に形成していることが好ましい。
 このような細孔の平均直径は0.1nm以上であることが好ましく、0.5nm以上であることがさらに好ましい。また、5nm以下であることが好ましく、2nm以下であることがさらに好ましい。細孔の平均直径が0.01nm以上であることにより、吸着物質や作用物質等に対し機能することができる。また、10nm以下であることにより、効率的に吸着等の機能を発現できる。細孔直径は、効率的な吸着等の観点から、目的とする吸着物質等の直径に対して1.1~2.0倍程度に適宜調整することが好ましい。
 さらに、本発明の多孔質炭素材料の細孔容積は0.1cm/g以上であることが好ましい。細孔容積は、1.0cm/g以上であることがより好ましく、1.5cm/g以上であることがさらに好ましい。細孔容積が0.1cm/g以上であることにより、吸着物質や作用物質の吸着性能等がより向上する。上限は特に限定されないが、10cm/gを超えると、多孔質炭素材料の強度が低下し、取り扱い性が悪くなる傾向があるため好ましくない。
 なお、本発明において、細孔の平均直径とは、BJH法またはMP法のいずれかの方法による測定値を意味する。すなわち、BJH法またはMP法による測定値のどちらか一方でも0.01~10nmの範囲に入っていれば、表面に平均直径0.01~10nmの細孔を有するものと判断する。細孔直径の好ましい範囲についても同様である。BJH法やMP法は、細孔径分布解析法として広く用いられている方法であり、多孔質炭素材料に窒素を吸脱着させることにより求めた脱着等温線に基づいて求めることができる。BJH法はBarrett-Joyner-Halendaの標準モデルに従って円筒状と仮定した細孔の直径に対する細孔容積の分布を解析する方法であり、主として2~200nmの直径を有する細孔に適用することができる(詳細はJ.Amer.Chem.Soc.,73,373,1951等を参照)。また、MP法は吸着等温線の各点での接線の傾きの変化から求められる各区間の外部表面積と吸着層厚み(細孔形状を円筒形とするため細孔半径に相当)を基に細孔容積を求め、吸着層厚みに対してプロットすることにより、細孔径分布を得る方法であり(詳細はJounalof Colloid and Interface Science,26,45,1968等を参照)、主として0.4~2nmの直径を有する細孔に適用できる。本発明では、いずれも小数第二位を四捨五入して、小数第一位まで求めた値を用いる。
 なお、本発明の多孔質炭素材料においては、共連続構造部分の空隙がBJH法あるいはMP法により測定される細孔径分布や細孔容積に影響を及ぼす可能性がある。すなわち、純粋に細孔のみではなく、空隙の存在をも反映した値としてこれらの測定値が得られる可能性があるが、その場合であってもこれらの方法により求めた測定値を本発明における細孔の平均直径および細孔容積と判断するものとする。また、BJH法あるいはMP法により測定される細孔容積が0.05cm/g未満であれば、材料表面に細孔は形成されていないものと判断する。
 また、本発明の多孔質炭素材料は、BET比表面積が100m/g以上である。BET比表面積は1000m/g以上であることが好ましく、1500m/g以上であることがより好ましく、2000m/g以上であることがさらに好ましい。100m/g以上であることにより、吸着物質や作用物質に対する面積が大きくなり、性能が向上する。上限は特に限定されないが、4500m/gを超えると、多孔質炭素材料の強度が低下し、取り扱い性が悪くなる傾向がある。なお、本発明におけるBET比表面積は、JISR 1626(1996)に準じ、多孔質炭素材料に窒素を吸脱着させることにより吸着等温線を測定し、測定したデータをBET式に基づいて算出することができる。
 〔共連続構造を実質的に有しない部分〕
 本発明の多孔質炭素材料は、共連続構造を実質的に有しない部分(以下、単に「共連続構造を有しない部分」という場合がある。)を含んでいることも、好ましい態様である。共連続構造を実質的に有しない部分とは、クロスセクションポリッシャー法(CP法)により形成させた断面を、1±0.1(nm/画素)の拡大率で観察した際に、解像度以下であることにより明確な空隙が観察されない部分が、一辺が後述のX線から算出される構造周期Lの3倍に対応する正方形の領域以上の面積で存在することを意味する。
 共連続構造を実質的に有しない部分には炭素が緻密に充填されているため電子伝導性が高い。そのため、電気伝導性、熱伝導性を一定レベル以上に保つことができ、例えば電池材料として使用した場合に反応熱を系外へ速やかに排出することや、電子の授受に際しての抵抗を低くすることが可能である。また、共連続構造を有しない部分が存在することで、特に圧縮破壊に対する耐性を高めることが可能である。
 共連続構造を有しない部分の割合は、各用途によって適宜調整することができる。例えば、分画材料として共連続構造を有しない部分を壁面として使用する場合や、電池材料として使用する場合は、5体積%以上が共連続構造を有しない部分とすることで、流体が共連続構造部分から漏出することを防止したり、電気伝導性、熱伝導性を高いレベルで維持したりすることが可能であるため好ましい。
 また、共連続構造部分を流路、共連続構造を有しない部分を機能部分とした機能性材料とすることも可能であり、具体的には共連続構造部分における空隙を流路として気体または液体を流し、共連続構造を有しない部分において分離を行うことができる。
 共連続構造を有しない部分が共連続構造部分を覆う形態である場合には、より効率的に共連続構造を構成する空隙部へ流体を充填及び/又は流すことが可能となる。以降、この形態の多孔質炭素材料において、共連続構造部分をコア層、コア層を覆うように形成された共連続構造を実質的に有しない部分をスキン層と呼ぶ。スキン層とコア層からなる非対称構造を有することで、例えば分離膜用途に用いた場合には、スキン層を分離機能層、コア層を流体の流路として効率的な濾過、分離が可能になる。また、コア層を持つことで、例えば繊維やフィルムといった形態の材料の断面から共連続構造の内部へ他素材を含浸することが容易であるほか、物質透過のためのパスとして利用することも可能となるため、例えば分離用カラムの流路や、気体分離膜のガス流路として活用することが可能である。
 コア層の連続構造は、中心部における構造周期が0.002μm~3μmとなるように形成されていることが好ましい。また、同様に中心部における平均空隙率が10~80%であることが好ましい。ここで中心部とは、多孔質炭素材料中において、材料の断面における質量分布が均一であると仮定した際の重心を指し、例えば粉体の場合は、そのまま重心であり、材料の形態が丸断面を持つ繊維の場合は、繊維軸と直交する断面において繊維表面からの距離が同一となる点を指す。ただし明確に重心を定義することが困難なフィルム形状の場合は、TD又はMD方向と直交する断面においてフィルム表面から垂線を引き、その垂線上におけるフィルム厚みの二分の一の寸法である点の集合を中心部とする。また同様に重心が材料中に存在しない中空繊維の場合には、中空繊維外表面の接線から垂線を引き、垂線上において材料厚みの二分の一の寸法にある点の集合を中心部とする。構造周期は、上述したX線により測定することができる。
 スキン層は、コア層を覆うように、コア層の周囲に形成された共連続構造を実質的に有しない部分である。スキン層の厚みは特に限定されるものではなく、材料の用途に応じて適宜選択することができるが、厚すぎると多孔質炭素材料として空隙率が低下する傾向が見られることから、100μm以下であることが好ましく、50μm以下であることがより好ましく、20μm以下であることが最も好ましい。ここで下限についても特に限定されるものではないが、材料の形態を保ち、コア層と区別された機能を発揮させる観点から1nm以上であることが好ましい。
 〔多孔質炭素材料の形状〕
 本発明の多孔質炭素材料の形状は特に限定されず、例えば塊状、棒状、平板状、円盤状、球状などが挙げられるが、中でも繊維状、フィルム状または粉末状の形態であることが好ましい。
 繊維状の形態とは、平均直径に対して平均長さが100倍以上のものを指し、フィラメント、長繊維であっても、ステープル、短繊維、チョップドファイバーであっても良い。また断面の形状は、何ら制限されるものではなく、丸断面、三角断面等の多葉断面、扁平断面や中空断面など任意の形状とすることが可能である。
