WO2019088429A1 - 동형2기능성 이미도에스터를 이용한 액체생검 유래 생체물질의 추출 방법 - Google Patents

동형2기능성 이미도에스터를 이용한 액체생검 유래 생체물질의 추출 방법 Download PDF

Info

Publication number
WO2019088429A1
WO2019088429A1 PCT/KR2018/009771 KR2018009771W WO2019088429A1 WO 2019088429 A1 WO2019088429 A1 WO 2019088429A1 KR 2018009771 W KR2018009771 W KR 2018009771W WO 2019088429 A1 WO2019088429 A1 WO 2019088429A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid biopsy
dna
biomaterial
extracting
derived
Prior art date
Application number
PCT/KR2018/009771
Other languages
English (en)
French (fr)
Inventor
신용
진충은
Original Assignee
울산대학교 산학협력단
재단법인 아산사회복지재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180098024A external-priority patent/KR102249506B1/ko
Application filed by 울산대학교 산학협력단, 재단법인 아산사회복지재단 filed Critical 울산대학교 산학협력단
Publication of WO2019088429A1 publication Critical patent/WO2019088429A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Definitions

  • the present invention relates to a method for extracting a biomaterial derived from a lecitha biopsy using a homobifunctional imidoester (HI) compound. More particularly, the present invention relates to a method for extracting biomolecules derived from dimethyl adipisimide dimethylimidate (DMA), dimethyl pimelimidate (DMP), dimethyl suberimidate (DMS), or dimethyl 3,3'-dithiobispropionimidate (DTBP) To a method for extracting cell-free DNA, circulating tumor DNA, or exosomes.
  • DMA dimethyl adipisimide dimethylimidate
  • DMP dimethyl pimelimidate
  • DMS dimethyl suberimidate
  • DTBP dimethyl 3,3'-dithiobispropionimidate
  • a liquid biopsy is a method of diagnosing or analyzing a disease by using a liquid body fluid sample such as blood or ascites that can be acquired noninvasively without invasive procedures such as puncture or incision.
  • Liquid biopsy is a relatively simple method of collecting body fluids from patients and allows rapid and detailed detection of cancer development and metastasis.
  • Biomaterials such as nucleic acids or exosomes present in liquid biopsies allow for multiple analyzes of various diseases It is expected to be widely used in the cause and treatment of diseases.
  • Nucleic acid is an important analytical tool for identifying disease states, and DNA biomarkers, such as single nucleotide polymorphism (SNP), mutation or DNA methylation, And provides an important clue to providing a great opportunity for prognosis and surveillance as well as diagnosing and monitoring the condition of the disease during the early stages of the disease.
  • SNP single nucleotide polymorphism
  • nucleic acids such as DNA are present at very low physiological concentrations compared to other components such as proteins (e.g., tens of nanograms of DNA versus a few tens of micrograms of protein per microliter of whole blood), DNA is effectively extracted from clinical samples Preconcentration is very important for subsequent processes such as amplification and detection. In the case of methylated DNA, this problem is even more important.
  • DNA methylation plays a crucial role in regulating gene expression and chromatin organization in normal eukaryotic cells. DNA methylation occurs by the covalent addition of a methyl group onto the 5-carbon of the cytosine ring and produces 5-methylcytosine. These methyl groups protrude into the major groove of DNA and effectively inhibit transcription.
  • CpGs cytosine-guanosine dinucleotides
  • DNA methylation is mediated by the highly related DNA methyltransferase (DNMT) group, which transfers the methyl group from S-adenosyl-L-methionine to cytosine in the CpG dinucleotide.
  • DNMT DNA methyltransferase
  • MBD methyl-CpG-binding domain
  • MBDs translate methylated DNA into a repressed, compacted chromatin environment.
  • MBD is the methyl CpG-binding domain of the MeCP2 protein, which binds to symmetrically methylated CpGs in any sequence and participates in mediating methylation-dependent transcriptional repression.
  • nucleic acid separation to date the most significant developments in the method of nucleic acid separation to date are in the case of a carrier which specifically adsorbs only nucleic acid from various kinds of substances contained in the cell lysis solution such as genomic DNA, plasmid DNA, messenger RNA, protein, Technology, and so on.
  • a carrier which specifically adsorbs only nucleic acid from various kinds of substances contained in the cell lysis solution such as genomic DNA, plasmid DNA, messenger RNA, protein, Technology, and so on.
  • nucleic acid adsorbing materials there is a problem that the extraction of exosome is difficult to complete extraction due to interference by proteins in cells secretion or serum.
  • An object of the present invention is to provide a composition for extracting a biomaterial derived from a lecithin biopsy without using a lysis buffer using the same type 2 functional imidoester compound and a kit for extracting a biomaterial derived from a liquid biopsy using the composition, And to provide a closed microfluidic chip for extraction of biomaterial derived from a liquid biopsy.
  • the present invention provides a composition for extracting biomaterials derived from a liquid biopsy comprising a compound represented by the general formula (1).
  • X is (CH 2 ) n or (CH 2 ) p -SS- (CH 2 ) q ,
  • n is an integer of 4 to 10
  • p or q is an integer of 1 to 3, respectively.
  • the present invention also provides a kit for extracting a biomaterial derived from a liquid biopsy comprising the above composition.
  • the present invention provides a method for manufacturing a semiconductor device, comprising: a first step of introducing an amine group into an object to modify the object; A second step of injecting a liquid biopsy sample and a compound represented by the following formula 1 onto the modified object to form a complex between the biomolecule present in the liquid biopsy sample and the compound; And a third step of treating the object on which the complex is formed by treating an elution buffer to extract the biomaterial.
  • X is (CH 2 ) n or (CH 2 ) p -SS- (CH 2 ) q ,
  • n is an integer of 4 to 10
  • p or q is an integer of 1 to 3, respectively.
  • the present invention also provides a method for preparing a biocompatible biodegradable biocidal composition, comprising: a first step of adding a diatomite modified with a silane compound to a liquid biopsy sample and adding a compound represented by the following formula 1 to prepare a reaction mixture; And a second step of extracting a biomaterial present in the liquid biopsy sample from the reaction mixture.
  • X is (CH 2 ) n or (CH 2 ) p -SS- (CH 2 ) q ,
  • n is an integer of 4 to 10
  • p or q is an integer of 1 to 3, respectively.
  • the present invention also relates to a patterned lower film; A microfluidic chamber stacked on the lower thin film; And a closed microfluidic chip stacked on the microfluidic chamber, the closed microfluidic chip including a patterned upper thin film for extraction of biomaterial derived from a liquid biopsy.
  • the method for extracting a biomaterial derived from a liquid biopsy using the homozygous 2 functional imidoester compound (DMA, DMP, DMS or DTBP) according to the present invention is a method for extracting cell glass DNA, circulating tumor DNA or exosomes Since it can be extracted quickly without using equipment, it can be utilized as a field diagnostic method and can be extracted from a smaller amount of sample than the conventional method, so that it is highly efficient, has excellent time and cost savings, and can be easily used . Also, unlike conventional extraction methods using a lysis buffer, it is possible to increase the sensitivity of detection by reducing contamination from various cell lysates and debris generated from cell lysis without using a lysis buffer, Biomaterials can be useful for diagnosis and treatment of diseases.
  • DMA, DMP, DMS or DTBP homozygous 2 functional imidoester compound
  • FIG. 1 and FIG. 2 are schematic diagrams of the thin film device and the DTBP / thin film sample analysis of the present invention for extracting circulating nucleic acid from plasma using the same type 2 functional imidoester compound.
  • FIG. 1 and FIG. 2 are schematic diagrams of the thin film device and the DTBP / thin film sample analysis of the present invention for extracting circulating nucleic acid from plasma using the same type 2 functional imidoester compound.
  • 3 (A) and 3 (B) show the comparison of DNA extraction efficiency according to the amine-related solution used for chip surface treatment.
  • FIG. 4 shows DNA extraction efficiency according to DTBP concentration.
  • FIG. 5 shows the DNA extraction efficiency according to the homologous 2 functional imidoester compounds (DMA, DMS, DMP, DTBP) compared with a conventional nucleic acid extraction kit (Qiagen).
  • FIG. 6 (A) shows that nucleic acid contamination from cell lysates and debris caused by the use of a dissolution buffer of a conventional nucleic acid extraction kit (Qiagen) is reduced during nucleic acid extraction using DTBP.
  • Fig. 6 (B) Shows the efficiency of extracting cfDNA from blood plasma samples of patients with colorectal cancer using DTBP compared to a conventional nucleic acid extraction kit (Qiagen).
  • Fig. 7 shows mutation diagnostic sensitivity of cfDNA extracted from blood plasma samples of patients with colorectal cancer using DTBP compared to a conventional nucleic acid extraction kit (Qiagen).
  • the inventors of the present invention have developed an extraction method capable of separating and extracting biomaterials from liquid biopsy specimens.
  • the method of extracting biomaterials derived from liquid biopsies of the present invention forms a complex between a liquid biopsy specimen and a homologous type 2 functional imidoester compound It is possible to separate biomaterials with high purity at a low cost and at a low cost compared with the conventional extraction method using a dissolution buffer solution.
  • the present invention provides a composition for extracting a biological material derived from a liquid biopsy comprising a compound represented by the following formula (1).
  • X is (CH 2 ) n or (CH 2 ) p -SS- (CH 2 ) q ,
  • n is an integer of 4 to 10
  • p or q is an integer of 1 to 3, respectively.
  • the liquid biopsy-derived biomaterial may be, but is not limited to, cell free DNA (cfDNA), circulating tumor DNA (ctDNA), or exosome.
  • cfDNA cell free DNA
  • ctDNA circulating tumor DNA
  • exosome exosome
  • the cfDNA refers to circulating free nucleic acid and DNA circulating in the blood.
  • the circulating free nucleic acid specifically includes circulating free DNA, circulating free RNA, etc., and is preferably, but not limited to, circulating free DNA.
  • the circulating free nucleic acid generally indicates that the plasma or serum has a length of 1000 bp or less (DNA) or 100 nt or less (RNA), but is not limited thereto.
  • the ctDNA refers to DNA present in circulating blood separated from cancer cells. It has both tumor-specific mutations and epigenetic mutations and accounts for very small amounts of total circulating DNA in the blood.
  • the size of the circulating tumor DNA varies from, but not limited to, 50 bp to 250 bp.
  • the liquid biopsy may be, but is not limited to, blood, ascites, urine, saliva, cerebrospinal fluid or sputum.
  • the present invention also provides a kit for extracting a biomaterial derived from a liquid biopsy comprising the above composition.
  • the kit may further include a buffer solution and the like necessary for effective biomaterial extraction.
  • the present invention provides a method for manufacturing a semiconductor device, comprising: a first step of introducing an amine group into an object to modify the object; A second step of injecting a liquid biopsy sample and a compound represented by the following formula 1 onto the modified object to form a complex between the biomolecule present in the liquid biopsy sample and the compound; And a third step of treating the object on which the complex is formed by treating an elution buffer to extract the biomaterial.
  • X is (CH 2 ) n or (CH 2 ) p -SS- (CH 2 ) q ,
  • n is an integer of 4 to 10
  • p or q is an integer of 1 to 3, respectively.
  • n is an integer of 4 to 6
  • X is (CH 2 ) p -SS- (CH 2 ) q
  • p or q is an integer of 1 each.
  • the object of the first step may be a solid or solid support, for example, but not limited to, a thin film device, a magnetic bead, a ring resonator, or a nanoparticle. .
  • the nanoparticles may be, but are not limited to, diatomaceous earth or polymers having OH groups.
  • the object of the first step may be modified with a silane compound.
  • the silane compound may be a compound represented by the following formula (2), but is not limited thereto.
  • R 1 to R 3 may be the same or different and are any one of C 1 to C 4 alkyl or C 1 to C 4 alkoxy
  • R 4 is amino (C 1 to C 10) alkyl, 3- (2 amino (C1 to C4) alkylamino] (C1 to C4) alkyl or 3- [2- (2-amino (C1 to C4) alkylamino) (C1 to C4) alkylamino] (C1 to C4) alkyl.
  • the silane compound is selected from the group consisting of (3-aminopropyl) triethoxysilane (APTES), (3-aminopropyl) trimethoxysilane, Aminomethyl) triethoxysilane, (2-aminoethyl) triethoxysilane, (4-aminobutyl) triethoxysilane ((4-aminomethyl) triethoxysilane, -aminobutyl) triethoxysilane, (5-aminopentyl) triethoxysilane, (6-aminohexyl) triethoxysilane, 3-aminopropyl (3-aminopropyl (diethoxy) methylsilane (APDMS), N- [3- (trimethoxysilyl) propyl] ethylenediamine, N- [3- (Trimethoxysilyl) propyl] diethylenetriamine, [3- (2-aminoe
  • the silane compound is most preferably 3-aminopropyl (diethoxy) methylsilane (APDMS) as described in the examples of the present invention.
  • ADMS 3-aminopropyl (diethoxy) methylsilane
  • the biomolecule present in the liquid biopsy sample of the second step may be, but is not limited to, cell free DNA (cfDNA), circulating tumor DNA (ctDNA), or exosomes.
  • cfDNA cell free DNA
  • ctDNA circulating tumor DNA
  • exosomes exosomes
  • the liquid biopsy sample in the second step may be, but is not limited to, blood, ascites, urine, saliva, cerebrospinal fluid or sputum.
  • the present invention also provides a method for preparing a biocompatible biodegradable biocidal composition, comprising: a first step of adding a diatomite modified with a silane compound to a liquid biopsy sample and adding a compound represented by the following formula 1 to prepare a reaction mixture; And a second step of extracting a biomaterial present in the liquid biopsy sample from the reaction mixture.
  • X is (CH 2 ) n or (CH 2 ) p -SS- (CH 2 ) q ,
  • n is an integer of 4 to 10
  • p or q is an integer of 1 to 3, respectively.
  • n is an integer of 4 to 6
  • X is (CH 2 ) p -SS- (CH 2 ) q
  • p or q is an integer of 1 each.
  • the liquid biopsy-derived biomaterial may be, but is not limited to, cell free DNA (cfDNA), circulating tumor DNA (ctDNA), or exosome.
  • cfDNA cell free DNA
  • ctDNA circulating tumor DNA
  • exosome exosome
