WO2015199423A9 - 자성 입자를 이용한 핵산 분리 방법 - Google Patents

자성 입자를 이용한 핵산 분리 방법 Download PDF

Info

Publication number
WO2015199423A9
WO2015199423A9 PCT/KR2015/006388 KR2015006388W WO2015199423A9 WO 2015199423 A9 WO2015199423 A9 WO 2015199423A9 KR 2015006388 W KR2015006388 W KR 2015006388W WO 2015199423 A9 WO2015199423 A9 WO 2015199423A9
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
magnetic particles
magnetic
biological sample
target nucleic
Prior art date
Application number
PCT/KR2015/006388
Other languages
English (en)
French (fr)
Other versions
WO2015199423A1 (ko
Inventor
박한오
정소선
맹준호
Original Assignee
(주)바이오니아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오니아 filed Critical (주)바이오니아
Publication of WO2015199423A1 publication Critical patent/WO2015199423A1/ko
Publication of WO2015199423A9 publication Critical patent/WO2015199423A9/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated

Definitions

  • the present invention relates to a method for separating and purifying nucleic acids using magnetic particles, preferably hydrophobic magnetic particles or silica magnetic particles, and more particularly, (a) magnetic particles having an average particle size of 50 nm to 1 ⁇ m in a biological sample including a nucleic acid. Combining the magnetic particles with an insoluble aggregate or nucleic acid molecule; And (b) separating the magnetic particles bound to insoluble aggregates or nucleic acid molecules using a magnetic field to obtain nucleic acids; It relates to a method for separating nucleic acid from a biological sample using a magnetic particle comprising a.
  • the particle size of the magnetic particles used to selectively separate and purify only nucleic acids or proteins is known to be about 500 to 2000 nm.
  • U.S. Patent 5665554 discloses a method of using magnetic beads and magnets to separate plasmid DNA from genomic DNA material. Specifically, magnetic beads that bind to plasmid DNA are added to precipitate magnetic beads and plasmid DNA, and the supernatant except for magnetic beads and plasmid DNA binding is removed using a magnet to separate plasmid DNA only.
  • U. S. Patent No. 6027945 describes a method of separating a target material by forming a combination of a biological target material and a silica magnetic particle using silica magnetic particles and then providing a magnetic field. This combined yields a yield of over 60%.
  • US Patent 7078224 uses magnetic particles of 1 to 15 ⁇ m in size, and the magnetic particles are separated using pH dependent ion exchange particles and silica magnetic particles coated with silica oxide.
  • silica coated magnetic particles have a problem in that the manufacturing process is complex and it is difficult to uniformly control the particle size distribution.
  • the present inventors have developed a new manufacturing method that can more easily produce the silica magnetic particles, and uniformly control the particle size (Korean Patent No. 10-1053023), the silica magnetic particles produced by the method function on the surface It has the advantage of uniform particle size distribution in the form of a sphere.
  • the particle size is also prepared from 1 to 20 ⁇ m.
  • Maglisto Bionia
  • Maglisto has a tube fixation tube to which biological samples can be injected and a tube fixation to which the tube is fixed, and provides a magnet fixation that can provide a magnetic field at a corresponding external location with the tube.
  • the magnet fixing part is also designed to be easily detachable from the tube fixing part by the magnet, and the user can easily separate the nucleic acid or protein from the biological material.
  • the magnetic particles used in the above methods do not have sufficient binding force with insoluble aggregates or target nucleic acids, and there is a need for development of magnetic particles having improved binding strength to the binding material.
  • the present inventors have confirmed that when the nucleic acid is separated using magnetic particles, preferably hydrophobic magnetic particles or silica magnetic particles, it is possible to more quickly and efficiently separate insoluble aggregates or nucleic acid molecules including protein-modified aggregates. This invention was completed.
  • An object of the present invention is to provide a method for separating nucleic acid from a biological sample by using magnetic particles capable of separating the insoluble aggregate or target nucleic acid more quickly and efficiently from the biological sample.
  • Still another object of the present invention is to provide a kit for separating and purifying nucleic acid from a biological sample including magnetic particles having an average particle size of 50 nm to 1 ⁇ m.
  • the present invention comprises the steps of: (a) adding a magnetic particle having an average particle size of 50nm ⁇ 1 ⁇ m to a biological sample containing a nucleic acid, binding the magnetic particles with the insoluble aggregate or nucleic acid; And (b) separating the magnetic particles bound to insoluble aggregates or nucleic acid molecules using a magnetic field to obtain nucleic acids.
  • the method provides a method for separating nucleic acids from biological samples using magnetic particles.
  • the present invention also includes a pipette block which is installed to be movable in a horizontal direction and a vertical direction, and for mounting a plurality of pipettes in a detachable manner; And a magnetic field applying unit for applying and releasing a magnetic field to a specific unit well of the multiwell plate, wherein the biological sample and magnetic particles having an average particle size of 50 nm to 1 ⁇ m are added to the multiwell plate.
  • a fully automatic nucleic acid separation apparatus for automatically separating nucleic acids from a sample.
  • the present invention also provides a method for separating target nucleic acid from a biological sample using the fully automated nucleic acid separation device,
  • the present invention also provides a kit and apparatus for separating and purifying nucleic acids from a biological sample containing magnetic particles having an average particle size of 50 nm to 1 ⁇ m.
  • FIG. 1 is a diagram showing the results of electrophoresis on agarose gel after restriction enzyme treatment of plasmid DNA isolated from E. coli cells using the magnetic particles of the present invention.
  • Figure 2 is a diagram showing the results of electrophoresis on agarose gel by extracting nucleic acid DNA from the blood using the method of the present invention.
  • FIG. 3 is a diagram showing the results of electrophoresis on agarose gel by extracting nucleic acid DNA from bacterial culture using the method of the present invention.
  • FIG. 4 is a diagram showing the results of electrophoresis on agarose gel by extracting nucleic acid DNA from the cultured cells using the method of the present invention.
  • FIG. 5 is a diagram showing the result of electrophoresis on agarose gel by extracting nucleic acid DNA from animal tissue cells using the method of the present invention.
  • FIG. 6 is a diagram showing the result of electrophoresis on agarose gel by extracting nucleic acid DNA from plant tissue cells using the method of the present invention.
  • FIG. 7 is a diagram showing the results of electrophoresis on agarose gel by extracting nucleic acid RNA from various cells cultured using the method of the present invention.
  • FIG. 8 is a schematic diagram of an automatic purification device.
  • FIG. 9 is a state diagram of using a base plate.
  • FIG. 10 is a view illustrating a tube rack mounted on a base plate.
  • 11 is a state diagram using the base plate.
  • Embodiment 12 is a magnet member device for separating magnetic particles to which the method of Embodiment 5 of the present invention is applied.
  • FIG. 13 is a use state diagram in which a magnet member is disposed on a base plate.
  • FIG. 14 is a cross-sectional view of the multi-well plate inserted into the base plate on which the magnet member is disposed.
  • FIG. 15 is a perspective view of a magnet mounting unit provided with a magnetic field applying unit.
  • 16 is a flowchart illustrating a method for separating target nucleic acids using magnetic particles.
  • 17 is a result of electrophoresis of the extracted plasmid to agarose gel by extracting a plurality of the same sample with a fully automated nucleic acid extraction equipment applied to the same method as in Example 2.
  • FIG. 18 shows the results obtained by electrophoresis when the plasmid nucleic acid is extracted and treated with restriction enzymes capable of separating specific nucleotide sequences around the inserted target gene.
  • a magnetic particle having an average particle size of 50nm ⁇ 1 ⁇ m to a biological sample containing a nucleic acid, binding the magnetic particles with the insoluble aggregate or nucleic acid molecules; And (b) separating the magnetic particles bound to insoluble aggregates or nucleic acid molecules using a magnetic field to obtain nucleic acids.
  • the method relates to nucleic acid separation from biological samples using magnetic particles.
  • step (c) adding hydrophilic magnetic particles having an average particle size of 50 nm to 1 ⁇ m to the mixture obtained in step (b) to bind the target nucleic acid and the hydrophilic magnetic particles;
  • the nucleic acid is preferably deoxyribonucleic acid (DNA) or RNA (ribonucleic acid), and genomic DNA, plasmid DNA, phage DNA, recombinant DNA, mRNA, rRNA, tRNA, recombinant RNA, micro RNA, etc. may be exemplified. It is not limited to this.
  • the final target nucleic acid obtained in the present invention may be preferably selected from the group consisting of plasmid DNA, bacterial genomic DNA, blood and animal tissue DNA, animal cell lines DNA and RNA.
  • the nucleic acid separation method may be variously applied by centrifugal separation, vacuum manifold type, filter separation, gravity separation or chromatography, and magnetic field separation. This will be apparent to those skilled in the art and a detailed description thereof will be omitted.
  • the magnetic particles may be characterized in that the hydrophobic magnetic nanoparticles or silica magnetic nanoparticles.
  • the magnetic particles may be made of one or more materials selected from the group consisting of iron, cobalt, nickel and oxides or alloys thereof, and the average size is 50 nm to 1 ⁇ m, preferably 50 to 700 nm, most preferably 200 It can be prepared and used at ⁇ 500 nm.
  • the diameter of the magnetic particles is 1 ⁇ m or more, the settling speed of the magnetic particles is increased, which is not preferable because it causes inconvenience in use.
  • the diameter is 50 nm or less, the magnetism is weak, which may cause a problem in separation from the desired material.
  • the shape of the particles can be used in a variety of particles, such as circular, square, needle shape.
  • the hydrophilic magnetic particles used may be used by silica coating the magnetic particles.
  • AccuNanoBeadTM manufactured by Bioneer may be used, but is not limited thereto, and the average size may be 50 nm to 1 ⁇ m, preferably 50 to 700 nm, and most preferably 200 to 500 nm.
  • Magnetic particles that are used to isolate and purify nucleic acids can be used in a wide range.
  • the magnetic particles may be used by themselves or may be dispersed and used in an aqueous solution. However, the magnetic particles may be dispersed and used in an aqueous solution to reduce the aggregation of the magnetic particles and are more preferable in terms of experimental convenience.
  • the aqueous dispersion may be stored and used to further contain a dispersant, in order to prevent aggregation and sedimentation of the magnetic particles themselves, the dispersant may be glycerol, alkoxylate, alkanolamide, ester, amine oxide, alkyl polygil
  • a dispersant selected from the group consisting of lycosides, polyacrylates, polymethacrylates, polyvinylpyrrolidones, polyethyleneamines, polyvinylamines, betaines, glycinates and imidazolines and glycerols can be used. .
  • the step of adding the magnetic particles it can be applied to a nucleic acid or protein extraction kit comprising the magnetic particles according to the present invention.
  • the present invention also provides a method of using a substance having a magnetic field in a method of separating and separating nucleic acid from insoluble protein denatured aggregates and cell debris bound to magnetic particles. This has the advantage of easily separating the aggregates by providing a magnetic field outside the magnetic particles combined with the insoluble protein denatured aggregates and the cell debris particles by using the magnetic properties of the magnetic particles.
  • the present invention is installed to be movable in the horizontal and vertical direction, the pipette block for mounting a plurality of pipettes detachably; And a magnetic field applying unit for applying and releasing a magnetic field to a specific unit well of the multiwell plate, wherein the biological sample and hydrophobic magnetic particles having an average particle size of 50 nm to 1 ⁇ m are added to the multiwell plate.
  • a fully automatic nucleic acid separation apparatus for automatically separating nucleic acids from biological samples.
  • the present invention can be isolated and purified automatically using an automatic purification system that is a fully automatic system for separating and purifying nucleic acids or proteins from biological samples.
  • the automatic purification device can be used Exiprep / Exiprogen manufactured by the apparatus described in Korea Patent Registration No. 10-25135, Korean Patent Publication No. 2011-0121588, Korean Patent Registration No. 14-00675 or Bioneer (Fig. 8 To 15), but is not limited thereto, and is generally applicable without limitation to an automated or semi-automated system capable of separating and purifying nucleic acids or proteins.
  • the automatic purifying device is installed to be movable in a horizontal direction and a vertical direction, the pipette block for mounting so as to detach the plurality of pipettes in which the flowable material is sucked and discharged; And a magnetic field applying unit mounted on a base plate to apply and release magnetic fields to a specific unit well of a multiwell plate positioned below the pipette block. .
  • the present invention may further include a heating unit for heating the specific unit well of the multiwell plate, wherein the magnetic field applying unit may include a magnet mounting unit mounted on a magnet and positioned below the specific unit well of the multiwell plate; A lifter configured to lift and lower the magnet mounting part to apply and release a magnetic field to a specific unit well of the multiwell plate; Includes, the heating unit may be installed in the magnet mounting portion, the heating portion may be a heat generating film in contact with the magnet mounting portion.
  • the present invention is a fixed body for supporting the pipette block;
  • a solution holder installed so as to be movable in a horizontal direction by a solution holder moving means installed in the fixed body and positioned below the plurality of pipettes mounted to the pipette block when the pipette block is moved in a horizontal direction; It may include, and in close contact with the solution base located below the plurality of pipettes so that the parts of the plurality of pipettes moistened in the solution including the target nucleic acid from the outside to close the target nucleic acid of the plurality of pipettes It may include an aerosol protector formed to surround the parts soaked in the solution.
  • a pipette rack in which a plurality of pipettes are inserted into and accommodated in the pipette block is inserted into the base plate, and a plurality of target nucleic acid storage tubes for receiving the separated target nucleic acids are inserted into and accommodated in the base plate.
  • a waste container for accommodating waste liquid discarded from a plurality of pipettes mounted on the pipette block, and a cooling block for cooling the first tube rack may be mounted on the base plate.
  • the magnetic field applying unit may additionally include a magnet member on which a magnetic rod is mounted.
  • the magnet member may be mounted below a specific unit well of the multiwell plate, thereby allowing the mixture of magnetic particles formed in the specific unit well of the multiwell plate to aggregate and separate.