 特に、共連続構造を有するコア層を芯とし、その周囲に共連続構造を実質的に有しないスキン層が形成された繊維である場合には、コア層に流体を充填及び/又は流すことができ、特に電解液を流した場合には、共連続構造内で効率的な電気化学反応を行うことができる。また高圧で流体を充填及び/又は流す際には、共連続構造部分の炭素骨格がお互いに支えあう構造を持つため、高い圧縮耐性を示し、効率的に流体を充填及び/又は流すことが可能になる。
 繊維の平均直径は特に限定されるものではなく、用途に応じて任意に決定することができるが、取り扱い性や多孔質を維持する観点から10nm以上であることが好ましい。また曲げ剛性を確保して、取り扱い性を向上させる観点から、5000μm以下であることが好ましい。
 フィルム状の形態は、共連続構造部分に他の素材を複合してそのままシートとして使用が可能になるため、例えば電池材料の電極や電磁波遮蔽材などの用途に好適に用いることができる。特に共連続構造を有するコア層と、その片面または両面に共連続構造を実質的に有しないスキン層を有するフィルムである場合には、スキン層が電気伝導性や熱伝導性を高いレベルで維持できることや、他素材との接着などに好適な界面として機能するため好ましい態様である。更に該スキン層は、フィルムの一面のみに形成された形態であると、共連続構造部分としてのコア層と他の素材との複合が容易になるため好ましい。
 フィルムの厚みは特に限定されるものではなく、用途に応じて任意に決定することができるが、取り扱い性を考慮した場合、10nm以上であることが好ましく、曲げによる破損を防止する観点から5000μm以下であることが好ましい。
 粒子状の形態は、例えば電極等の電池材料用途等に好適に用いられる。共連続構造を有しない部分が、粒子1個のうちの一部を占めることにより、粒子内における電気伝導性、熱伝導性を高めることが可能になるほか、粒子自体の圧縮強度を高め高圧下での性能劣化が少なくなる等の効果が期待できるため、好ましい。
 また、粒子の直径は特に限定されるものではなく、用途に応じて適宜選択することが可能であるが、10nm~10mmの範囲であると、取り扱うことが容易になるため好ましい。特に10μm以下であると、例えばペーストを形成する固形分として非常に滑らかなものが得られるため、塗布などの工程におけるペーストはがれや割れなどの欠点を防止することが可能である。一方0.1μm以上であると、樹脂との複合材料とした場合に、フィラーとしての強度向上効果を充分に発揮させられるため好ましい。
 <多孔質炭素材料の製造方法>
 本発明の多孔質炭素材料は、一例として、炭化可能樹脂10~90重量%と消失樹脂90~10重量%とを相溶させて樹脂混合物とする工程(工程1)と、相溶した状態の樹脂混合物を相分離させ、固定化する工程(工程2)、加熱焼成により炭化する工程(工程3)、炭化物を賦活する工程(工程4)とを有する製造方法により製造することができる。
 〔工程1〕
 工程1は、炭化可能樹脂10~90重量%と、消失樹脂90~10重量%と相溶させ、樹脂混合物とする工程である。
 ここで炭化可能樹脂とは、焼成により炭化し、炭素材料として残存する樹脂であり、炭化収率が40%以上のものが好ましい。例えば、熱可塑性樹脂および熱硬化性樹脂の双方を用いることができ、熱可塑性樹脂の例としては、ポリフェニレンオキシド、ポリビニルアルコール、ポリアクリロニトリル、フェノール樹脂、全芳香族ポリエステルが挙げられ、熱硬化性樹脂の例としては、不飽和ポリエステル樹脂、アルキド樹脂、メラミン樹脂、ユリア樹脂、ポリイミド樹脂、ジアリルフタレート樹脂、リグニン樹脂、ウレタン樹脂などを列挙することができる。コスト、生産性の点でポリアクリロニトリル、フェノール樹脂が好ましく、ポリアクリロニトリルがより好ましい。特に本発明では、ポリアクリロニトリルでも高比表面積が得られることから、好ましい態様である。これらは単独で用いても、混合された状態で用いても構わない。ここでいう炭化収率は、熱重量測定(TG)法で、窒素雰囲気下、10℃/分で昇温したときの重量変化を測定し、室温での重量と800℃での重量との差を、室温での重量で除したものをいう。
 また消失樹脂とは、後述する工程2の後に除去できる樹脂であり、好ましくは不融化処理と同時もしくは不融化処理後または焼成と同時、の少なくともいずれかの段階で除去することのできる樹脂である。除去率は、最終的に多孔質炭素材料となった際に80重量%以上であることが好ましく、90重量%以上であることがより好ましい。消失樹脂を除去する方法については特に限定されるものではなく、薬品を用いて解重合するなどして化学的に除去する方法、消失樹脂を溶解する溶媒により除去する方法、加熱して熱分解によって消失樹脂を低分子量化して除去する方法などが好適に用いられる。これらの手法は単独で、もしくは組み合わせて使用することができ、組み合わせて実施する場合にはそれぞれを同時に実施しても別々に実施しても良い。
 化学的に除去する方法としては、酸またはアルカリを用いて加水分解する方法が経済性や取り扱い性の観点から好ましい。酸またはアルカリによる加水分解を受けやすい樹脂としては、ポリエステル、ポリカーボネート、ポリアミドなどが挙げられる。
 消失樹脂を溶解する溶媒により除去する方法としては、混合された炭化可能樹脂と消失樹脂に対して、連続して溶媒を供給して消失樹脂を溶解、除去する方法や、バッチ式で混合して消失樹脂を溶解、除去する方法などが好適な例として挙げられる。
 溶媒により除去する方法に適した消失樹脂の具体的な例としては、ポリエチレン、ポリプロピレン、ポリスチレンなどのポリオレフィン、アクリル樹脂、メタクリル樹脂、ポリビニルピロリドン、脂肪族ポリエステル、ポリカーボネートなどが挙げられる。中でも溶媒への溶解性から非晶性の樹脂であることがより好ましく、その例としてはポリスチレン、メタクリル樹脂、ポリカーボネート、ポリビニルピロリドンが挙げられる。
 熱分解によって消失樹脂を低分子量化して除去する方法としては、混合された炭化可能樹脂と消失樹脂をバッチ式で加熱して熱分解する方法や、連続して混合された炭化可能樹脂と消失樹脂を加熱源中へ連続的に供給しつつ加熱して熱分解する方法が挙げられる。
 消失樹脂は、これらのなかでも、後述する工程3において、炭化可能樹脂を焼成により炭化する際に熱分解により消失する樹脂であることが好ましく、後述する炭化可能樹脂の不融化処理の際に大きな化学変化を起こさず、かつ焼成後の炭化収率が10%未満となる樹脂であることが好ましい。このような消失樹脂の具体的な例としてはポリエチレン、ポリプロピレン、ポリスチレンなどのポリオレフィン、アクリル樹脂、メタクリル樹脂、ポリアセタール、ポリビニルピロリドン、脂肪族ポリエステル、芳香族ポリエステル、脂肪族ポリアミド、ポリカーボネートなどを列挙することができ、これらは、単独で用いても、混合された状態で用いても構わない。
 工程1においては、炭化可能樹脂と消失樹脂を相溶させ、樹脂混合物(ポリマーアロイ)とする。ここでいう「相溶させ」とは、温度および/または溶媒の条件を適切に選択することにより、光学顕微鏡で炭化可能樹脂と消失樹脂の相分離構造が観察されない状態を作り出すことをいう。
 炭化可能樹脂と消失樹脂は、樹脂同士のみの混合により相溶させてもよいし、溶媒等を加えることにより相溶させてもよい。
 複数の樹脂が相溶する系としては、低温では相分離状態にあるが高温では1相となる上限臨界共溶温度(UCST)型の相図を示す系や、逆に、高温では相分離状態にあるが低温では1相となる下限臨界共溶温度(LCST)型の相図を示す系などが挙げられる。また特に炭化可能樹脂と消失樹脂の少なくとも一方が溶媒に溶解した系である場合には、非溶媒の浸透によって後述する相分離が誘発されるものも好適な例として挙げられる。
 加えられる溶媒については特に限定されるものではないが、溶解性の指標となる炭化可能樹脂と消失樹脂の溶解度パラメーター(SP値)の平均値からの差の絶対値が、5.0以内であることが好ましい。SP値の平均値からの差の絶対値は、小さいほど溶解性が高いことが知られているため、差がないことが好ましい。またSP値の平均値からの差の絶対値は、大きいほど溶解性が低くなり、炭化可能樹脂と消失樹脂との相溶状態を取ることが難しくなる。このことからSP値の平均値からの差の絶対値は、3.0以下であることが好ましく、2.0以下が最も好ましい。