  • the liquid biopsy may be, but is not limited to, blood, ascites, urine, saliva, cerebrospinal fluid or sputum.
  • the silane compound may be a compound represented by the following general formula (2), but is not limited thereto.
  • R 1 to R 3 may be the same or different and are any one of C 1 to C 4 alkyl or C 1 to C 4 alkoxy
  • R 4 is amino (C 1 to C 10) alkyl, 3- (2 amino (C1 to C4) alkylamino] (C1 to C4) alkyl or 3- [2- (2-amino (C1 to C4) alkylamino) (C1 to C4) alkylamino] (C1 to C4) alkyl.
  • the silane compound is selected from the group consisting of (3-aminopropyl) triethoxysilane (APTES), (3-aminopropyl) trimethoxysilane, Aminomethyl) triethoxysilane, (2-aminoethyl) triethoxysilane, (4-aminobutyl) triethoxysilane ((4-aminomethyl) triethoxysilane, -aminobutyl) triethoxysilane, (5-aminopentyl) triethoxysilane, (6-aminohexyl) triethoxysilane, 3-aminopropyl (3-aminopropyl (diethoxy) methylsilane (APDMS), N- [3- (trimethoxysilyl) propyl] ethylenediamine, N- [3- (Trimethoxysilyl) propyl] diethylenetriamine, [3- (2-aminoe
  • the present invention also relates to a patterned lower film; A microfluidic chamber stacked on the lower thin film; And a closed microfluidic chip stacked on the microfluidic chamber, the closed microfluidic chip including a patterned upper thin film for extraction of biomaterial derived from a liquid biopsy.
  • the thin film may be transparent acrylonitrile butadiene styrene (ABS) or a plastic plate with a double-sided tape attached thereto, and the plastic plate may be a flexible material such as, but not limited to, polycarbonate.
  • ABS acrylonitrile butadiene styrene
  • plastic plate with a double-sided tape attached thereto
  • the plastic plate may be a flexible material such as, but not limited to, polycarbonate.
  • the inner surface of the closed microfluidic chip may be modified by oxygen plasma treatment and may be silanized by treatment with 3-aminopropyl (diethoxy) methylsilane (APDMS) .
  • ADMS 3-aminopropyl (diethoxy) methylsilane
  • the chamber may be, but is not limited to, a plurality of slot-type microwells connected at an expansion shrinkage of about 1: 5.6 to about 5.6: 1.
  • FIG. 1 is a nucleic acid extraction method using a homofunctional bi-functional imidoester compound (DMA, DMP, DMS, DTBP) in the thin film apparatus of the present invention, and includes three steps of sample culture, washing and elution.
  • the surface of the thin film device is modified with an amine using the amine-related solution, and the hydrophobic thin film device is modified to be hydrophilic by the modification.
  • a nucleic acid sample and an HI solution (DMA, DMP, DMS, DTBP) are injected onto the modified thin film device, a cross-linking mechanism between the nucleic acid and HI occurs due to interaction between the amino group of the nucleic acid and the bi- , DNA can be extracted from the sample by forming a complex between the nucleic acid and HI.
  • DTBP is a compound containing two functional imidoesters and disulfide bonds, and the DTBP is used as an amino-reactive crosslinker of cells, proteins and nucleic acids by forming a reversible crosslinking structure.
  • High-efficiency nucleic acid extraction from nucleic acid samples is possible through fast and strong mutual coupling between DTBP and nucleic acid, rather than interaction with DTBP and protein.
  • Figure 2 shows the extraction principle of cfDNA using DTBP.
  • the extraction principle and steps are as follows: 1) chip preparation; The inner surface of the thin film device is modified using APDMS for amine group bonding of DTBP. 2) sample mixing; Plasma samples were mixed with DTBP solution (30 mg / mL) and injected into the device; 3) binding; DTBP binds to the amine groups of APDMS and nucleic acids by covalent and electrostatic bonds, 4) washing and elution; After washing with PBS, the cfDNA (or cfRNA) is eluted by breaking the crosslinking with elution buffer.
  • a low cost thin film device for use as a microfluidic device was fabricated using a CO 2 laser cutter (VLS3.50 (610 x 305 mm); Universal Laser Systems, Scottsdale, AZ)
  • the thin film device comprises an upper thin film and a lower thin film, and a microfluidic chamber interposed between the upper thin film and the lower thin film, wherein the thin film device comprises dimethyl 3,3'-dithiobispropionimide ( Dimethyl 3,3'-dithiobispropionimidate (DTBP).
  • the microfluidic chamber of the device is based on a confinement type device to prevent contamination caused by the open device. During the washing and elution steps, the reaction sample remains in the microfluidic chamber of the enclosed device to reduce contamination. Repeated rapid expansion and contraction in the flow cross-sectional area can create microvortices in liquid sample injection.
  • microfluidic chip was designed using AutoCAD (Autodesk, Inc., San Rafael, Calif.) And printed with a laser cutter used in the production of prototyping devices with the advantages of low cost, simplicity and speed.
  • a 300 micron thick double-sided tape (Fig. 1) was used as an inner layer using a laser cutter (10.6 mu C CO 2 laser source with a power range of 10 W to 50 W)
  • Three layers consisting of two 100 ⁇ m thick films (Kemafoil hydrophilic film, HNW-100, COVEME, Italy) were prepared as outer layers.
  • the outer layer was attached to the permanent adhesive side of the top and bottom of the inner layer to produce a 3D disposable chip for the DTBP reaction.
  • the height of the microfluidic chamber was about 300 mu m, and the total volume was set to 300 mu l.
  • the tubing adapter was made by attaching a 3 mm thick cast acrylic sheet (MARGA CIPTA, Indonesia) to one side of the double-sided tape and cutting and perforating with a laser cutter.
  • the fabricated adapters were attached to the inlet and outlet of the 3D disposable chip, respectively.
  • pre-cut Tygon tubing (AAC02548; Cole-Parmer, Vernon Hills, Ill.) was placed in the adapter hole and sealed using thermally stable epoxy at 120 ⁇ ⁇ .
  • plastic cartridges were fabricated using a laser cutter.
  • Plastic cartridges (upper and lower parts) hold 3D disposable chips during analysis; Length 105 mm, width 60 mm, height 10 mm.
  • the layout of each plastic component was designed using AutoCAD.
  • the structure was patterned on a transparent acrylonitrile butadiene styrene (ABS) sheet using a milling machine.
  • ABS transparent acrylonitrile butadiene styrene
  • the chip was mounted on the lower plastic part and then assembled with the upper plastic part using four wrench bolts to build the device.
  • DTBP DTBP
  • a surface modification protocol was performed. Briefly, in order to produce amine groups on the inner surface of the 3D disposable chip, the inner surface was first treated with an oxygen plasma (Covance Model, Femtoscience) for 10 minutes to change the characteristics of the inner surface from hydrophobic to hydrophilic, Was immersed in an aqueous 2% 3-aminopropyl diethoxymethylsilane (APDMS, Sigma-Aldrich) solution at 65 ° C for 60 minutes and then thoroughly washed with deionized water. After cleaning, to clean the thin film device, the cleaned thin film device was quickly dried under a nitrogen stream to modify the thin film device to an amine.
  • an oxygen plasma Covance Model, Femtoscience
  • the water contact angle measurement of the amine-modified thin film device using Drop Shape Analyzer showed that the hydrophilicity of the thin film device changed significantly with temperature and incubation time. After silanization of the thin film device at 65 DEG C for 60 minutes with APDMS, the hydrophilicity of the thin film surface increased (about 30-40 DEG C).
  • CRC colorectal cancer
  • Example 3 DTBP / thin film sample analysis
  • APDMS was treated by concentration (10, 20 and 30 ⁇ l / ml) to form amine groups on the inner surface of the thin film, and various amine related solutions [3-aminopropyltriethoxysilane (3 -Aminopropyl triethoxysilane, APTES # 1), N 1 -3- tree methoxy silyl propyl diethylenetriamine (N 1 -3-Trimethoxysilylpropyl diethylenetriamine, APTES # 3) and 3-2- aminoethyl aminopropyl trimethoxysilane (3 -2-aminoethylaminopropyl trimethoxysilane, APTES # 4) was treated at a concentration of 20 ⁇ l / ml.
  • DTBP was added to the reaction solution at different concentrations (10, 30, 50 and 100 mg / ml).
  • 500 [mu] l of plasma samples from colon cancer patients were mixed with 300 [mu] l of DTBP reaction solution and then injected into the device at a rate of 100 [mu] l / min using a pump (KD Scientific, MA) In order to capture cfDNA, it was left at room temperature for 10 minutes.
  • HI reagents were purchased from Sigma-Aldrich (St. Louis, Mo.). To remove debris from the sample using a pump syringe, the sample was washed with PBS at a flow rate of 100 ⁇ l / min and eluted with an elution buffer (10 mM sodium bicarbonate, pH ⁇ 10.6, flow rate: 50 ⁇ l / min) The cfDNA was extracted in a few minutes. The quantities and purity of the extracted cfDNA were measured at 260 nm and 280 nm using the Nano Drop (Thermo Fisher Scientific, Waltham, MA), Qubit fluorescence analyzer and dsDNA HS assay kit (Life Technologies, CA, USA) And analyzed.
  • FIG. 3 (A) and FIG. 3 (B) show the comparison of the DNA extraction efficiency according to the amine-related solution used for the chip surface treatment.
  • APDMS APTES # 2
  • the extraction efficiency was the highest.
  • FIG. 4 shows DNA extraction efficiency according to DTBP concentration. As a result, it was confirmed that DNA extraction efficiency was the highest at 30 mg / ml concentration of DTBP.
  • Example 4 Characterization of a DTBP-based microfluidic device
  • DTBP can capture nucleic acids through complexes with blood samples.
  • DMA dimethyl adipimidate
  • DMS dimethyl suberimidate
  • DTBP dimethyl pimelimidate
  • the basic characteristics of the device were confirmed with a DNA amplicon.
  • ALU sequences were amplified using DNA extracted from plasma samples from patients with colorectal cancer.
  • the PCR conditions included an initial denaturation step at 95 ⁇ ⁇ for 15 minutes; 30 sec at 95 ⁇ , 30 sec at 65 ⁇ , 30 sec at 72 ⁇ , 35 cycles; And a final elongation step of 7 minutes at 72 < 0 > C.
  • the amplification product of the ALU gene was used as a sample in a microfluidic device to test the ability of the device to capture DNA.
  • 200 ⁇ l of the ALU amplification product was mixed with 100 ⁇ l of HI solution (DMA, DMS, DMP and DTBP), injected with a pump syringe, and then the device was left at room temperature for 10 minutes. After washing with PBS, the DNA was eluted with elution buffer.
  • Real-time PCR was performed to evaluate the amount of eluted DNA.
  • Real-time PCR was performed with reference to the AriaMx real-time PCR instrument protocol (Agilent technologies). 5 [mu] l of DNA was amplified with a total volume of 20 [mu] l containing 10 [mu] l 2X Brillient III SYBR Green qPCR maste mix, 25 pmol ALU115 primer and DI water. PCR conditions were 95 ° C for 10 min; 30 sec at 95 ⁇ , 30 sec at 65 ⁇ , 30 sec at 72 ⁇ , 35 cycles; And a cooling step at 40 DEG C for 30 seconds.
  • the SYBR Green signal of the amplified product was obtained using AriaMx real time PCR (Agilent technologies), and the detailed sequence of the primer set is shown in Table 1 below.
  • the conservation of cfDNA was analyzed by real-time PCR and two types of ALU primers were used: a primer set for a 115 bp ALU amplification amplified both shorter (cut by apoptosis) and longer DNA fragments On the other hand, the primer set for the 247 bp ALU amplification amplifies only longer DNA fragments.
  • the detailed sequence of the primer set is shown in Table 1 above.
  • the 115 bp ALU amplicons show the total amount of free DNA in plasma, and the 247 bp ALU amplicons show the amount of DNA released from non-apoptotic cells.
  • DNA conservation was calculated from (ALU247 real time PCR value) / (ALU115 real time PCR value) of each sample. Since the annealing site of ALU115 is within the ALU247 binding site, the real-time PCR ratio (DNA conservation) is 1.0 when template DNA is not cleaved and 0.0 when all template DNA is completely cleaved into fragments smaller than 247 bp.
  • FIG. 6 (A) cell DNA contamination was reduced upon nucleic acid extraction using DTBP. Since the nucleic acid extraction method of the present invention extracts plasma nucleic acid free from plasma without using a lysis buffer, DNA contamination from cell lysates and debris caused by the use of lysis buffer can be reduced and nucleic acid extraction sensitivity can be increased have.
  • FIG. 6 (B) the efficiency of cfDNA extraction using DTBP from plasma samples of colon cancer patients was confirmed by DNA preservation as similar to the extraction efficiency of cfDNA using a conventional nucleic acid extraction kit (Qiagen).
  • Example 6 Detection of ctDNA in tissues and correlation analysis of liquid biopsies of colorectal cancer patients
  • the BRAF mutations identified in the matched tissue samples were detected in two plasma samples (T3 and T8) using the DTBP platform method, but no BRAF mutations were detected in the column-based method. That is, as shown in FIG. 7B, the confirmation of the BRAF mutation by the column-based method was below the detection limit of the SCODA calculation, and it was impossible to confirm whether or not the mutation occurred.
  • KRAS G12D mutations were detected in cfDNA of one plasma sample (T10) separated by column-based method and in cfDNA of two plasma samples (T10 and T12) separated by DTBP platform method.
  • the mutation ratio confirmed by the DTBP platform method was 4-10 times higher than the mutation ratio confirmed by the column-based method.
  • mutations in T12 tissue samples that were not detected by the column-based method were detected at a high rate in the DTBP platform method.
  • KRAS G13D mutations were detected in four plasma samples (T5, T6, T9, T13) using the column-based method and four plasma samples (T5, T6, T9, T13) using the DTBP platform method.
  • the mutation results of the two samples (T9 and T13) were correlated in tissue and plasma samples by both methods. It was also confirmed that the mutation was not detected in the tissues of the two samples (T5 and T6) but was detected in the column-based method and the DTBP platform method. As shown in FIG. 7B, the mutation ratio confirmed by the DTBP platform method was confirmed to be much higher than the mutation ratio confirmed by the column-based method. This means that plasma analysis can detect KRAS mutations that are not detected in tissues due to sample heterogeneity. No mutations were detected in the 10 healthy controls.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 동형2기능성 이미도에스테르기를 이용한 액체생검 유래 생체물질의 추출 방법에 관한 것으로, 본 발명에 따른 동형2기능성 이미도에스터 화합물 (DMA, DMP, DMS 또는 DTBP)을 이용한 액체생검 유래 생체물질의 추출 방법은 액체생검 내에 존재하는 생체물질인 세포유리 DNA, 순환종양 DNA 또는 엑소좀을 특별한 장비의 사용 없이 신속하게 추출할 수 있어 현장 진단 방법으로 활용이 가능하며, 종래 방법보다 적은 양의 시료에서 추출이 가능하므로 효율성이 높고, 시간 및 비용 절감이 우수하며, 간편하게 사용할 수 있는 이점이 있다. 또한, 종래 용해 완충액 (lysis buffer)을 이용한 추출 방법과 달리, 용해 완충액을 이용하지 않아 세포 용해로부터 발생하는 다양한 세포 용해물 및 잔해로부터의 오염을 감소시켜 검출의 민감도를 증가시킬 수 있으며, 추출된 생체물질은 질병의 진단 및 치료에 유용하게 활용될 수 있다.