  • the automatic purification device is characterized by using a multi-well plate prepared for the purpose.
  • the multi well plate is prepared by including one or more solutions selected from nucleic acid separation and purification, that is, DEPC distilled water, cell lysis solution, expression solution, magnetic particle suspension, washing solution, protease and the like.
  • the solutions for nucleic acid isolation and purification are not limited thereto, and may be all widely used by those skilled in the art for nucleic acid separation and purification.
  • the present invention is a method for separating a target nucleic acid from a biological sample using a fully automated nucleic acid separation device,
  • It relates to a fully automatic nucleic acid separation method comprising a.
  • the magnetic particles combined with the insoluble aggregate or the nucleic acid molecule or the hydrophilic magnetic particles combined with the target nucleic acid may be aggregated and separated under the multi well plate by the magnetic field applying unit included in the automatic purification device. Can be.
  • the present invention relates to a kit for separating and purifying a nucleic acid from a biological sample including magnetic particles having an average particle size of 50 nm to 1 ⁇ m, preferably hydrophobic magnetic particles or silica magnetic particles.
  • a hydrophobic magnetic particle used in the present invention a product (Cosmosin material, SMT-01S) having an average of about 400 nm was purchased and used.
  • the magnetic particles have a surface area of 7.87 m 2 / g, a pore volume of 0.01608 cm 3 / g, and a pore size of 8.17 nm.
  • the hydrophilic magnetic particles used in the present invention were used by purchasing a silica coated magnetic particle product (Acion, AccuNanoBead TM TA-1010) having an average of about 400 nm.
  • the hydrophilic magnetic particles have a surface area of 15.50 m 2 / g, pore volume of 0.02277 cm 3 / g, and pore size of 5.87 nm.
  • the protein-denatured aggregates, the cell debris particles, and the chromosomal DNA are aggregated together with the hydrophobic magnetic particles of Example 1, and then the nucleic acids are separated using a magnet and then the silica magnetic particles and Purification of the plasmid DNA using a magnet was carried out to confirm the yield and purity through absorbance measurement.
  • DH5 ⁇ Escherichia coli with a 3.0 kb pGEM-B1 vector (Bioneer, Korea) in which an ampicillin resistance gene was inserted was used.
  • the culture was shaken at 37 ° C. for about 16 hours to incubate the O.D600 value to 2.0. 2 ml of the cultured E. coli culture was centrifuged to separate the culture and E. coli cells, and the supernatant was removed to obtain only E. coli cells.
  • the hydrophobic magnetic particles and the RNase A-containing preservation buffer were added, the cells were released well, and the cell lysis buffer was added and mixed well. Finally, the neutralization buffer was added and mixed well, and the solution and the insoluble aggregate were separated using a magnet.
  • Guanidine hydrochloric acid and silica magnetic particles were added to the separated solution, mixed, and only the supernatant was removed using a magnet, and then washed again with ethanol. After removing all remaining ethanol through a hot air blower, dry heat dryer or natural drying, the nucleic acid was recovered by dissolving it in water or TE buffer.
  • the recovered nucleic acid was checked for DNA yield and purity using a spectrophotometer and the results are shown in Table 1.
  • a well-purified clean nucleic acid is when the OD260nm / 280nm is 1.8 or more and the OD260nm / 230nm is 2.0 or more.
  • the OD260nm / 280nm value in all samples was maintained at 1.8 or more and the OD260nm / 230nm value was maintained at 2.0 or more to clean the nucleic acid Confirmed.
  • the total experiment time between the method of separating the nucleic acid by treating the hydrophobic magnetic particles and the nucleic acid separation method without using the hydrophobic magnetic particles was compared.
  • E. coli cells 2 ml of E. coli cells were prepared according to Example 2, the same experiments were performed, and the total required time was calculated to compare with the commonly used filter method.
  • the process of dissolving and agglomerating the biological sample from the nucleic acid is performed by centrifugation and it takes a lot of time in this process because it is separated after 10 minutes of centrifugation.
  • the process of dissolving and agglomerating biological samples and separating them from nucleic acids is completed in a short time (within 1 minute) using a magnet, and the process of purification can be completed quickly using a magnet without using a machine. Can be.
  • the nucleic acid separation process according to the present invention showed an effect of reducing the time required to about one third compared to the filter separation method.
  • Example 2 1 ⁇ g of the plasmid isolated in Example 2 was digested for 1 hour at 37 ° C. with Eco RI purchased from Bioneer and subjected to electrophoresis on 1.0% agarose gel to confirm that the size of the plasmid DNA cut by restriction enzyme was 3.0 kb. It was confirmed that the result of the nucleic acid separation method containing the hydrophobic magnetic particles prepared in Example 1 includes the enzyme activity inhibitory factors are shown in Figure 1 the results.
  • M lane of Figure 1 is a size marker (size marker, Bioneer, 1kb ladder), lanes 1 to 3 are experimental spheres treated with restriction enzyme (EcoRI) treated with plasmid DNA isolated by the method according to the present invention.
  • EcoRI restriction enzyme
  • the plasmid DNA isolated by the method according to the present invention was found to have no inhibitory element in the enzyme activity.
  • Example 2 The method of Example 2 was applied to a blood sample of an animal in a simple manner as follows.
  • Figure 2 M is a 1kb ladder product purchased from Bionea is a size marker (size marker), lanes 1 to 4 confirmed that the concentration and purity of the nucleic acid by electrophoresis of nucleic acid DNA isolated by the method according to the present invention It was.
  • Example 2 method was applied to the bacterial samples cultured as follows.
  • the culture medium containing the cultured bacteria is centrifuged at high speed to obtain bacterial precipitates. This is similar to the process of obtaining E. coli cells from a biological sample of the method of Example 2.
  • the obtained precipitate was mixed with lysozyme enzyme and gram positive buffer for 30 minutes at 37 ° C in case of Gram-positive bacteria, and reacted for 30 minutes at 60 ° C by adding a mixture of proteinase K, guanidine hydrochloric acid, a surfactant and a buffer solution. Let's do it.
  • Gram-negative bacteria are mixed well with a cell-lysis buffer.
  • proteinase K was added and subjected to proteolytic reaction at 60 ° C. for 10 minutes.
  • the mixture of guanidine hydrochloric acid, a surfactant, and a buffer solution is added to the solution.
  • bacteria gram positive and negative are mixed in the same way, ethanol is added and mixed, and then silica magnetic nanoparticles are added and mixed.
  • the supernatant is removed using a magnet, followed by guanidine hydrochloric acid and ethanol mixture, sodium chloride and ethanol mixture, and ethanol.
  • Use to wash the silica magnetic particles After removing all remaining ethanol through a hot air blower, dry heat dryer or natural drying, the nucleic acid was recovered by dissolving in water or Tris buffer solution.
  • M is a 1 kb ladder product purchased from Bionea, a size marker, and lanes 1 to 2 were confirmed to have constant concentration and purity of nucleic acid by electrophoresis of nucleic acid DNA isolated by the method according to the present invention. It was.
  • Example 2 method was applied to the cultured cell sample by the following method.
  • Figure 4 M is a 1kb ladder product purchased from Bioneer size marker (size marker), lanes 1 to 4 is confirmed that the concentration and purity of the nucleic acid by electrophoresis of nucleic acid DNA isolated by the method according to the present invention It was.
  • Example 2 method was applied to the collected animal tissue samples by the following method.
  • the collected animal tissue sample is rapidly frozen with liquid nitrogen and crushed to the maximum powder using a tissue crusher or a mixer.
  • 20 mg of the powdered tissue sample is subjected to proteolytic reaction at 60 ° C. for 10 minutes with the addition of proteinase K and tissue lysate.
  • add guanidine hydrochloric acid, a surfactant, and a buffer solution to the solution, mix as much as possible, add ethanol, mix, add silica magnetic nanoparticles, and mix.
  • remove the supernatant using a magnet and then mix the guanidine hydrochloric acid and ethanol solution, Sodium silica chloride and ethanol mixture, ethanol is used sequentially to wash the silica magnetic particles. After removing all remaining ethanol through a hot air blower, dry heat dryer or natural drying, the nucleic acid was recovered by dissolving in water or Tris buffer solution.
  • 5M is a size marker (size marker) as a 1kb ladder product purchased from Bionea, lanes 1 to 4 confirmed that the concentration and purity of nucleic acids by electrophoresis of nucleic acid DNA isolated by the method according to the present invention. It was.
  • Example 2 method was applied to the collected plant tissue samples by the following method.
  • the sample of plant tissue collected is lyophilized with liquid nitrogen and crushed to the maximum powder using a tissue crusher or mixer.
  • 100 mg of the powdered tissue sample was subjected to proteolytic reaction at 60 ° C. for 10 minutes by adding tissue solution containing proteinase K and a surfactant.
  • tissue solution containing proteinase K and a surfactant 100 mg was subjected to proteolytic reaction at 60 ° C. for 10 minutes by adding tissue solution containing proteinase K and a surfactant.
  • add acetic acid and buffer solution to the solution, mix as much as possible, leave on ice for 10 minutes, and centrifuge at high speed to transfer the supernatant to a new tube.
  • guanidine hydrochloric acid and ethanol mixture to the supernatant, mix, add silica magnetic nanoparticles, and mix, remove only the supernatant using a magnet, and then use guanidine hydrochloric acid and ethanol mixture, sodium chloride and ethanol mixture, and ethanol in sequence. Wash the magnetic particles. After removing all remaining ethanol through a hot air blower, dry heat dryer or natural drying, the nucleic acid was recovered by dissolving in water or Tris buffer solution.
  • Figure 6 M is a 1kb ladder product purchased from Bionea size marker (size marker), lanes 1 to 4 is confirmed that the concentration and purity of nucleic acid by electrophoresis of nucleic acid DNA isolated by the method according to the present invention It was.
  • Example 2 method was applied to the cultured cell sample by the following method.
  • Lanes 1 to 4 of FIG. 7 confirmed that the concentration and purity of nucleic acids were constant by electrophoresis of nucleic acid RNAs of various cultured cells isolated by the method of the present invention.
  • Example 2 method was applied to a method for extracting nucleic acids of various samples in a simpler manner.
  • the tissue cells of animals and plants can proceed with protein degradation step such as proteinase in addition to the buffer solution.
  • protein degradation step such as proteinase
  • FIGS. M lanes of Figs. 2 to 7 are size markers (size markers, Bionica, 1kb ladder), and lane numbers are sample DNA extracted by the method according to the present invention.
  • Example 12 Fully Automatic Application of Extraction Method Using Hydrophobic Magnetic Particles and Silica Magnetic Particles to Nucleic Acid Extraction Equipment
  • the nucleic acid extraction method of Example 2 was fully automated using a nucleic acid extraction equipment.
  • Protein Synthesis Purification and Nucleic Acid Extraction Equipment ExiProgen (Bionia, Korea Patent Publication No. 2011-0041126 and No. 2011-0085824, etc.) When put into the sample injection box of the dedicated kit and run all of the nucleic acid extraction method The procedure is performed automatically in the equipment.
  • All solutions except the first cell lysis buffer are contained in a separate kit, and the experiment can be performed by simultaneously moving and mixing the solutions from one sample up to 16 samples.
  • Each of the E. coli cells obtained by the method of Example 1 was put in the buffer for preservation treatment containing RNase A, and the cells were released well. Then, the cell lysis buffer was added and mixed well. do.
  • the solution containing the neutralization buffer solution and the hydrophobic magnetic particles inside the equipment was attached to some wells of the kit using a magnetic device installed in the equipment to separate the solution.
  • the installed magnetic device is mounted in the ExiProgen device in the structure as shown in FIG.
  • Guanidine hydrochloric acid and silica magnetic particles were added to the separated solution, mixed, and then the supernatant was removed using a magnetic field applying unit. After removing all of the ethanol with the heating device of the magnetic field applying unit and dissolved in water or TE buffer to recover the nucleic acid.
  • the recovered nucleic acid was checked for DNA yield and purity using a spectrophotometer and the results are shown in Table 3.
  • a well-purified clean nucleic acid is when the OD260nm / 280nm is 1.8 or more and the OD 260nm / 230nm is 2.0 or more.
  • Magnetic particles specifically hydrophobic magnetic particles or silica magnetic nanoparticles and silica magnetic particles using a method for protein synthesis purification and nucleic acid extraction ExiProgen (Bionia, 2011-0041126 and 2011-0085824) If all work is done in the equipment by using automating system, it can operate up to 16 at the same time. As shown in Table 3 and FIG. The / 230nm value was maintained at 2.0 or more to confirm that the nucleic acid was purified.
  • M lane in Fig. 17 is a size marker (size marker, Bioneer, 1kb ladder), and lanes 1 to 8 are nucleic acid samples recovered in Table 3.
  • Example 13 Confirmation of Enzyme Inhibition of Nucleic Acids Isolated from Biological Samples Using a Fully Automatic Device
  • Example 12 1 ⁇ g of the plasmid isolated in Example 12 was digested with EcoRI purchased from Bioneer for 1 hour at 37 ° C., and electrophoresis was performed on 1.0% agarose gel to confirm that the size of the plasmid DNA cut by restriction enzyme was 3.0 kb. The result separated by the fully automatic device is shown in FIG. 18.
  • M lane of FIG. 18 is a size marker (size marker, Bionnia Co., 1kb ladder), U lane is plasmid DNA which was not cut
  • EcoRI restriction enzyme
  • pipette part 141 first row pipette 142: second row pipette
  • up and down screw 241 forward and backward slider
  • base plate 401 handle
  • pipette rack 440 tube rack for sample storage
  • 440-1 tube insertion hole for target nucleic acid storage
  • 440-3 tube insertion hole for target nucleic acid diagnosis
  • Target nucleic acid storage tube 442-3 Target nucleic acid diagnostic tube
  • magnet mounting portion 711 magnet
  • guide block 750 tension spring
  • lifting unit 761 lifting motor
  • sensing unit 782 sensing target unit
  • heating unit 812 heating unit fixing plate
  • Nucleic acid separation method using the magnetic particles, preferably hydrophobic magnetic particles or silica magnetic particles of the present invention can significantly shorten the nucleic acid separation time than the conventional method, and using silica nano magnetic particles in the process after nucleic acid or protein separation By completing the purification in a short time, the whole process can be completed in a much faster time than the centrifugation method or gravity separation method, etc., and the yield can be improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 자성 입자를 이용한 핵산 분리 정제 방법에 관한 것으로, 더욱 자세하게는 (a) 핵산을 포함하는 생체 시료에 평균 입경 크기가 50nm ~ 1μm인 자성 입자를 첨가하여, 비용해성 응집물 또는 핵산분자와 상기 자성 입자를 결합시키는 단계; 및 (b) 비용해성 응집물 또는 핵산분자와 결합한 상기 자성 입자를 자기장을 이용하여 분리하여, 핵산을 수득하는 단계를 포함하는 자성 입자를 이용하여 생체 시료로부터 핵산 분리하는 방법에 관한 것이다. 본 발명의 자성 입자를 이용한 핵산 분리방법은 종래 방법보다 핵산 분리 시간을 획기적으로 단축시킬 수 있으며, 핵산 또는 단백질 분리 이후 과정에서도 실리카 자성 입자를 이용하여 빠른 시간 내에 정제를 완료함으로써 원심분리법이나 중력분리법 등에 비해 월등하게 빠른 시간 내에 전체 과정을 완료할 수 있으며, 수득율 또한 향상시킬 수 있는 장점이 있다.