 相溶する系の具体的な炭化可能樹脂と消失樹脂の組み合わせ例としては、溶媒を含まない系であれば、ポリフェニレンオキシド/ポリスチレン、ポリフェニレンオキシド/スチレン-アクリロニトリル共重合体、全芳香族ポリエステル/ポリエチレンテレフタレート、全芳香族ポリエステル/ポリエチレンナフタレート、全芳香族ポリエステル/ポリカーボネートなどが挙げられる。溶媒を含む系の具体的な組合せ例としては、ポリアクリロニトリル/ポリビニルアルコール、ポリアクリロニトリル/ポリビニルフェノール、ポリアクリロニトリル/ポリビニルピロリドン、ポリアクリロニトリル/ポリ乳酸、ポリビニルアルコール/酢酸ビニル-ビニルアルコール共重合体、ポリビニルアルコール/ポリエチレングリコール、ポリビニルアルコール/ポリプロピレングリコール、ポリビニルアルコール/デンプンなどを挙げることができる。
 炭化可能樹脂と消失樹脂を混合する方法については限定されるものではなく、均一に混合できる限りにおいて公知の種々の混合方式を採用できる。具体例としては、攪拌翼を持つロータリー式のミキサーや、スクリューによる混練押出機などが挙げられる。
 また炭化可能樹脂と消失樹脂を混合する際の温度(混合温度)を、炭化可能樹脂と消失樹脂が共に軟化する温度以上とすることも好ましい態様である。ここで軟化する温度とは、炭化可能樹脂または消失樹脂が結晶性高分子であれば融点、非晶性樹脂であればガラス転移点温度を適宜選択すればよい。混合温度を炭化可能樹脂と消失樹脂が共に軟化する温度以上とすることで、両者の粘性を下げられるため、より効率の良い攪拌、混合が可能になる。混合温度の上限についても特に限定されるものではないが、熱分解による樹脂の劣化を防止し、品質に優れた多孔質炭素材料の前駆体を得る観点から、400℃以下であることが好ましい。
 また、工程1においては、炭化可能樹脂10~90重量%に対し消失樹脂90~10重量%を混合する。炭化可能樹脂と消失樹脂が前記範囲内であると、最適な空隙サイズや空隙率を任意に設計できるため好ましい。炭化可能樹脂が10重量%以上であれば、炭化後の材料における力学的な強度を保つことが可能になるほか、収率が向上するため好ましい。また炭化可能な材料が90重量%以下であれば、消失樹脂が効率よく空隙を形成できるため好ましい。
 炭化可能樹脂と消失樹脂の混合比については、それぞれの材料の相溶性を考慮して、上記の範囲内で任意に選択することができる。具体的には、一般に樹脂同士の相溶性はその組成比が1対1に近づくにつれて悪化するため、相溶性のあまり高くない系を原料に選択した場合には、炭化可能樹脂の量を増やす、減らすなどして、いわゆる偏組成に近づけることで相溶性を改善することも好ましい態様として挙げられる。
 また炭化可能樹脂と消失樹脂を混合する際に、溶媒を添加することも好ましい態様である。溶媒を添加することで炭化可能樹脂と消失樹脂の粘性を下げ、成形を容易にするほか、炭化可能樹脂と消失樹脂を相溶化させやすくなる。ここでいう溶媒も特に限定されるものではなく、炭化可能樹脂、消失樹脂のうち少なくともいずれか一方を溶解、膨潤させることが可能な常温で液体であるものであれば良く、炭化可能樹脂及び消失樹脂をいずれも溶解するものであれば、両者の相溶性を向上させることが可能となるためより好ましい態様である。
 溶媒の添加量は、炭化可能樹脂と消失樹脂の相溶性を向上させ、粘性を下げて流動性を改善する観点から炭化可能樹脂と消失樹脂の合計重量に対して20重量%以上であることが好ましい。また一方で溶媒の回収、再利用に伴うコストの観点から、炭化可能樹脂と消失樹脂の合計重量に対して90重量%以下であることが好ましい。
 〔工程2〕
 工程2は、工程1において相溶させた状態の樹脂混合物を、化学反応を伴わない方法で相分離させて微細構造を形成し、固定化する工程である。
 混合された炭化可能樹脂と消失樹脂の相分離は、種々の物理・化学的手法により誘発することができ、例えば温度変化によって相分離を誘発する熱誘起相分離法、非溶媒を添加することによって相分離を誘発する非溶媒誘起相分離法、物理的な場によって相分離を誘発する流動誘起相分離法、配向誘起相分離法、電場誘起相分離法、磁場誘起相分離法、圧力誘起相分離法、化学反応を用いて相分離を誘発する反応誘起相分離法等種々挙げられるが、本発明の製造方法では、反応誘起相分離は後述する理由により除かれる。これらの中では、熱誘起相分離法や非溶媒誘起相分離法が、本発明の多孔質炭素材料を容易に製造できる点で好ましい。
 これら相分離法は、単独で、もしくは組み合わせて使用することができる。組み合わせて使用する場合の具体的な方法は、例えば凝固浴を通して非溶媒誘起相分離を起こした後、加熱して熱誘起相分離を起こす方法や、凝固浴の温度を制御して非溶媒誘起相分離と熱誘起相分離を同時に起こす方法、口金から吐出された材料を冷却して熱誘起相分離を起こした後に非溶媒と接触させる方法などが挙げられる。
 上記相分離の際に化学反応を伴わない、とは、混合された炭化可能樹脂もしくは消失樹脂が、混合前後においてその一次構造を変化させないことを言う。一次構造とは、炭化可能樹脂もしくは消失樹脂を構成する化学構造のことを示す。相分離の際に重合などの化学反応を伴わないことで、大幅な弾性率向上等の特性変化を抑制し、繊維やフィルム等の任意の構造体に容易に成形できる。なお、本発明の製造方法としては、より低コストで安定に生産できるという観点から、化学反応を伴う相分離は除かれるが、本発明の多孔質炭素材料が本発明の製造方法に限定されるものではないのは、上述したとおりである。
 〔消失樹脂の除去〕
 工程2において相分離後の微細構造が固定化された樹脂混合物は、炭化工程(工程3)に供される前または炭化工程と同時、あるいはその両方で消失樹脂の除去処理を行うことが好ましい。除去処理の方法は特に限定されるものではなく、消失樹脂を除去することが可能であれば良い。具体的には、酸、アルカリや酵素を用いて消失樹脂を化学的に分解、低分子量化して除去する方法や、消失樹脂を溶解する溶媒により溶解除去する方法、電子線、ガンマ線や紫外線、赤外線などの放射線や熱を用いて消失樹脂を分解除去する方法などが好適である。
 特に、熱分解によって消失樹脂を除去処理することができる場合には、予め消失樹脂の80重量%以上が消失する温度で熱処理を行うこともできるし、炭化工程(工程3)もしくは後述の不融化処理において消失樹脂を熱分解、ガス化して除去することもできる。工程数を減じて生産性を高める観点から、炭化工程(工程3)もしくは後述の不融化処理において熱処理と同時に消失樹脂を熱分解、ガス化して除去する方法を選択することが、より好適な態様である。
 〔不融化処理〕
 工程2において相分離後の微細構造が固定化された樹脂混合物である前駆体材料は、炭化工程(工程3)に供される前に不融化処理を行うことが好ましい。不融化処理の方法は特に限定されるものではなく、公知の方法を用いることができる。具体的な方法としては、酸素存在下で加熱することで酸化架橋を起こす方法、電子線、ガンマ線などの高エネルギー線を照射して架橋構造を形成する方法、反応性基を持つ物質を含浸、混合して架橋構造を形成する方法などが挙げられ、中でも酸素存在下で加熱することで酸化架橋を起こす方法が、プロセスが簡便であり製造コストを低く抑えることが可能である点から好ましい。これらの手法は単独もしくは組み合わせて使用しても、それぞれを同時に使用しても別々に使用しても良い。
 酸素存在下で加熱することで酸化架橋を起こす方法における加熱温度は、架橋反応を効率よく進める観点から150℃以上であることが好ましく、炭化可能樹脂の熱分解、燃焼等による重量ロスからの収率悪化を防ぐ観点から、350℃以下であることが好ましい。
 また処理中の酸素濃度については特に限定されないが、18%以上の酸素濃度を持つ気体を、特に空気をそのまま供給することが製造コストを低く抑えることが可能となるため好ましい。気体の供給方法については特に限定されないが、空気をそのまま加熱装置内に供給する方法や、ボンベ等を用いて純酸素を加熱装置内に供給する方法などが挙げられる。
 電子線、ガンマ線などの高エネルギー線を照射して架橋構造を形成する方法としては、市販の電子線発生装置やガンマ線発生装置などを用いて、炭化可能樹脂へ電子線やガンマ線などを照射することで、架橋を誘発する方法が挙げられる。照射による架橋構造の効率的な導入から照射強度の下限は1kGy以上であると好ましく、主鎖の切断による分子量低下から材料強度が低下するのを防止する観点から1000kGy以下であることが好ましい。