Description

동형2기능성 이미도에스터를 이용한 액체생검 유래 생체물질의 추출 방법
본 발명은 동형2기능성 이미도에스터 (homobifunctional imidoester; HI) 화합물을 이용한 액채생검 유래 생체물질의 추출 방법에 관한 것으로, 보다 상세하게는 용해 완충액 (lysis buffer)의 사용 없이, 디메틸 아디프이미데이트 (Dimethyl adipimidate; DMA), 디메틸 피멜리미데이트 (Dimethyl pimelimidate; DMP), 디메틸 수베르이미데이트 (Dimethyl suberimidate; DMS) 또는 디메틸 3.3'-디티오비스프로피온이미데이트 (Dimethyl 3,3'-dithiobispropionimidate; DTBP)를 이용하여 세포유리 DNA, 순환종양 DNA 또는 엑소좀을 추출하는 방법에 관한 것이다.
액체생검(liquid biopsy)은 천자나 절개 등의 침습적인 시술 없이 비침습적으로 획득할 수 있는 혈액이나 복수 등의 액체 상태의 체액 시료를 활용하여 질병을 진단하거나 분석하는 방법이다. 액체생검은 환자로부터 비교적 간편하게 체액을 채취하여 암 발생 및 전이 여부를 신속하고 상세하게 파악할 수 있으며, 액체생검 내에 존재하는 핵산 또는 엑소좀과 같은 생체물질은 다양한 질병에 대한 다각적인 분석을 가능하게 하여 질병의 원인 및 치료에 폭넓게 활용될 것으로 전망된다.
핵산은 질병 상태를 확인하기 위한 중요한 분석 수단이며, DNA 생체표지자 (biomarker) 예를 들어, 단일염기다형성 (single nucleotide polymorphism; SNP), 돌연변이 또는 DNA 메틸화 (DNA methylation)는 연구자가 암의 원인을 찾도록 돕고 질병의 초기 단계 동안 질병의 상태를 진단하고 관찰하는 것은 물론 예후와 감시에 대한 큰 기회를 제공하는 데 중요한 실마리를 제공한다.
DNA와 같은 핵산은 단백질과 같은 다른 성분에 비해 매우 낮은 생리적 농도로 존재하기 때문에 (예를 들어, 전혈 마이크로리터 당 수십 나노그람의 DNA 대 수십 마이크로그람의 단백질), 임상 시료로부터 DNA를 효과적으로 추출하고 예비 농축하는 것은 증폭 및 검출과 같은 이후의 공정에 매우 중요하다. 메틸화된 DNA (methylated DNA)의 경우, 이러한 문제는 더욱 중요하다.
DNA 메틸화는 정상적인 진핵 세포 (eukaryotic cells) 내에서 유전자 발현 및 염색질 조직화를 조절하는 데 결정적 역할을 한다. DNA 메틸화는 시토신 (cytosine) 고리의 5-탄소 상에 메틸기를 공유 첨가함으로써 발생하게 되고, 5-메틸시토신을 생성한다. 이러한 메틸기들은 DNA의 주홈 (major groove)으로 돌출되어 전사를 효과적으로 저해한다.
포유동물 DNA에서, 5-메틸시토신은 게놈성 DNA (genomic DNA)의 약 4%에서, 주로 시토신-구아노신 디뉴클레오타이드들 (CpGs)에서 발견된다. 이러한 CpG 부위는 인간 게놈을 통틀어 예상되는 빈도보다 더 낮게 발생되나, CpG 섬으로 지칭되는 작은 길이의 DNA에서는 더 빈번하게 발견된다.
이러한 섬들은 전사가 시작되는 곳인, 유전자의 프로모터 부위 내 또는 근처에서 전형적으로 발견된다. 대부분 CpG 부위가 많이 메틸화된 게놈성 DNA와는 달리, 생식 세포 계열 조직 (germ-line tissue)에서 및 정상적인 체세포의 프로모터에서의 CpG 섬들은 비메틸화된 채로 남아있어서, 유전자 발현이 일어나게 한다.
DNA 메틸화는 매우 연관된 DNA 메틸트랜스퍼라제 효소 (DNA methyltransferase; DNMT) 군에 의해서 중재되며, 이들은 메틸기를 S-아데노실-L-메티오닌으로부터 CpG 디뉴클레오타이드 내의 시토신으로 전달한다. DNMT들에 의해 확립된 메틸-시토신들은 메틸-CpG 결합 도메인 (methyl-CpG-binding domain; MBD) 단백질 MeCP2, MBD에 대한 결합 부위로 작용한다.
히스톤 디아세틸라제, 히스톤 메틸트랜스퍼라제, 및 ATP-의존성 염색질 리모형화 효소 (chromatin remodeling enzyme)들과의 상호작용을 통해서, MBD들은 전사에 억압적인 콤팩트화된 염색질 환경으로 메틸화된 DNA를 번역한다. 특히, MBD는 MeCP2 단백질의 메틸 CpG 결합 도메인이고, 이는 임의의 서열로 있는 대칭적으로 메틸화된 CpGs에 결합하며, 메틸화 의존성 전사 억제를 중재하는 데 참여한다. 비록 MeCP2가 생체 내에서 독점적으로 메틸화된 DNA 단편물에 결합한다는 강력한 증거가 있지만, 시험관에서, MeCP2의 DNA 메틸화-독립적 결합 활성이 또한 일차적으로 문서에 설명되어 있고, 이는 일반적인 시험관 내 DNA 분석에 적절하게 사용될 수 있다.
최근 들어 생명공학을 비롯한 진단의학, 약물의학, 대사의학 등 다양한 분야에서 고순도로 정제된 핵산 또는 액소좀의 사용량이 늘어남에 따라 다양한 생물 시료로부터 보다 신속하고 순수하게 생체물질을 분리하고자 하는 노력이 계속되고 있다.
그러나 현재까지 핵산 분리 방법에 있어 가장 크게 발전한 부분은 유전체 DNA, 플라스미드 DNA, 메신저 RNA, 단백질, 세포 잔해 입자 등 세포 용해 용액 내에 포함된 여러 종류의 물질들로부터 특이적으로 핵산만을 흡착시키는 담체에 관한 기술 등 거의 모든 연구의 초점은 핵산을 흡착시키는 물질에 관한 연구와 개발에 집중되어 있는 한계가 있었고, 엑소좀 추출 또한 세포 분비물이나 혈청 내 단백질에 의한 간섭으로 인해 완전한 추출이 어렵다는 문제점이 있었다.
이에, 보다 신속하고 순수하게 액체생검 유래 생체물질을 분리하기 위하여 무엇보다 세포 잔해 입자와 단백질 변성 응집물, 기타 다양한 세포 분해 물질들로부터 신속하게 원하는 생체물질만을 분리할 수 있는 기술의 개발이 절실한 실정이다.
본 발명의 목적은 동형2기능성 이미도에스터 화합물을 이용하여 용해 완충액 (lysis buffer)의 사용 없이, 액채생검 유래 생체물질을 추출하는 조성물, 및 상기 조성물을 이용한 액체생검 유래 생체물질 추출용 키트, 액체생검 유래 생체물질 추출 방법, 액체생검 유래 생체물질의 추출용 폐쇄형 마이크로 유체 칩을 제공하는 데에 있다.
상기 목적을 달성하기 위하여, 본 발명은 화학식 1로 표시되는 화합물을 포함하는 액체생검 유래 생체물질 추출용 조성물을 제공한다.
[화학식 1]
Figure PCTKR2018009771-appb-I000001
상기 식에서, X는 (CH2)n 또는 (CH2)p-S-S-(CH2)q이며,
n은 4 내지 10의 정수이고,
p 또는 q는 각각 1 내지 3의 정수임.
또한, 본 발명은 상기 조성물을 포함하는 액체생검 유래 생체물질 추출용 키트를 제공한다.
또한, 본 발명은 대상물에 아민기를 도입하여 개질하는 제 1단계; 상기 개질된 대상물 상에 액체생검 시료와 하기 화학식 1로 표시되는 화합물을 주입하고, 상기 액체생검 시료에 존재하는 생체물질과 상기 화합물 간의 복합체를 형성시키는 제 2단계; 및 상기 복합체가 형성된 대상물에 용출 완충액 (elution buffer)을 처리하여 상기 생체물질을 추출하는 제 3단계;를 포함하는 액체생검 유래 생체물질 추출 방법을 제공한다.
[화학식 1]
Figure PCTKR2018009771-appb-I000002
상기 식에서, X는 (CH2)n 또는 (CH2)p-S-S-(CH2)q이며,
n은 4 내지 10의 정수이고,
p 또는 q는 각각 1 내지 3의 정수임.
또한, 본 발명은 액체생검 시료에 실란 화합물로 개질된 규조토를 첨가하고, 하기 화학식 1로 표시되는 화합물을 첨가하여 반응 혼합물을 제조하는 제 1단계; 및 상기 반응 혼합물로부터 액체생검 시료에 존재하는 생체물질을 추출하는 제 2단계;를 포함하는 액체생검 유래 생체물질의 추출 방법을 제공한다.
[화학식 1]
Figure PCTKR2018009771-appb-I000003
상기 식에서, X는 (CH2)n 또는 (CH2)p-S-S-(CH2)q이며,
n은 4 내지 10의 정수이고,
p 또는 q는 각각 1 내지 3의 정수임.
또한, 본 발명은 패턴화된 하부 박막; 상기 하부 박막 상에 적층된 마이크로 유체 챔버; 및 상기 마이크로 유체 챔버 상에 적층되며, 패턴화된 상부 박막을 포함하는, 액체생검 유래 생체물질의 추출용 폐쇄형 마이크로 유체 칩을 제공한다.
본 발명에 따른 동형2기능성 이미도에스터 화합물 (DMA, DMP, DMS 또는 DTBP)을 이용한 액체생검 유래 생체물질의 추출 방법은 액체생검 내에 존재하는 생체물질인 세포유리 DNA, 순환종양 DNA 또는 엑소좀을 특별한 장비의 사용 없이 신속하게 추출할 수 있어 현장 진단 방법으로 활용이 가능하며, 종래 방법보다 적은 양의 시료에서 추출이 가능하므로 효율성이 높고, 시간 및 비용 절감이 우수하며, 간편하게 사용할 수 있는 이점이 있다. 또한, 종래 용해 완충액 (lysis buffer)을 이용한 추출 방법과 달리, 용해 완충액을 이용하지 않아 세포 용해로부터 발생하는 다양한 세포 용해물 및 잔해로부터의 오염을 감소시켜 검출의 민감도를 증가시킬 수 있으며, 추출된 생체물질은 질병의 진단 및 치료에 유용하게 활용될 수 있다.
도 1 및 도 2는 동형2기능성 이미도에스터 화합물을 이용하여 혈장에서 순환 핵산을 추출하기 위한 본 발명의 박막 장치 및 DTBP/박막 시료 분석의 개략적인 모식도를 나타낸 것이다.
도 3(A) 및 도 3(B)는 칩 표면 처리를 위하여 사용된 아민계 관련 용액에 따른 DNA 추출 효율을 비교하여 나타낸 것이다.
도 4는 DTBP 농도에 따른 DNA 추출 효율을 나타낸 것이다.
도 5는 동형2기능성 이미도에스터 화합물 (DMA, DMS, DMP, DTBP)에 따른 DNA 추출 효율을 종래의 핵산 추출 키트 (Qiagen)와 비교하여 나타낸 것이다.
도 6(A)는 DTBP를 이용한 핵산 추출 시, 종래 핵산 추출 키트 (Qiagen)의 용해 완충액 사용으로 인하여 야기되는 세포 용해물 및 잔해들로부터의 핵산 오염이 감소하는 것을 나타낸 것이며, 도 6(B)는 DTBP를 이용하여 대장암 환자의 혈장 시료로부터 추출한 cfDNA 추출 효율을 종래의 핵산 추출 키트 (Qiagen)와 비교하여 나타낸 것이다.
도 7은 DTBP를 이용하여 대장암 환자의 혈장 시료로부터 추출한 cfDNA의 돌연변이 진단 민감성을 종래 핵산 추출 키트(Qiagen)와 비교하여 나타낸 것이다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명의 발명자들은 액체생검 시료로부터 생체물질을 분리 및 추출할 수 있는 추출 방법을 개발하였으며, 본 발명의 액체생검 유래 생체물질의 추출 방법은 액체생검 시료와 동형2기능성 이미도에스터 화합물 간의 복합체를 형성시킴으로써 종래 용해 완충액을 이용한 추출 방법에 비해 보다 간편하면서도 저비용으로 높은 순도의 생체물질을 분리할 수 있으며, 대형 장비를 사용하지 않고도 현장 즉시형 진단이 가능함을 밝혀내며 본 발명을 완성하였다.
