WO2014058251A1 - 시료 처리 장치 및 이를 포함하는 자동 분석 장치 - Google Patents

시료 처리 장치 및 이를 포함하는 자동 분석 장치 Download PDF

Info

Publication number
WO2014058251A1
WO2014058251A1 PCT/KR2013/009071 KR2013009071W WO2014058251A1 WO 2014058251 A1 WO2014058251 A1 WO 2014058251A1 KR 2013009071 W KR2013009071 W KR 2013009071W WO 2014058251 A1 WO2014058251 A1 WO 2014058251A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcr
valve
chamber
housing
sample processing
Prior art date
Application number
PCT/KR2013/009071
Other languages
English (en)
French (fr)
Inventor
고병훈
문대경
김현철
Original Assignee
주식회사 인포피아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인포피아 filed Critical 주식회사 인포피아
Priority to US14/415,543 priority Critical patent/US20150209789A1/en
Publication of WO2014058251A1 publication Critical patent/WO2014058251A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/52Containers specially adapted for storing or dispensing a reagent
    • B01L3/523Containers specially adapted for storing or dispensing a reagent with means for closing or opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0644Valves, specific forms thereof with moving parts rotary valves

Definitions

  • the present invention relates to a sample processing device and an automatic analysis device including the same.
  • Extraction and amplification of nucleic acids to detect pathogens by various detection reactions are used in various research, medical and industrial applications. To this end, a process of extracting nucleic acids, amplifying the extracted nucleic acids, a process of detecting pathogens, and the like must be performed, and various kinds of reactants must be used in each process.
  • the process time is complicated and the process time becomes long.
  • the apparatus for extracting nucleic acids and the apparatus for performing amplification and detection are different from each other, resulting in a complicated process time and a long process time.
  • An object of the present invention is to provide a sample processing apparatus capable of automatically processing various processes required for processing a sample and detecting pathogens, and an automatic analysis apparatus including the same.
  • a sample processing device includes a sample processing device for extracting and amplifying a nucleic acid from a sample, the sample processing device comprising: a housing having a chamber; A valve located at the bottom of the housing; And a PCR unit positioned below the valve to perform real time polymerase chain reaction (PCR).
  • PCR real time polymerase chain reaction
  • An automatic analysis device includes a sample processing device for extracting and amplifying a nucleic acid from a sample; And a driving member mounted with the sample processing device, a driving member for driving the sample processing device, a heating member for heating the sample processing device, and a detection member for determining whether the pathogen is detected from the nucleic acid amplified by the sample processing device. It includes a device unit.
  • the sample processing device includes a housing having a chamber; A valve located at the bottom of the housing; And a PCR unit positioned under the valve to perform a polymerase chain reaction (PCR).
  • the structure can be simplified by integrally combining the housing, the valve and the PCR unit for the polymerase chain reaction.
  • the valve may be coupled to the housing and the PCR unit in a state in which the valve is interposed therebetween.
  • FIG. 1 is a perspective view showing a sample processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the sample processing device of FIG. 1.
  • FIG. 2 is an exploded perspective view of the sample processing device of FIG. 1.
  • FIG. 3 is a perspective view illustrating a valve of the sample processing device of FIG. 1.
  • FIG. 4 is a partial cross-sectional view illustrating the sample device of FIG. 1.
  • FIG. 5 is a plan view illustrating a housing of the sample processing device of FIG. 1.
  • FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 5.
  • FIG. 7 is a partial cross-sectional view of a sample processing device according to a modification of the present invention.
  • FIG. 8 is a partial cross-sectional view of a sample processing device according to another modification of the present invention.
  • FIG. 9 is a perspective view illustrating a PCR unit of the sample processing device of FIG. 1.
  • 10A and 10B are cross-sectional views taken along the line X-X of FIG. 9.
  • FIG. 11 is a perspective view of an automatic analysis device according to an embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of the automatic analysis device of FIG. 11.
  • FIG. 13A to 13L are views for explaining the operation of the sample processing device according to the present embodiment.
  • FIG. 14 is a cutaway perspective view illustrating a housing of an automatic analysis device according to a modification of the present invention.
  • FIG. 15 is a perspective view illustrating a PCR unit of an automatic analysis device according to a modification of the present invention.
  • any part of the specification “includes” other parts, unless otherwise stated, other parts are not excluded, and may further include other parts.
  • a part of a layer, film, region, plate, etc. is said to be “on” another part, this includes not only the case where the other part is “just above” but also the other part located in the middle.
  • parts such as layers, films, regions, plates, etc. are “just above” another part, it means that no other part is located in the middle.
  • the sample processing device is a device for automatically detecting and amplifying a nucleic acid from a sample so as to be used for detection of a pathogen.
  • the sample refers to all samples containing nucleic acids, and may include viruses, microorganisms, cells, tissues of animals or plants, organs of animals or plants, and body fluids thereof.
  • the sample is taken from an organ such as the spleen and other bodily fluid components or tissues for the detection of pathogens, and includes specific diseased tissues, tissues with biomarkers, and pathogenic microorganisms (eg, blood, tissue, Sputum, urine, feces, etc.), a sample grown through the cell culture, and may include all the samples of nature.
  • the sample can be obtained by various known methods.
  • the nucleic acid is a genetic material composed of polynucleotides, and may be classified into deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • Such a sample processing device can be applied to an automatic analysis device including a detection member for detecting a pathogen or the like, so that the nucleic acid can be automatically extracted and amplified from a sample, and then detected by the pathogen.
  • FIG. 1 is a perspective view showing a sample processing device according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view showing a sample processing device of FIG. 3 is a perspective view illustrating the valve of the sample processing device of FIG. 1
  • FIG. 4 is a partial cross-sectional view of the sample device of FIG. 1.
  • the sample processing apparatus 100 includes a housing 10 having a plurality of chambers 110 and a valve 20 positioned below the housing 10. And a polymerase chain reaction (PCR) portion 30 positioned below the valve 20.
  • PCR polymerase chain reaction
  • the housing 10 may have a bottom surface and have an open top.
  • the housing 10 may have an approximately cylindrical shape having a circular planar shape, but the present invention is not limited thereto and may have another shape.
  • the housing 10 may be made of various materials that can support various materials therein.
  • the housing 10 may be made of plastic.
  • a plurality of chambers 110 may be provided in the housing 10 to sequentially perform various processes until elution of the nucleic acid obtained by dissolving the sample.
  • the plurality of chambers 110 may include a fluid displacement chamber 120 positioned in the center portion and a reaction chamber 130 positioned outside the fluid displacement chamber 120.
  • a plurality of reaction chambers 130 may be provided to sequentially perform various processes for sample processing. In each process, the fluid displacement chamber 120, which supplies the fluid to each reaction chamber 130 or the PCR unit 30, or is supplied from each reaction chamber 130 or the PCR unit 30, is positioned at the center of the fluid flow. Minimize the traffic.
  • a plurality of holes for fluid flow are formed in the bottom surfaces of the fluid displacement chamber 110 and the reaction chamber 120, which will be described in detail later with reference to FIGS. 3 and 4.
  • An extension part 140 is formed on the bottom surface side of the housing 10 and is spaced apart from each other while forming a side surface of the housing 10.
  • the extension 140 may be formed to reach the side of the PCR unit 30 over the valve 20 in the state of interposing the valve 20 between the housing 10 and the PCR unit 30.
  • a first coupling part 142 for coupling with the PCR part 30 is formed at a portion corresponding to the PCR part 30 in the extension part 140.
  • the first coupling part 142 of the extension part 140 is coupled to the second coupling part 34 formed on the side of the PCR part 30, thereby integrally fixing the housing 10 and the PCR part 30.
  • the valve 20 is rotatably positioned between the housing 10 and the PCR unit 30.
  • extension parts 140 are shown, but the present invention is not limited thereto. That is, the number of extensions 140 may be variously modified as long as the housing 10 and the PCR 30 can be integrally coupled with the valve 20 interposed therebetween. Therefore, the extension 140 may be formed in two or more various numbers.
  • the cover part 150 covering the reaction chamber 130 may be positioned above the housing 10. Openings 161 and 171 for opening the fluid displacement chamber 120 are formed in the central portion of the cover part 150, and the fluid displacement member 180 is introduced into the fluid displacement chamber 120 through the openings 161 and 171. Can be located.
  • the fluid displacement member 180 may move up and down to control the flow of the fluid located inside the fluid displacement chamber 120, and may be, for example, a plunger or a piston.
  • the cover part 150 may have a first cover part 160 and a second cover part 170.
  • the first cover part 160 is fixed to the upper edge of the housing 10.
  • the first cover part 160 may be fixed to the upper edge of the housing 10 while surrounding the upper edge of the housing 10.
  • a fixing protrusion 168 protruding outwardly along an edge of the first cover part 160 may be formed on an upper surface of the first cover part 160.
  • a second opening 163 and a third opening 165 into which the ultrasonic member 190 is fitted are formed in the first cover 160 together with the opening 161.
  • the ultrasonic member 190 and a method of fixing the same will be described later.
  • the second cover part 170 is fixed to the first cover part 160 at the top of the first cover part 160.
  • the second cover part 170 may have an edge protruding to surround the fixing protrusion 168 formed in the first cover part 160. Accordingly, the edge of the second cover portion 170 is positioned outside the protruding portion 160 of the first cover portion 160 to fix the second cover portion 170 on the first cover portion 160. Can be.
  • a third opening 175 into which the ultrasonic member 190 is fitted may be formed in the second cover part 170 along with the opening 161.
  • the second cover part 170 is formed to cover all of the reaction chambers 130.
  • the cover part 150 is formed in a double structure having the first cover part 160 and the second cover part 170.
  • the second cover part 170 is opened to open the reaction chamber 130 by the second opening 163.
  • the second chamber 170 may be closed to close the reaction chamber 130.
  • a part of the second cover part 170 is foldably connected to a part of the second cover part 160, so that the opening or closing of the second cover part 170 is made smooth, and the second cover part It is possible to prevent the second cover portion 170 from being lost when the 170 is opened.
  • the cover part 150 may include various materials to prevent the materials in the plurality of chambers 110 from flowing to the outside.
  • the cover part 150 may be made of plastic.
  • a valve 20 for controlling a fluid flow to the plurality of chambers 110 and the PCR unit 30 of the housing 10 is positioned between the housing 10 and the PCR unit 30 at the lower portion of the housing 10. .
  • the valve 20 may be connected to the rotation drive member (reference numeral 410 of FIG. 12, hereinafter same) by the connecting means 22 extending through the central portion of the PCR unit 30 to the outside. 410 may be freely rotated in a clockwise or counterclockwise direction.
  • the valve 20 may have an approximate disc shape, in which the planar shape is circular.
  • a plurality of channels 210, 220, and 230 are formed in the valve 20 to allow fluid to flow between the chambers 110 or between the chamber 110 and the PCR unit 30. Can flow.
  • the upper surface of the valve 20 is in close contact with the housing 10 (more specifically, the bottom surface of the housing 10), and the lower surface of the valve 20 is the PCR unit 30 (more specifically, the PCR unit 30). Upper surface).
  • the plurality of channels 210, 220, and 230 communicate with the hole of the chamber 110 and the outlet of the PCR unit 30, the fluid may be prevented from flowing out.
  • the plurality of channels 210, 220, and 230 are formed while penetrating the upper and lower surfaces of the valve 20, and are not separately provided in the housing 10, so that the structure may be simplified, and the fluid flow may be smooth. have.
  • the valve 20 may form a smaller area of the lower than the area of the upper. As a result, the upper surface of the PCR unit 30 is exposed to a large area so that the heating member (reference numeral 440 of FIG. 12) can be widely positioned on the upper surface of the PCR unit 30.
  • the valve 20 may include an upper portion having a first diameter in a plane and a lower portion having a second diameter smaller than the first diameter.
  • the planar area of the valve 20 is smaller than the planar area of the housing 10 and the PCR unit 30 and correlates with the fixing structure of the housing 10 and the PCR unit 30 between the housing 10 and the PCR unit 30. It can be rotated freely without
  • the plurality of channels 210, 220, and 230 may include the first channel 210, the fluid displacement chamber 120, and the PCR unit 30 that communicate the fluid displacement chamber 120 and each reaction chamber 130.
  • the second channel 220 to communicate with.
  • it may include a third channel 230 in communication with any one of the reaction chamber 130 and the PCR unit 30.
  • the first channel 210 has a first outlet 212 formed to communicate with the fluid displacement chamber 120 on the upper surface of the valve 20 and a second outlet port formed to communicate with the reaction chamber 130 on the upper surface of the valve 20. 214 is formed between.
  • the distance from the central axis of the valve 20 may be relatively small, and the second outlet 214 may be connected to each reaction chamber 130.
  • the distance from the central axis C of the valve 20 may be relatively large.
  • the first outlet 212 and the second outlet 214 may be located parallel to the diameter passing through the center of the valve 20 when viewed in a planar shape. Then, the path of the first channel 210 formed between the first outlet 212 and the second outlet 214 can be simplified.
  • a first filter 216 capable of capturing nucleic acid in a sample is positioned inside the first channel 210.
  • This first filter 216 can use a variety of known materials that can capture nucleic acids. For example, it may be a porous material made of glass fiber.
  • the second channel 220 is a third outlet 222 formed to communicate with the fluid displacement chamber 120 on the upper surface of the valve 20 and a fourth outlet port formed to communicate with the PCR unit 130 on the lower surface of the valve 20.
  • 224 is formed between.
  • the third outlet 222 may be formed closer to the central axis C of the valve 20 than the first outlet 212, but the present invention is not limited thereto. Therefore, the third outlet 222 is sufficient to be formed separately from the first outlet 212, the position is not limited.
  • the third channel 230 is the fifth outlet 232 formed to communicate with the reaction chamber 130 on the upper surface of the valve 20 and the sixth outlet port formed to communicate with the PCR unit 30 on the lower surface of the valve 20.
  • 234 is formed between.
  • the fourth outlet 224 and the sixth outlet 234 may be located at the same distance from the central axis C of the valve 20 so as to facilitate the flow of the fluid to the PCR unit 30. This will be described later with reference to the PCR unit 30.
  • the fifth outlet 232 may be located farther from the central axis C of the valve 20 than the second outlet 214.
  • a protruding PCR moving part 209 may be formed on the lower surface of the valve 20 so as to be caught by the locking part 329 formed on the upper surface of the PCR part 30.
  • the locking unit 329 and the PCR moving unit 209 may be caught by each other, various configurations that can rotate a portion of the PCR unit 30 in accordance with the rotation of the valve 20 can be applied. This will be described in more detail later.
  • the valve 20 may be formed of, for example, plastic. However, the present invention is not limited thereto and may be formed of various other materials.
  • the PCR unit 30 is positioned below the valve 20 to amplify DNA by performing PCR on the nucleic acid captured in the housing 10.
  • the PCR unit 30 may have an approximate disk shape of which the planar shape is circular.
  • the through hole 32 through which the connecting means 22 connected to the valve 20 may pass may be formed in the central portion of the PCR unit 30.
  • a second coupling part 34 coupled to the first coupling part 142 of the extension part 140 of the housing 10 is formed at the side of the PCR part 30.
  • the second coupling part 34 may have various configurations that may be coupled to the first coupling part 142.
  • the PCR unit 30 is fitted to the first coupling part 142 having a groove shape. It may be a protrusion formed on the side of the.
  • the valve 20 and the PCR unit in a state in which the connecting means 22 of the valve 20 passes through the through hole 32 of the PCR unit 30 so that the valve 20 is positioned on the PCR unit 30.
  • the first coupling part 142 that is, the groove
  • the second coupling part 34 ie, the protrusion part
  • the housing 10 and the PCR unit 30 can be combined integrally.
  • the housing 10 and the PCR unit 30 are fixed to each other by the first and second coupling units 142 and 34, but the valve 20 is not fixed to the housing 10 and the PCR unit 30 separately. Do not. Therefore, when the valve 20 is connected to the rotation drive member 410 by the connecting means 22, only the valve 20 itself can rotate.
  • the housing 10, the valve 20, and the PCR unit 30 may be integrally coupled by fitting the housing 10 and the PCR unit 30, so that the coupling may be performed in a simple process. It is possible. At this time, the planar shape of the housing 10, the valve 20 and the PCR unit 30 in a circular shape, the housing 10, the valve 20 and the PCR unit 30 can be easily integrated and the valve 20 Can smoothly rotate.
  • the groove is formed by the first coupling part 142 and the protrusion is formed by the second coupling part 34.
  • the present invention is not limited thereto, and the first coupling part 142 may be a protrusion and the second coupling part 34 may be a groove, and various coupling members may be used.
  • the PCR unit 30 includes first and second PCR units 310 and 320 having reaction spaces of different shapes in order to perform two-step PCR, which will be described later.
  • the PCR unit 30 may be formed of plastic as an example. However, the present invention is not limited thereto, and the PCR unit 30 may be made of another material.
  • the structure of the housing 10 and the PCR unit 30 described above will be described in more detail.
  • the plurality of chambers 110 in the housing 10 will be described in more detail with reference to FIGS. 5 and 6, and then the PCR unit 30 will be described in more detail with reference to FIG. 9.
  • FIG. 5 is a plan view illustrating a housing of the sample processing device of FIG. 1, and FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 5.
  • a plurality of chambers 110 including a fluid displacement chamber 120 and a reaction chamber 130 are formed in the housing 10.
  • the reaction chamber 130 will be described first, followed by the fluid displacement chamber 120.
  • a plurality of reaction chambers 130 may be located outside the fluid displacement chamber 120.
  • the plurality of reaction chambers 130 may have a form extending radially outward from the fluid displacement chamber 120. With such a shape, the space in the housing 10 can be used efficiently, and the size of the sample processing device 10 can be reduced while having all the spaces required for analysis.
  • Each reaction chamber 130 is provided with a substance capable of respectively performing a reaction for lysing cells in a sample or for eluting nucleic acids obtained therefrom.
  • Each reaction chamber 130 may have a different internal volume in consideration of an amount of a solution or a material required for each reaction or a reaction space.
  • the present invention is not limited thereto, and each reaction chamber 130 may have the same internal volume.
  • the reaction chamber 130 includes a binding chamber 131, a lysis chamber 132, cleaning chambers 133 and 134, an elution chamber 135, and a waste chamber. 136 and dilution chamber 137.
  • the present invention is not limited thereto, and various modifications are possible, such as some chambers being omitted or a separate chamber is added.
  • the coupling chamber 131, the dissolution chamber 132, the cleaning chambers 133 and 134, the elution chamber 135, and the waste chamber are disposed so that the valve 20 can perform various reactions in order while rotating in the clockwise direction.
  • 136 and dilution chamber 137 are located in turn in a clockwise direction.
  • rotation of the valve 20 may be minimized, thereby minimizing energy required for driving the valve 20.
  • the present invention is not limited thereto. Therefore, it is also possible for the valve 20 to rotate in the counterclockwise direction so that the reaction chamber 130 can be sequentially positioned in the counterclockwise direction as opposed to the present embodiment.
  • various modifications are possible, such as the reaction chamber 130 being arranged without this order.
  • the binding chamber 131 serves to receive a binding buffer or to accommodate the remaining binding buffer used after the reaction.