 反応性基を持つ物質を含浸、混合して架橋構造を形成する方法は、反応性基を持つ低分子量化合物を樹脂混合物に含浸して、加熱または高エネルギー線を照射して架橋反応を進める方法、予め反応性基を持つ低分子量化合物を混合しておき、加熱または高エネルギー線を照射して架橋反応を進める方法などが挙げられる。
 また不融化処理の際に、消失樹脂の除去を同時に行うことも工程数減少による低コスト化の恩恵が期待できるため好適である。
 〔工程3〕
 工程3は、工程2において相分離後の微細構造が固定化された樹脂混合物、あるいは、消失樹脂を既に除去している場合には炭化可能樹脂を焼成し、炭化して炭化物を得る工程である。
 焼成は不活性ガス雰囲気において600℃以上に加熱することにより行うことが好ましい。ここで不活性ガスとは、加熱時に化学的に不活性であるものを言い、具体的な例としては、ヘリウム、ネオン、窒素、アルゴン、クリプトン、キセノン、二酸化炭素などである。中でも窒素、アルゴンを用いることが、経済的な観点から好ましい。炭化温度を1500℃以上とする場合には、窒化物形成を抑制する観点からアルゴンを用いることが好ましい。
 また不活性ガスの流量は、加熱装置内の酸素濃度を充分に低下させられる量であれば良く、加熱装置の大きさ、原料の供給量、加熱温度などによって適宜最適な値を選択することが好ましい。流量の上限についても特に限定されるものではないが、経済性や加熱装置内の温度変化を少なくする観点から、温度分布や加熱装置の設計に合わせて適宜設定することが好ましい。また炭化時に発生するガスを系外へ充分に排出できると、品質に優れた多孔質炭素材料を得ることができるため、より好ましい態様であり、このことから系内の発生ガス濃度が3,000ppm以下となるように不活性ガスの流量を決定することが好ましい。
 加熱する温度の上限は限定されないが、3000℃以下であれば設備に特殊な加工が必要ないため経済的な観点からは好ましい。また、BET比表面積を高めるためには1500℃以下であることが好ましく、1000℃以下であることがより好ましい。
 連続的に炭化処理を行う場合の加熱方法については、一定温度に保たれた加熱装置内に、材料をローラーやコンベヤ等を用いて連続的に供給しつつ取り出す方法であることが、生産性を高くすることが可能であるため好ましい。
 一方加熱装置内にてバッチ式処理を行う場合の昇温速度、降温速度の下限は特に限定されないが、昇温、降温にかかる時間を短縮することで生産性を高めることができるため、1℃/分以上の速度であると好ましい。また昇温速度、降温速度の上限は特に限定されないが、加熱装置を構成する材料の耐熱衝撃特性よりも遅くすることが好ましい。
 〔工程4〕
 工程4は、工程3において得た炭化物を、賦活して多孔質炭素材料を得る工程である。賦活の方法としては、ガス賦活法、薬品賦活法等、特に限定するものではない。ガス賦活法とは、賦活剤として酸素や水蒸気、炭酸ガス、空気等を用い、400~1500℃、好ましくは500~900℃にて、数分から数時間、加熱することにより細孔を形成させる方法である。また、薬品賦活法とは、賦活剤として塩化亜鉛、塩化鉄、リン酸カルシウム、水酸化カルシウム、水酸化カリウム、炭酸マグネシウム、炭酸ナトリウム、炭酸カリウム、硫酸、硫酸ナトリウム、硫酸カリウム等を1種または2種以上用いて数分から数時間、加熱処理する方法であり、必要に応じて水や塩酸等による洗浄を行った後、pHを調整して乾燥する。
 賦活をより進行させたり、賦活剤の混合量を増加させたりすることにより、一般にBET比表面積が増加し、細孔径は拡大する傾向にある。また賦活剤の混合量は、対象とする炭素原料に対し、好ましくは0.5重量部以上、より好ましくは1.0重量部以上、さらに好ましくは4重量部以上とする。上限は特に限定されないが、10重量部以下が一般的である。また、ガス賦活法より薬品賦活法の方が、細孔径は拡大する傾向にある。
 本発明では、細孔径を大きくしたり、BET比表面積を増加させたりできることから、薬品賦活法が好ましく採用される。中でも、水酸化カルシウム、水酸化カリウム、炭酸カリウム等のアルカリ性薬剤で賦活する方法が好ましく採用される。
 アルカリ性薬剤で賦活した場合、酸性官能基量が増大する傾向にあり、用途によっては好ましくない場合がある。この際には、窒素雰囲気下での加熱処理を行うことにより、低減させることもできる。
 〔粉砕処理〕
 工程3を経て炭化させた炭化物を粉砕処理した後に工程4の賦活を行った多孔質炭素材料、あるいは工程4の賦活を経て細孔が形成された多孔質炭素材料を、粉砕処理して粒子状とした多孔質炭素材料も、本発明の多孔質炭素材料の一態様である。粉砕処理は、従来公知の方法を選択することが可能であり、粉砕処理を施した後の粒度、処理量に応じて適宜選択されることが好ましい。粉砕処理方法の例としては、ボールミル、ビーズミル、ジェットミルなどを例示することができる。粉砕処理は、連続式でもバッチ式でも良いが、生産効率の観点から連続式であることが好ましい。ボールミルに充填する充填材は適宜選択されるが、金属材料の混入が好ましくない用途に対しては、アルミナ、ジルコニア、チタニアなどの金属酸化物によるもの、もしくはステンレス、鉄などを芯としてナイロン、ポリオレフィン、フッ化ポリオレフィンなどをコーティングしたものを用いることが好ましく、それ以外の用途であればステンレス、ニッケル、鉄などの金属が好適に用いられる。
 また粉砕の際に、粉砕効率を高める点で、粉砕助剤を用いることも好ましい態様である。粉砕助剤は、水、アルコールまたはグリコール、ケトンなどから任意に選ばれる。アルコールは、エタノール、メタノールが入手の容易さやコストの観点から好ましく、グリコールである場合には、エチレングリコール、ジエチレングリコール、プロピレングリコールなどが好ましい。ケトンである場合には、アセトン、エチルメチルケトン、ジエチルケトンなどが好ましい。
 粉砕処理を施された炭化物は、分級することによって粒度が揃い、例えば充填材料やペーストへの添加剤などで均一な構造体を形成できる。このため充填効率やペーストの塗工工程を安定化することが可能になり、生産効率を高めて低コスト化が期待できる。粒径については、粉砕処理後の炭化物の用途に応じて適宜選択することが好ましい。
 以下に本発明の好ましい実施の例を記載するが、これら記載は何ら本発明を制限するものではない。
 <評価手法>
 〔連続構造部分の構造周期〕
 多孔質炭素材料を試料プレートに挟み込み、CuKα線光源から得られたX線源から散乱角度10度未満の情報が得られるように、光源、試料及び二次元検出器の位置を調整した。二次元検出器から得られた画像データ(輝度情報)から、ビームストッパーの影響を受けている中心部分を除外して、ビーム中心から動径を設け、角度1°毎に360°の輝度値を合算して散乱強度分布曲線を得た。得られた曲線においてピークを持つ位置の散乱角度θより、連続構造部分の構造周期を下記の式によって得た。
Figure JPOXMLDOC01-appb-M000002
構造周期:L、λ:入射X線の波長
 〔平均空隙率〕
 多孔質炭素材料を樹脂中に包埋し、その後カミソリ等で多孔質炭素材料の断面を露出させ、日本電子製SM-09010を用いて加速電圧5.5kVにて試料表面にアルゴンイオンビームを照射、エッチングを施す。得られた多孔質炭素材料の断面を走査型二次電子顕微鏡にて材料中心部を1±0.1(nm/画素)となるよう調整された拡大率で、70万画素以上の解像度で観察した画像から、計算に必要な着目領域を512画素四方で設定し、着目領域の面積A、孔部分または消失樹脂部分の面積をBとして、以下の式で算出されたものを言う。
 平均空隙率(%)=B/A×100
 〔BET比表面積、細孔直径〕
 300℃で約5時間、減圧脱気した後、日本ベル社製の「BELSORP-18PLUS-HT」を使用し、液体窒素を用いて77Kの温度での窒素吸脱着を多点法で測定した。表面積はBET法、細孔分布解析(細孔直径、細孔容積)はMP法またはBJH法により行った。
 [実施例1]
 70gのポリサイエンス社製ポリアクリロニトリル(MW15万、炭素収率58%)と70gのシグマ・アルドリッチ社製ポリビニルピロリドン(MW4万)、及び、溶媒として400gの和研薬製ジメチルスルホキシド(DMSO)をセパラブルフラスコに投入し、3時間攪拌および還流を行いながら150℃で均一かつ透明な溶液を調整した。このときポリアクリロニトリルの濃度、ポリビニルピロリドンの濃度はそれぞれ13重量%であった。
