WO2015198540A1 - ドライバの運転不能状態検出装置 - Google Patents

ドライバの運転不能状態検出装置 Download PDF

Info

Publication number
WO2015198540A1
WO2015198540A1 PCT/JP2015/002863 JP2015002863W WO2015198540A1 WO 2015198540 A1 WO2015198540 A1 WO 2015198540A1 JP 2015002863 W JP2015002863 W JP 2015002863W WO 2015198540 A1 WO2015198540 A1 WO 2015198540A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
detection unit
vehicle
detected
head
Prior art date
Application number
PCT/JP2015/002863
Other languages
English (en)
French (fr)
Inventor
大翔 坂野
豊 宗岡
大見 拓寛
塩谷 武司
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014128388A external-priority patent/JP6379720B2/ja
Priority claimed from JP2014128386A external-priority patent/JP6364997B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112015002934.6T priority Critical patent/DE112015002934B4/de
Priority to CN201580033595.3A priority patent/CN106663377B/zh
Priority to US15/320,945 priority patent/US10503987B2/en
Publication of WO2015198540A1 publication Critical patent/WO2015198540A1/ja
Priority to US16/686,297 priority patent/US10909399B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/59Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
    • G06V20/597Recognising the driver's state or behaviour, e.g. attention or drowsiness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1103Detecting eye twinkling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/163Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6893Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • B60K28/06Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/23Recognition of whole body movements, e.g. for sport training
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/20Workers
    • A61B2503/22Motor vehicles operators, e.g. drivers, pilots, captains
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • B60K2360/1438
    • B60K2360/21
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • B60K35/10
    • B60K35/22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/223Posture, e.g. hand, foot, or seat position, turned or inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/225Direction of gaze
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing

Definitions

  • This disclosure relates to a driver inoperability state detection device that detects a state in which the driver has become inoperable.
  • the operation control device described in Patent Document 1 detects the pressing force of the buttocks against the seat of the driver's seat, the pressing force of the back against the backrest, the pressing force of the left foot against the floor, and based on the distribution of the pressing force, It is determined whether the driver's posture is a normal posture, a forward leaning posture, or a supine posture. Then, the driving control device determines that an abnormality has occurred in the physical condition of the driver when the driver's posture is a forward-facing posture or a supine posture.
  • the gaze / face orientation measuring device is a device that captures a driver with a driver camera and recognizes gaze information, blink information, face orientation information, and the like of the driver from the captured image.
  • the inventors of the present application have found the following. Not only when the driver's posture is leaning forward or on his back due to sudden illness, but also when the driver takes the passenger's seat while driving, the driver's posture collapses and the same pressure distribution as in sudden illness May be indicated.
  • the device described in Patent Document 1 does not take into account the collapse of posture due to factors other than sudden illness, and thus there is a risk of erroneous determination of a driver's physical condition.
  • the main object of the present disclosure is to provide a driver inoperability state detection device that can detect with high accuracy that the driver has become inoperable.
  • the driver's inoperable state detection device is based on an image of a driver's seat imaged by an imaging device mounted on a vehicle, and An inclination detection unit that detects an inclination of the head above the neck; and when the inclination of the head detected by the inclination detection unit is greater than a relative inclination threshold while the vehicle is running, A posture collapse state detection unit that detects that the vehicle is in an inoperable state.
  • the tilt of the head relative to the driver's body is detected based on the image of the driver's seat.
  • the body of the driver is restrained by a seat or a seat belt in the driver's seat, so that the body is relatively difficult to move even if the driver's consciousness is lost.
  • the driver's head is often not restrained, it is necessary to maintain the position of the head with the driver's intention. Therefore, when sudden illness develops and the driver's consciousness disappears, the driver cannot maintain the position of the head, and the head often tilts greatly in any direction with respect to the trunk.
  • the driver when the driver takes a position away from the driver's seat, the driver generally consciously tilts the torso, so the tilt of the head with respect to the torso is often small.
  • the driver looks aside while traveling, the driver generally looks with the neck rotated, so the inclination of the head with respect to the trunk is often small.
  • FIG. 1 is a block diagram showing the configuration of the inoperable state detection device
  • FIG. 2 is a diagram showing a passenger compartment equipped with an inoperable state detection device
  • FIG. 3 is a diagram showing a driver's seat of a vehicle equipped with an inoperable state detection device
  • FIG. 4 is a block diagram showing functions of the control device
  • FIG. 5A is a diagram showing a posture during normal operation
  • FIG. 5B is a diagram showing a posture when sudden illness occurs and posture collapse (within FA) occurs
  • FIG. 5C is a diagram showing a posture when sudden illness occurs and posture collapse (outside FA) occurs
  • FIG. 5A is a diagram showing a posture during normal operation
  • FIG. 5B is a diagram showing a posture when sudden illness occurs and posture collapse (within FA) occurs
  • FIG. 5C is a diagram showing a posture when sudden illness occurs and posture collapse (outside FA) occurs
  • FIG. 6 is a diagram showing the posture when taking things
  • FIG. 7A is a diagram showing a posture during normal operation
  • FIG. 7B is a diagram showing the posture when sudden disease develops
  • FIG. 8 is a diagram showing a posture when looking aside.
  • FIG. 9 is a diagram showing the posture when taking things
  • FIG. 10A is a diagram showing the face orientation during normal operation
  • FIG. 10B is a diagram showing a face orientation when sudden illness develops
  • FIG. 11 is a diagram showing changes in face orientation when looking aside.
  • FIG. 12 is a diagram showing the shaking of the head accompanying the generation of an external force
  • FIG. 13 is a diagram illustrating an amplitude range of the head shake that is determined to be an inoperable state
  • FIG. 14A is a diagram showing a facial expression during normal operation;
  • FIG. 14B is a diagram showing a facial expression when sudden illness develops;
  • FIG. 15A is a diagram showing a normal state,
  • FIG. 15B is a diagram showing a state in which the whites are facing;
  • FIG. 15C is a diagram showing a state in which the eyes are completely facing,
  • FIG. 16A is a flowchart showing a processing procedure for detecting an inoperable state;
  • FIG. 16B is a continuation of FIG. 16A, and is a flowchart showing a processing procedure for detecting an inoperable state;
  • FIG. 17 is a subroutine showing a processing procedure for detecting posture collapse.
  • FIG. 18 is a diagram illustrating a mode of notifying the driver of the posture collapse level.
  • the driver's inoperable state includes a state in which the driver develops sudden illness and becomes unconscious and cannot perform driving operation, and a driver develops a sudden illness such as a heart attack and is conscious but cannot move the body. Therefore, it includes a state in which the driving operation cannot be performed.
  • the detection device 100 includes a control device 50, a driver state recognition device 20, a vehicle information recognition device 30, a traveling environment recognition device 40, an HMI (Human Machine Interface) 80, and a storage device 52, and detects an inoperable state of the driver. To do. And the detection apparatus 100 transmits the instruction
  • the driver state recognition device 20 includes a plurality of driver cameras 21, a seat belt sensor 22, and a seating surface sensor 23.
  • the driver camera 21 corresponds to the imaging device
  • the seat belt sensor 22 corresponds to the amount detection unit
  • the seating surface sensor 23 corresponds to the seat pressure detection unit.
  • the driver camera 21 is a CCD camera, for example, and images the driver's seat illuminated by an illumination device such as a near infrared LED.
  • the driver camera 21 is mounted on the meter panel 14, the approximate center of the lower end of the rearview mirror 16, and the left and right A pillars 17 toward the driver.
  • a driver camera 21 may be installed on the dashboard 13 (shown by a broken line) or on a steering column.
  • the lower end of the rearview mirror 16 it may be installed at the left end or the right end (shown by a broken line) of the rearview mirror 16.
  • These four driver cameras 21 constitute a driver status monitor, which captures several tens of images per second from the front side of the driver sitting on the driver's seat 11.
  • the seat belt sensor 22 is a sensor that detects the amount by which the seat belt 12 is pulled out. Specifically, the seat belt sensor 22 is an encoder that detects a rotation angle of a motor that feeds and winds the seat belt 12.
  • the seat surface sensor 23 is a sensor that detects the pressure distribution of the seat portion 11a of the seat 11 of the driver's seat.
  • the vehicle information recognition device 30 includes a vehicle speed sensor 31, a steering angle sensor 32, an accelerator sensor 33, and a brake sensor 34.
  • the vehicle speed sensor 31 is a sensor that detects the speed of the vehicle 10.
  • the steering angle sensor 32 is a sensor that detects the steering angle of the steering wheel 15.
  • the accelerator sensor 33 is a sensor that detects an accelerator opening, that is, an operation amount of an accelerator pedal.
  • the brake sensor 34 is a sensor that detects an operation amount of a brake pedal.
  • the traveling environment recognition device 40 includes a front / rear camera 41, a front / rear sensor 42, a car navigation device 43, and a G sensor 44.
  • the front / rear camera 41 is a camera that images the front of the vehicle 10 including the white line of the road, and a camera that images the rear and rear sides of the vehicle 10.
  • the front / rear sensor 42 is a sensor such as an ultrasonic sensor, a laser radar, or a millimeter wave radar, and detects an object in front or rear of the vehicle 10 and acquires a distance between the vehicle 10 and an object in front or rear. Based on the distance between the vehicle 10 acquired by the front / rear sensor 42 and the front or rear vehicle, the relative speed between the front vehicle and the rear vehicle can be calculated.
  • the car navigation device 43 calculates the current position of the vehicle 10 by using the GPS signal received by the GPS receiver and information acquired by various sensors including the G sensor, and guide routes from the current position to the destination Is calculated.
  • the G sensor 44 is, for example, a sensor that is installed on the seat 11 and detects three-dimensional acceleration in the front-rear, left-right, and upper-lower direction of the vehicle 10.
  • the G sensor 44 may be a sensor included in the car navigation device 43.
  • the G sensor 44 is a sensor included in the AVOS. May be. That is, the G sensor 44 may be shared if there is one installed for other purposes.
  • the control device 50 is a microcomputer including a CPU, ROM, RAM, I / O, and the like, and acquires various information from the driver state recognition device 20, the vehicle information recognition device 30, the traveling environment recognition device 40, the storage device 52, and the HMI 80. To do.
  • the control device 50 and the various devices are connected by wired communication such as CAN or wireless communication such as LAN or Bluetooth (registered trademark).
  • the control device 50 realizes the functions of the image analysis unit 60, the learning unit 51, and the state detection unit 70 by the CPU executing various programs stored in the ROM, and detects an inoperable state of the driver. . Detailed description of each part will be given later.
  • the HMI 80 (attitude notification unit, confirmation unit) includes a display 81, a speaker 82, and a cancel switch 83.
  • the display 81 is a display of the car navigation device 43 or an in-vehicle display provided in the meter panel 14.
  • the display 81 may be a touch display including a liquid crystal panel or an organic EL panel.
  • the display 81 reports the degree of the driver's posture collapse based on the driver's posture detected from the image. Specifically, the display 81 displays the status of the driver's posture in five stages.
  • the posture collapse level 5 with the highest degree of collapse is a level at which it is determined that the driver has developed a sudden illness and is unable to maintain the driving posture, that is, a driving impossible state. Since the driver can check his / her driving posture by looking at the posture status displayed on the display 81, when the posture collapse level approaches 5, the driving posture can be corrected before being determined as being incapable of driving. .
  • the speaker 82 is an in-vehicle speaker that is shared with the car navigation device 43, the audio device, and the like.
  • the speaker 82 confirms to the driver by voice whether the inoperable state.
  • the display 81 may display a screen for confirming the inoperable state. Further, the speaker 82 may notify the driver of the posture collapse level by voice.
  • the cancel switch 83 is a switch that stops detection of the inoperable state.
  • detection of the inoperable state is stopped for one trip.
  • the cancel switch 83 is operated during the trip, the detection of the inoperable state is stopped while the cancel switch 83 is operated or for a certain period of time (about several seconds) after the cancel switch 83 is operated. Therefore, if the driver operates the cancel switch 83 in advance when taking an action, there is no possibility that the driver is erroneously detected as being inoperable even if the driver's posture collapses.
  • the image analysis unit 60 includes a head detection unit 61, a trajectory acquisition unit 62, a convulsion detection unit 63, an inclination detection unit 64, a face orientation detection unit 65, and a white eye detection unit 66.
  • the head detection unit 61 sequentially detects the head above the driver's neck based on the driver's seat image captured by the driver camera 21. Specifically, the head detection unit 61 extracts an edge representing the outline of the driver's head from the driver's seat image each time a driver's seat image is captured by the driver camera 21, and a region surrounded by the extracted edges Is detected as the head.
  • the trajectory acquisition unit 62 acquires the trajectory of the driver's head from the driver's head position sequentially detected by the head detection unit 61. For example, the trajectory acquisition unit 62 uses the center of the driver's head detected in each image as the head position, and acquires the head trajectory by connecting the head positions in each image.
  • the convulsions detection unit 63 detects driver's convulsions, that is, involuntary contraction of the muscles of the torso below the driver's head and neck. Specifically, the convulsions detection unit 63 extracts edges representing the contours of the driver's head and torso in each image, and when the extracted edges vibrate regularly (periodically) in successive images, Detect that the driver is spasm.
  • the inclination detector 64 detects the inclination ⁇ of the head relative to the driver's body based on the driver's seat image. Specifically, the tilt detection unit 64 detects the regions surrounded by the edges representing the contours of the head and the torso as the head and the torso, respectively, and detects the central axes of the head and the torso. Then, the inclination detection unit 64 sets the inclination of the central axis of the head relative to the central axis of the body part as the inclination ⁇ of the head. The center axis of the body part is detected from the body part in which the direction of the body part is determined by matching the prepared body direction pattern with the detected body part direction to determine the body part direction.
  • the feature axis such as the eyes, nose and mouth of the face included in the head is extracted from the central axis of the head, and is detected from the three-dimensional arrangement of the feature points of the face.
  • the distance between the facial feature point and the front of the vehicle approaches, and when the head turns back, the distance between the facial feature point and the front of the vehicle increases.
  • the distance between facial feature points in the front-rear direction of the vehicle may be used.
  • the tilt detection unit 64 detects the seat belt 12 of the driver's seat from the image of the driver's seat, and detects the tilt ⁇ of the head relative to the body from the positional relationship between the seat belt 12 and the head. Since the body part of the driver is restrained by the seat belt 12, the position of the body part can be estimated from the position of the seat belt 12.
  • the face orientation detection unit 65 detects the orientation of the driver's face relative to the front of the vehicle 10 based on the driver's seat image.
  • the face orientation detection unit 65 detects the inclination of the face relative to the vertical plane facing the front surface of the vehicle 10 as the face orientation.
  • the white eye detection unit 66 includes a facial expression detection unit 67 and a white eye degree calculation unit 68, and detects a state in which the driver has white eyes.
  • the state where the whites are removed is not limited to the state where the whites are completely removed as shown in FIG. 15C, but also includes the state where the black-eye area is smaller than a predetermined amount as shown in FIG. 15B. That is, the state where the whites are peeled is a state where the visual field is narrower than a predetermined range due to the biased black eyes.
  • the facial expression detection unit 67 detects the driver's eye contour and black eye area based on the driver's seat image.
  • the outline of the eyes of the driver is a boundary line between the eyelids and the eyes.
  • the black eye region is a region having lightness lower than that of the white eye in a region inside the outline of the eye, and is not limited to black, but is a region having a color such as blue, brown, or gray.
  • the facial expression detection unit 67 detects the opening of the driver's mouth from the edge representing the extracted mouth outline.
  • the white eye degree calculation unit 68 calculates the white eye degree of the driver's eyes based on the eye outline and the black eye region detected by the facial expression detection unit 67.
  • the white eye degree calculation unit 68 calculates the white eye degree from the ratio between the vertical length Lw + Lb of the region surrounded by the outline of the eye and the vertical length Lb of the black eye region (see FIG. 15A to FIG. 15C). The smaller the length Lb with respect to the length Lw + Lb, the greater the degree of white eye. Alternatively, the white eye degree calculation unit 68 calculates the white eye degree based on the distance Lb from the upper part of the eye outline to the lowest part of the black eye region. The smaller the distance Lb, the greater the degree of white eye.
  • the white eye degree calculation unit 68 calculates the white eye degree based on the ratio of the area of the white eye region obtained by subtracting the area of the black eye region from the area of the entire eye region surrounded by the outline of the eye and the area of the black eye region. calculate. The smaller the area of the black eye region relative to the area of the white eye region, the greater the degree of white eye.
  • the white eye degree calculation unit 68 calculates the white eye degree based on the flatness ratio of the black eye region. In a state where the whites are peeled off, the black eye region faces upward, so that the flatness of the black eye region increases apparently, and the degree of white eye increases as the flatness of the black eye region increases.
  • the white eye degree calculation unit 68 calculates the white eye degree based on the distance Lc from the center line in the vertical direction of the region surrounded by the outline of the eye to the lowest part of the black eye region.
  • the learning unit 51 learns the head inclination ⁇ detected by the inclination detection unit 64 when the driver is not in an inoperable state. Further, the learning unit 51 learns the face orientation detected by the face orientation detection unit 65 when the driver is not in an inoperable state. Further, the learning unit 51 learns the amplitude of the head shake detected by the head detection unit 61 when the driver is not in an inoperable state. That is, the learning unit 51 learns a driver's driving posture habit. When there are a plurality of drivers who drive the vehicle 10, the driver learns the habit of driving posture for each driver.
  • the state detection unit 70 includes a frame-out state detection unit 71, a posture collapse state detection unit 72, a direction collapse state detection unit 73, a shaking state detection unit 74, and a white-eye state detection unit 75.
  • the frame-out state detection unit 71 determines frame out while the vehicle 10 is traveling, and detects that the driver is inoperable when out of frame. Specifically, the frame-out state detection unit 71 detects that the driver is inoperable when the head of the driver detected by the head detection unit 61 is out of the image range FA.
  • the range FA is a predetermined range in an image captured by the driver camera 21. During normal driving, the driver's head does not deviate from the range FA.
  • the range FA may be the entire captured image.
  • the frame-out state detection unit 71 detects that the driver is inoperable when the head of the driver is out of the image range FA.
  • the frame-out state detection unit 71 can improve the accuracy of detecting the inoperable state of the driver in consideration of the trajectory acquired by the trajectory acquisition unit 62 before the head is out of the range FA.
  • the trajectory of the head when the driver's head could not be detected within the range FA due to image ambiguity and when the driver's head moved and could not be detected within the range FA Since the determination can be made, the detection accuracy of the inoperable state of the driver is improved.
  • the head detection unit 61 searches for the vicinity of the final position of the trajectory acquired by the trajectory acquisition unit 62. In this way, even when the driver's head is not detected, the head detection can be efficiently performed again using the head trajectory.
  • the posture collapse state detection unit 72 determines whether the driver is out of posture while the vehicle 10 is traveling, and detects that the driver is in an inoperable state when the posture is broken. Specifically, the posture collapse state detection unit 72 detects that the driver is incapable of driving when the head inclination ⁇ detected by the inclination detection unit 64 is larger than a threshold Th1 (relative inclination threshold). .
  • the body of the driver is restrained by the seat 11 and the seat belt 12 of the driver's seat, so the body is relatively difficult to move even if the driver's consciousness is lost.
  • the driver's head is often not restrained, it is necessary to maintain the position of the head with the driver's intention. Therefore, when sudden illness develops and the driver's consciousness disappears, the driver cannot maintain the position of the head, and the head is greatly inclined in either direction with respect to the trunk as shown in FIGS. 7A and 7B. There are many cases.
  • the posture collapse state detection unit 72 detects that the driver is incapable of driving when the head inclination ⁇ is larger than the threshold value Th1.
  • the posture collapsed state detection unit 72 further detects that the driver is in an inoperable state on the condition that the driver's face is not facing the front of the vehicle 10, erroneous detection of the inoperable state can be suppressed. .
  • the direction change state detection unit 73 determines that the driver's face is broken while the vehicle 10 is traveling, and detects that the driver is incapable of driving when the face is broken. Specifically, the direction change state detection unit 73 causes the face direction relative to the front of the vehicle 10 detected by the face direction detection unit 65 to exceed the threshold Th2 (face direction threshold) beyond the time T2 (direction change determination time). When it is larger, it is detected that the driver is in an inoperable state.
  • the direction change state detection unit 73 detects that the driver is in an inoperable state in the above case.
  • the direction change state detection unit 73 may detect that the driver has detected that the face direction relative to the front of the vehicle 10 detected by the face direction detection unit 65 is greater than the threshold Th2 and the driver releases the steering wheel 15. Detects that the vehicle is inoperable. Whether the driver releases the steering wheel 15 may be detected from an image, or may be detected by a pressure sensor or the like installed on the steering wheel 15.
  • the direction change state detection unit 73 detects that the driver is in an inoperable state in the above case.
  • the direction change state detection unit 73 is incapable of driving the driver when the face direction detected by the face direction detection unit 65 is larger than the threshold Th2 and the accelerator opening is larger than a predetermined opening. Detect that.
  • the direction change state detection unit 73 detects that the driver is in an inoperable state in the above case.
  • the direction change state detection unit 73 has been subjected to the accelerator operation and the brake operation for a time longer than the time Th3 (operation determination time) when the face direction detected by the face direction detection unit 65 is greater than the threshold Th2. If not, it is detected that the driver is in an inoperable state.
  • the direction change state detection unit 73 detects that the driver is in an inoperable state in the above case.
  • the swing state detection unit 74 determines a swing state of the head of the driver accompanying the external force while the vehicle 10 is traveling, and the driver is incapable of driving when the head is shaking differently than usual. Detect that. Specifically, the shaking state detection unit 74 detects the amplitude of the shaking of the head detected by the head detection unit 61 from the time when the external force is applied to the vehicle 10 until the time T5 (swing determination time) elapses. When it is smaller than (first amplitude) or larger than amplitude Am2 (second amplitude), it is detected that the driver is in an inoperable state. The amplitude Am2 is larger than the amplitude Am1.
  • the time T5 is a time from when an external force is applied to the vehicle 10 until the driver's movement becomes a movement unrelated to the external force.
  • the amplitude Am1 and the amplitude Am2 are functions of time, and FIG. 13 shows an example thereof.
  • the minimum value of the amplitude Am1 and the maximum value of the amplitude Am2 from when an external force is applied until the time T5 elapses may be simply used as threshold values.
  • the white-eye state detection unit 75 determines white eyes while the vehicle 10 is traveling, and detects that the driver is in an inoperable state when the white-eye detection unit 66 detects a state in which white eyes have been peeled off. Specifically, the white-eye state detection unit 75 detects that the driver is in an inoperable state when the white-eye degree calculated by the white-eye degree calculation unit 68 is larger than a threshold Th3 (white-eye threshold).
  • Th3 white-eye threshold
  • the white-eye state detection unit 75 detects that the driver is in an inoperable state when a state in which white eyes have been peeled is detected.
  • the storage device 52 stores each threshold value and each determination value used by each state detection unit. Further, the storage device 52 stores the head inclination ⁇ , the face orientation, and the amplitude of the head shake learned by the learning unit 51. In the storage device 52, personal information including the medical history and age of the driver is registered. When there are a plurality of drivers, personal information of each driver is registered. Further, the storage device 52 is registered with the posture of the driver that is not determined as being incapable of driving and the posture of the driver that is determined as being incapable of driving. The posture of the driver who is not determined to be incapable of driving is, for example, a normal driving posture or a posture improved during driving.
  • the posture of the driver that is determined as being incapable of driving is, for example, the posture that a driver who has illness makes during an attack.
  • the driver captures the posture desired to be registered in the driver's seat in advance with the driver camera 21 and registers it in the storage device 52.
  • This processing procedure is executed by the control device 50.
  • V may be 0 km / h (stop) or a sufficiently low speed (for example, 1 km / h) to be regarded as a stop.
  • V may be 0 km / h (stop) or a sufficiently low speed (for example, 1 km / h) to be regarded as a stop.
  • the determination of S10 is repeatedly executed until it is determined that the vehicle speed is higher than V.
  • the vehicle speed is higher than V (S10: N0)
  • the determination of S10 it is also determined whether or not the driver is performing a driving operation.
  • the determination of S10 is repeatedly performed so that the driving operation is performed while traveling. If not, the detection process of the inoperable state of the driver may be started. For example, it is determined whether the vehicle speed of the vehicle 10 is V2 (for example, 50 km / h) or higher, the steering angle detected by the steering angle sensor 32 is higher than a predetermined angle, or the steering angular velocity is higher than a predetermined angular velocity.
  • V2 is a value that can be regarded as the driver operating the accelerator pedal, the predetermined angle, and the predetermined angular velocity are values that the driver can be regarded as operating the steering wheel. If at least one of the above three conditions is satisfied, it is determined that the driver is performing a driving operation, and the driver's inoperable state detection process is not started.
  • the driver's head and torso are detected from the driver's seat image (S11).
  • the facial feature point included in the head of the driver is detected to authenticate the driver.
  • Driver authentication may be performed in advance by communication with a mobile terminal such as a smartphone, or may be performed by communication with a key of the vehicle 10 in which personal information is registered.
  • the head trajectory information is acquired from the head position recorded in the process of S19 described later, and it is determined whether the trajectory information indicates frame out. (S13). That is, it is determined whether the non-detection of the head position is non-detection due to the head being out of the imaging range or non-detection due to unclearness of the image.
  • trajectory information of the head does not indicate frame out (S13: NO)
  • the trajectory information of the head indicates frame out (S13: YES)
  • information on the seat belt sensor 22 and the seating surface sensor 23, which are used auxiliary to confirm that the head is outside the imaging range, is acquired (S14).
  • the head position is out of the range FA for more than time T0, and the pull-out amount of the seat belt 12 exceeds the first pull-out amount than the pull-out amount detected when the seat belt 12 is worn.
  • the high pressure portion is biased toward the end of the seat 11a in the pressure distribution of the seat 11a. Then, when the above three conditions are satisfied, it is determined that the frame is out of time T0.
  • the pull-out amount per amount detection time detected by the seat belt sensor 22, that is, the pull-out speed of the seat belt 12 may be set to be larger than the second pull-out amount.
  • the process of S14 is not executed, and the process of S15 may continue to determine whether or not the head position is out of the range FA continuously for time T0 or more.