Description

자성 입자를 이용한 핵산 분리 방법
본 발명은 자성 입자, 바람직하게는 소수성 자성 입자 또는 실리카 자성 입자를 이용한 핵산 분리 정제 방법에 관한 것으로, 더욱 자세하게는 (a) 핵산을 포함하는 생체 시료에 평균 입경 크기가 50nm ~ 1μm인 자성 입자를 첨가하여, 비용해성 응집물 또는 핵산분자와 상기 자성 입자를 결합시키는 단계; 및 (b) 비용해성 응집물 또는 핵산분자와 결합한 상기 자성 입자를 자기장을 이용하여 분리하여, 핵산을 수득하는 단계; 를 포함하는 자성 입자를 이용하여 생체 시료로부터 핵산 분리하는 방법에 관한 것이다.
생물학적 물질에서 신속하고 빠르게 고순도의 핵산 또는 단백질을 분리, 정제하는 방법은 생화학 연구 및 진단 프로세스에 있어서 무엇보다 중요하다. 이를 위해 세포 용해 용액내에 포함된 여러 종류의 물질들로부터 핵산 또는 단백질만을 선택적으로 효과적이고 재현성 있는 분리 방법에 대한 다양한 연구가 이루어져 왔다.
최근에는 자성 입자를 이용하여 세포 혼합물에서 핵산 또는 단백질을 분리하는 연구가 활발히 진행중이다. 자성 입자를 이용한 방법은 세포 혼합물에 자성 입자를 첨가해줌으로써, 핵산 또는 단백질과 자성 입자 사이에 결합을 유도하여 결합체를 형성시킨 후 외부 자기장을 이용하여 자성 입자와 결합된 핵산 또는 단백질만을 선택적으로 분리시키는 방법이다. 일반적으로 핵산 또는 단백질만을 선택적으로 분리 정제하는데 사용되는 자성 입자의 입자크기는 500 내지 2000nm 정도가 적당하다고 알려져 있다.
미국 특허 5665554호에서는 게놈 DNA 물질에서 플라스미드 DNA를 분리시키는 방법으로 자성 비드와 자석을 이용하는 방법을 제시하고 있다. 상세하게는 플라스미드 DNA와 결합하는 자성 비드를 첨가하여 자성 비드와 플라스미드 DNA를 결합시켜 침전시키고 자석을 이용해 자성 비드와 플라스미드 DNA결합을 제외한 상층액을 제거하여 플라스미드 DNA만을 분리하는 방법이다.
미국 특허 6027945호에서는 실리카 자성 입자를 이용하여 생물학적 타겟 물질과 실리카 자성 입자의 결합체를 형성시킨 후 자기장을 제공해 줌으로써 타겟 물질을 분리하는 방법에 대해 제시하고 있으며, 실리카 자성 입자 1mg에 적어도 2ug의 타겟 물질이 결합되며 60%이상의 수득율을 제시하고 있다.
미국 특허 7078224호에서는 1 ~ 15μm 사이즈의 자성 입자를 이용하는데, 상기 자성 입자는 pH 의존성 이온 교환 입자, 실리카 산화물로 코팅된 실리카 자성 입자를 이용하여 분리하는 방법을 제시하고 있다. 그러나, 이러한 실리카 코팅 자성 입자는 제조 과정이 복합하고, 입자 크기 분포를 균일하게 제어하기 어려운 문제점이 있다.
본 발명자들은 보다 쉽게 실리카 자성 입자를 제조하고, 입자크기를 균일하게 제어할 수 있는 새로운 제조방법을 개발하였으며(한국 등록특허 10-1053023호), 상기 방법에 의해 제조되는 실리카 자성 입자는 표면에 기능기를 갖으며 구형의 형태로 입자 크기 분포가 균일한 장점이 있으며. 그 입자 크기 또한 1 내지 20 μm로 제조된다.
생물학적 시료에서 자성 입자와 결합된 핵산 또는 단백질만을 신속하게 분리하기 위해 외부에서 자기장을 보다 손쉽게 제공해주기 위한 다양한 제품도 다양하게 출시되고 있다. 일 예로 Maglisto(바이오니아사)는 생물학적 시료를 주입할 수 있는 튜브와 튜브가 고정되는 튜브고정부가 있으며, 튜브와 상응하는 외부 위치에서 자기장을 제공할 수 있는 자석고정부를 제공하고 있다. 이 때 제공되는 자석고정부도 튜브고정부와 용이하게 자석으로 탈부착이 가능하게 설계되어 있어, 사용자가 손쉽게 생물학적 물질에서 핵산 또는 단백질을 분리할 수 있는 장점이 있다.
그러나, 상기 방법들에서 사용되는 자성 입자는 비용해성 응집물 또는 타겟핵산과의 결합력이 충분하지 않아, 결합물질에 대한 결합력을 향상시킨 자성 입자의 개발이 요구되고 있다.
이에, 본 발명자들은 자성 입자, 바람직하게는 소수성 자성 입자 또는 실리카 자성 입자를 이용하여 핵산을 분리하는 경우, 단백질 변성 응집물을 포함한 비용해성 응집물 또는 핵산분자를 보다 신속하고 효율적으로 분리할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 생체 시료로부터 비용해성 응집물 또는 타겟핵산을 보다 신속하고 효율적으로 분리할 수 있는 자성 입자를 이용하여 생체 시료로부터 핵산 분리하는 방법을 제공하는데 있다.
본 발명의 다른 목적은 상기 자성 입자를 이용한 생체 시료로부터 핵산을 전자동으로 분리하는 전자동 핵산 분리 장치를 제공하는데 있다.
본 발명의 또다른 목적은 상기 자성 입자를 이용한 생체 시료로부터 핵산을 전자동으로 분리하는 전자동 핵산 분리 장치를 이용한 전자동 핵산 분리 방법을 제공하는데 있다.
본 발명의 또 다른 목적은 평균 입경 크기가 50 nm ~ 1μm인 자성 입자를 포함하는 생체시료로부터 핵산 분리 정제용 키트를 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 핵산을 포함하는 생체 시료에 평균 입경 크기가 50nm ~ 1μm인 자성 입자를 첨가하여, 비용해성 응집물 또는 핵산분자와 상기 자성 입자를 결합시키는 단계; 및 (b) 비용해성 응집물 또는 핵산분자와 결합한 상기 자성 입자를 자기장을 이용하여 분리하여, 핵산을 수득하는 단계;를 포함하는 자성 입자를 이용하여 생체 시료로부터 핵산 분리하는 방법을 제공한다.
본 발명은 또한, 수평방향 및 수직방향으로 이동 가능하게 설치되며, 다수의 피펫을 분리 가능하도록 장착하기 위한 피펫블록; 및 멀티웰 플레이트의 특정 단위 웰에 자기장을 인가 및 해제하기 위한 자기장 인가부;를 포함하고, 상기 멀티웰 플레이트에 생체시료와 평균 입경 크기가 50nm ~ 1μm인 자성 입자가 첨가되는 것을 특징으로 하는 생체 시료로부터 핵산을 전자동으로 분리하는 전자동 핵산 분리 장치를 제공한다.
본 발명은 또한, 상기 전자동 핵산 분리 장치를 이용하여 생물학적 시료로부터 타겟핵산을 분리하는 방법으로서,
1) 자성 입자를 멀티 웰 플레이트의 특정 단위 웰에 첨가하여 타겟핵산을 제외한 비용해성 응집물 또는 핵산분자와 자성 입자를 결합시키는 단계;
2) 비용해성 응집물 또는 핵산분자와 결합된 자성 입자를 제외한 타겟핵산을 함유한 혼합물을 수득하는 단계;
3) 상기 수득된 혼합물에 친수성 자성 입자를 첨가하여 타겟핵산과 결합시키는 단계;
4) 타겟핵산이 결합된 친수성 자성 입자를 제외한 혼합물을 제거하는 단계; 및
5) 타겟핵산과 결합된 친수성 자성 입자에서 타겟핵산을 분리시키는 단계;
를 포함하는 것을 특징으로 하는 전자동 핵산 분리 방법을 제공한다.
본 발명은 또한, 평균 입경 크기가 50nm ~ 1μm인 자성 입자를 포함하는 생체시료로부터 핵산 분리정제용 키트 및 장치를 제공한다.
도 1은 본 발명의 자성 입자를 사용하여 대장균 세포로부터 분리한 플라스미드 DNA를 제한효소 처리 후 아가로스 젤에 전기 영동한 결과를 나타낸 도이다.
도 2는 본 발명의 방법을 이용하여 혈액에서 핵산 DNA을 추출하여 아가로스젤에 전기 영동한 결과를 나타낸 도이다.
도 3은 본 발명의 방법을 이용하여 박테리아 배양액에서 핵산 DNA을 추출하여 아가로스젤에 전기 영동한 결과를 나타낸 도이다.
도 4는 본 발명의 방법을 이용하여 배양된 세포에서 핵산 DNA을 추출하여 아가로스젤에 전기 영동한 결과를 나타낸 도이다.
도 5는 본 발명의 방법을 이용하여 동물조직세포에서 핵산DNA을 추출하여 아가로스젤에 전기 영동한 결과를 나타낸 도이다.
도 6은 본 발명의 방법을 이용하여 식물조직세포에서 핵산DNA을 추출하여 아가로스젤에 전기 영동한 결과를 나타낸 도이다.
도 7은 본 발명의 방법을 이용하여 배양된 다양한 세포에서 핵산 RNA을 추출하여 아가로스젤에 전기 영동한 결과를 나타낸 도이다.
도 8은 자동정제장치의 개략도이다.
도 9는 베이스 플레이트 사용 상태도이다.
도 10은 베이스 플레이트에 튜브랙이 장착된 상태도이다.
도 11은 베이스 플레이트 사용 상태도이다.
도 12는 본 발명의 실시예 5의 방법이 적용된 자성 입자를 분리하기 위한 자석부재장치이다.
도 13은 베이스 플레이트에 자석부재가 배치된 사용 상태도이다.
도 14는 자석부재가 배치된 베이스 플레이트에 멀티 웰 플레이트가 삽입배치된 단면도이다.
도 15는 자기장 인가부가 구비된 자석장착부에 대한 사시도이다.
도 16은 자성 입자를 이용한 타겟핵산 분리 방법에 대한 흐름도이다.
도 17은 같은 시료를 여러 개를 실시예 2와 같은 방법이 적용된 전자동 핵산추출장비로 추출을 진행하여 추출된 플라스미드를 아가로스 겔에 전기영동한 결과이다.
도 18은 플라스미드 핵산을 추출하고 삽입된 목적 유전자 주위의 특정 염기서열을 분리할 수 있는 제한효소로 처리하였을 때 목적 유전자의 크기만큼 적절히 절단되어 전기영동 상에서 확인한 결과이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 일 관점에서, (a) 핵산을 포함하는 생체 시료에 평균 입경 크기가 50nm ~ 1μm인 자성 입자를 첨가하여, 비용해성 응집물 또는 핵산분자와 상기 자성 입자를 결합시키는 단계; 및 (b) 비용해성 응집물 또는 핵산분자와 결합한 상기 자성 입자를 자기장을 이용하여 분리하여, 핵산을 수득하는 단계;를 포함하는 자성 입자를 이용하여 생체 시료로부터 핵산 분리하는 방법에 관한 것이다.
또한, 상기 단계 이후에
(c) (b) 단계에서 수득된 혼합물에 평균 입경 크기가 50nm ~ 1μm인 친수성 자성 입자를 첨가하여 타겟핵산과 친수성 자성 입자를 결합시키는 단계; 및
(d) 타겟핵산과 결합한 친수성 자성 입자를 자기장을 이용하여 분리하여 타겟핵산을 수득하는 단계를 추가적으로 포함하여 생체시료로부터 핵산을 분리하는 방법에 관한 것이다.