  • This binding buffer includes components that help the nucleic acid to be well captured in the first filter 216.
  • the binding buffer passes through a first filter 216 located in the first channel 210 to provide an environment in which the nucleic acid can be well captured to the first filter 216.
  • various known materials can be used as the binding buffer.
  • one or more chaotropic salts selected from the group consisting of guanidine-HCl, guanidine-SCN and NaI can be used as the binding buffer.
  • the bottom surface of the coupling chamber 131 is formed with a first hole 131a for communication with the first channel 210 formed in the valve 20.
  • the first hole 131a may communicate with the fluid displacement chamber 120 and the first channel 210 connecting the reaction chamber 130. More specifically, the first hole 131a is formed at a position corresponding to the second outlet 214 formed on the upper surface of the valve 20 and corresponding to each reaction chamber 130. That is, the distance at which the first hole 131a is spaced apart from the central axis C of the housing 10 and the distance at which the second outlet 214 is spaced apart from the central axis C of the valve 20 may be the same. have. Then, when the second outlet 214 of the valve 20 coincides with the first hole 131a by rotation, the first channel 210 and the coupling chamber 131 may communicate with each other.
  • the dissolution chamber 132 contains a lysis buffer for dissolving the sample.
  • the dissolution buffer may use a variety of known materials capable of dissolving the sample.
  • the dissolution buffer is a chaotropic agent, such as guanidinium salt (eg, guanidinium thio cyanate), ethylenediaminetetraacetic acid (EDTA), And a buffering salt such as a chelating agent, trihidroxymethylaminomethane (Tris-HCl).
  • a chaotropic agent such as guanidinium salt (eg, guanidinium thio cyanate), ethylenediaminetetraacetic acid (EDTA), and a buffering salt such as a chelating agent, trihidroxymethylaminomethane (Tris-HCl).
  • Tris-HCl trihidroxymethylaminomethane
  • nonionic surfactants may be included.
  • Both polyethyleneglycol nonionic surfactants and polyhydric alcoholic nonionic surfactants may be used, but are preferably Triton X-100, Tween (an ethylene oxide adduct of sorbitan esters) or 2-mercaptoethanol Is used, most preferably Triton X-100 can be used.
  • lysis buffers may be non acidic, for example neutral or alkaline. However, the present invention is not limited thereto, and the lysis buffer may have various materials.
  • the first hole 132a for communication with the first channel 210 formed in the valve 20 is formed on the bottom surface of the dissolution chamber 132.
  • the first hole 132a may communicate with the fluid displacement chamber 120 and the first channel 210 connecting the reaction chamber 130. More specifically, the first hole 132a is formed at a position corresponding to the second outlet 214 formed on the upper surface of the valve 20 and corresponding to each reaction chamber 130. That is, the distance that the first hole 132a is spaced apart from the central axis C of the housing 10 and the distance that the second outlet 214 is spaced apart from the central axis C of the valve 20 may be the same. have. Then, when the second outlet 214 of the valve 20 coincides with the first hole 132a by rotation, the first channel 210 and the melting chamber 132 may communicate with each other.
  • a second filter 138 is positioned on the first hole 132a of the dissolution chamber 132.
  • This second filter 138 is for removing cell debris.
  • the second filter 138 may be formed to have a larger area than the first hole 132a of the dissolution chamber 130 to cover all of the first holes 132a. This allows the cell debris to be sufficiently filtered by the second filter 138 when the nucleic acid in the lysis chamber 132 flows out through the first hole 132a.
  • the second filter 138 preferably has a filtration hole through which the nucleic acid passes and the cell debris can be filtered out.
  • the preferred size of the filtration hole is in the range of 0.2 to 50 ⁇ m.
  • the DNA may be partially filtered below the above range, and the cell debris may not be sufficiently filtered if the above range is exceeded.
  • the second filter 138 is provided on the first hole 132a, so that the centrifugal separation process that has been conventionally performed for removing cell debris may be performed. This can simplify the process. In addition, the problem that may occur due to cell debris in a subsequent process can be solved.
  • the ultrasonic member 190 is positioned on the cover part 150 to correspond to the dissolution chamber 132. More specifically, third openings 165 and 175 are formed at portions of the lid 150 corresponding to the dissolution chamber 132, and pass through the ultrasonic member 190 through the third openings 165 and 175.
  • the ultrasonic member 190 is positioned in the dissolution chamber 132. Since the upper portion of the ultrasonic member 190 is exposed to the outside through the third openings 165 and 175, ultrasonic waves supplying energy to the ultrasonic member 190 by the automatic analyzer (400 of FIG. 11). It can be easily connected to the drive member (reference numeral 430 of FIG. 12, hereinafter same).
  • the ultrasonic member 190 may be fixed by the adhesive part 192 on the side of the first cover part 160 so as not to interfere with the connection with the ultrasonic driving member 430.
  • the adhesive part 192 various known materials may be used.
  • the ultrasonic member 190 is positioned to pass through only the third opening portion 165 of the first cover part 160, and the second cover part 170 is disposed.
  • the portion in contact with the ultrasonic member 190 may be provided with a connecting member 176, such as a metal for connecting to the ultrasonic driving member 430.
  • the connection member 176 may be attached to the fourth opening 175 of the second cover part 170 by the adhesive layer 192.
  • the third opening 175 of the second lid part 170 is formed larger than the third opening 165 of the first lid part 160 to cover the lid part 150. Steps may be formed on the side surfaces of the third openings 165 and 175 of FIG.
  • the ultrasonic member 190 may be stably mounted by passing the ultrasonic member 190 having a side step through the third openings 165 and 175. As described above, the fixing structure, the method, and the like of the ultrasonic member 190 may be variously modified.
  • the ultrasonic member 190 may accelerate the dissolution of the sample by providing ultrasonic waves to the cells and the lysis buffer during the lysis process.
  • the ultrasonic member 190 may have a tip shape having a pointed tip to provide ultrasonic waves, and may have various methods and structures.
  • the cleaning chambers 133 and 134 may receive a washing buffer for cleaning the first filter 126, or may receive a cleaning buffer and impurities after cleaning the first filter 126.
  • the cleaning buffer serves to increase the purity of the target nucleic acid by washing impurities that may be present with the nucleic acid in the first filter 126 or reaction solutions used in the previous process, particularly chaotropic salts.
  • the cleaning chambers 133 and 134 may include separate first and second cleaning chambers 133 and 134 to more effectively remove impurities remaining in the first filter 126.
  • only one cleaning chamber may be present and is not excluded from the present invention.
  • the first cleaning buffer may be located in the first cleaning chamber 133 to perform the first cleaning, and the first cleaning buffer is not limited as long as it is a component that can selectively remove impurities other than nucleic acids.
  • the first cleaning buffer may include ethanol, isopropanol and the like of 90 to 100% concentration.
  • the first hole 133a for communicating with the first channel 210 formed in the valve 20 is formed on the bottom surface of the first cleaning chamber 133.
  • the first hole 133a may communicate with the fluid displacement chamber 120 and the first channel 210 connecting the reaction chamber 130. More specifically, the first hole 133a is formed at a position corresponding to the second outlet 214 formed on the upper surface of the valve 20 and corresponding to each reaction chamber 130. That is, the distance that the first hole 133a is spaced apart from the central axis C of the housing 10 and the distance that the second outlet 214 is spaced apart from the central axis C of the valve 20 may be the same. have. Then, when the second outlet 214 of the valve 20 coincides with the first hole 133a by rotation, the first channel 210 and the first cleaning chamber 133 may communicate with each other.
  • the second cleaning chamber 134 may have a second cleaning buffer capable of performing a second cleaning, which may be the same as or different from the first cleaning buffer. This is to remove impurities remaining in the first filter 126 in the same case as the first cleaning buffer.
  • a second cleaning buffer consisting of a component or composition ratio different from the first cleaning buffer, which further removes impurities and chaotropic salt (chaotropic salt) of the first cleaning buffer component in the elution process
  • the eluate solution makes it possible to easily dissolve the nucleic acid from the first filter.
  • the alcohol which is one of the washing buffer components, may have an effect of inhibiting a PCR reaction
  • a second washing buffer may be used to effectively remove the PCR reaction.
  • it may include ethanol at a concentration of 50-80%.
  • a first hole 134a for communicating with the first channel 210 formed in the valve 20 is formed on the bottom surface of the second cleaning chamber 134.
  • the first hole 134a may communicate with the fluid displacement chamber 120 and the first channel 210 connecting the reaction chamber 130. More specifically, the first hole 134a is formed at a position corresponding to the second outlet 214 formed on the upper surface of the valve 20 and corresponding to each reaction chamber 130. That is, the distance from which the first hole 134a is spaced apart from the central axis C of the housing 10 and the distance from which the second outlet 214 is spaced apart from the central axis C of the valve 20 may be the same. have. Then, when the second outlet 214 of the valve 20 coincides with the first hole 134a by rotation, the first channel 210 and the second cleaning chamber 134 may communicate with each other.
  • the elution chamber 135 contains an elution buffer for eluting the nucleic acid captured by the first filter 126.
  • elution buffer various substances capable of dissolving the captured nucleic acid can be used.
  • water or TE buffer Tris-Cl, EDTA
  • EDTA Tris-Cl, EDTA
  • the first hole 135a for communicating with the first channel 210 formed in the valve 20 is formed on the bottom surface of the elution chamber 135.
  • the first hole 135a may be formed such that the fluid displacement chamber 120 and the first channel 210 connecting each reaction chamber 130 communicate with each other. More specifically, the first hole 135a is formed at a position corresponding to the second outlet 214 formed on the upper surface of the valve 20 and corresponding to each reaction chamber 130. That is, the distance from which the first hole 135a is spaced apart from the central axis C of the housing 10 and the distance from which the second outlet 214 is spaced apart from the central axis C of the valve 20 may be the same. have. Then, when the second outlet 214 of the valve 20 coincides with the first hole 135a by rotation, the first channel 210 and the elution chamber 135 may communicate with each other.
  • the waste chamber 136 is connected to the third channel 230 when the elution solution containing nucleic acid is supplied to the PCR unit 30 (particularly, the first PCR 310) so that the air in the PCR unit 30 is disposed in the waste chamber. To (136). As a result, the elution solution containing the nucleic acid can be smoothly supplied to the PCR unit 30.
  • the bottom surface of the waste chamber 136 is formed with a second hole 136b for communication with the third channel 230 formed in the valve 20. More specifically, the second hole 136b is formed at a position corresponding to the fifth outlet 232 formed on the upper surface of the valve 20 and corresponding to each reaction chamber 130. That is, the distance that the second hole 136b is spaced apart from the central axis C of the housing 10 and the distance that the fifth outlet 232 is spaced apart from the central axis C of the valve 20 may be the same. have. Then, when the fifth outlet 232 of the valve 20 coincides with the second hole 136b by rotation, the third channel 230 and the waste chamber 136 may communicate with each other.
  • a substance (hereinafter referred to as “first treatment”) processed by the PCR unit 30 is mixed with the dilution buffer to form a dilution mixture.
  • the dilution buffer various materials capable of diluting the first treatment may be used in an appropriate amount.
  • the dilution buffer may be used in an amount of 5-15 times the first treatment. Dilution may not occur sufficiently if the dilution buffer is less than 5 times the first treatment, and if it exceeds 15 times the amount of dilution mixture may be too large.
  • the present invention is not limited thereto, and the amount of dilution buffer may be appropriately adjusted.
  • the bottom surface of the dilution chamber 137 is formed with a first hole 137a for communication with the first channel 210 formed in the valve 20.
  • the first hole 137a may communicate with the fluid displacement chamber 120 and the first channel 210 connecting the reaction chamber 130. More specifically, the first hole 137a is formed at a position corresponding to the second outlet 214 formed on the upper surface of the valve 20 and corresponding to each reaction chamber 130. That is, the distance from which the first hole 137a is spaced apart from the central axis C of the housing 10 and the distance from which the second outlet 214 is spaced apart from the central axis C of the valve 20 may be the same. have. Then, when the second outlet 214 of the valve 20 coincides with the first hole 137a by rotation, the first channel 210 and the dilution chamber 137 may communicate with each other.
  • the fluid displacement member 180 is positioned at an upper portion of the fluid displacement chamber 120 surrounded by the plurality of reaction chambers 130, and the first and the first portions of the valve 20 are disposed on the bottom surface of the fluid displacement chamber 120. Holes 120a and 120b corresponding to the two channels 210 and 220 are formed.
  • a volume of the fluid displacement chamber 120 expands to generate a suction force for sucking the fluid into the fluid displacement chamber 120 through the holes 120a and 120b.
  • the volume of the fluid displacement chamber 120 decreases so that the fluid is discharged to the outside of the fluid displacement chamber 129 through the holes 120a and 120b.
  • the holes 120a and 120b formed on the bottom surface of the fluid displacement chamber 120 may include third holes 120a and second channels formed at positions corresponding to the first outlet 212 of the first channel 210. It may include fourth holes 120b formed at a position corresponding to the third outlet 222 of 220.
  • third holes 120a correspond to the first outlet 212 of the first channel 210, and the first holes 130a formed in each reaction chamber 130 and located on the concentric circle are the second outlets. Corresponds to 214. In plan view, third holes 120a corresponding to each of the first holes 130a formed in the reaction chamber 130 are positioned on a diameter passing through the center of the housing 10.
  • the third hole 120a is formed on the bottom surface of the fluid displacement chamber 120 to be positioned on the same diameter as the first hole 131a of the coupling chamber 131.
  • the third hole 121a is formed in the bottom surface of the fluid displacement chamber 120 to be positioned on the same diameter as the first hole 132a of the dissolution chamber 132.
  • Third holes 123a and 124a are formed in the bottom surface of the fluid displacement chamber 120 so as to be positioned on the same diameter as the first holes 133a and 134a of the cleaning chambers 133 and 134.
  • the third hole 125a is formed on the bottom surface of the fluid displacement chamber 120 to be positioned on the same diameter as the first hole 135a of the elution chamber 135.
  • the third hole 127a is formed in the bottom surface of the fluid displacement chamber 120 to be positioned on the same diameter as the first hole 137a of the dilution chamber 137.
  • first holes 130a may be formed to correspond to the second outlet 214 and the third holes 120a may correspond to the first outlet 212.
  • the fourth hole 120b is formed closer to the central axis C than the third hole 120a to correspond to the third outlet 222.
  • the first PCR fourth hole 126b is formed to be positioned on the diameter with the second hole 136b formed in the waste chamber 135, and the second PCR agent is not positioned on the same diameter as the other holes.
  • Four holes 128b may be formed.
  • the second PCR fourth hole 128b may be formed at a position rotated clockwise from the first PCR fourth hole 126b. This takes into account the general direction of rotation of the valve 20.
  • the present invention is not limited thereto, and the fourth holes 120b may be formed to correspond to the third outlet 212.
  • the first hole 130a, the second hole 136b, the third hole 120a, and the fourth hole 120b, which are formed in the chamber 110, are formed on the central axis C of the valve 20. Distances from each other are different. That is, the distance from which the first hole 130a is spaced apart from the central axis C of the valve 20 and the second hole 136b, the third hole 120a, and the fourth hole 120b are defined by the valve 20. The distances away from the central axis C are different.
  • Virtual lines connecting the centers of the valves 20 may be formed at positions shifted from each other. As a result, only a desired chamber may be selectively communicated among the plurality of chambers 110 according to the rotation of the valve 20.
  • the fluid displacement chamber 120 having the fluid flow with each reaction chamber 130 may be located at the center to minimize the path of the fluid flow, thereby smoothly processing and extracting the sample.
  • FIG. 9 is a perspective view illustrating a PCR unit of the sample processing apparatus of FIG. 1, and FIGS. 10A and 10B are cross-sectional views taken along the line X-X of FIG. 9.
  • the PCR unit 30 includes the first PCR unit 310 and the second PCR unit 320 having reaction spaces 312 and 322 having different shapes. ) May be included.
  • the first and second PCR units 310 and 320 may be formed radially while having an approximately fan shape.
  • the first PCR unit 310 and the second PCR unit 320 may be formed to be spaced apart from each other, and at least one of the first PCR unit 310 and the second PCR 320 may be the PCR unit 30.
  • Various modifications are possible, such as being located in multiple inside.
  • the PCR unit 30 includes first and second PCR units 310 and 320 to sequentially perform the first PCR and the second PCR.
  • This makes it possible to perform NEST PCR (the present invention is not limited to NEST PCR. Therefore, the first PCR 310 may be omitted, which is also included in the present invention).
  • the first PCR may be a first step PCR for nest PCR, or may be reverse transcription PCT (RT-PCR).
  • the first PCR may be to sequentially perform the first step for nest PCR together with reverse transcription PCR.
  • the second PCR may be a PCR of the second stage of the nest PCR, or may be a general PCR performed after reverse transcription PCR.
  • the first PCR unit 310 performs a first PCR using an outer initiator that is complementarily bound to the outside than the target DNA
  • the second PCR unit 320 obtains a target DNA using an inner initiator. Can be performed.
  • PCR reacts nucleic acids (particularly DNA) with initiators, DNA polymerases, and deoxyribonucleoside triphosphate (“dNTP”), a material for forming new DNA.
  • dNTP deoxyribonucleoside triphosphate
  • PCR may be classified into a denaturation process, an annealing process, and an extension process.
  • the denaturation process is a step in which a DNA polymerase dissociates one chain of the double chain of DNA into a template, and may be performed at approximately 90 to 96 ° C.
  • the annealing process is a process of attaching an initiator to DNA dissociated into one chain, and may be performed at approximately 50 to 65 ° C. In this case, if the temperature is too high, the initiator and DNA do not bind, and if the temperature is too low, the initiator binds to a portion other than the complementary portion, so that temperature is an important factor in the annealing process.
  • the stretching process is a process in which the initiator is extended and polymerized by the DNA polymerase and dNTP, and may be performed at a temperature suitable for the DNA polymerase. In one example, the stretching process may be performed at a temperature of 68 ⁇ 74 °C.
  • initiators, DNA polymerases, dNTPs, and the like suitable for performing the above-described first and second PCRs are located in the reaction spaces 312 and 322 of the first and second PCR units 310 and 320, respectively. This allows the desired first and second PCRs to occur.
  • the first PCR unit 310 may generate DNA by performing reverse transcription PCR on the captured RNA, and the second PCR unit 320 may amplify desired DNA using an initiator.
  • Reverse transcription PCR uses reverse transcriptase and an initiator to produce DNA complementary to RNA at a specific temperature (eg, 40-60 ° C.).
  • an initiator, a reverse transcriptase, or the like suitable for reverse transcription PCR is located in the reaction space 312 of the first PCR 310 so that reverse transcription PCR occurs, and the PCR is performed in the reaction space 322 of the second PCR unit 320.
  • Suitable initiators, DNA polymerases, and dNTPs are placed to perform PCR.
  • the first PCR performed in the first PCR unit 310 is the first PCR of reverse transcription PCR and the nest PCR
  • the second PCR performed in the second PCR unit 320 is the second PCR of the nest PCR.
  • Reverse transcription PCR may be performed on RNA captured by the first PCR unit 310 to generate DNA, and then the first PCR may be performed, and the second PCR unit 32 may perform a second PCR on the DNA.
  • an initiator suitable for the first PCR, a DNA polymerase, and dNTP are provided together with an initiator suitable for reverse transcription PCR and a reverse transcriptase in the reaction space 312 of the first PCR 310.
  • an initiator, a DNA polymerase, and dNTP suitable for performing the second PCR are provided in the reaction space 322 of the second PCR unit 320.
  • the first PCR is performed by providing a temperature condition suitable for the first PCR.
  • a second PCR is performed by providing a temperature condition suitable for the second PCR to the second PCR unit 320.