  • the time T0 is set based on the personal information registered in the storage device 52. For example, the time T0 is shortened for an older person than for a younger person. In addition, a person with a specific medical history has a shorter time T0 than a person without a specific medical history. Furthermore, the time T0 is changed according to the state of the driver and the driving environment. In a driving environment where there is a sign that the driver may become inoperable, where the driver is likely to be incapable of driving, or in a driving environment where there is a high probability of a collision when the driver is disabled T0 is shortened to make it easier to detect an inoperable state of the driver.
  • the head position recorded in the process of S19 is oscillating with an amplitude larger than a predetermined amplitude, that is, when the head is swaying, there is a high probability of being inoperable.
  • the time T0 is shortened.
  • the higher the moving speed of the head the higher the possibility of posture collapse due to sudden illness rather than posture collapse when taking a thing. Therefore, in the acquired head trajectory information, the time T0 is shortened as the moving speed of the head position increases. In the case of posture collapse due to a sudden illness, the moving speed of the head often increases as the head approaches the end of the range FA.
  • the time T0 is shortened when the moving speed of the head increases as the recorded head position approaches the end of the range FA.
  • the probability of becoming inoperable is high, so the time T0 is shortened.
  • the time T0 is shortened as the vehicle speed of the vehicle 10 is high.
  • the TTC collision margin time
  • the TTC collision margin time
  • the driver may break the posture for a long time, so the time T0 is extended.
  • the time T0 may be shortened on days of the week and times of day when statistically appearing sudden attacks such as heart attacks are likely to occur.
  • the process proceeds to S21. If the frame is continuously out of time T0 or more (S15: YES), it is detected that the driver is in an inoperable state, and the driver is confirmed to be in an inoperable state. Specifically, the detection of the inoperable state is notified by voice from the speaker 82, display on the display 81, blinking of an indicator (not shown), and the like, and it is determined whether or not there is a response from the driver within a predetermined time ( S16).
  • the driver recognizes that the driver can drive by voice from the speaker 82 or a display on the display 81 (S17).
  • an instruction is issued to the vehicle control device 90 so that appropriate braking and steering are performed and the vehicle is safely stopped.
  • the vehicle control device 90 is instructed to turn on the headlight and listen to the horn (S18). Furthermore, the situation is also notified to other passengers of the vehicle 10.
  • the positions of the head and the torso are recorded (S19).
  • the trajectory information of the head can be acquired from the position of the head recorded in each image.
  • the driver's posture is a posture determined to be an inoperable state registered in advance in the storage device 52 (S21). If the posture of the driver is determined to be an inoperable state (S21: YES), it is detected that the driver is in an inoperable state, and the process proceeds to S16.
  • attitude of the driver is not an attitude determined to be incapable of driving (S21: NO)
  • attitude of the driver is an attitude not previously determined to be incapable of driving registered in the storage device 52 (S22). If the posture of the driver is not determined to be an inoperable state (S22: YES), the process returns to S10.
  • the posture collapse is next determined.
  • posture collapse it is determined whether or not posture collapse has been detected (S23). Specifically, the posture collapse is detected by the processing of the subroutine of FIG. First, the head tilt and the head tilt direction are calculated (S231). Subsequently, the inclination of the body part and the direction of the inclination of the body part are calculated (S232). Subsequently, an angle formed by the calculated inclination of the trunk and the inclination of the head, that is, the inclination ⁇ of the head with respect to the trunk is calculated (S233). The calculated head inclination ⁇ is learned when an inoperable state of the driver is not detected.
  • the calculated head inclination direction and body inclination direction do not change continuously for the time T1 or more, that is, the head position and the body position are within the range UA (non-moving determination). Range).
  • the range UA is a range in which it can be considered that the head and the body are not moving.
  • the calculated head inclination ⁇ may be a condition that is greater than the learned head inclination beyond the determination value D1 (inclination determination value).
  • the steering wheel 15 may not be operated for a time longer than the time T3 (operation determination time).
  • the time T1 is set based on personal information registered in the storage device 52, and is changed depending on whether the vehicle speed, TTC, or driving support control is executed.
  • the threshold value Th1 is reduced when convulsions are detected.
  • the time T1 may be shortened on a day of the week or a time zone in which a sudden illness such as a heart attack that is statistically likely occurs.
  • the head inclination ⁇ is greater than the threshold Th1 and the face does not face the front of the vehicle 10 after the time T1 (S24: YES), it is detected that the driver is unable to drive, S16 Proceed to the confirmation process. If the head inclination ⁇ is not greater than the threshold Th1 for a time T1 or longer, or if the face is facing the front of the vehicle (S24: NO), then the determination of face collapse is performed.
  • a face orientation collapse it is determined whether or not a face orientation collapse has been detected (S25). Specifically, the direction of the driver's face relative to the front of the vehicle is detected. Then, when the detected face orientation is larger than the threshold Th2 (face orientation threshold), the collapse of the face orientation is detected. When the collapse of the face direction is not detected (S25: NO), the process proceeds to the determination of the shaking state in S28. The detected face orientation is learned when the driver's inoperability is not detected.
  • the time T2 is set based on the personal information registered in the storage device 52, and is changed depending on whether the vehicle speed, TTC, or driving support control is executed. Further, similarly to the time T0, the time T2 may be shortened on a day of the week or a time zone on which a sudden illness such as a heart attack that is statistically likely occurs. The threshold value Th2 is reduced when convulsions are detected.
  • the driver has released the steering wheel 15 for a time T3 or longer, or the accelerator opening is predetermined. It is determined whether it is larger than the opening or there is no accelerator operation and brake operation (S27). If at least one of the three conditions in S27 is satisfied (S27: YES), it is detected that the driver is in an inoperable state, and the process proceeds to S16. When none of the three conditions in the process of S27 is satisfied (S27: NO), the determination of the shaking state is performed next.
  • the determination in S26 may further satisfy a condition that at least one of the three conditions in the process of S27 is satisfied. Further, the determination in S26 and S27 may be made on the condition that the detected face orientation is larger than the learned face orientation by exceeding the determination value D1 (inclination determination value). In general, since the driver's hand remains above the driver's neck, the driver will not be disabled, so the driver's hand may be below the driver's neck. .
  • the amplitude of the head shake is smaller than the amplitude Am1 (first amplitude) or the amplitude Am2 (second amplitude) from the time when the external force is applied to the vehicle 10 until the time T5 (swing determination time) elapses. ) Is determined.
  • the head vibrates with an amplitude different from normal, and after the time T5 elapses, the position of the head is within the range UA.
  • This may be a condition.
  • the head may be oscillated according to the external force, and the head position may not be changed after the influence of the external force is eliminated.
  • the head swing amplitude is learned, and the detected head swing amplitude is larger than the learned head swing amplitude. It is good also as a condition that it exceeds the judgment value D2 (amplitude judgment value).
  • D2 amplitude judgment value
  • a state in which white eyes are peeled is detected (S29). Specifically, when the calculated white eye degree is larger than the threshold value Th3 (white eye threshold value), it is determined that a state where white eyes have been peeled is detected.
  • Th3 white eye threshold value
  • the degree of white eyes of both eyes of the driver is calculated, and it is determined that the state of having white eyes is detected on the condition that the degree of white eyes of both eyes is greater than the threshold Th3.
  • the detection of the state where the white of the eye is removed may be determined based on the degree of the white of the one eye.
  • the driver determines that the frame out determination, the posture collapse determination, the face direction collapse determination, the shaking state determination, and the white eye state determination are all performed. Since it is not detected that the vehicle is in an inoperable state, the process returns to S10.
  • the condition may be that the steering wheel 15 is not operated continuously for the time T3 or more.
  • the time T4 is set based on the personal information registered in the storage device 52 and is changed according to the vehicle speed and TTC, similarly to the time T0.
  • the threshold value Th3 is reduced when convulsions are detected.
  • the time T4 may be shortened on a day of the week or a time zone in which a sudden illness such as a heart attack that is statistically likely occurs.
  • the degree of the posture collapse of the driver is displayed on the display 81 as shown in FIG.
  • the posture collapse level increases as the detected head inclination ⁇ increases.
  • the posture collapse level is increased as the detected face orientation increases.
  • the posture collapse level is increased as the detected head position is further away from the standard position during driving.
  • the standard position during driving is the position of the head when the vehicle 10 is started, or the average position of the head when it is not detected that the driver is unable to drive.
  • the detection process can be simplified.
  • the pull-out amount of the seat belt 12 exceeds the first pull-out amount than the pull-out amount at the time of wearing.
  • the position of the driver's head is out of the imaging range when the pull-out amount of the seat belt 12 is greater than the pull-out amount when the seat belt 12 is worn. It can be seen that Therefore, when the pull-out amount of the seat belt 12 is larger than the pull-out amount when the seat belt 12 is worn, the inoperable state of the driver can be detected with high accuracy.
  • the high pressure portion in the pressure distribution of the seat 11a of the driver's seat is considered to be biased toward the end of the seat 11a. Even when the driver's head is not detected, the driver's head is out of the imaging range when the high-pressure portion of the pressure distribution of the driver's seat 11a is biased toward the end of the seat. It can be seen that it exists at the position. Therefore, when the high pressure portion in the pressure distribution of the seat portion 11a is biased toward the end portion of the seat portion 11a, it is possible to detect the inoperable state of the driver with high accuracy.
  • the time required for determining the inoperable state of the driver can be shortened by reducing the time T0.
  • the execution of the vehicle control when the driver is unable to drive can be quickly started.
  • the time required for determining the driver's inoperable state can be shortened by shortening the time T0.
  • the time required to determine the inoperable state of the driver can be shortened by reducing the time required to determine the inoperable state.
  • the inclination ⁇ of the head with respect to the torso is larger than the threshold Th1
  • the threshold value Th1 it is possible to detect the driver's inoperable state with high accuracy by detecting that the driver is in an inoperable state.
  • the driver If the detected head inclination ⁇ is larger than the learned head inclination beyond the judgment value D1, the driver has a tendency to tilt the head with respect to the body part. Even if it is, it can suppress misdetecting the driving
  • the face direction with respect to the front of the vehicle 10 exceeds the threshold Th2 beyond the time T2
  • the face direction is broken due to a sudden illness. Therefore, by detecting that the driver is inoperable in the above case, the inoperable state of the driver can be detected with high accuracy.
  • the face direction with respect to the front of the vehicle 10 is larger than the threshold value Th2 and the driver releases the steering wheel 15, the face direction may not be broken due to looking aside, but the face direction may be broken due to a sudden illness. high. Therefore, by detecting that the driver is inoperable in the above case, the inoperable state of the driver can be detected with high accuracy.
  • the face direction with respect to the front of the vehicle 10 is larger than the threshold value Th2 and the accelerator opening is larger than the predetermined opening degree, there is a possibility that the face direction is not broken due to a side look or the like, but the face direction is broken due to a sudden illness. Is expensive. Therefore, by detecting that the driver is inoperable in the above case, the inoperable state of the driver can be detected with high accuracy.
  • the face direction with respect to the front of the vehicle 10 is larger than the threshold Th2 and the accelerator and the brake are not operated for a time longer than the time T3, the face direction is not changed due to looking aside, but the face direction due to sudden illness There is a high possibility of collapse. Therefore, by detecting that the driver is inoperable in the above case, the inoperable state of the driver can be detected with high accuracy.
  • the steering wheel is operated within time T3. Therefore, by detecting that the steering wheel is not operated for a time longer than time T3, it is possible to suppress erroneous detection of the driver's inoperable state.
  • the accelerator will not be depressed greatly for a time longer than time T3. Therefore, it is possible to suppress erroneous detection of an inoperable state of the driver by setting that the accelerator opening is larger than the predetermined opening for a time longer than the time T3.
  • the head vibrates according to the external force, and the head stops moving when the influence of the external force disappears.
  • the driver vibrates the head with a scissors, the head vibrates regardless of the influence of external force. Therefore, it is possible to suppress erroneous detection of an inoperable state of the driver by assuming that the head vibrates according to the external force and the position of the head does not change after the influence of the external force is eliminated.
  • the driver's eye contour and black eye area are detected. Then, based on the detected eye contour and black eye area, the white eye degree is calculated, and when the white eye degree is larger than the threshold value Th3, it is detected that the driver is in an inoperable state. Therefore, it is possible to detect with high accuracy the state in which the driver has white eyes, and thus to detect with high accuracy the inoperable state of the driver.
  • the degree of white eyes on both sides is greater than the threshold Th3
  • the threshold Th3 By assuming that the degree of white eyes on both sides is greater than the threshold Th3, even if the eye patch is worn on one eye, or one eye is a prosthetic eye, it is erroneously detected that the white eye is peeled off. When one eye does not have white eyes, the driver's inoperable state is not detected. Therefore, it is possible to suppress erroneous detection of the inoperable state of the driver.
  • the ratio between the vertical length Lw + Lb of the eye and the vertical length Lb of the black eye area has a correlation with the ratio of the white eye area to the total eye area, so the vertical length Lw + Lb of the eye and the black eye area
  • the degree of white eye can be calculated from the ratio to the vertical length Lb.
  • the white eye degree can be calculated from the distance Lb from the upper part of the eye contour to the lowermost part of the black eye region.
  • the white eye degree can be calculated from the ratio of the white eye area to the black eye area.
  • the white eye degree can be calculated from the flatness ratio of the black eye region.
  • the white eye degree can be calculated from the distance Lc from the center line to the lowermost part of the black eye region.
  • the times T0, T1, T2, and T4 are shortened.
  • the time required for determining the driver's inoperable state is shortened, so that appropriate vehicle control can be quickly started.
  • the time required to determine the inoperable state can be set according to the characteristics of the driver.
  • the driver can recognize his / her posture by notifying the driver of the degree of collapse of the driver's posture. For this reason, the driver can correct his / her posture so that even if the driving posture collapses, the driver is not detected as being incapable of driving. Thereby, the erroneous detection of a driving impossible state can be suppressed.
  • the driver camera 21 may be a part of the four cameras mounted in the vehicle interior. There may be at least one driver camera 21.
  • the frame-out state detection unit 71 may detect that the driver is in an inoperable state based on the trajectory acquired by the trajectory acquisition unit 62.
  • the driver's head often moves from the driving position and does not return to the driving position. It is possible to detect an inoperable state.
  • the direction-displacement state detection unit 73 further allows the driver's face to face the lower side than the threshold Th2d (downward threshold) or to the upper side above the threshold Th2u (upward threshold). May be detected as being inoperable.
  • Th2d downward threshold
  • Th2u upward threshold
  • the swing state detection unit 74 detects the direction of the external force when the head detected by the head detection unit 61 exceeds the time T6 (return determination time) when an external force is applied to the vehicle 10 while the vehicle 10 is traveling. If the driver is leaning, it may be detected that the driver is in an inoperable state. Normally, when there is a driver's consciousness, when an external force (specifically, an external force in the left-right direction and the front-rear direction) is applied to the vehicle 10, the driver's head tilts in the direction of the external force, but returns to its original location within time T6 Return.
  • T6 return determination time
  • the shaking state detection unit 74 can detect the inoperable state of the driver in the case described above.
  • the white-eye state detection unit 75 further detects that the driver is in an inoperable state even when the mouth opening (specifically, the vertical opening) detected by the facial expression detection unit 67 is larger than the opening determination amount. May be. When a driver develops a sudden illness and has white eyes, the mouth is often opened. Therefore, even when the opening of the driver's mouth is larger than the open determination amount, it may be detected that the driver is in an inoperable state.
  • the detection accuracy of the inoperable state of the driver is the highest, but at least one determination may be performed. Moreover, you may perform combining any number of determinations. In that case, it is preferable to perform the priority in the order of frame-out determination, posture collapse determination, face direction collapse determination, shaking state determination, and white-eye state determination.
  • the posture failure determination when combining the posture collapse determination and the swing state determination, if the posture failure determination does not detect that the driver is in an inoperable state, performing the shake state determination increases the driver's inoperability state. It can be detected with accuracy.
  • the driver's inoperable state can be detected with high accuracy.
  • the white-eye state determination is performed when the driver state is not detected in the shaking state determination, the driver's inoperability state is increased. It can be detected with accuracy.
  • the learning unit 51 may learn the attitude of the driver when it is erroneously detected that the driver is in an inoperable state. That is, although it is detected that the driver is incapable of driving, the posture of the driver when there is a response from the driver may be learned. Then, the learned posture may be a posture that is not determined as an inoperable state.
  • Statistic values of each threshold value and each judgment value may be stored in the storage device 52 and used as initial values.
  • the statistical value of each threshold value and each determination value is obtained by statistically calculating each threshold value and each determination value corresponding to each of a plurality of vehicle drivers. Moreover, it is good to make it statistics in an information center by transmitting each threshold value and each determination value which are set corresponding to the driver from the vehicle 10 to an information center.
  • the driver may recognize that the vehicle is in an operable state for a certain period of time. Moreover, you may make it perform the process which detects the driving
  • the external force applied to the vehicle 10 may be detected by the seat sensor 23 other than the G sensor 44, for example.
  • the inoperable state detection device for a driver is higher than the driver's neck with respect to the body portion below the driver's neck based on the image of the driver's seat taken by the imaging device mounted on the vehicle.
  • An inclination detection unit that detects an inclination of the head of the vehicle, and when the inclination of the head detected by the inclination detection unit is greater than a relative inclination threshold while the vehicle is traveling, the driver is in an inoperable state.
  • a posture collapse state detection unit for detecting the presence of the device.
  • the tilt of the head relative to the driver's body is detected based on the image of the driver's seat.
  • the body of the driver is restrained by a seat or a seat belt in the driver's seat, so that the body is relatively difficult to move even if the driver's consciousness is lost.
  • the driver's head is often not restrained, it is necessary to maintain the position of the head with the driver's intention. Therefore, when sudden illness develops and the driver's consciousness disappears, the driver cannot maintain the position of the head, and the head often tilts greatly in any direction with respect to the trunk.
  • the driver when the driver takes a position away from the driver's seat, the driver generally consciously tilts the torso, so the tilt of the head with respect to the torso is often small.
  • the driver looks aside while traveling, the driver generally looks with the neck rotated, so the inclination of the head with respect to the trunk is often small.
  • a driver inoperability state detection device includes a face direction detection unit that detects the direction of the driver's face relative to the front of the vehicle based on an image of a driver's seat captured by an imaging device mounted on the vehicle; When the face direction detected by the face direction detection unit during traveling exceeds a face direction determination time and is greater than a face direction threshold, the direction is detected to be incapable of driving.
  • a detection unit When the face direction detected by the face direction detection unit during traveling exceeds a face direction determination time and is greater than a face direction threshold, the direction is detected to be incapable of driving.
  • the direction of the driver's face relative to the front of the vehicle is detected based on an image of the driver's seat.
  • the driver cannot maintain the face orientation, and the face orientation with respect to the front of the vehicle remains broken.
  • the driver looks aside while traveling, the driver generally changes his face and then returns immediately.
  • the face direction relative to the front of the vehicle exceeds the face direction determination time and exceeds the face direction threshold, it is likely that the face direction is not broken due to a side look or the like, but the face direction is broken due to a sudden illness. . Therefore, when the face direction with respect to the front of the vehicle exceeds the face direction determination time and exceeds the face direction threshold, the driver's inoperable state is detected with high accuracy by detecting that the driver is in an inoperable state. it can.
  • a driver inoperability state detection device includes a face direction detection unit that detects the direction of the driver's face relative to the front of the vehicle based on an image of a driver's seat captured by an imaging device mounted on the vehicle; During driving, when the face direction detected by the face direction detection unit is larger than a face direction threshold value and the driver releases the steering wheel of the vehicle, the driver is incapable of driving.
  • the direction of the driver's face relative to the front of the vehicle is detected based on an image of the driver's seat.
  • the driver cannot maintain the face orientation, the face orientation with respect to the front of the vehicle collapses, and the driver often releases the steering wheel.
  • the driver looks aside during traveling, the driver generally changes the direction of the face while holding the steering wheel.
  • the face direction with respect to the front of the vehicle is larger than the face direction threshold and the driver releases the steering wheel, the face direction may not be disturbed due to looking aside but may be due to sudden illness. Is expensive. Therefore, when the face direction with respect to the front of the vehicle is larger than the face direction threshold value and the driver releases the steering wheel, it is detected that the driver is in an inoperable state. Can be detected with high accuracy.
  • a driver inoperability state detection device includes a face direction detection unit that detects the direction of the driver's face relative to the front of the vehicle based on an image of a driver's seat captured by an imaging device mounted on the vehicle; Detects that the driver is in an inoperable state when the face direction detected by the face direction detection unit is greater than a face direction threshold and the accelerator opening is greater than a predetermined opening during driving.
  • a direction-disintegration state detection unit is used to detect the direction of the driver's face relative to the front of the vehicle based on an image of a driver's seat captured by an imaging device mounted on the vehicle. Detects that the driver is in an inoperable state when the face direction detected by the face direction detection unit is greater than a face direction threshold and the accelerator opening is greater than a predetermined opening during driving.
  • the direction of the driver's face relative to the front of the vehicle is detected based on an image of the driver's seat.
  • the accelerator is often not stepped on for safety. Therefore, when the face direction with respect to the front of the vehicle is larger than the face direction threshold and the accelerator opening is larger than the predetermined opening degree, the face direction is not broken due to looking aside, but the face direction is broken due to sudden illness. Probability is high. Therefore, when the face direction with respect to the front of the vehicle is larger than the face direction threshold and the accelerator opening is larger than the predetermined opening, it is detected that the driver is in an inoperable state. Can be detected with high accuracy.
  • the driver inoperability state detection device includes a face direction detection unit that detects the direction of the driver's face relative to the front of the vehicle based on an image of a driver's seat captured by an imaging device mounted on the vehicle, and the traveling of the vehicle The driver is unable to drive when the face orientation detected by the face orientation detection unit is larger than the face orientation threshold and the accelerator operation and the brake operation are not performed for a time longer than the operation determination time.
  • a direction-displacement state detection unit that detects that the state is in a state.
  • the direction of the driver's face relative to the front of the vehicle is detected based on an image of the driver's seat.
  • the orientation of the face with respect to the front of the vehicle is lost, and the accelerator operation and the brake operation are not performed for a time longer than the operation determination time.
  • the driver looks aside while traveling the driver generally changes the face direction and frequently performs an accelerator operation or a brake operation within the operation determination time.
  • the face direction is not collapsed due to a side look etc. It is highly possible that the face is broken. Therefore, it is detected that the driver is incapable of driving when the face direction with respect to the front of the vehicle is larger than the face direction threshold and the accelerator operation and the brake operation are not performed for a time longer than the operation determination time. By doing so, the inoperable state of the driver can be detected with high accuracy.
  • each step is expressed as S10, for example. Further, each step can be divided into a plurality of sub-steps, while a plurality of steps can be combined into one step.
  • embodiments, configuration, and aspect of the driver inoperability state detection device have been illustrated, the embodiment, configuration, and aspect are not limited to the above-described embodiments, configurations, and aspects.
  • embodiments, configurations, and aspects obtained by appropriately combining technical sections disclosed in different embodiments, configurations, and aspects are also included in the scope of embodiments, configurations, and aspects of the driver inoperability state detection device. .