상기 핵산은 DNA(deoxyribonucleic acid) 또는 RNA(ribonucleic acid)가 바람직하며, 게놈 DNA, 플라스미드 DNA, 파지 DNA, 유전자 재조합 DNA, mRNA, rRNA, tRNA, 유전자 재조합 RNA, micro RNA 등이 예시될 수 있지만, 이에 한정되는 것은 아니다. 본 발명에서 수득되는 최종 타겟핵산은 바람직하게는 플라스미드 DNA, 박테리아의 게놈 DNA, 혈액 및 동식물 조직 DNA, 동물 세포주의 DNA 및 RNA로 구성된 군에서 선택되는 것일 수 있다.
본 발명에서 핵산 분리 방법은 원심 분리법, 진공 분리법(vacuum manifold type), 필터 분리법, 중력 분리법 또는 크로마토그래피법, 자기장을 이용한 분리법이 다양하게 적용될 수 있다. 이는 본 발명의 분야에서 통상의 지식을 가진 자라면 자명한 사항으로 상세한 설명은 생략하기로 한다.
본 발명에 있어서, 상기 자성 입자는 소수성 자성 나노입자 또는 실리카 자성 나노입자 인 것을 특징으로 할 수 있다.
상기 자성 입자는 철, 코발트, 니켈 및 그 산화물 또는 합금 등으로 이루어진 군에서 선택된 하나 이상의 물질로 제조될 수 있으며, 평균 크기는 50 nm ~ 1μm, 바람직하게는 50 ~ 700 nm, 가장 바람직하게는 200 ~ 500 nm로 제조되어 사용될 수 있다.
자성 입자의 직경이 1μm 이상이 되면 자성 입자의 침강속도가 빨라져 사용상 불편함을 초래하기 때문에 바람직하지 못하다. 또한, 직경이 50nm이하일 경우, 자성이 약해서 목적하는 물질과의 분리에 문제가 생길 수 있다. 입자의 형태는 원형, 사각형, 침형 등 다양한 형태의 입자 모두 사용 가능하다.
본 발명에 있어서, 사용되는 친수성 자성 입자는 상기 자성 입자를 실리카 코팅하여 사용할 수 있다. 또한, 바이오니아에서 제조되는 AccuNanoBeadTM을 사용할 수 있으나, 이에 한정되는 것은 아니며, 평균 크기는 50 nm ~ 1μm, 바람직하게는 50 ~ 700 nm, 가장 바람직하게는 200 ~ 500 nm로 사용될 수 있으며, 통상의 기술자들이 핵산을 분리, 정제하기 위해 사용하는 자성 입자를 광범위하게 사용할 수 있다.
상기 자성 입자는 그 자체로 사용하거나, 수용액에 분산되어 사용할 수 있으나, 수용액에 분산되어 사용하는 것이 자성 입자의 응집을 줄일 수 있을 뿐 아니라 실험 편의성 측면에서 보다 바람직하다. 이 때 수분산액은 자성 입자 자체의 응집 및 침강을 방지하기 위하여, 분산제를 더 함유하여 보관 및 사용될 수 있으며, 상기 분산제로는 글리세롤, 알콕실레이트, 알칸올아미드, 에스테르, 아민 옥사이드, 알킬 폴리길리코사이드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리비닐피롤리돈, 폴리에틸렌아민, 폴리비닐아민, 베타인, 글리시네이트 및 이미다졸린 및 글리세롤로 이루어진 군에서 선택된 1종이상의 분산제를 사용할 수 있다.
상기 자성 입자를 제공하는 단계는
i) 생체 시료에 직접 제공하는 단계
ii) 생체 시료를 보전 처리하는 보전용액에 함께 섞어 제공하는 단계
iii) 생체 시료를 보전 처리하는 보전용액을 처리한 후 제공하는 단계
iv) 생체 시료 용해를 위해 완충용액에 함께 섞어 제공하는 단계
v) 생체 시료 용해를 위해 완충용액을 처리한 후 제공하는 단계
vi) 용해된 생체 시료에 단백질 변성 응집물을 형성시키기 위한 완충용액에 함께 섞어 제공하는 단계
vii) 단백질 변성 응집물이 형성된 용액에 제공하는 단계
에서 선택되는 어느 하나 이상의 단계에서 선택적으로 첨가되어 사용될 수 있으며, ii) 생체 시료를 보전 처리하는 보전용액에 함께 섞어 제공하는 것이 자성 입자가 비용해성 응집물에 고르게 분포하여 핵산과의 분리 효과적인 측면에서 가장 바람직하다.
또한, 상기 자성 입자를 첨가하는 단계를 응용함에 있어서, 본 발명에 따를 자성 입자를 포함하여 이루어지는 핵산 또는 단백질 추출용 키트에 적용하여 사용될 수 있다.
또한, 본 발명은 자성 입자와 결합된 비용해성 단백질 변성 응집물 및 세포 잔해 입자들과 핵산을 분리 분리시키는 방법에 있어서 자기장을 갖는 물질을 이용하는 방법을 제공하는 것이다. 이는 자성 입자가 갖는 자성의 성질을 이용하는 방법으로 비용해성 단백질 변성 응집물 및 세포 잔해 입자들과 결합된 자성 입자의 외부에 자기장을 제공해 줌으로써, 용이하게 응집물을 분리시킬 수 있는 장점을 갖는다.
다른 관점에서, 본 발명은 수평방향 및 수직방향으로 이동 가능하게 설치되며, 다수의 피펫을 분리 가능하도록 장착하기 위한 피펫블록; 및 멀티웰 플레이트의 특정 단위 웰에 자기장을 인가 및 해제하기 위한 자기장 인가부;를 포함하고, 상기 멀티웰 플레이트에 생체시료와 평균 입경 크기가 50nm ~ 1μm인 소수성 자성 입자가 첨가되는 것을 특징으로 하는 생체 시료로부터 핵산을 전자동으로 분리하는 전자동 핵산 분리 장치에 관한 것이다.
본 발명은 생물학적 시료로부터 핵산 또는 단백질을 분리, 정제하는데 있어 전자동 시스템인 자동정제장치를 이용하여 자동적으로 분리, 정제 할 수 있다. 상기 자동정제장치는 한국등록특허 제10-25135호, 한국공개특허 제2011-0121588호, 한국등록특허 제14-00675호에 기재된 장치 또는 바이오니아사에서 제조되는 Exiprep / Exiprogen을 사용할 수 있지만(도 8 내지 도 15 참조), 이에 한정되는 것은 아니며, 통상적으로 핵산 또는 단백질 등을 분리 정제할 수 있는 자동화 또는 반자동화 시스템에 제한없이 적용가능하다.
상기 자동정제장치는 수평방향 및 수직방향으로 이동 가능하게 설치되며, 유동성 물질이 흡입 및 토출되는 다수의 피펫을 분리 가능하도록 장착하기 위한 피펫블록; 베이스플레이트에 탑재되어 상기 피펫블록의 하방에 위치하는 멀티웰플레이트의 특정 단위 웰에 자기장을 인가 및 해제하기 위한 자기장 인가부를 포함하는 것을 특징으로 하는 자기장 인가부를 구비한 생물학적 시료 자동정제장치에 관한 것이다.
본 발명은 상기 멀티웰플레이트의 상기 특정 단위 웰을 가열하기 위한 히팅부를 추가로 포함할 수 있고, 상기 자기장 인가부는, 자석이 장착되며 상기 멀티웰플레이트의 특정 단위 웰 하방에 위치하는 자석장착부; 상기 멀티웰플레이트의 특정 단위 웰에 자기장을 인가 및 해제하기 위하여 상기 자석장착부를 상승 및 하강시키는 승강부; 를 포함하고, 상기 히팅부는 상기 자석장착부에 설치될 수 있고, 상기 히팅부는 상기 자석장착부에 접촉 설치된 발열 필름일 수 있다.
본 발명은 상기 피펫블록을 지지하는 고정몸체; 상기 고정몸체에 설치된 용액 받이대 이동수단에 의하여 수평방향으로 이동 가능하도록 설치되어 상기 피펫블록의 수평방향 이동시 상기 피펫블록에 장착된 상기 다수의 피펫 하방에 위치하는 용액 받이대; 를 포함할 수 있고, 상기 다수의 피펫 중 상기 타겟핵산을 포함한 용액에 적셔진 부분들이 외부와 차단되도록, 상기 다수의 피펫 하방에 위치한 상기 용액 받이대와 밀착되어 상기 다수의 피펫 중 상기 타겟핵산을 포함한 용액에 적셔진 부분들을 감싸도록 형성된 에어로졸방지대를 포함할 수 있다.
본 발명에 있어서, 상기 베이스플레이트에는 상기 피펫블록에 장착되기 위한 다수의 피펫이 삽착 수용되는 피펫랙, 분리된 상기 타겟핵산을 수용하기 위한 다수의 타겟핵산 보관용 튜브가 삽착 수용되는 제1 튜브랙 및 상기 피펫블록에 장착된 다수의 피펫으로부터 버려지는 폐액을 수용하기 위한 폐액통이 탑재될 수 있고, 상기 베이스플레이트에는 상기 제1 튜브랙을 냉각하기 위한 냉각블록이 탑재될 수 있다.
상기 자기장인가부는 자석봉이 장착된 자석부재가 추가적으로 포함될 수 있다. 상기 자석부재는 멀티웰 플레이트의 특정 단위 웰 하부에 장착할 수 있음으로써, 멀티웰 플레이트의 특정 단위 웰에서 형성된 자성 입자와 결합된 혼합물을 응집시켜 분리할 수 있게 한다.
상기 자동정제장치는 목적에 맞게 제조된 멀티 웰 플레이트를 사용하는 것을 특징으로 한다. 상기 멀티 웰 플레이트는 핵산 분리 정제를 위한 용액, 즉, DEPC 증류수, 세포 용해용액, 발현용액, 자성 입자 현탁액, 세척용액, 단백질 분해효소 등에서 선택되는 하나 이상의 용액을 포함하여 제조된다. 상기 핵산 분리 정제를 위한 용액들은 이에 한정된 것은 아니고 통상의 기술자들이 핵산 분리 정제를 위해 사용하는 광범위하게 모두 포함될 수 있다.
또 다른 관점에서, 본 발명은 전자동 핵산 분리 장치를 이용하여 생물학적 시료로부터 타겟핵산을 분리하는 방법으로서,
1) 자성 입자를 멀티 웰 플레이트의 특정 단위 웰에 첨가하여 타겟핵산을 제외한 비용해성 응집물 또는 핵산분자와 소수성 자성 입자를 결합시키는 단계;
2) 비용해성 응집물 또는 핵산분자와 결합된 자성 입자를 제외한 타겟핵산을 함유한 혼합물을 수득하는 단계;
3) 상기 수득된 혼합물에 친수성 자성 입자를 첨가하여 타겟핵산과 결합시키는 단계;
4) 타겟핵산이 결합된 친수성 자성 입자를 제외한 혼합물을 제거하는 단계; 및
5) 타겟핵산과 결합된 친수성 자성 입자에서 타겟핵산을 분리시키는 단계;
를 포함하는 것을 특징으로 하는 전자동 핵산 분리 방법에 관한 것이다.
상기 2)단계 또는 4)단계에서 비용해성 응집물 또는 핵산분자와 결합된 자성 입자 또는 타겟핵산과 결합된 친수성 자성 입자는 자동정제장치에 포함된 자기장 인가부에 의해 멀티 웰 플레이트 하부에 응집되어 분리될 수 있다.
또 다른 관점에서, 본 발명은 평균 입경 크기가 50nm ~ 1μm인 자성 입자, 바람직하게는 소수성 자성 임자 또는 실리카 자성 입자를 포함하는 생체시료로부터 핵산 분리정제용 키트에 관한 것이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 소수성 자성 입자 및 친수성 자성 입자의 제조