  • the PCR unit 30 includes the first and second PCR units 310, and the nest PCR may be performed, or the PCR may be performed after reverse transcription PCT (RC-PCR).
  • RC-PCR reverse transcription PCT
  • nest PCR non-specific reactions can be reduced and sensitivity can be improved by two-step PCR.
  • DNA may be amplified after reverse transcription with DNA when the nucleic acid is RNA.
  • the first PCR unit 310 is a place where the first PCR and / or reverse transcription PCR is performed and should be heated to a temperature suitable for this. Therefore, the first PCR unit 310 may have a single reaction space 312 having a small thickness and a large area. This allows for easier heat transfer so that the first PCR or / and RT-PCR can occur more smoothly.
  • An exhaust port 316 may be formed on the upper surface of the first PCR unit 310 together with the outlet 314.
  • the outlet 314 may be connected to the fourth outlet 224 of the second channel 220 to communicate with the fluid displacement chamber (refer to 120 of FIG. 4). It may be connected to the sixth outlet 234 of the three channels 230 and in communication with the waste chamber 136.
  • the first PCR unit 310 includes a single reaction space 312 having a large area, the first PCR unit may include an elution buffer including nucleic acids located in the fluid displacement chamber 120 when the outlet portion 314 is provided. Smooth mass transfer may not occur when injecting into 310 or discharging the substance after the first treatment.
  • the exhaust port 314 is provided with the outlet 314 separately, and when the injection and discharge of the material containing the nucleic acid into the outlet 314, air flows out through the exhaust port 316 into the waste chamber 136. Allow air in the waste chamber 136 to flow in. This allows the material to flow smoothly during the injection and discharge of the material.
  • the outlet 314 and the exhaust port 316 may be located at the same distance from the central axis C of the PCR unit 30 for the smooth flow of the material.
  • the present invention is not limited thereto, and the outlet 314 may correspond to the fourth outlet 224, and the outlet 316 may correspond to the sixth outlet 234.
  • the second PCR unit 320 may include a plurality of reaction spaces 322 to perform the second PCR. This is for simultaneous multiple diagnosis, and is for diagnosing the presence of a plurality of target DNAs at once by allowing a plurality of base sequences to be amplified simultaneously using a corresponding primer. For example, when the amplification initiator is put into the reaction space for the target DNA amplification of various respiratory diseases, respectively, specific amplification occurs only in the reaction space in which the target DNA exists, and thus the diagnosis of multiple pathologies.
  • the deletion mutation of the dystrophin gene which is the cause of the muscle disease, can be detected using 18 kinds of initiators.
  • the deletion mutation of the dystrophin gene is detected by providing at least 18 reaction spaces 322.
  • Each reaction space 322 may be formed in a recess shape formed while being spaced apart from each other.
  • An outlet 324 may be formed on an upper surface of the second PCR unit 320. At this time. The outlet 324 may be connected to the fourth outlet 224 of the second channel 230 and communicate with the fluid displacement chamber (reference 120 of FIG. 4, hereinafter the same).
  • the second PCR unit 320 has a structure including the first part 320a and the second part 320b to supply the dilution mixture to the second PCR part 320. It is possible to prevent the initiator and the like located in the) from mixing with each other.
  • the first portion 320a has an outlet 324 formed on an upper surface thereof, channels 325 formed on a lower surface thereof, and a fluid inflow space 326 formed therein to accommodate a dilution mixture.
  • the partition 328 is formed in the second part 320b to surround the reaction space 322 to form the reaction space 322 on the support member 327.
  • the support member 327 may include a transparent material, for example, a transparent film, and the partition wall 328 may include a sealing material including silicon or the like.
  • the channel 325 and the reaction space 322 have the same arrangement structure, but are slightly shifted. When the first portion 320a is moved, the channel 325 and the reaction space 322 are moved. Will coincide with each other.
  • the channels 325 of the first portion 320a are connected to the second portion 320b.
  • the dilution mixture is positioned in the fluid inlet space 326 so as to be located on the partition wall 328.
  • the first portion 320a is moved to allow the channels 326 and the reaction space 322 of the second portion 320b to communicate with each other.
  • the dilution mixture of the fluid inlet space 326 can then be injected directly into each reaction space 322.
  • the first portion 320a may be provided in the automatic analyzer 400 and moved by driving means (not shown) for driving the first portion 320a.
  • the first portion 320a may be rotated by the PCR moving part 209 formed on the lower surface of the valve 20 and the locking part 329 formed on the upper surface of the PCR part 30. That is, while the valve 20 rotates, the PCR moving part 209 of the valve 20 is caught by the locking part 329 of the PCR part 30. In this state, the locking part is further rotated when the valve 20 is further rotated. 329 is pushed so that only the first portion 320a can be rotated.
  • this is merely presented as an example of a configuration capable of moving the first portion 320a, and various other configurations may be applied.
  • a groove or the like may be formed in the lower surface of the valve 20 to correspond to a path through which the locking portion 329 of the PCR unit 30 passes.
  • the valve 20 and the PCR unit 30 may be in close contact with each other even when the locking unit 329 is formed on the upper surface of the PCR unit 30.
  • the second PCR unit 320 may prevent a problem such that the dilution mixture passes through the plurality of reaction spaces 322 and the initiators of each reaction space 322 are mixed with each other. Can be.
  • FIG. 11 is a perspective view of an automatic analysis device according to an embodiment of the present invention
  • FIG. 12 is a cross-sectional view schematically showing the automatic analysis device of FIG. 11.
  • the automatic analysis device 400 includes a device portion in which the above-described sample processing device 100 is mounted.
  • the device unit drives the sample processing apparatus 100 to obtain the target DNA from the sample, and then detects the pathogen using the detection member 450. This is explained in more detail.
  • the automatic analyzer 400 may include an up and down driving member (not shown) for driving the fluid displacement member 180 up and down, a rotation driving member 410 for rotating the valve 20, and an ultrasonic member.
  • An ultrasonic driving member 430 for driving the 190, a heating member 440 for heating the PCR unit 30, and a detection member 450 for detecting pathogens may be included.
  • the vertical driving member may have various ways and structures capable of moving the fluid displacement member 180 up and down.
  • the rotation drive member 410 may have various ways and structures capable of freely rotating the valve 20 in a clockwise or counterclockwise direction.
  • the rotation drive member 410 may be a stepper motor.
  • the ultrasonic driving member 430 may have various methods and structures for supplying energy to generate ultrasonic waves to the ultrasonic member 190.
  • the heating member 440 may have various methods and structures capable of heating the PCR unit 30 to a desired temperature.
  • the heating member 440 may be configured as a planar heater to uniformly provide heat to the PCR unit 30.
  • the detection member 450 may have various ways and structures to determine whether there is a target DNA amplified by the initiator in the second PCR unit 320.
  • the vertical drive member the rotary drive member 410, the ultrasonic drive member 430, the heating member 440, the detection member 450, and the like may be used.
  • the detection member 450 and the heating member 440 are positioned opposite to each other based on the PCR unit 30.
  • the present invention is not limited thereto, and when the heating member 440 is transparent, the detection member 450 and the heating member 440 may be positioned on the same side, and the heating member 440 may be a PCR unit ( It is also possible to locate on both sides of 30).
  • the heating member 440 may be a heating method using a fluid such as hot air or a liquid, not a planar heating element. That is, the PCR unit may be heated by hot air or a liquid.
  • FIGS. 13A to 13L are views for explaining the operation of the sample processing device according to the present embodiment.
  • 13A to 13L illustrate a plan view of the housing, and a cutaway perspective view of the sample processing apparatus 100 cut along a dotted line of the plan view.
  • the cover part 150 is omitted from the cut perspective view.
  • a sample is put into the dissolution chamber 132 to cause a dissolution reaction.
  • the second outlet 214 of the first channel 210 communicates with the first hole 131a of the coupling chamber 131, and the first outlet of the first channel 210.
  • 212 is in communication with the third hole 121a of the fluid displacement chamber 120.
  • the second channel 220 and the third channel 230 are not in communication with the fluid displacement chamber 120, the reaction chamber 130, and the PCR unit 30.
  • the fluid displacement member 180 is repeatedly moved up and down so that the coupling buffer 51 of the coupling chamber 131 flows repeatedly through the first channel 210, so that the coupling buffer 51 is connected to the first channel 210. Is introduced into the first filter (see reference numeral 216 of FIG. 4, hereinafter same). Thereafter, the fluid displacement member 180 is pushed downward so that the remaining coupling buffer 51 moves into the coupling chamber 131.
  • the first channel 210 communicates with the coupling chamber 131 from the beginning, thereby placing the binding buffer 51 in the first channel 210 during the dissolution reaction.
  • the step of rotating the valve to introduce the binding buffer 51 into the first channel 210 after the dissolution reaction does not need to be performed separately, thereby simplifying the process.
  • valve 20 is rotated to communicate the second outlet 214 of the first channel 210 with the first hole 132a of the dissolution chamber 132.
  • the first outlet 212 of 210 communicates with the third hole 122a of the fluid displacement chamber 120.
  • the second channel 220 and the third channel 230 are not in communication with the fluid displacement chamber 120, the reaction chamber 130, and the PCR unit 30.
  • the fluid displacement member 180 is repeatedly moved up and down to cause the lysis buffer 52 in which the nucleic acid is dissolved to repeatedly flow through the first filter 216 of the first channel 210 to the first filter 216. Capture nucleic acid.
  • the cell debris in the lysis chamber 132 may be filtered by the second filter 138 and may not flow into the first channel 210.
  • the fluid displacement member 180 is pushed downward to move the material remaining in the fluid displacement chamber 120 into the dissolution chamber 132 for disposal.
  • repeatedly moving the fluid displacement member 180 up and down is an example, it may be moved once and is not excluded from the present invention. The same applies to the following description.
  • valve 20 is rotated to communicate the second outlet 214 of the first channel 210 with the first hole 133a of the first cleaning chamber 133.
  • the first outlet 212 of the first channel 210 communicates with the third hole 123a of the fluid displacement chamber 120.
  • the second channel 220 and the third channel 230 are not in communication with the fluid displacement chamber 120, the reaction chamber 130, and the PCR unit 30.
  • the fluid displacement member 180 is repeatedly moved up and down so that the first cleaning buffer 53 in the first cleaning chamber 133 repeatedly flows through the first filter 216 of the first channel 210.
  • the fluid displacement member 180 is pushed downward to move the material remaining in the fluid displacement chamber 120 into the first cleaning chamber 133 to discard.
  • valve 20 is rotated to communicate the second outlet 214 of the first channel 210 with the first hole 134a of the second cleaning chamber 134.
  • the first outlet 212 of the first channel 210 is in communication with the third hole 124a of the fluid displacement chamber 120.
  • the second channel 220 and the third channel 230 are not in communication with the fluid displacement chamber 120, the reaction chamber 130, and the PCR unit 30.
  • the fluid displacement member 180 is repeatedly moved up and down so that the second cleaning buffer 54 in the second cleaning chamber 134 repeatedly flows through the first filter 216 of the first channel 210.
  • the material remaining in the fluid displacement chamber 120 is pushed downward to move the material remaining in the fluid displacement chamber 120 to the second cleaning chamber 134. Move to and discard.
  • the valve 20 is rotated so that the second outlet 214 of the first channel 210 communicates with the first hole 135a of the elution chamber 135, and the first channel.
  • the first outlet 212 of 210 communicates with the third hole 125a of the fluid displacement chamber 120.
  • the second channel 220 and the third channel 230 are not in communication with the fluid displacement chamber 120, the reaction chamber 130, and the PCR unit 30.
  • the fluid displacement member 180 is repeatedly moved up and down to allow the elution buffer 55 in the elution chamber 135 to repeatedly flow through the first filter 216 of the first channel 210.
  • the nucleic acid in the first filter 216 is eluted.
  • the fluid displacement member 180 is lifted upward to introduce the elution buffer 55 in which the nucleic acid is eluted into the fluid displacement chamber 120.
  • the amount of the elution buffer 55 may be adjusted to an appropriate amount in consideration of the size of the reaction space 312 of the first PCR unit 310.
  • the valve 20 is rotated to communicate the third outlet 222 of the second channel 220 to the fourth PCR fourth hole 126b of the fluid displacement chamber 120.
  • the fourth outlet 224 of the second channel 220 is connected to the outlet 314 of the first PCR unit 310.
  • the fifth outlet 232 of the third channel 230 is connected to the second hole 136b of the waste chamber 136, and the fifth outlet 234 of the third channel 230 is connected to the first PCR unit ( It communicates with the exhaust port 316 of 310.
  • the first channel 210 is not in communication with the fluid displacement chamber 120 and the reaction chamber 130.
  • the fluid displacement member 180 is lowered to introduce the elution buffer 55 in which the nucleic acid is eluted into the reaction space 312 of the first PCR unit 310.
  • the valve 20 is slightly rotated to allow the first to sixth outlets 212, 214, 222, 224, 232, and 234 of the first to third channels 210, 220, and 230.
  • the first PCR occurs in the first PCR unit 310 in a state of blocking all.
  • the heating member (reference numeral 430 of FIG. 12, hereinafter same) of the automatic analyzer 400 may heat the first PCR unit 310 to a temperature suitable for the first PCR. In this state, the amplification process of heating and cooling is performed to finish.
  • the valve 20 is rotated to communicate the third outlet 222 of the second channel 220 to the fourth PCR fourth hole 126b of the fluid displacement chamber 120.
  • the fourth outlet 224 of the second channel 220 is connected to the outlet 314 of the first PCR unit 310.
  • the fifth outlet 232 of the third channel 230 is connected to the second hole 136b of the waste chamber 136, and the fifth outlet 234 of the third channel 230 is connected to the first PCR unit ( It communicates with the exhaust port 316 of 310.
  • the first channel 210 is not in communication with the fluid displacement chamber 120, the reaction chamber 130.
  • the fluid displacement member 180 is raised to introduce the first processing material 56 in which the first PCR is completed into the fluid displacement chamber 120.
  • the valve 20 is rotated so that the second outlet 214 of the first channel 210 communicates with the first hole 137a of the dilution chamber 137 and the first channel.
  • the first outlet 212 of 210 communicates with the third hole 127a of the fluid displacement chamber 120.
  • the second channel 220 and the third channel 230 are not in communication with the fluid displacement chamber 120, the reaction chamber 130, and the PCR unit 30.
  • the fluid displacement member 180 is repeatedly moved up and down to mix the dilution buffer in the dilution chamber 137 and the first treatment 56 in the fluid displacement chamber 120 to form the dilution mixture 57.
  • the amount of the dilution buffer may be appropriately selected in consideration of the amount of the elution buffer, the volume of the reaction space 324 of the second PCR unit 320, and the like.
  • the fluid displacement member 180 is raised to flow the dilution mixture 57 into the fluid displacement chamber 120.
  • the valve 20 is rotated to communicate the third outlet 222 of the second channel 220 to the fourth PCR hole 128b of the fluid displacement chamber 120.
  • the fourth outlet 224 of the second channel 220 is communicated with the outlet 324 of the second PCR unit 320.
  • the first channel 210 and the third channel 230 are not in communication with the fluid displacement chamber 120, the reaction chamber 130, and the PCR unit 30.
  • the fluid displacement member 180 is lowered to introduce the dilution mixture 57 into the reaction space 322 of the second PCR unit 320.
  • the dilution mixture is provided to the second PCR unit 320 in the state as shown in FIG. 10A to the fluid inflow space 326.
  • the valve 20 is further rotated while the valve 20 is rotated so that the locking part 329 is caught by the PCR moving part 209 of the valve 20, the first part of the second PCR part 320 is rotated. Only 320a is moved.
  • the first portion 320a is moved to provide a dilution mixture in the fluid inlet space 326 through the channel 325 to the reaction space 322.
  • the reaction space 322 is sealed.
  • the process of removing the dilution mixture 57 that may remain in the fluid inlet space 326 after closing the reaction space 322 may optionally be performed (methods of removal may vary and are not limited. Since the fourth outlet 224 of the second channel 220 and the outlet 324 of the second PCR unit 320 communicate with each other during the reverse rotation, the remaining dilution mixture is moved to the fluid displacement chamber by raising the fluid displacement member. Can be). Thereafter, the heating member 430 of the automatic analysis device 400 heats the second PCR unit 320 at a temperature suitable for the second PCR to proceed with the second PCR.
  • the detection member (reference numeral 450 in FIG. 12) (that is, the light source (reference numeral 452 in FIG. 12) and the camera (reference numeral 454 in FIG. 12) Photographing of the second PCR unit 320 is performed using this method to determine the presence or absence of a pathogen by reading the photo.
  • a method for determining a condition through data analysis obtained through optical is well known in the art. Therefore, explanation is omitted.
  • the chambers 110 in the housing 10 are rotated by the rotation of the valve 20 having the plurality of channels 210, 220, and 230 formed so as not to communicate with each other.
  • the fluid displacement chamber 120 and the PCR unit 30 may be connected to each other or may automatically perform a process required for extracting and amplifying nucleic acids in a sample.
  • the PCR unit 30 may include first and second PCR units 310 and 320 to improve the accuracy of PCR.
  • the automatic analysis device 400 including such a sample processing device 100 can automatically and simultaneously detect multiple pathogens from target DNA by the sample processing device 100.
  • FIG. 14 is a cutaway perspective view illustrating a housing of an automatic analysis device according to a modification of the present invention
  • FIG. 15 is a perspective view illustrating a PCR part of the automatic analysis device according to a modification of the present invention.
  • the dilution chamber 137 may be the fifth outlet of the third channel 230 instead of the first hole 137a corresponding to the second outlet 214 of the first channel 210.
  • a second hole 137b corresponding to 232 is provided.
  • the fluid displacement chamber 120 may include a third outlet 222 corresponding to the third outlet 222 of the second channel 220 instead of the third hole 127a corresponding to the first outlet 212 of the first channel 220.
  • Four holes 127b are provided.
  • the outlet 314 and the exhaust port 316 of the first PCR unit 310 are along the path of the fourth outlet 224 and the sixth outlet 234. It may have an elongated shape.
  • one side (for example, at an outlet 314 and an exhaust port 316 of the first PCR unit 310) is provided.
  • the second channel 220 and the third channel 230 communicate with each other at position A of the figure.
  • Performing the first PCR is the same as in the above-described embodiment.
  • the valve 20 is then rotated to align the third outlet 222 of the second channel 220 with the fourth hole 127b of the fluid displacement chamber 120 and the fourth outlet 224 with the first PCR. Coincides with the other side of the outlet 314 of the part 310 (B position in the figure).
  • the fifth outlet 232 of the third channel 230 matches the second hole 137b of the dilution chamber 137 and the sixth outlet 234 is the exhaust port 316 of the first PCR unit 310. Match the other side of the (B position in the figure).
  • the fluid displacement member 180 is moved to allow the dilution buffer of the dilution chamber 137 to move to the fluid displacement chamber 120 through the first PCR unit 310.
  • a dilution mixture (see reference numeral 57 of FIG. 13I, which is the same below) in which the first PCR-treated first processing material and the dilution buffer are mixed with each other in the first PCR unit 310 flows into the fluid displacement chamber 120. do.
  • valve 20 is rotated to introduce the dilution mixture 57 into the second PCR unit 320 so that the second PCR takes place (see FIG. 13K and related descriptions thereof).
  • the present invention is industrially useful as a sample processing device capable of automating and processing various processes required for processing a sample and detecting pathogens, and an automatic analysis device including the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 실시예에 따른 시료 처리 장치는, 시료로부터 핵산을 추출 및 증폭하는 시료 처리 장치로서, 챔버를 구비하는 하우징; 상기 하우징의 하부에 위치하는 밸브; 및 상기 밸브의 하부에 위치하며 중합 효소 연쇄 반응(PCR)을 하는 PCR부를 포함한다.