Abstract

 ドライバの運転不能状態検出装置は、車両(10)に搭載された撮像装置(21)により撮像された運転席の画像に基づいて、ドライバの首よりも下の胴体部に対するドライバの首よりも上の頭部の傾き(θ)を検出する傾き検出部(64)と、車両(10)の走行中に、傾き検出部(64)により検出された頭部の傾き(θ)が相対傾き閾値(Th1)よりも大きい場合に、ドライバが運転不能状態であることを検出する姿勢崩れ状態検出部(72)と、を備える。

Description

ドライバの運転不能状態検出装置 関連出願の相互参照
 本出願は、2014年6月23日に出願された日本国特許出願2014-128386号、2014年6月23日に出願された日本国特許出願2014-128388号に基づくものであり、ここにその記載内容を参照により援用する。
 本開示は、ドライバが運転不能となった状態を検出するドライバの運転不能状態検出装置に関する。
 従来、車両の運転中に、急病等によりドライバが運転不能状態に陥った場合、事故に至るおそれがある。そのため、このようなドライバの運転不能状態を検出し、事故を防止することが提案されている。
 特許文献1に記載の運転制御装置は、運転席の座部に対する臀部の押圧力、背凭れ部に対する背部の押圧力、床部に対する左足の押圧力を検出し、押圧力の分布に基づいて、ドライバの姿勢が、正常な姿勢、前のめり姿勢及び仰向け姿勢のいずれの状態か判定している。そして、上記運転制御装置は、ドライバの姿勢が前のめり姿勢又は仰向け姿勢の状態のときに、ドライバの体調に異常が生じたと判定している。
 特許文献2に記載の緊急退避装置では、視線・顔向き計測装置等から各種情報を取得して、ドライバの意識の低下度、覚醒度、姿勢等のドライバ状態を認識し、ドライバ状態が低下している場合に、緊急退避支援を行っている。視線・顔向き計測装置は、ドライバカメラによってドライバを撮像し、その撮像画像からドライバの視線情報、瞬目情報、顔向き情報等を認識する装置である。
 本願発明者らは下記を見出した。急病等によりドライバの姿勢が前のめり又は仰向けになったときだけでなく、ドライバが運転中に助手席のものを取るときなどにも、ドライバの姿勢が崩れて、急病時と同様の押圧力の分布を示すことがある。特許文献1に記載の装置では、急病以外の要因による姿勢の崩れを考慮していないので、ドライバの体調異常の判定を誤るおそれがある。
 さらに、本願発明者らは下記を見出した。運転中にドライバの急病等が発症した場合、ドライバの顔向きが崩れることが予想される。しかしながら、ドライバが運転中に脇見等をした場合にも、ドライバの顔向きは崩れる。特許文献2に記載の装置では、意識低下や急病等以外の要因による顔向きの崩れを考慮していないので、ドライバの運転不能状態の検出を誤るおそれがある。
日本国公開特許公報2012-254745号 (170303)日本国公開特許2014-19301号
 本開示は、上記実情に鑑み、ドライバが運転不能状態となったことを高精度に検出できるドライバの運転不能状態検出装置を提供することを主たる目的とする。
 本開示の一態様によれば、ドライバの運転不能状態検出装置は、車両に搭載された撮像装置により撮像された運転席の画像に基づいて、ドライバの首よりも下の胴体部に対する前記ドライバの首よりも上の頭部の傾きを検出する傾き検出部と、前記車両の走行中に、前記傾き検出部により検出された前記頭部の傾きが相対傾き閾値よりも大きい場合に、前記ドライバが運転不能状態であることを検出する姿勢崩れ状態検出部と、を備える。
 ドライバの運転不能状態検出装置によれば、運転席を撮像した画像に基づき、ドライバの胴体部に対する頭部の傾きが検出される。通常、ドライバの胴体部は運転席のシートやシートベルトにより拘束されているため、ドライバの意識がなくなっても胴体部は比較的動きにくい。一方、ドライバの頭部は拘束されていないことが多いため、ドライバの意思で頭部の位置を維持する必要がある。そのため、急病を発症してドライバの意識がなくなると、ドライバは頭部の位置を維持できなくなり、頭部は胴体部に対していずれかの方向に大きく傾くことが多い。
 これに対して、ドライバが運転席から離れた位置のものを取るときは、一般的にドライバは意識して胴体部を傾けるため、胴体部に対する頭部の傾きは小さくなることが多い。また、走行中にドライバが脇見をするときは、一般的にドライバは首を回転させて見るため、胴体部に対する頭部の傾きは小さくなることが多い。
 よって、胴体部に対する頭部の傾きが相対傾き閾値よりも大きい場合には、ものを取るときなどの姿勢崩れではなく急病による姿勢崩れである可能性が高い。したがって、胴体部に対する頭部の傾きが相対傾き閾値よりも大きい場合に、ドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を高精度に検出できる。
 本開示についての上記および他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において
図1は、運転不能状態検出装置の構成を示すブロック図であり、 図2は、運転不能状態検出装置を搭載した車室内を示す図であり、 図3は、運転不能状態検出装置を搭載した車両の運転席を示す図であり、 図4は、制御装置の機能を示すブロック図であり、 図5Aは、通常運転時の姿勢を示す図であり、 図5Bは、急病を発症し、姿勢崩れ(FA内)がおきたときの姿勢を示す図であり、 図5Cは、急病を発症し、姿勢崩れ(FA外)がおきたときの姿勢を示す図であり、 図6は、ものを取るときの姿勢を示す図であり、 図7Aは、通常運転時の姿勢を示す図であり、 図7Bは、急病を発症したときの姿勢を示す図であり、 図8は、脇見をするときの姿勢を示す図であり、 図9は、ものを取るときの姿勢を示す図であり、 図10Aは、通常運転時の顔向きを示す図であり、 図10Bは、急病を発症したときの顔向きを示す図であり、 図11は、脇見をするときの顔向きの変化を示す図であり、 図12は、外力の発生に伴う頭部の揺れを示す図であり、 図13は、運転不能状態と判定する頭部の揺れの振幅範囲を示す図であり、 図14Aは、通常運転時の表情を示す図であり、 図14Bは、急病を発症したときの表情を示す図であり、 図15Aは、通常の状態を示す図であり、 図15Bは、白目を向いた状態を示す図であり、 図15Cは、完全に白目を向いた状態を示す図であり、 図16Aは、運転不能状態を検出する処理手順を示すフローチャートであり、 図16Bは、図16Aの続きであり、運転不能状態を検出する処理手順を示すフローチャートであり、 図17は、姿勢崩れを検出する処理手順を示すサブルーチンであり、 図18は、ドライバに姿勢崩れレベルを報知する態様を示す図である。
 以下、ドライバの運転不能状態検出装置を具現化した実施形態について、図面を参照しつつ説明する。なお、本実施形態では、ドライバの運転不能状態は、ドライバが急病を発症して意識がなくなり運転操作できない状態と、ドライバが心臓発作等の急病を発症して、意識はあるが体を動かせないために運転操作できない状態とを含む。
 まず、本実施形態に係る検出装置100(ドライバの運転不能状態検出装置)の構成について、図1~3を参照して説明する。検出装置100は、制御装置50、ドライバ状態認識装置20、車両情報認識装置30、走行環境認識装置40、HMI(Human Machine Interface)80、及び記憶装置52を備えて、ドライバの運転不能状態を検出する。そ
して、検出装置100は、ドライバが運転不能状態であることをドライバに確認して応答がなかった場合に、車両を安全に停止させる指令を車両制御装置90へ送信する。
 ドライバ状態認識装置20は、複数のドライバカメラ21、シートベルトセンサ22、座面センサ23を備える。ドライバカメラ21は撮像装置に、シートベルトセンサ22は量検出部に、座面センサ23は座圧検出部に、対応する。ドライバカメラ21は、例えばCCDカメラであり、近赤外LED等の照明装置により照らされた運転席を撮像する。ドライバカメラ21は、図2及び3に示すように、メーターパネル14、バックミラー16の下端の略中央、左右のAピラー17に、それぞれドライバに向かって搭載されている。メーターパネル14の代わりに、ダッシュボード13の上(破線で示す)やステアリングコラムにドライバカメラ21が設置されていてもよい。また、バックミラー16の下端の代わりに、バックミラー16の左端や右端(破線で示す)に設置されていてもよい。これら4つのドライバカメラ21はドライバステータスモニタを構成し、運転席のシート11に座ったドライバの上半身を正面側から1秒に数十画像分撮像する。
 シートベルトセンサ22は、シートベルト12の引き出し量を検出するセンサである。具体的には、シートベルトセンサ22は、シートベルト12の送り出し及び巻き取りを行うモータの回転角度を検出するエンコーダである。座面センサ23は、運転席のシート11の座部11aの圧力分布を検出するセンサである。
 車両情報認識装置30は、車速センサ31、舵角センサ32、アクセルセンサ33、及びブレーキセンサ34を備える。車速センサ31は、車両10の速度を検出するセンサである。舵角センサ32は、ステアリングホイール15の操舵角を検出するセンサである。アクセルセンサ33は、アクセル開度すなわちアクセルペダルの操作量を検出するセンサである。ブレーキセンサ34は、ブレーキペダルの操作量を検出するセンサである。
 走行環境認識装置40は、前方・後方カメラ41、前方・後方センサ42、カーナビゲーション装置43、及びGセンサ44を備える。前方・後方カメラ41は、道路の白線を含む車両10の前方を撮像するカメラや、車両10の後方及び後側方を撮像するカメラである。前方・後方センサ42は、超音波センサ、レーザーレーダ、ミリ波レーダ等のセンサであり、車両10の前方や後方の物体を検出し、車両10と前方や後方の物体との距離を取得する。前方・後方センサ42により取得された車両10と前方車両や後方車両との距離に基づいて、前方車両や後方車両との相対速度が算出できる。
 カーナビゲーション装置43は、GPS受信機により受信されたGPS信号や、Gセンサを含む各種センサにより取得された情報を用いて、車両10の現在位置を算出し、現在位置から目的地までの誘導経路を算出する。Gセンサ44は、例えばシート11に設置され、車両10の前後、左右、上下の3次元の加速度を検出するセンサである。また、Gセンサ44は、カーナビゲーション装置43が備えるセンサであってもよいし、車両10が車両運行管理システム(AVOS)を備えている場合には、Gセンサ44は、AVOSが備えるセンサであってもよい。すなわち、Gセンサ44は、他の用途で設置されているものがある場合には、共用すればよい。
 制御装置50は、CPU、ROM、RAM及びI/O等を備えるマイクロコンピュータであり、ドライバ状態認識装置20、車両情報認識装置30、走行環境認識装置40、記憶装置52、HMI80から各種情報を取得する。制御装置50と各種装置とは、CAN等の有線通信や、LAN、Bluetooth(登録商標)等の無線通信で接続されている。また
、制御装置50は、CPUがROMに記憶されている各種プログラムを実行することにより、画像解析部60、学習部51、状態検出部70の機能を実現し、ドライバの運転不能状態を検出する。各部についての詳しい説明は後で述べる。
 HMI80(姿勢報知部、確認部)は、ディスプレイ81、スピーカ82、キャンセルスイッチ83を備える。ディスプレイ81は、カーナビゲーション装置43のディスプレイや、メーターパネル14内に設けられている車載ディスプレイである。ディスプレイ81は、液晶パネルや有機ELパネルを備えたタッチディスプレイでもよい。ディスプレイ81は、画像から検出されたドライバの姿勢に基づいて、ドライバの姿勢の崩れ度合を報知する。詳しくは、ディスプレイ81は、ドライバの姿勢のステータスを5段階で表示する。最も崩れ度合の高い姿勢崩れレベル5は、ドライバが急病を発症して運転姿勢を維持できなくなった状態、すなわち運転不能状態と判定されるレベルである。ドライバは、ディスプレイ81に表示された姿勢のステータスを見て自分の運転姿勢を確認できるので、姿勢崩れレベルが5に近づいた場合には、運転不能状態と判定される前に運転姿勢を修正できる。
 スピーカ82は、カーナビゲーション装置43やオーディオ装置等と共用される車載スピーカである。スピーカ82は、ドライバの運転不能状態が検出された場合に、ドライバに運転不能状態か音声で確認する。なお、ディスプレイ81が、運転不能状態を確認する画面を表示してもよい。また、スピーカ82が、ドライバの姿勢崩れレベルを音声で報知してもよい。
 キャンセルスイッチ83は、運転不能状態の検出を中止するスイッチである。キャンセルスイッチ83が1回操作されると、1トリップの間、運転不能状態の検出が中止される。また、トリップ中にキャンセルスイッチ83が操作された場合には、キャンセルスイッチ83が操作されている間、又は操作されてから一定時間(数秒程度)、運転不能状態の検出が中止される。よって、ドライバがものを取る動作を行う際に、予めキャンセルスイッチ83を操作すれば、ドライバの姿勢が崩れても運転不能状態であると誤検出されるおそれがない。
 次に、制御装置50が実現する各種機能について、図4を参照して説明する。画像解析部60は、頭部検出部61、軌跡取得部62、痙攣検出部63、傾き検出部64、顔向き検出部65、白目検出部66を含む。
 頭部検出部61は、ドライバカメラ21により撮像された運転席の画像に基づいて、ドライバの首よりも上の頭部を逐次検出する。詳しくは、頭部検出部61は、ドライバカメラ21により運転席の画像が撮像される都度、運転席の画像からドライバの頭部の輪郭を表すエッジを抽出し、抽出したエッジで囲まれた領域を頭部として検出する。
 軌跡取得部62は、頭部検出部61により逐次検出されたドライバの頭部の位置から、ドライバの頭部の軌跡を取得する。軌跡取得部62は、例えば、各画像において検出されたドライバの頭部の中心を頭部の位置とし、各画像における頭部の位置を繋げて頭部の軌跡を取得する。
 痙攣検出部63は、ドライバの痙攣、すなわちドライバの頭部及び首よりも下の胴体部の筋肉の不随意な収縮を検出する。詳しくは、痙攣検出部63は、各画像においてドライバの頭部及び胴体部の輪郭を表すエッジを抽出し、連続した画像において抽出したエッジが規則的(周期的)に振動している場合に、ドライバが痙攣していることを検出する。
 傾き検出部64は、運転席の画像に基づいて、ドライバの胴体部に対する頭部の傾きθを検出する。詳しくは、傾き検出部64は、頭部及び胴体部の輪郭を表すエッジに囲まれた領域を、それぞれ頭部及び胴体部として検出するとともに、頭部及び胴体部の中心軸線を検出する。そして、傾き検出部64は、胴体部の中心軸線に対する頭部の中心軸線の傾きを頭部の傾きθとする。胴体部の中心軸線は、予め用意されている胴体部の向きのパターンと、検出した胴体部の向きとのマッチングを行って胴体部の向きを決め、向きを決めた胴体部から検出する。また、頭部の中心軸線は、頭部に含まれる顔の目、鼻、口等の特徴点を抽出し、顔の特徴点の3次元的な配置から検出する。頭部が前方に傾いた場合は、顔の特徴点と車両前方との距離が近づき、頭部が仰け反った場合は、顔の特徴点と車両前方との距離が遠ざかる。頭部の中心軸線を検出する際に、車両の前後方向における顔の特徴点の距離を用いてもよい。
 あるいは、傾き検出部64は、運転席の画像から運転席のシートベルト12を検出し、シートベルト12と頭部との位置関係から、胴体部に対する頭部の傾きθを検出する。ドライバの胴体部はシートベルト12により拘束されているため、シートベルト12の位置から胴体部の位置を推定できる。
 顔向き検出部65は、運転席の画像に基づいて、車両10の前方に対するドライバの顔の向きを検出する。顔向き検出部65は、車両10の前面に対向する垂直平面に対する顔面の傾きを、顔向きとして検出する。
 白目検出部66は、表情検出部67及び白目度合算出部68を含み、ドライバが白目をむいた状態を検出する。ここで、白目をむいた状態とは、図15Cに示すように完全に白目をむいた状態に限らず、図15Bに示すように黒目領域が所定量よりも小さくなった状態も含む。すなわち、白目をむいた状態は、黒目が偏ることにより視野が所定範囲よりも狭くなっている状態をいう。
 表情検出部67は、運転席の画像に基づいて、ドライバの目の輪郭及び黒目領域を検出する。ここで、ドライバの目の輪郭は、瞼と目との境界線である。また、黒目領域は、目の輪郭の内側の領域において、白目よりも明度の低い領域であり、黒色に限らず、青色、茶色、灰色等の色がついた領域である。また、表情検出部67は、抽出された口の輪郭を表すエッジから、ドライバの口の開きを検出する。
 白目度合算出部68は、表情検出部67により検出された目の輪郭及び黒目領域に基づいて、ドライバの目の白目度合を算出する。
 具体的には、白目度合算出部68は、目の輪郭で囲まれた領域の縦方向の長さLw+Lbと、黒目領域の縦方向の長さLbとの比から、白目度合を算出する(図15Aから図15C参照)。長さLw+Lbに対する長さLbが小さいほど、白目度合は大きくなる。あるいは、白目度合算出部68は、目の輪郭の上部から黒目領域の最下部までの距離Lbに基づいて、白目度合を算出する。距離Lbが小さいほど、白目度合は大きくなる。あるいは、白目度合算出部68は、目の輪郭で囲まれた目全体の領域の面積から黒目領域の面積を除いた白目領域の面積と、黒目領域の面積との比に基づいて、白目度合を算出する。白目領域の面積に対する黒目領域の面積が小さいほど、白目度合は大きくなる。
 あるいは、白目度合算出部68は、黒目領域の偏平率に基づいて、白目度合を算出する。白目をむいた状態では、黒目領域が上側を向くため、黒目領域の偏平率が見かけ上大きくなり、黒目領域の偏平率が大きいほど、白目度合は大きくなる。あるいは、白目度合算出部68は、目の輪郭で囲まれた領域の縦方向の中心となる中心線から黒目領域の最下部までの距離Lcに基づいて、白目度合を算出する。
 学習部51は、ドライバが運転不能状態でない場合において、傾き検出部64により検出された頭部の傾きθを学習する。また、学習部51は、ドライバが運転不能状態でない場合において、顔向き検出部65により検出された顔の向きを学習する。さらに、学習部51は、ドライバが運転不能状態でない場合において、頭部検出部61により検出された頭部の揺れの振幅を学習する。すなわち、学習部51は、ドライバの運転姿勢の癖を学習する。車両10を運転するドライバが複数いる場合には、ドライバごとに運転姿勢の癖を学習する。
 状態検出部70は、フレームアウト状態検出部71、姿勢崩れ状態検出部72、向き崩れ状態検出部73、揺れ状態検出部74、及び白目状態検出部75を含む。
 フレームアウト状態検出部71は、車両10の走行中に、フレームアウトを判定して、フレームアウトしている場合に、ドライバが運転不能状態であることを検出する。詳しくは、フレームアウト状態検出部71は、頭部検出部61により検出されたドライバの頭部が、画像の範囲FAから外れている場合に、ドライバが運転不能状態であることを検出する。ここで、範囲FAは、ドライバカメラ21により撮像された画像における所定の範囲である。通常の運転時には、ドライバの頭部が範囲FAから外れることはない。範囲FAを、撮像された画像の全体としてもよい。
 ドライバが車両10を正常に運転している場合は、図6に示すように、ドライバがものを取る動作をしても、ドライバの頭部は画像の範囲FAに収まることが多い。これに対して、急病を発症してドライバの意識がなくなると、図5Aから図5Cに示すように、ドライバの頭部が範囲FAから外れることがある。よって、フレームアウト状態検出部71は、ドライバの頭部が画像の範囲FAから外れている場合に、ドライバが運転不能状態であることを検出する。
 このとき、フレームアウト状態検出部71は、頭部が範囲FAから外れるまでに、軌跡取得部62により取得された軌跡を考慮すると、ドライバの運転不能状態を検出する精度を向上させることができる。画像の不明瞭等により範囲FA内でドライバの頭部を検出できなかった場合と、ドライバの頭部が移動して範囲FA内で検出できなかった場合とを、頭部の軌跡を用いることにより判別できるため、ドライバの運転不能状態の検出精度が向上する。
 なお、ドライバが一時的に頭部を移動させた場合や、画像の不明瞭等により頭部の不検出となった場合には、軌跡の最終位置付近で、再度頭部を検出できることが多い。よって、頭部検出部61により頭部が検出されなくなった場合に、頭部検出部61は、軌跡取得部62により取得された軌跡の最終位置付近を探索する。このようにすると、ドライバの頭部が不検出になった場合でも、頭部の軌跡を用いて、再度の頭部検出を効率的に行うことができる。
 姿勢崩れ状態検出部72は、車両10の走行中に、ドライバの姿勢崩れの判定をして、姿勢崩れしている場合に、ドライバが運転不能状態であることを検出する。詳しくは、姿勢崩れ状態検出部72は、傾き検出部64により検出された頭部の傾きθが、閾値Th1(相対傾き閾値)よりも大きい場合に、ドライバが運転不能状態であることを検出する。
 通常、ドライバの胴体部は運転席のシート11やシートベルト12により拘束されているため、ドライバの意識がなくなっても胴体部は比較的動きにくい。一方、ドライバの頭部は拘束されていないことが多いため、ドライバの意思で頭部の位置を維持する必要がある。そのため、急病を発症してドライバの意識がなくなると、ドライバは頭部の位置を維持できなくなり、図7Aと図7Bに示すように、頭部は胴体部に対していずれかの方向に大きく傾くことが多い。
 これに対して、走行中にドライバが脇見をするときは、一般的にドライバは首を回転させて見るため、図8に示すように、胴体部に対する頭部の傾きは小さくなることが多い。また、ドライバが運転席から離れた位置のものを取るときは、一般的にドライバは意識して胴体部を傾けるため、図9に示すように、胴体部に対する頭部の傾きθは小さくなることが多い。よって、姿勢崩れ状態検出部72は、頭部の傾きθが閾値Th1よりも大きい場合に、ドライバが運転不能状態であることを検出する。このとき、姿勢崩れ状態検出部72は、更にドライバの顔が車両10の前方を向いていないことを条件として、ドライバが運転不能状態であることを検出すると、運転不能状態の誤検出を抑制できる。
 向き崩れ状態検出部73は、車両10の走行中に、ドライバの顔向きの崩れの判定をして、顔向きが崩れている場合に、ドライバが運転不能状態であることを検出する。詳しくは、向き崩れ状態検出部73は、顔向き検出部65により検出された車両10の前方に対する顔の向きが、時間T2(向き崩れ判定時間)を超えて閾値Th2(顔向き閾値)よりも大きい場合に、ドライバが運転不能状態であることを検出する。
 一般的に、急病を発症すると、ドライバは顔の向きを維持できなくなり、図10Aと図10Bに示すように、車両10の前方に対する顔の向きが崩れたままの状態になる。これに対して、走行中にドライバが脇見をするときは、一般的にドライバは顔の向きを変えてもすぐに戻すことが多い。よって、向き崩れ状態検出部73は、上記場合にドライバが運転不能状態であることを検出する。