 得られたDMSO溶液を25℃まで冷却した後、0.6mmφの1穴口金から3ml/分で溶液を吐出して、25℃に保たれた純水の凝固浴へ導き、その後5m/分の速度で引き取り、バット上に堆積させることで原糸を得た。このときエアギャップは5mmとし、また凝固浴中の浸漬長は15cmとした。得られた原糸は半透明であり、相分離を起こしていた。
 得られた原糸を25℃に保った循環式乾燥機にて1時間乾燥して原糸表面の水分を乾燥させた後、25℃にて5時間の真空乾燥を行い、乾燥後の前駆体材料である原糸を得た。
 その後250℃に保った電気炉中へ前駆体材料である原糸を投入し、酸素雰囲気化で1時間加熱することで不融化処理を行った。不融化処理を行った原糸は、黒色に変化した。
 得られた不融化原糸を窒素流量1リットル/分、昇温速度10℃/分、到達温度850℃、保持時間1分の条件で炭化処理を行うことで、共連続構造を有する炭素繊維とした。その断面を解析すると、繊維直径は150μmであり、共連続構造を有しない部分であるスキン層の厚みは5μmであった。また繊維中心部には均一な共連続構造が形成されていた。
 ついでボールミルを用いて粉砕した後、水酸化カリウムを炭化物対比4倍量混ぜ合わせ、ロータリーキルン内に投入して窒素流通下で800℃まで昇温した。1時間30分賦活処理した後、降温してから水と希塩酸とを用い、洗浄液がpH7付近になるまで洗浄した。得られた炭素粒子は、共連続構造部分の平均空隙率は40%であり、構造周期は76nmであった。また共連続構造を有しない部分を粒子の一部に含む構造をしていた。BET比表面積は2610m/g、MP法による細孔の平均直径は0.7nm、細孔容積は2.1cm/gであった。結果を表1に示す。
 [実施例2]
 賦活処理において、水酸化カリウムに代えて水酸化ナトリウムを用いた以外は、実施例1と同様に行った。得られた多孔質炭素粒子は、実施例1と同様に共連続構造部分の平均空隙率は40%であり、構造周期は76nmであった。また共連続構造を有しない部分を粒子の一部に含む構造をしていた。一方、BET比表面積は2554m/gとほぼ同等であったが、MP法による細孔の平均直径は1.5nmと倍に拡大し、細孔容積は1.9cm/gであった。結果を表1に示す。
 [実施例3]
 実施例1において、アルカリ賦活に変えて水蒸気賦活を行った。すなわち、実施例1と同様にして得られた炭素繊維をボールミルで粉砕した後、ロータリーキルン内に投入して窒素流通下で850℃まで昇温した。850℃に達してからロータリーキルン内に水蒸気を窒素とともに供給し、2時間水蒸気賦活を行った。賦活処理後、実施例1と同様に洗浄した。得られた多孔質炭素粉末は、実施例1と同様に共連続構造部分の平均空隙率は40%であり、構造周期は76nmであった。また共連続構造を有しない部分を粒子の一部に含む構造をしていた。一方、BET比表面積は405m/gと低く、MP法による細孔の平均直径は0.4nmと約半分となり、細孔容積も0.2cm/gと小さかった。結果を表1に示す。
 [実施例4]
 ポリアクリロニトリルの濃度、ポリビニルピロリドンの濃度をそれぞれ7.5重量%とした以外は、実施例1と同様に炭素繊維を得た。得られた多孔質炭素繊維すなわち多孔質炭素材料の中心部の平均空隙率は45%であり、共連続構造部分の構造周期は230nmと実施例1より大きいものであった。共連続構造を有しない部分であるスキン層の厚みは実施例1と同様に5μmであった。また繊維中心部には均一な共連続構造が形成されていた。
 ついでボールミルを用いて粉砕した後、賦活処理を行った。すなわち、水酸化カリウムを炭化物対比4倍量混ぜ合わせ、ロータリーキルン内に投入して窒素流通下で850℃まで昇温した。1時間30分処理した後、降温してから水と希塩酸とを用い、洗浄液がpH7付近になるまで洗浄した。得られた多孔質炭素粉末は、共連続構造部分の平均空隙率は40%であり、構造周期は230nmであった。また共連続構造を有しない部分を粒子の一部に含む構造をしていた。BET比表面積は2012m/g、MP法による細孔の平均直径は0.8nm、細孔容積は2.0cm/gであった。結果を表1に示す。
 [実施例5]
 実施例1において、凝固浴に変えてスプレーによる水付与とした以外は、実施例1と同様に行って多孔質炭素粒子を得た。共連続構造部分の平均空隙率は50%であり、構造周期は1800nmであった。また共連続構造を有しない部分を粒子の一部に含む構造をしていた。BET比表面積は1853m/g、MP法による細孔の平均直径は0.8nm、細孔容積は2.0cm/gであった。結果を表1に示す。
[実施例6]
 実施例1において、焼成温度を1500℃とした以外は、実施例1と同様に行って多孔質炭素粒子を得た。共連続構造部分の平均空隙率は40%であり、構造周期は76nmであった。また共連続構造を有しない部分を粒子の一部に含む構造をしていた。BET比表面積は378m/g、MP法による細孔の平均直径は1.4nm、細孔容積は0.2cm/gであった。結果を表1に示す。
 [比較例1]
 アクリロニトリル98モル%、メタクリル酸2モル%からなる比粘度0.24のアクリロニトリル共重合体(PAN共重合体)60重量%と、メチルメタクリレート99モル%、アクリル酸メチル1モル%、比粘度0.21の熱分解性共重合体(PMMA共重合体)40重量%とからなる両共重合体を混合し、溶剤としてジメチルホルムアミド(DMF)に両共重合体の混合物の溶液濃度が24.8重量%となるように溶解し、DMF混合溶液とした。得られた溶液は目視では均一であったが、光学顕微鏡で観察した場合、液滴が観測され、溶液の段階で既に相分離が進行していた。
 このDMF混合溶液を用いて、実施例1と同様の方法で紡糸、不融化、炭化処理を行い、炭素繊維を得た。得られた炭素繊維は、断面内の孔形状、サイズが均一ではなく、スキン層が不明瞭なものであった。特にスキン層部分に多数の孔が形成されていたため、他素材との複合や分離膜素材として使用することが困難な形状であった。また構造周期の算出を試みたが、得られたスペクトルにはピークが存在せず、構造の均一性に劣るものであった。結果を表1に示す。
 [比較例2]
 ポリビニルアルコール(平均重合度2000)に酸化マグネシウム(平均粒径500nm)を1:1で加えた後、ロータリーキルン内に投入してアルゴン流通下で900℃まで昇温した。1時間処理した後、希硫酸水溶液と水で洗浄して多孔質炭素を得た。得られた多孔質炭素は、断面内の孔形状、サイズが均一ではなく、構造周期の算出を試みたが、得られたスペクトルにはピークが存在せず、構造の均一性に劣るものであった。結果を表1に示す。
 [比較例3]
 賦活処理を行わない以外は、実施例1と同様に行った。得られた多孔質炭素粒子は、実施例1と同様に共連続構造部分の平均空隙率は40%であり、構造周期は76nmであった。また共連続構造を有しない部分を粒子の一部に含む構造をしていた。しかし、BET比表面積は35m/gと小さく、MP法による細孔も確認できなかった。結果を表1に示す。
 [比較例4] 群栄化学(株)社製フェノールレゾール(グレード:PL2211)の50重量%メタノール溶液100gに和光純薬(株) 社製ポリメチルメタクリレート(PMMA)30g、アセトン100gを加えて撹拌し、PMMAを溶解した。作製した溶液をポリテトラフルオロエチレン製の皿に注ぎ、室温で3日乾燥した。更に、真空オーブン中、23℃で2日溶媒を除去した後、オーブンの温度を40℃に設定し完全に溶媒を除去するために2日間乾燥を行なった。得られた琥珀色の固形サンプルを37tプレス成型機で縦×横×高さ=50mm×50mm×5mmの平板を成形圧力10kgf/cm、温度180℃で10分成形した。このサンプルをアセトン中で2日間撹拌洗浄してPMMA成分を完全に除去した。その後、シリコニット炉で1L/minの窒素流通下、昇温速度2℃/minで700℃まで昇温後、その温度で1時間保持して焼成を行ない、サンプル(多孔質材料)を作製した。得られたサンプルには、20~30nmの直径を持つ細孔が観察されたが、MP法による2nm以下の細孔は検出されなかった。また得られたサンプルの表面積は71m/gと低かった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 