본 발명은 하기 화학식 1로 표시되는 화합물을 포함하는 액체생검 유래 생체물질 추출용 조성물을 제공한다.
[화학식 1]
Figure PCTKR2018009771-appb-I000004
상기 식에서, X는 (CH2)n 또는 (CH2)p-S-S-(CH2)q이며,
n은 4 내지 10의 정수이고,
p 또는 q는 각각 1 내지 3의 정수임.
상기 액체생검 유래 생체물질은 세포유리 DNA (cell free DNA; cfDNA), 순환종양 DNA (circulating tumor DNA; ctDNA) 또는 엑소좀일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
상기 cfDNA는 순환 유리 핵산으로 혈액에서 순환하며 존재하는 DNA를 의미한다. 상기 순환 유리 핵산은 구체적으로 순환 유리 DNA, 순환 유리 RNA 등을 포함하며, 바람직하게는 순환 유리 DNA일 수 있으나, 이에 제한되는 것은 아님을 명시한다. 상기 순환 유리 핵산은 일반적으로 혈장 또는 혈청에 1000 bp 이하 (DNA), 100 nt 이하 (RNA)의 길이를 나타내나, 이에 제한되는 것은 아님을 명시한다.
상기 ctDNA는 암세포로부터 분리되어 혈액을 순환하며 존재하는 DNA를 의미한다. 종양 특이적 돌연변이 및 후성 유전학적 변이를 모두 가지고 있으며, 혈액 내 전체 순환 DNA의 매우 적은 양을 차지한다. 순환 종양 DNA의 크기는 50 bp에서 250 bp로 다양하나, 이에 제한되는 것은 아님을 명시한다.
상기 액체생검은 혈액, 복수, 소변, 타액, 뇌척수액 또는 객담일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
또한, 본 발명은 상기 조성물을 포함하는 액체생검 유래 생체물질 추출용 키트를 제공한다. 상기 키트는 효과적인 생체물질 추출에 필요한 완충액 등이 추가적으로 포함될 수 있다.
또한, 본 발명은 대상물에 아민기를 도입하여 개질하는 제 1단계; 상기 개질된 대상물 상에 액체생검 시료와 하기 화학식 1로 표시되는 화합물을 주입하고, 상기 액체생검 시료에 존재하는 생체물질과 상기 화합물 간의 복합체를 형성시키는 제 2단계; 및 상기 복합체가 형성된 대상물에 용출 완충액 (elution buffer)을 처리하여 상기 생체물질을 추출하는 제 3단계;를 포함하는 액체생검 유래 생체물질 추출 방법을 제공한다.
[화학식 1]
Figure PCTKR2018009771-appb-I000005
상기 식에서, X는 (CH2)n 또는 (CH2)p-S-S-(CH2)q이며,
n은 4 내지 10의 정수이고,
p 또는 q는 각각 1 내지 3의 정수임.
바람직하게는, 상기 화학식 1로 표시되는 화합물에서 X가 (CH2)n일 때, n은 4 내지 6의 정수이며, X가 (CH2)p-S-S-(CH2)q일때, p 또는 q는 각각 1의 정수 임.
상기 제 1단계의 대상물은 고형물 또는 고형지지체일 수 있으며, 예로 박막장치, 자성 비드 (magnetic bead), 링 공진기 (ring resonator) 또는 나노입자 (nanoparticle) 중 어느 하나일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
더욱 상세하게는, 상기 나노입자는 규조토 또는 OH기를 가지는 고분자일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
상기 제 1단계의 대상물은 실란 화합물로 개질될 수 있다. 바람직하게는, 상기 실란 화합물은 하기 화학식 2로 표시되는 화합물일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
[화학식 2]
Figure PCTKR2018009771-appb-I000006
상기 식에서, R1 내지 R3는 각각 같거나 다를 수 있으며, C1 내지 C4의 알킬 또는 C1 내지 C4의 알콕시 중 어느 하나이고, R4는 아미노(C1 내지 C10)알킬, 3-(2아미노(C1 내지 C4)알킬아미노)(C1 내지 C4)알킬 또는 3-[2-(2-아미노(C1 내지 C4)알킬아미노)(C1 내지 C4)알킬아미노](C1 내지 C4)알킬 중 어느 하나임.
보다 바람직하게는, 상기 실란 화합물은 (3-아미노프로필)트리에톡시실란((3-aminopropyl)triethoxysilane; APTES), (3-아미노프로필)트리메톡시실란((3-aminopropyl)trimethoxysilane), (1-아미노메틸)트리에톡시실란((1-aminomethyl)triethoxysilane), (2-아미노에틸)트리에톡시실란((2-aminoethyl)triethoxysilane), (4-아미노부틸)트리에톡시실란((4-aminobutyl)triethoxysilane), (5-아미노펜틸)트리에톡시실란((5-aminopentyl)triethoxysilane), (6-아미노헥실)트리에톡시실란((6-aminohexyl)triethoxysilane), 3-아미노프로필(디에톡시)메틸실란(3-aminopropyl(diethoxy)methylsilane; APDMS), N-[3-(트리메톡시실릴)프로필]에틸렌디아민(N-[3-(trimethoxysilyl)propyl]ethylenediamine), N-[3-(트리메톡시실릴)프로필]디에틸렌트리아민(N-[3-(trimethoxysilyl)propyl]diethylenetriamine), [3-(2-아미노에틸아미노)프로필]트리메톡시실란([3-(2-aminoethylamino)propyl]trimethoxysilane; AEAPTMS) 및 3-[(트리메톡시실릴)프로필]디에틸렌트리아민(3-[(trimethoxysilyl)propyl]diethylenetriamine; TMPTA)로 이루어진 군에서 선택된 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
보다 더 바람직하게는, 상기 실란 화합물은 본 발명의 실시예에서 기재한 3-아미노프로필(디에톡시)메틸실란 (APDMS)이 가장 적합하다.
상기 제 1단계 이전에 대상물에 플라즈마를 처리하여 세정하는 단계;를 더 포함할 수 있다.
상기 제 2단계의 액체생검 시료에 존재하는 생체물질은 세포유리 DNA (cell free DNA; cfDNA), 순환종양 DNA (circulating tumor DNA; ctDNA) 또는 엑소좀일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
상기 제 2단계의 액체생검 시료는 혈액, 복수, 소변, 타액, 뇌척수액 또는 객담일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
또한, 본 발명은 액체생검 시료에 실란 화합물로 개질된 규조토를 첨가하고, 하기 화학식 1로 표시되는 화합물을 첨가하여 반응 혼합물을 제조하는 제 1단계; 및 상기 반응 혼합물로부터 액체생검 시료에 존재하는 생체물질을 추출하는 제 2단계;를 포함하는 액체생검 유래 생체물질의 추출 방법을 제공한다.
[화학식 1]
Figure PCTKR2018009771-appb-I000007
상기 식에서, X는 (CH2)n 또는 (CH2)p-S-S-(CH2)q이며,
n은 4 내지 10의 정수이고,
p 또는 q는 각각 1 내지 3의 정수임.
바람직하게는, 상기 화학식 1로 표시되는 화합물에서 X가 (CH2)n일 때, n은 4 내지 6의 정수이며, X가 (CH2)p-S-S-(CH2)q일때, p 또는 q는 각각 1의 정수 임.
상기 액체생검 유래 생체물질은 세포유리 DNA (cell free DNA; cfDNA), 순환종양 DNA (circulating tumor DNA; ctDNA) 또는 엑소좀일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
상기 액체생검은 혈액, 복수, 소변, 타액, 뇌척수액 또는 객담일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
상기 실란 화합물은 하기 화학식 2로 표시되는 화합물일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
[화학식 2]
Figure PCTKR2018009771-appb-I000008
상기 식에서, R1 내지 R3는 각각 같거나 다를 수 있으며, C1 내지 C4의 알킬 또는 C1 내지 C4의 알콕시 중 어느 하나이고, R4는 아미노(C1 내지 C10)알킬, 3-(2아미노(C1 내지 C4)알킬아미노)(C1 내지 C4)알킬 또는 3-[2-(2-아미노(C1 내지 C4)알킬아미노)(C1 내지 C4)알킬아미노](C1 내지 C4)알킬 중 어느 하나임.
보다 바람직하게는, 상기 실란 화합물은 (3-아미노프로필)트리에톡시실란((3-aminopropyl)triethoxysilane; APTES), (3-아미노프로필)트리메톡시실란((3-aminopropyl)trimethoxysilane), (1-아미노메틸)트리에톡시실란((1-aminomethyl)triethoxysilane), (2-아미노에틸)트리에톡시실란((2-aminoethyl)triethoxysilane), (4-아미노부틸)트리에톡시실란((4-aminobutyl)triethoxysilane), (5-아미노펜틸)트리에톡시실란((5-aminopentyl)triethoxysilane), (6-아미노헥실)트리에톡시실란((6-aminohexyl)triethoxysilane), 3-아미노프로필(디에톡시)메틸실란(3-aminopropyl(diethoxy)methylsilane; APDMS), N-[3-(트리메톡시실릴)프로필]에틸렌디아민(N-[3-(trimethoxysilyl)propyl]ethylenediamine), N-[3-(트리메톡시실릴)프로필]디에틸렌트리아민(N-[3-(trimethoxysilyl)propyl]diethylenetriamine), [3-(2-아미노에틸아미노)프로필]트리메톡시실란([3-(2-aminoethylamino)propyl]trimethoxysilane; AEAPTMS) 및 3-[(트리메톡시실릴)프로필]디에틸렌트리아민(3-[(trimethoxysilyl)propyl]diethylenetriamine; TMPTA)로 이루어진 군에서 선택된 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