Description

시료 처리 장치 및 이를 포함하는 자동 분석 장치
본 발명은 시료 처리 장치 및 이를 포함하는 자동 분석 장치에 관한 것이다.
핵산을 추출 및 증폭하여 다양한 검출 반응에 의하여 병원체 등을 검출하는 방법이 다양한 연구, 의학적 용도, 산업적 용도에 사용되고 있다. 이를 위해서는, 핵산을 추출하는 공정, 추출한 핵산을 증폭하는 공정, 병원체 등을 검출하는 공정 등을 수행하여야 하며, 각 공정에서 여러 종류의 반응 물질을 사용하여야 한다.
그런데, 서로 다른 반응 물질을 사례로 사용하여 다양한 공정을 수행하여야 하므로 공정 시간이 복잡하고 공정 시간이 길어진다. 특히, 핵산을 추출하는 장치와 증폭과 검출을 수행하는 장치가 서로 달라서 공정 시간이 복잡해지고 공정 시간이 길어지게 된다.
본 발명은 시료의 처리 및 병원체 등의 검출에 필요한 다양한 공정을 자동화하여 처리할 수 있는 시료 처리 장치 및 이를 포함하는 자동 분석 장치를 제공하고자 한다.
본 실시예에 따른 시료 처리 장치는, 시료로부터 핵산을 추출 및 증폭하는 시료 처리 장치로서, 챔버를 구비하는 하우징; 상기 하우징의 하부에 위치하는 밸브; 및 상기 밸브의 하부에 위치하며 실시간중합 효소 연쇄 반응(PCR)을 하는 PCR부를 포함한다.
본 실시예에 따른 자동 분석 장치는, 시료로부터 핵산을 추출 및 증폭하는 시료 처리 장치; 및 상기 시료 처리 장치가 장착되며, 상기 시료 처리 장치를 구동하는 구동 부재, 상기 시료 처리 장치를 가열하는 가열 부재 및 상기 시료 처리 장치에서 증폭된 핵산으로부터 병원균의 검출 여부를 판단하는 검출부재를 포함하는 장치부를 포함한다. 상기 시료 처리 장치는, 챔버를 구비하는 하우징; 상기 하우징의 하부에 위치하는 밸브; 및 상기 밸브의 하부에 위치하며 중합 효소 연쇄 반응(PCR)을 하는 PCR부를 포함한다.
본 실시예에 따르면, 하우징, 밸브 및 중합 효소 연쇄 반응을 하는 PCR부를 일체로 결합하여 구조를 단순화할 수 있다. 이때, 밸브를 사이에 둔 상태에서 하우징과 PCR부를 결합하여 밸브를 회전 가능하게 할 수 있다. 이에 의하여 밸브의 회전에 의하여 시료 내의 핵산을 추출 및 증폭하여 병원체를 검출하는 데 필요한 다양한 공정을 순서대로 자동화하여 처리할 수 있다.
즉, 본 실시예에 따르면 간단한 구조를 가지면서도 시료의 처리 및 병원체 검출 등을 자동화할 수 있다.
도 1은 본 발명의 실시예에 따른 시료 처리 장치를 도시한 사시도이고다.
도 2는 도 1의 시료 처리 장치를 도시한 분해 사시도이다.
도 3은 도 1의 시료 처리 장치의 밸브를 도시한 사시도이다.
도 4는 도 1의 시료 장치를 도시한 부분 단면도이다.
도 5는 도 1의 시료 처리 장치의 하우징을 도시한 평면도이다.
도 6은 도 5의 Ⅵ-Ⅵ선을 따라 잘라서 본 단면도이다.
도 7은 본 발명의 일 변형예에 따른 시료 처리 장치의 부분 단면도이다.
도 8은 본 발명의 다른 변형예에 따른 시료 처리 장치의 부분 단면도이다.
도 9는 도 1의 시료 처리 장치의 PCR부를 도시한 사시도이다.
도 10a 및 10b는 도 9의 X-X 선을 따라 잘라서 본 단면도이다.
도 11은 본 발명의 일 실시예에 따른 자동 분석 장치의 사시도이다.
도 12는 도 11의 자동 분석 장치를 개략적으로 도시한 단면도이다.
도 13a 내지 도 13l는 본 실시예에 따른 시료 처리 장치의 작동을 설명하기 위한 도면들이다.
도 14는 본 발명의 변형예에 따른 자동 분석 장치의 하우징을 도시한 절개 사시도이다.
도 15는 본 발명의 변형예에 따른 자동 분석 장치의 PCR부를 도시한 사시도이다.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 그러나 본 발명이 이러한 실시예에 한정되는 것은 아니며 다양한 형태로 변형될 수 있음은 물론이다.
도면에서는 본 발명을 명확하고 간략하게 설명하기 위하여 설명과 관계 없는 부분의 도시를 생략하였으며, 명세서 전체를 통하여 동일 또는 극히 유사한 부분에 대해서는 동일한 도면 참조부호를 사용한다. 그리고 도면에서는 설명을 좀더 명확하게 하기 위하여 두께, 넓이 등을 확대 또는 축소하여 도시하였는바, 본 발명의 두께, 넓이 등은 도면에 도시된 바에 한정되지 않는다.
그리고 명세서 전체에서 어떠한 부분이 다른 부분을 "포함"한다고 할 때, 특별히 반대되는 기재가 없는 한 다른 부분을 배제하는 것이 아니며 다른 부분을 더 포함할 수 있다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 위치하는 경우도 포함한다. 층, 막, 영역, 판 등의 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 위치하지 않는 것을 의미한다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 시료 처리 장치 및 이를 포함하는 자동 분석 장치를 상세하게 설명한다.
본 실시예에 따른 시료 처리 장치는 시료로부터 핵산을 추출 및 증폭하는 과정을 자동으로 수행하여 병원체 등의 검출 등에 사용할 수 있도록 하는 장치이다.
이때, 시료라 함은 핵산이 함유된 모든 시료를 말하는 것으로 바이러스, 미생물, 세포, 동물 또는 식물의 조직, 동물 또는 식물의 기관, 이들의 체액 등이 포함될 수 있다. 일례로, 시료는 병원체 등의 검출을 위하여 비장과 같은 기관과 그 외 체액 성분, 조직 등으로부터 채취된 것으로서, 특정 질병 조직, 바이오 마커를 지닌 조직, 병원성 미생물 호발 부위 시료 (예, 혈액, 조직, 객담, 뇨, 분변 등), 세포 배양을 통해 증식된 시료, 자연계의 시료 등을 모두 포함하는 것일 수 있다. 상기 시료는 이미 공지된 다양한 방법에 의하여 수득될 수 있다.
그리고 핵산은 폴리뉴클레오디드(polynucleotide)를 구성된 유전 물질로, 디옥시리보핵산(deoxyribonucleic acid, 이하 "DNA")와 리보핵산(ribonucleic acid, 이하 "RNA")로 구분될 수 있다.
이러한 시료 처리 장치는 병원체 등을 검출하는 검출 부재 등을 구비하는 자동 분석 장치에 적용되어, 시료로부터 핵산을 자동으로 추출 및 증폭한 후에 병원체 등의 검출까지 한 번에 수행되도록 할 수 있다.
이하에서는 시료 처리 장치에 대하여 설명한 후에 시료 처리 장치가 적용된 자동 분석 장치를 설명한다. 그 후에 이들의 작동에 대하여 상세하게 설명한다.
도 1은 본 발명의 실시예에 따른 시료 처리 장치를 도시한 사시도이고, 도 2는 도 1의 시료 처리 장치를 도시한 분해 사시도이다. 그리고 도 3은 도 1의 시료 처리 장치의 밸브를 도시한 사시도이고, 도 4는 도 1의 시료 장치를 도시한 부분 단면도이다.
도 1 및 도 2를 참조하면, 본 실시예에 따른 시료 처리 장치(100)는, 복수의 챔버(110)를 구비하는 하우징(10)과, 하우징(10)의 하부에 위치하는 밸브(20)와, 밸브(20)의 하부에 위치하는 중합 효소 연쇄 반응(polymerase chain reaction, 이하 "PCR")부(30)를 포함한다.
하우징(10)은 바닥면을 구비하며 상부가 개방된 형태를 가질 수 있다. 일례로, 하우징(10)이 원형의 평면 형상을 가지는 대략적인 원통형의 형상을 가질 수 있으나, 본 발명이 이에 한정되는 것은 아니며 다른 형상을 가질 수도 있다. 그리고 하우징(10)은 내부에 다양한 물질들이 수용될 수 있도록 지지할 수 있는 다양한 물질로 이루어질 수 있는데, 일례로, 플라스틱으로 이루어질 수 있다.
그리고 하우징(10)의 내부에는 시료를 용해(lysis)하여 얻은 핵산을 용출(elution)하기까지의 다양한 과정을 차례로 수행할 수 있도록 복수의 챔버(110)가 구비될 수 있다. 복수의 챔버(110)는, 중앙부에 위치하는 유체 변위 챔버(120)와, 유체 변위 챔버(120)의 외곽으로 위치하는 반응 챔버(130)를 구비할 수 있다. 시료 처리를 위한 다양한 과정을 차례로 수행할 수 있도록 반응 챔버(130)가 복수 개로 구비될 수 있다. 그리고 각 과정에서 유체를 각 반응 챔버(130) 또는 PCR부(30)로 공급하거나 각 반응 챔버(130) 또는 PCR부(30)로부터 공급받는 유체 변위 챔버(120)가 중앙부에 위치하여 유체 흐름의 동선을 최소화할 수 있도록 한다.
이러한 유체 변위 챔버(110) 및 반응 챔버(120)의 바닥면에는 유체의 흐름을 위한 복수의 홀이 형성되는데, 이에 대해서는 추후에 도 3 및 도 4를 참조하여 상세하게 설명한다.
하우징(10)의 바닥면 쪽에는 하우징(10)의 측면을 구성하면서 서로 이격되어 연장되는 연장부(140)가 형성된다. 이러한 연장부(140)는 하우징(10)과 PCR부(30)의 사이에 밸브(20)를 개재한 상태에서 밸브(20)를 넘어 PCR부(30)의 측면에 이르도록 형성될 수 있다.
그리고 연장부(140)에서 PCR부(30)에 대응하는 부분에는 PCR부(30)와의 결합을 위한 제1 결합부(142)가 형성된다. 이러한 연장부(140)의 제1 결합부(142)는 PCR부(30)의 측면에 형성된 제2 결합부(34)와 결합되어, 하우징(10)과 PCR부(30)를 일체로 고정하고 하우징(10)과 PCR부(30) 사이에는 밸브(20)가 회전 가능하게 위치하도록 한다.
도면에서는 연장부(140)가 4개 형성된 것으로 도시하였으나, 본 발명이 이에 한정되는 것은 아니다. 즉, 연장부(140)의 개수는 밸브(20)를 사이에 위치한 상태로 하우징(10) 및 PCR(30)를 일체로 결합할 수 있으면 다양하게 변형될 수 있다. 따라서 연장부(140)는 2 이상의 다양한 개수로 형성될 수 있다.
하우징(10)의 상부에는 반응 챔버(130)를 덮는 덮개부(150)가 위치할 수 있다. 덮개부(150)의 중앙부에는 유체 변위 챔버(120)를 개방하는 개구부(161, 171)가 형성되고, 이 개구부(161, 171)를 통하여 유체 변위 챔버(120) 내로 유체 변위 부재(180)가 위치할 수 있다. 이러한 유체 변위 부재(180)는 유체 변위 챔버(120) 내부에 위치한 유체의 흐름을 제어할 수 있도록 상하로 이동할 수 있는 것으로서, 일례로, 플런저 또는 피스톤일 수 있다.
본 실시예에서 덮개부(150)는 제1 덮개부(160)와 제2 덮개부(170)를 가질 수 있다.
제1 덮개부(160)는 하우징(10)의 상부 가장자리에 고정된다. 일례로, 제1 덮개부(160)는 하우징(10)의 상부 가장자리를 감싸면서 하우징(10)의 상부 가장자리에 고정될 수 있다. 그리고 제1 덮개부(160)의 상부면에는 제1 덮개부(160)의 가장자리를 따라 외부를 향해 돌출되는 고정 돌출부(168)가 형성될 수 있다.
이때, 제1 덮개부(160)에는 개구부(161)와 함께, 각 반응 챔버(130)에 대응하여 형성된 제2 개구부(163) 및 초음파 부재(190)가 끼워지는 제3 개구부(165)가 형성될 수 있다. 초음파 부재(190) 및 이의 고정하는 방법 등은 추후에 설명한다.
제2 덮개부(170)는 제1 덮개부(160)의 상부에서 제1 덮개부(160)에 고정된다. 일례로, 제2 덮개부(170)는 제1 덮개부(160)에 형성된 고정 돌출부(168)를 둘러싸도록 돌출된 가장자리를 구비할 수 있다. 이에 따라, 제2 덮개부(170)의 가장자리를 제1 덮개부(160)의 돌출부(160)의 외부에 위치하도록 하여 제2 덮개부(170)를 제1 덮개부(160) 상에 고정할 수 있다.
이때, 제2 덮개부(170)에는 개구부(161)와 함께, 초음파 부재(190)가 끼워지는 제3 개구부(175)가 형성될 수 있다. 제2 덮개부(170)는 각 반응 챔버(130)를 모두 덮도록 형성된다.
본 실시예에서는 덮개부(150)가 제1 덮개부(160) 및 제2 덮개부(170)를 가지는 이중 구조로 형성된다. 이에 의하여, 각 반응 챔버(130)에 물질을 공급하거나 각 반응 챔버(130)로부터 물질을 배출할 때에 제2 덮개부(170)를 열어 제2 개구부(163)에 의하여 반응 챔버(130)를 개방하고, 그 외의 경우에는 제2 덮개부(170)를 닫아 반응 챔버(130)를 폐쇄할 수 있다.
이때, 제2 덮개부(170)의 일부가 제2 덮개부(160)의 일부와 접철 가능하게 연결되어, 제2 덮개부(170)를 열거나 닫는 것이 원활하게 이루어지도록 하고, 제2 덮개부(170)를 열었을 때 제2 덮개부(170)를 잃어버리는 것을 방지할 수 있다.
이러한 덮개부(150)는 복수의 챔버(110) 내의 물질이 외부로 흐르지 않도록 하는 다양한 물질을 포함할 수 있는데, 일례로, 플라스틱으로 이루어질 수 있다.
하우징(10)의 하부에서 하우징(10)과 PCR부(30) 사이에 하우징(10)의 복수의 챔버(110)와 PCR부(30)로의 유체 흐름을 제어하기 위한 밸브(20)가 위치한다. 이러한 밸브(20)는 PCR부(30)를 중앙부를 관통하여 외부로 연장되는 연결 수단(22)에 의하여 회전 구동 부재(도 12의 참조부호 410, 이하 동일)에 연결될 수 있으며, 회전 구동 부재(410)에 의하여 시계 방향 또는 반시계 방향으로 자유롭게 회전될 수 있다. 본 실시예에서 밸브(20)는 평면 형상이 원형인, 대략적인 원반 형상을 가질 수 있다.
도 3을 참조하면, 밸브(20) 내에는 복수의 채널(210, 220, 230)이 형성되어, 챔버들(110) 간에 유체가 흐르도록 하거나 챔버(110)와 PCR부(30) 사이에 유체가 흐르도록 할 수 있다. 이러한 밸브(20)의 상면은 하우징(10)(좀더 구체적으로 하우징(10)의 바닥면)에 밀착되고, 밸브(20)의 하면은 PCR부(30)(좀더 구체적으로 PCR부(30)의 상면)에 밀착될 수 있다. 이에 의하여 복수의 채널(210, 220,230)이 챔버(110)의 홀 및 PCR부(30)의 유출구 등과 연통될 때 유체가 외부로 유출되는 것을 방지할 수 있다. 이러한 복수의 채널(210, 220, 230)은 밸브(20)의 상면과 하면을 관통하면서 형성될 뿐 하우징(10) 등에 별도로 구비되지 않는바 구조를 단순화할 수 있으며, 유체 흐름을 원활하게 할 수 있다.
이러한 밸브(20)는 상부의 면적보다 하부의 면적을 작게 형성할 수 있다. 이에 의하여 PCR부(30)의 상면을 넓은 면적으로 노출하여 가열 부재(도 12의 참조부호 440)이 PCR부(30)의 상면에 넓게 위치할 수 있도록 한다. 일례로, 밸브(20)는 평면 상으로 제1 직경을 가지는 상부 부분과, 상기 제1 직경보다 작은 제2 직경을 가지는 하부 부분을 포함할 수 있다. 또한, 밸브(20)의 평면적은 하우징(10) 및 PCR부(30)의 평면적보다 작아 하우징(10) 및 PCR부(30) 사이에서 하우징(10) 및 PCR부(30)의 고정 구조와 상관 없이 자유롭게 회전될 수 있다.
좀더 구체적으로, 복수의 채널(210, 220, 230)은 유체 변위 챔버(120)와 각 반응 챔버(130)를 연통하는 제1 채널(210) 및 유체 변위 챔버(120)와 PCR부(30)를 연통하는 제2 채널(220)을 포함한다. 또한, 반응 챔버(130) 중 어느 하나와 PCR부(30)를 연통하는 제3 채널(230)을 포함할 수 있다.
제1 채널(210)은 밸브(20)의 상면에 유체 변위 챔버(120)에 연통되도록 형성된 제1 유출구(212)와 밸브(20)의 상면에 반응 챔버(130)에 연통되도록 형성된 제2 유출구(214) 사이에 형성된다.
이때, 제1 유출구(212)는 유체 변위 챔버(120)에 대응하므로 밸브(20)의 중심축으로부터 이격된 거리가 상대적으로 작을 수 있고, 제2 유출구(214)는 각 반응 챔버(130)에 대응하므로 밸브(20)의 중심축(C)으로부터 이격된 거리가 상대적으로 클 수 있다. 그리고 제1 유출구(212)와 제2 유출구(214)는 평면 형상으로 볼 때 밸브(20)의 중심을 지나는 직경 상에 평행하게 위치할 수 있다. 그러면, 제1 유출구(212)와 제2 유출구(214) 사이에 형성되는 제1 채널(210)의 경로를 단순화할 수 있다.
제1 채널(210)의 내부에는 시료 내의 핵산을 포획할 수 있는 제1 필터(216)가 위치한다. 이러한 제1 필터(216)는 핵산을 포획할 수 있는 알려진 다양한 물질을 사용할 수 있다. 일례로, 유리 섬유(glass fiber)로 이루어진 다공성 물질일 수 있다.
제2 채널(220)은 밸브(20)의 상면에서 유체 변위 챔버(120)에 연통되도록 형성된 제3 유출구(222)와 밸브(20)의 하면에서 PCR부(130)에 연통되도록 형성된 제4 유출구(224) 사이에 형성된다. 이때, 제3 유출구(222)가 제1 유출구(212)보다 밸브(20)의 중심축(C)에 가깝게 형성될 수 있는데, 본 발명이 이에 한정되는 것은 아니다. 따라서, 제3 유출구(222)는 제1 유출구(212)와 구별되어 형성되면 족할 뿐, 그 위치가 한정되지 않는다.
제3 채널(230)은 밸브(20)의 상면에서 반응 챔버(130)에 연통되도록 형성된 제5 유출구(232)와 밸브(20)의 하면에서 PCR부(30)에 연통되도록 형성된 제6 유출구(234) 사이에 형성된다. 이때, PCR부(30)로의 유체 흐름을 원활하게 할 수 있도록 제4 유출구(224)와 제6 유출구(234)는 밸브(20)의 중심축(C)으로부터 동일한 거리에 위치할 수 있다. 이에 대해서는 PCR부(30)를 설명하면서 다시 후술한다. 제5 유출구(232)는 제2 유출구(214)보다 밸브(20)의 중심축(C)으로부터 멀리 떨어져 위치할 수 있다.
그리고 밸브(20)의 하면에는 PCR부(30)의 상면에 형성된 걸림부(329)에 걸릴 수 있도록 돌출된 PCR 이동부(209)가 형성될 수 있다. 이러한 걸림부(329)와 PCR 이동부(209)는 서로 걸려서 밸브(20)의 회전에 따라 PCR부(30)의 일부를 회전시킬 수 있는 다양한 구성이 적용될 수 있다. 이에 대해서는 추후에 좀더 상세하게 설명한다.
이러한 밸브(20)는 일례로, 플라스틱으로 형성될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 그 외 다양한 물질로 형성될 수 있음은 물론이다.
다시 도 1 및 도 2를 참조하면, 밸브(20)의 하부에는 하우징(10)에서 포획된 핵산에 PCR을 수행하여 DNA를 증폭하는 PCR부(30)가 위치한다. 본 실시예에서 PCR부(30)는 평면 형상이 원형인, 대략적인 원반 형상을 가질 수 있다.
이러한 PCR부(30)의 중앙 부분에는 밸브(20)에 연결되는 연결 수단(22)이 관통할 수 있는 관통홀(32)이 형성될 수 있다. 그리고 PCR부(30)의 측면에는 하우징(10)의 연장부(140)의 제1 결합부(142)에 결합되는 제2 결합부(34)가 형성된다. 제2 결합부(34)는 제1 결합부(142)와 결합될 수 있는 다양한 구성일 수 있는데, 일례로 본 실시예에서는 홈 형상의 제1 결합부(142)에 끼워지도록 PCR부(30)의 측면에 형성된 돌출부일 수 있다.
밸브(20)의 연결 수단(22)이 PCR부(30)의 관통홀(32)을 관통하도록 하여 PCR부(30) 상에 밸브(20)를 위치시킨 상태에서, 밸브(20) 및 PCR부(30)의 위에 하우징(10)을 위치시킨 후, 연장부(140)의 제1 결합부(142)(즉, 홈)와 PCR부(30)의 제2 결합부(34)(즉, 돌출부)를 끼움 결합하면, 하우징(10), 밸브(20) 및 PCR부(30)를 일체로 결합할 수 있다. 이때, 하우징(10)과 PCR부(30)는 서로 제1 및 제2 결합부(142, 34)에 의하여 고정되지만, 밸브(20)는 하우징(10) 및 PCR부(30)와 별도로 고정되지 않는다. 따라서, 밸브(20)가 연결 수단(22)에 의하여 회전 구동 부재(410)에 연결되면 밸브(20) 자체만 회전할 수 있게 된다.
이와 같이 본 실시예에서는 하우징(10)과 PCR부(30)를 끼움 결합하는 것에 의하여 하우징(10), 밸브(20) 및 PCR부(30)를 일체로 결합할 수 있어, 간단한 공정으로 결합이 가능하다. 이때, 하우징(10), 밸브(20) 및 PCR부(30)의 평면 형상을 원형으로 하여, 하우징(10), 밸브(20) 및 PCR부(30)를 쉽게 일체화할 수 있으며 밸브(20)의 회전을 원활하게 할 수 있다.
상술한 설명에서는 제1 결합부(142)로 홈을 형성하고 제2 결합부(34)로 돌출부를 형성한 것을 예시하였다. 그러나 본 발명이 이에 한정되는 것은 아니며, 제1 결합부(142)가 돌출부이고 제2 결합부(34)가 홈인 것도 가능하며, 그 이외의 결합 가능한 다양한 결합 부재가 사용될 수 있음은 물론이다.
본 실시예에서 PCR부(30)는 두 단계의 PCR을 수행하기 위하여 서로 다른 형상의 반응 공간을 가지는 제1 및 제2 PCR부(310, 320)를 포함하는데, 이에 대해서는 후술한다. 이러한 PCR부(30)는 일례로 플라스틱으로 형성될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 PCR부(30)가 다른 물질로 이루어지는 것도 가능하다.
이하에서는 상술한 하우징(10) 및 PCR부(30)의 구조를 좀더 상세하게 설명한다. 먼저 도 5 및 도 6을 참조하여 하우징(10) 내의 복수의 챔버(110)를 좀더 상세하게 설명한 다음, 도 9를 참조하여 PCR부(30)를 좀더 상세하게 설명한다.
도 5는 도 1의 시료 처리 장치의 하우징을 도시한 평면도이고, 도 6은 도 5의 Ⅵ-Ⅵ선을 따라 잘라서 본 단면도이다.
도 4와 함께 도 5를 참조하면, 하우징(10)의 내부에는 유체 변위 챔버(120)와 반응 챔버(130)를 포함하는 복수의 챔버(110)가 형성된다. 반응 챔버(130)에 대하여 먼저 설명한 후에 유체 변위 챔버(120)에 대하여 설명한다.
반응 챔버(130)는 유체 변위 챔버(120)의 외곽에서 복수 개 위치할 수 있다. 일례로, 복수의 반응 챔버(130)는 유체 변위 챔버(120)로부터 외곽을 향해 방사상으로 연장되는 형태를 가질 수 있다. 이러한 형상을 가지게 되면, 하우징(10) 내의 공간을 효율적으로 사용할 수 있어 분석에 필요한 모든 공간을 구비하면서도 시료 처리 장치(10)의 크기를 줄일 수 있다.
각 반응 챔버(130)는 시료 내의 세포를 용해(lysis)하거나 이에 의해 얻은 핵산을 용출(elution)하는 반응을 각기 수행할 수 있는 물질을 각기 구비한다. 각 반응 챔버(130)는 각 반응에 필요한 용액 또는 물질의 양 또는 반응 공간 등을 고려하여 서로 다른 내부 체적을 가질 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 각 반응 챔버(130)가 서로 동일한 내부 체적을 가지는 것도 가능함은 물론이다.
일례로, 본 실시예에서는 반응 챔버(130)가 결합(binding) 챔버(131), 용해(lysis) 챔버(132), 세정 챔버(133, 134), 용출(elution) 챔버(135), 폐기 챔버(136) 및 희석(dilution) 챔버(137)을 구비할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 일부 챔버가 생략되거나, 별도의 챔버가 추가되는 등 다양한 변형이 가능하다.
본 실시예에서는 밸브(20)가 시계 방향으로 회전하면서 차례로 다양한 반응을 수행할 수 있도록 결합 챔버(131), 용해 챔버(132), 세정 챔버(133, 134), 용출 챔버(135), 폐기 챔버(136) 및 희석 챔버(137)가 시계 방향으로 차례로 위치한다. 이에 의하여 밸브(20)의 회전을 최소화할 수 있어 밸브(20)의 구동에 필요한 에너지를 최소화할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서, 밸브(20)가 반시계 방향으로 회전하여 반응 챔버(130)가 본 실시예와 반대로 시계 반대 방향으로 차례로 위치하는 것도 가능하다. 또한, 이러한 순서 없이 반응 챔버(130)가 배열되는 등 다양한 변형이 가능하다.
결합 챔버(131)는 결합 버퍼(binding buffer)를 수용하거나 반응 후에 사용되고 남은 결합 버퍼를 수용하는 역할을 한다. 이러한 결합 버퍼는 제1 필터(216)에 핵산이 잘 포획될 수 있도록 돕는 성분이 포함된다. 결합 버퍼는 제1 채널(210) 내에 위치한 제1 필터(216)를 통과하면서 제1 필터(216)에 핵산이 잘 포획될 수 있는 환경을 제공하게 된다. 이러한 결합 버퍼로는 알려진 다양한 물질을 사용할 수 있다. 일례로, 결합 버퍼로 구아니딘-HCl, 구아니딘-SCN 및 NaI로 구성되는 군으로부터 선택되는 어느 하나 이상의 카오트로픽 염(chaotropic salt)을 사용할 수 있다.
이러한 결합 챔버(131)의 바닥면에는 밸브(20)에 형성된 제1 채널(210)과의 연통을 위한 제1 홀(131a)이 형성된다. 이러한 제1 홀(131a)에는 유체 변위 챔버(120)와 각 반응 챔버(130)를 연결하는 제1 채널(210)이 연통될 수 있다. 좀더 구체적으로는, 밸브(20)의 상면에 형성되며 각 반응 챔버(130)에 대응하여 형성되는 제2 유출구(214)에 대응하는 위치에 제1 홀(131a)이 형성된다. 즉, 하우징(10)의 중심축(C)으로부터 제1 홀(131a)이 이격된 거리와, 밸브(20)의 중심축(C)으로부터 제2 유출구(214)가 이격된 거리가 동일할 수 있다. 그러면 회전에 의하여 밸브(20)의 제2 유출구(214)가 제1 홀(131a)에 일치할 때, 제1 채널(210)과 결합 챔버(131)가 서로 연통될 수 있다.
용해 챔버(132)는 시료의 용해를 위한 용해 버퍼(lysis buffer)를 수용하고 있다. 용해 버퍼는 시료를 용해할 수 있는 알려진 다양한 물질을 사용할 수 있다. 일례로, 용해 버퍼는 구아니딘 염(guanidinium salt)(예를 들어, 구아니딘 티오시아네이트(guanidinium thio cyanate))과 같은 카오트로픽제(chaotropic agent), 에틸렌디아민사아세테이스산(ethylenediaminetetraacetic acid, EDTA)와 같은 킬레이트제(chelating agent), 트리하이드록시메틸아미노메탄(trihidroxymethylaminomethane, Tris-HCl)과 같은 완충염을 포함할 수 있다. 또한, 비이온계 계면활성제가 포함될 수 있다. 폴리에틸렌글리콜형 비이온성 계면활성제나 다가 알콜형 비이온성 계면활성제 모두가 사용될 수 있으나, 바람직하게는 Triton X-100, 트윈(Tween) (; 솔비탄 에스테르의 산화 에틸렌부가물) 또는 2- 메르캡토에탄올이 사용되며, 가장 바람직하게는 Triton X-100이 사용될 수 있다. 이러한 용해 버퍼는 비산성, 예를 들면, 중성 또는 알카리성을 가질 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 용해 버퍼가 다양한 물질을 가질 수 있음은 물론이다.
이러한 용해 챔버(132)의 바닥면에는 밸브(20)에 형성된 제1 채널(210)과의 연통을 위한 제1 홀(132a)이 형성된다. 이러한 제1 홀(132a)에는 유체 변위 챔버(120)와 각 반응 챔버(130)를 연결하는 제1 채널(210)이 연통될 수 있다. 좀더 구체적으로는, 밸브(20)의 상면에 형성되며 각 반응 챔버(130)에 대응하여 형성되는 제2 유출구(214)에 대응하는 위치에 제1 홀(132a)이 형성된다. 즉, 하우징(10)의 중심축(C)으로부터 제1 홀(132a)이 이격된 거리와, 밸브(20)의 중심축(C)으로부터 제2 유출구(214)가 이격된 거리가 동일할 수 있다. 그러면 회전에 의하여 밸브(20)의 제2 유출구(214)가 제1 홀(132a)에 일치할 때, 제1 채널(210)과 용해 챔버(132)가 서로 연통될 수 있다.
이때, 도 6을 참조하면, 용해 챔버(132)의 제1 홀(132a) 위에는 제2 필터(138)가 위치한다. 이러한 제2 필터(138)는 세포 찌꺼기(debris)를 제거하기 위한 것이다. 제2 필터(138)는 용해 챔버(130)의 제1 홀(132a)보다 큰 면적으로 형성되어 제1 홀(132a)을 모두 덮을 수 있다. 이에 의하여, 용해 챔버(132) 내의 핵산이 제1 홀(132a)을 통하여 유출될 때 세포 찌꺼기는 제2 필터(138)에 의하여 충분히 걸러질 수 있도록 한다.
제2 필터(138)는 핵산은 통과되고 세포 찌꺼기는 걸러질 수 있는 여과구멍을 갖는 것이 좋다. 제한되지 않으나 바람직한 여과구멍의 크기는 0.2 ~ 50 μm 범위가 좋다. 상기 범위 미만에서는 DNA가 일부 걸러질 수 있으며, 상기 범위를 초과하게 되면 세포 찌꺼기가 충분히 걸러지지 않을 수 있다.
본 실시예에서는 제1 홀(132a) 위에 제2 필터(138)를 구비하여, 종래에 세포 찌꺼기 제거를 위하여 수행하였던 원심 분리 공정을 대신할 수 있다. 이에 의하여 공정을 단순화할 수 있다. 또한, 이후의 공정에서 세포 찌꺼기로 인해 발생할 수 있는 문제점을 해소할 수 있다.
그리고 용해 챔버(132)에 대응하도록 덮개부(150)에 초음파 부재(190)가 위치한다. 좀더 구체적으로는, 덮개부(150)에서 용해 챔버(132)에 대응하는 부분에 제3 개구부(165, 175)가 형성되고, 제3 개구부(165, 175)를 통해 초음파 부재(190)를 통과시켜 용해 챔버(132) 내부에 초음파 부재(190)가 위치하도록 한다. 초음파 부재(190)는 제3 개구부(165, 175)를 통하여 그 상부가 외부에 노출되므로, 자동 분석 장치(도 11의 참조부호 400, 이하 동일)에서 초음파 부재(190)에 에너지를 공급하는 초음파 구동 부재(도 12의 참조부호 430, 이하 동일)와 쉽게 연결될 수 있다.
이러한 초음파 부재(190)는 초음파 구동 부재(430)와의 연결에 방해가 되지 않도록 제1 덮개부(160) 쪽에서 접착부(192)에 의하여 고정될 수 있다. 접착부(192)로는 알려진 다양한 물질을 사용할 수 있다.
그러나 본 발명이 이에 한정되는 것은 아니며, 도 7에 도시한 바와 같이, 초음파 부재(190)가 제1 덮개부(160)의 제3 개구부(165)만을 통과하여 위치하고, 제2 덮개부(170)에서 초음파 부재(190)에 접촉하는 부분에는 초음파 구동 부재(430)과의 연결을 위한 금속 등의 연결 부재(176)를 구비하는 것도 가능하다. 일례로, 연결 부재(176)는 접착층(192)에 의하여 제2 덮개부(170)의 제4 개구부(175)에 접착될 수 있다.
또는, 도 8에 도시한 바와 같이, 제1 덮개부(160)의 제3 개구부(165)보다 제2 덮개부(170)의 제3 개구부(175)를 더 크게 형성하여, 덮개부(150)의 제3 개구부(165, 175)의 측면에 단차가 형성되도록 할 수 있다. 이러한 제3 개구부(165, 175)에 측면 단차를 가지는 초음파 부재(190)를 통과시켜 초음파 부재(190)를 안정적으로 장착할 수 있다. 이와 같이 초음파 부재(190)의 고정 구조, 방법 등은 다양하게 변형될 수 있음은 물론이다.
초음파 부재(190)는 용해 과정에서 세포와 용해 버퍼에 초음파를 제공하여 시료의 용해를 촉진시킬 수 있다. 초음파 부재(190)는 초음파를 제공할 수 있도록 선단이 뾰족한 팁(tip) 형상을 가질 수 있으며, 다양한 방식 및 구조를 가질 수 있다.
세정 챔버(133, 134)는 제1 필터(126)를 세정하는 세정 버퍼(washing buffer)를 수용하거나, 제1 필터(126)를 세정한 후 세정 버퍼 및 불순물을 수용하기 위한 것이다. 이러한 세정 버퍼는 제1 필터(126)에 핵산과 함께 존재할 수 있는 불순물이나 이전 공정에서 사용된 반응 용액, 특히 카오트로픽 염(chaotropic salt)을 세척하여 타겟 핵산의 순도를 높여주는 역할을 한다.
일례로, 본 실시예에서는 세정 챔버(133, 134)가 별개의 제1 및 제2 세정 챔버(133, 134)를 구비하여 제1 필터(126)에 잔존하는 불순물을 좀더 효과적으로 제거할 수 있다. 물론, 세정 챔버는 하나만 존재할 수 있으며 본 발명에서 제외하는 것은 아니다.
제1 세정 챔버(133)에는 첫 번째 세정을 수행할 수 있는 제1 세정 버퍼가 위치할 수 있는데, 이러한 제1 세정 버퍼는 핵산 이외의 불순물을 선택적으로 세척하여 제거할 수 있는 성분이라면 제한되지 않으며 일례로, 90~100% 농도의 에탄올, 이소프로판올 등을 포함할 수 있다.
이러한 제1 세정 챔버(133)의 바닥면에는 밸브(20)에 형성된 제1 채널(210)과의 연통을 위한 제1 홀(133a)이 형성된다. 이러한 제1 홀(133a)에는 유체 변위 챔버(120)와 각 반응 챔버(130)를 연결하는 제1 채널(210)이 연통될 수 있다. 좀더 구체적으로는, 밸브(20)의 상면에 형성되며 각 반응 챔버(130)에 대응하여 형성되는 제2 유출구(214)에 대응하는 위치에 제1 홀(133a)이 형성된다. 즉, 하우징(10)의 중심축(C)으로부터 제1 홀(133a)이 이격된 거리와, 밸브(20)의 중심축(C)으로부터 제2 유출구(214)가 이격된 거리가 동일할 수 있다. 그러면 회전에 의하여 밸브(20)의 제2 유출구(214)가 제1 홀(133a)에 일치할 때, 제1 채널(210)과 제1 세정 챔버(133)가 서로 연통될 수 있다.
제2 세정 챔버(134)에는 두 번째 세정을 수행할 수 있는 제2 세정 버퍼가 위치할 수 있는데, 제1 세정 버퍼와 동일할 수도 있고, 다를 수도 있다. 제1 세정 버퍼와 동일한 경우에는 제1 필터(126)에 잔류하는 불순물을 더욱 제거하기 위함이다. 한편, 제1 세정 버퍼와 다른 성분이나 조성비로 이루어진 제2 세정 버퍼를 사용할 수 있으며, 이는 불순물을 더욱 제거함과 제1 세정 버퍼 성분의 카오트로픽 염(chaotropic salt)을 제거함으로써 다음단계인 용출과정에서 용출용액은 제 1필터로부터 쉽게 핵산을 녹일 수 있는 역할을 수행할 수 있게 만든다. 그리고 세정 버퍼 성분 중 하나인 알코올은 PCR 반응을 억제하는 효과를 나타낼 수 있기 때문에 이를 효과적으로 제거하기 위해 제2 세정 버퍼가 사용될 수 있다. 일례로, 50~80% 농도의 에탄올을 포함할 수 있다.
이러한 제2 세정 챔버(134)의 바닥면에는 밸브(20)에 형성된 제1 채널(210)과의 연통을 위한 제1 홀(134a)이 형성된다. 이러한 제1 홀(134a)에는 유체 변위 챔버(120)와 각 반응 챔버(130)를 연결하는 제1 채널(210)이 연통될 수 있다. 좀더 구체적으로는, 밸브(20)의 상면에 형성되며 각 반응 챔버(130)에 대응하여 형성되는 제2 유출구(214)에 대응하는 위치에 제1 홀(134a)이 형성된다. 즉, 하우징(10)의 중심축(C)으로부터 제1 홀(134a)이 이격된 거리와, 밸브(20)의 중심축(C)으로부터 제2 유출구(214)가 이격된 거리가 동일할 수 있다. 그러면 회전에 의하여 밸브(20)의 제2 유출구(214)가 제1 홀(134a)에 일치될 때, 제1 채널(210)과 제2 세정 챔버(134)가 서로 연통될 수 있다.
용출 챔버(135)는 제1 필터(126)에 포획된 핵산을 용출하기 위한 용출 버퍼를 수용하고 있다. 용출 버퍼로는 포획된 핵산을 녹일 수 있는 다양한 물질을 사용할 수 있다. 일례로, 용출 버퍼로 물 또는 TE 버퍼 (Tris-Cl, EDTA) 등을 사용할 수 있다.
이러한 용출 챔버(135)의 바닥면에는 밸브(20)에 형성된 제1 채널(210)과의 연통을 위한 제1 홀(135a)이 형성된다. 이러한 제1 홀(135a)은 유체 변위 챔버(120)와 각 반응 챔버(130)를 연결하는 제1 채널(210)이 연통되도록 형성될 수 있다. 좀더 구체적으로는, 밸브(20)의 상면에 형성되며 각 반응 챔버(130)에 대응하여 형성되는 제2 유출구(214)에 대응하는 위치에 제1 홀(135a)이 형성된다. 즉, 하우징(10)의 중심축(C)으로부터 제1 홀(135a)이 이격된 거리와, 밸브(20)의 중심축(C)으로부터 제2 유출구(214)가 이격된 거리가 동일할 수 있다. 그러면 회전에 의하여 밸브(20)의 제2 유출구(214)가 제1 홀(135a)에 일치될 때, 제1 채널(210)과 용출 챔버(135)가 서로 연통될 수 있다.
폐기 챔버(136)는 핵산을 포함하는 용출 용액을 PCR부(30)(특히, 제1 PCR(310))에 공급할 때 제3 채널(230)과 연결되어 PCR부(30) 내의 공기가 폐기 챔버(136)로 흐를 수 있도록 한다. 이에 의하여 핵산을 포함하는 용출 용액이 PCR부(30)에 원활하게 공급될 수 있도록 한다.
이러한 폐기 챔버(136)의 바닥면에는 밸브(20)에 형성된 제3 채널(230)과의 연통을 위한 제2 홀(136b)이 형성된다. 좀더 구체적으로는, 밸브(20)의 상면에 형성되며 각 반응 챔버(130)에 대응하여 형성되는 제5 유출구(232)에 대응하는 위치에 제2 홀(136b)이 형성된다. 즉, 하우징(10)의 중심축(C)으로부터 제2 홀(136b)이 이격된 거리와, 밸브(20)의 중심축(C)으로부터 제5 유출구(232)가 이격된 거리가 동일할 수 있다. 그러면 회전에 의하여 밸브(20)의 제5 유출구(232)가 제2 홀(136b)에 일치될 때, 제3 채널(230)과 폐기 챔버(136)가 서로 연통될 수 있다.
희석 챔버(137)에서는 PCR부(30)(특히, 제1 PCR부(310))에서 처리된 물질(이하 "제1 처리물")을 희석 버퍼와 혼합하여 희석 혼합물을 형성한다. 희석 버퍼로는 제1 처리물을 희석할 수 있는 다양한 물질을 적절한 양으로 사용할 수 있다.
일례로, 희석 버퍼를 제1 처리물의 5~15배의 양으로 사용할 수 있다. 희석 버퍼가 제1 처리물의 5배 미만인 경우에는 희석이 충분히 일어나지 않을 수 있고, 15배를 초과한 경우에는 희석 혼합물의 양이 지나치게 많아질 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 희석 버퍼의 양은 적절하게 조절될 수 있다.
이러한 희석 챔버(137)의 바닥면에는 밸브(20)에 형성된 제1 채널(210)과의 연통을 위한 제1 홀(137a)이 형성된다. 이러한 제1 홀(137a)에는 유체 변위 챔버(120)와 각 반응 챔버(130)를 연결하는 제1 채널(210)이 연통될 수 있다. 좀더 구체적으로는, 밸브(20)의 상면에 형성되며 각 반응 챔버(130)에 대응하여 형성되는 제2 유출구(214)에 대응하는 위치에 제1 홀(137a)이 형성된다. 즉, 하우징(10)의 중심축(C)으로부터 제1 홀(137a)이 이격된 거리와, 밸브(20)의 중심축(C)으로부터 제2 유출구(214)가 이격된 거리가 동일할 수 있다. 그러면 회전에 의하여 밸브(20)의 제2 유출구(214)가 제1 홀(137a)에 일치될 때, 제1 채널(210)과 희석 챔버(137)가 서로 연통될 수 있다.
복수의 반응 챔버(130)에 의해 둘러싸이는 유체 변위 챔버(120)의 상부에는 유체 변위 부재(180)가 위치하게 되며, 유체 변위 챔버(120)의 바닥면에는 밸브(20)의 제1 및 제2 채널(210, 220)에 대응하는 홀들(120a, 120b)이 형성된다.
이에 따라 유체 변위 부재(180)가 상부로 이동하면 유체 변위 챔버(120)의 체적이 팽창하여 홀들(120a, 120b)을 통하여 유체 변위 챔버(120) 내부로 유체를 빨아들이는 흡인력이 발생한다. 그리고 유체 변위 부재(180)가 하부로 이동하면 유체 변위 챔버(120)의 체적이 감소하여 홀들(120a, 120b)을 통하여 유체가 유체 변위 챔버(129) 외부로 방출된다.
유체 변위 챔버(120)의 바닥면에 형성된 홀들(120a, 120b)은, 제1 채널(210)의 제1 유출구(212)에 대응하는 위치에 형성되는 제3 홀들(120a)과, 제2 채널(220)의 제3 유출구(222)에 대응하는 위치에 형성되는 제4 홀들(120b)을 포함할 수 있다.
즉, 제3 홀들(120a)은 제1 채널(210)의 제1 유출구(212)에 대응하며, 각 반응 챔버(130) 내에 형성되며 동심원상에 위치하는 제1 홀들(130a)이 제2 유출구(214)와 대응한다. 평면으로 볼 때, 하우징(10)의 중심을 지나는 직경 상에 반응 챔버(130)에 형성된 제1 홀들(130a) 각각에 대응하는 제3 홀들(120a)이 위치하게 된다.
즉, 결합 챔버(131)의 제1 홀(131a)과 동일한 직경 상에 위치하도록 유체 변위 챔버(120)의 바닥면에 제3 홀(120a)이 형성된다. 용해 챔버(132)의 제1 홀(132a)과 동일한 직경 상에 위치하도록 유체 변위 챔버(120)의 바닥면에 제3 홀(121a)이 형성된다. 세정 챔버(133, 134)의 제1 홀(133a, 134a)과 동일한 직경 상에 위치하도록 유체 변위 챔버(120)의 바닥면에 제3 홀(123a, 124a)이 형성된다. 용출 챔버(135)의 제1 홀(135a)과 동일한 직경 상에 위치하도록 유체 변위 챔버(120)의 바닥면에 제 3홀(125a)이 형성된다. 희석 챔버(137)의 제1 홀(137a)과 동일한 직경 상에 위치하도록 유체 변위 챔버(120)의 바닥면에 제3 홀(127a)이 형성된다.
그러나 본 발명이 이에 한정되는 것은 아니며, 제1 홀들(130a)은 제2 유출구(214)에 대응하고 제3 홀들(120a)은 제1 유출구(212)에 대응하도록 형성되면 족하다.
그리고 제4 홀(120b)은 제3 홀(120a)보다 중심축(C)에 좀더 가까이 위치하여 제3 유출구(222)에 대응하도록 형성된다. 이때, 폐기 챔버(135)에 형성된 제2 홀(136b)과 직경 상에 위치하도록 제1 PCR용 제4 홀(126b)이 형성되고, 다른 홀들과 동일한 직경 상에 위치하지 않도록 제2 PCR용 제4 홀(128b)이 형성될 수 있다. 제2 PCR용 제4 홀(128b)이 제1 PCR용 제4 홀(126b)에서 시계 방향으로 회전한 위치에 형성될 수 있다. 이는 밸브(20)의 대체적인 회전 방향을 고려한 것이다. 그러나 본 발명이 이에 한정되는 것은 아니며, 제4 홀들(120b)은 제3 유출구(212)에 대응하도록 형성되면 족하다.
앞서 설명한 바와 같이, 챔버(110)에 형성된 상술한 제1 홀(130a), 제2 홀(136b), 제3 홀(120a), 제4 홀(120b)은 밸브(20)의 중심축(C)으로부터 이격된 거리가 서로 다르다. 즉, 제1 홀(130a)이 밸브(20)의 중심축(C)으로부터 이격된 거리와 제2 홀(136b), 제3 홀(120a) 및 제4 홀(120b)이 밸브(20)의 중심축(C)으로부터 이격된 거리가 서로 다르다.
그리고 평면으로 볼 때 제1 홀(130a)과 제3 홀(120a)을 연결한 가상선과, 제2 홀(136b)과 밸브(20)의 중심을 연결한 가상선과, 제4 홀(120b)과 밸브(20)의 중심을 연결한 가상선이 서로 어긋난 위치에 형성될 수 있다. 이에 의하여 밸브(20)의 회전에 따라 복수의 챔버(110) 중에 원하는 챔버만을 선택적으로 연통할 수 있다.
본 실시예에서는 각 반응 챔버(130)과의 유체 흐름이 존재하는 유체 변위 챔버(120)를 중앙부에 위치하여 유체 흐름의 경로를 최소화할 수 있고, 이에 따라 시료의 처리 및 추출이 원활하게 일어날 수 있도록 한다.
도 9는 도 1의 시료 처리 장치의 PCR부를 도시한 사시도이고, 도 10a 및 도 10b는 도 9의 X-X 선을 따라 잘라서 본 단면도이다.
도 9를 참조하면, 앞서 언급한 바와 같이, 본 실시예에서는 PCR부(30)가 서로 다른 형상의 반응 공간(312, 322)을 구비하는 제1 PCR부(310) 및 제2 PCR부(320)를 포함할 수 있다. 이러한 제1 및 제2 PCR부(310, 320)은 대략적인 부채꼴 형상을 가지면서 방사상으로 형성될 수 있다. 도면에서는 하나의 제1 PCR부(310)와 하나의 제2 PCR부(320)가 서로 인접하여 형성되며 그 외의 공간은 사용하지 않는 것으로 도시하였다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서, 제1 PCR부(310)와 제2 PCR부(320)가 서로 이격되어 형성되는 것도 가능하며, 제1 PCR부(310) 및 제2 PCR(320) 중 적어도 어느 하나가 PCR부(30) 내에 복수로 위치하는 등 다양한 변형이 가능하다.
이에 따라, 본 실시예에 따른 PCR부(30)에서는, 제1 PCR과 제2 PCR를 차례로 수행하도록 제1 및 제2 PCR부(310, 320)를 구비한다. 이는 네스트(NEST) PCR을 수행할 수 있게 해준다(본 발명은 NEST PCR에 한정되지 않는다. 따라서, 제1 PCR(310)은 생략될 수 있으며, 이 또한 본 발명에 포함된다).
이때, 제1 PCR은 네스트 PCR을 위한 첫 번째 단계의 PCR일 수 있으며, 또는 역전사 PCR(reverse transcription PCT, RT-PCR)일 수 있다. 또는, 제1 PCR이 역전사 PCR과 함께 네스트 PCR을 위한 첫 번째 단계를 차례로 수행하는 것일 수 있다. 제2 PCR은 네스트 PCR의 두 번째 단계의 PCR일 수 있으며, 또는 역전사 PCR 후에 수행되는 일반적인 PCR일 수 있다.
먼저, 제1 PCR부(310)에서 수행되는 제1 PCR이 네스트 PCR의 첫 번째 단계이고 제2 PCR부(320)에서 수행되는 제2 PCR이 네스트 PCR의 두 번째 단계인 경우를 설명한다. 제1 PCR부(310)에서는 타켓 DNA보다 외측에 상보적으로 결합되는 외측 개시제를 이용하여 제1 PCR을 수행하고, 제2 PCR부(320)에서는 내측 개시제를 이용하여 타켓 DNA를 얻는 제2 PCR를 수행할 수 있다.
PCR 과정을 좀더 상세하게 설명한다.
PCR은 개시제(primer), DNA 중합효소(DNA polymerase), 그리고 새로운 DNA를 형성하기 위한 재료인 데옥시라이보뉴클레오사이드 트리포스페이트 (deoxyribonucleoside triphosphate, 이하 "dNTP") 등과 핵산(특히 DNA)를 반응시켜 DNA를 증폭하는 것이다.
이때, PCR은 크게 변성(denaturation) 과정, 어닐링(annealing) 과정, 신장(extension) 과정으로 구분될 수 있다.
변성 과정은 DNA 중합 효소가 DNA의 이중 사슬 중 한 개의 사슬을 주형으로 해리시키는 단계로서, 대략 90~96℃에서 수행될 수 있다. 어닐링 과정은 하나의 사슬로 해리된 DNA에 개시제를 부착하는 과정으로, 대략 50~65℃에서 수행될 수 있다. 이때, 온도가 너무 높으면 개시제와 DNA가 결합하지 못하고 온도가 너무 낮으면 개시제가 상보적 부분 이외의 부분에도 결합하기 때문에, 어닐링 과정에서는 온도가 중요한 요인으로 작용하게 된다. 신장 과정은 DNA 중합 효소와 dNTP에 의해 개시제가 연장 및 중합되는 과정으로, DNA 중합 효소에 적합한 온도에서 수행될 수 있다. 일례로, 신장 과정은 68~74℃의 온도에서 수행될 수 있다.
이 경우 제1 및 제2 PCR부(310, 320)의 반응 공간(312, 322) 내에는 각기 상술한 제1 및 제2 PCR을 수행하기에 적합한 개시제, DNA 중합효소, dNTP 등이 위치한다. 이에 의하여 원하는 제1 및 제2 PCR이 일어나도록 한다.
다음으로, 제1 PCR부(310)에서 수행되는 제1 PCR이 역전사 PCR이고 제2 PCR부(320)에서 수행되는 제2 PCR이 일반적인 PCR인 경우를 설명한다. 제1 PCR부(310)에서는 포획된 RNA에 역전사 PCR을 수행하여 DNA를 생성하고, 제2 PCR부(320)에서는 개시제를 이용하여 원하는 DNA를 증폭할 수 있다. 역전사 PCR은 역전사 효소와 개시제를 이용하여 특정 온도(일례로, 40~60℃)에서 RNA에 상보적인 DNA를 생성하는 것이다.
이 경우 제1 PCR(310)의 반응 공간(312)에 역전사 PCR에 적합한 개시제, 역전사 효소 등이 위치하여 역전사 PCR이 일어나도록 하고, 제2 PCR부(320)의 반응 공간(322) 내에는 PCR을 수행하기에 적합한 개시제, DNA 중합효소, dNTP가 위치하여 PCR이 일어나도록 한다.
마지막으로, 제1 PCR부(310)에서 수행되는 제1 PCR이 역전사 PCR 및 네스트 PCR의 첫 번째 PCR이고, 제2 PCR부(320)에서 수행되는 제2 PCR이 네스트 PCR의 두 번째 PCR인 경우를 설명한다.
제1 PCR부(310)에서 포획된 RNA에 역전사 PCR을 수행하여 DNA를 생성한 다음 첫 번째 PCR을 수행하고, 제2 PCR부(32)에서 DNA에 두 번째 PCR을 수행할 수 있다. 이 경우 제1 PCR(310)의 반응 공간(312)에 역전사 PCR에 적합한 개시제, 역전사 효소 등과 함께 첫 번째 PCR에 적합한 개시제, DNA 중합효소, dNTP가 함께 구비된다. 그리고 제2 PCR부(320)의 반응 공간(322) 내에는 두 번째 PCR을 수행하기에 적합한 개시제, DNA 중합효소, dNTP가 구비된다.
제1 PCR부(310)에 역전사 PCR에 적합한 온도 조건을 제공하여 역전사 PCR이 일어나도록 한 후에 첫 번째 PCR에 적합한 온도 조건을 제공하여 제1 PCR이 이루어지도록 한다. 그 후에 제2 PCR부(320)에 제2 PCR에 적합한 온도 조건을 제공하여 두 번째 PCR이 이루어지도록 한다.
본 실시예에서는 PCR부(30)가 제1 및 제2 PCR부(310)를 포함하여, 네스트 PCR이 수행되거나, 역전사 PCR(reverse transcription PCT, RC-PCR) 후에 PCR이 수행될 수 있다. 네스트 PCR을 수행할 경우에는 비특이적 반응을 감소시키며 2 단계의 PCR에 의하여 감도를 향상시킬 수 있다. 역전사 PCR과 함께 PCR을 수행하는 경우에는 핵산이 RNA일 경우에 DNA로 역전사 후 DNA를 증폭할 수 있다.
이와 같이 제1 PCR부(310)는 제1 PCR 또는/및 역전사 PCR이 수행되는 곳으로서, 이에 적합한 온도로 가열되어야 한다. 따라서, 제1 PCR부(310)는 두께가 작고 면적이 넓은 단일의 반응 공간(312)을 가질 수 있다. 그러면 열 전달이 좀더 용이하여 제1 PCR 또는/및 RT-PCR이 좀더 원활하게 일어날 수 있다.
제1 PCR부(310)의 상면에는 유출구(314)와 함께 배기구(316)가 별도로 형성될 수 있다. 이때, 유출구(314)는 제2 채널(220)의 제4 유출구(224)에 연결되어 유체 변위 챔버(도 4의 참조부호 120, 이하 동일)에 연통될 수 있으며, 배기 구(316)는 제3 채널(230)의 제6 유출구(234)에 연결되어 폐기 챔버(136)에 연통될 수 있다. 제1 PCR부(310)는 면적이 넓은 단일의 반응 공간(312)을 구비하므로, 유출구(314)만을 구비할 경우에는 유체 변위 챔버(120) 내에 위치한 핵산을 포함하는 용출 버퍼를 제1 PCR부(310)로 주입하거나 제1 처리물 후의 물질을 배출할 때 원활한 물질 이동이 일어나지 않을 수 있다. 본 실시예에서는 유출구(314)와 함께 배기구(316)를 별도로 구비하여 유출구(314)로 핵산을 포함하는 물질의 주입 및 배출 시 공기가 배기구(316)를 통하여 폐기 챔버(136)로 흘러나가서나 폐기 챔버(136)의 공기가 흘러 들어오게 할 수 있도록 한다. 이에 의하여 물질의 주입 및 배출 시 원활하게 물질이 유동할 수 있도록 한다.
일례로, 원활한 물질의 흐름을 위하여 유출구(314)와 배기구(316)는 PCR부(30)의 중심축(C)으로부터 동일한 거리 상에 위치할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 유출구(314)가 제4 유출구(224)와 대응하고 배기구(316)가 제6 유출구(234)와 대응하여 형성되면 된다.
그리고 제2 PCR부(320)는 제2 PCR을 수행할 수 있도록 복수의 반응 공간(322)을 구비할 수 있다. 이는 동시 다중 진단을 위한 것으로서, 복수의 염기 서열을 각각에 상응하는 개시제(primer)를 사용하여 동시에 증폭 가능하도록 하여 한 번에 다수의 타겟 DNA의 존재 여부를 진단하기 위한 것이다. 일례로, 다양한 호흡기 질환의 해당 타겟 DNA 증폭을 위한 개시제를 각각 반응 공간에 넣고 증폭하게 되면, 타겟 DNA가 존재하는 반응공간에만 특이적으로 증폭이 일어나고 검출이 되므로 다중 병증 진단이 되게 된다. 또한, 근육병의 원인인 디스트로핀 유전자의 결실 변이는 18종류의 개시제를 사용하여 검출할 수 있는바, 최소 18개의 반응 공간(322)을 구비하여 디스트로핀 유전자의 결실 변이를 검출할 수 있도록 하는 것이다. 각 반응 공간(322)은 서로 이격되면서 형성되는 오목부 형상으로 형성될 수 있다.
제2 PCR부(320)의 상면에는 유출구(324)가 형성될 수 있다. 이때. 유출구(324)는 제2 채널(230)의 제4 유출구(224)에 연결되어 유체 변위 챔버(도 4의 참조부호 120, 이하 동일)에 연통될 수 있다.
좀더 구체적으로, 제2 PCR부(320)는 제1 부분(320a)과 제2 부분(320b)을 포함하는 구조를 가져 희석 혼합물을 제2 PCR부(320)에 공급할 때 복수의 반응 공간(322)에 위치한 개시제 등이 서로 섞이지 않도록 할 수 있다.
제1 부분(320a)에는 상면에 유출구(324)가 형성되며 하면에 채널들(325)이 형성되며, 내부는 희석 혼합물을 수용할 수 있는 유체 유입 공간(326)이 형성된다. 그리고 제2 부분(320b)에는 지지 부재(327) 상에 반응 공간(322)을 형성하도록 반응 공간(322)을 둘러싸도록 격벽(328)이 형성된다. 지지 부재(327)는 투명한 물질, 일례로 투명 필름을 포함할 수 있으며, 격벽(328)은 실리콘 등을 포함하는 밀봉재를 포함할 수 있다. 이때, 보통 상태에서는 채널(325)과 반응 공간(322)은 서로 동일한 배치 구조를 가지되 살짝 어긋난 상태로 위치하게 되며, 제1 부분(320a)을 이동시키면 채널(325)과 반응 공간(322)이 서로 일치하게 된다.
즉, 도 10a에 도시한 바와 같이, 보통 상태에서는 유출구(324)를 통하여 희석 혼합물을 유체 유입 공간(326)에 공급할 때는 제1 부분(320a)의 채널들(325)이 제2 부분(320b)의 격벽(328) 상에 위치하게 하여 유체 유입 공간(326) 내에 희석 혼합물이 위치하도록 한다. 희석 혼합물의 공급이 끝난 이후에는, 도 10b에 도시한 바와 같이, 제1 부분(320a)이 이동하여 채널들(326)과 제2 부분(320b)의 반응 공간(322)이 서로 연통되도록 한다. 그러면 유체 유입 공간(326)의 희석 혼합물이 각 반응 공간(322)으로 바로 주입될 수 있다. 제1 부분(320a)은 자동 분석 장치(400)에 구비되어 제1 부분(320a)을 구동하는 구동 수단(도시하지 않음)에 의하여 이동될 수 있다.
이때, 밸브(20)의 하면에 형성된 PCR 이동부(209)와 PCR부(30)의 상면에 형성된 걸림부(329)에 의하여 제1 부분(320a)이 회전할 수 있다. 즉, 밸브(20)가 회전하면서 밸브(20)의 PCR 이동부(209)가 PCR부(30)의 걸림부(329)에 걸리게 되는데, 이 상태에서 밸브(20)가 좀더 회전하게 되면 걸림부(329)를 밀게 되고, 이에 의하여 제1 부분(320a)만이 회전될 수 있는 것이다. 그러나 이는 제1 부분(320a)을 이동할 수 있는 구성의 일례로 제시된 것에 불과하며 이 외의 다양한 구성이 적용될 수 있음은 물론이다. 그리고 도면에 도시하지는 않았으나 PCR부(30)의 걸림부(329)가 통과하는 경로에 해당하도록 밸브(20)의 하부면에 홈 등이 형성될 수 있다. 이에 이하면 PCR부(30)의 상면에 걸림부(329)가 형성되더라도 밸브(20)와 PCR부(30)가 서로 밀착될 수 있다.
제2 PCR부(320)은 상술한 구조를 가져 희석 혼합물을 공급할 때 희석 혼합물이 다수의 반응 공간(322)을 거치면서 각 반응 공간(322)의 개시제 등이 서로 혼합되는 등의 문제를 방지할 수 있다.
이하에서는 상술한 하우징(10), 밸브(20) 및 PCR부(30)를 구비하는 시료 처리 장치(100)를 포함하여, 시료로부터 타켓 DNA를 얻은 후 이의 병원체의 검출을 자동으로 수행하는 자동 분석 장치를 설명한다.
도 11은 본 발명의 일 실시예에 따른 자동 분석 장치의 사시도이고, 도 12는 도 11의 자동 분석 장치를 개략적으로 도시한 단면도이다.
도 11에 도시한 바와 같이, 본 실시예에 따른 자동 분석 장치(400)는 상술한 시료 처리 장치(100)가 내부에 장착되는 장치부가 구비된다. 이러한 장치부는, 시료 처리 장치(100)를 구동하여 시료로부터 타켓 DNA를 얻은 후에, 검출 부재(450)를 이용하여 병원체를 검출한다. 이를 좀더 상세하게 설명한다.
도 12를 참조하면, 자동 분석 장치(400)는 유체 변위 부재(180)를 상하로 구동하는 상하 구동 부재(도시되지 않음), 밸브(20)를 회전 구동하는 회전 구동 부재(410), 초음파 부재(190)를 구동하는 초음파 구동 부재(430), PCR 부(30)를 가열하는 가열 부재(440), 병원균 검출을 위한 검출 부재(450)를 포함할 수 있다.
상하 구동 부재는 유체 변위 부재(180)를 상하로 이동할 수 있는 다양한 방식 및 구조를 가질 수 있다. 회전 구동 부재(410)는 밸브(20)를 시계 방향 또는 반시계 방향으로 자유롭게 회전시킬 수 있는 다양한 방식 및 구조를 가질 수 있다. 일례로, 회전 구동 부재(410)는 스텝퍼 모터일 수 있다. 초음파 구동 부재(430)는 초음파 부재(190)에 초음파를 발생시킬 수 있도록 에너지를 공급하는 다양한 방식 및 구조를 가질 수 있다.
가열 부재(440)는 PCR부(30)를 원하는 온도로 가열할 수 있는 다양한 방식 및 구조를 가질 수 있는데, PCR부(30)에 균일하게 열을 제공할 수 있도록 면상 히터로 구성될 수 있다.
검출 부재(450)는 제2 PCR부(320) 내에서 개시제에 의해 증폭된 타켓 DNA가 있는지 여부를 이를 판별할 수 있는 다양한 방식 및 구조를 가질 수 있다. 일례로, 본 실시예에서는 제2 PCR부(320)에 광을 제공하는 광원(452)과, 광원(452)에 의해 광을 제공받았을 때 제2 PCR부(320)를 촬영하는 카메라(454)로 구성될 수 있다.
상술한 상하 구동 부재, 회전 구동 부재(410), 초음파 구동 부재(430), 가열 부재(440), 검출 부재(450) 등으로는 알려진 다양한 부재 또는 장치 등을 사용할 수 있다.
그리고 본 실시예에서는 검출 부재(450)와 가열 부재(440)가 PCR부(30)를 기준으로 서로 반대쪽에 위치하는 것을 예시하였다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 가열 부재(440)가 투명한 경우 등에는 검출 부재(450)와 가열 부재(440)가 동일한 쪽에 위치하는 것도 가능하며, 가열 부재(440)가 PCR부(30)의 양쪽에 위치하는 것도 가능하다. 또한, 가열 부재(440)는 면상 발열체가 아니고 뜨거운 공기나 액체 등의 유체를 이용한 가열 방식일 수 있다. 즉, PCR부를 뜨거운 공기나 액체로 가열하는 방식일 수 있다.
이하에서는 도 13a 내지 도 13l을 참조하여 시료 처리 장치(100)를 포함하는 자동 분석 장치(400)의 동작을 상세하게 설명한다. 도 13a 내지 도 13l은 본 실시예에 따른 시료 처리 장치의 작동을 설명하기 위한 도면들이다. 도 13a 내지 도 13l의 상부에는 하우징의 평면도를 도시하고 하부에는 평면도의 점선을 따라 잘라서 본 시료 처리 장치(100)의 절단 사시도이다. 명확한 설명을 위하여 절단 사시도에서 덮개부(150)를 생략하였다.
먼저, 용해 챔버(132) 내로 시료를 넣어 용해 반응을 일으킨다. 이때, 도 13a에 도시한 바와 같이, 제1 채널(210)의 제2 유출구(214)는 결합 챔버(131)의 제1 홀(131a)에 연통되고, 제1 채널(210)의 제1 유출구(212)는 유체 변위 챔버(120)의 제3 홀(121a)에 연통된다. 제2 채널(220) 및 제3 채널(230)는 유체 변위 챔버(120), 반응 챔버(130) 및 PCR부(30)에 연통되지 않는다.
이 상태에서 유체 변위 부재(180)를 상하로 반복 이동시켜 결합 챔버(131)의 결합 버퍼(51)가 제1 채널(210)를 반복하여 흐르게 하여, 결합 버퍼(51)가 제1 채널(210) 내의 제1 필터(도 4의 참조부호 216 참조, 이하 동일)에 도입되도록 한다. 그 후에 유체 변위 부재(180)를 하부로 밀어 남은 결합 버퍼(51)가 결합 챔버(131) 내로 이동하도록 한다.
이와 같이 용해 챔버(132) 내에서 용해 반응이 일어날 때 제1 채널(210)을 결합 챔버(131)와 처음부터 연통시키면 용해 반응 시에 제1 채널(210)에 결합 버퍼(51)를 위치시킬 수 있다. 이에 따라 용해 반응 후에 결합 버퍼(51)를 제1 채널(210)에 도입하기 위해 밸브를 회전해야 하는 단계를 별개로 수행하지 않아도 되므로 공정을 단순화할 수 있다.
이어서, 도 13b에 도시한 바와 같이, 밸브(20)를 회전시켜 제1 채널(210)의 제2 유출구(214)를 용해 챔버(132)의 제1 홀(132a)에 연통시키고, 제1 채널(210)의 제1 유출구(212)를 유체 변위 챔버(120)의 제3 홀(122a)에 연통시킨다. 제2 채널(220) 및 제3 채널(230)는 유체 변위 챔버(120), 반응 챔버(130) 및 PCR부(30)에 연통되지 않는다.
이 상태에서 유체 변위 부재(180)를 상하로 반복 이동시켜 핵산이 용해된 용해 버퍼(52)가 제1 채널(210)의 제1 필터(216)를 반복하여 흐르게 하여 제1 필터(216)에 핵산을 포획한다. 이때, 용해 챔버(132) 내의 세포 찌꺼기는 제2 필터(138)에 의하여 걸러져 제1 채널(210) 내부로 유입될 수 없다. 그 후에 유체 변위 부재(180)를 하부로 밀어 유체 변위 챔버(120)에 남은 물질을 용해 챔버(132) 내로 이동시켜 폐기한다. 여기서, 유체 변위 부재(180)를 상하로 반복 이동시키는 것은 일례에 대한 설명이므로, 한 차례 이동할 수도 있으며 본 발명에서 제외되지 않는다. 이는 이후의 설명에서도 동일하게 적용된다.
이어서, 도 13c에 도시한 바와 같이, 밸브(20)를 회전시켜 제1 채널(210)의 제2 유출구(214)를 제1 세정 챔버(133)의 제1 홀(133a)에 연통시키고, 제1 채널(210)의 제1 유출구(212)를 유체 변위 챔버(120)의 제3 홀(123a)에 연통시킨다. 제2 채널(220) 및 제3 채널(230)는 유체 변위 챔버(120), 반응 챔버(130) 및 PCR부(30)에 연통되지 않는다.
이 상태에서 유체 변위 부재(180)를 상하로 반복 이동시켜 제1 세정 챔버(133) 내의 제1 세정 버퍼(53)가 제1 채널(210)의 제1 필터(216)를 반복하여 흐르게 한다. 이에 의하여 제1 필터(216)를 세정한 후에, 유체 변위 부재(180)를 하부로 밀어 유체 변위 챔버(120)에 남은 물질을 제1 세정 챔버(133) 내로 이동시켜 폐기한다.
이어서, 도 13d에 도시한 바와 같이, 밸브(20)를 회전시켜 제1 채널(210)의 제2 유출구(214)를 제2 세정 챔버(134)의 제1 홀(134a)에 연통시키고, 제1 채널(210)의 제1 유출구(212)를 유체 변위 챔버(120)의 제3 홀(124a)에 연통시킨다. 제2 채널(220) 및 제3 채널(230)는 유체 변위 챔버(120), 반응 챔버(130) 및 PCR부(30)에 연통되지 않는다.
이 상태에서 유체 변위 부재(180)를 상하로 반복 이동시켜 제2 세정 챔버(134) 내의 제2 세정 버퍼(54)가 제1 채널(210)의 제1 필터(216)를 반복하여 흐르게 한다. 이에 의하여 제1 세정 버퍼(53)를 제거하고 제1 필터(216)를 세정한 후에, 유체 변위 부재(180)를 하부로 밀어 유체 변위 챔버(120)에 남은 물질을 제2 세정 챔버(134) 내로 이동시켜 폐기한다.
이어서, 도 13e에 도시한 바와 같이, 밸브(20)를 회전시켜 제1 채널(210)의 제2 유출구(214)를 용출 챔버(135)의 제1 홀(135a)에 연통시키고, 제1 채널(210)의 제1 유출구(212)를 유체 변위 챔버(120)의 제3 홀(125a)에 연통시킨다. 제2 채널(220) 및 제3 채널(230)는 유체 변위 챔버(120), 반응 챔버(130) 및 PCR부(30)에 연통되지 않는다.
이 상태에서 유체 변위 부재(180)를 상하로 반복 이동시켜 용출 챔버(135) 내의 용출 버퍼(55)가 제1 채널(210)의 제1 필터(216)를 반복하여 흐르게 한다. 이에 의하여 제1 필터(216) 내의 핵산을 용출한다. 그 후에, 유체 변위 부재(180)를 상부로 상승시켜 핵산이 용출된 용출 버퍼(55)를 유체 변위 챔버(120) 내에 도입한다. 이때, 용출 버퍼(55)의 양은 제1 PCR부(310)의 반응 공간(312)의 크기를 고려하여 적합한 양으로 조절될 수 있다.
이어서, 도 13f에 도시한 바와 같이, 밸브(20)를 회전시켜 제2 채널(220)의 제3 유출구(222)를 유체 변위 챔버(120)의 제1 PCR용 제4 홀(126b)에 연통시키고, 제2 채널(220)의 제4 유출구(224)를 제1 PCR부(310)의 유출구(314)에 연통시킨다. 그리고 제3 채널(230)의 제5 유출구(232)를 폐기 챔버(136)의 제2 홀(136b)에 연통시키고, 제3 채널(230)의 제5 유출구(234)를 제1 PCR부(310)의 배기구(316)에 연통시킨다. 제1 채널(210)은 유체 변위 챔버(120) 및 반응 챔버(130)에 연통되지 않는다.
이 상태에서 유체 변위 부재(180)를 하부로 하강시켜 핵산이 용출된 용출 버퍼(55)를 제1 PCR부(310)의 반응 공간(312)으로 도입한다.
이어서, 도 13g에 도시한 바와 같이, 밸브(20)를 약간 회전시켜 제1 내지 제3 채널(210, 220, 230)의 제1 내지 제6 유출구(212, 214, 222, 224, 232, 234)을 모두 막은 상태에서 제1 PCR부(310)에서 제1 PCR이 일어나도록 한다. 이때, 자동 분석 장치(400)의 가열 부재(도 12의 참조부호 430, 이하 동일)가 제1 PCR에 적합한 온도로 제1 PCR부(310)를 가열할 수 있게 된다. 이 상태에서 가열과 냉각의 증폭 과정을 수행하여 마무리한다.
이어서, 도 13h에 도시한 바와 같이, 밸브(20)를 회전시켜 제2 채널(220)의 제3 유출구(222)를 유체 변위 챔버(120)의 제1 PCR용 제4 홀(126b)에 연통시키고, 제2 채널(220)의 제4 유출구(224)를 제1 PCR부(310)의 유출구(314)에 연통시킨다. 그리고 제3 채널(230)의 제5 유출구(232)를 폐기 챔버(136)의 제2 홀(136b)에 연통시키고, 제3 채널(230)의 제5 유출구(234)를 제1 PCR부(310)의 배기구(316)에 연통시킨다. 제1 채널(210)은 유체 변위 챔버(120), 반응 챔버(130)에 연통되지 않는다.
이 상태에서 유체 변위 부재(180)를 상승시켜 제1 PCR이 완료된 제1 처리물(56)을 유체 변위 챔버(120) 내로 유입시킨다.
이어서, 도 13i에 도시한 바와 같이, 밸브(20)를 회전시켜 제1 채널(210)의 제2 유출구(214)를 희석 챔버(137)의 제1 홀(137a)에 연통시키고, 제1 채널(210)의 제1 유출구(212)를 유체 변위 챔버(120)의 제3 홀(127a)에 연통시킨다. 제2 채널(220) 및 제3 채널(230)는 유체 변위 챔버(120), 반응 챔버(130) 및 PCR부(30)에 연통되지 않는다.
이 상태에서 유체 변위 부재(180)를 상하로 반복 이동시켜 희석 챔버(137) 내의 희석 버퍼와 유체 변위 챔버(120) 내의 제1 처리물(56)을 혼합하여 희석 혼합물(57)을 형성한다. 희석 버퍼의 양은 용출 버퍼의 양, 제2 PCR부(320)의 반응 공간(324)의 부피 등을 고려하여 적절하게 선택될 수 있다.
이어서, 도 13j에 도시한 바와 같이, 유체 변위 부재(180)를 상승시켜 희석 혼합물(57)을 유체 변위 챔버(120) 내에 유입한다.
이어서, 도 13k에 도시한 바와 같이, 밸브(20)를 회전시켜 제2 채널(220)의 제3 유출구(222)를 유체 변위 챔버(120)의 제2 PCR용 제4 홀(128b)에 연통시키고, 제2 채널(220)의 제4 유출구(224)를 제2 PCR부(320)의 유출구(324)에 연통시킨다. 제1 채널(210) 및 제3 채널(230)은 유체 변위 챔버(120), 반응 챔버(130) 및 PCR부(30)에 연통되지 않는다.
이 상태에서 유체 변위 부재(180)를 하부로 하강시켜 희석 혼합물(57)을 제2 PCR부(320)의 반응 공간(322)으로 도입한다. 상술한 바와 같이, 도 10a에 도시한 바와 같은 상태에서 희석 혼합물을 제2 PCR부(320)에 제공하여 유체 유입 공간(326)에 제공한다. 이어서 밸브(20)을 회전하여 밸브(20)의 PCR 이동부(209)에 걸림부(329)가 걸리도록 한 상태에서 밸브(20)를 좀더 회전하면 제2 PCR부(320)의 제1 부분(320a)만이 이동된다. 그러면, 도 13l 및 도 10b에 도시한 바와 같이 제1 부분(320a)이 이동되어 유체 유입 공간(326) 내의 희석 혼합물이 채널(325)을 통하여 반응 공간(322)에 제공된다. 그 후 다시 역회전하게 되면 반응 공간(322)이 밀폐된다. 반응 공간(322)을 밀폐시킨 후 유체 유입 공간(326)내에 잔존할 수 있는 희석 혼합물(57)을 제거하는 과정을 선택적으로 거칠 수 있다(제거의 방법은 다양할 수 있으며 제한되지 않는다. 일례로 역회전시 제2 채널(220)의 제4 유출구(224)와 제2 PCR부(320)의 유출구(324)가 연통되므로 유체 변위 부재의 상승을 통해 잔존하는 희석 혼합물을 유체 변위 챔버로 이동시킬 수 있다). 그 후 자동 분석 장치(400)의 가열 부재(430)가 제2 PCR에 적합한 온도로 제2 PCR부(320)를 가열하여 제2 PCR을 진행한다.
제2 PCR이 완료되면 또는 제2 PCR 진행 중에(real time PCR), 검출 부재(도 12의 참조부호 450)(즉, 광원(도 12의 참조부호 452) 및 카메라(도 12의 참조부호 454)를 이용하여 제2 PCR부(320)의 사진을 촬영한다. 이러한 사진 판독에 의하여 병원체의 유무를 판단할 수 있다. 이외에도 광학을 통해 얻어진 데이타 분석을 통한 병증 판단 방법에 대하여는 본 기술분야에서 잘 알려져 있으므로 설명을 생략한다.
이와 같이 본 실시예의 시료 처리 장치(100)에서는, 서로 연통되지 않도록 형성된 복수의 채널(210, 220, 230)을 구비하는 밸브(20)의 회전에 의하여 하우징(10) 내의 챔버들(110)가 서로 연결되거나 유체 변위 챔버(120)와 PCR부(30)가 연결되도록 하여 시료 내의 핵산 추출 및 증폭에 필요한 과정을 차례로 자동으로 수행할 수 있다. 이때, PCR부(30)는 제1 및 제2 PCR부(310, 320)를 포함하여 PCR의 정확성을 향상할 수 있다. 또한, 이러한 시료 처리 장치(100)를 포함하는 자동 분석 장치(400)는 시료 처리 장치(100)에 의한 타켓 DNA로부터 병원체의 여부를 자동으로, 동시 다중으로 검출할 수 있도록 한다.
이하에서는 도 14 및 도 15를 참조하여 본 발명의 변형예를 좀더 상세하게 설명한다. 상술한 실시예와 동일 또는 극히 유사한 구성에 대해서는 상세한 설명을 생략하고 다른 부분에 대해서만 상세하게 설명한다.
도 14는 본 발명의 변형예에 따른 자동 분석 장치의 하우징을 도시한 절개 사시도이고, 도 15는 본 발명의 변형예에 따른 자동 분석 장치의 PCR부를 도시한 사시도이다.
도 14를 참조하면, 본 변형예에서 희석 챔버(137)는 제1 채널(210)의 제2 유출구(214)에 대응하는 제1 홀(137a) 대신, 제3 채널(230)의 제5 유출구(232)에 대응하는 제2 홀(137b)를 구비한다. 또한, 유체 변위 챔버(120)는 제1 채널(220)의 제1 유출구(212)에 대응하는 제3 홀(127a) 대신, 제2 채널(220)의 제3 유출구(222)에 대응하는 제4 홀(127b)를 구비한다. 도 15를 참조하면, 본 변형예의 PCR부(30)에서는 제1 PCR부(310)의 유출구(314) 및 배기구(316)가 제4 유출구(224) 및 제6 유출구(234)의 경로를 따라 길게 연장된 형상을 가질 수 있다.
이와 같은 자동 분석 장치에서 용출 챔버(135) 내의 용출 버퍼(55)를 이용하여 제1 필터(216) 내의 핵산을 용출하는 단계(도 13a 내지 도 13e, 및 이의 관련 설명 참조)까지는 상술한 실시예와 동일하다.
제1 PCR부(310)에 핵산이 용출된 용출 버퍼(55)를 도입하는 단계(도 13f 참조)에서는 제1 PCR부(310)의 유출구(314) 및 배기구(316)에서 일측(일례로, 도면의 A 위치)에 제2 채널(220) 및 제3 채널(230)이 각기 연통된다. 제1 PCR을 수행하는 단계(도 13i 및 이의 관련 설명 참조)는 상술한 실시예와 동일하다.
그 다음, 밸브(20)를 회전시켜 제2 채널(220)의 제3 유출구(222)를 유체 변위 챔버(120)의 제4 홀(127b)을 일치시키고 제4 유출구(224)를 제1 PCR부(310)의 유출구(314)의 다른 일측(도면의 B 위치)에 일치시킨다. 이와 동시에 제3 채널(230)의 제5 유출구(232)를 희석 챔버(137)의 제2 홀(137b)에 일치시키고 제6 유출구(234)를 제1 PCR부(310)의 배기구(316)의 다른 일측(도면의 B 위치)에 일치시킨다. 이 상태에서 유체 변위 부재(180)를 이동시켜 희석 챔버(137)의 희석 버퍼가 제1 PCR부(310)를 통과하여 유체 변위 챔버(120)로 이동하도록 한다. 그러면, 제1 PCR부(310) 내에서 1차 PCR이 끝난 제1 처리물과 희석 버퍼가 서로 혼합된 희석 혼합물(도 13i의 참조부호 57 참조, 이하 동일)이 유체 변위 챔버(120) 내로 유입된다.
그 다음으로, 밸브(20)를 회전시켜 희석 혼합물(57)을 제2 PCR부(320)에 도입하여 제2 PCR이 일어나도록 한다(도 13k 및 이의 관련 설명 참조).
상술한 바에 따른 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명은 시료의 처리 및 병원체 등의 검출에 필요한 다양한 공정을 자동화하여 처리할 수 있는 시료 처리 장치 및 이를 포함하는 자동 분석 장치로 산업적으로 유용하다.

Claims (20)

  1. 시료로부터 핵산을 추출 및 증폭하는 시료 처리 장치에 있어서,
    챔버를 구비하는 하우징;
    상기 하우징의 하부에 위치하는 밸브; 및
    상기 밸브의 하부에 위치하며 중합 효소 연쇄 반응(PCR)을 하는 PCR부
    를 포함하는 시료 처리 장치.
  2. 제1항에 있어서,
    상기 밸브를 사이에 둔 상태에서 상기 하우징 및 상기 PCR부를 결합하여 상기 밸브가 회전 가능하게 위치하는 시료 처리 장치.
  3. 제1항에 있어서,
    상기 하우징은 하부로 연장되며 제1 결합부를 구비하는 복수의 연장부를 포함하고,
    상기 PCR부는 상기 제1 결합부에 결합되는 제2 결합부를 포함하는 시료 처리 장치.
  4. 제3항에 있어서,
    상기 제1 결합부가 홈을 포함하고,
    상기 제2 결합부가 상기 홈에 끼워지는 돌출부를 포함하는 시료 처리 장치.
  5. 제1항에 있어서,
    상기 하우징, 상기 밸브 및 상기 PCR부의 평면 형상이 원형인 시료 처리 장치.
  6. 제1항에 있어서,
    상기 밸브는 상면의 면적보다 하면의 면적이 작은 시료 처리 장치.
  7. 제1항에 있어서,
    평면 상에서, 상기 밸브는 제1 직경을 가지는 상부 부분과, 상기 제1 직경보다 작은 제2 직경을 가지는 하부 부분을 포함하는 시료 처리 장치.
  8. 제6항에 있어서,
    상기 밸브의 내부에는 유체의 흐름을 위한 채널이 구비되고,
    상기 챔버의 바닥면에 상기 채널과 연통되는 홀이 형성되며,
    상기 PCR부의 상면에 상기 채널과 연통되는 유출구가 형성되는 시료 처리 장치.
  9. 제1항에 있어서,
    상기 하우징을 덮는 덮개부를 더 포함하는 시료 처리 장치.
  10. 제9항에 있어서,
    상기 덮개부는,
    상기 하우징의 상부 가장자리에 고정되며 상기 챔버에 대응하는 개구부를 가지는 제1 덮개부; 및
    상기 제1 덮개부 위에 고정되며 상기 개구부를 막는 제2 덮개부를 포함하는 시료 처리 장치.
  11. 제10항에 있어서,
    상기 제1 덮개부의 일부와 상기 제2 덮개부의 일부가 접철 가능하게 연결되는 시료 처리 장치.
  12. 시료로부터 핵산을 추출 및 증폭하는 시료 처리 장치; 및
    상기 시료 처리 장치가 장착되며, 상기 시료 처리 장치를 구동하는 구동 부재, 상기 시료 처리 장치를 가열하는 가열 부재 및 상기 시료 처리 장치에서 증폭된 핵산으로부터 병원균의 검출 여부를 판단하는 검출부재를 포함하는 장치부
    를 포함하고,
    상기 시료 처리 장치는,
    챔버를 구비하는 하우징;
    상기 하우징의 하부에 위치하는 밸브; 및
    상기 밸브의 하부에 위치하며 중합 효소 연쇄 반응(PCR)을 하는 PCR부
    를 포함하는 자동 분석 장치.
  13. 제12항에 있어서,
    상기 밸브를 사이에 둔 상태에서 상기 하우징 및 상기 PCR부를 결합하여 상기 밸브가 회전 가능하게 위치하는 자동 분석 장치.
  14. 제12항에 있어서,
    상기 하우징은 하부로 연장되며 제1 결합부를 구비하는 복수의 연장부를 포함하고,
    상기 PCR부는 상기 제1 결합부에 결합되는 제2 결합부를 포함하는 자동 분석 장치.
  15. 제12항에 있어서,
    상기 하우징, 상기 밸브 및 상기 PCR부의 평면 형상이 원형인 자동 분석 장치.
  16. 제12항에 있어서,
    상기 밸브는 상면의 면적보다 하면의 면적이 작은 자동 분석 장치.
  17. 제12항에 있어서,
    상기 밸브의 내부에는 유체의 흐름을 위한 채널이 구비되고,
    상기 챔버의 바닥면에 상기 채널과 연통되는 홀이 형성되며,
    상기 PCR부의 상면에 상기 채널과 연통되는 유출구가 형성되는 자동 분석 장치.
  18. 제12항에 있어서,
    상기 하우징을 덮는 덮개부를 더 포함하는 자동 분석 장치.
  19. 제18항에 있어서,
    상기 덮개부는,
    상기 하우징의 상부 가장자리에 고정되며 상기 챔버에 대응하는 개구부를 가지는 제1 덮개부; 및
    상기 제1 덮개부 위에 고정되며 상기 개구부를 막는 제2 덮개부를 포함하는 자동 분석 장치.
  20. 제19항에 있어서,
    상기 제1 덮개부의 일부와 상기 제2 덮개부의 일부가 접철 가능하게 연결되는 자동 분석 장치.
PCT/KR2013/009071 2012-10-11 2013-10-10 시료 처리 장치 및 이를 포함하는 자동 분석 장치 WO2014058251A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/415,543 US20150209789A1 (en) 2012-10-11 2013-10-10 Sample processing apparatus and automatic analyzing apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0113198 2012-10-11
KR1020120113198A KR101407655B1 (ko) 2012-10-11 2012-10-11 시료 처리 장치 및 이를 포함하는 자동 분석 장치

Publications (1)

Publication Number Publication Date
WO2014058251A1 true WO2014058251A1 (ko) 2014-04-17

Family

ID=50477646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009071 WO2014058251A1 (ko) 2012-10-11 2013-10-10 시료 처리 장치 및 이를 포함하는 자동 분석 장치

Country Status (3)

Country Link
US (1) US20150209789A1 (ko)
KR (1) KR101407655B1 (ko)
WO (1) WO2014058251A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101630784B1 (ko) * 2014-09-24 2016-06-15 한국기계연구원 시료 전처리용 카트리지
KR102076220B1 (ko) 2017-12-28 2020-02-11 에스디 바이오센서 주식회사 핵산 추출용 카트리지의 유로 구조
KR102065649B1 (ko) * 2017-12-28 2020-01-13 에스디 바이오센서 주식회사 핵산 추출용 카트리지의 피스톤
KR101989920B1 (ko) 2017-12-28 2019-06-17 에스디 바이오센서 주식회사 핵산 추출용 카트리지
KR102065650B1 (ko) * 2017-12-28 2020-02-11 에스디 바이오센서 주식회사 카트리지를 이용한 핵산 추출 방법
CN108226550B (zh) * 2018-01-22 2023-12-01 上海默礼生物医药科技有限公司 一种微型多仓室控制的化学发光试剂盒及其检测方法
KR101996617B1 (ko) * 2018-10-11 2019-07-04 주식회사 엘지화학 일체형 카트리지
CN111218383A (zh) * 2018-11-26 2020-06-02 杭州比格飞序生物科技有限公司 一种核酸提取装置及其方法
KR102281116B1 (ko) * 2019-06-28 2021-07-27 주식회사 엘지화학 일체형 카트리지
CN111394221A (zh) * 2020-04-14 2020-07-10 无锡科智达科技有限公司 全密闭多指标核酸检测装置
KR102362853B1 (ko) * 2021-08-13 2022-02-15 에스디바이오센서 주식회사 내측 챔버와 결합되는 안전 클립을 포함하는 유전체 추출 장치
CN115960707A (zh) * 2021-10-08 2023-04-14 苏州国科均豪生物科技有限公司 用于免疫荧光检测的试剂盒及使用方法、荧光免疫检测装置
CN114231399A (zh) * 2021-12-30 2022-03-25 成都齐碳科技有限公司 反应卡盒及检测装置
KR20230119611A (ko) * 2022-02-07 2023-08-16 주식회사 퀀타매트릭스 감염원 분리 및 농축기능을 포함하는 핵산분석장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080022035A (ko) * 2006-09-05 2008-03-10 삼성전자주식회사 핵산 검출을 위한 원심력 기반의 미세유동장치 및 이를포함하는 미세유동시스템
KR100855996B1 (ko) * 2002-07-02 2008-09-02 유재천 Pcr 디스크 장치, pcr 디스크 드라이버 장치 및 그를 이용한 분석 방법
US7695952B2 (en) * 2003-11-07 2010-04-13 Nanosphere, Inc. Disposable sample processing module for detecting nucleic acids
US20110244466A1 (en) * 2010-04-02 2011-10-06 Robert Juncosa Nucleic acid testing device and method
KR20110108857A (ko) * 2010-03-30 2011-10-06 한국과학기술원 회전 pcr 칩, 회전 rna 전처리 칩 및 이를 이용한 rna전처리 방법, 이들을 포함하는 회전 rt-pcr 칩, 이를 이용한 회전 rt-pcr 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502545A (ja) * 2007-11-20 2011-01-27 スリーエム イノベイティブ プロパティズ カンパニー 試料調製容器及び方法
NZ711257A (en) * 2009-02-03 2017-05-26 Netbio Inc Nucleic acid purification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100855996B1 (ko) * 2002-07-02 2008-09-02 유재천 Pcr 디스크 장치, pcr 디스크 드라이버 장치 및 그를 이용한 분석 방법
US7695952B2 (en) * 2003-11-07 2010-04-13 Nanosphere, Inc. Disposable sample processing module for detecting nucleic acids
KR20080022035A (ko) * 2006-09-05 2008-03-10 삼성전자주식회사 핵산 검출을 위한 원심력 기반의 미세유동장치 및 이를포함하는 미세유동시스템
KR20110108857A (ko) * 2010-03-30 2011-10-06 한국과학기술원 회전 pcr 칩, 회전 rna 전처리 칩 및 이를 이용한 rna전처리 방법, 이들을 포함하는 회전 rt-pcr 칩, 이를 이용한 회전 rt-pcr 방법
US20110244466A1 (en) * 2010-04-02 2011-10-06 Robert Juncosa Nucleic acid testing device and method

Also Published As

Publication number Publication date
US20150209789A1 (en) 2015-07-30
KR20140046941A (ko) 2014-04-21
KR101407655B1 (ko) 2014-06-13

Similar Documents

Publication Publication Date Title
WO2014058251A1 (ko) 시료 처리 장치 및 이를 포함하는 자동 분석 장치
WO2020209638A1 (ko) 중합효소 연쇄반응 시스템
WO2017069563A1 (ko) 핵산 정제 장치 및 핵산 정제 방법
WO2009125971A2 (ko) 자동정제장치, 멀티 웰 플레이트 키트 및 생물학적 시료로부터 핵산을 추출하는 방법
WO2013119049A1 (ko) 생물학적 시료의 자동 분석 장치 및 방법
WO2014112671A1 (ko) 핵산 추출용 미세유동 칩, 이를 포함하는 핵산 추출 장치, 및 이를 이용하는 핵산 추출 방법
WO2021002602A1 (ko) 현장형 병원체 검출을 위한 생체시료 전처리 및 분자진단 올인원 키트 및 올인원 키트를 이용한 진단 방법
US10620097B2 (en) Biological sample processing device
WO2013042824A1 (ko) 비뇨생식기 감염 질환 진단용 dna칩
WO2020111462A1 (ko) 회전식 유전자 진단용 통합 마이크로 디바이스
WO2015199423A1 (ko) 자성 입자를 이용한 핵산 분리 방법
WO2022124672A1 (ko) 분자 진단 카트리지 및 이를 이용하는 분자 진단 장치
WO2015083965A1 (en) Biomaterial test apparatus and method of controlling the same
WO2022145985A1 (ko) 이동형 진단 구조물
WO2016143995A1 (ko) 멀티플렉스 pcr 칩 및 이를 포함하는 멀티플렉스 pcr 장치
WO2019039911A9 (ko) 시료 분석용 칩, 이를 포함하는 시료 분석용 디바이스, 그리고 시료 분석용 칩에 장착되는 카트리지
WO2022154332A1 (ko) 애널라이트 검사 장치 및 이를 이용한 애널라이트 검사 방법
WO2022154254A1 (ko) 회전형 카트리지를 이용하는 분자 진단 장치
WO2022124753A1 (ko) 전도성 피펫 장착용 어댑터, 시료튜브개폐장치 및 시료자동분석시스템
WO2019221537A1 (ko) 미토콘드리아 dna를 내부 기준 시료로 사용하는 마이코플라즈마 검출 방법
WO2020242093A1 (ko) 양이온성 폴리머를 이용한 핵산추출장치 및 추출방법
WO2022071648A1 (ko) 미생물 농축 또는 핵산 추출용 조성물 및 이를 이용한 미생물 농축 또는 핵산 추출 방법
WO2019088429A1 (ko) 동형2기능성 이미도에스터를 이용한 액체생검 유래 생체물질의 추출 방법
WO2022154214A1 (ko) 컬럼 방식의 단일튜브 pcr용 핵산 분리를 위한 버퍼 조성물 및 이의 용도
WO2018062889A1 (ko) 생물학적 시료 처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14415543

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844746

Country of ref document: EP

Kind code of ref document: A1