 または、向き崩れ状態検出部73は、顔向き検出部65により検出された車両10の前方に対する顔の向きが、閾値Th2よりも大きく、且つドライバがステアリングホイール15を放している場合に、ドライバが運転不能状態であることを検出する。ドライバがステアリングホイール15を放しているか否かは、画像から検出してもよいし、ステアリングホイール15に設置した圧力センサ等により検出してもよい。
 一般的に、急病を発症すると、ドライバは顔の向きを維持できなくなり、図10Aと図10Bに示すように、車両10の前方に対する顔の向きが崩れるとともに、ドライバはステアリングホイール15を放すことが多い。これに対して、走行中にドライバが脇見をするときは、図11に示すように、一般的にドライバはステアリングホイール15を把持したまま顔の向きを変えることが多い。また、ドライバが脇見をするときは、頭部を傾けないで、首を回して顔向きだけ変えることもある。よって、向き崩れ状態検出部73は、上記場合にドライバが運転不能状態であることを検出する。
 または、向き崩れ状態検出部73は、顔向き検出部65により検出された顔の向きが閾値Th2よりも大きく、且つアクセル開度が所定開度よりも大きい場合に、ドライバが運転不能状態であることを検出する。
 一般的に、走行中にドライバが脇見をするときは、安全上アクセルを大きく踏み込まないことが多い。したがって、車両10の前方に対する顔の向きが閾値Th2よりも大きく、且つアクセル開度が所定開度よりも大きい場合には、脇見などによる顔向きの崩れではなく、急病による顔向きの崩れである可能性が高い。よって、向き崩れ状態検出部73は、上記場合にドライバが運転不能状態であることを検出する。
 または、向き崩れ状態検出部73は、顔向き検出部65により検出された顔の向きが閾値Th2よりも大きく、且つ時間T3(操作判定時間)よりも長い時間アクセル操作及びブレーキ操作が行われていない場合に、ドライバが運転不能状態であることを検出する。
 一般的に、急病を発症すると、車両10の前方に対する顔の向きが崩れるとともに、時間T3よりも長い時間アクセル操作及びブレーキ操作が行われない。これに対して、走行中にドライバが脇見をするときは、一般的にドライバは、顔の向きを変えるとともに時間T3内にアクセル操作又はブレーキ操作を行うことが多い。よって、向き崩れ状態検出部73は、上記場合にドライバが運転不能状態であることを検出する。
 揺れ状態検出部74は、車両10の走行中において、外力に伴うドライバの頭部の揺れ状態を判定して、頭部が通常と異なる揺れをしている場合に、ドライバが運転不能状態であることを検出する。詳しくは、揺れ状態検出部74は、車両10に外力が加わってから時間T5(揺れ判定時間)経過するまでの間、頭部検出部61により検出された頭部の揺れの振幅が、振幅Am1(第1振幅)よりも小さい場合に、又は振幅Am2(第2振幅)よりも大きい場合に、ドライバが運転不能状態であることを検出する。振幅Am2は振幅Am1よりも大きい値である。
 図12に示すように、車両10に外力が加わると、所定の時間差の後、ドライバに振動が伝わる。通常、ドライバの意識がある場合、車両10に外力(詳しくは上下方向の外力)が加わった際に、図13に示すように、ドライバの頭部は振幅Am1から振幅Am2の範囲内の振幅で揺れる。これに対して、ドライバが急病を発症して体が硬直していると、正常時よりも頭部の揺れの振幅が小さくなる。また、ドライバが急病を発症して体が弛緩していると、正常時よりも頭部の揺れの振幅が大きくなる。よって、揺れ状態検出部74は、上述した場合にドライバの運転不能状態を検出する。
 なお、時間T5は、車両10に外力が加わってから、ドライバの動きが外力と無関係な動きとなるまでの時間である。また、振幅Am1及び振幅Am2は時間の関数であり、図13はその1例を示している。揺れ状態の判定では、簡易的に、外力が加わってから時間T5経過するまでの間における振幅Am1の最小値、及び振幅Am2の最大値を閾値としてもよい。
 白目状態検出部75は、車両10の走行中に、白目の判定をして、白目検出部66により白目をむいた状態が検出された場合に、ドライバが運転不能状態であることを検出する。詳しくは、白目状態検出部75は、白目度合算出部68により算出された白目度合が、閾値Th3(白目閾値)よりも大きい場合に、ドライバが運転不能状態であることを検出する。
 通常、ドライバが運転可能な状態の場合は、ドライバが白目をむくことはない。これに対して、ドライバが急病を発症すると、図14Aと図14Bに示すように、ドライバが白目をむくことがある。よって、白目状態検出部75は、白目をむいた状態が検出された場合に、ドライバが運転不能状態であることを検出する。
 記憶装置52(記憶部)には、各状態検出部により用いられる各閾値及び各判定値が記憶されている。さらに、記憶装置52には、学習部51により学習された頭部の傾きθ、顔の向き及び頭部の揺れの振幅が記憶される。また、記憶装置52には、ドライバの病歴及び年齢を含む個人情報が登録されている。ドライバが複数いる場合には、各ドライバの個人情報が登録されている。また、記憶装置52には、運転不能状態と判定しないドライバの姿勢、及び運転不能状態と判定するドライバの姿勢が登録されている。運転不能状態と判定しないドライバの姿勢は、例えば通常の運転姿勢や運転中によくする姿勢である。運転不能状態と判定するドライバの姿勢は、例えば持病があるドライバが発作時にする姿勢である。ドライバは、予め運転席で登録したい姿勢をドライバカメラ21で撮像して、記憶装置52に登録する。
 次に、ドライバの運転不能状態を検出する処理手順について、図16Aと図16Bのフローチャートを参照して説明する。本処理手順は、制御装置50が実行する。
 まず、車両10の車速がV以下か否か判定する(S10)。Vは0km/h(停車)であってもよいし、停車とみなせる程度に十分に低い速度(例えば1km/h)である。車速がV以下(S10:YES)の場合は、車速がVよりも高いと判定されるまで、S10の判定を繰り返し実行する。車速がVよりも高い場合(S10:N0)は、走行中であると判定して、ドライバの運転不能状態の検出処理を開始し、最初にフレームアウトの判定を行う。
 ここで、S10の判定では、ドライバが運転操作を行っているか否かも判定して、運転操作を行っている場合には、S10の判定を繰り返し実行するようにし、走行中で且つ運転操作を行っていない場合に、ドライバの運転不能状態の検出処理を開始するようにしてもよい。例えば、車両10の車速がV2(例えば50km/h)以上、又は舵角センサ32により検出された操舵角が所定の角度以上、又は操舵角速度が所定の角速度以上か否か判定する。V2はドライバがアクセルペダルの操作を行っているとみなせる値、所定の角度、及び所定の角速度は、ドライバがステアリングホイール操作を行っているとみなせる値である。上記3つの条件のすくなくとも1つの条件を満たしている場合には、ドライバが運転操作を行っているとして、ドライバの運転不能状態の検出処理を開始しない。
 フレームアウトの判定では、まず、運転席の画像からドライバの頭部及び胴体部を検出する(S11)。このとき、ドライバの頭部に含まれる顔の特徴点を検出して、ドライバの認証を行う。なお、ドライバの認証は、予めスマートフォン等の携帯端末との通信で行っていてもよし、個人情報が登録された車両10のキーとの通信で行ってもよい。
 次に、頭部位置が検出できたか否か判定する(S12)。頭部位置が検出できなかった場合は(S12:NO)、後述するS19の処理で記録した頭部位置から頭部の軌跡情報を取得し、軌跡情報がフレームアウトを示しているか否か判定する(S13)。すなわち、頭部位置の不検出が、頭部が撮像範囲外へ出たことによる不検出か、画像の不明瞭等による不検出かを判定する。
 頭部の軌跡情報がフレームアウトを示していない場合は(S13:NO)、一時的な画像の不明瞭等による不検出と判定して、S10の処理に戻る。一方、頭部の軌跡情報がフレームアウトを示している場合は(S13:YES)、頭部が撮像範囲外へ出たと判定する。この場合、頭部が撮像範囲外に存在することを確認するために補助的に使用する、シートベルトセンサ22及び座面センサ23の情報を取得する(S14)。
 次に、時間T0(フレームアウト判定時間)以上継続して、フレームアウトした状態か否か判定する(S15)。詳しくは、時間T0以上継続して、頭部位置が範囲FAから外れており、且つシートベルト12の引き出し量が、シートベルト12の装着時に検出された引き出し量よりも第1引き出し量を超えて多く、且つ座部11aの圧力分布において高圧部分が座部11aの端部に偏っているか否か判定する。そして、上記3つの条件を満たしている場合に、時間T0を超えてフレームアウトした状態であると判定する。このときさらに、シートベルトセンサ22により検出された量検出時間あたりの引き出し量が、すなわちシートベルト12の引き出し速度が、第2引き出し量よりも多いことを条件としてもよい。
 なお、シートベルトセンサ22及び座面センサ23の情報は使用しなくてもよい。すなわち、S14の処理は実行せず、S15の処理では、時間T0以上継続して、頭部位置が範囲FAから外れているか否か判定するだけでもよい。
 ここで、時間T0は、記憶装置52に登録されている個人情報に基づいて設定する。例えば、年齢が高い人は低い人よりも時間T0を短くする。また、特定の病歴がある人は、特定の病歴がない人よりも時間T0を短くする。さらに、時間T0は、ドライバの状態や走行環境に応じて変更する。ドライバが運転不能状態になる兆候を示している状態や、ドライバが運転不能状態である可能性が高い状態や、ドライバが運転不能状態となった場合に衝突の可能性が高い走行環境では、時間T0を短縮してドライバの運転不能状態を検出されやすくする。
 具体的には、S19の処理で記録した頭部位置が所定振幅よりも大きい振幅で振動している場合、すなわち頭部がふらふら揺れている場合には、運転不能状態になる確率が高いので、時間T0を短縮する。また、頭部の移動速度が大きいほど、ものを取る時の姿勢崩れではなく急病による姿勢崩れである可能性が高い。よって、取得した頭部の軌跡情報において、頭部位置の移動速度が大きいほど時間T0を短くする。また、急病による姿勢崩れの場合は、頭部が範囲FAの端に近づくほど、頭部の移動速度が大きくなることが多い。よって、頭部が範囲FAの端に近づくほど、頭部の移動速度が大きくなる場合は、ものを取る時の姿勢崩れではなく急病による姿勢崩れである可能性が高い。したがって、記録した頭部位置が範囲FAの端に近づくほど、頭部の移動速度が大きくなる場合には、時間T0を短くする。また、痙攣が検出された場合には、運転不能状態になる確率が高いので、時間T0を短縮する。
 また、衝突を回避するために、車速が速いほど早く適切な車両制御を開始する必要があるので、車両10の車速が高いほど時間T0を短くする。また、衝突を回避するために、先行車両との車間距離を先行車両との相対速度で除したTTC(衝突余裕時間)が短いほど、早く適切な車両制御を開始する必要があるので、TTCが短いほど時間T0を短くする。また、車両10においてACC(Adaptive Cruise Control)やLKA(Lane Keep Assist)等の運転支援制御が実行されている場合には、ドライバは長い時間姿勢を崩すことがあるので、時間T0を延長する。さらに、統計的に出ている心臓発作等の急病が発症しやすい曜日や時間帯では、時間T0を短縮してもよい。
 時間T0以上継続してフレームアウトした状態でない場合は(S15:NO)、S21の処理に進む。時間T0以上継続してフレームアウトした状態の場合は(S15:YES)、ドライバが運転不能状態であることを検出し、ドライバに運転不能状態か確認する。詳しくは、スピーカ82からの音声、ディスプレイ81上での表示、インジケータ(図示なし)の点滅等により運転不能状態の検出を通知し、所定の時間内にドライバから応答があるか否か判定する(S16)。
 所定の時間内に、ドライバのタッチディスプレイへの接触、ドライバの音声、ステアリングホイール15やブレーキ等の車両10の操作、特定のスイッチの操作等のいずれかを検出した場合には、ドライバから応答ありと判定する(S16:NO)。上記のいずれも検出しなかった場合には、ドライバから応答なしと判定する(S16:YES)。
 そして、ドライバから応答ありと判定した場合は、ドライバによる運転が可能であると認識したことを、スピーカ82からの音声、又はディスプレイ81上での表示等で通知する(S17)。一方、ドライバから応答なしと判定した場合は、適切な制動及び操舵を行い安全に停車するように、車両制御装置90へ指示を出す。また、周囲の車両に状況を報知するために、車両制御装置90へヘッドライトの灯火及びクラクションの吹聴の指示を出す(S18)。さらに、車両10の他の搭乗者へも状況を報知する。
 次に、S12の処理で頭部位置が検出できたと判定した場合には(S12:YES)、頭部及び胴体部の位置を記録する(S19)。各画像において記録された頭部の位置から、頭部の軌跡情報が取得できる。
 続いて、頭部位置が予め設定した範囲FA外に出たか否か判定する(S20)。頭部位置が撮像範囲内にあっても範囲FA外に出た場合には(S20:YES)、S15の処理に進み、フレームアウトの判定を行う。
 続いて、頭部及び胴体部の位置関係に基づいて、ドライバの姿勢が、記憶装置52に予め登録されている運転不能状態と判定する姿勢であるか否か判定する(S21)。ドライバの姿勢が運転不能状態と判定する姿勢の場合は(S21:YES)、ドライバが運転不能状態であることを検出し、S16の確認処理に進む。
 ドライバの姿勢が運転不能状態と判定する姿勢でない場合は(S21:NO)、ドライバの姿勢が、記憶装置52に予め登録されている運転不能状態と判定しない姿勢か否か判定する(S22)。ドライバの姿勢が運転不能状態と判定しない姿勢の場合は(S22:YES)、S10の処理に戻る。ドライバの姿勢が運転不能状態と判定しない姿勢と異なる場合は(S22:NO)、次に姿勢崩れの判定を行う。
 まず、姿勢崩れを検出したか否か判定する(S23)。詳しくは、図17のサブルーチンの処理により、姿勢崩れを検出する。まず、頭部の傾き及び頭部の傾きの方向を算出する(S231)。続いて、胴体部の傾き及び胴体部の傾きの方向を算出する(S232)。続いて、算出した胴体部の傾きと頭部の傾きとのなす角度、すなわち胴体部に対する頭部の傾きθを算出する(S233)。算出した頭部の傾きθは、ドライバの運転不能状態が検出されなかった場合に学習する。そして、算出した頭部の傾きθが閾値Th1(相対傾き閾値)よりも大きい場合に、姿勢崩れを検出する(S234)。そして、姿勢崩れを検出していない場合は(S23:NO)、S25の顔向き崩れの判定に進む。
 姿勢崩れを検出した場合は(S23:YES)、時間T1以上継続して、頭部の傾きθが閾値Th1よりも大きく、且つ顔が車両10の前方を向いていないか判定する(S24)。時間T1は、姿勢崩れ判定時間に対応する。
 このとき、簡易的に、時間T1以上継続して、頭部の傾きθが閾値Th1よりも大きいことのみ、又は顔が車両10の前方を向いていないことのみを条件としてもよい。また、このときさらに、時間T1以上継続して、算出された頭部の傾きの方向及び胴体部の傾きの方向が変動しない、すなわち、頭部の位置及び胴体部の位置が範囲UA(不動判定範囲)内にあることを条件としてもよい。範囲UAは、頭部及び胴体部が動いていないとみなせる範囲である。また、算出された頭部の傾きθが、学習された頭部の傾きよりも、判定値D1(傾き判定値)を超えて大きいことを条件としてもよい。また、時間T3(操作判定時間)よりも長い時間、ステアリングホイール15が操作されていないことを条件としてもよい。
 ここで時間T1は、時間T0と同様に、記憶装置52に登録されている個人情報に基づいて設定し、車速、TTC、運転支援制御の実行の有無に応じて変更する。また、閾値Th1は、痙攣が検出された場合に縮小する。さらに、時間T0と同様に、統計的に出ている心臓発作等の急病が発症しやすい曜日や時間帯では、時間T1を短縮してもよい。
 時間T1を超えて、頭部の傾きθが閾値Th1よりも大きく、且つ顔が車両10の前方を向いていない場合は(S24:YES)、ドライバが運転不能状態であることを検出し、S16の確認処理に進む。また、時間T1以上継続して、頭部の傾きθが閾値Th1よりも大きくない、又は顔が車両の前方を向いている場合は(S24:NO)、次に顔向き崩れの判定を行う。
 まず、顔向きの崩れを検出したか否か判定する(S25)。詳しくは、車両の前方に対するドライバの顔の向きを検出する。そして、検出した顔の向きが閾値Th2(顔向き閾値)よりも大きい場合に、顔向きの崩れを検出する。顔向きの崩れを検出していない場合は(S25:NO)、S28の揺れ状態の判定に進む。なお、検出した顔の向きは、ドライバの運転不能状態が検出されなかった場合に学習する。
 顔向きの崩れを検出した場合は(S25:YES)、時間T2(向き崩れ判定時間)以上継続して、顔向きが閾値Th2よりも大きいか否か判定する(S26)。
 ここで時間T2は、時間T0と同様に、記憶装置52に登録されている個人情報に基づいて設定し、車速、TTC、運転支援制御の実行の有無に応じて変更する。さらに、時間T0と同様に、統計的に出ている心臓発作等の急病が発症しやすい曜日や時間帯では、時間T2を短縮してもよい。また、閾値Th2は、痙攣が検出された場合に縮小する。
 時間T2以上継続して顔向きが閾値Th2よりも大きい場合は(S26:YES)、ドライバが運転不能状態であることを検出し、S16の確認処理に進む。
 時間T2以上継続して顔向きが閾値Th2よりも大きくない場合は(S26:NO)、次に、時間T3以上継続して、ドライバがステアリングホイール15を解放している、又はアクセル開度が所定開度よりも大きい、又はアクセル操作及びブレーキ操作がないか否か判定する(S27)。S27の処理における3つの条件のすくなくとも1つの条件を満たしている場合は(S27:YES)、ドライバが運転不能状態であることを検出して、S16の確認処理に進む。S27の処理における3つの条件のいずれも満たしていない場合は(S27:NO)、次に揺れ状態の判定を行う。
 ここで、S26の判定ではさらに、S27の処理における3つの条件のすくなくとも1つを満たすことを条件としてもよい。また、S26及びS27の判定ではさらに、検出された顔の向きが、学習された顔の向きよりも、判定値D1(傾き判定値)を超えて大きいことを条件としてもよい。また、一般的に、ドライバの手がドライバの首よりも上にあるままの状態で運転不能状態になることはないので、ドライバの手がドライバの首よりも下にあることを条件としてもよい。
 次に、揺れ状態の判定では、外力に対して通常とは異なる頭部のふらつきを検出したか否か判定する(S28)。詳しくは、車両10に外力が加わってから時間T5(揺れ判定時間)経過するまでの間、頭部の揺れの振幅が、振幅Am1(第1振幅)よりも小さい、又は振幅Am2(第2振幅)よりも大きいか否か判定する。
 このときさらに、車両10に外力が加わってから時間T5経過するまでの間は、頭部が通常と異なる振幅で振動しており、時間T5経過した後、頭部の位置が範囲UA内にあることを条件としてもよい。すなわち、外力に応じて頭部が振動し、且つ外力の影響がなくなった後に頭部の位置が変動しないことを条件としてもよい。また、ドライバが運転不能状態であることが検出されなかった場合に、頭部の揺れの振幅を学習し、検出された頭部の揺れの振幅が、学習された頭部の揺れの振幅よりも判定値D2(振幅判定値)を超えて大きいことを条件としてもよい。また、時間T3以上継続して、ステアリングホイール15が操作されていないことを条件としてもよい。
 外力に対して通常とは異なる頭部のふらつきを検出した場合は(S28:YES)、ドライバが運転不能状態であることを検出して、S16の確認処理に進む。外力に対して通常とは異なる頭部のふらつきを検出していない場合は(S28:NO)、次に白目状態の判定を行う。
 まず、白目をむいた状態を検出したか否か判定する(S29)。詳しくは、算出した白目度合が閾値Th3(白目閾値)よりも大きい場合に、白目をむいた状態を検出したと判定する。ここでは、ドライバの両目の白目度合をそれぞれ算出し、両目の白目度合がそれぞれ閾値Th3よりも大きいことを条件として、白目をむいた状態を検出したと判定する。ただし、片方の目だけが検出された場合や、簡易的に白目をむいた状態を検出する場合は、片方の目の白目度合だけで白目をむいた状態の検出を判定してもよい。
 白目をむいた状態を検出していないと判定した場合は(S29:NO)、フレームアウト判定、姿勢崩れ判定、顔向き崩れ判定、揺れ状態判定、及び白目状態判定の全ての判定で、ドライバが運転不能状態であることが検出されなかったので、S10の処理に戻る。
 白目をむいた状態を検出したと判定した場合は(S29:YES)、時間T4(白目判定時間)以上継続して、白目度合が閾値Th3よりも大きいか否か判定する(S30)。このときさらに、時間T3以上継続して、ステアリングホイール15が操作されていないことを条件としてもよい。
 ここで時間T4は、時間T0と同様に、記憶装置52に登録されている個人情報に基づいて設定し、車速、TTCに応じて変更する。また、閾値Th3は、痙攣が検出された場合に縮小する。さらに、時間T0と同様に、統計的に出ている心臓発作等の急病が発症しやすい曜日や時間帯では、時間T4を短縮してもよい。
 時間T4以上継続して白目度合が閾値Th3よりも大きくない場合は(S30:NO)、S10の処理に戻る。時間T4以上継続して白目度合が閾値Th3よりも大きい場合は(S30:YES)、ドライバの運転不能状態を検出して、S16の確認処理に進む。以上で本処理を終了する。
 なお、検出した胴体部に対する頭部の傾きθ、検出した顔の向き、検出した頭部の位置に基づいて、図18に示すように、ドライバの姿勢崩れ度合をディスプレイ81に表示する。検出した頭部の傾きθが大きいほど姿勢崩れレベルを高くする。また、検出した顔の向きが大きいほど姿勢崩れレベルを高くする。また、検出した頭部の位置が、運転時の標準位置から離れているほど姿勢崩れレベルを高くする。運転時の標準位置は、車両10の始動時の頭の位置、あるいは、ドライバが運転不能状態であることが検出されなかったときの頭部の平均位置とする。
 以上説明した本実施形態によれば、以下の効果を奏する。
 ドライバの頭部が範囲FAから外れた場合に、ドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を簡易に検出できる。さらに、頭部が範囲FAから外れるまでの軌跡を考慮すると、ドライバの運転不能状態を検出する精度を向上させることができる。
 ドライバが運転席から離れた位置のものを取る時は、頭部が範囲FAから一時的に離れても範囲FAに戻ってくることが多い。よって、時間T0を超えて、ドライバの頭部が範囲FAから外れていることを条件とすることにより、ドライバの運転不能状態の誤検出を抑制できる。
 範囲FAを画像の全体とすれば、画像中にドライバの頭部が存在しない場合に、ドライバが運転不能状態であることが検出されるため、検出処理をより簡易にできる。
 急病によりドライバの姿勢が崩れた場合、シートベルト12の引き出し量が装着時の引き出し量よりも第1引き出し量を超えて多くなると考えられる。また、ドライバの頭部が不検出になった場合でも、シートベルト12の引き出し量が装着時の引き出し量よりも第1引き出し量を超えて多いときには、ドライバの頭部は撮像範囲から外れた位置に存在することがわかる。よって、シートベルト12の引き出し量が、装着時の引き出し量よりも第1引き出し量を超えて多いことを条件とすることにより、ドライバの運転不能状態を高精度に検出できる。
 急病を発症した時には、ものを取る時よりもドライバの姿勢が急激に崩れることが多い。そのため、急病を発症した時には、ものを取る時よりもシートベルト12が急激に引き出されることが多い。よって、量検出時間あたりのシートベルト12の引き出し量が、第2引き出し量よりも多いことを条件とすることにより、ドライバの運転不能状態の誤検出を抑制できる。
 急病によりドライバの姿勢が崩れた場合、運転席の座部11aの圧力分布における高圧部分が、座部11aの端部に偏ると考えられる。また、ドライバの頭部が不検出になった場合でも、運転席の座部11aの圧力分布における高圧部分が座部の端部に偏っているときは、ドライバの頭部は撮像範囲から外れた位置に存在することがわかる。よって、座部11aの圧力分布における高圧部分が座部11aの端部に偏っていることを条件とすることにより、ドライバの運転不能状態を高精度に検出できる。
 所定振幅よりも大きい頭部の振動が検出された場合に、すなわち頭部がふらふら揺れている場合に、時間T0を短縮することにより、ドライバの運転不能状態の判定に要する時間を短縮できる。ひいては、ドライバの運転不能状態時における車両制御の実行を早く開始できる。
 頭部の移動速度が大きいほど、時間T0を短くすることにより、ドライバの運転不能状態の判定に要する時間を短縮できる。
 頭部が範囲FAの端に近づくほど、頭部の移動速度が大きくなる場合に、運転不能状態の判定に要する時間を短縮することにより、ドライバの運転不能状態の判定に要する時間を短縮できる。
 胴体部に対する頭部の傾きθが閾値Th1よりも大きい場合には、ものを取るときなどの姿勢崩れではなく急病による姿勢崩れである可能性が高い。したがって、胴体部に対する頭部の傾きθが閾値Th1よりも大きい場合に、ドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を高精度に検出できる。
 走行中に、ドライバが胴体部に対して頭部を大きく傾ける動作を意識的にした場合は、安全上ドライバは顔を車両10の前方に向けたままにすると考えられる。よって、顔が車両10の前方を向いていないことを条件とすることにより、ドライバの運転不能状態を誤検出することを抑制できる。
 走行中に、ドライバが胴体部に対して頭部を大きく傾ける動作を意識的にした場合は、安全上ドライバは頭部の位置をすぐに元の位置に戻すと考えられる。よって、時間T1を超えて、胴体部に対して頭部が大きく傾いていることを条件とすることにより、ドライバの運転不能状態を誤検出することを抑制できる。
 時間T1を超えて、胴体部に対して頭部が大きく傾いたまま、頭部と胴体部の位置が変動しないことを条件とすることにより、ドライバの運転不能状態を誤検出することを抑制できる。
 検出された頭部の傾きθが学習された頭部の傾きよりも、判定値D1を超えて大きいことを条件とすることにより、ドライバが胴体部に対して頭部を傾ける姿勢の癖を持っている場合でも、ドライバの運転不能状態を誤検出することを抑制できる。
 車両10の前方に対する顔の向きが、時間T2を超えて閾値Th2よりも大きい場合には、脇見などによる顔向きの崩れではなく、急病による顔向きの崩れである可能性が高い。したがって、上記場合にドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を高精度に検出できる。
 車両10の前方に対する顔の向きが閾値Th2よりも大きく、且つドライバがステアリングホイール15を放している場合には、脇見などによる顔向きの崩れではなく、急病による顔向きの崩れである可能性が高い。したがたって、上記場合にドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を高精度に検出できる。
 車両10の前方に対する顔の向きが閾値Th2よりも大きく、且つアクセル開度が所定開度よりも大きい場合には、脇見などによる顔向きの崩れではなく、急病による顔向きの崩れである可能性が高い。したがって、上記場合にドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を高精度に検出できる。
 車両10の前方に対する顔の向きが閾値Th2よりも大きく、且つ時間T3よりも長い時間アクセル及びブレーキの操作が行われない場合には、脇見などによる顔向きの崩れではなく、急病による顔向きの崩れである可能性が高い。したがって、上記場合にドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を高精度に検出できる。
 一般に、ドライバが運転可能状態であれば、時間T3内にステアリングホイール操作が行われる。よって、時間T3よりも長い時間、ステアリングホイール操作されていないことを条件とすることにより、ドライバの運転不能状態を誤検出することを抑制できる。
 一般的に、ドライバが運転可能な状態であれば、時間T3よりも長い時間、アクセルを大きく踏み込み続けることはない。よって、時間T3よりも長い時間、アクセル開度が所定開度よりも大きいことを条件とすることにより、ドライバの運転不能状態を誤検出することを抑制できる。
 走行中に、ドライバが車両10の前方対する顔の向きを変える動作を意識的にした場合は、安全上ドライバはすぐに顔の向きを正面に戻すと考えられる。よって、時間T2を超えて、車両10の正面に対する顔の向きが閾値Th2よりも大きいことを条件とすることにより、ドライバの運転不能状態を誤検出することを抑制できる。
 一般的に、ドライバが急病を発症した場合、ドライバの手がドライバの首よりも上にあるままの状態で運転不能状態になることはない。よって、ドライバの手がドライバの首よりも下にあることを条件とすることにより、ドライバの運転不能状態を誤検出することを抑制できる。
 車両に外力が加わってから時間T5経過するまでの間、頭部の揺れの振幅が振幅Am1よりも小さい又は振幅Am2よりも大きい場合に、ドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を簡易に検出できる。
 一般に、ドライバの意識がない場合は、外力に応じて頭部が振動し、外力の影響がなくなると頭部は動かなくなる。これに対して、ドライバが癖で頭部を振動させている場合は、外力の影響に関わらず頭部が振動している。よって、外力に応じて頭部が振動し、且つ外力の影響がなくなった後に頭部の位置が変動しないことを条件とすることにより、ドライバの運転不能状態を誤検出することを抑制できる。
 検出された頭部の揺れの振幅が、学習された頭部の揺れの振幅よりも判定値D2を超えて大きいことを条件とすることにより、ドライバが頭を揺らす癖を持っている場合でも、ドライバの運転不能状態を誤検出することを抑制できる。
 白目をむいた状態が検出された場合に、ドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を高精度に検出できる。
 画像に基づき、ドライバの目の輪郭及び黒目領域が検出される。そして、検出された目の輪郭及び黒目領域に基づいて、白目度合が算出され、白目度合が閾値Th3よりも大きい場合に、ドライバが運転不能状態であることを検出される。よって、ドライバが白目をむいている状態を高精度に検出し、ひいては、ドライバの運転不能状態を高精度に検出できる。
 ドライバが運転可能な状態の場合は、視線を上に向けて一時的に白目の度合が大きくなることがあっても、白目の度合が大きくなったままの状態になることはない。よって、時間T4を超えて白目度合が閾値Th3よりも大きいことを条件とすることにより、ドライバの運転不能状態を誤検出することを抑制できる。
 両面の白目度合がそれぞれ閾値Th3よりも大きいことを条件とすることにより、片目に眼帯を装着していたり、片目が義眼であったりして、白目をむいた状態と誤検出されても、もう一方の目が白目をむいていない場合には、ドライバの運転不能状態は検出されない。よって、ドライバの運転不能状態を誤検出することを抑制できる。
 目の縦方向の長さLw+Lbと黒目領域の縦方向の長さLbとの比は、目の全領域に対する白目の領域の割合と相関があるため、目の縦方向の長さLw+Lbと黒目領域の縦方向の長さLbとの比から、白目度合を算出できる。
 目の輪郭の上部から黒目領域の最下部までの距離Lbが小さいほど、白目度合は大きい。よって、目の輪郭の上部から黒目領域の最下部までの距離Lbから、白目度合を算出できる。
 白目領域の面積と黒目領域の面積との比から、白目度合を算出できる。
 白目をむいた状態では、黒目領域が上側を向くため、黒目領域の扁平率が見かけ上大きくなる。よって、黒目領域の偏平率から白目度合を算出できる。
 目の全体の縦方向の中心線から黒目領域の最下部までの距離Lcが大きいほど、黒目領域は小さく、白目度合が大きくなる。よって、中心線から黒目領域の最下部までの距離Lcから、白目度合を算出できる。
 一般に、ドライバが痙攣を起こした場合には、痙攣を起こしていない場合よりも、運転不能な状態になる確率が高い。よって、痙攣が検出された場合には、閾値Th1、Th2を縮小することにより、ドライバの運転不能状態を検出されやすくできる。
 車速が高いほど、時間T0、T1、T2、T4を短くすることにより、車速が高いほどドライバの運転不能状態の判定に要する時間が短くなり、適切な車両制御の実行を早く開始できる。
 TTCが短いほど時間T0、T1、T2、T4を短くすることにより、TTCが短いほど、ライバの運転不能状態の判定に要する時間が短くなり、適切な車両制御の実行を早く開始できる。
 ドライバの病歴や年齢を含む個人情報に基づいて時間T0、T1、T2、T4を設定することにより、運転不能状態の判定に要する時間を、ドライバ個人の特性に応じた時間にすることができる。
 車両において運転支援制御が実行されている場合には、時間T0、T1、T2を延長することにより、運転不能状態の誤検出を抑制できる。
 ドライバの姿勢の崩れ度合をドライバに報知することにより、ドライバは自分の姿勢を認識できる。そのため、ドライバは、運転姿勢が崩れても、運転不能状態と検出されないように姿勢を修正することができる。これにより、運転不能状態の誤検出を抑制できる。
 ドライバの運転不能状態が検出された場合に、ドライバに運転不能か確認することにより、ドライバの運転不能状態を誤検出した場合に、車両を安全に停止させるための車両制御の実行を回避できる。
 (他の実施形態)
 ドライバカメラ21は、車室内に搭載された4つのカメラのうちの一部でもよい。ドライバカメラ21は、最低限1つあればよい。
 フレームアウト状態検出部71は、軌跡取得部62により取得された軌跡に基づいて、ドライバが運転不能状態であることを検出してもよい。急病を発症してドライバが運転不能状態になると、ドライバの頭部は、運転時の位置から移動して、運転時の位置に戻ってこなくなることが多いので、頭部の軌跡に基づいてドライバの運転不能状態を検出できる。
 向き崩れ状態検出部73は更に、ドライバの顔が、閾値Th2d(下向き閾値)よりも大きく下側に向いている、又は閾値Th2u(上向き閾値)よりも大きく上側に向いている場合にも、ドライバが運転不能状態であることを検出してもよい。一般的に、急病を発症してドライバの意識がなくなると、ドライバの顔が閾値Th2dよりも大きく下側に向いたり、閾値Th2uよりも大きく上側に向いたりすることが多い。よって、ドライバの顔の向きが下側に大きい、又は上側に大きい場合に、ドライバが運手不能状態であることを検出できる。
 揺れ状態検出部74は、車両10の走行中において、車両10に外力が加わった際に、頭部検出部61により検出された頭部が、時間T6(復帰判定時間)を超えて外力の方向に傾いている場合に、ドライバが運転不能状態であることを検出してもよい。通常、ドライバの意識がある場合、車両10に外力(詳しくは左右方向及び前後方向の外力)が加わった際に、ドライバの頭部は外力方向に傾いても、時間T6内に元の場所に戻る。これに対して、ドライバが急病を発症して意識がないと、ドライバの頭部は、外力に対して抵抗が減少し、時間T6を超えて外力の方向に傾いたままになる。よって、揺れ状態検出部74は、上述した場合にドライバの運転不能状態を検出できる。
 白目状態検出部75は更に、表情検出部67により検出された口の開き(詳しくは縦方向の開き)が、開き判定量よりも大きい場合にも、ドライバが運転不能状態であることを検出してもよい。ドライバが急病を発症して白目をむいた場合には、口が開いた状態になることが多い。よって、ドライバの口の開きが開き判定量よりも大きい場合にも、ドライバが運転不能状態であることを検出してもよい。
 フレームアウト判定、姿勢崩れ判定、顔向き崩れ判定、揺れ状態判定、及び白目状態判定は、全て実行するとドライバの運転不能状態の検出精度が最も高くなるが、すくなくとも1つの判定を行えばよい。また、任意の数の判定を組み合わせて実行してもよい。その場合、フレームアウト判定、姿勢崩れ判定、顔向き崩れ判定、揺れ状態判定、白目状態判定の順に優先して実行するとよい。
 例えば、姿勢崩れ判定と揺れ状態判定の二つを組み合わせる場合は、姿勢崩れ判定でドライバが運転不能状態であると検出されなかった場合に、揺れ状態判定を行うと、ドライバの運転不能状態を高精度に検出できる。
 また、顔向き崩れ判定と揺れ状態判定の二つを組み合わせる場合は、顔向き崩れ判定でドライバが運転不能状態であると検出されなかった場合に、揺れ状態判定を行うと、ドライバの運転不能状態を高精度に検出できる。
 また、揺れ状態判定と白目状態判定の二つを組み合わせる場合は、揺れ状態判定でドライバが運転不能状態であると検出されなかった場合に、白目状態判定を行うと、ドライバの運転不能状態を高精度に検出できる。
 学習部51は、ドライバが運転不能状態であることを誤検出した場合におけるドライバの姿勢を学習してもよい。すなわち、ドライバが運転不能状態であることを検出したが、ドライバから応答があった場合におけるドライバの姿勢を学習してもよい。そして、学習した姿勢を運転不能状態と判定しない姿勢としてもよい。
 各閾値及び各判定値の統計値を記憶装置52に記憶しておき、それらを初期値として用いてもよい。各閾値及び各判定値の統計値は、複数の車両のドライバのそれぞれに対応する各閾値及び各判定値を統計したものである。また、車両10から、ドライバに対応して設定され各閾値及び各判定値を情報センターに送信して、情報センターで統計するようにするとよい。
 ドライバに運転不能状態か確認して、ドライバから応答があった場合は、その後一定の時間、ドライバは運転可能な状態と認識するようにしてもよい。また、ドライバの運転不能状態を検出する処理を、ドライバが設定した時間間隔(例えば、1時間に1回)で行うようにしてもよい。
 車両10に加わる外力はGセンサ44以外、例えば座面センサ23で検出してもよい。
 以上をまとめると、ドライバの運転不能状態検出装置は、車両に搭載された撮像装置により撮像された運転席の画像に基づいて、ドライバの首よりも下の胴体部に対する前記ドライバの首よりも上の頭部の傾きを検出する傾き検出部と、前記車両の走行中に、前記傾き検出部により検出された前記頭部の傾きが相対傾き閾値よりも大きい場合に、前記ドライバが運転不能状態であることを検出する姿勢崩れ状態検出部と、を備える。
 ドライバの運転不能状態検出装置によれば、運転席を撮像した画像に基づき、ドライバの胴体部に対する頭部の傾きが検出される。通常、ドライバの胴体部は運転席のシートやシートベルトにより拘束されているため、ドライバの意識がなくなっても胴体部は比較的動きにくい。一方、ドライバの頭部は拘束されていないことが多いため、ドライバの意思で頭部の位置を維持する必要がある。そのため、急病を発症してドライバの意識がなくなると、ドライバは頭部の位置を維持できなくなり、頭部は胴体部に対していずれかの方向に大きく傾くことが多い。
 これに対して、ドライバが運転席から離れた位置のものを取るときは、一般的にドライバは意識して胴体部を傾けるため、胴体部に対する頭部の傾きは小さくなることが多い。また、走行中にドライバが脇見をするときは、一般的にドライバは首を回転させて見るため、胴体部に対する頭部の傾きは小さくなることが多い。
 よって、胴体部に対する頭部の傾きが相対傾き閾値よりも大きい場合には、ものを取るときなどの姿勢崩れではなく急病による姿勢崩れである可能性が高い。したがって、胴体部に対する頭部の傾きが相対傾き閾値よりも大きい場合に、ドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を高精度に検出できる。
 ドライバの運転不能状態検出装置は、車両に搭載された撮像装置により撮像された運転席の画像に基づいて、前記車両の前方に対するドライバの顔の向きを検出する顔向き検出部と、前記車両の走行中に、前記顔向き検出部により検出された前記顔の向きが、向き崩れ判定時間を超えて顔向き閾値よりも大きい場合に、前記ドライバが運転不能状態であることを検出する向き崩れ状態検出部と、を備える。
 ドライバの運転不能状態検出装置によれば、運転席を撮像した画像に基づき、車両の前方に対するドライバの顔の向きが検出される。一般的に、急病を発症すると、ドライバは顔の向きを維持できなくなり、車両の前方に対する顔の向きが崩れたままの状態になる。これに対して、走行中にドライバが脇見をするときは、一般的にドライバは顔の向きを変えた後、すぐに戻すことが多い。
 よって、車両の前方に対する顔の向きが、向き崩れ判定時間を超えて顔向き閾値よりも大きい場合には、脇見などによる顔向きの崩れではなく、急病による顔向きの崩れである可能性が高い。したがって、車両の前方に対する顔向きが、向き崩れ判定時間を超えて顔向き閾値よりも大きい場合に、ドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を高精度に検出できる。
 ドライバの運転不能状態検出装置は、車両に搭載された撮像装置により撮像された運転席の画像に基づいて、前記車両の前方に対するドライバの顔の向きを検出する顔向き検出部と、前記車両の走行中に、前記顔向き検出部により検出された前記顔の向きが顔向き閾値よりも大きく、且つ前記ドライバが前記車両のステアリングホイールを放している場合に、前記ドライバが運転不能状態であることを検出する向き崩れ状態検出部と、を備える。
 ドライバの運転不能状態検出装置によれば、運転席を撮像した画像に基づき、車両の前方に対するドライバの顔の向きが検出される。一般的に、急病を発症すると、ドライバは顔の向きを維持できなくなり、車両の前方に対する顔の向きが崩れるとともに、ドライバはステアリングホイールを放すことが多い。これに対して、走行中にドライバが脇見をするときは、一般的にドライバはステアリングホイールを把持したまま顔の向きを変えることが多い。
 よって、車両の前方に対する顔の向きが顔向き閾値よりも大きく、且つドライバがステアリングホイールを放している場合には、脇見などによる顔向きの崩れではなく、急病による顔向きの崩れである可能性が高い。したがたって、車両の前方に対する顔の向きが顔向き閾値よりも大きく、且つドライバがステアリングホイールを放している場合に、ドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を高精度に検出できる。
 ドライバの運転不能状態検出装置は、車両に搭載された撮像装置により撮像された運転席の画像に基づいて、前記車両の前方に対するドライバの顔の向きを検出する顔向き検出部と、前記車両の走行中に、前記顔向き検出部により検出された前記顔の向きが顔向き閾値よりも大きく、且つアクセル開度が所定開度よりも大きい場合に、前記ドライバが運転不能状態であることを検出する向き崩れ状態検出部と、を備える。
 ドライバの運転不能状態検出装置によれば、運転席を撮像した画像に基づき、車両の前方に対するドライバの顔の向きが検出される。一般的に、走行中にドライバが脇見をするときは、安全上アクセルを大きく踏み込まないことが多い。よって、車両の前方に対する顔の向きが顔向き閾値よりも大きく、且つアクセル開度が所定開度よりも大きい場合には、脇見などによる顔向きの崩れではなく、急病による顔向きの崩れである可能性が高い。したがって、車両の前方に対する顔の向きが顔向き閾値よりも大きく、且つアクセル開度が所定開度よりも大きい場合に、ドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を高精度に検出できる。
 ドライバの運転不能状態検出装置は、車両に搭載された撮像装置により撮像された運転席の画像に基づいて、車両の前方に対するドライバの顔の向きを検出する顔向き検出部と、前記車両の走行中に、前記顔向き検出部により検出された前記顔の向きが顔向き閾値よりも大きく、且つ操作判定時間よりも長い時間アクセル操作及びブレーキ操作が行われていない場合に、前記ドライバが運転不能状態であることを検出する向き崩れ状態検出部と、を備える。
 ドライバの運転不能状態検出装置によれば、運転席を撮像した画像に基づき、車両の前方に対するドライバの顔の向きが検出される。一般的に、急病を発症すると、車両の前方に対する顔の向きが崩れるとともに、操作判定時間よりも長い時間アクセル操作及びブレーキ操作が行われない。これに対して、走行中にドライバが脇見をするときは、一般的にドライバは、顔の向きを変えるとともに操作判定時間内にアクセル操作又はブレーキ操作を行うことが多い。
 よって、車両の前方に対する顔の向きが顔向き閾値よりも大きく、且つ操作判定時間よりも長い時間アクセル及びブレーキの操作が行われない場合には、脇見などによる顔向きの崩れではなく、急病による顔向きの崩れである可能性が高い。したがたって、車両の前方に対する顔の向きが顔向き閾値よりも大きく、且つ操作判定時間よりも長い時間アクセル操作及びブレーキ操作が行われていない場合に、ドライバが運転不能状態であることを検出することにより、ドライバの運転不能状態を高精度に検出できる。
 この出願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のステップ(あるいはセクションと言及される)から構成され、各ステップは、たとえば、S10と表現される。さらに、各ステップは、複数のサブステップに分割されることができる、一方、複数のステップが合わさって一つのステップにすることも可能である。
 以上、ドライバの運転不能状態検出装置の実施形態、構成、態様を例示したが、実施形態、構成、態様は、上述した各実施形態、各構成、各態様に限定されるものではない。例えば、異なる実施形態、構成、態様にそれぞれ開示された技術的部を適宜組み合わせて得られる実施形態、構成、態様についてもドライバの運転不能状態検出装置の実施形態、構成、態様の範囲に含まれる。

Claims (26)

  1.  車両(10)に搭載された撮像装置(21)により撮像された運転席の画像に基づいて、ドライバの首よりも下の胴体部に対する前記ドライバの首よりも上の頭部の傾きを検出する傾き検出部(64)と、
     前記車両(10)の走行中に、前記傾き検出部(64)により検出された前記頭部の傾き(θ)が相対傾き閾値(Th1)よりも大きい場合に、前記ドライバが運転不能状態であることを検出する姿勢崩れ状態検出部(72)と、を備えるドライバの運転不能状態検出装置。
  2.  前記傾き検出部(64)は、前記画像から前記頭部及び前記胴体部の中心軸線をそれぞれ検出し、前記胴体部の前記中心軸線に対する前記頭部の前記中心軸線の傾きを前記頭部の傾き(θ)とする請求項1に記載のドライバの運転不能状態検出装置。
  3.  前記傾き検出部(64)は、前記画像から前記頭部及び前記運転席のシートベルト(12)を検出し、前記シートベルト(12)と前記頭部との位置関係から前記頭部の傾き(θ)を検出する請求項1に記載のドライバの運転不能状態検出装置。
  4.  前記姿勢崩れ状態検出部(72)は、姿勢崩れ判定時間(T1)を超えて前記頭部に含まれる顔が前記車両(10)の前方を向いていないことを条件として、前記ドライバが運転不能であることを検出する請求項1~3のいずれかに記載のドライバの運転不能状態検出装置。
  5.  前記姿勢崩れ状態検出部(72)は、姿勢崩れ判定時間(T1)を超えて前記頭部の傾き(θ)が前記相対傾き閾値(Th1)よりも大きいことを条件として、前記ドライバが運転不能状態であることを検出する請求項1~4のいずれかに記載のドライバの運転不能状態検出装置。
  6.  前記姿勢崩れ状態検出部(72)は、前記姿勢崩れ判定時間(T1)を超えて前記頭部の位置及び前記胴体部の位置が不動判定範囲(UA)内にあることを条件として、前記ドライバが運転不能状態であることを検出する請求項5に記載のドライバの運転不能状態検出装置。
  7.  前記ドライバが運転不能状態でない場合において、前記傾き検出部(64)により検出された前記頭部の傾き(θ)を学習する学習部(51)を備え、
     前記姿勢崩れ状態検出部(72)は、前記傾き検出部(64)により検出された前記頭部の傾き(θ)が、前記学習部(51)により学習された前記頭部の傾き(θ)よりも、傾き判定値(D1)を超えて大きいことを条件として、前記ドライバが運転不能であることを検出する請求項5又は6に記載のドライバの運転不能状態検出装置。
  8.  前記姿勢崩れ状態検出部(72)は、操作判定時間(T3)よりも長い時間、前記車両(10)のステアリングホイール(15)が操作されていないことを条件として前記ドライバが運転不能状態であることを検出する請求項5~7のいずれかに記載のドライバの運転不能状態検出装置。
  9.  前記姿勢崩れ状態検出部(72)により前記ドライバが運転不能状態であると検出されなかった場合に、前記車両(10)に外力が加わってから揺れ判定時間(T5)経過するまでの間において、前記頭部の揺れの振幅が第1振幅(Am1)よりも小さい、又は前記第1振幅(Am1)よりも大きい第2振幅(Am2)よりも大きいときに、前記ドライバが運転不能状態であることを検出する揺れ状態検出部(74)を備える請求項5~8のいずれかに記載のドライバの運転不能状態検出装置。
  10.  前記ドライバの痙攣を検出する痙攣検出部(63)を備え、
     前記痙攣検出部(63)により前記痙攣が検出された場合に、前記相対傾き閾値(Th1)を縮小する請求項5~9のいずれかに記載のドライバの運転不能状態検出装置。
  11.  前記車両(10)の車速が高いほど、前記姿勢崩れ判定時間(T1)を短くする請求項5~10のいずれかに記載のドライバの運転不能状態検出装置。
  12.  先行車両との車間距離を前記先行車両との相対速度で除した衝突余裕時間が短いほど、前記姿勢崩れ判定時間(T1)を短くする請求項5~11のいずれかに記載のドライバの運転不能状態検出装置。
  13.  前記ドライバの病歴及び年齢を含む個人情報が登録された記憶部(52)を備え、
     前記記憶部(52)に登録された個人情報に基づいて、前記姿勢崩れ判定時間(T1)を設定する請求項5~12のいずれかに記載のドライバの運転不能状態検出装置。
  14.  前記車両(10)において運転支援制御が実行されている場合には、前記姿勢崩れ判定時間(T1)を延長する請求項5~13のいずれかに記載のドライバの運転不能状態検出装置。
  15.  前記傾き検出部(64)により検出された前記頭部の傾き(θ)に基づいて、前記ドライバの姿勢の崩れ度合を前記ドライバに報知する姿勢報知部(80)を備える請求項1~14のいずれかに記載のドライバの運転不能状態検出装置。
  16.  前記運転不能状態は、前記ドライバが急病を発症した状態である請求項1~15のいずれかに記載のドライバの運転不能状態検出装置。
  17.  車両(10)に搭載された撮像装置(21)により撮像された運転席の画像に基づいて、前記車両(10)の前方に対するドライバの顔の向きを検出する顔向き検出部(65)と、
     前記姿勢崩れ状態検出部(72)により前記ドライバが運転不能状態であると検出されなかった場合に、
     前記車両(10)の走行中に、前記顔向き検出部(65)により検出された前記顔の向きが、向き崩れ判定時間(T2)を超えて顔向き閾値(Th2)よりも大きい場合に、前記ドライバが運転不能状態であることを検出する向き崩れ状態検出部(73)と、を備える請求項1に記載のドライバの運転不能状態検出装置。
  18.  車両(10)に搭載された撮像装置(21)により撮像された運転席の画像に基づいて、前記車両(10)の前方に対するドライバの顔の向きを検出する顔向き検出部(65)と、
     前記姿勢崩れ状態検出部(72)により前記ドライバが運転不能状態であると検出されなかった場合に、
     前記車両(10)の走行中に、前記顔向き検出部(65)により検出された前記顔の向きが顔向き閾値(Th2)よりも大きく、且つ前記ドライバが前記車両(10)のステアリングホイール(15)を放している場合に、前記ドライバが運転不能状態であることを検出する向き崩れ状態検出部(73)と、を備える請求項1に記載のドライバの運転不能状態検出装置。
  19.  車両(10)に搭載された撮像装置(21)により撮像された運転席の画像に基づいて、前記車両(10)の前方に対するドライバの顔の向きを検出する顔向き検出部(65)と、
     前記姿勢崩れ状態検出部(72)により前記ドライバが運転不能状態であると検出されなかった場合に、
     前記車両(10)の走行中に、前記顔向き検出部(65)により検出された前記顔の向きが顔向き閾値(Th2)よりも大きく、且つアクセル開度が所定開度よりも大きい場合に、前記ドライバが運転不能状態であることを検出する向き崩れ状態検出部(73)と、を備える請求項1に記載のドライバの運転不能状態検出装置。
  20.  車両(10)に搭載された撮像装置(21)により撮像された運転席の画像に基づいて、前記車両(10)の前方に対するドライバの顔の向きを検出する顔向き検出部(65)と、
     前記姿勢崩れ状態検出部(72)により前記ドライバが運転不能状態であると検出されなかった場合に、
     前記車両(10)の走行中に、前記顔向き検出部(65)により検出された前記顔の向きが顔向き閾値(Th2)よりも大きく、且つ操作判定時間(T3)よりも長い時間アクセル操作及びブレーキ操作が行われていない場合に、前記ドライバが運転不能状態であることを検出する向き崩れ状態検出部(73)と、を備える請求項1に記載のドライバの運転不能状態検出装置。
  21.  前記向き崩れ状態検出部(73)は、操作判定時間(T3)よりも長い時間、前記ドライバが前記ステアリングホイール(15)を放していることを条件として、前記ドライバが運転不能状態であることを検出する請求項18に記載のドライバの運転不能状態検出装置。
  22.  前記向き崩れ状態検出部(73)は、操作判定時間(T3)よりも長い時間、前記アクセル開度が前記所定開度よりも大きいことを条件として、前記ドライバが運転不能状態であることを検出する請求項19に記載のドライバの運転不能状態検出装置。
  23.  前記向き崩れ状態検出部(73)は、向き崩れ判定時間(T2)を超えて前記顔の向きが前記顔向き閾値よりも大きいことを条件として、前記ドライバが運転不能状態であることを検出する請求項19に記載のドライバの運転不能状態検出装置。
  24.  前記向き崩れ状態検出部(73)は更に、前記顔が、下向き閾値(Th2d)よりも大きく下側に向いている、又は上向き閾値(Th2u)よりも大きく上側に向いている場合にも、前記ドライバが運転不能状態であることを検出する請求項23に記載のドライバの運転不能状態検出装置。
  25.  前記向き崩れ状態検出部(73)は、前記ドライバの手が前記ドライバの首よりも下にあることを条件として、前記ドライバが運転不能状態であることを検出する請求項18に記載のドライバの運転不能状態検出装置。
  26.  前記ドライバが運転不能状態でない場合において、前記顔向き検出部(65)により検出された前記顔の向きを学習する学習部(51)と、を備え、
     前記向き崩れ状態検出部(73)は、前記顔向き検出部(65)により検出された前記顔の向きが、前記学習部(51)により学習された前記顔の向きよりも、傾き判定値(D1)を超えて大きいことを条件として、前記ドライバが運転不能であることを検出する請求項18、23~25のいずれかに記載のドライバの運転不能状態検出装置。
PCT/JP2015/002863 2014-06-23 2015-06-08 ドライバの運転不能状態検出装置 WO2015198540A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112015002934.6T DE112015002934B4 (de) 2014-06-23 2015-06-08 Vorrichtung zum Erfassen eines Fahrunvermögenzustands eines Fahrers
CN201580033595.3A CN106663377B (zh) 2014-06-23 2015-06-08 驾驶员的驾驶不能状态检测装置
US15/320,945 US10503987B2 (en) 2014-06-23 2015-06-08 Apparatus detecting driving incapability state of driver
US16/686,297 US10909399B2 (en) 2014-06-23 2019-11-18 Apparatus detecting driving incapability state of driver

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014128388A JP6379720B2 (ja) 2014-06-23 2014-06-23 ドライバの運転不能状態検出装置
JP2014-128388 2014-06-23
JP2014128386A JP6364997B2 (ja) 2014-06-23 2014-06-23 ドライバの運転不能状態検出装置
JP2014-128386 2014-06-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/320,945 A-371-Of-International US10503987B2 (en) 2014-06-23 2015-06-08 Apparatus detecting driving incapability state of driver
US16/686,297 Continuation US10909399B2 (en) 2014-06-23 2019-11-18 Apparatus detecting driving incapability state of driver

Publications (1)

Publication Number Publication Date
WO2015198540A1 true WO2015198540A1 (ja) 2015-12-30

Family

ID=54937651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002863 WO2015198540A1 (ja) 2014-06-23 2015-06-08 ドライバの運転不能状態検出装置

Country Status (4)

Country Link
US (2) US10503987B2 (ja)
CN (1) CN106663377B (ja)
DE (1) DE112015002934B4 (ja)
WO (1) WO2015198540A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017019411A (ja) * 2015-07-10 2017-01-26 本田技研工業株式会社 緊急時車両制御装置
JP2017019410A (ja) * 2015-07-10 2017-01-26 本田技研工業株式会社 緊急時車両制御装置
CN106815560A (zh) * 2016-12-22 2017-06-09 广州大学 一种应用于自适应驾座的人脸识别方法
JP2017206173A (ja) * 2016-05-20 2017-11-24 マツダ株式会社 ドライバ状態検出装置
CN109383525A (zh) * 2017-08-10 2019-02-26 欧姆龙株式会社 驾驶员状态掌握装置、驾驶员状态掌握系统及方法
WO2024069785A1 (ja) * 2022-09-28 2024-04-04 三菱電機株式会社 乗員状態判定装置、乗員状態判定システム、乗員状態判定方法、プログラム及び車両制御システム

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6372388B2 (ja) 2014-06-23 2018-08-15 株式会社デンソー ドライバの運転不能状態検出装置
US10430676B2 (en) * 2014-06-23 2019-10-01 Denso Corporation Apparatus detecting driving incapability state of driver
DE112015002934B4 (de) 2014-06-23 2021-12-16 Denso Corporation Vorrichtung zum Erfassen eines Fahrunvermögenzustands eines Fahrers
US20170084154A1 (en) * 2015-09-23 2017-03-23 Ali Kord Posture Monitor
JP6228581B2 (ja) * 2015-10-21 2017-11-08 本田技研工業株式会社 停車制御装置
US10445603B1 (en) * 2015-12-11 2019-10-15 Lytx, Inc. System for capturing a driver image
JP2019531560A (ja) * 2016-07-05 2019-10-31 ナウト, インコーポレイテッドNauto, Inc. 自動運転者識別システムおよび方法
JP6323510B2 (ja) * 2016-08-26 2018-05-16 マツダ株式会社 運転者体調検知装置及び方法
JP6686868B2 (ja) * 2016-12-22 2020-04-22 株式会社デンソー 車両用運転者状態判定装置
US10457165B2 (en) * 2017-02-27 2019-10-29 Toyota Motor Engineering & Manufacturing North America Inc. Providing a notification to an occupant using a vehicle seat
US11185235B2 (en) * 2017-03-27 2021-11-30 Panasonic Intellectual Property Management Co., Ltd. Information processing method, information processing device, and recording medium
JP6795457B2 (ja) * 2017-06-02 2020-12-02 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JP7223753B2 (ja) * 2017-07-03 2023-02-16 ジーピー ネットワーク アジア ピーティーイー. リミテッド 支払処理
CN111344762B (zh) * 2017-11-21 2022-03-01 三菱电机株式会社 异常检测装置和异常检测方法
JP7051526B2 (ja) * 2018-03-26 2022-04-11 本田技研工業株式会社 車両用制御装置
JP7102850B2 (ja) * 2018-03-28 2022-07-20 マツダ株式会社 ドライバ状態判定装置
JP2019189101A (ja) * 2018-04-26 2019-10-31 アイシン精機株式会社 乗員情報判定装置
GB2577270B (en) 2018-09-19 2021-04-07 Jaguar Land Rover Ltd Apparatus and method for monitoring vehicle operation
CN109620142B (zh) * 2018-11-08 2020-08-25 山东大学 一种基于机器视觉的颈椎活动度测量系统及方法
WO2020100584A1 (ja) * 2018-11-13 2020-05-22 ソニー株式会社 情報処理装置、および情報処理方法、並びにプログラム
US11491940B2 (en) * 2019-04-19 2022-11-08 GM Global Technology Operations LLC System and method for detecting improper posture of an occupant using a seatbelt restraint system
DE102019206452A1 (de) * 2019-05-06 2020-11-12 Zf Friedrichshafen Ag System und Verfahren zum Schutz bewusstloser Fahrzeuginsassen nach einem Unfall eines Fahrzeugs
CN111016913B (zh) * 2019-12-05 2020-12-22 乐清市风杰电子科技有限公司 基于图像信息的司机状态控制系统及方法
CN111002987B (zh) * 2019-12-16 2021-08-03 江苏大学 一种车辆行驶过程中驾驶员突发疾病监测及处理方法
US20210253135A1 (en) * 2020-02-18 2021-08-19 Toyota Motor North America, Inc. Determining transport operation level for gesture control
US11873000B2 (en) 2020-02-18 2024-01-16 Toyota Motor North America, Inc. Gesture detection for transport control
JP7459633B2 (ja) * 2020-04-13 2024-04-02 マツダ株式会社 ドライバ異常判定装置
KR20220014945A (ko) * 2020-07-29 2022-02-08 현대모비스 주식회사 운전자 모니터링 시스템 및 방법
US11851080B2 (en) * 2021-02-03 2023-12-26 Magna Mirrors Of America, Inc. Vehicular driver monitoring system with posture detection and alert
CN112829755B (zh) * 2021-02-08 2022-02-22 浙江大学 通过乘员脚部位置压力分布识别乘员状态的系统与方法
JP2023086452A (ja) * 2021-12-10 2023-06-22 パナソニックIpマネジメント株式会社 運転者監視装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005526971A (ja) * 2002-04-19 2005-09-08 アイイーイー インターナショナル エレクトロニクス アンド エンジニアリング エス.エイ. 車両安全装置
JP2009039167A (ja) * 2007-08-06 2009-02-26 Toyota Motor Corp 眠気判定装置
US20110068934A1 (en) * 2009-09-22 2011-03-24 Automotive Research & Test Center Method and system for monitoring driver
JP2013065246A (ja) * 2011-09-20 2013-04-11 Denso Corp 運転支援システム、車載装置、サーバ、及び、運転支援方法
WO2013077096A1 (ja) * 2011-11-25 2013-05-30 本田技研工業株式会社 車両周辺監視装置

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152904A (ja) 1984-01-20 1985-08-12 Nippon Denso Co Ltd 車両運転者位置認識装置
JPS60178596A (ja) 1984-02-25 1985-09-12 株式会社デンソー 居眼り運転防止装置
JPH01158579A (ja) 1987-09-09 1989-06-21 Aisin Seiki Co Ltd 像認識装置
US8604932B2 (en) 1992-05-05 2013-12-10 American Vehicular Sciences, LLC Driver fatigue monitoring system and method
US5353013A (en) 1993-05-13 1994-10-04 Estrada Richard J Vehicle operator sleep alarm
JP3115457B2 (ja) 1993-08-16 2000-12-04 三菱電機株式会社 運転者異常事態発生警報装置
JP3433554B2 (ja) 1995-02-17 2003-08-04 マツダ株式会社 自動車の走行制御装置
JPH09188163A (ja) 1996-01-10 1997-07-22 Kazunari Konishi オ−トマチック自動車におけるフ−トペダル装置
JPH10960A (ja) 1996-06-12 1998-01-06 Yazaki Corp 運転者監視装置
FR2773521B1 (fr) 1998-01-15 2000-03-31 Carlus Magnus Limited Procede et dispositif pour surveiller en continu l'etat de vigilance du conducteur d'un vehicule automobile, afin de detecter et prevenir une tendance eventuelle a l'endormissement de celui-ci
JP3622533B2 (ja) 1998-10-23 2005-02-23 株式会社デンソー 車間制御装置
JP3555541B2 (ja) 2000-03-07 2004-08-18 株式会社デンソー 車両用緊急通報システム
DE10121192A1 (de) 2000-05-09 2001-11-15 Denso Corp Klimaanlage mit kontaktfreiem Temperatursensor
US6927694B1 (en) 2001-08-20 2005-08-09 Research Foundation Of The University Of Central Florida Algorithm for monitoring head/eye motion for driver alertness with one camera
JP3943367B2 (ja) * 2001-10-31 2007-07-11 株式会社デンソー 車両用乗員頭部検出装置
US7044742B2 (en) * 2001-12-26 2006-05-16 Kabushikikaisha Equos Research Emergency reporting apparatus
US6937745B2 (en) 2001-12-31 2005-08-30 Microsoft Corporation Machine vision system and method for estimating and tracking facial pose
WO2004004320A1 (en) 2002-07-01 2004-01-08 The Regents Of The University Of California Digital processing of video images
JP4551766B2 (ja) 2002-10-15 2010-09-29 ボルボ テクノロジー コーポレイション 被験者の頭及び目の動きを分析する方法及び装置
JP2004314750A (ja) 2003-04-15 2004-11-11 Denso Corp 車両機器操作制御装置
KR100527466B1 (ko) 2003-07-28 2005-11-09 현대자동차주식회사 운전자 머리 위치 측정방법 및 장치
DE10339647A1 (de) 2003-08-28 2005-03-24 Robert Bosch Gmbh Vorrichtung zur Fahrerwarnung
JP2005108033A (ja) 2003-09-30 2005-04-21 Toshiba Corp 運転者状況判定装置および運転者状況判定方法
US7508979B2 (en) 2003-11-21 2009-03-24 Siemens Corporate Research, Inc. System and method for detecting an occupant and head pose using stereo detectors
ATE407416T1 (de) 2003-11-30 2008-09-15 Volvo Technology Corp Verfahren und system zum erkennen einer fahrerbeeinträchtigung
JP2005173635A (ja) 2003-12-05 2005-06-30 Fujitsu Ten Ltd 居眠り検出装置、カメラ、光遮断センサおよびシートベルトセンサ
JP4059224B2 (ja) 2004-04-13 2008-03-12 株式会社デンソー 運転者の外観認識システム
JP4622544B2 (ja) 2005-01-27 2011-02-02 アイシン精機株式会社 車両の運転支援装置
JP4735310B2 (ja) 2005-04-15 2011-07-27 株式会社デンソー 走行支援装置
JP2007249477A (ja) 2006-03-15 2007-09-27 Denso Corp 車載用情報伝達装置
US7860280B2 (en) 2006-06-09 2010-12-28 Samsung Electronics Co., Ltd. Facial feature detection method and device
BRPI0712837B8 (pt) 2006-06-11 2021-06-22 Volvo Tech Corporation método para determinação e análise de uma localização de interesse visual
US8050453B2 (en) 2006-06-15 2011-11-01 Omron Corporation Robust object tracking system
JP2007331652A (ja) 2006-06-16 2007-12-27 Toyota Motor Corp 車両停止装置
JP4420002B2 (ja) 2006-09-14 2010-02-24 トヨタ自動車株式会社 視線先推定装置
JP4922715B2 (ja) 2006-09-28 2012-04-25 タカタ株式会社 乗員検出システム、警報システム、制動システム、車両
DE102006057424A1 (de) 2006-12-06 2008-06-12 Robert Bosch Gmbh Verfahren und Anordnung zur Warnung des Fahrers
US20080204239A1 (en) 2007-02-28 2008-08-28 Christopher Marszalek Apparatus, system and/or method for wirelessly securing and/or for wirelessly monitoring an article
JP2008269496A (ja) 2007-04-24 2008-11-06 Takata Corp 乗員情報検出システム、乗員拘束システム、車両
JP4332813B2 (ja) 2007-07-23 2009-09-16 株式会社デンソー 自動車用ユーザーもてなしシステム
JP4582137B2 (ja) 2007-10-11 2010-11-17 株式会社デンソー 眠気度判定装置
US7860813B2 (en) 2008-01-24 2010-12-28 Nec Laboratories America, Inc. Monitoring driving safety using semi-supervised sequential learning
JP4941678B2 (ja) 2008-05-30 2012-05-30 トヨタ自動車株式会社 警報制御装置
US20100014711A1 (en) 2008-07-16 2010-01-21 Volkswagen Group Of America, Inc. Method for controlling an illumination in a vehicle interior in dependence on a head pose detected with a 3D sensor
US8538072B2 (en) 2008-08-27 2013-09-17 Imprivata, Inc. Systems and methods for operator detection
CN102159136B (zh) 2008-09-18 2013-09-04 学校法人中部大学 困意预兆检测装置
JP4666062B2 (ja) 2008-11-17 2011-04-06 株式会社デンソー 画像撮影装置および方法
JP5326521B2 (ja) 2008-11-26 2013-10-30 日産自動車株式会社 覚醒状態判断装置及び覚醒状態判断方法
US8063786B2 (en) 2009-02-24 2011-11-22 Panasonic Automotive Systems Company Of America Division Of Panasonic Corporation Of North America Method of detecting drowsiness of a vehicle operator
CN101540090B (zh) 2009-04-14 2011-06-15 华南理工大学 基于多元信息融合的驾驶员疲劳监测方法
JP2011043961A (ja) 2009-08-20 2011-03-03 Toyota Motor Corp 運転者監視装置
US8963829B2 (en) 2009-10-07 2015-02-24 Microsoft Corporation Methods and systems for determining and tracking extremities of a target
US8564534B2 (en) 2009-10-07 2013-10-22 Microsoft Corporation Human tracking system
JP2011164825A (ja) 2010-02-08 2011-08-25 Daihatsu Motor Co Ltd 運転状態判断装置
JP2011203869A (ja) 2010-03-24 2011-10-13 Toyota Motor Corp 車両用居眠り防止装置
CN102208125B (zh) * 2010-03-30 2015-02-25 深圳市赛格导航科技股份有限公司 疲劳驾驶监测系统及方法
CN101916496B (zh) * 2010-08-11 2013-10-02 无锡中星微电子有限公司 一种司机驾驶姿势检测的系统和方法
JP2014515847A (ja) 2011-03-25 2014-07-03 ティーケー ホールディングス インク. 運転者覚醒度判定システム及び方法
JP5644684B2 (ja) 2011-06-09 2014-12-24 トヨタ自動車株式会社 異常時対応運転制御の要否判定方法および異常時対応運転制御の要否判定に基づく運転制御装置
US9205816B2 (en) 2011-07-11 2015-12-08 Toyota Jidosha Kabushiki Kaisha Vehicle emergency evacuation device
CN102985302A (zh) 2011-07-11 2013-03-20 丰田自动车株式会社 车辆的紧急避险装置
EP2564765B1 (en) 2011-09-02 2017-12-13 Volvo Car Corporation System and method for improving a performance estimation of an operator of a vehicle
CN102426757A (zh) * 2011-12-02 2012-04-25 上海大学 基于模式识别的安全驾驶监控系统和方法
KR101283304B1 (ko) 2011-12-12 2013-07-12 기아자동차주식회사 운전자의 눈부심 검출 장치 및 그 방법과 이를 이용한 눈부심 차단 시스템 및 그 방법
US9274597B1 (en) 2011-12-20 2016-03-01 Amazon Technologies, Inc. Tracking head position for rendering content
JP5505434B2 (ja) 2012-02-09 2014-05-28 株式会社デンソー 脇見判定装置
US20130257620A1 (en) * 2012-03-30 2013-10-03 Utechzone Co., Ltd. Device and method for detecting driver's attention through interactive voice questioning
JP6047318B2 (ja) * 2012-07-06 2016-12-21 矢崎総業株式会社 ドライバ状態検出装置及びドライバ状態報知装置
US20140019167A1 (en) * 2012-07-16 2014-01-16 Shuli Cheng Method and Apparatus for Determining Insurance Risk Based on Monitoring Driver's Eyes and Head
JP2014019301A (ja) 2012-07-18 2014-02-03 Toyota Motor Corp 緊急退避装置
WO2014017061A1 (ja) 2012-07-25 2014-01-30 株式会社デンソー 状態監視装置
WO2014057309A1 (en) 2012-10-10 2014-04-17 Freescale Semiconductor, Inc. Method and apparatus for determining a risk level in manually operated systems
CN102982655B (zh) 2012-12-06 2014-10-22 南京邮电大学 手机平台汽车驾驶疲劳预警方法
US20150379362A1 (en) * 2013-02-21 2015-12-31 Iee International Electronics & Engineering S.A. Imaging device based occupant monitoring system supporting multiple functions
US20150009010A1 (en) * 2013-07-03 2015-01-08 Magna Electronics Inc. Vehicle vision system with driver detection
CN103434400B (zh) 2013-08-09 2018-07-06 浙江吉利汽车研究院有限公司 防酒驾和防瞌睡系统及防酒驾和防瞌睡方法
US9330305B2 (en) 2013-12-29 2016-05-03 Google Technology Holdings LLC Method and device for detecting a seating position in a vehicle
CN103770733B (zh) 2014-01-15 2017-01-11 中国人民解放军国防科学技术大学 一种驾驶员安全驾驶状态检测方法及装置
US9721173B2 (en) 2014-04-04 2017-08-01 Conduent Business Services, Llc Machine learning approach for detecting mobile phone usage by a driver
EP3157426B1 (de) 2014-06-20 2018-06-20 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Vorrichtung, verfahren und computerprogramm zur detektion eines sekundenschlafs
JP6379720B2 (ja) 2014-06-23 2018-08-29 株式会社デンソー ドライバの運転不能状態検出装置
DE112015002934B4 (de) 2014-06-23 2021-12-16 Denso Corporation Vorrichtung zum Erfassen eines Fahrunvermögenzustands eines Fahrers
JP6372388B2 (ja) * 2014-06-23 2018-08-15 株式会社デンソー ドライバの運転不能状態検出装置
US10430676B2 (en) * 2014-06-23 2019-10-01 Denso Corporation Apparatus detecting driving incapability state of driver
JP6331751B2 (ja) 2014-06-23 2018-05-30 株式会社デンソー ドライバの運転不能状態検出装置
JP6331875B2 (ja) 2014-08-22 2018-05-30 株式会社デンソー 車載制御装置
JP2016045714A (ja) 2014-08-22 2016-04-04 株式会社デンソー 車載制御装置
JP6341055B2 (ja) 2014-10-24 2018-06-13 株式会社デンソー 車載制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005526971A (ja) * 2002-04-19 2005-09-08 アイイーイー インターナショナル エレクトロニクス アンド エンジニアリング エス.エイ. 車両安全装置
JP2009039167A (ja) * 2007-08-06 2009-02-26 Toyota Motor Corp 眠気判定装置
US20110068934A1 (en) * 2009-09-22 2011-03-24 Automotive Research & Test Center Method and system for monitoring driver
JP2013065246A (ja) * 2011-09-20 2013-04-11 Denso Corp 運転支援システム、車載装置、サーバ、及び、運転支援方法
WO2013077096A1 (ja) * 2011-11-25 2013-05-30 本田技研工業株式会社 車両周辺監視装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017019411A (ja) * 2015-07-10 2017-01-26 本田技研工業株式会社 緊急時車両制御装置
JP2017019410A (ja) * 2015-07-10 2017-01-26 本田技研工業株式会社 緊急時車両制御装置
JP2017206173A (ja) * 2016-05-20 2017-11-24 マツダ株式会社 ドライバ状態検出装置
CN106815560A (zh) * 2016-12-22 2017-06-09 广州大学 一种应用于自适应驾座的人脸识别方法
CN109383525A (zh) * 2017-08-10 2019-02-26 欧姆龙株式会社 驾驶员状态掌握装置、驾驶员状态掌握系统及方法
WO2024069785A1 (ja) * 2022-09-28 2024-04-04 三菱電機株式会社 乗員状態判定装置、乗員状態判定システム、乗員状態判定方法、プログラム及び車両制御システム

Also Published As

Publication number Publication date
CN106663377A (zh) 2017-05-10
US10503987B2 (en) 2019-12-10
US20170161575A1 (en) 2017-06-08
DE112015002934B4 (de) 2021-12-16
CN106663377B (zh) 2019-04-09
US10909399B2 (en) 2021-02-02
DE112015002934T5 (de) 2017-03-16
US20200082190A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2015198540A1 (ja) ドライバの運転不能状態検出装置
WO2015198542A1 (ja) ドライバの運転不能状態検出装置
JP6372388B2 (ja) ドライバの運転不能状態検出装置
JP6364997B2 (ja) ドライバの運転不能状態検出装置
JP6379720B2 (ja) ドライバの運転不能状態検出装置
JP6361312B2 (ja) ドライバの運転不能状態検出装置
JP6331875B2 (ja) 車載制御装置
JP6331751B2 (ja) ドライバの運転不能状態検出装置
WO2016027412A1 (ja) 車載制御装置
JP2007280352A (ja) 視線方向判定装置
JP6593486B2 (ja) 車載制御装置及び車載システム
JP6607287B2 (ja) ドライバの運転不能状態検出装置
JP6614286B2 (ja) ドライバの運転不能状態検出装置
CN114512030B (en) Device for detecting driving incapacity state of driver
KR20230159774A (ko) 응급 상황 대응 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811414

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15320945

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002934

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811414

Country of ref document: EP

Kind code of ref document: A1