또한, 본 발명은 패턴화된 하부 박막; 상기 하부 박막 상에 적층된 마이크로 유체 챔버; 및 상기 마이크로 유체 챔버 상에 적층되며, 패턴화된 상부 박막을 포함하는, 액체생검 유래 생체물질의 추출용 폐쇄형 마이크로 유체 칩을 제공한다.
상기 박막은 투명 아크릴로니트릴 부타디엔 스티렌 (acrylonitrile butadiene styrene; ABS) 또는 양면 테이프가 붙어있는 플라스틱 판일 수 있으며, 상기 플라스틱 판은 폴리카보네이트와 같이 유연한 소재일 수 있으나, 이에 제한되는 것은 아님을 명시한다.
상기 폐쇄형 마이크로 유체 칩은 내부 표면이 산소 플라즈마 처리에 의해 개질되고, 3-아미노프로필(디에톡시)메틸실란(3-aminopropyl(diethoxy)methylsilane; APDMS) 처리에 의해 실란화될 수 있으나, 이에 제한되는 것은 아님을 명시한다.
상기 챔버는 복수의 슬롯형 마이크로웰(slot-type microwell)이 약 1:5.6 내지 약 5.6:1의 팽창수축률로 연결될 수 있으나, 이에 제한되는 것은 아님을 명시한다.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
도 1은 본 발명의 박막 장치 내에서 동형2기능성 이미도에스터 화합물 (DMA, DMP, DMS, DTBP)을 이용한 핵산 추출 방법으로, 시료 배양, 세정 및 용출의 세 단계를 포함한다. 아민계 관련 용액을 이용하여 박막 장치의 표면을 아민으로 개질하고, 상기 개질에 의하여 소수성 박막 장치는 친수성으로 개질된다.
상기 개질된 박막 장치 상에 핵산 시료 및 HI 용액 (DMA, DMP, DMS, DTBP)을 주입하면, 핵산의 아미노기와 HI의 2기능성 아민 반응기와의 상호작용에 의해 핵산과 HI 사이의 가교 메커니즘이 일어나고, 핵산과 HI 간의 복합체를 형성시켜 시료에서 DNA를 추출할 수 있다.
일례로, DTBP는 2기능성 이미도에스터 (imidoesters) 및 이황화 (disulfide) 결합을 포함하는 화합물로, 상기 DTBP는 가역적인 가교 구조를 형성함으로써 세포, 단백질 및 핵산의 아미노 반응성 가교제로 사용된다. DTBP와 단백질과의 상호작용이 아니라 DTBP와 핵산 사이의 빠르고 강한 상호결합을 통해 핵산 시료로부터 고효율의 핵산 추출이 가능하다.
도 2는 DTBP를 이용한 cfDNA의 추출 원리를 나타낸 것으로, 추출 원리 및 단계는 다음과 같다: 1) 칩 준비; DTBP의 아민기 결합을 위해 APDMS를 이용하여 박막 장치 내부 표면을 개질함. 2) 시료 혼합; 혈장 시료를 DTBP 용액 (30 mg/mL)과 혼합하여 박막 장치 내부에 주입함, 3) 결합; DTBP는 공유 결합 및 정전 결합에 의해 APDMS 및 핵산의 아민기에 결합함, 4) 세척 및 용출; PBS로 세척한 후 용출 완충액으로 가교 결합을 끊어 cfDNA (또는 cfRNA)를 용출함.
실시예 1 : DTBP 기반 박막 장치 제작 및 전처리
1) 박막 장치 제작
CO2 레이저 절단기 (VLS3.50 (610 x 305 mm); Universal Laser Systems, Scottsdale, AZ)를 이용하여 마이크로 유체 장치 (패쇄형 장치)로 사용하기 위한 저비용 박막 장치를 제작하였다. 상기 박막 장치는 상부 박막과 하부 박막, 그리고 상부 박막과 하부 박막 사이에 삽입된 마이크로 유체 챔버로 구성되며, 상기 박막 장치는 핵산 공급원으로부터 cfDNA를 추출하기 위해, 디메틸 3.3'-디티오비스프로피온이미데이트 (Dimethyl 3,3'-dithiobispropionimidate; DTBP)와 결합된 단일 마이크로 채널의 마이크로 유체 챔버로 구성된다.
Qiagen 키트 (개방형 장치)와는 대조적으로, 상기 장치의 마이크로 유체 챔버는 개방형 장치에 의해 야기되는 오염을 방지하기 위하여, 패쇄형 장치를 기반으로 한다. 세정 및 용출 단계 동안, 반응 시료는 밀폐된 장치의 마이크로 유체 챔버에 남아있어 오염을 줄일 수 있다. 유동 단면적에서 반복되는 급격한 팽창 및 수축은 액체 시료 주입에 있어서 미세와류 (microvortices)를 생성할 수 있다.
핵산 공급원으로부터 cfDNA를 추출하기 위해 챔버의 36개 슬롯-형 마이크로 웰 (well)은 각각 1:5.6 및 5.6:1의 팽창 및 수축 비율로 연결된다. 마이크로 유체 칩은 AutoCAD (Autodesk, Inc., San Rafael, CA)를 이용하여 설계하였고, 저렴한 비용, 단순성 및 신속성의 이점을 가지는 프로토타이핑 (prototyping) 장치 제작에 사용되는 레이저 절단기로 인쇄하였다.
세 개의 층 (three layers)으로 구성되는 3D 일회용 칩을 제작하기 위해, 레이저 절단기 (10 W 내지 50 W의 전력 범위의 10.6 μ CO2 레이저 소스)를 이용하여 내부 층으로 300 ㎛ 두께의 양면테이프 (Adhesive 300LSE-9495LE, 3M, U.S.A.) 및 외부 층으로 100 ㎛ 두께의 얇은 막 (Kemafoil hydrophilic film, HNW-100, COVEME, Italy) 2개로 구성되는 세 개의 층을 제작하였다. 외부 층은 DTBP 반응을 위한 3D 일회용 칩을 생성하기 위해, 내부 층의 상부 및 하부의 영구 접착면에 부착하였다. 마이크로 유체 챔버의 높이는 약 300 ㎛이며, 전체 부피는 300 ㎕로 설정하였다.
마이크로 채널에서 시료 흐름을 제어하기 위해, 튜빙 어댑터는 3 mm 두께를 갖는 캐스트 아크릴 시트 (cast acrylic sheet, MARGA CIPTA, Indonesia)를 양면 테이프 한쪽 면에 부착하였고, 레이저 절단기로 절단 및 천공하여 제조하였다. 제작된 어댑터는 3D 일회용 칩의 유입구 (inlet) 및 배출구 (outlet)에 각각 부착하였다. 이후, 미리 절단된 타이곤 튜빙 (Tygon® tubing, AAC02548; Cole-Parmer, Vernon Hills, IL)을 어댑터 구멍에 위치시킨 후, 120℃에서 열적으로 안정한 에폭시를 사용하여 밀봉하였다.
2) 박막 장치 전처리
핵산 추출을 위한 박막 장치의 사용을 용이하게 하기 위해, 레이저 절단기를 이용하여 플라스틱 카트리지 (plastic cartridge)를 제작하였다. 플라스틱 카트리지 (위 및 아래 부분)는 분석 중 3D 일회용 칩을 잡는다; 길이 105 mm, 폭 60 mm, 높이 10 mm. 각 플라스틱 구성요소의 레이아웃은 AutoCAD를 이용하여 설계하였다. 밀링 (milling) 기기를 이용하여 투명 아크릴로니트릴 부타디엔 스티렌 (acrylonitrile butadiene styrene; ABS) 시트에 구조를 패턴화하였다. 하부 플라스틱 부분에 칩을 장착한 후, 4개의 렌치 볼트 (wrench bolt)를 사용하여 상부 플라스틱 부분과 조립하여 장치를 구축하였다.
마지막으로 핵산 추출을 위한 박막 장치와 비-카오트로픽 (non-chaotropic) 시약으로 DTBP를 사용하기 위해, 표면 개질 프로토콜을 수행하였다. 간략하게, 3D 일회용 칩의 내부 표면에 아민기를 생성시키기 위해, 내부 표면을 먼저 산소 플라즈마 (Covance Model, Femtoscience)로 10분 동안 처리하여 내부 표면의 특성을 소수성에서 친수성으로 변화시켰으며, 상기 플라즈마 처리된 박막 장치를 65℃에서 60분 동안 2% 3-아미노프로필 디에톡시메틸실란 (3-Aminopropyl diethoxymethylsilane; APDMS, Sigma-Aldrich) 수용액에 침지시킨 후, 탈이온수로 완전히 세정하였다. 세정 후, 박막 장치를 경화시키기 위해, 상기 세정된 박막 장치를 신속하게 질소 기류 하에서 건조시켜 박막 장치를 아민으로 개질하였다.
Drop Shape Analyzer (DSA100, KRUSS, Germany)를 이용한 아민-개질된 박막 장치의 물 접촉각 측정을 통해 온도 및 배양시간에 따라 박막 장치의 친수성이 상당히 변화하였음을 알 수 있었다. 65℃에서 60분 동안 상기 박막 장치를 APDMS로 실란화 (silanization) 시킨 후, 상기 박막 표면의 친수성이 증가하였다 (약 30 내지 40℃).
실시예 2 : 임상 시료
기관평가위원회의 승인을 얻은 후, 아산 병원 (Seoul, Korea)의 바이오 자원 센터 (Bio-Resource Center; BRC)로부터 총 14명의 대장암 (colorectal cancer; CRC) 환자의 암 조직과 혈장 시료를 제공 받았다. 혈액은 1,500 x g에서 15분 동안 원심 분리하여 혈장 시료를 분리하였고, 실험에 사용하기 전까지 -270℃에 보관하였다. 혈장 시료의 분리 및 보관은 4℃에서 혈액을 채취한 후 3시간 이내에 수행하였다.
실시예 3 : DTBP/박막 시료 분석
본 발명의 마이크로 유체 장치를 이용하여 cfDNA를 추출하기 위해, 분석 조건 및 반응을 최적화하였다. 박막 내부 표면에 아민기를 형성하기 위해, APDMS를 농도 별로 (10 , 20 및 30 ㎕/㎖) 처리하였고, APDMS (APTES #2) 대신 다양한 아민계 관련 용액[3-아미노프로필 트리에톡시실란 (3-Aminopropyl triethoxysilane, APTES #1), N1-3-트리메톡실릴프로필 디에틸렌트리아민 (N1-3-Trimethoxysilylpropyl diethylenetriamine, APTES #3) 및 3-2-아미노에틸아미노프로필 트리메톡시실란 (3-2-Aminoethylaminopropyl trimethoxysilane, APTES #4)]을 20 ㎕/㎖ 농도로 처리하였다.
다음으로 최적화된 반응을 위해, 반응 용액으로 DTBP를 농도 별로 (10, 30, 50 및 100 ㎎/㎖) 혼합하였다. 반응을 위해, 대장암 환자의 혈장 시료 500 ㎕를 DTBP 반응 용액 300 ㎕와 혼합한 다음 펌프 (KD Scientific, MA) 주사기를 이용하여 100 ㎕/분의 속도로 장치에 주입하였고, 장치는 핵산 공급원으로부터 cfDNA를 포획하기 위해, 상온에서 10분 동안 방치하였다.
모든 HI 시약은 Sigma-Aldrich (St. Louis, MO)에서 구입하였다. 펌프 주사기를 이용하여 시료의 잔해물을 제거하기 위해, 100 ㎕/분 유속의 PBS로 세정한 후, 용출 완충액 (elution buffer; 10 mM 중탄산나트륨, pH < 10.6, 유속: 50 ㎕/분)을 이용하여 cfDNA를 수 분 안에 추출하였다. 추출된 cfDNA의 양과 순도는 Nano Drop (Thermo Fisher Scientific, Waltham, MA), Qubit 형광 측정기 및 dsDNA HS 분석 키트 (Life Technologies, CA, USA)를 이용하여 260 nm와 280 nm에서 시료의 광학 밀도 비율을 측정하여 분석하였다.
종래의 cfDNA 추출방법과 비교하기 위해, QIAamp® 순환 핵산 키트 (Qiagen, Germany)를 이용하였으며, 제조사에서 제공한 프로토콜에 따라 실험을 수행하였다.
그 결과, 도 3(A) 및 도 3(B)는 칩 표면 처리를 위하여 사용된 아민계 관련 용액에 따른 DNA 추출 효율을 비교하여 나타낸 것으로, 아민계 관련 용액 중 APDMS (APTES #2)가 DNA 추출 효율이 가장 높은 것을 확인하였다.
또한, 도 4는 DTBP 농도에 따른 DNA 추출 효율을 나타낸 것으로, DTBP를 농도 별로 처리한 결과, 30 ㎎/㎖ 농도에서 DNA 추출 효율이 가장 높은 것을 확인하였다.
실시예 4 : DTBP 기반 마이크로 유체 장치의 특성
DTBP는 혈액 시료와의 복합체를 통해 핵산을 포획할 수 있다. 마이크로 유체 장치를 이용한 cfDNA의 추출 능력을 비교하기 위해, DTBP를 포함한 디메틸 아디프이미데이트 (Dimethyl adipimidate; DMA), 디메틸 수베르이미데이트 (Dimethyl suberimidate; DMS) 및 디메틸 피멜리미데이트 (Dimethyl pimelimidate; DMP)와 같은 동형2기능성 이미도에스터 화합물을 이용하여 핵산을 추출하였다.
장치의 기본 특성은 DNA 증폭체 (amplicon)에서 확인하였다. 대장암 환자의 혈장 시료에서 추출한 DNA를 이용하여 ALU 서열을 증폭시켰다. PCR 조건은 95℃에서 15분의 초기 변성 (denaturation) 단계; 95℃에서 30초, 65℃에서 30초, 72℃에서 30초, 35 사이클; 72℃에서 7분의 최종 신장 (elongation) 단계로 이루어진다.
5 ㎕의 DNA를 10X PCR 완충액 (Qiagen), 2.5 mM MgCl2, 0.25 mM 디옥시뉴클레오타이드 트리포스페이트, 25 pmol ALU247 프라이머 및 1 unit Taq DNA 폴리머라제 (Qiagen)를 함유하는 25 ㎕의 총 부피로 증폭시켰다. 이후, Expin PCR SV (GeneAll, Korea)를 이용하여 247 bp의 ALU 증폭체를 정제하였다.
ALU 유전자의 증폭체는 DNA를 포획하는 장치의 능력을 시험하기 위해, 마이크로 유체 장치에 시료로 사용하였다. ALU 증폭체 200 ㎕를 HI 용액 (DMA, DMS, DMP 및 DTBP) 100 ㎕와 혼합하고 펌프 주사기로 주입한 다음 장치를 상온에서 10분 동안 방치하였다. PBS로 세정한 후, DNA는 용출 완충액으로 용출시켰다.
용출된 DNA의 양을 평가하기 위해 실시간 PCR (real-time PCR)을 수행하였다. 실시간 PCR은 AriaMx real-time PCR 기기 프로토콜 (Agilent technologies)을 참조하여 수행하였다. 5 ㎕의 DNA를 10 ㎕ 2X Brillient III SYBR Green qPCR maste mix, 25 pmol ALU115 프라이머 및 DI water가 들어있는 20 ㎕의 총 부피로 증폭시켰다. PCR 조건은 95℃에서 10분; 95℃에서 30초, 65℃에서 30초, 72℃에서 30초, 35 사이클; 40℃에서 30초의 냉각 단계;로 이루어진다. 증폭된 산물의 SYBR Green 신호는 AriaMx 실시간 PCR (Agilent technologies)을 이용하여 획득하였으며, 프라이머 세트의 상세한 서열은 하기 표 1에 나타내었다.
Figure PCTKR2018009771-appb-T000001
DTBP를 포함한 다른 동형2기능성 이미도에스터 화합물 (DMA, DMS, DMP)에 따른 DNA 추출 효율을 종래의 핵산 추출 키트 (Qiagen)와 비교한 결과, 도 5와 같이, 동형2기능성 이미도에스터를 이용한 DNA 추출 방법이 종래 핵산 추출 키트보다 DNA 추출 효율이 높은 것을 확인하였다.
실시예 5 : cfDNA 보존 (integrity) 및 백그라운드 DNA 분석
cfDNA의 보존은 실시간 PCR을 수행하여 분석하였으며, 두 종류의 ALU 프라이머를 사용하였다: 115 bp ALU 증폭체에 대한 프라이머 세트는 더 짧은 (세포사멸에 의해 절단된) 것과 더 긴 DNA 단편 모두를 증폭시키는 반면, 247 bp ALU 증폭체에 대한 프라이머 세트는 더 긴 DNA 단편만을 증폭한다. 프라이머 세트의 상세한 서열은 상기 표 1에 나타내었다.
115 bp ALU 증폭체는 혈장의 유리 DNA 총량을 나타내고, 247 bp ALU 증폭체는 비-사멸 세포로부터 방출된 DNA의 양을 나타낸다. DNA 보존은 각 시료의 (ALU247 실시간 PCR 값) / (ALU115 실시간 PCR 값)으로 계산하였다. ALU115의 annealing 부위가 ALU247 결합 부위 내에 있기 때문에, 실시간 PCR 비율 (DNA 보존)은 주형 DNA가 절단되지 않을 때 1.0이며, 모든 주형 (template) DNA가 247 bp보다 작은 단편으로 완전히 절단될 때 0.0이다.
백그라운드 게놈 DNA를 정량화하기 위해, 실시간 PCR을 수행하여 420 bp의 β-actin 유전자 (annealing 온도: 60℃)를 증폭시켰다. 프라이머 세트의 상세한 서열은 상기 표 1에 나타내었다.
그 결과, 도 6(A)를 참조하여 보면, DTBP를 이용한 핵산 추출 시, 세포 DNA 오염이 감소하였다. 본 발명의 핵산 추출 방법은 용해 완충액을 사용하지 않고 혈장에 유리된 핵산을 추출하기 때문에, 용해 완충액 사용 시에 야기되는 세포 용해물 및 잔해들로부터의 DNA 오염을 감소시켜 핵산 추출 민감도를 증가시킬 수 있다. 또한, 도 6(B)와 같이, 대장암 환자의 혈장 시료로부터 DTBP를 이용한 cfDNA 추출 효율이 종래의 핵산 추출 키트 (Qiagen)를 이용한 cfDNA 추출 효율과 유사한 것을 DNA 보존 결과로 확인할 수 있었다.
실시예 6 : 조직에서의 ctDNA 검출 및 대장암 환자의 액체생검의 상관관계 분석
DTBP 이용의 이점은 cfDNA를 효과적이고 신속하게 포착할 수 있다는 것이다. 이에, ctDNA가 cfDNA 개체군에서 민감하게 검출될 수 있는지 여부를 분석하였다. 이를 위해, 도 7A와 같이, 14명의 대장암 환자의 암 조직과 혈장 시료를 수집하고, 종래 컬럼 기반 핵산 추출 키트 (Qiagen)를 이용한 방법과 본 발명의 DTBP 플랫폼을 이용한 방법으로 돌연변이 프로파일링의 상관관계를 분석하였다.
조직으로부터 게놈 DNA를 추출하고, WES (whole exome sequencing) 방법으로 암 관련 돌연변이를 분석하였다. 그 결과, 하기 표 2와 같이, 14개의 시료 중 10개의 시료에서 알려진 CRC 대장암 관련 돌연변이, BRAF, KRAS, PIK3CA 및 TP53을 포함한 다양한 돌연변이를 확인하였다.
Figure PCTKR2018009771-appb-T000002
이후, DTBP 또는 컬럼 기반 방법을 사용하여 cfDNA를 추출하기 위해 혈장 시료 500 ㎕를 사용하였으며, 조직과 혈액 시료 간의 hot-spot 돌연변이 (BRAF 및 KRAS)의 상관관계를 분석하기 위해, 서열 특이 SCODA (synchronous coefficient of drag alteration) 돌연변이 패널을 사용하여 KRAS 돌연변이 (G12D, G12V 및 G13D) 및 BRAF 돌연변이 (V600E)를 분석하였다.
DNA의 시퀀싱 분석을 위해, 모든 DNA 시료는 BRAF 엑손 15 (annealing 온도: 58℃) 및 KRAS 엑손 2 (annealing 온도: 55℃)의 시퀀싱 프라이머로 증폭시킨 후, Expin PCR SV (GeneAll, Korea)을 이용하여 정제하였다. 정제된 시료는 하기 표 3의 검출 가능한 BRAF 및 KRAS 돌연변이의 전방 시퀀싱 프라이머로 BigDyeTerminal chemistry를 수행하여 직접 시퀀싱하였다. DNA 시퀀싱 반응 혼합물은 마크로젠 시퀀싱 분석 센터 (Macrogen Inc. Seoul, Korea)에서 ABI’s 3730XL DNA 분석기 (Applied Biosystems, USA)를 이용하여 전기영동 되었다.
Figure PCTKR2018009771-appb-T000003
그 결과, 일치된 조직 시료에서 확인된 BRAF 돌연변이는 DTBP 플랫폼 방법을 사용한 두 개의 혈장 시료 (T3 및 T8)에서 검출되었으나, 컬럼 기반 방법에서는 BRAF 돌연변이가 검출되지 않았다. 즉, 도 7B와 같이, 컬럼 기반 방법에 의한 BRAF 돌연변이의 확인은 SCODA 계산의 검출 한계 아래에 있어 돌연변이 여부의 확인이 불가능하였다.
또한, KRAS G12D 돌연변이는 컬럼 기반 방법으로 분리한 한 개의 혈장 시료 (T10)의 cfDNA 및 DTBP 플랫폼 방법으로 분리한 두 개의 혈장 시료 (T10 및 T12)의 cfDNA에서 검출되었다. 그러나, 도 7B와 같이, DTBP 플랫폼 방법에 의해 확인된 돌연변이 비(mutation ratio)는 컬럼 기반 방법에 의해 확인된 돌연변이 비 보다 4-10배 더 높은 것을 확인할 수 있었다. 또한, 컬럼 기반 방법으로 검출되지 않았던 T12 조직 시료의 돌연변이를 DTBP 플랫폼 방법에서는 높은 비율로 검출하였다.
KRAS G13D 돌연변이는 컬럼 기반 방법을 이용한 세 개의 혈장 시료 (T5, T9, T13) 및 DTBP 플랫폼 방법을 이용한 네 개의 혈장 시료 (T5, T6, T9, T13)에서 검출되었다. 두 개의 시료 (T9 및 T13)의 돌연변이 결과는 두 방법 모두에 의해 조직 및 혈장 시료에서 상관관계를 나타내었다. 또한, 상기 돌연변이가 두 시료 (T5 및 T6)의 조직에서는 검출되지 않았으나, 컬럼 기반 방법 및 DTBP 플랫폼 방법에서는 검출되는 것을 확인하였다. 도 7B와 같이, DTBP 플랫폼 방법에 의해 확인된 돌연변이 비는 컬럼 기반 방법에 의해 확인된 돌연변이 비 보다 훨씬 높은 것을 확인할 수 있었다. 이는 혈장 분석이 시료 이질성 (heterogeneity)으로 인해 조직에서 검출되지 않은 KRAS 돌연변이를 검출할 수 있음을 의미한다. 또한, 10명의 건강한 대조군에서는 돌연변이가 검출되지 않았다.
즉, 도 7C와 같이, 컬럼 기반 방법 (57.1%)보다 본 발명의 DTBP 플랫폼을 이용한 방법 (71.4%)이 원발성 종양과 혈장 시료 간 돌연변이의 높은 일치성 및 민감도를 나타내는 것을 확인하였다.
이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (17)

  1. 하기 화학식 1로 표시되는 화합물을 포함하는 액체생검 유래 생체물질 추출용 조성물:
    [화학식 1]
    Figure PCTKR2018009771-appb-I000009
    상기 식에서, X는 (CH2)n 또는 (CH2)p-S-S-(CH2)q이며,
    n은 4 내지 10의 정수이고,
    p 또는 q는 각각 1 내지 3의 정수임.
  2. 제 1항에 있어서, 상기 액체생검 유래 생체물질은 세포유리 DNA (cell free DNA; cfDNA), 순환종양 DNA (circulating tumor DNA; ctDNA) 또는 엑소좀인 것을 특징으로 하는 액체생검 유래 생체물질 추출용 조성물.
  3. 제 1항에 있어서, 상기 액체생검은 혈액, 복수, 소변, 타액, 뇌척수액 또는 객담인 것을 특징으로 하는 액체생검 유래 생체물질 추출용 조성물.
  4. 제 1항 내지 제 3항 중 어느 한 항의 조성물을 포함하는 액체생검 유래 생체물질 추출용 키트.
  5. 대상물에 아민기를 도입하여 개질하는 제 1단계;
    상기 개질된 대상물 상에 액체생검 시료와 하기 화학식 1로 표시되는 화합물을 주입하고, 상기 액체생검 시료에 존재하는 생체물질과 상기 화합물 간의 복합체를 형성시키는 제 2단계; 및
    상기 복합체가 형성된 대상물에 용출 완충액 (elution buffer)을 처리하여 상기 생체물질을 추출하는 제 3단계;를 포함하는 액체생검 유래 생체물질 추출 방법:
    [화학식 1]
    Figure PCTKR2018009771-appb-I000010
    상기 식에서, X는 (CH2)n 또는 (CH2)p-S-S-(CH2)q이며,
    n은 4 내지 10의 정수이고,
    p 또는 q는 각각 1 내지 3의 정수임.
  6. 액체생검 시료에 실란 화합물로 개질된 규조토를 첨가하고, 하기 화학식 1로 표시되는 화합물을 첨가하여 반응 혼합물을 제조하는 제 1단계; 및 상기 반응 혼합물로부터 액체생검 시료에 존재하는 생체물질을 추출하는 제 2단계;를 포함하는 액체생검 유래 생체물질의 추출 방법:
    [화학식 1]
    Figure PCTKR2018009771-appb-I000011
    상기 식에서, X는 (CH2)n 또는 (CH2)p-S-S-(CH2)q이며,
    n은 4 내지 10의 정수이고,
    p 또는 q는 각각 1 내지 3의 정수임.
  7. 제 5항에 있어서, 상기 제 1단계의 대상물은 박막장치, 자성 비드 (magnetic bead), 링 공진기 (ring resonator) 또는 나노입자 (nanoparticle) 중 어느 하나인 것을 특징으로 하는 액체생검 유래 생체물질 추출 방법.
  8. 제 5항에 있어서, 상기 제 1단계 이전에 대상물에 플라즈마를 처리하여 세정하는 단계;를 더 포함하는 것을 특징으로 하는 액체생검 유래 생체물질 추출 방법.
  9. 제 5항에 있어서, 상기 제 1단계의 대상물은 실란 화합물로 개질된 것을 특징으로 하는 액체생검 유래 생체물질 추출 방법.
  10. 제 6항 또는 제 9항에 있어서, 상기 실란 화합물은 하기 화학식 2로 표시되는 화합물인 것을 특징으로 하는 액체생검 유래 생체물질 추출 방법:
    [화학식 2]
    Figure PCTKR2018009771-appb-I000012
    상기 식에서, R1 내지 R3는 각각 같거나 다를 수 있으며, C1 내지 C4의 알킬 또는 C1 내지 C4의 알콕시 중 어느 하나이고, R4는 아미노(C1 내지 C10)알킬, 3-(2아미노(C1 내지 C4)알킬아미노)(C1 내지 C4)알킬 또는 3-[2-(2-아미노(C1 내지 C4)알킬아미노)(C1 내지 C4)알킬아미노](C1 내지 C4)알킬 중 어느 하나임.
  11. 제 10항에 있어서, 상기 실란 화합물은 (3-아미노프로필)트리에톡시실란((3-aminopropyl)triethoxysilane; APTES), (3-아미노프로필)트리메톡시실란((3-aminopropyl)trimethoxysilane), (1-아미노메틸)트리에톡시실란((1-aminomethyl)triethoxysilane), (2-아미노에틸)트리에톡시실란((2-aminoethyl)triethoxysilane), (4-아미노부틸)트리에톡시실란((4-aminobutyl)triethoxysilane), (5-아미노펜틸)트리에톡시실란((5-aminopentyl)triethoxysilane), (6-아미노헥실)트리에톡시실란((6-aminohexyl)triethoxysilane), 3-아미노프로필(디에톡시)메틸실란(3-aminopropyl(diethoxy)methylsilane; APDMS), N-[3-(트리메톡시실릴)프로필]에틸렌디아민(N-[3-(trimethoxysilyl)propyl]ethylenediamine), N-[3-(트리메톡시실릴)프로필]디에틸렌트리아민(N-[3-(trimethoxysilyl)propyl]diethylenetriamine), [3-(2-아미노에틸아미노)프로필]트리메톡시실란([3-(2-aminoethylamino)propyl]trimethoxysilane; AEAPTMS) 및 3-[(트리메톡시실릴)프로필]디에틸렌트리아민(3-[(trimethoxysilyl)propyl]diethylenetriamine; TMPTA)로 이루어진 군에서 선택된 어느 하나 이상인 것을 특징으로 하는 액체생검 유래 생체물질 추출 방법.
  12. 제 5항 또는 제 6항에 있어서, 상기 제 2단계의 액체생검 시료에 존재하는 생체물질은 세포유리 DNA (cell free DNA; cfDNA), 순환종양 DNA (circulating tumor DNA; ctDNA) 또는 엑소좀인 것을 특징으로 하는 액체생검 유래 생체물질 추출 방법.
  13. 제 5항 또는 제 6항에 있어서, 상기 제 2단계의 액체생검 시료는 혈액, 복수, 소변, 타액, 뇌척수액 또는 객담인 것을 특징으로 하는 액체생검 유래 생체물질 추출 방법.
  14. 패턴화된 하부 박막; 상기 하부 박막 상에 적층된 마이크로 유체 챔버; 및 상기 마이크로 유체 챔버 상에 적층되며, 패턴화된 상부 박막을 포함하는, 액체생검 유래 생체물질의 추출용 폐쇄형 마이크로 유체 칩.
  15. 제 14항에 있어서, 상기 박막은 투명 아크릴로니트릴 부타디엔 스티렌 (acrylonitrile butadiene styrene; ABS) 또는 양면 테이프가 붙어있는 플라스틱 판인 것을 특징으로 하는, 액체생검 유래 생체물질의 추출용 폐쇄형 마이크로 유체 칩.
  16. 제 14항에 있어서, 상기 폐쇄형 마이크로 유체 칩은 내부 표면이 산소 플라즈마 처리에 의해 개질되고, 3-아미노프로필(디에톡시)메틸실란(3-aminopropyl(diethoxy)methylsilane; APDMS) 처리에 의해 실란화된 것을 특징으로 하는, 액체생검 유래 생체물질의 추출용 폐쇄형 마이크로 유체 칩.
  17. 제 14항에 있어서, 상기 챔버는 복수의 슬롯형 마이크로웰(slot-type microwell)이 약 1:5.6 내지 약 5.6:1의 팽창수축률로 연결된 것을 특징으로 하는, 액체 생검(liquid biopsy) 유래 생체물질의 추출용 폐쇄형 마이크로 유체 칩.
PCT/KR2018/009771 2017-10-30 2018-08-24 동형2기능성 이미도에스터를 이용한 액체생검 유래 생체물질의 추출 방법 WO2019088429A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170142591 2017-10-30
KR10-2017-0142591 2017-10-30
KR10-2018-0098024 2018-08-22
KR1020180098024A KR102249506B1 (ko) 2017-10-30 2018-08-22 동형2기능성 이미도에스터를 이용한 액체생검 유래 생체물질의 추출 방법

Publications (1)

Publication Number Publication Date
WO2019088429A1 true WO2019088429A1 (ko) 2019-05-09

Family

ID=66332065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009771 WO2019088429A1 (ko) 2017-10-30 2018-08-24 동형2기능성 이미도에스터를 이용한 액체생검 유래 생체물질의 추출 방법

Country Status (1)

Country Link
WO (1) WO2019088429A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112464A1 (ko) * 2019-12-02 2021-06-10 솔바이오 주식회사 엑소좀 액체생검 샘플 제조장치, 제조방법 및 이로부터 제조된 엑소좀 액체생검 샘플 분석방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100085911A (ko) * 2007-10-09 2010-07-29 유니버시티 오브 노트르 담 디락 다중 타겟 검출을 위한 미소유체 플랫폼
KR20150096444A (ko) * 2012-12-13 2015-08-24 에이전시 포 사이언스, 테크놀로지 앤드 리서치 고형상 장치 상에서 핵산을 분리 및 분석하는 무표지 방법
KR20170129591A (ko) * 2016-05-17 2017-11-27 울산대학교 산학협력단 고형상 대상물을 이용한 핵산 추출방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100085911A (ko) * 2007-10-09 2010-07-29 유니버시티 오브 노트르 담 디락 다중 타겟 검출을 위한 미소유체 플랫폼
KR20150096444A (ko) * 2012-12-13 2015-08-24 에이전시 포 사이언스, 테크놀로지 앤드 리서치 고형상 장치 상에서 핵산을 분리 및 분석하는 무표지 방법
KR20170129591A (ko) * 2016-05-17 2017-11-27 울산대학교 산학협력단 고형상 대상물을 이용한 핵산 추출방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE, T. Y ET AL.: "Simple, Low-cost, and Rapid Device for a DNA Methylation-specific Amplification/detection System Using a Flexible Plastic and Silicon Complex", LAP ON A CHIP, vol. 14, no. 21, 2014, pages 4220 - 4229, XP55612960 *
SHIN, Y. ET AL.: "Dimethyl Adipimidate/ThinFilm Sample Processing (DTS); A Simple, Low-cost, and Versatile Nucleic Acid Extraction Assay for Downstream Analysis", SCIENTIFIC REPORTS, vol. 5, 2015, pages 1 - 11, XP055556165 *
SHIN, Y. ET AL.: "Solid Phase Nucleic Acid Extraction Technique in a Microfluidic Chip Using a Novel Non-chaotropic Agent: Dimethyl Adipimidate", LAP ON A CHIP, vol. 14, no. 2, 2014, pages 359 - 368, XP055261226 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112464A1 (ko) * 2019-12-02 2021-06-10 솔바이오 주식회사 엑소좀 액체생검 샘플 제조장치, 제조방법 및 이로부터 제조된 엑소좀 액체생검 샘플 분석방법

Similar Documents

Publication Publication Date Title
KR101078977B1 (ko) 유전자 변이 검출법
EP3460072B1 (en) Nucleic acid extraction method using solid subject
WO2020096248A1 (ko) 폐암 조직 내 세포 유래 돌연변이를 검출하기 위한 프로브 제조 및 검출 방법
CN110343754A (zh) 一种用于造血干细胞移植供体病原微生物快速检测的方法
WO2019088429A1 (ko) 동형2기능성 이미도에스터를 이용한 액체생검 유래 생체물질의 추출 방법
KR102249506B1 (ko) 동형2기능성 이미도에스터를 이용한 액체생검 유래 생체물질의 추출 방법
El-Hashemite et al. Single cell detection of beta-thalassaemia mutations using silver stained SSCP analysis: an application for preimplantation diagnosis.
CA3100912C (en) Tumor marker col4a1,methylation detection reagent, kit and use thereof
WO2003076614A1 (fr) Procede de collecte de donnees destinees a evaluer la sensibilite a une maladie parodontale
US20210189461A1 (en) Tumor marker, methylation detection reagent, kit and use thereof
WO2022071648A1 (ko) 미생물 농축 또는 핵산 추출용 조성물 및 이를 이용한 미생물 농축 또는 핵산 추출 방법
KR100845949B1 (ko) 혈청 및 혈장으로부터 dna를 제조하는 개선된 방법
WO2017119755A1 (ko) 2종의 자성입자를 사용한 단일염기 다형성 판별 자동화 장치
WO2020256438A1 (ko) 비스설포숙신이미딜 수베르산 또는 이의 유도체를 이용한 대상체 농축 및 핵산 추출 방법
WO2012141445A2 (ko) 만성 b형 간질환 환자의 간세포암 발병 위험도 분석 및 예측방법
WO2017200249A1 (ko) 고형상 대상물을 이용한 핵산 추출방법
WO2020036276A1 (ko) 붉은털 원숭이의 abo 혈액형 분석을 위한 새로운 선택적 염기서열을 사용한 pcr 분석법
KR102136696B1 (ko) 동형2기능성 이미도에스터를 이용한 병원체 농축 방법
WO2019078638A2 (ko) 동형2기능성 이미도에스터를 이용한 병원체 농축 방법
CN116590399B (zh) 用于预测fmt治疗sle疗效的生物标志物及其应用
CN110564827A (zh) 检测dnmt3a基因突变的引物、试剂盒和方法
WO2018038549A1 (ko) Dtbp를 이용한 미생물 농축 또는 핵산 추출 방법
WO2024150939A1 (ko) 양전하 중합체 박막을 갖는 핵산 추출용 용기 및 전하 이동 폴리플렉스를 활용한 단일 포트 핵산 검출 방법
Rodriguez et al. Measurement of DNA biomarkers for the safety of tissue-engineered medical products, using artificial skin as a model
WO2024075941A1 (ko) 세포밖 소포체 또는 세포의 고흡수성 수지 기반 표면 고정 기술

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873181

Country of ref document: EP

Kind code of ref document: A1