Claims (11)

  1. 炭素骨格と空隙とがそれぞれ連続構造をなす構造周期0.002μm~3μmの共連続構造部分を有するとともに、表面に平均直径0.01~10nmの細孔を有し、かつBET比表面積が100m/g以上である多孔質炭素材料。
  2. 前記細孔が、少なくとも前記共連続構造部分の炭素骨格に形成されている、請求項1に記載の多孔質炭素材料。
  3. MP法で計測される細孔容積が0.1cm/g以上である、請求項1または2に記載の多孔質炭素材料。
  4. BET比表面積が1000m/g以上である、請求項1~3のいずれかに記載の多孔質炭素材料。
  5. 共連続構造を実質的に有しない部分を有する、請求項1~4のいずれかに記載の多孔質炭素材料。
  6. 請求項1~5のいずれかに記載の多孔質炭素材料を用いた電極材料。
  7. 請求項1~5のいずれかに記載の多孔質炭素材料を用いた吸着材料。
  8. 工程1:炭化可能樹脂10~90重量%と、消失樹脂90~10重量%を相溶させ、樹脂混合物とする工程;
    工程2:化学反応を伴わない方法で相分離させ、固定化する工程;
    工程3:焼成により炭化する工程;
    工程4:賦活する工程;
    をこの順に有する多孔質炭素材料の製造方法。
  9. 前記工程2の後、さらに不融化処理を行う、請求項8に記載の多孔質炭素材料の製造方法。
  10. 前記工程4において、前記賦活をアルカリ性薬剤によって行う、請求項8または9に記載の多孔質炭素材料の製造方法。
  11. 前記工程3の後であって、前記工程4の前または後に、さらに粉砕処理を行う、請求項8~10のいずれかに記載の多孔質炭素材料の製造方法。
     