본발명에서 사용한 소수성 자성 입자는 평균 400nm 정도의 제품(코스모신소재, SMT-01S)을 구입하여 사용하였다. 상기 자성 입자의 특성은 표면적 7.87 m2/g, 기공체적 0.01608 cm3/g, 기공크기 8.17nm을 갖는다.
본발명에서 사용한 친수성 자성 입자는 평균 400nm 정도의 실리카 코팅 자성 입자 제품(바이오니아, AccuNanoBead™ TA-1010)을 구입하여 사용하였다. 상기 친수성 자성 입자의 특성은 표면적 15.50 m2/g, 기공체적 0.02277 cm3/g, 기공크기 5.87nm을 갖는다.
실시예 2: 소수성 자성 입자를 이용한 핵산 추출
생체 시료로부터 핵산을 분리하기 위해 실시예 1의 소수성 자성 입자와 함께 단백질 변성 응집물과 세포 잔해 입자 및 크로모조멀 DNA(chromosomal DNA) 를 응집시킨 후 자석을 이용하여 핵산을 분리하고 이후 실리카 자성 입자와 자석을 이용하여 플라스미드 DNA를 정제한 후 흡광도 측정을 통해 수율과 순도를 확인하였다.
생체 시료로는 암피실린 저항성 유전자가 삽입된 3.0kb의 pGEM-B1 vector (Bioneer, 한국)가 도입된 DH5α 대장균주를 사용하였다. 100㎍/ml의 암피실린이 포함된 LB 액체배지에 접종한 후 37℃에서 16시간 정도 진탕 배양하여 O.D600 값이 2.0이 되도록 배양하였다. 배양된 대장균 배양액 2ml을 원심분리하여 배양액과 대장균 세포를 분리하고 상등액을 제거하여 대장균 세포만 획득하였다.
획득된 각각의 대장균 세포에 소수성 자성 입자와 RNase A가 포함된 보전 처리용 완충용액을 넣고 세포를 잘 풀어준 후 세포 용해용 완충용액을 넣고 잘 섞어 주었다. 마지막으로 중화용 완충용액을 넣고 잘 섞어 준 후 자석을 이용하여 용액과 비용해성 응집물을 분리하였다.
분리된 용액에 구아니딘 염산과 실리카 자성 입자를 첨가하여 섞어준 후 자석을 이용하여 상등액만 제거 한 후 에탄올을 이용해 다시 한번 씻어 주었다. 열풍기, 건열 건조기나 자연건조를 통해 남아있는 에탄올을 모두 제거한 후 물이나 TE 버퍼에 녹여 핵산을 회수하였다.
회수된 핵산은 분광광도계를 이용하여 DNA 수율과 순도를 확인하고 그 결과를 표 1에 나타내었다.
표 1
Figure PCTKR2015006388-appb-T000001
일반적으로 정제가 잘 된 깨끗한 상태의 핵산은 OD260nm/280nm가 1.8 이상이고 OD260nm/230nm가 2.0 이상일 때를 말한다.
도 1과 표 1에 나타난 바와 같이, 소수성 자성 입자와 실리카 자성 입자를 이용하는 방법으로 실험하였을 때 모든 시료에서 OD260nm/280nm값은 1.8 이상이고 OD260nm/230nm 값은 2.0 이상을 유지하여 핵산이 깨끗하게 정제되었음을 확인하였다.
실시예 3: 소수성 자성 입자를 이용한 핵산분리와 필터를 이용한 핵산분리방법의 비교
소수성 자성 입자를 처리하여 핵산을 분리하는 방법과 소수성 자성 입자를 사용하지 않은 핵산분리방법의 전체 실험 소요 시간을 비교하였다.
실시예 2에 따라 2ml의 대장균 세포를 준비하고, 동일하게 실험한 후 전체 소요시간을 계산하여 일반적으로 많이 사용하는 필터방식과 비교하였다.
표 2
Figure PCTKR2015006388-appb-T000002
또한 생물시료를 용해 및 응집시켜 핵산과 분리하는 과정은 원심분리로 이루어지며 10분가량 원심분리를 해야 분리되기 때문에 이 과정에서 많은 시간이 소요된다.
반면 소수성 자성 입자를 사용하는 방법에서는 생물시료를 용해 및 응집시켜 핵산과 분리하는 과정이 자석을 이용해 짧은 시간 (1분 이내)에 완료 되고 정제 과정에서도 기계 사용 없이 자석을 이용하여 빠르게 과정을 완료할 수 있다.
표 2에 나타난 바와 같이, 본 발명에 의한 핵산 분리과정은 필터 분리법에 비해 소요시간이 약 1/3로 줄어드는 효과를 나타내었다.
실시예 4: 소수성 자성 입자가 처리된 실험 방법을 이용하여 생물시료로부터 분리된 핵산의 효소활성 저해여부 확인
실시예 2에서 분리된 플라스미드 1㎍을 바이오니아로부터 구입한 EcoRI 으로 37℃에서 1시간 동안 절단하고 1.0% 아가로스 젤에서 전기영동을 통해 제한효소에 의해 절단된 플라스미드 DNA의 크기가 3.0kb가 맞는지 확인하고, 실시예 1에서 제조된 소수성 자성 입자가 포함된 핵산 분리 방법에 의한 결과물이 효소 활성 저해요인을 포함하고 있는지 확인하여 그 결과를 도 1에 나타내었다.
도 1의 M레인은 사이즈 마커(size marker, 바이오니아사, 1kb ladder)이고, 레인 1~ 3은 본 발명에 의한 방법으로 분리한 플라스미드 DNA를 제한효소 (EcoRI) 처리한 실험구이다.
도 1의 전기영동 사진에서 볼 수 있듯이 본 발명에 의한 방법으로 분리된 플라스미드 DNA는 효소 활성에 아무런 저해 요소를 갖고 있지 않음을 알 수 있었다.
실시예 5: 실리카 자성 나노 입자를 이용한 혈액 샘플의 핵산 추출 방법
상기 실시예 2 방법을 동물의 혈액 샘플에서 다음과 같이 간편한 방법으로 응용하였다.
획득된 혈액 샘플에 구아니딘 염산과 계면활성제, 완충용액 혼합액을 넣고 잘 섞어준다. 다음에 프로티나아제 K를 넣고 60℃에서 10분간 단백질 분해 반응을 거친다. 다음에 용액에 에탄올을 첨가하여 섞고 실리카 자성 나노 입자까지 첨가하여 섞어준 후 자석을 이용하여 상등액만 제거 한 후 구아니딘 염산과 에탄올 혼합액, 염화나트륨과 에탄올 혼합액, 에탄올을 순차적으로 사용하여 실리카 자성입자를 씻어 준다. 열풍기, 건열 건조기나 자연건조를 통해 남아있는 에탄올을 모두 제거한 후 물이나 Tris 완충용액에 녹여 핵산을 회수하였다.
도 2의 M은 바이오니아로부터 구입한 1kb ladder 제품으로 사이즈 마커(size marker)이고, 레인 1~ 4은 본 발명에 의한 방법으로 분리한 핵산 DNA를 전기영동하여 핵산의 농도 및 순도가 일정함을 확인하였다.
실시예 6: 실리카 자성 나노 입자를 이용한 배양된 박테리아 샘플의 핵산 추출 방법
상기 실시예 2 방법을 배양시킨 박테리아 샘플에서 다음과 같이 응용하였다.
배양시킨 박테리아가 있는 배양액 샘플을 고속으로 원심분리하여 박테리아 침전물을 얻는다. 이는 실시예2 방법 중 생체시료에서 대장균 세포를 얻는 과정과 유사하다. 얻어진 침전물은 박테리아 종류 중 그람양성의 경우 라이소자임 효소와 그람양성 전용 완충액과 을 섞어 37℃에서 30분간 반응시키고 프로티나아제 K 와 구아니딘 염산과 계면활성제, 완충용액 혼합액을 첨가하여 60℃에서 30분간 반응시킨다. 박테리아중 그람음성은 침전물에서 세포분해용 완충액을 넣고 잘 섞는다. 다음에 프로티나아제 K를 넣고 60℃에서 10분간 단백질 분해 반응을 거친다. 다음에 용액에 구아니딘 염산과 계면활성제, 완충용액 혼합액을 넣어 섞는다. 이후 박테리아 그람 양성, 음성 모두 같은 방법으로, 에탄올을 첨가하여 섞은 다음 실리카 자성 나노 입자까지 첨가하여 섞어준 후 자석을 이용하여 상등액만 제거 한 후 구아니딘 염산과 에탄올 혼합액, 염화나트륨과 에탄올 혼합액, 에탄올을 순차적으로 사용하여 실리카 자성입자를 씻어 준다. 열풍기, 건열 건조기나 자연건조를 통해 남아있는 에탄올을 모두 제거한 후 물이나 Tris 완충용액에 녹여 핵산을 회수하였다.
도 3의 M은 바이오니아로부터 구입한 1kb ladder 제품으로 사이즈 마커(size marker)이고, 레인 1~ 2은 본 발명에 의한 방법으로 분리한 핵산 DNA를 전기영동하여 핵산의 농도 및 순도가 일정함을 확인하였다.
실시예 7: 실리카 자성 나노 입자를 이용한 배양 세포의 핵산 추출 방법
상기 실시예 2 방법을 배양된 세포 샘플에서 다음과 같은 방법으로 응용하였다.
배양된 세포와 배양액이 섞인 샘플을 10분간 중력가속도의 3000배 정도의 속도로 원심분리하여 상층액을 모두 제거하고 인산완충액(PBS)를 넣어 재부유시킨다. 프로티나아제 K 와 구아니딘 염산과 계면활성제, 완충용액 혼합액을 첨가하여 60℃에서 10분간 단백질 분해 반응을 거친다. 다음에 용액에 에탄올을 첨가하여 섞고 실리카 자성 나노 입자까지 첨가하여 섞어준 후 자석을 이용하여 상등액만 제거 한 후 구아니딘 염산과 에탄올 혼합액, 염화나트륨과 에탄올 혼합액, 에탄올을 순차적으로 사용하여 실리카 자성입자를 씻어 준다. 열풍기, 건열 건조기나 자연건조를 통해 남아있는 에탄올을 모두 제거한 후 물이나 Tris 완충용액에 녹여 핵산을 회수하였다.
도 4의 M은 바이오니아로부터 구입한 1kb ladder 제품으로 사이즈 마커(size marker)이고, 레인 1~ 4은 본 발명에 의한 방법으로 분리한 핵산 DNA를 전기영동하여 핵산의 농도 및 순도가 일정함을 확인하였다.
실시예 8: 실리카 자성 나노 입자를 이용한 동물조직의 핵산 추출 방법
상기 실시예 2 방법을 채취된 동물조직 샘플에서 다음과 같은 방법으로 응용하였다.
채취된 동물조직 샘플을 액체질소로 급속냉동시켜 조직파쇄기, 믹서를 사용하여 최대한 가루가 되도록 파쇄시킨다. 가루가 된 조직 샘플 20mg을 프로티나아제 K 와 조직용해액을 첨가하여 60℃에서 10분간 단백질 분해 반응을 거친다. 다음에 용액에 구아니딘 염산과 계면활성제, 완충용액 혼합액을 첨가하여 최대한 골고루 섞고 에탄올을 첨가하여 섞은 다음 실리카 자성 나노 입자까지 첨가하여 섞어준 후 자석을 이용하여 상등액만 제거 한 후 구아니딘 염산과 에탄올 혼합액, 염화나트륨과 에탄올 혼합액, 에탄올을 순차적으로 사용하여 실리카 자성입자를 씻어 준다. 열풍기, 건열 건조기나 자연건조를 통해 남아있는 에탄올을 모두 제거한 후 물이나 Tris 완충용액에 녹여 핵산을 회수하였다.
