WO2015178728A1 - 플로로탄닌 분획물을 이용한 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하는 방법 - Google Patents

플로로탄닌 분획물을 이용한 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하는 방법 Download PDF

Info

Publication number
WO2015178728A1
WO2015178728A1 PCT/KR2015/005183 KR2015005183W WO2015178728A1 WO 2015178728 A1 WO2015178728 A1 WO 2015178728A1 KR 2015005183 W KR2015005183 W KR 2015005183W WO 2015178728 A1 WO2015178728 A1 WO 2015178728A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
medium
formula
phlorotannin
cells
Prior art date
Application number
PCT/KR2015/005183
Other languages
English (en)
French (fr)
Inventor
이상연
정원주
김호빈
오민선
이계호
Original Assignee
주식회사 비비에이치씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150071240A external-priority patent/KR101699761B1/ko
Priority to CN201580007099.0A priority Critical patent/CN105960452B/zh
Priority to SG11201609804RA priority patent/SG11201609804RA/en
Priority to AU2015262123A priority patent/AU2015262123B2/en
Priority to DK15795825.7T priority patent/DK3147352T3/da
Priority to RS20201114A priority patent/RS60817B1/sr
Priority to PL15795825T priority patent/PL3147352T3/pl
Priority to US15/116,210 priority patent/US10131881B2/en
Priority to ES15795825T priority patent/ES2820577T3/es
Priority to CA2949949A priority patent/CA2949949C/en
Application filed by 주식회사 비비에이치씨 filed Critical 주식회사 비비에이치씨
Priority to MX2016015357A priority patent/MX2016015357A/es
Priority to JP2016548353A priority patent/JP6839982B2/ja
Priority to EP15795825.7A priority patent/EP3147352B1/en
Priority to LTEP15795825.7T priority patent/LT3147352T/lt
Priority to SI201531351T priority patent/SI3147352T1/sl
Priority to RU2016150687A priority patent/RU2668803C2/ru
Publication of WO2015178728A1 publication Critical patent/WO2015178728A1/ko
Priority to PH12016502330A priority patent/PH12016502330B1/en
Priority to IL249170A priority patent/IL249170A0/en
Priority to CY20201100887T priority patent/CY1123348T1/el
Priority to HRP20201525TT priority patent/HRP20201525T1/hr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/357Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having two or more oxygen atoms in the same ring, e.g. crown ethers, guanadrel

Definitions

  • the present invention relates to a pluripotent stem cell induction medium composition of mesenchymal stem cells comprising a phlorotannin fraction extracted from brown algae, and a method for producing induced pluripotent stem cells using the same.
  • Stem cells are cells that can be differentiated into various cells constituting biological tissues, which collectively refer to undifferentiated cells obtained from each tissue of embryo, fetus and adult. These stem cells can be classified in various ways. One of the most commonly used methods is according to an individual in which stem cells are separated. Embryonic stem cells (ES cells) isolated from embryos and adult stem cells isolated from adults Can be divided into Another common classification is according to the differentiation capacity of stem cells, which can be divided into pluripotency, multipotency and unipotency stem cells. Pluripotent stem cells refer to stem cells having versatility, which can be differentiated into all three germ layers constituting the living body, and embryonic stem cells generally correspond thereto.
  • ES cells Embryonic stem cells isolated from embryos and adult stem cells isolated from adults.
  • Pluripotent stem cells refer to stem cells having versatility, which can be differentiated into all three germ layers constituting the living body, and embryonic stem cells generally correspond thereto.
  • Adult stem cells can be divided into multipotent or unipotent stem cells.
  • Representative adult stem cells include mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs).
  • MSCs mesenchymal stem cells
  • HSCs hematopoietic stem cells
  • Mesenchymal stem cells differentiate into chondrocytes, osteoblasts, adipocytes, myocytes, and neurons.
  • Hematopoietic stem cells mainly contain blood cells such as red blood cells, white blood cells, and platelets. It is known to differentiate into cells.
  • Adult stem cells can be obtained from bone marrow, blood, brain, skin, etc., so there are few ethical problems, but they have limited multipotency compared to embryonic stem cells.
  • Pluripotent stem cells are stem cells that have the versatility to differentiate into all three germ layers constituting the living body and thus to all cells or organ tissues of the human body, and generally embryonic stem cells. This is the case.
  • Embryonic stem cells are pluripotent stem cells that have the potential to differentiate into cells of all tissues that make up an individual, but there is a serious ethical problem of embryo destruction in cell manufacturing.
  • Representative methods include fusion with ES cells, somatic cell nuclear transfer, and reprogramming by gene factor.
  • the cell fusion method has a problem in that the induced cells have two more pairs of genes, and the somatic cell nuclear transfer method requires a large amount of eggs and a very low efficiency.
  • the specific factor injection method uses a virus containing a carcinogen to induce reverse differentiation by inserting a specific gene, which poses a high risk of cancer, and in view of the possibility of developing a cell therapy due to its low efficiency and difficulty in terms of methodology. It is a problem.
  • the culture composition at the stage of culturing isolated umbilical cord-derived mononuclear cells is very important. Is a necessary state.
  • Korean Patent Publication No. 2009-0043115 discloses a composition for the treatment or prevention of atopic diseases using brown algae
  • Korean Patent Publication No. 2012-0126148 discloses a hair dye composition for oxidation dyeing.
  • the present inventors have successfully developed a medium composition for induced pluripotent stem cell reverse differentiation using Ecklonia cava extract (Korean Patent Publication No. 2015-0050823). However, it is not yet known which component of Ecklonia cava extract has an induced pluripotent stem cell dedifferentiation effect.
  • the present inventors endeavored to find a method of inducing pluripotent stem cells with high efficiency in order to put the stem cell cells into high practical use for the development of high-efficiency cell therapies.
  • some compounds extracted and isolated from brown algae, which is a safe natural substance were added to the cell culture medium, it was confirmed that mesenchymal stem cells can be used to produce induced pluripotent stem cells at a safe and high efficiency.
  • the invention was completed.
  • an object of the present invention is to provide a medium composition for dedifferentiating mesenchymal stem cells containing phlorotannin fractions into induced pluripotency stem cells.
  • a medium composition for dedifferentiating mesenchymal stem cells into induced pluripotent stem cells comprising a phlorotannin fraction.
  • the phlorotannin fraction may be a bieckol compound represented by the following formula (1) or a salt thereof.
  • the phlorotannin fraction is Ecklonia cava), spiny skeletons net late (Dictyopteris prolifera Okamura), indeed the net late on (Dictyota dichotoma Lamouroux ), Sargassum horneri C. Agardh ), Sargassum patens C. Agardh and Ishige okamurae Yendo ) may be extracted and separated from one species of brown algae selected from the group consisting of, or artificially synthesized.
  • the phlorotannin fraction may be extracted and separated from Ecklonia cava.
  • the phlorotannin fraction is Dulbecco's Modified Eagle's Medium (DMEM), Minimal Essential Medium (MEM), Basic Medium Eagle (BME), RPMI 1640, F-10, F-12, DMEM-F12, ⁇ Can be included in a medium selected from the group consisting of ⁇ -Minimal Essential Medium (MEM), Glasgow's Minimal Essential Medium (G-MEM), Iscove's Modified Dulbecco's Medium (IMDM), MacCoy's 5A medium, AminoMaxII complete Medium and MesenCult-XF Medium have
  • the phlorotannin fraction may comprise 10 to 500 ⁇ g / ml based on the media composition.
  • the medium composition may further comprise 1 to 10 v / v% of energy water.
  • an object of the present invention the step of adding the phlorotannin fraction to the cell culture medium; And dedifferentiating mesenchymal stem cells into induced pluripotency stem cells in the medium.
  • the phlorotannin fraction may be a bieckol compound represented by the following formula (1) or a salt thereof.
  • a cell therapy composition comprising the induced pluripotent stem cells prepared above.
  • the present invention provides a medium composition for induced pluripotent stem cell reverse differentiation using phlorotannin fraction extracted from brown algae.
  • the present invention also provides a method for producing pluripotent stem cells using the medium composition.
  • mesenchymal stem cells can be efficiently produced using mesenchymal stem cells, and the prepared pluripotent stem cells are useful as cell therapeutic agents because they can be differentiated into various cells. Can be used.
  • Figure 1 shows the separation conditions of the fractions from Ecklonia cava extract.
  • Figure 2 shows the mass spectrum results of 2-O- (2,4,6-trihydroxyphenyl) -6,6'-bieckol represented by the formula (1).
  • Figure 3 shows the 1 H-NMR spectrum of the 2-O- (2,4,6-trihydroxyphenyl) -6,6'-bieckol represented by the formula (1).
  • Figure 4 shows the 13 C-NMR spectrum of the 2-O- (2,4,6-trihydroxyphenyl) -6,6'-bieckol represented by the formula (1).
  • Figure 5 shows the mass spectrum results of Dieckol represented by the formula (2).
  • FIG. 6 shows the 1 H-NMR spectrum results of Dieckol represented by Chemical Formula 2.
  • FIG. 7 shows the 13 C-NMR spectrum results of Dieckol represented by Chemical Formula 2.
  • FIG 8 shows the mass spectrum results of Phlorofucofuroeckol-A (PFF-A) represented by the formula (3).
  • FIG. 9 shows the 1 H-NMR spectrum results of Phlorofucofuroeckol-A (PFF-A) represented by Chemical Formula 3.
  • PFF-A Phlorofucofuroeckol-A
  • FIG. 10 shows 13 C-NMR spectra of PFF-A (Phlorofucofuroeckol-A) represented by Chemical Formula 3.
  • FIG. 10 shows 13 C-NMR spectra of PFF-A (Phlorofucofuroeckol-A) represented by Chemical Formula 3.
  • FIG. 11 shows the mass spectrum results of 974-A represented by Chemical Formula 4.
  • FIG. 12 shows the 1 H-NMR spectrum results of 974-A represented by Chemical Formula 4.
  • FIG. 13 shows the 13 C-NMR spectrum results of 974-A represented by Chemical Formula 4.
  • FIG. 14 shows the mass spectrum results of 974-B represented by Chemical Formula 4.
  • FIG. 15 shows the 1 H-NMR spectrum results of 974-B represented by Chemical Formula 5.
  • Figure 16 shows the results of the 13 C-NMR spectrum of 974-B represented by the formula (5).
  • Figure 17 shows the pluripotent stem cell colony formation induced by concentration by treating the phlorotannin fraction of Ecklonia cava extract by the method of the present invention (Experimental Example 1-1).
  • Example 18 shows that the cells induced by the method of the present invention (Experimental Example 1-1) are pluripotent stem cells using the expression of pluripotent stem cell-specific proteins SSEA-4 and Alkaline phosphatase.
  • Example 19 confirms that the cells induced by the method of the present invention (Experimental Example 1-1) are pluripotent stem cells using expression of pluripotent stem cell-specific genes OCT4 and SOX2.
  • FIG. 20 shows pluripotent stem cell colony formation induced by concentration by treating a compound in phlorotannin fraction with the method of the present invention (Experimental Example 1-2).
  • Example 21 shows that the cells induced by the method of the present invention (Experimental Example 1-2) are pluripotent stem cells using the expression of pluripotent stem cell specific proteins SSEA-4 and Alkaline phosphatase.
  • Example 22 confirms that the cells induced by the method of the present invention (Experimental Example 1-2) are pluripotent stem cells using expression of pluripotent stem cell-specific genes OCT4 and SOX2.
  • the present invention provides a method for dedifferentiating mesenchymal stem cells comprising phlorotannin fractions extracted and isolated from brown algae into induced pluripotency stem cells. It provides a medium composition for the following.
  • the present inventors endeavored to find a method of inducing pluripotent stem cells with high efficiency for the practical use of developing cell therapy products having high safety and production efficiency without ethical problems of destroying embryos.
  • a brown algae extract which is a safe natural extract, preferably phlorotannin fraction isolated from Ecklonia cava extract was added to the cell culture medium.
  • the brown algae extract may be brown algae water extract, brown algae ethanol extract, brown algae methanol extract or brown algae extract by a mixed solvent of any two or more solvents selected from water, ethanol and methanol.
  • brown algae water extract may be prepared by extracting brown algae for 2 to 48 hours with water of 40 ⁇ 100 °C.
  • Brown algae ethanol extract can be prepared by extracting brown algae with 35 to 80% ethanol at 20 ⁇ 60 °C for 2 to 36 hours.
  • the brown algae methanol extract may be prepared by extracting brown algae with 35% to 80% of methanol at 20 to 60 °C for 2 to 36 hours.
  • Ecklonia cava in brown algae included in the medium composition of the present invention cava is a perennial seaweed of kelp, kelp, seaweed, which lives on the southern coast, Jeju Island, and Ulleungdo. Sometimes.
  • Ecklonia cava extract comprises water, (a) anhydrous or hydrous lower alcohol having 1 to 4 carbon atoms (methanol, ethanol, propanol, butanol, normal-propanol, iso-propanol and normal-butanol, etc.), (b) the Mixed solvent of lower alcohol and water, organic solvents such as (c) acetone, (d) ethyl acetate, (e) chloroform, (f) 1,3-butylene glycol, (g) hexane, (h) diethyl ether
  • the solvent may be extracted using a solvent, and preferably, the solvent may be extracted using a mixed solvent of methanol or ethanol and water.
  • the content of methanol or ethanol is preferably 50 to 80 v / v%. However, it is not necessarily limited thereto.
  • Phlorotannin isolated from brown algae extract is a polyphenol-based compound based on phloroglucinol. Phlorotannins are found in marine plants, especially brown algae in nature. These phlorotannins have antimicrobial, antioxidant, hepatoprotective, elastase inhibitory, hyaluronidase inhibitory and cardiovascular effects. Many useful effects have been reported, including antiviral activity.
  • a bieckol compound represented by the following formula (1) a dieckol compound represented by the formula (2), a phlorofucopuroekol compound represented by the formula (3), and a formula (4) Icol-based compounds represented by the formula, and the alcohol-based compound represented by the formula (5) was isolated and identified, and their induced pluripotent stem cell expression was confirmed.
  • the non-eckol compound represented by the formula (1) of the compounds are added to the cell culture medium, it was confirmed that the induced pluripotent stem cells can be produced with high efficiency.
  • Chemical Formula 1 is 2-O- (2,4,6-trihydroxyphenyl) -6,6'-bieckol (2-O- (2,4,6-trihydroxyphenyl) -6,6 '-bieckol), formula 2 is Dieckol, formula 3 is phloofucurourool (PFF-A, Phlorofucofuroeckol-A), formula 4 is 974-A, formula 5 is 974-B In the present invention, these may be added alone or in combination to the cell culture medium.
  • the term “embryonic stem cell” refers to a cell having pluripotency as a cell cultured by separating from an inner cell mass of a blastocyst, which is an early stage of development after fertilization.
  • pluripotency refers to a stem having pluripotency capable of differentiating into three germ layers constituting a living body, that is, endoderm, mesoderm, and ectoderm. Refers to a cell.
  • differentiation refers to a phenomenon in which structures or functions are specialized while cells divide and proliferate and grow, that is, a cell or tissue of an organism has a shape or function to perform a task given to each. It means to change.
  • cell therapeutic agent refers to a medicament used for the purpose of treatment, diagnosis, and prevention of cells and tissues prepared by isolation, culture, and special manipulation from humans, and is used to restore the function of cells or tissues. Or a medicine used for the purpose of treatment, diagnosis, and prevention through a series of actions such as proliferating, selecting, or otherwise modifying a cell's biological properties in vitro.
  • Cell therapy agents are largely classified into somatic cell therapy and stem cell therapy according to the degree of differentiation of cells, and the present invention relates in particular to stem cell therapy.
  • the mesenchymal stem cells of the present invention are cells isolated from embryonic stem cells or adult stem cells derived from mammals, preferably umbilical cord-derived mesenchymal stem cells, and more preferably human umbilical cord-derived mesenchymal stem cells.
  • the stem cells can be obtained from the umbilical cord connecting the placenta and fetus in the human body.
  • Mesenchymal stem cells can be harvested from a variety of methods, for example, by taking a umbilical cord from the human body and rinsing until there is no blood coming out with DPBS.