PCT/JP2015/068553 2014-07-03 2015-06-26 多孔質炭素材料及び多孔質炭素材料の製造方法 WO2016002668A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167036669A KR102383873B1 (ko) 2014-07-03 2015-06-26 다공질 탄소 재료 및 다공질 탄소 재료의 제조 방법
US15/322,944 US10270082B2 (en) 2014-07-03 2015-06-26 Porous carbon material and method for manufacturing porous carbon material
EP15815088.8A EP3165506A4 (en) 2014-07-03 2015-06-26 Porous carbon material and method for manufacturing porous carbon material
JP2015532994A JP6641998B2 (ja) 2014-07-03 2015-06-26 多孔質炭素材料及び多孔質炭素材料の製造方法
CN201580036049.5A CN106660797B (zh) 2014-07-03 2015-06-26 多孔质碳材料和多孔质碳材料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-137448 2014-07-03
JP2014137448 2014-07-03

Publications (1)

Publication Number Publication Date
WO2016002668A1 true WO2016002668A1 (ja) 2016-01-07

Family

ID=55019204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068553 WO2016002668A1 (ja) 2014-07-03 2015-06-26 多孔質炭素材料及び多孔質炭素材料の製造方法

Country Status (7)

Country Link
US (1) US10270082B2 (ja)
EP (1) EP3165506A4 (ja)
JP (1) JP6641998B2 (ja)
KR (1) KR102383873B1 (ja)
CN (1) CN106660797B (ja)
TW (1) TWI646049B (ja)
WO (1) WO2016002668A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059856A (ja) * 2014-09-17 2016-04-25 東レ株式会社 吸着材料
JPWO2016043154A1 (ja) * 2014-09-17 2017-06-29 東レ株式会社 電気化学キャパシタ用電極材料、電気化学キャパシタ用電極塗工液、電気化学キャパシタ用電極および電気化学キャパシタ
WO2017126501A1 (ja) * 2016-01-22 2017-07-27 東レ株式会社 流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維
JP2017164667A (ja) * 2016-03-14 2017-09-21 三菱鉛筆株式会社 触媒用炭素担体
JP2017168832A (ja) * 2016-03-11 2017-09-21 東レ株式会社 電気化学キャパシタ用電極及び電気化学キャパシタ
JP2017171541A (ja) * 2016-03-24 2017-09-28 大阪瓦斯株式会社 活性炭の製造方法
CN109160504A (zh) * 2018-08-10 2019-01-08 中南大学 一种3d多孔螺旋多面体材料、制备方法及应用
WO2019021963A1 (ja) * 2017-07-25 2019-01-31 東レ株式会社 流体分離膜
JP2019016644A (ja) * 2017-07-04 2019-01-31 星和電機株式会社 多孔質焼成体、多孔質焼成体の作製方法、およびキャパシタ電極
JPWO2019049905A1 (ja) * 2017-09-05 2020-10-15 国立大学法人北海道大学 金属酸化物−多孔体複合体の製造方法及び多孔質炭素材料と金属酸化物との複合体
JPWO2019221278A1 (ja) * 2018-05-18 2021-04-22 積水化学工業株式会社 基材粒子、導電性粒子、導電材料及び接続構造体
WO2021085266A1 (ja) * 2019-11-01 2021-05-06 株式会社クラレ 吸着フィルター、並びに、それを用いためっき液精製用フィルター、めっき液精製装置及びめっき液精製方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537661B (zh) * 2014-07-15 2019-09-13 东丽株式会社 电极材料以及使用它的锂离子电池或锂离子电容器
US10381170B2 (en) * 2017-03-29 2019-08-13 GM Global Technology Operations LLC Microporous and hierarchical porous carbon
JP6978947B2 (ja) * 2018-01-12 2021-12-08 株式会社クレハ 電池用負極材料及びその製造方法、二次電池用負極、並びに二次電池
JP7349988B2 (ja) * 2018-07-20 2023-09-25 株式会社クラレ 炭素質材料、その製造方法、電気化学デバイス用電極活物質、電気化学デバイス用電極および電気化学デバイス
CN109119606A (zh) * 2018-08-02 2019-01-01 天能电池集团有限公司 一种纳米铅沉积多级孔结构碳复合材料的制备方法及应用
CN109698343A (zh) * 2018-12-29 2019-04-30 南通沃德材料科技有限公司 一种纳米铅沉积多级孔结构碳复合材料的制备方法及应用
US11358883B2 (en) * 2019-02-05 2022-06-14 Lawrence Livermore National Security, Llc System and method for using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization
KR20220084239A (ko) * 2019-05-10 2022-06-21 카타르 파운데이션 포 에듀케이션, 사이언스 앤 커뮤니티 디벨롭먼트 다공성 흑연 탄소막의 합성
CN110316715B (zh) * 2019-06-28 2022-08-23 上海交通大学 一种原位制备金属衍生碳基光子晶体的方法
CN112531160A (zh) * 2019-09-19 2021-03-19 贝特瑞新材料集团股份有限公司 一种无定形炭负极材料及其制备方法和用途
CN113120902B (zh) * 2019-12-31 2022-11-11 中国石油化工股份有限公司 一种活性炭的制备方法
CN114635200B (zh) * 2022-03-11 2023-12-22 宁德新能源科技有限公司 管状纳米纤维材料、负极极片及锂金属电池
CN114672135A (zh) * 2022-03-29 2022-06-28 宁波杭州湾新材料研究院 一种拉伸诱导的轻质定向高导热材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052972A (ja) * 1999-08-10 2001-02-23 Honda Motor Co Ltd 電気二重層コンデンサの電極用アルカリ賦活炭の製造方法
JP2007039289A (ja) * 2005-08-04 2007-02-15 Toda Kogyo Corp 球状多孔性炭素粒子粉末及びその製造法
WO2012131628A1 (en) * 2011-03-31 2012-10-04 Basf Se Particulate porous carbon material and use thereof in lithium cells
WO2014148303A1 (ja) * 2013-03-22 2014-09-25 東レ株式会社 多孔質炭素材料、多孔質炭素材料プリカーサー、多孔質炭素材料プリカーサーの製造方法及び多孔質炭素材料の製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160924A (ja) 1988-12-08 1990-06-20 Mitsubishi Rayon Co Ltd 多孔質炭素繊維及びその製造法
JPH02160923A (ja) 1988-12-08 1990-06-20 Mitsubishi Rayon Co Ltd 多孔質炭素繊維及びその製造方法
US5356574A (en) * 1992-09-22 1994-10-18 Petoca, Ltd. Process for producing pitch based activated carbon fibers and carbon fibers
JP3412970B2 (ja) * 1995-06-23 2003-06-03 群栄化学工業株式会社 活性炭繊維の製造方法
US20040047111A1 (en) * 1998-09-22 2004-03-11 Kashima Oil Co., Ltd. Process for producing mesophase pitch based active carbon fiber, mesophase pitch based active carbon fiber and electric double layer capacitor
US7214646B1 (en) 1999-08-10 2007-05-08 Honda Giken Kogyo Kabushiki Kaisha Method for producing activated carbon for electrode of electric double-layer capacitor
US7625839B2 (en) * 2000-05-09 2009-12-01 Mitsubishi Chemical Corporation Activated carbon for use in electric double layer capacitors
JP3779700B2 (ja) * 2002-06-03 2006-05-31 三洋化成工業株式会社 ミセル含有有機ポリマー、有機ポリマー多孔体及び多孔炭素材料
JP4018940B2 (ja) 2002-06-24 2007-12-05 三菱化学株式会社 多孔質材料の製造方法及び多孔質材料
EP1686208A4 (en) 2003-11-10 2009-06-24 Teijin Ltd NON-WOVEN CARBON FIBER TISSUE AND METHODS OF MAKING AND USING SAME
US20050260118A1 (en) * 2004-05-20 2005-11-24 Yunfeng Lu Mesoporous carbon films and methods of preparation thereof
JP2007169148A (ja) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp 炭素構造体の製造方法及び炭素構造体、並びに炭素構造体の集合体及び分散体
CN1830769A (zh) * 2006-03-15 2006-09-13 大连理工大学 一种高比表面积多孔炭材料的制备方法
DE112007001286T5 (de) * 2006-05-25 2009-04-02 GM Global Technology Operations, Inc., Detroit Kohlenstoff und Kohlenstoffverbundstoffe mit hochgeordneten Poren mit Mesogrösse
JP2009538811A (ja) * 2006-05-31 2009-11-12 マックス−プランク−ゲゼルシャフト ツア フェルデルンク デア ヴィッセンシャフテン エー.ファウ. 多孔質炭素鋳物の製造方法
EP2038218A1 (en) * 2006-05-31 2009-03-25 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Porous electrically conductive carbon material and uses thereof
WO2009134505A2 (en) * 2008-02-07 2009-11-05 The Regents Of The University Of California Carbon materials with interconnected pores
JP2010208887A (ja) 2009-03-10 2010-09-24 Toyo Tanso Kk 多孔質炭素及びその製造方法
US8114510B2 (en) 2009-05-20 2012-02-14 The United States Of America As Represented By The United States Department Of Energy Mesoporous carbon materials
JP5526969B2 (ja) 2010-04-19 2014-06-18 三菱レイヨン株式会社 多孔質電極基材とその製造方法
TWI542537B (zh) * 2011-03-09 2016-07-21 東洋炭素股份有限公司 Porous carbon and a method for producing the same
JP5860600B2 (ja) * 2011-03-09 2016-02-16 東洋炭素株式会社 多孔質炭素
JP5678937B2 (ja) 2011-09-16 2015-03-04 株式会社豊田中央研究所 リチウム二次電池用電極材、その製造方法、およびそれを備えるリチウム二次電池
JP6477152B2 (ja) * 2015-03-31 2019-03-06 株式会社デンソー 正極材料,非水電解質二次電池用正極及び非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052972A (ja) * 1999-08-10 2001-02-23 Honda Motor Co Ltd 電気二重層コンデンサの電極用アルカリ賦活炭の製造方法
JP2007039289A (ja) * 2005-08-04 2007-02-15 Toda Kogyo Corp 球状多孔性炭素粒子粉末及びその製造法
WO2012131628A1 (en) * 2011-03-31 2012-10-04 Basf Se Particulate porous carbon material and use thereof in lithium cells
WO2014148303A1 (ja) * 2013-03-22 2014-09-25 東レ株式会社 多孔質炭素材料、多孔質炭素材料プリカーサー、多孔質炭素材料プリカーサーの製造方法及び多孔質炭素材料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3165506A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059856A (ja) * 2014-09-17 2016-04-25 東レ株式会社 吸着材料
JPWO2016043154A1 (ja) * 2014-09-17 2017-06-29 東レ株式会社 電気化学キャパシタ用電極材料、電気化学キャパシタ用電極塗工液、電気化学キャパシタ用電極および電気化学キャパシタ
US20190022599A1 (en) * 2016-01-22 2019-01-24 Toray Industries, Inc. Fluid separation membrane, fluid separation membrane module, and porous carbon fiber
CN108495703A (zh) * 2016-01-22 2018-09-04 东丽株式会社 流体分离膜、流体分离膜组件及多孔质碳纤维
JPWO2017126501A1 (ja) * 2016-01-22 2018-11-08 東レ株式会社 流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維
AU2017209736B2 (en) * 2016-01-22 2022-03-17 Toray Industries, Inc. Fluid separation membrane, fluid separation membrane module, and porous carbon fiber
US10835874B2 (en) 2016-01-22 2020-11-17 Toray Industries, Inc. Fluid separation membrane, fluid separation membrane module, and porous carbon fiber
WO2017126501A1 (ja) * 2016-01-22 2017-07-27 東レ株式会社 流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維
EP3406326A4 (en) * 2016-01-22 2019-08-21 Toray Industries, Inc. MEMBRANE FOR LIQUID SEPARATION, MODULE OF A LIQUID STRENGTH MEMBRANE AND POROUS CARBON FIBER
JP2017168832A (ja) * 2016-03-11 2017-09-21 東レ株式会社 電気化学キャパシタ用電極及び電気化学キャパシタ
JP2017164667A (ja) * 2016-03-14 2017-09-21 三菱鉛筆株式会社 触媒用炭素担体
JP2017171541A (ja) * 2016-03-24 2017-09-28 大阪瓦斯株式会社 活性炭の製造方法
JP2019016644A (ja) * 2017-07-04 2019-01-31 星和電機株式会社 多孔質焼成体、多孔質焼成体の作製方法、およびキャパシタ電極
WO2019021963A1 (ja) * 2017-07-25 2019-01-31 東レ株式会社 流体分離膜
JPWO2019049905A1 (ja) * 2017-09-05 2020-10-15 国立大学法人北海道大学 金属酸化物−多孔体複合体の製造方法及び多孔質炭素材料と金属酸化物との複合体
JP7296123B2 (ja) 2017-09-05 2023-06-22 国立大学法人北海道大学 金属酸化物-多孔体複合体の製造方法及び多孔質炭素材料と金属酸化物との複合体
JPWO2019221278A1 (ja) * 2018-05-18 2021-04-22 積水化学工業株式会社 基材粒子、導電性粒子、導電材料及び接続構造体
JP7348839B2 (ja) 2018-05-18 2023-09-21 積水化学工業株式会社 基材粒子、導電性粒子、導電材料及び接続構造体
CN109160504B (zh) * 2018-08-10 2021-07-13 中南大学 一种3d多孔螺旋多面体材料、制备方法及应用
CN109160504A (zh) * 2018-08-10 2019-01-08 中南大学 一种3d多孔螺旋多面体材料、制备方法及应用
WO2021085266A1 (ja) * 2019-11-01 2021-05-06 株式会社クラレ 吸着フィルター、並びに、それを用いためっき液精製用フィルター、めっき液精製装置及びめっき液精製方法
JP7478163B2 (ja) 2019-11-01 2024-05-02 株式会社クラレ めっき液精製用吸着フィルター、並びに、それを用いためっき液精製装置及びめっき液精製方法