도 5의 M은 바이오니아로부터 구입한 1kb ladder 제품으로 사이즈 마커(size marker)이고, 레인 1~ 4은 본 발명에 의한 방법으로 분리한 핵산 DNA를 전기영동하여 핵산의 농도 및 순도가 일정함을 확인하였다.
실시예 9: 실리카 자성 나노 입자를 이용한 식물조직의 핵산 추출 방법
상기 실시예 2 방법을 채취된 식물조직 샘플에서 다음과 같은 방법으로 응용하였다.
채취된 식물조직 샘플을 액체질소로 급속냉동시켜 조직파쇄기, 믹서를 사용하여 최대한 가루가 되도록 파쇄시킨다. 가루가 된 조직 샘플 100mg을 프로티나아제 K 와 계면활성제가 첨가된 조직용해액을 첨가하여 60℃에서 10분간 단백질 분해 반응을 거친다. 다음에 용액에 초산과 완충용액 혼합액을 첨가하여 최대한 골고루 섞고 10분간 얼음에 둔 후, 고속으로 원심분리하여 상층액을 새로운 튜브에 옮긴다. 상층액에 구아니딘 염산과 에탄올 혼합액을 첨가하여 섞은 다음 실리카 자성 나노 입자까지 첨가하여 섞어준 후 자석을 이용하여 상등액만 제거 한 후 구아니딘 염산과 에탄올 혼합액, 염화나트륨과 에탄올 혼합액, 에탄올을 순차적으로 사용하여 실리카 자성입자를 씻어 준다. 열풍기, 건열 건조기나 자연건조를 통해 남아있는 에탄올을 모두 제거한 후 물이나 Tris 완충용액에 녹여 핵산을 회수하였다.
도 6의 M은 바이오니아로부터 구입한 1kb ladder 제품으로 사이즈 마커(size marker)이고, 레인 1~ 4은 본 발명에 의한 방법으로 분리한 핵산 DNA를 전기영동하여 핵산의 농도 및 순도가 일정함을 확인하였다.
실시예 10: 실리카 자성 나노 입자를 이용한 배양 세포의 핵산 RNA 추출 방법
상기 실시예 2 방법을 배양된 세포 샘플에서 다음과 같은 방법으로 응용하였다.
배양된 세포와 배양액이 섞인 샘플을 모두 수집하여 5분간 중력가속도의 300배 정도의 속도로 원심분리하여 상층액을 모두 제거하고 구아니딘 염산과 계면활성제, 완충용액 혼합액을 첨가하고 1분 이상 골고루 섞어 세포파쇄과정을 거친다. 다음에 용액에 에탄올을 첨가하여 섞고 실리카 자성 나노 입자까지 첨가하여 섞어준 후 자석을 이용하여 상등액만 제거 한 후 구아니딘 염산과 에탄올 혼합액, 염화나트륨과 에탄올 혼합액, 에탄올을 순차적으로 사용하여 실리카 자성입자를 씻어 준다. 열풍기, 건열 건조기나 자연건조를 통해 남아있는 에탄올을 모두 제거한 후 물이나 Tris 완충용액에 녹여 핵산을 회수하였다.
도 7의 레인 1~ 4은 본 발명에 의한 방법으로 분리한 배양된 다양한 세포의 핵산 RNA를 전기영동하여 핵산의 농도 및 순도가 일정함을 확인하였다.
실시예 11: 실리카 자성 나노 입자 처리를 이용한 다양한 샘플의 핵산 추출 방법
상기 실시예 2 방법을 다양한 샘플의 핵산 추출 방법에 보다 간편한 방법으로 응용하였다.
획득한 혈액 샘플, 액체 배지에서 배양된 동물 세포주, 동물조직 및 식물조직 등 에 전처리용 세포 용해용 완충용액을 넣고 잘 섞어준다. 이 때, 동식물의 조직세포들은 완충용액 외에도 프로티나아제 등의 단백질 분해 단계를 진행할 수 있다. 그 다음, 용액에 구아니딘 염산과 실리카 자성 나노 입자, 에탄올을 첨가하여 섞어준 후 자석을 이용하여 상등액만 제거 한 후 구아니딘 염산과 에탄올 혼합액, 염화나트륨과 에탄올 혼합액, 에탄올을 순차적으로 사용하여 실리카 자성입자를 씻어 주었다. 열풍기, 건열 건조기나 자연건조를 통해 남아있는 에탄올을 모두 제거한 후 물이나 Tris 완충용액에 녹여 핵산을 회수하였다.
핵산 분리 방법에 의한 결과물이 불순물 없이 잘 추출되었는지에 대해 아가로즈 젤 전기영동을 통해 확인한 결과, 도 2 내지 7에 개시된 바와 같이 불순물 없이 잘 추출된 것을 확인할 수 있었다. 도 2 내지 7의 M레인은 사이즈 마커(size marker, 바이오니아사, 1kb ladder)이고, 레인 번호는 본 발명에 의한 방법으로 추출한 샘플 DNA이다.
실시예 12: 소수성 자성 입자 및 실리카 자성 입자 처리를 이용한 추출 방법을 핵산추출 장비에 적용한 전자동화
실시예 2의 핵산추출 방법을 핵산추출장비를 사용하여 전자동화시켰다.
단백질 합성 정제 및 핵산추출용 장비 ExiProgen(바이오니아사, 한국공개특허 제2011-0041126호 및 제2011-0085824호 등에 사용되는 전용 키트의 샘플 주입칸에 넣고 가동시키면 상기 실시예 2의 핵산추출 방법의 모든 절차가 전자동으로 장비 내에서 실행된다.
핵산추출용 장비 ExiProgen은 도 8~15에 그 개략도 및 상태도를 나타내었다.
첫 번째 세포 용해용 완충용액을 제외한 모든 용액이 따로 전용키트에 각각 들어있으며 1개 샘플에서부터 최대 16개 샘플까지 동시에 용액을 이동 및 혼합을 하여 실험을 진행할 수 있다.
상기 실시예1 방법으로 획득된 각각의 대장균 세포를 RNase A가 포함된 보전 처리용 완충용액을 넣고 세포를 잘 풀어준 후 세포 용해용 완충용액을 넣고 잘 섞어 전용키트에 샘플을 주입하고 장비를 가동한다. 장비내부에서 중화용 완충용액과 소수성 자성 입자까지 섞인 용액을 장비내 설치된 자석장치를 이용하여 비용해성 응집물을 키트 일부 웰에 붙이고 용액을 분리하였다. 설치된 자석장치는 도 6과 같은 구조로 ExiProgen 장비 내에 장착되어 있다.
분리된 용액에 구아니딘 염산과 실리카 자성 입자를 첨가하여 섞어준 후 장비내 구동하는 자기장 인가부를 이용하여 상등액만 제거한 후 에탄올을 이용해 다시 한번 씻어 주었다. 에탄올을 자기장 인가부의 히팅 장치로 모두 제거한 후 물이나 TE 버퍼에 녹여 핵산을 회수하였다.
회수된 핵산은 분광광도계를 이용하여 DNA 수율과 순도를 확인하고 그 결과를 표 3에 나타내었다.
표 3
Figure PCTKR2015006388-appb-T000003
일반적으로 정제가 잘 된 깨끗한 상태의 핵산은 OD260nm/280nm가 1.8 이상이고 OD 260nm/230nm가 2.0 이상 일 때를 말한다.
자성 입자, 상세하게는 소수성 자성 입자 또는 실리카 자성 나노입자와 실리카 자성 입자를 이용하는 방법을 단백질 합성 정제 및 핵산추출용 장비 ExiProgen (바이오니아사, 한국공개특허 제2011-0041126호 및 제2011-0085824호)를 이용하여 자동화시켜 장비 내에서 모든 작업이 이루어지면 최대 16개까지 같이 동시에 작동할 수 있고 표 3과 도 17에 나타난 바와 같이 거의 일정한 농도와 모든 시료에서 OD 260nm/280nm값은 1.8 이상이고 OD 260nm/230nm값은 2.0 이상을 유지하여 핵산이 깨끗하게 정제 되었음을 확인하였다.
표 3의 분리된 핵산을 1.0% 아가로스 젤에서 전기영동 한 결과 전자동화장치 내에서 정제된 핵산 중 플라스미드 DNA가 깨끗하게 정제되었음을 확인할 수 있었다. 도 17의 M레인은 사이즈 마커(size marker, 바이오니아사, 1kb ladder)이고, 1 내지 8 레인은 표 3에서 회수한 핵산 시료이다.
실시예 13: 전자동화 장치를 이용하여 생물시료로부터 분리된 핵산의 효소활성 저해여부 확인
실시예 12에서 분리된 플라스미드 1㎍을 바이오니아로부터 구입한 EcoRI 으로 37℃에서 1시간 동안 절단하고 1.0% 아가로스 젤에서 전기영동을 통해 제한효소에 의해 절단된 플라스미드 DNA의 크기가 3.0kb가 맞는지 확인하고, 전자동화 장치에 의해 분리된 결과물을 도 18에 나타내었다.
도 18의 M레인은 사이즈 마커(size marker, 바이오니아사, 1kb ladder)이고, U레인은 제한효소에 의해 절단하지 않은 플라스미드 DNA이고, C 레인은 플라스미드 DNA를 제한효소 (EcoRI) 처리한 실험구이다. 전기영동 결과에서 볼 수 있듯이, 플라스미드 핵산에 삽입된 목적 유전자 주위의 특정 염기서열을 분리할 수 있는 제한효소로 처리하였을 때 목적 유전자의 크기만큼 적절히 절단되어 전기영동상에서 뚜렷하게 나타나는 것을 확인하였다
이상으로 본 발명의 내용을 상세히 기술하였는바, 당 업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
부호의 설명
120 : 피스톤 130 : 피스톤 안내부
140 : 피펫부 141 : 제1열 피펫 142 : 제2열 피펫
150 : 피스톤 안내부 지지판
200 : 고정몸체
231 : 상하 이동모터 232 : 상하 이동벨트
233 : 상하 이동스크류 241 : 전후 이동 슬라이더
300 : 케이싱
310 : 전후 이동 지지봉 311 : 전후 안내가이더
320 : 전후 이동모터 330: 전후 이동벨트
340 : 멸균을 위한 자외선 램프
400 : 베이스플레이트 401 : 손잡이
420 : 멀티웰플레이트 420' : 멀티웰플레이트
430 : 피펫랙 440 : 시료보관용 튜브랙
440-1 : 타겟핵산 보관용 튜브삽착공 440-3 : 타겟핵산 진단용 튜브삽착공
442-1 : 타겟핵산 보관용 튜브 442-3 : 타겟핵산 진단용 튜브
450 : 폐액통 460 : 고온반응블럭
472 : 생물학적 시료용 튜브
700 : 자기장 인가부
710 : 자석장착부 711 : 자석
713 : 단위 웰 인입홈
720 : 자석장착부 지지대 730 : 가이드봉
740 : 가이드 블럭 750 : 인장 스프링
760 : 승강부 761 : 승강모터
762 : 제1 승강축 763 : 승강캠
764 : 제2 승강축
770 : 센싱부 장착판
780 : 높이 감지 센서
781 : 센싱부 782 : 센싱 타겟부
810 : 히팅부 812 : 히팅부 고정판
본 발명의 자성 입자, 바람직하게는 소수성 자성 입자 또는 실리카 자성 입자를 이용한 핵산 분리방법은 종래 방법보다 핵산 분리 시간을 획기적으로 단축시킬 수 있으며, 핵산 또는 단백질 분리 이후 과정에서도 실리카 나노 자성 입자를 이용하여 빠른 시간 내에 정제를 완료함으로써 원심분리법이나 중력분리법 등에 비해 월등하게 빠른 시간 내에 전체 과정을 완료할 수 있으며, 수득율 또한 향상시킬 수 있는 장점이 있다.

Claims (18)

  1. 다음 단계를 포함하는 자성 입자를 이용하여 생체 시료로부터 핵산을 분리하는 방법으로
    (a) 핵산을 포함하는 생체 시료에 평균 입경 크기가 50nm ~ 1μm인 자성 입자를 첨가하여, 비용해성 응집물 또는 핵산분자와 상기 입자를 결합시키는 단계; 및
    (b) 비용해성 응집물 또는 핵산분자와 결합한 상기 자성 입자를 자기장을 이용하여 분리하여, 타겟핵산을 수득하는 단계;
    를 포함하는 것을 특징으로 한는 핵산 분리 방법
  2. 제1항에 있어서,
    (c) (b) 단계에서 수득된 혼합물에 평균 입경 크기가 50nm ~ 1μm인 친수성 자성 입자를 첨가하여 타겟핵산과 친수성 자성 입자를 결합시키는 단계; 및
    (d) 타겟핵산과 결합한 친수성 자성 입자를 자기장을 이용하여 분리하여 타겟핵산을 수득하는 단계를 추가적으로 포함하는 것을 특징으로 하는 핵산 분리 방법.
  3. 제1항에 있어서,
    상기 자성 입자는 소수정 자성 나노입자 또는 실리카 자성 나노입자인 것을 특징으로 하는 핵산의 분리 방법.
  4. 제1항에 있어서,
    상기 자성 입자의 평균 입경이 50nm ~ 700nm인 것을 특징으로 하는 핵산의 분리 방법.
  5. 제2항에 있어서,
    상기 친수성 자성 입자의 평균 입경이 50nm ~ 700nm인 것을 특징으로 하는 핵산의 분리 방법.
  6. 제1항에 있어서, 상기 자성 입자는 철, 코발트, 니켈 및 그 산화물 또는 합금에서 1종 이상 선택되는 것을 특징으로 하는 핵산의 분리 방법.
  7. 제2항에 있어서,
    상기 친수성 자성 입자는 실리카 코팅된 자성 입자인 것을 특징으로 하는 핵산 분리 방법.
  8. 제1항에 있어서,
    상기 자성 입자를 첨가하는 단계는
    i) 생체 시료에 직접 제공하는 단계;
    ii) 생체 시료를 보전 처리하는 보전용액에 함께 섞어 제공하는 단계;
    iii) 생체 시료를 보전 처리하는 보전용액을 처리한 후 제공하는 단계;
    iv) 생체 시료 용해를 위해 완충용액에 함께 섞어 제공하는 단계;
    v) 생체 시료 용해를 위해 완충용액을 처리한 후 제공하는 단계;
    vi) 용해된 생체 시료에 단백질 변성 응집물을 형성시키기 위한 완충용액에 함께 섞어 제공하는 단계; 및
    vii) 단백질 변성 응집물이 형성된 용액에 제공하는 단계;
    에서 선택되는 단계에 첨가되는 것을 특징으로 하는 핵산의 분리 방법.
  9. 제1항 내지 제2항에 있어서 분리되는 타겟 핵산은 플라스미드 DNA, 박테리아의 게놈 DNA, 혈액 및 동식물 조직 DNA, 동물 세포주의 DNA 및 RNA로 구성된 군에서 선택되는 것을 특징으로 하는 핵산의 분리 방법.
  10. 수평방향 및 수직방향으로 이동 가능하게 설치되며, 다수의 피펫을 분리 가능하도록 장착하기 위한 피펫블록; 및
    멀티 웰 플레이트의 특정 단위 웰에 자기장을 인가 및 해제하기 위한 자기장 인가부;
    를 포함하고, 상기 멀티웰 플레이트에 생체시료와 평균 입경 크기가 50nm ~ 1μm인 자성 입자가 첨가되는 것을 특징으로 하는 생체 시료로부터 핵산을 전자동으로 분리하는 전자동 핵산 분리 장치.
  11. 제10항에 있어서,
    상기 자기장 인가부는 상기 멀티웰플레이트의 특정단위 웰 하방에 위치하는 자석장착부; 및
    상기 자석장착부를 상승 및 하강시키기 위한 승강부;
    를 포함하는 것을 특징으로 하는 전자동 핵산 분리 장치.
  12. 제10항에 있어서,
    상기 자성 입자를 분리하기 위해 자석부재를 추가로 포함하는 것을 특징으로 하는 전자동 핵산 분리 장치.
  13. 제10항에 있어서,
    상기 멀티웰플레이트의 특정 단위 웰을 가열하기 위한 히팅부를 추가로 포함하는 것을 특징으로 하는 전자동 핵산 분리 장치.
  14. 제10항 내지 제13항 중 어느 한 항의 전자동 핵산 분리 장치를 이용하여 생물학적 시료로부터 타겟핵산을 분리하는 방법으로서,
    1) 자성 입자를 멀티 웰 플레이트의 특정 단위 웰에 첨가하여 타겟핵산을 제외한 비용해성 응집물 또는 핵산분자와 자성 입자를 결합시키는 단계;
    2) 비용해성 응집물 또는 핵산분자와 결합된 자성 입자를 제외한 타겟핵산을 함유한 혼합물을 수득하는 단계;
    를 포함하는 것을 특징으로 하는 전자동 핵산 분리 방법.
  15. 제14항에 있어서,
    3) 2) 단계에서 수득된 혼합물에 친수성 자성 입자를 첨가하여 타겟핵산과 결합시키는 단계;
    4) 타겟핵산과 결합된 친수성 자성 입자를 제외한 혼합물을 제거하는 단계; 및
    5) 타겟핵산과 결합된 친수성 자성 입자에서 타겟핵산을 분리시키는 단계;
    를 추가로 포함하는 것을 특징으로 하는 전자동 핵산 분리 방법.
  16. 제14항 또는 제15항에 있어서,
    2) 단계 또는 4) 단계의 자성 입자와 결합된 물질을 분리함에 있어서, 자기장 인가부를 이용하여 상기 멀티 웰 플레이트의 특정 단위 웰 하부의 내벽에 부착시켜 분리하는 것을 특징으로 하는 전자동 핵산 분리 방법.
  17. 제14항 또는 제15항에 있어서,
    분리되는 타겟 핵산은 플라스미드 DNA, 박테리아의 게놈 DNA, 혈액 및 동식물 조직 DNA, 동물 세포주의 DNA 및 RNA로 구성된 군에서 선택되는 것을 특징으로 하는 핵산의 분리 방법.
  18. 평균 입경 크기가 50nm ~ 1μm인 자성 입자를 포함하는 생체시료로 부터 핵산 분리정제용 키트.
PCT/KR2015/006388 2014-06-24 2015-06-23 자성 입자를 이용한 핵산 분리 방법 WO2015199423A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0077697 2014-06-24
KR20140077697 2014-06-24

Publications (2)

Publication Number Publication Date
WO2015199423A1 WO2015199423A1 (ko) 2015-12-30
WO2015199423A9 true WO2015199423A9 (ko) 2016-04-21

Family

ID=54938433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006388 WO2015199423A1 (ko) 2014-06-24 2015-06-23 자성 입자를 이용한 핵산 분리 방법

Country Status (2)

Country Link
KR (1) KR102344395B1 (ko)
WO (1) WO2015199423A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102047362B1 (ko) * 2017-01-16 2019-11-21 (주) 바이오팩트 아민-코팅 자성 나노입자를 이용한 플라스미드 dna 정제 방법 및 조성물
CN107841450B (zh) * 2017-12-21 2023-09-29 山西省农业科学院棉花研究所 一种用于核酸提取实验的乙醇清除装置及其使用方法
KR102170388B1 (ko) * 2018-07-13 2020-10-27 주식회사 제놀루션 마그네틱 비드의 제조방법 및 분리방법
KR102332602B1 (ko) * 2021-03-08 2021-12-02 주식회사 싸이토딕스 유체 처리 시스템
KR20230022564A (ko) * 2021-08-09 2023-02-16 주식회사 싸이토딕스 유체 처리 시스템 및 이를 이용한 원심 분리 방법
CN113933506A (zh) * 2021-10-29 2022-01-14 北京利德曼生化股份有限公司 测定人体壳多糖酶3样蛋白1(chi3l1)含量的磁微粒化学发光检测试剂盒

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2965131B2 (ja) * 1995-07-07 1999-10-18 東洋紡績株式会社 核酸結合用磁性担体およびそれを用いる核酸単離方法
US6027945A (en) * 1997-01-21 2000-02-22 Promega Corporation Methods of isolating biological target materials using silica magnetic particles
DE69839133T2 (de) * 1997-12-06 2009-02-05 Invitrogen Corp., Carlsbad Isolierung von Nukleinsäuren
WO2006004611A2 (en) * 2004-06-25 2006-01-12 Invitrogen Corporation Separation of nucleic acid
KR100695160B1 (ko) * 2004-10-19 2007-03-14 삼성전자주식회사 레이저 및 마이크로 자성 비드를 이용한 세포 또는바이러스의 신속한 파괴 방법 및 장치
KR20060061494A (ko) * 2004-12-02 2006-06-08 요업기술원 핵산(dna/rna) 분리정제용 기능성 실리카자성나노입자 및 그 제조방법
KR20070018501A (ko) * 2005-08-10 2007-02-14 요업기술원 고순도 및 고용량으로 dna를 분리 정제할 수 있는아미노 치환기를 가지는 실리카 코팅 자성나노입자와 그의제조방법
KR100829585B1 (ko) * 2006-04-07 2008-05-14 삼성전자주식회사 표적 세포 분리 및 신속한 핵산 분리 방법 및 장치
KR101053023B1 (ko) * 2008-02-14 2011-08-01 (주)바이오니아 구형 실리카 자성입자 및 이의 제조방법
EP2565260B1 (en) * 2010-04-30 2020-12-23 Bioneer Corporation Automatic biological sample purification device having a magnetic-field-applying unit, a method for extracting a target substance from a biological sample, and a protein expression and purification method
KR101762295B1 (ko) * 2012-02-10 2017-08-04 (주)바이오니아 생체시료의 자동 분석 장치 및 방법
KR20150017611A (ko) * 2013-08-07 2015-02-17 삼성전자주식회사 세포로부터 핵산을 분리하기 위한 방법

Also Published As

Publication number Publication date
KR20160000439A (ko) 2016-01-04
WO2015199423A1 (ko) 2015-12-30
KR102344395B1 (ko) 2021-12-29

Similar Documents

Publication Publication Date Title
WO2015199423A9 (ko) 자성 입자를 이용한 핵산 분리 방법
WO2020022821A1 (ko) 실리카 코팅 자성 비드를 이용한 바이러스 rna 추출용 조성물 및 이를 이용한 바이러스 rna 추출 방법
WO2016021972A1 (en) Immune-compatible cells created by nuclease-mediated editing of genes encoding hla
WO2009125971A9 (ko) 자동정제장치, 멀티 웰 플레이트 키트 및 생물학적 시료로부터 핵산을 추출하는 방법
WO2018030608A1 (ko) Cas9 단백질 및 가이드 RNA의 혼성체를 함유하는 나노 리포좀 전달체 조성물
CN107663521B (zh) 血浆游离核酸提取试剂盒及其应用
WO2012067465A2 (en) Automatic necleic acid purification apparatus and method for aerosol-protecting
WO2015183026A1 (ko) 불활성화된 표적 특이적 뉴클레아제를 이용한 표적 dna의 분리 방법
WO2010143917A2 (en) Targeted genomic rearrangements using site-specific nucleases
WO2014058251A1 (ko) 시료 처리 장치 및 이를 포함하는 자동 분석 장치
WO2017213469A2 (ko) 남조류 스피룰리나 추출물을 함유하는 세포 배양액, 이의 제조방법, 및 이를 이용한 세포의 배양방법
WO2016144136A1 (ko) Ffpe 조직에서 핵산의 분리 방법
WO2020256520A1 (ko) 전기자극에 의한 엑소좀 제조 방법
US20230146223A1 (en) Nucleic acids extraction system and method based on 3d-printed microdevice
Bennett et al. An ultra-rapid method for the study of antibiotic resistance plasmids
Bowman et al. Purification and analysis of DNA from wheat chloroplasts isolated in nonaqueous media
WO2015178728A1 (ko) 플로로탄닌 분획물을 이용한 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하는 방법
WO2020242093A1 (ko) 양이온성 폴리머를 이용한 핵산추출장치 및 추출방법
WO2016093668A2 (ko) 일체형 유전자 치료 유도만능줄기세포 제작방법
WO2021006419A1 (en) Refining method of ophthalmic protein pharmaceutical
WO2020139031A1 (ko) Crispr-cas를 기반으로 하는 유전자 교정용 조성물
WO2022071648A1 (ko) 미생물 농축 또는 핵산 추출용 조성물 및 이를 이용한 미생물 농축 또는 핵산 추출 방법
WO2019088527A2 (ko) 산화아연 나노스타를 이용한 병원체 용균 및 핵산 추출 방법
EP1131420B1 (en) Nucleic acid isolation
WO2018169307A1 (ko) 규조토를 이용한 미생물 농축 방법 및 핵산 추출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812830

Country of ref document: EP

Kind code of ref document: A1