  • the solution containing mononuclear cells can be obtained by incubation at °C.
  • the term “medium” refers to cells of cells such as stem cells in vitro , including elements essential for the growth and proliferation of cells such as sugars, amino acids, various nutrients, serum, growth factors, minerals, and the like. Refers to a mixture for incubation or differentiation.
  • DMEM Dulbecco's Modified Eagle's Medium
  • MEM Minimal Essential Medium
  • BME Basic Medium Eagle
  • RPMI 1640 F-10, F-12, DMEM F-12, and ⁇ -MEM ( ⁇ -Minimal).
  • Essential Medium G-MEM (Glasgow's Minimal Essential Medium), IMPM (Iscove's Modified Dulbecco's Medium), AmnioMax, AminoMax II complete Medium (Gibco, Newyork, USA), MesenCult-XF Medium, etc.
  • G-MEM Gasgow's Minimal Essential Medium
  • IMPM Iscove's Modified Dulbecco's Medium
  • AmnioMax AminoMax II complete Medium
  • MesenCult-XF Medium etc.
  • it can be used as a basal medium included in the medium composition of the present invention.
  • Serum components for example, Fetal Bovine Serum (FBS)
  • antibiotics for example, penicillin, streptomycin
  • concentration of serum component or antibiotic component added to the basal medium may vary within a range capable of achieving the effect of the present invention, preferably 10% FBS, 100 unit / ml penicillin, 50 ⁇ g / ml streptomycin, or the like. Can be added.
  • the concentration of the compound added to the DMEM may be changed within a range capable of achieving the effect of the present invention.
  • the medium of the present invention may further comprise a nutrient mixture (Nutrient Mixture).
  • the nutrition mixture is a mixture containing various amino acids, vitamins, inorganic salts, and the like generally used in cell culture, and may be prepared by mixing the amino acids, vitamins, inorganic salts, and the like, or use a commercially prepared nutrition mixture.
  • Commercially prepared nutrient mixtures include, but are not limited to, M199, MCDB110, MCDB202, MCDB302, and the like.
  • the medium of the present invention may further include energy water for induction and stabilization of pluripotent stem cells.
  • the energy water is preferably added at 0.05 to 20 v / v%, more preferably 0.1 to 10 v / v%.
  • the medium composition of the present invention is a medium specific for pluripotent stem cell induction, and can be achieved by adding a phlorotannin fraction isolated from brown algae extract to the basal medium, preferably 1 to 1,000 based on the total medium composition.
  • Phlorotannin fraction isolated from Ecklonia cava extract at a concentration of ⁇ g / ml, more preferably at a concentration of 10 to 500 ⁇ g / ml.
  • Chemical Formula 1 is 2-O- (2,4,6-trihydroxyphenyl) -6,6'-bieckol (2-O- (2,4,6-trihydroxyphenyl) -6,6'- bieckol)
  • Formula 2 is Dieckol
  • Formula 3 is Plorofucopuroecol (PFF-A, Phlorofucofuroeckol-A)
  • Formula 4 is 974-A
  • Formula 5 is 974-B.
  • One or more species may be used at a concentration of 10 to 200 ⁇ g / ml based on the total medium composition, more preferably at a concentration of 20 to 150 ⁇ g / ml.
  • the present invention relates to Ecklonia adding a phlorotannin fraction isolated from the cava ) extract to the cell culture medium; And dedifferentiating mesenchymal stem cells into induced pluripotency stem cells in the medium.
  • the culture of the umbilical cord-derived mononuclear cells 2-O- (2,4,6-trihydroxyphenyl) -6,6'-bieckol or 2-O- (2,4,6-trihydroxyphenyl) -6,6'-bieckol Mixing containing a into the base medium composition can be cultured in an incubator at a humidity of 95%, 37 °C, 5% CO2 conditions.
  • DMEM F-12 medium was used as a control, and a medium containing 2-O- (2,4,6-trihydroxyphenyl) -6,6'-bieckol in DMEM F-12 was used as an experimental group.
  • Mesenchymal stem cells were cultured.
  • the present invention provides an induced pluripotent stem cell prepared by the above method.
  • Induced pluripotent stem cells of the present invention have the same differentiation capacity as embryonic stem cells, and are almost identical to embryonic stem cells in the shape of cells. According to an embodiment of the present invention, as a result of examining the expression of genes (Nanog, Oct4, Sox2, Klf) and protein (SSEA-4) characteristic of embryonic stem cells, embryos in pluripotent stem cells induced by the present invention It was confirmed that the genes and proteins are expressed in the same manner as the stem cells (FIG. 19).
  • the present invention provides a cell therapy composition comprising induced pluripotent stem cells prepared by the above method.
  • Induced pluripotent stem cells of the present invention have the same pluripotency as embryonic stem cells, and according to one embodiment of the present invention, it was confirmed that the pluripotent can differentiate into ectoderm, mesoderm and endoderm.
  • the induced pluripotent stem cells of the present invention can be used as an effective cell therapy.
  • composition of the present invention can be administered by any route of administration, specifically by intraperitoneal or chest cavity administration, subcutaneous administration, intravenous or arterial vascular administration, intramuscular administration, topical administration by injection, or the like.
  • the composition can be administered in the form of injections, suspensions, emulsifiers and the like based on conventional methods, and if necessary, suspended in an adjuvant such as Freund's complete adjuvant or adjuvant activity such as BCG. It is also possible to administer together with the substance having.
  • the composition may be sterile or contain adjuvants such as stabilizers, wetting or emulsifying accelerators, salts or buffers for controlling osmotic pressure and other therapeutically useful materials, and may be prepared by conventional mixing, granulating or coating methods. have.
  • Cell therapy compositions according to the present invention may contain a pharmaceutically acceptable carrier or additive, in addition to the active ingredient diluents (eg, dextrose, sorbitol, cellulose, glycine, lactose, squarose, mannitol) , Binders (eg magnesium aluminum silicate, starch paste, tragacanth, sodium carboxymethylcellulose), disintegrants (eg starch, agar, alginic acid or its sodium salt) or boiling mixtures and / or absorbents, sweeteners , Flavoring agents and coloring agents.
  • diluents eg, dextrose, sorbitol, cellulose, glycine, lactose, squarose, mannitol
  • Binders eg magnesium aluminum silicate, starch paste, tragacanth, sodium carboxymethylcellulose
  • disintegrants eg starch, agar, alginic acid or its sodium salt
  • sweeteners e
  • the cell therapy composition of the present invention can be applied to arthritis, nervous system diseases, endocrine diseases, liver diseases, and the like, and according to the results of clinical trials for humans in the future, there is also the possibility of treating allogeneic cells for humans.
  • the herbal samples used in the experiment were purchased from Jeju Island and used in the experiment after accurate evaluation by experts. 100 g of the dried herbal sample was placed in 1 L of 70% methanol and extracted under reflux for 16 hours and filtered using a filter paper. The filtrate was concentrated in a rotary evaporator and immediately freeze-dried to prepare an Ecklonia cava extract.
  • Example 1-2 phlorotannin ( phlorotannin ) Fractions Separation, Purification
  • Example 1-1 Fractions obtained in Example 1-1 were acetonitrile containing a C18 column (Phenomenex Luna C18 instrument, 10 ⁇ m, 21.2 ⁇ 250 mm) with 0.02% TFA at a flow rate of 10 ml / min, UV 243 nm and Applied to C-18 reverse phase HPLC with solvent gradient of 20% acetonitrile 10 minutes, 20-55% acetonitrile 40 minutes, 55-100% acetonitrile 10 minutes, total 60 minutes using a solvent of water Peak C (RT 25min), E (RT 33min), G (RT 37.5min), H (RT 38min), and I (RT 38.5min) were separated. The peak E is named D, and the peak E and G are named F, and the peak after the fraction I is named J.
  • Example 1-2 The molecular weight and molecular formula of the compound purified in Example 1-2 were determined using HPLC-MS analyzer (High-performance liquid chromatography mass chromatography), and the structure of the compound was identified by 1 H NMR through nuclear magnetic resonance analysis (NMR). , 13 C-NMR spectra were analyzed.
  • Formula 1 is 2-O- (2,4,6-trihydroxyphenyl) -6,6'-bieckol
  • Formula 2 is Dieckol
  • Formula 3 is Phlorofucofuroeckol-A
  • Formula 4 is 974-A
  • Formula 5 is 974 -B was identified.
  • Table 1 The structure of the isolated polyphenol-based compound is shown in Table 1 below, and the structural characteristics of each compound are as follows.
  • Figure 2 shows the mass spectrum of the 2-O- (2,4,6-trihydroxyphenyl) -6,6'-bieckol.
  • 3 and 4 show 1 H-NMR spectra and 13 C-NMR spectra of 2-O- (2,4,6-trihydroxyphenyl) -6,6'-bieckol, respectively.
  • the numbers described in correspond to the numbers described in the formulas in FIGS. 3 and 4.
  • Figure 8 shows the mass spectrum of Phlorucofuroeckol-A (PFF-a).
  • 9 and 10 show 1 H-NMR spectra and 13 C-NMR spectra of Phl-ofucofuroeckol-A (PFF-a), respectively, and the numbers described in the peaks are the numbers shown in the chemical formulas in FIGS. 9 and 10, respectively. Corresponds to.
  • 11 shows the mass spectrum of 974-A.
  • 12 and 13 show the 1 H-NMR spectrum and the 13 C-NMR spectrum of 974-A, respectively, and the numbers described in the peaks correspond to the numbers described in the chemical formulas in FIGS. 12 and 13, respectively.
  • Umbilical cord tissue is collected immediately after delivery. Rinse first with 500 ml of sterilized medium with F-12 medium added with transfer medium (50 IU / ml penicillin, 50 ⁇ g / ml streptomycin (purchased from Invitrogen)) prior to transfer to the laboratory. Transferred to a glass bottle. In the laboratory, stem cell extraction is performed in a flow hood of class 100 under sterile conditions. The sample is first transferred to a container of sterile stainless steel.
  • transfer medium 50 IU / ml penicillin, 50 ⁇ g / ml streptomycin (purchased from Invitrogen)
  • the PBS is washed several times and the umbilical cord tissue sample is then cut to 2 cm in length and transferred to a 10 cm diameter cell culture dish where further washing and anti-infection with 70% ethanol, antibiotic mixture (50 IU / ml penicillin, Wash several times with PBS with 50 ⁇ g / ml streptomycin (purchased from Invitrogen) until the solution is clear.
  • Example 2-2 Isolation and Culture of Stem Cells from Human Umbilical Cord
  • An incision of the umbilical cord tissue is first made to separate the wharton jelly from the umbilical cord blood and other internal elements. After removal of the blood vessels, the separated wharton jelly is cut into small pieces (0.5 cm x 0.5 cm) for extraction of the cells. Explants are performed by putting pieces of umbilical wharton jelly into different tissue culture dishes with cell culture conditions suitable for extraction of epithelial or mesenchymal stem cells.
  • the explanted tissue was treated with 5 ml Dulbecco's modified eagle medium (DMEM) F-12 (Gibco), 10% FBS, 100 unit / with 10% fetal calf serum (FBS, Hyclone). It was immersed in ml penicillin, 50 ⁇ g / ml streptomycin and maintained at 37 ° C. in a carbon dioxide cell incubator. Medium was changed every 3 or 4 days. Outgrowth of cells was monitored by light microscopy. Elongating cells were trypsinized (0.125% trypsin / 0.05% EDTA) for further expansion and cryopreservation (using DMEM / 10% FBS).
  • DMEM Dulbecco's modified eagle medium
  • FBS fetal calf serum
  • the medium was replaced every 3 or 4 days. Outgrowth of cells from explanted tissue was monitored by light microscopy.
  • pellets of cells were resuspended and counted in medium DMEM F-12 (Gibco), 10% FBS, 100 unit / ml penicillin, 50 ⁇ g / ml streptomycin, and 10 cm tissue culture dishes. Were inoculated at a density of 1 ⁇ 10 6 cells / dish. The medium was changed every 3 or 4 days. Cell growth and cloning were monitored by light microscopy. At about 90% confluence, the cells were sub-cultured as described above.
  • Example 1-1 Experiments were performed to determine the pluripotent stem cell induction ability from human umbilical cord-derived stem cells according to the concentration of the phlorotannin fraction prepared in Example 1-1.
  • DMEM F-12 Gibco
  • 10% FBS 10% FBS
  • 100 unit / ml penicillin 100 unit / ml penicillin
  • 50 ⁇ g / ml streptomycin were used as the basic medium ( Normal )
  • the experimental group was the third subcultured human.
  • stage-specific embryonic antigen4 SSEA-4
  • AP Alkaline phosphatase
  • OCT4 SOX2 SSEA-4
  • the protein expression was analyzed using immunochemical staining. The staining process was first fixed with 4% paraformaldehyde (Paraformaldehyde), and then washed with PBS and blocked with 1% BSA solution (blocking). After treatment with the primary antibody against OCT4, SOX2, SSEA-4 for 18 hours at 4 °C, washed with PBS and treated with a secondary antibody with fluorescence (FITC) to the primary antibody at room temperature 1 The reaction was carried out for a time.
  • SSEA-4 stage-specific embryonic antigen4
  • AP Alkaline phosphatase
  • OCT4 alkaline phosphatase
  • SOX2 secondary antibody with fluorescence
  • AP staining was performed with cell-permeable Alkaline phosphatase fluorescent substrate Dye, AP fluorescent Dye was diluted in DMEM F-12 culture, treated with colonies, reacted for 20-30 minutes, washed twice with DMEM F-12 culture. The expression was analyzed using a confocal microscope and the results are shown in FIG. 17.
  • Example 1-2 a test for measuring pluripotent stem cell induction ability from human umbilical cord derived stem cells according to the concentration of compound 1 was performed.
  • DMEM F-12 Gibco
  • 10% FBS 100 unit / ml penicillin, and 50 ⁇ g / ml streptomycin were used as the basic medium ( Normal ), and the experimental group was the third subcultured human.
  • SSEA-4 stem-specific embryonic antigen4
  • OCT4 Alkaline phosphatase
  • SOX2 specific proteins of embryonic stem cells
  • FIG. 20 After washing with PBS, expression was analyzed using a confocal microscope and the results are shown in FIG. 20.
  • BF means bright field
  • the second figure shows the staining result for each protein expression
  • the third figure shows the two figures combined (FIGS. 21A, 21B, 22A and 22B).
  • AP staining was performed with cell-permeable Alkaline phosphatase fluorescent substrate Dye, AP fluorescent Dye was diluted in DMEM F-12 culture, treated with colonies, reacted for 20-30 minutes, washed twice with DMEM F-12 culture and confocal. The expression was analyzed using a microscope (confocal microscope) and the results are shown in Figure 22B.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 감태, 가시뼈대그물말, 참가죽그물바탕말, 괭생이모자반 및 패 등으로 이루어진 군에서 선택된 1종의 갈조류에서 추출 및 분리된 플로로탄닌(phlorotannin) 분획물을 포함하는 유도만능 줄기세포(induced pluripotency stem cell) 역분화용 배지 조성물에 관한 것이다. 또한, 본 발명은 상기 배지 조성물을 이용한 유도만능 줄기세포 제조 방법에 관한 것이다. 본 발명에 따른 배지 조성물을 이용하면 중간엽 줄기세포를 이용하여 안전하고도 용이하게 유도만능 줄기세포를 효율적으로 제조할 수 있으며, 제조된 만능 줄기세포는 다양한 세포로의 분화가 가능하므로 세포 치료제로서 유용하게 사용될 수 있다.

Description

플로로탄닌 분획물을 이용한 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하는 방법
본 발명은 갈조류에서 추출한 플로로탄닌(phlorotannin) 분획물을 포함하는 중간엽 줄기세포의 만능줄기세포 유도 배지 조성물과, 이를 이용하여 유도만능 줄기세포를 제조하는 방법에 관한 것이다.
줄기세포(stem cell)는 생물 조직을 구성하는 다양한 세포들로 분화될 수 있는 세포로서 배아, 태아 및 성체의 각 조직에서 얻을 수 있는 분화되기 전 단계의 미분화 세포들을 총칭한다. 이러한 줄기세포는 다양한 방법으로 분류할 수 있다. 그 중 가장 흔히 이용되는 방법 중 하나는 줄기세포가 분리된 개체에 따른 것으로, 배아(embryo)에서 분리된 배아줄기세포(embryonic stem cell, ES cell)와 성체에서 분리된 성체줄기세포(adult stem cell)로 나눌 수 있다. 또 다른 흔한 분류는 줄기세포의 분화능에 따른 것으로, 만능(pluripotency), 다분화능(multipotency) 및 단분화능(unipotency) 줄기세포로 나눌 수 있다. 만능줄기세포라 함은 생체를 구성하는 3가지 배엽(germ layer) 모두로 분화될 수 있는 다기능성을 지닌 줄기세포를 지칭하며, 일반적으로 배아줄기세포가 이에 해당된다.
성체줄기세포는 다분화능 또는 단분화능 줄기세포로 구분할 수 있다. 대표적인 성체줄기세포에는 중간엽 줄기세포(mesenchymal stem cells; MSCs)와 조혈모세포(hematopoietic stem cells; HSCs)가 있다. 중간엽 줄기세포는 연골 세포 (chondroblast), 골세포(osteoblast), 지방세포(adipocyte), 근육세포 (myocyte), 신경세포(neurion)로 분화하며 조혈모세포에는 적혈구, 백혈구, 혈소판 등 주로 혈액내의 혈구세포로 분화하는 것으로 알려져 있다. 성체 줄기세포는 골수, 혈액, 뇌, 피부 등에서 얻을 수 있어 윤리적인 문제가 적으나, 배아 줄기세포에 비하여 한정된 분화능력(multipotency)을 가지고 있다.
반면에 만능줄기세포는 생체를 구성하는 3가지 배엽(germ layer) 모두로 분화될 수 있어 인체의 모든 세포나 장기 조직으로 분화할 수 있는 다기능성을 지닌 줄기세포를 지칭하며, 일반적으로 배아줄기세포가 이에 해당된다. 배아줄기세포는 한 개체를 구성하는 모든 조직의 세포로 분화될 수 있는 잠재력을 지닌 만능줄기세포이지만 세포 제조과정에서 배아의 파괴라는 심각한 윤리적 문제점이 존재한다.
이러한 문제점을 극복하기 위한 대안으로, 성체에서 유래한 세포를 역분화시켜 배아줄기세포와 유사한 맞춤형 만능줄기세포를 제조하기 위한 여러 가지 방법들이 시도되어 왔다. 인간 배아 줄기세포는 인간 생명체로 발생할 수 있는 배아로부터 만들어지기 때문에 많은 윤리적인 문제가 있으나, 성체 줄기세포에 비하여 세포증식 및 분화 능력이 우수한 것으로 알려져 있다. 성체 줄기세포는 골수, 혈액, 뇌, 피부 등에서 얻을 수 있어 윤리적인 문제가 적으나, 배아 줄기세포에 비하여 한정된 분화능력(multipotency)을 가지고 있다.
대표적인 방법으로 세포 융합법(fusion with ES cell), 체세포 핵치환법(somatic cell nuclear transfer), 특정 인자 주입법(reprogramming by gene factor) 등이 있다. 세포융합법은 유도된 세포가 2쌍의 유전자를 더 가지고 있어 세포의 안정성 측면에서 문제점이 있고 체세포 핵치환법은 난자가 대량으로 필요하며 효율 또한 매우 낮다는 점에서 문제가 있다. 그리고 특정 인자 주입법은 특정 유전자를 삽입하여 역분화를 유도하기 위하여 발암유전자를 포함하는 바이러스를 이용하는 방법으로 암발생의 위험이 높으며, 낮은 효율과 방법적인 측면에서의 난이도로 인해 세포 치료제 개발 가능성 면에서 문제가 되고 있다.
만능 줄기 줄기세포를 성공적으로, 그리고 다량으로 얻기 위해서는 분리된 제대 유래 단핵세포를 배양하는 단계에서의 배양 조성물이 매우 중요한바, 보다 많은 양으로, 고효율의 유도방법으로 만능 줄기세포를 제조하기 위한 연구가 필요한 상태이다.
한편, 한국공개특허 제2009-0043115호에서는 갈조류의 감태를 이용하여 아토피 질환의 치료 또는 예방을 위한 조성물을 개시하고 있고, 한국공개특허 제2012-0126148호에서는 산화염색용 염모제 조성물을 개시하고 있다.
본 발명자들은 감태 추출물을 이용하여 유도만능 줄기세포 역분화용 배지 조성물을 성공적으로 개발한바 있다(한국공개특허 제2015-0050823호). 하지만, 감태 추출물 중 어떤 성분이 유도만능 줄기세포 역분화 효과를 갖는지는 아직 밝혀지지 않고 있다.
상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
본 발명자들은 안전성과 생산효율이 높은 세포 치료제 개발의 실용화를 위하여, 만능 줄기세포를 고효율로 유도하는 방법을 찾고자 노력하였다. 그 결과, 안전한 천연 물질인 갈조류에서 추출 및 분리된 일부 화합물이 세포 배양 배지에 첨가될 경우, 중간엽 줄기세포를 이용하여 안전하고도 높은 효율로 유도만능 줄기세포를 제조할 수 있다는 것을 확인함으로써 본 발명을 완성하였다.
따라서, 본 발명의 목적은 플로로탄닌 분획물을 포함하는 중간엽 줄기세포(mesenchymal stem cell)를 유도만능 줄기세포(induced pluripotency stem cell)로 역분화하기 위한 배지 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 플로로탄닌(phlorotannin) 분획물이 포함된 배지에서 중간엽 줄기세포를 유도만능 줄기세포로 역분화시키는 단계를 포함하는 유도만능 줄기세포의 제조 방법을 제공하는데 있다. 본 발명의 또 다른 목적은 상기 제조 방법으로 제조된 유도만능 줄기세포를 포함하는 세포 치료용 조성물을 제공하는데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
상기한 과제는, 플로로탄닌 분획물을 포함하는, 중간엽 줄기세포를 유도만능 줄기세포로 역분화하기 위한 배지 조성물에 의해 달성된다.
바람직하게는 상기 플로로탄닌 분획물은 다음 화학식 1로 나타낸 비엑콜 화합물 또는 그 염일 수 있다.
[화학식 1]
Figure PCTKR2015005183-appb-I000001
바람직하게는, 상기 플로로탄닌 분획물은 감태(Ecklonia cava), 가시뼈대그물말(Dictyopteris prolifera Okamura), 참그물바탕말(Dictyota dichotoma Lamouroux), 괭생이모자반(Sargassum horneri C. Agardh), 쌍발이모자반(Sargassum patens C. Agardh) 및 패(Ishige okamurae Yendo)로 이루어진 군에서 선택된 1종의 갈조류에서 추출 및 분리한 것이거나, 인공적으로 합성된 것일 수 있다.
또한 바람직하게는 상기 플로로탄닌 분획물은 감태에서 추출 및 분리한 것일 수 있다.
또한, 바람직하게는, 상기 플로로탄닌 분획물은 DMEM(Dulbecco's Modified Eagle's Medium), MEM(Minimal Essential Medium), BME(Basal Medium Eagle), RPMI 1640, F-10, F-12, DMEM-F12, α-MEM(α-Minimal Essential Medium), G-MEM(Glasgow's Minimal Essential Medium), IMDM(Iscove's Modified Dulbecco's Medium), MacCoy's 5A 배지, AminoMaxⅡ complete Medium 및 MesenCult-XF Medium으로 구성된 군으로부터 선택되는 배지에 포함될 수 있다
바람직하게는, 상기 플로로탄닌 분획물은 배지 조성물 기준 10 내지 500 ㎍/㎖ 포함될 수 있다.
또한 바람직하게는, 상기 배지 조성물은 에너지워터 1 내지 10 v/v%를 추가로 포함할 수 있다.
또한, 본 발명의 과제는, 플로로탄닌 분획물을 세포 배양 배지에 첨가하는 단계; 및 상기 배지에서 중간엽 줄기세포(mesenchymal stem cell)를 유도만능 줄기세포(induced pluripotency stem cell)로 역분화시키는 단계를 포함하는 유도만능 줄기세포의 제조 방법에 의해 달성된다.
바람직하게는 상기 플로로탄닌 분획물은 다음 화학식 1로 나타낸 비엑콜 화합물 또는 그 염일 수 있다.
[화학식 1]
Figure PCTKR2015005183-appb-I000002
또한 바람직하게는, 상기에서 제조된 유도만능 줄기세포를 포함하는 세포 치료용 조성물을 제공한다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(i) 본 발명은 갈조류에서 추출한 플로로탄닌 분획물을 이용하여 유도만능 줄기세포 역분화용 배지 조성물을 제공한다.
(ii) 또한, 본 발명은 상기 배지 조성물을 이용한 유도만능 줄기세포 제조 방법을 제공한다.
(iii) 본 발명에 따른 배지 조성물을 이용하면 중간엽 줄기세포를 이용하여 유도만능 줄기세포를 효율적으로 제조할 수 있으며, 제조된 만능 줄기세포는 다양한 세포로의 분화가 가능하므로 세포 치료제로서 유용하게 사용될 수 있다.
도 1은 감태 추출물로부터 분획물의 분리조건을 나타낸 것이다.
도 2는 화학식 1로 표시되는 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol의 Mass 스펙트럼 결과를 나타낸 것이다.
도 3은 화학식 1로 표시되는 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol의 1H-NMR 스펙트럼 결과를 나타낸 것이다.
도 4는 화학식 1로 표시되는 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol의 13C-NMR 스펙트럼 결과를 나타낸 것이다.
도 5는 화학식 2로 표시되는 Dieckol의 Mass 스펙트럼 결과를 나타낸 것이다.
도 6은 화학식 2로 표시되는 Dieckol의 1H-NMR 스펙트럼 결과를 나타낸 것이다.
도 7은 화학식 2로 표시되는 Dieckol의 13C-NMR 스펙트럼 결과를 나타낸 것이다.
도 8은 화학식 3으로 표시되는 PFF-A(Phlorofucofuroeckol-A)의 Mass 스펙트럼 결과를 나타낸 것이다.
도 9는 화학식 3으로 표시되는 PFF-A(Phlorofucofuroeckol-A)의 1H-NMR 스펙트럼 결과를 나타낸 것이다.
도 10은 화학식 3으로 표시되는 PFF-A(Phlorofucofuroeckol-A)의 13C-NMR 스펙트럼 결과를 나타낸 것이다.
도 11은 화학식 4로 표시되는 974-A의 Mass 스펙트럼 결과를 나타낸 것이다.
도 12는 화학식 4로 표시되는 974-A의 1H-NMR 스펙트럼 결과를 나타낸 것이다.
도 13은 화학식 4로 표시되는 974-A의 13C-NMR스펙트럼 결과를 나타낸 것이다.
도 14는 화학식 4로 표시되는 974-B의 Mass 스펙트럼 결과를 나타낸 것이다.
도 15는 화학식 5로 표시되는 974-B의 1H-NMR 스펙트럼 결과를 나타낸 것이다.
도 16은 화학식 5로 표시되는 974-B의 13C-NMR스펙트럼 결과를 나타낸 것이다.
도 17은 본 발명의 방법(실험예 1-1)으로 감태 추출물의 플로로탄닌(phlorotannin) 분획물을 처리하여 농도에 따라 유도된 만능 줄기세포 콜로니 형성을 나타낸 것이다.
도 18은 본 발명의 방법으로 유도된 세포(실험예 1-1)를 만능 줄기세포 특이적 단백질인 SSEA-4와 Alkaline phosphatase의 발현을 이용하여 만능 줄기세포임을 확인한 것이다.
도 19는 본 발명의 방법으로 유도된 세포(실험예 1-1)를 만능 줄기세포 특이적 유전자인 OCT4와 SOX2의 발현을 이용하여 만능 줄기세포임을 확인한 것이다.
도 20은 본 발명의 방법(실험예 1-2)으로 플로로탄닌(phlorotannin) 분획물속 화합물을 처리하여 농도에 따라 유도된 만능 줄기세포 콜로니 형성을 나타낸 것이다.
도 21은 본 발명의 방법으로 유도된 세포(실험예 1-2)를 만능 줄기세포 특이적 단백질인 SSEA-4와 Alkaline phosphatase의 발현을 이용하여 만능 줄기세포임을 확인한 것이다.
도 22는 본 발명의 방법으로 유도된 세포(실험예 1-2)를 만능 줄기세포 특이적 유전자인 OCT4와 SOX2의 발현을 이용하여 만능 줄기세포임을 확인한 것이다.
본 발명의 일 양태에 따르면, 본 발명은 갈조류에서 추출 및 분리된 플로로탄닌(phlorotannin) 분획물을 포함하는 중간엽 줄기세포(mesenchymal stem cell)를 유도만능 줄기세포(induced pluripotency stem cell)로 역분화하기 위한 배지 조성물을 제공한다.
본 발명자들은 배아를 파괴하는 윤리적 문제를 없이 안전성과 생산효율이 높은 세포치료제 개발의 실용화를 위한 만능 줄기세포를 고효율로 유도하는 방법을 찾고자 노력하였다. 그 결과, 안전한 천연 추출물인 갈조류 추출물, 바람직하게는 감태 추출물에서 분리한 플로로탄닌(phlorotannin) 분획물을 세포 배양 배지에 첨가할 경우 놀랍게도 높은 효율로 유도만능 줄기세포를 제조할 수 있다는 것을 확인하였다.
본 발명의 일 실시예에 의하면, 상기 갈조류 추출물은 갈조류 물 추출물, 갈조류 에탄올 추출물, 갈조류 메탄올 추출물 또는 물, 에탄올 및 메탄올 중에서 선택되는 어느 2 이상의 용매의 혼합용매에 의한 갈조류 추출물 일 수 있다.
본 발명의 일 실시예에 의하면, 갈조류 물 추출물은 40 ~ 100℃의 물로 2~48시간 동안 갈조류를 추출하여 제조할 수 있다. 갈조류 에탄올 추출물은 갈조류를 35~80%의 에탄올로 20~60℃에서 2~36시간 동안 추출하여 제조할 수 있다. 또한, 상기 갈조류 메탄올 추출물은 갈조류를 35%~80%의 메탄올로 20~60℃에서 2~36시간 동안 추출하여 제조할 수 있다.
본 발명의 배지 조성물에 포함되는 갈조류 중 감태(Ecklonia cava)는 주로 남해안, 제주도 해안 일대 및 울릉도 해안 일대에서 서식하는 갈조식물 다시마목 다시마과의 여러해살이 해조류로서, 주로 전복과 소라 등의 먹이가 되며, 알긴산이나 요오드칼륨을 만드는 주요 원료나, 식용으로 이용하기도 한다.
본 발명이 포함하는 감태 추출물은 물, (a) 탄소수 1-4의 무수 또는 함수 저급 알코올(메탄올, 에탄올, 프로판올, 부탄올, 노말-프로판올, 이소-프로판올 및 노말-부탄올 등), (b) 상기 저급 알코올과 물과의 혼합용매, (c) 아세톤, (d) 에틸 아세테이트, (e) 클로로포름, (f) 1,3-부틸렌글리콜, (g) 헥산, (h) 디에틸에테르 등의 유기용매를 이용하여 추출할 수 있으며, 바람직하게는 메탄올 또는 에탄올과 물과의 혼합용매를 이용하여 추출할 수 있다. 혼합용매를 이용하여 추출할 경우 메탄올 또는 에탄올의 함량은 50 내지 80 v/v%가 바람직하다. 그러나 반드시 이에 제한되는 것은 아니다.
갈조류 추출물에서 분리된 플로로탄닌(phlorotannin)은 플로로글루시놀(phloroglucinol)을 기본 구성 단위로 하는 폴리페놀계 화합물이다. 플로로탄닌은 자연계에서는 해양식물 특히 갈조류에서 많이 발견되는데, 이러한 플로로탄닌은 항균 효과, 항산화 효과, 간보호 활성, 엘라스타제 저해 활성, 히얄루로니다제(hyaluronidase) 저해 활성, 심혈관계 보호효과, 항바이러스 활성 등의 여러 가지 유용한 효과들이 보고되고 있을 뿐이다.
본 발명에서는 특히 감태 추출물의 플로로탄닌(phlorotannin) 분획물로부터 하기 화학식 1로 표시되는 비엑콜 화합물, 화학식 2로 표시되는 디엑콜 화합물, 화학식 3으로 표시되는 플로로퓨코퓨로엑콜 A 화합물, 화학식 4로 표시되는 엑콜계 화합물, 및 화학식 5로 표시되는 엑콜계 화합물을 분리 및 동정하였으며, 이들의 유도만능줄기세포 발현능을 확인하였다. 상기 화합물들 중 화학식 1로 표시되는 비엑콜 화합물을 세포 배양 배지에 첨가할 경우, 높은 효율로 유도만능 줄기세포를 제조할 수 있다는 것을 확인하였다.
[화학식 1]
Figure PCTKR2015005183-appb-I000003
[화학식 2]
Figure PCTKR2015005183-appb-I000004
[화학식 3]
Figure PCTKR2015005183-appb-I000005
[화학식 4]
Figure PCTKR2015005183-appb-I000006
[화학식 5]
Figure PCTKR2015005183-appb-I000007
보다 구체적으로, 상기 화학식 1은 2-O-(2,4,6-트리하이드록시페닐)-6,6'-비엑콜(2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol)이고, 화학식 2는 디엑콜(Dieckol)이고, 화학식 3은 플로로퓨코퓨로엑콜(PFF-A, Phlorofucofuroeckol-A)이고, 화학식 4는 974-A, 화학식 5는 974-B로 표시되며, 본 발명에서는 이들을 단독 또는 복합 추출하여 세포 배양 배지에 첨가할 수 있다.
본 발명에서 사용된 용어 "배아줄기세포"는 수정 후 발생 초기인 배반포기(blastocyst)의 내부세포덩어리(inner cell mass)에서 분리하여 배양한 세포로 만능성(pluripotency)을 지니는 세포를 지칭한다. 본 발명에서 사용된 용어 "만능줄기세포"는 생체를 구성하는 3가지 배엽(germ layer), 즉 내배엽(endoderm), 중배엽(mesoderm), 외배엽(ectoderm) 모두로 분화할 수 있는 만능성을 지닌 줄기세포를 지칭한다.
본 발명에서 사용된 용어 "분화(differentiation)"는 세포가 분열 증식하여 성장하는 동안에 서로 구조나 기능이 특수화하는 현상, 즉 생물의 세포, 조직 등이 각각에게 주어진 일을 수행하기 위하여 형태나 기능이 변해가는 것을 말한다.
본 발명에서 사용된 용어 "세포 치료제"는 사람으로부터 분리, 배양 및 특수한 조작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 동종, 또는 이종세포를 체외에서 증식, 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 지칭한다. 세포 치료제는 세포의 분화정도에 따라 크게 체세포 치료제, 줄기세포 치료제로 분류되며 본 발명은 특히 줄기세포 치료제에 관한 것이다.
본 발명의 중간엽 줄기세포는 포유동물 유래의 배아 줄기세포 또는 성체 줄기세포에서 분리한 세포로서, 바람직하게는 제대 유래 중간엽 줄기세포이며, 보다 바람직하게는 인체 제대유래 중간엽 줄기세포이다. 상기 줄기세포는 인체에서 태반과 태아를 연결하는 제대에서 채취하여 얻을 수 있다. 제대로부터 중간엽 줄기세포의 채취는 다양한 방법을 이용하여 이를 수행할 수 있으며, 예를 들어, 인체에서 제대를 채취하여 DPBS로 혈액이 나오지 않을 때까지 씻어주고, 씻은 제대를 수술용 칼날로 다지고 37℃에서 인큐베이션(incubation) 시켜서 단핵세포가 함유된 용액을 얻을 수 있다.
본 발명에서 사용된 용어 "배지"는 당, 아미노산, 각종 영양물질, 혈청, 성장인자, 무기질 등의 세포의 성장 및 증식 등에 필수적인 요소를 포함하는 생체 외 (in vitro)에서 줄기세포 등의 세포의 배양 또는 분화를 위한 혼합물을 말한다.
당업계에는 다양한 배지가 시판되고 있으며, 인위적으로 제조하여 사용할 수도 있다. 시판 중인 배지로는 DMEM(Dulbecco's Modified Eagle's Medium), MEM(Minimal Essential Medium), BME(Basal Medium Eagle), RPMI 1640, F-10, F-12, DMEM F-12, α-MEM(α-Minimal Essential Medium), G-MEM(Glasgow's Minimal Essential Medium), IMPM(Iscove's Modified Dulbecco's Medium), AmnioMax, AminoMaxⅡ complete Medium(Gibco, Newyork, USA), MesenCult-XF Medium 등이 있으며, 인위적으로 제조할 수 있는 배지와 더불어 본 발명의 배지 조성물에 포함되는 기본 배지로 사용할 수 있다.
상기 기본 배지에는 통상적으로 첨가되는 혈청 성분(예를 들어, FBS(Fetal Bovine Serum)) 및 항생제(예를 들어, 페니실린, 스트렙토마이신) 등을 첨가할 수 있다. 상기 기본 배지에 첨가되는 혈청 성분 또는 항생제 성분의 농도는 본 발명의 효과를 달성할 수 있는 범위 내에서 변할 수 있으며, 바람직하게는 10% FBS, 100 unit/㎖ 페니실린, 50 ㎍/㎖ 스트렙토마이신 등을 첨가할 수 있다.
한편 상기 DMEM에 첨가되는 화합물의 농도는 본 발명의 효과를 달성할 수 있는 범위 내에서 변할 수 있다.
또한, 본 발명의 배지는 영양혼합물(Nutrient Mixture)을 추가로 포함할 수 있다. 상기 영양 혼합물은 세포배양에 일반적으로 사용되는 각종 아미노산, 비타민, 무기염 등을 포함하는 혼합물로서, 상기 아미노산, 비타민, 무기염 등을 혼합하여 제조하거나 상업적으로 제조된 영양 혼합물을 사용할 수 있다. 상업적으로 제조된 영양혼합물은 M199, MCDB110, MCDB202, MCDB302 등을 예로 들 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명의 배지는 만능 줄기 세포의 유도와 안정화를 위해 에너지워터를 추가적으로 포함할 수 있다. 상기 에너지워터는 0.05 내지 20 v/v%로 추가하는 것이 바람직하며, 보다 바람직하게는 0.1 내지 10 v/v%로 추가한다.
본 발명의 배지 조성물은 만능 줄기세포 유도에 특이적인 배지로서, 상기 기본 배지에 갈조류 추출물로부터 분리된 플로로탄닌(phlorotannin) 분획물을 첨가함으로써 달성될 수 있으며, 바람직하게는 전체 배지 조성물 기준 1 내지 1,000 ㎍/㎖ 농도로, 보다 바람직하게는 10 내지 500 ㎍/㎖ 농도로 감태 추출물로부터 분리된 플로로탄닌(phlorotannin) 분획물을 포함할 수 있다.
아울러, 상기 화학식 1은 2-O-(2,4,6-트리하이드록시페닐)-6,6'-비엑콜(2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol), 화학식 2는 디엑콜(Dieckol), 화학식 3는 플로로퓨코퓨로엑콜(PFF-A, Phlorofucofuroeckol-A), 화학식 4는 974-A, 및 화학식 5는 974-B로 이루어진 군으로부터 선택된 1종 이상을 전체 배지 조성물 기준 10 내지 200 ㎍/㎖ 농도로, 보다 바람직하게는 20 내지 150 ㎍/㎖ 농도로 사용할 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 감태(Ecklonia cava) 추출물에서 분리된 플로로탄닌(phlorotannin) 분획물을 세포 배양 배지에 첨가하는 단계; 및 상기 배지에서 중간엽 줄기세포(mesenchymal stem cell)를 유도만능 줄기세포(induced pluripotency stem cell)로 역분화시키는 단계를 포함하는 유도만능 줄기세포의 제조 방법을 제공한다.
이때, 배양은 제대 유래 단핵세포를 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol 또는 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol을 포함하는 혼합 을 기본 배지 조성물에 넣어 습도 95%, 37℃, 5% CO2 조건의 배양기에서 배양할 수 있다.
본 발명의 일 실시예에서는 상기 조건의 배양기에 배양한 다음 5일 후에 뜨는 세포를 제거하고 3 ~ 4일 마다 배지를 교체하여 배양하였다. 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol를 포함하는 배양 배지 조성물을 이용하여 줄기세포를 배양했을 때 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol, 의 농도에 따른 만능줄기세포 유도를 관찰하였다. DMEM F-12 배지를 대조군으로 하고, DMEM F-12 에 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol를 포함하는 배지를 실험군으로 하여 농도별로 처리하여 인간제대 유래 중간엽 줄기세포를 배양하였다.
그 결과, 본 발명의 배지 조성물로 배양했을 때, 만능 줄기세포와 같은 콜로니를 형성하는 것을 확인할 수 있었다. 인체 제대 유래 중간엽 줄기세포는 본 발명의 배지에서 10 내지 14일째 되는 날 줄기세포 콜로니들이 형성되었다. 즉, 본 발명의 배양배지 조성물은 인간제대 유래 중간엽 줄기세포에서 만능줄기세포 콜로니를 형성되었음을 확인할 수 있었다(도 17 내지 도 19).
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 제조 방법으로 제조된 유도만능 줄기세포를 제공한다.
본 발명의 유도만능 줄기세포는 배아 줄기세포와 동일한 분화능을 가지며, 세포의 모양에 있어서도 배아 줄기세포와 거의 동일하다. 본 발명의 일 실시예에 따르면, 배아줄기세포에 특징적인 유전자(Nanog, Oct4, Sox2, Klf) 및 단백질(SSEA-4)의 발현여부를 조사한 결과, 본 발명에 의해 유도된 만능 줄기세포에서 배아줄기세포와 동일하게 상기 유전자 및 단백질이 발현됨을 확인하였다(도 19).
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 방법으로 제조된 유도만능 줄기세포를 포함하는 세포 치료용 조성물을 제공한다.
본 발명의 유도만능 줄기세포는 배아 줄기세포와 동일한 만능분화능(pluripotency)을 가지며, 본 발명의 일 실시예에 따르면, 외배엽, 중배엽 및 내배엽으로 분화할 수 있는 만능성을 가짐을 확인할 수 있었다.
따라서, 본 발명의 유도만능 줄기세포는 효과적인 세포 치료제로 사용될 수 있다.
본 발명의 조성물은 임의의 투여경로에 의해서, 구체적으로는 복강 또는 흉강 투여, 피하 투여, 정맥 또는 동맥 혈관내 투여, 근육내 투여, 주사에 의한 국소 투여 등의 방법에 의해서 투여 가능하다.
본 발명에 있어서, 상기 조성물은 통상의 방법에 기초하여 주사제, 현탁제, 유화제 등의 형태로 투여할 수 있고, 필요에 따라서 프로인트 완전 보조제 등의 보조제에 현탁되거나, 또는 BCG와 같은 보조제 활성을 갖는 물질과 함께 투여하는 것도 가능하다. 상기 조성물은 멸균되거나 안정화제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 또는 완충제 등의 보조제 및 기타 치료적으로 유용한 물질을 함유할 수 있으며, 통상적인 혼합, 과립화 또는 코팅 방법에 의해 제조될 수 있다.
본 발명에 의한 세포 치료용 조성물은 약제학적으로 허용 가능한 담체나 첨가제를 함유할 수 있는데, 유효성분 이외에 희석제(예를 들어, 덱스트로즈, 솔비톨, 셀룰로즈, 글리신, 락토즈, 스쿠로즈, 만니톨), 결합제(예를 들어, 마그네슘 알루미늄 실리케이트, 전분 페이스트, 트라가칸스, 나트륨 카복시메틸셀룰로즈), 붕해제(예를 들어, 전분, 한천, 알긴산 또는 그의 나트륨 염) 또는 비등 혼합물 및/또는 흡수제, 감미제, 향미제 및 착색제를 함유할 수 있다.
본 발명의 세포 치료용 조성물은 관절염, 신경계질환, 내분비질환, 간질환 등에 적용이 가능하며, 추후 사람에 대한 임상시험 결과에 따라서는 사람에 대한 동종세포 치료제로의 가능성도 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실시예 1: 플로로탄닌( phlorotannin ) 분획물 및 화학식 1 ~ 5 화합물의 제조
실시예 1-1: 감태 추출물로부터 플로로탄닌 분획물의 제조
실험에 사용된 생약 시료들은 제주도에서 구입하여 전문가의 정확한 감정을 거친 후 실험에 사용하였다. 건조된 생약 시료 100 g을 70% 메탄올 1 ℓ에 넣고 16시간 동안 환류 추출하고 여과지를 사용하여 여과하였다. 여액을 회전감압증발기에서 농축시키고 즉시 동결 건조하여 감태 추출물을 제조하였다.
상기 감태 추출물 5 g을 메탄올 500 μl로 용해시킨 후, C4 resin(Sepia tech)에 흡착시켜 회전진공농축기(Rotary Vacuum Evaporator)를 사용하여 30℃에서 감압 건조한 후, 소 분획을 나누기 위해 Diaion HP-20을 이용하여 용매별 분획을 실시하였다. Gradient를 주어 0%, 25%, 50%, 75% 및 100%의 농도를 갖는 메탄올 용매를 준비하여 분획을 실시하였다. 5개의 소분획을 나눈 후, HPLC profile을 확인하였다. (도 1 참조). 5개 중 HPLC 피크가 가장 높은 분획물을 선택하였다.
실시예 1-2: 플로로탄닌( phlorotannin ) 분획물을 분리, 정제
실시예 1-1에서 얻은 분획물을 C18 컬럼(Phenomenex Luna C18 기기, 10 μm, 21.2 × 250 mm)을 사용하고 유속 10 ml/min, UV 243 nm에서 0.02% TFA가 포함된 아세토니트릴(acetonitrile) 및 물(water)의 용매를 사용하여 20% 아세토니트릴 10 분, 20~55% 아세토니트릴 40 분, 55~100% 아세토니트릴 10 분, 총 60 분의 용매 gradient 조건을 가진 C-18 역상 HPLC에 적용하여 peak C(RT 25min), E(RT 33min), G(RT 37.5min), H(RT 38min), I(RT 38.5min)를 분리하였으며 retention time 0분 부터 peak C 사이를 B, peak C와 peak E 사이를 D, peak E와 G 사이를 F로 명명하고 peak I 이후에 fraction은 J라 명명하였다.
각 peak의 정제는 C18 컬럼(Phenomenex Luna C18 기기, 10 μm, 21.2 × 250 mm)을 사용하였으며, 유속 4 ml/min, UV 230nm에서 0.02% TFA가 포함된 아세토니트릴(acetonitrile)이나 메탄올(methanol) 그리고 물(water)의 용매를 사용하였고, 각각 isocratic 조건으로 정제를 실시하였다. 아세토니트릴(acetonitrile) 28% isocratic 조건에서 peak E(RT 10min), peak G(RT 22min), peak H(RT 23min), peak I(RT 27min)에서 각각 정제를 하였다.
하지만, peak C는 정제 후 분석결과 물질이 2개 섞여있는 것을 확인하여, 메탄올(methanol) 26% isocratic 조건으로 2 가지 물질을 C-1(RT 10min), C-2(RT 13.5min) 재분리하였다.
실시예 1-3: 폴리페놀계 화합물의 구조 분석
실시예 1-2에서 정제된 화합물을 HPLC-MS 분석기(High-performance liquid chromatography mass chromatography)를 사용하여 분자량 및 분자식을 결정하였으며, 화합물의 구조 동정은 핵자기공명분석(NMR)을 통하여 1H NMR, 13C-NMR 스펙트럼을 분석함으로써 이루어졌다.
그 결과, 화학식 1은 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol, 화학식 2는 Dieckol, 화학식 3은 Phlorofucofuroeckol-A, 화학식 4는 974-A, 화학식 5는 974-B으로 동정하였다. 분리한 폴리페놀계 화합물의 구조는 하기 표 1에 나타내었으며, 각 화합물의 구조적 특징은 하기와 같다.
Comp No. Comp. Code Retention time(min) 물질명
C-1 화학식 1 STC-C-1 11.0 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol
E 화학식 2 STC-E 12.7 dieckol
G 화학식 3 STC-G 13.9 phlorofucofuroeckol-A
H 화학식 5 STC-H 14.2 974-B
I 화학식 4 STC-I 14.5 974-A
[화학식 1] 2-O-(2,4,6- trihydroxyphenyl )-6,6'- bieckol
1) 분자량: 866.65
2) 분자식: C42H26O21
3)1H NMR (400 MHz, DMSO) δ 9.28, 9.25, 9.14, 9.09, 9.06, 9.04, 8.95, 8.66, 8.61, 6.09, 6.07, 6.05, 5.91(d, J=2.0Hz,1H), 5.84, 5.80,δ, 5.75(d, J=2.0Hz, 1H).
4) 13C NMR (100 MHz, dmso)δ 160.6, 160.5, 158.9, 158.9, 154.8, 151.5, 151.4, 151.2, 147.4, 146.5, 144.6, 144.6, 141.7, 141.6, 141.5, 141.5, 137.4, 137.4, 125.0, 123.9, 123.0, 123.0, 122.8, 122.3, 122.3, 99.9, 99.8, 98.1, 98.1, 98.0, 96.2, 96.2, 96.1, 95.0, 94.3, 94.1.
도 2는 상기 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol의 Mass 스펙트럼을 나타낸다. 또한, 도 3과 도 4는 각각 상기 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol의 1H-NMR 스펙트럼과 13C-NMR 스펙트럼을 나타내며, 각 피크(peak)에 기재된 숫자는 도 3 및 4의 화학식에 기재된 숫자에 대응된다.
[화학식 2] Dieckol
1) 분자량: 742.08
2) 분자식: C36H22O18
3) 1H NMR (400 MHz, MeOD) δ 6.16 (s, 1H), 6.14 (s, 1H), 6.10 (s, 2H), 6.07(d, J = 2.9 Hz, 1H), 6.06 (d, J = 2.9 Hz, 1H), 5.99 (d, J = 2.8 Hz, 1H), 5.96(d, J = 2.8 Hz, 1H).
4) 13C NMR (125MHz, MeOD)δ 162.70, 160.95, 160.91, 158.63, 156.82, 155.34, 153.22, 148.17, 148.13, 147.97, 147.75, 145.11, 144.95, 144.22, 144.13, 139.46, 139.29, 127.22, 126.98, 126.42, 126.37, 125.66, 125.40, 125.34, 100.65, 100.51, 100.25, 100.14, 98.44, 96.99, 96.63, 96.55, 96.15.
도 5는 상기 Dieckol의 Mass 스펙트럼을 나타낸다. 또한, 도 6과 7은 각각 상기 Dieckol의 1H-NMR 스펙트럼과 13C-NMR 스펙트럼을 나타내며, 각 피크(peak)에 기재된 숫자는 도 6 및 7의 화학식에 기재된 숫자에 대응된다.
[화학식 3] phlorofucofuroeckol -A
1) 분자량: 602.07
2) 분자식: C30H18O14
3) 1H NMR (400 MHz, MeOD) δ 6.63 (s, 1H), 6.40 (s, 1H), 6.26 (s, 1H), 5.96 (d, J=2.1Hz,2H), 5.955.93 (t.like,1H), 5.92 (t,J=2.1Hz,1H), 5.88(d,J=2.1Hz,2H).
4) 13C NMR (125 MHz, MeOD) δ 161.87, 161.84, 160.18, 153.15, 151.73, 151.15, 148.31, 148.21, 145.97, 143.92, 138.37, 135.29, 128.04, 124.94, 124.64, 122.27, 105.29, 99.91, 99.28, 97.69, 97.57, 96.18, 95.35, 95.29.
도 8은 상기 PFF-a(Phlorofucofuroeckol-A)의 Mass 스펙트럼을 나타낸다. 또한, 도 9와 10는 각각 상기 PFF-a(Phlorofucofuroeckol-A)의 1H-NMR 스펙트럼과13C-NMR 스펙트럼을 나타내며, 각 피크(peak)에 기재된 숫자는 도 9 및 10의 화학식에 기재된 숫자에 대응된다.
[화학식 4] 974-A
1) 분자량: 974.73
2) 분자식: C48H30O23
3) 1H NMR (400 MHz, MeOD) δ 6.63 (s, 1H), 6.40 (s, 1H), 6.25 (s, 1H), 6.20
(d, J=2.3Hz,1H), 6.18(d,J=2.3Hz,1H), 6.12(d,J=2.3Hz,1H, 6.04(d,J=2.8Hz,1H), 5.92(s,2H), 5.925.91(m,1H), 5.90(d,J=2.3Hz,1H), 5.87(d,J=2.1Hz,2H), 5.74(d,J=2.8Hz,1H).
4) 13C NMR (125 MHz, MeOD) δ 163.16, 162.88, 161.83, 160.16, 159.64, 159.54, 159.14, 159.09, 156.55, 156.49, 156.48, 153.85, 153.35, 152.26, 151.92, 151.77, 151.18, 148.21, 147.78, 145.82, 144.31, 138.15, 135.16, 127.62, 124.93, 124.90, 124.25, 124.22, 122.27, 119.40, 118.15, 105.22, 105.21, 102.62, 102.44, 99.91, 99.24, 98.61, 98.32, 97.68, 97.57, 96.34, 96.11, 95.28, 95.20, 94.37, 94.18.
도 11은 상기 974-A의 Mass 스펙트럼을 나타낸다. 또한, 도 12와 13은 각각 상기 974-A 의 1H-NMR 스펙트럼과 13C-NMR 스펙트럼을 나타내며, 각 피크(peak)에 기재된 숫자는 도 12 및 13의 화학식에 기재된 숫자에 대응된다.
[화학식 5] 974-B
1) 분자량: 947.73
2) 분자식: C48H30O23
3) 1H NMR (400 MHz, MeOD)δ 6.69 (s, 1H), 6.38 (s, 1H), 6.21 (d, J = 2.3 Hz, 1H), 6.19 (d, J = 2.3 Hz, 1H), 6.17 (s, 1H), 6.14 (d, J = 2.3 Hz, 1H), 6.05 (d, J = 2.8 Hz, 1H), 6.00 (s, 2H), 5.91 (t, J = 2.1 Hz, 1H), 5.89 (d, J = 2.3 Hz, 1H), 5.87 (d, J = 2.1 Hz, 2H), 5.76 (d, J = 2.8 Hz, 1H).
4) 13C NMR (125 MHz, MeOD) δ 161.85, 160.16, 159.64, 159.53, 159.19, 158.97, 157.45, 156.81, 156.63, 156.47, 153.79, 152.65, 152.22, 151.95, 151.66, 150.89, 148.32, 147.03, 143.86, 142.83, 138.07, 137.95, 127.35, 125.23, 124.65, 124.01, 123.93, 122.11, 109.85, 106.33, 102.68, 102.49, 99.62, 99.47, 98.61, 98.32, 97.61, 97.56, 96.45, 95.28, 95.13, 94.23, 92.83.
도 14는 상기 974-B 의 Mass 스펙트럼을 나타낸다. 또한, 도 15와 16은 각각 상기 974-B의 1H-NMR 스펙트럼과 13C-NMR스펙트럼을 나타내며, 각 피크(peak)에 기재된 숫자는 도 15 및 16의 화학식에 기재된 숫자에 대응된다.
실시예 2: 인체 제대에서 중간엽 줄기세포의 분리 및 배양
실시예 2-1: 인체 제대 채취
제대 조직은 출산 직후 바로 수집된다. 시료가 실험실로 옮겨지기 전에 우선 깨끗이 헹군 다음 즉시 이송용 배지(50 IU/㎖의 페니실린, 50 ㎍/㎖의 스트렙토마이신(Invitrogen으로부터 구매))가 첨가된 F-12 배지가 들어있는 500 ㎖의 멸균 유리병로 옮겨진다. 실험실에서는 멸균 상태 하에서 class 100의 플로우 후드에서 줄기세포의 추출이 수행된다. 시료는 우선 멸균 스테인레스 스틸의 용기로 옮겨진다. PBS는 수회 세정한 후 제대 조직 시료는 이후 2 ㎝ 길이로 잘라져 10 ㎝ 지름의 세포 배양 접시로 옮겨지며, 여기서 추가적인 세정 및 70% 에탄올로 항감염처리하고, 항생제 혼합물(50 IU/㎖의 페니실린, 50 ㎍/㎖의 스트렙토마이신(Invitrogen으로부터 구매))이 첨가된 PBS로 상기 용액이 깨끗해질 때까지 수차례 세정한다.
실시예 2-2: 인체 제대에서 줄기세포 분리 및 배양
제대의 혈관 및 기타 내부요소들로부터 와튼젤리(제대의 기질)를 분리하기 위해 제대조직의 절개가 우선 이루어진다. 혈관을 제거한 후 분리된 와튼젤리는 세포의 추출을 위해 작은 조각(0.5 ㎝ x 0.5 ㎝)의 크기로 잘라진다. 외식(explant)은 상피 줄기세포 또는 중간엽 줄기세포의 추출에 적합한 세포배양 조건이 갖추어져 있는 각기 다른 조직배양 접시에 제대 와튼젤리의 조각을 넣어 수행된다.
중간엽 세포의 분리/배양을 위해 상기의 외식된 조직은 10% 우태혈청(FBS, Hyclone)이 첨가된 5ml의 DMEM(Dulbecco's modified eagle medium) F-12(Gibco), 10% FBS, 100 unit/㎖ 페니실린, 50 ㎍/㎖ 스트렙토마이신에 담가져 이산화탄소 세포배양기에서 37℃로 유지되었다. 배지는 매 3일 또는 4일마다 교체되었다. 세포의 성장(outgrowth)은 광학현미경으로 모니터링 되었다. 신장하는 세포들은 추가적인 확장 및 냉동보관(DMEM/10% FBS 이용)을 위해 트립신처리(0.125% 트립신/0.05% EDTA)하였다.
상기 배지는 매 3일 또는 4일마다 교체되었다. 외식된 조직으로부터의 세포의 신장(outgrowth)은 광학현미경으로 모니터링 되었다.
중간엽 줄기세포의 추출을 위해, 세포의 펠렛은 배지 DMEM F-12(Gibco), 10% FBS, 100 unit/㎖ 페니실린, 50 ㎍/㎖ 스트렙토마이신에 재 현탁 및 카운트 되었으며, 10 ㎝ 조직배양 접시에 1 x 106 세포/접시의 밀도로 접종되었다. 상기 배지는 매 3일 또는 4일마다 교환되었다. 세포의 성장(growth) 및 클론형성은 광학현미경으로 모니터링 되었다. 약 90%의 세포수(confluence)에서, 세포들은 상기에 설명된 바와 같이 서브-배양(sub-culture)되었다.
실험예 1: 중간엽 줄기세포로부터 만능 줄기세포 유도
실험예 1-1: 플로로탄닌( phlorotannin ) 분획물 농도에 따른 인간유래 중간엽 줄기세포의 만능 줄기세포 제조
실시예 1-1에서 제조된 플로로탄닌 분획물의 농도에 따른 인간 제대 유래 줄기세포로부터 만능 줄기세포 유도 능력을 측정하기 위한 실험을 실시하였다. 대조군은 MSC의 전용 배지로 DMEM F-12(Gibco), 10% FBS, 100 unit/㎖ 페니실린, 50 ㎍/㎖ 스트렙토마이신을 기본배지로 사용하였으며(Normal), 실험군은 계대배양을 세 번째 한 인간 제대 유래 중간엽 줄기세포를 사용하여 배지에 1 ㎍/㎖, 20 ㎍/㎖, 50 ㎍/㎖, 100 ㎍/㎖, 400 ㎍/㎖, 800 ㎍/㎖, 1000 ㎍/㎖ 농도의 플로로탄닌(phlorotannin) 분획물과 에너지 워터(SiO2, Al2O3, TiO3, Fe2O3, CaO, Na2O, K2O, LiO를 함유하는 정제 탈이온수, 에스티씨나라) 0.1 v/v%를 첨가하였다. 인간 제대 유래 중간엽 줄기세포들을 분리하여 세척된 단핵구 세포를 6-웰 플레이트(dish)에 1 x 104 개의 세포를 접종하여 37℃와 5% CO2를 유지하여 배양하였다.
본 발명의 방법에 의해 유도된 만능 줄기세포에 대하여, 배아 줄기세포의 특이 단백질인 SSEA-4(stage-specific embryonic antigen4), Alkaline phosphatase(AP), OCT4, SOX2의 발현 여부를 이에 대한 항체를 사용하여 면역화학적 염색법을 사용하여 단백질 발현 여부를 분석하였다. 염색 과정은 우선 4% 파라포르말데하이드(Paraformaldehyde)를 이용하여 세포를 고정한 후 PBS로 세정하고 1% BSA용액으로 블로킹(blocking)을 하였다. OCT4, SOX2, SSEA-4에 대한 1차 항체를 처리하여 4℃에서 18시간 동안 반응 시킨 후, PBS로 세정을 하고 1차 항체에 대한 형광(FITC)이 붙은 2차 항체를 처리하여 실온에서 1시간 동안 반응시켰다. PBS로 세정을 한 후 공초점현미경(confocal microscope)을 사용하여 발현 여부를 분석하였다. BF는 bright field를 의미하며, 두 번째 그림은 각 단백질 발현에 대한 염색 결과를 의미하고 세 번째 그림은 이 두 그림을 합쳐서 나타내고 있다(도 19A, 19B, 20A 및 20B). AP 염색은 세포 투과성 Alkaline phosphatase 형광기질 Dye로 염색을 실시하였으,며 AP 형광 Dye를 DMEM F-12 배양액에 희석하여 콜로니에 처리한 다음 20~30분간 반응시키고 DMEM F-12 배양액으로 2번 세척하고 공초점현미경(confocal microscope)을 사용하여 발현 여부를 분석하여 그 결과를 도 17에 나타내었다.
그 결과, 실험군에서는 플로로탄닌(phlorotannin) 분획물의 농도가 10 내지 500 ㎍/㎖일 때만 10일 후 콜로니가 형성하는 것이 관찰되었으며(도 17), 만능 줄기세포 특이적 마커인 OCT4, SOX2, SSEA-4, AP가 콜로니에서만 염색되어 만능줄기세포임을 확인하였다.(도 18 및 도 19)
실험예 1-2: 플로로탄닌( phlorotannin ) 분획물 속 화합물 농도에 따른 인간유래 중간엽 줄기세포의 만능 줄기세포 제조
실시예 1-2에서 분리된 화합물들 중 화합물 1의 농도에 따른 인간 제대 유래 줄기세포로부터 만능 줄기세포 유도 능력을 측정하기 위한 시험을 실시하였다. 대조군은 MSC의 전용 배지로 DMEM F-12(Gibco), 10% FBS, 100 unit/㎖ 페니실린, 50 ㎍/㎖ 스트렙토마이신을 기본배지로 사용하였으며(Normal), 실험군은 계대배양을 세 번째 한 인간 제대 유래 중간엽 줄기세포를 사용하여 배지에 화학식 1로 표시되는 비엑콜 화합물 1 ㎍/㎖, 20 ㎍/㎖, 50 ㎍/㎖, 100 ㎍/㎖, 400 ㎍/㎖, 800 ㎍/㎖, 1000 ㎍/㎖의 농도와 에너지 워터(SiO2, Al2O3, TiO3, Fe2O3, CaO, Na2O, K2O, LiO를 함유하는 정제 탈이온수, 에스티씨나라) 0.1 v/v%를 첨가하였다. 인간 제대 유래 중간엽 줄기세포들을 분리하여 세척된 단핵구 세포를 6-웰 플레이트(dish)에 1 x 104 개의 세포를 접종하여 37℃와 5% CO2를 유지하여 배양하였다.
상기에서 유도된 만능 줄기세포에 대하여 배아 줄기세포의 특이 단백질인 SSEA-4(stage-specific embryonic antigen4), Alkaline phosphatase, OCT4, SOX2,의 발현 여부를 이에 대한 항체를 사용하여 면역화학적 염색법을 사용하여 단백질 발현 여부를 분석하였다. 염색 과정은 우선 4% 파라포르말데하이드(Paraformaldehyde)를 이용하여 세포를 고정한 후 PBS로 세정하고 1% BSA용액으로 블로킹(blocking)을 하였다. OCT4, SOX2, SSEA-4에 대한 1차 항체를 처리하여 4℃에서 18시간 동안 반응 시킨 후, PBS로 세정을 하고 1차 항체에 대한 형광(FITC)이 붙은 2차 항체를 처리하여 실온에서 1시간 동안 반응시켰다. PBS로 세정을 한 후 공초점현미경(confocal microscope)을 사용하여 발현 여부를 분석하여 그 결과를 도 20에 나타내었다. BF는 bright field를 의미하며, 두 번째 그림은 각 단백질 발현에 대한 염색 결과를 의미하고, 세 번째 그림은 이 두 그림을 합쳐서 나타내고 있다(도 21A, 21B, 22A 및 22B).
AP 염색은 세포 투과성 Alkaline phosphatase 형광기질 Dye로 염색을 실시 하였으며 AP 형광 Dye를 DMEM F-12 배양액에 희석하여 콜로니에 처리한 다음 20~30분간 반응 시키고 DMEM F-12 배양액으로 2번 세척하고 공초점현미경(confocal microscope)을 사용하여 발현 여부를 분석하여 그 결과를 도 22B에 나타내었다.
그 결과, 실험군에서는 화학식 1로 나타낸 비엑콜 화합물 농도가 50 ㎍/㎖ 및 100 ㎍/㎖일 때만 14일 후 콜로니가 형성하는 것이 관찰 되었으며(도 20), 만능 줄기세포 특이적 마커인 OCT4, SOX2, SSEA-4, AP가 콜로니에서만 염색되어 만능줄기세포임을 확인 하였다(도 21 및 22).

Claims (9)

  1. 플로로탄닌 분획물을 포함하는, 중간엽 줄기세포를 유도만능 줄기세포로 역분화하기 위한 배지 조성물.
  2. 제1항에 있어서, 상기 플로로탄닌 분획물은 다음 화학식 1로 나타낸 비엑콜 화합물 또는 그 염인 것을 특징으로 하는, 배지 조성물:
    [화학식 1]
    Figure PCTKR2015005183-appb-I000008
  3. 제1항에 있어서, 상기 플로로탄닌 분획물은 감태(Ecklonia cava), 가시뼈대그물말(Dictyopteris prolifera Okamura), 참그물바탕말(Dictyota dichotoma Lamouroux), 괭생이모자반(Sargassum horneri C. Agardh), 쌍발이모자반(Sargassum patens C. Agardh) 및 패(Ishige okamurae Yendo)로 이루어진 갈조류 군에서 선택된 1종의 갈조류에서 추출 및 분리한 것이거나, 인공적으로 합성된 것인, 배지 조성물.
  4. 제1항에 있어서, 상기 플로로탄닌 분획물은 DMEM(Dulbecco's Modified Eagle's Medium), MEM(Minimal Essential Medium), BME(Basal Medium Eagle), RPMI 1640, F-10, F-12, DMEM-F12, α-MEM(α-Minimal Essential Medium), G-MEM(Glasgow's Minimal Essential Medium), IMDM(Iscove's Modified Dulbecco's Medium), MacCoy's 5A 배지, AminoMaxⅡ complete Medium 및 MesenCult-XF Medium으로 구성된 군으로부터 선택되는 배지에 포함되는 것을 특징으로 하는 배지 조성물.
  5. 제1항에 있어서, 상기 플로로탄닌 분획물은 배지 조성물 기준 10 내지 500 ㎍/㎖ 포함된 것을 특징으로 하는 배지 조성물.
  6. 제1항에 있어서, 상기 배지 조성물은 에너지워터 1 내지 10 v/v%를 추가로 포함하는 것을 특징으로 하는 배지 조성물.
  7. 플로로탄닌 분획물을 세포 배양 배지에 첨가하는 단계; 및 상기 배지에서 중간엽 줄기세포(mesenchymal stem cell)를 유도만능 줄기세포(induced pluripotency stem cell)로 역분화시키는 단계를 포함하는 유도만능 줄기세포의 제조 방법.
  8. 제7항에 있어서, 상기 플로로탄닌 분획물은 다음 화학식 1로 나타낸 비엑콜 화합물 또는 그 염인 것을 특징으로 하는, 유도만능 줄기세포의 제조 방법.
    [화학식 1]
    Figure PCTKR2015005183-appb-I000009
  9. 제7항에 있어서, 상기 플로로탄닌 분획물은 감태(Ecklonia cava), 가시뼈대그물말(Dictyopteris prolifera Okamura), 참그물바탕말(Dictyota dichotoma Lamouroux), 괭생이모자반(Sargassum horneri C. Agardh), 쌍발이모자반(Sargassum patens C. Agardh) 및 패(Ishige okamurae Yendo)로 이루어진 군에서 선택된 1종의 갈조류에서 추출 및 분리한 것이거나 인공적으로 합성된 것인, 유도만능 줄기세포의 제조 방법.
PCT/KR2015/005183 2014-05-23 2015-05-22 플로로탄닌 분획물을 이용한 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하는 방법 WO2015178728A1 (ko)

Priority Applications (19)

Application Number Priority Date Filing Date Title
RU2016150687A RU2668803C2 (ru) 2014-05-23 2015-05-22 Способ получения стволовых клеток с индуцированной плюрипотентностью из мезенхимальных стволовых клеток путем использования фракции флоротаннина
JP2016548353A JP6839982B2 (ja) 2014-05-23 2015-05-22 フロロタンニン分画物を用いた中間葉幹細胞から誘導多能性幹細胞を製造する方法
MX2016015357A MX2016015357A (es) 2014-05-23 2015-05-22 Metodo para preparar células troncales con pluripotencia inducida a partir de células troncales mesenquimatosas utilizando una fracción de florotanina.
EP15795825.7A EP3147352B1 (en) 2014-05-23 2015-05-22 Method for preparing induced pluripotency stem cells from mesenchymal stem cells by using phlorotannin fraction
SG11201609804RA SG11201609804RA (en) 2014-05-23 2015-05-22 Method for preparing induced pluripotency stem cells from mesenchymal stem cells by using phlorotannin fraction
PL15795825T PL3147352T3 (pl) 2014-05-23 2015-05-22 Sposób wytwarzania z użyciem frakcji z florotaniną indukowanych pluripotencjalnych komórek macierzystych z mezenchymalnych komórek macierzystych
US15/116,210 US10131881B2 (en) 2014-05-23 2015-05-22 Method for preparing induced pluripotency stem cells from mesenchymal stem cells by using phlorotannin fraction
ES15795825T ES2820577T3 (es) 2014-05-23 2015-05-22 Método para preparar células madre de pluripotencia inducida a partir de células madre mesenquimales utilizando una fracción de florotaninos
CA2949949A CA2949949C (en) 2014-05-23 2015-05-22 Method for preparing induced pluripotency stem cells from mesenchymal stem cells by using phlorotannin fraction
CN201580007099.0A CN105960452B (zh) 2014-05-23 2015-05-22 从利用褐藻多酚分馏物的间充质干细胞制备诱导多能干细胞的方法
AU2015262123A AU2015262123B2 (en) 2014-05-23 2015-05-22 Method for preparing induced pluripotency stem cells from mesenchymal stem cells by using phlorotannin fraction
RS20201114A RS60817B1 (sr) 2014-05-23 2015-05-22 Postupak za pripremu indukovanih pluripotentnih matičnih ćelija iz mezenhimalnih matičnih ćelija pomoću frakcije florotanina
DK15795825.7T DK3147352T3 (da) 2014-05-23 2015-05-22 Fremgangsmåde til fremstilling af inducerede pluripotente stamceller fra mesenkymale stamceller ved anvendelse af phlorotanninfraktion
LTEP15795825.7T LT3147352T (lt) 2014-05-23 2015-05-22 Būdas, skirtas paruošti indikuotas pluripotentines kamienines ląsteles iš mezenchiminių kamieninių ląstelių naudojant florotanino frakciją
SI201531351T SI3147352T1 (sl) 2014-05-23 2015-05-22 Metoda za pripravo induciranih pluripotentnih matičnih celic iz mezenhimskih matičnih celic z uporabo florotanin frakcije
IL249170A IL249170A0 (en) 2014-05-23 2016-11-23 A method for generating induced pluripotent stem cells from mesenchymal stem cells using phlorotannin fractionation
PH12016502330A PH12016502330B1 (en) 2014-05-23 2016-11-23 Method for preparing induced pluripotency stem cells from mesenchymal stem cells by using phlorotannin fraction
CY20201100887T CY1123348T1 (el) 2014-05-23 2020-09-21 Μεθοδος για την παρασκευη ενισχυμενων πολυδυναμων βλαστοκυτταρων απο μεσεγχυματικα βλαστοκυτταρα με τη χρηση κλασματος φλοροταννινης
HRP20201525TT HRP20201525T1 (hr) 2014-05-23 2020-09-23 Postupak za pripremu pluripotentne matične stanice inducirane iz mezenhimalne matične stanice korištenjem frakcije florotanina

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140062526 2014-05-23
KR10-2014-0062526 2014-05-23
KR1020150071240A KR101699761B1 (ko) 2014-05-23 2015-05-21 플로로탄닌 분획물을 이용한 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하는 방법
KR10-2015-0071240 2015-05-21

Publications (1)

Publication Number Publication Date
WO2015178728A1 true WO2015178728A1 (ko) 2015-11-26

Family

ID=54554315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005183 WO2015178728A1 (ko) 2014-05-23 2015-05-22 플로로탄닌 분획물을 이용한 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하는 방법

Country Status (1)

Country Link
WO (1) WO2015178728A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180001345A (ko) * 2016-06-27 2018-01-04 주식회사 서진바이오텍 피부 미백 및 주름 방지용 패 추출조성물 및 그의 제조방법
CN109276466A (zh) * 2017-07-21 2019-01-29 博塔医疗株式会社 以褐藻多酚为有效成分的用于防止白发及促进黑发的组合物及产品
CN111669976A (zh) * 2018-01-25 2020-09-15 赫马斯有限公司 包含褐藻多酚作为有效成分的动物饲料用组合物及动物用产品
CN113194743A (zh) * 2018-12-05 2021-07-30 博塔医疗株式会社 包含褐藻多酚作为有效成分的用于改善食物香味的组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277203A (ja) * 2002-03-25 2003-10-02 Kumamoto Prefecture フロロタンニン類を主成分とする抗菌剤
KR20100135197A (ko) * 2009-06-16 2010-12-24 한국생명공학연구원 미분화 다능성줄기세포의 제작, 유지 및 증식을 위한 뉴로펩타이드 y를 포함하는 배지 조성물 및 이를 이용한 다능성줄기세포의 배양 방법
KR20120116193A (ko) * 2011-04-12 2012-10-22 차의과학대학교 산학협력단 역분화-증진제를 이용한 역분화 만능 줄기세포의 제조방법
KR20130133703A (ko) * 2012-05-29 2013-12-09 한국생명공학연구원 다능성 줄기세포의 제작, 유지, 증식을 증진하는 대사산물 및 이를 포함하는 조성물과 배양방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277203A (ja) * 2002-03-25 2003-10-02 Kumamoto Prefecture フロロタンニン類を主成分とする抗菌剤
KR20100135197A (ko) * 2009-06-16 2010-12-24 한국생명공학연구원 미분화 다능성줄기세포의 제작, 유지 및 증식을 위한 뉴로펩타이드 y를 포함하는 배지 조성물 및 이를 이용한 다능성줄기세포의 배양 방법
KR20120116193A (ko) * 2011-04-12 2012-10-22 차의과학대학교 산학협력단 역분화-증진제를 이용한 역분화 만능 줄기세포의 제조방법
KR20130133703A (ko) * 2012-05-29 2013-12-09 한국생명공학연구원 다능성 줄기세포의 제작, 유지, 증식을 증진하는 대사산물 및 이를 포함하는 조성물과 배양방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALI, TEHSEEN FATIMA ET AL.: "Phlorotannin-incorporated mesenchymal stem cells and their promising role in osteogenesis imperfecta", JOURNAL OF MEDICAL HYPOTHESIS AND IDEAS, vol. 6, no. 2, 2012, pages 85 - 89, XP055237804, ISSN: 2251-7294 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180001345A (ko) * 2016-06-27 2018-01-04 주식회사 서진바이오텍 피부 미백 및 주름 방지용 패 추출조성물 및 그의 제조방법
KR101957772B1 (ko) 2016-06-27 2019-03-18 주식회사 서진바이오텍 피부 미백 및 주름 방지용 패 추출조성물 및 그의 제조방법
CN109276466A (zh) * 2017-07-21 2019-01-29 博塔医疗株式会社 以褐藻多酚为有效成分的用于防止白发及促进黑发的组合物及产品
CN111669976A (zh) * 2018-01-25 2020-09-15 赫马斯有限公司 包含褐藻多酚作为有效成分的动物饲料用组合物及动物用产品
CN113194743A (zh) * 2018-12-05 2021-07-30 博塔医疗株式会社 包含褐藻多酚作为有效成分的用于改善食物香味的组合物

Similar Documents

Publication Publication Date Title
WO2019135644A1 (ko) 유도만능 줄기세포 유래 중간엽 줄기세포 및 이로부터 유래된 엑소좀을 포함하는 피부질환의 개선, 예방 또는 치료용 조성물
KR101699761B1 (ko) 플로로탄닌 분획물을 이용한 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하는 방법
WO2015178728A1 (ko) 플로로탄닌 분획물을 이용한 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하는 방법
WO2019135645A1 (ko) 인터페론 감마로 전처리된 유도만능 줄기세포 유래 중간엽 줄기세포 및 이로부터 유래된 엑소좀을 포함하는 피부질환의 개선, 예방 또는 치료용 조성물
WO2020222472A1 (ko) hPL 함유 배지에서 배양된 중간엽 줄기세포의 배양액을 포함하는 화장료 조성물
WO2015056982A1 (ko) 만능 줄기세포의 유도 방법 및 상기 방법에 의해 제조된 만능줄기세포
KR101542847B1 (ko) 중간엽 줄기세포로부터 유도된 만능 줄기세포를 이용하여 신경세포로 분화시키는 방법
KR101542849B1 (ko) 중간엽 줄기세포로부터 유도된 만능 줄기세포를 이용하여 간세포로 분화시키는 방법
KR101542846B1 (ko) 중간엽 줄기세포로부터 유도된 만능 줄기세포를 이용하여 연골세포로 분화시키는 방법
WO2022139166A1 (ko) 탯줄 유래 중간엽 줄기세포 배양액을 유효성분으로 포함하는 피부 개선용 조성물
WO2012008733A2 (ko) 1기 태반조직 유래 줄기세포 및 이를 함유하는 세포치료제
WO2013165120A1 (ko) 신경능선줄기세포의 배양방법 및 그 용도
WO2021071289A2 (ko) 줄기세포능을 증대시키기 위한 조성물 및 이의 용도
KR101542850B1 (ko) 중간엽 줄기세포로부터 유도된 만능 줄기세포를 이용하여 지방세포로 분화시키는 방법
KR101542848B1 (ko) 중간엽 줄기세포로부터 유도된 만능 줄기세포를 이용하여 골아세포로 분화시키는 방법
WO2016088930A1 (ko) 지방-유래 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하여 신경세포로 분화 시키는 방법
KR101544195B1 (ko) 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하는 방법 및 그 방법에 의해 제조된 유도만능 줄기세포
WO2019221477A1 (ko) 전구세포 배양액 및 다층 그래핀 필름을 포함하는 줄기세포 분화 촉진용 조성물 및 이의 용도
WO2017051970A1 (ko) 중간엽 줄기세포로부터 유도된 만능 줄기세포를 췌장의 베타세포로 분화시키는 방법
WO2023214824A1 (ko) 효능이 증진된 줄기세포 유래 세포외소포를 포함하는 상처 치료용 조성물
WO2013125899A1 (ko) 줄기세포를 유효 성분으로 함유하는 면역 질환 또는 염증 질환의 예방 또는 치료용 조성물
WO2024128496A1 (ko) 줄기세포 유래 엑소좀을 포함하는 피부 노화 억제 조성물 및 이의 제조방법
WO2016088932A1 (ko) 지방-유래 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하여 지방세포로 분화시키는 방법
WO2016088928A1 (ko) 지방-유래 중간엽 줄기세포로부터 유도만능 줄기세포주의 제조방법 및 수득된 세포주
WO2020054962A1 (ko) Timp-1 및 timp-2를 유효성분으로 함유하는 기형종 형성 및 성장 억제용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548353

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015795825

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015795825

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015262123

Country of ref document: AU

Date of ref document: 20150522

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2949949

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 249170

Country of ref document: IL

Ref document number: 12016502330

Country of ref document: PH

Ref document number: MX/A/2016/015357

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15116210

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016150687

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201608948

Country of ref document: ID