Also Published As

Publication number Publication date
CN106660797A (zh) 2017-05-10
KR102383873B1 (ko) 2022-04-08
JP6641998B2 (ja) 2020-02-05
CN106660797B (zh) 2019-07-12
JPWO2016002668A1 (ja) 2017-04-27
EP3165506A4 (en) 2018-03-14
KR20170026392A (ko) 2017-03-08
US10270082B2 (en) 2019-04-23
US20170166451A1 (en) 2017-06-15
EP3165506A1 (en) 2017-05-10
TWI646049B (zh) 2019-01-01
TW201601998A (zh) 2016-01-16

Similar Documents

Publication Publication Date Title
WO2016002668A1 (ja) 多孔質炭素材料及び多孔質炭素材料の製造方法
JP5696813B2 (ja) 多孔質炭素材料、多孔質炭素材料プリカーサー、多孔質炭素材料プリカーサーの製造方法及び多孔質炭素材料の製造方法
JP6436085B2 (ja) 金属空気電池用電極材料
WO2016043153A1 (ja) 金属複合炭素材料、燃料電池用触媒、燃料電池、水素吸蔵材料、水素タンクおよび金属複合炭素材料の製造方法
TW201603366A (zh) 電極材料、鋰離子電池及鋰離子電容器
JP6808937B2 (ja) 電極材料の製造方法
JP6610255B2 (ja) 多孔質炭素材料
JP2016056053A (ja) 多孔質炭素材料および多孔質炭素材料の製造方法
JP6442927B2 (ja) 多孔質炭素材料
JP2016059856A (ja) 吸着材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015532994

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815088

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015815088

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815088

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167036669

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15322944

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE