WO2016027412A1 - 車載制御装置 - Google Patents

車載制御装置 Download PDF

Info

Publication number
WO2016027412A1
WO2016027412A1 PCT/JP2015/003601 JP2015003601W WO2016027412A1 WO 2016027412 A1 WO2016027412 A1 WO 2016027412A1 JP 2015003601 W JP2015003601 W JP 2015003601W WO 2016027412 A1 WO2016027412 A1 WO 2016027412A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
driver
determination
behavior
abnormality
Prior art date
Application number
PCT/JP2015/003601
Other languages
English (en)
French (fr)
Inventor
大翔 坂野
豊 宗岡
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016027412A1 publication Critical patent/WO2016027412A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • B60K28/06Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • This disclosure relates to an in-vehicle control device.
  • a determination time for performing abnormality determination is generally set. Then, when the driver has an abnormal posture different from that in the normal state and this continues for a determination time or longer, it is determined that the behavior of the driver is abnormal.
  • setting the determination time for performing the abnormality determination as described above is considered desirable in order to suppress erroneous determination of driver abnormality.
  • the vehicle behavior may already be unstable and dangerous. For this reason, it is considered that there is room for improvement in technology to appropriately avoid danger.
  • This disclosure aims to provide an in-vehicle control device capable of appropriately determining a driver abnormality.
  • the in-vehicle control device that performs the risk avoidance process of the host vehicle causes the driver to drive the vehicle when the behavior of the driver becomes abnormal while the host vehicle is traveling and continues for a predetermined determination time or longer.
  • the driver abnormality determination device and the in-vehicle control device that determine that an abnormal state that hinders the vehicle is performed, and the vehicle's own vehicle is unstable while the host vehicle is running.
  • the vehicle behavior determination device that determines that the vehicle is exhibiting behavior, and the determination that is used for abnormality determination of the driver abnormality determination device when the vehicle behavior determination device determines that the host vehicle exhibits unstable behavior. Equipped with a time reduction device that shortens the time.
  • FIG. 1 is a block diagram showing the configuration of the in-vehicle system.
  • FIG. 2 is a diagram showing a configuration of the passenger compartment
  • FIG. 3 is a diagram showing a driver's seat of a vehicle.
  • FIG. 4 is a block diagram illustrating functions of the driver monitoring device.
  • FIG. 5A to FIG. 5D are diagrams for explaining an abnormal behavior of the vehicle.
  • FIG. 6 is a flowchart showing a processing procedure related to the inoperability determination of the driver.
  • FIG. 7 is a flowchart showing a processing procedure regarding determination of both behavioral abnormalities
  • FIG. 8A to FIG. 8B are relationship diagrams for obtaining a reduction width of the determination time.
  • FIG. 9 is a time chart specifically showing treatment in an inoperable state
  • FIG. 10 is a relationship diagram for obtaining a reduction range of the determination time.
  • the system includes a driver monitoring device 50, a driver state recognition device 20, a vehicle information recognition device 30, a traveling environment recognition device 40, an HMI (HumanHMachine Interface) 80, and a vehicle control device 90.
  • the driver monitoring device 50 determines whether or not the driver is in an inoperable state based on information from each of the recognition devices 20, 30, and 40. Is notified to the HMI 80 and the vehicle control device 90.
  • the vehicle control device 90 performs an alarm for the inside and outside of the host vehicle and performs a risk avoidance process such as safely stopping the vehicle.
  • the driver state recognition device 20 includes a plurality of driver cameras 21, a seat belt sensor 22, and a seating surface sensor 23.
  • the driver camera 21 is a CCD camera, for example, and images the driver's seat illuminated by an illumination device such as a near infrared LED. As shown in FIGS. 2 and 3, the driver camera 21 is mounted on the meter panel 14, the substantially center of the lower end of the rearview mirror 16, and the left and right A pillars 17 toward the driver.
  • the driver camera 21 may be installed on the dashboard 13 or on the steering column instead of the meter panel 14. Further, instead of the lower end of the rearview mirror 16, it may be installed at the left end or the right end of the rearview mirror 16.
  • These four driver cameras 21 constitute a driver status monitor, which captures several tens of images per second from the front side of the driver sitting on the driver's seat 11.
  • the seat belt sensor 22 is a sensor that detects the amount by which the seat belt 12 is pulled out. Specifically, the seat belt sensor 22 is an encoder that detects a rotation angle of a motor that feeds and winds the seat belt 12.
  • the seat surface sensor 23 is a sensor that detects the pressure distribution of the seat portion 11a of the seat 11 of the driver's seat.
  • the vehicle information recognition device 30 includes a vehicle speed sensor 31, a steering angle sensor 32, an accelerator sensor 33, and a brake sensor 34.
  • the vehicle speed sensor 31 is a sensor that detects the speed of the vehicle 10.
  • the steering angle sensor 32 is a sensor that detects the steering angle of the handle 15 (steering wheel).
  • the accelerator sensor 33 is a sensor that detects an accelerator opening, that is, an operation amount of an accelerator pedal.
  • the brake sensor 34 is a sensor that detects an operation amount of a brake pedal.
  • the traveling environment recognition device 40 includes a front / rear camera 41, a front / rear sensor 42, a car navigation device 43, and a G sensor 44.
  • the front / rear camera 41 is a camera that images the front of the vehicle 10 including the white line of the road, and a camera that images the rear and rear sides of the vehicle 10.
  • the front / rear sensor 42 is a sensor such as an ultrasonic sensor, a laser radar, or a millimeter wave radar, detects an object in front of or behind the vehicle 10 and acquires a distance between the vehicle 10 and an object in front or behind. Based on the distance between the vehicle 10 acquired by the front / rear sensor 42 and the front or rear vehicle, the relative speed between the front vehicle and the rear vehicle can be calculated.
  • the car navigation device 43 calculates the current position of the vehicle 10 by using the GPS signal received by the GPS receiver and information acquired by various sensors including the G sensor, and guide routes from the current position to the destination Is calculated.
  • the G sensor 44 is, for example, a sensor that is installed on the seat 11 and detects three-dimensional acceleration in the front-rear, left-right, and upper-lower direction of the vehicle 10.
  • the driver monitoring device 50 includes a microcomputer including a CPU, ROM, RAM, I / O, and the like. From the driver state recognition device 20, the vehicle information recognition device 30, the traveling environment recognition device 40, the HMI 80, and the storage device 52, Acquire various information.
  • the driver monitoring device 50 and the various devices are connected by wired communication such as CAN or wireless communication such as LAN or Bluetooth (registered trademark). Further, the driver monitoring device 50 realizes the functions of the image analysis device 60, the learning device 51, and the state determination device 70 by the CPU executing various programs stored in the ROM, and whether or not the driver is in an inoperable state. Determine whether or not. Detailed description of each device will be described later.
  • the driver's inoperable state includes a state in which the driver develops sudden illness and becomes unconscious and cannot perform driving operation, and a driver develops a sudden illness such as a heart attack and is conscious but cannot move the body. Therefore, it includes a state in which the driving operation cannot be performed.
  • the HMI 80 includes a display 81, a speaker 82, and a cancel switch 83.
  • the display 81 is a display of the car navigation device 43 or an in-vehicle display provided in the meter panel 14.
  • the display 81 may be a touch display including a liquid crystal panel or an organic EL panel.
  • the display 81 reports the degree of the driver's posture collapse based on the driver's posture detected from the image. Specifically, the display 81 displays the status of the driver's posture in five stages.
  • the posture collapse level 5 with the highest degree of collapse is a level at which it is determined that the driver has developed a sudden illness and is unable to maintain the driving posture, that is, a driving impossible state. Since the driver can check his / her driving posture by looking at the posture status displayed on the display 81, when the posture collapse level approaches 5, the driving posture can be corrected before being determined as being incapable of driving. .
  • the speaker 82 is an in-vehicle speaker that is shared with the car navigation device 43, the audio device, and the like. When it is determined that the driver is in an inoperable state, the speaker 82 confirms by voice whether or not the driver is in an inoperable state.
  • the display 81 may display a screen for confirming the inoperable state. Further, the speaker 82 may notify the driver of the posture collapse level by voice.
  • the cancel switch 83 is a switch for canceling the determination of the inoperable state.
  • the cancel switch 83 When the cancel switch 83 is operated once, the determination of the inoperable state may be stopped for one trip.
  • the cancel switch 83 when the cancel switch 83 is operated regardless of the determination result of the inoperable state during the trip, the inoperable state is not possible while the cancel switch 83 is operated or for a certain time (about several seconds) after the operation.
  • the status determination is canceled. Therefore, if the driver operates the cancel switch 83 in advance when performing an action of taking an object, there is no possibility of erroneously determining that the driver is in an inoperable state even if the driver's posture collapses.
  • the vehicle control device 90 controls the behavior of the vehicle 10 and performs a risk avoidance process. For example, the vehicle 10 is decelerated or stopped by the control of the engine 91, the transmission 92, and the brake actuator 93 in the vehicle 10. In addition, the steering angle of the steering wheel 15 is controlled by the steering actuator 94 to retract the vehicle 10 to the road shoulder.
  • the vehicle control device 90 has a function of controlling the blinking of the hazard lamp 95 (emergency blinking indicator light) as an alarm device, and the hazard lamp 95 is determined when it is determined that the driver is inoperable. Blinks, thereby warning the outside of the vehicle.
  • the hazard lamp 95 is an indicator that is also used as a winker (direction indicator) provided in front of and behind the vehicle. By pressing a hazard switch provided on the dashboard 13 or the like, the hazard lamp 95 The flashing state and the extinguishing state can be switched.
  • the image analysis device 60 includes a head detection device 61, a tilt detection device 62, a face orientation detection device 63, and a white eye detection device 64.
  • the head detection device 61 sequentially detects the head above the driver's neck based on the driver's seat image captured by the driver camera 21. Specifically, the head detecting device 61 extracts an edge representing the outline of the driver's head from the driver's seat image each time an image of the driver's seat is captured by the driver camera 21, and a region surrounded by the extracted edges Is detected as the head.
  • the tilt detection device 62 detects the tilt ⁇ of the head relative to the driver's body based on the driver's seat image. Specifically, the tilt detection device 62 detects the regions surrounded by the edges representing the outlines of the head and the body as the head and the body, respectively, and detects the central axes of the head and the body. Then, the inclination detection device 62 sets the inclination of the central axis of the head relative to the central axis of the body part as the inclination ⁇ of the head. The center axis of the body part is detected from the body part in which the direction of the body part is determined by matching the prepared body direction pattern with the detected body part direction to determine the body part direction.
  • the feature axis such as the eyes, nose and mouth of the face included in the head is extracted from the central axis of the head, and is detected from the three-dimensional arrangement of the feature points of the face.
  • the distance between the facial feature point and the front of the vehicle approaches, and when the head turns back, the distance between the facial feature point and the front of the vehicle increases.
  • the distance between facial feature points in the front-rear direction of the vehicle may be used.
  • the tilt detection device 62 detects the seat belt 12 of the driver's seat from the image of the driver's seat, and detects the tilt ⁇ of the head with respect to the trunk from the positional relationship between the seat belt 12 and the head. Since the body part of the driver is restrained by the seat belt 12, the position of the body part can be estimated from the position of the seat belt 12.
  • the face orientation detection device 63 detects the orientation of the driver's face relative to the front of the vehicle 10 based on the driver's seat image.
  • the face direction detection device 63 detects the inclination of the face with respect to the vertical plane facing the front surface of the vehicle 10 as the face direction.
  • the white-eye detection device 64 includes a facial expression detection device 65 and a white-eye degree calculation device 66, and detects a state where the driver has white eyes.
  • the state where the white of the eye is removed is not limited to the state where the white of the eye is completely removed, but also includes a state where the black eye area is smaller than a predetermined amount. That is, the state where the whites are peeled is a state where the visual field is narrower than a predetermined range due to the biased black eyes.
  • the facial expression detection device 65 detects the eye contour and black eye area of the driver based on the driver's seat image.
  • the outline of the eyes of the driver is a boundary line between the eyelids and the eyes.
  • the black eye region is a region having lightness lower than that of the white eye in a region inside the outline of the eye, and is not limited to black, but is a region having a color such as blue, brown, or gray.
  • the facial expression detection device 65 detects the opening of the driver's mouth from the edge representing the extracted mouth outline.
  • the white eye degree calculation device 66 calculates the white eye degree of the driver's eyes based on the eye contour and the black eye region detected by the facial expression detection device 65. Specifically, the degree of white eye calculation device 66 is: • the vertical length of the black eye region; ⁇ The area of the black eye area, The ratio of the vertical length of the area enclosed by the eye contour to the vertical length of the black eye area, ⁇ Black eye area flatness, The degree of white eye is calculated based on one of the above.
  • the learning device 51 learns the head inclination ⁇ detected by the inclination detection device 62 when the driver is not in an inoperable state. Further, the learning device 51 learns the face orientation detected by the face orientation detection device 63 when the driver is not in an inoperable state. Furthermore, the learning device 51 learns the amplitude of the head shake detected by the head detection device 61 when the driver is not in an inoperable state. That is, the learning device 51 learns the driver's driving posture habit. When there are a plurality of drivers who drive the vehicle 10, the driver learns the habit of driving posture for each driver.
  • the state determination device 70 is based on various driver monitoring information obtained by the image analysis device 60. (1) Frame out determination, (2) posture collapse determination, (3) Judgment of direction collapse, (4) Judgment judgment, (5) White eye determination, And the determination that the driver has become inoperable is performed based on any of these.
  • the state determination device 70 includes a frame-out determination device 71, a posture collapse determination device 72, a direction collapse determination device 73, a shake determination device 74, and a white-eye determination device 75, which will be described in order below.
  • the frame-out determination device 71 determines that the driver's head is out of frame while the vehicle 10 is traveling, and determines that the driver is in an inoperable state when out of frame. To do. Specifically, the frame-out determination device 71 is when the head of the driver detected by the head detection device 61 is out of the image range FA (see FIG. 2) and the state continues for a predetermined time T1 or more. It is determined that the driver is in an inoperable state.
  • the range FA is a predetermined range in an image captured by the driver camera 21. During normal driving, the driver's head does not deviate from the range FA.
  • the range FA may be the entire captured image.
  • the range FA may be set to a range recognized through the windshield as viewed from the front of the vehicle.
  • the frame-out determination device 71 determines that the driver is inoperable when the head of the driver is out of the image range FA. It is also possible to determine the inoperable state by using past head position information and taking into account the trajectory until the driver's head is out of range FA.
  • the frame-out determination uses information of the seat belt sensor 22 and the seating surface sensor 23. Specifically, in a state where the driver's head is out of the frame, the amount of withdrawal of the seat belt 12 is greater than the amount of withdrawal detected when the seat belt 12 is worn and exceeds the first amount of withdrawal. When the high pressure portion is biased toward the end of the seat 11a in the pressure distribution of the portion 11a, it is determined that the driver is in an inoperable state.
  • the posture collapse determination device 72 determines the driver's posture collapse while the vehicle 10 is traveling, and determines that the driver is in an inoperable state when the posture is lost. . Specifically, the posture collapse determination device 72 determines that the head tilt ⁇ detected by the tilt detection device 62 is larger than the threshold Th1 (relative tilt threshold), and the state continues for a predetermined time T2 or more. It is determined that the driver is in an inoperable state.
  • Th1 relative tilt threshold
  • the body of the driver is restrained by the seat 11 and the seat belt 12 of the driver's seat, so the body is relatively difficult to move even if the driver's consciousness is lost.
  • the driver's head is often not restrained, it is necessary to maintain the position of the head with the driver's intention. Therefore, when sudden illness develops and the driver's consciousness disappears, the driver cannot maintain the position of the head, and the head often tilts greatly in any direction with respect to the trunk.
  • the posture collapse determination device 72 determines that the driver is in an inoperable state when the head inclination ⁇ is larger than the threshold Th1. At this time, when the posture collapse determination device 72 further determines that the driver is in an inoperable state on the condition that the driver's face is not facing the front of the vehicle 10, erroneous determination of the inoperable state can be suppressed.
  • the direction change determination device 73 determines the driver's face direction change while the vehicle 10 is traveling, and the driver is in an inoperable state when the face direction is changed. Is determined. Specifically, in the direction change determination device 73, the face orientation relative to the front of the vehicle 10 detected by the face orientation detection device 63 is greater than a threshold Th2 (face orientation threshold), and the state is equal to or greater than a predetermined time T3. When continuing, it determines with the driver being in an operation impossible state.
  • Th2 face orientation threshold
  • the direction change determination device 73 determines that the driver is in an inoperable state when the face orientation with respect to the front of the vehicle is greater than the threshold Th2.
  • the direction change determination device 73 is When the face direction with respect to the front of the vehicle 10 detected by the face direction detection device 63 is larger than the threshold value Th2, and the driver releases the handle 15, When the face orientation detected by the face orientation detection device 63 is greater than the threshold Th2 and the accelerator opening is greater than the predetermined opening, When the face direction detected by the face direction detection device 63 is larger than the threshold Th2 and the accelerator operation and the brake operation are not performed for a longer time than the predetermined time, In either case, it may be determined that the driver is in an inoperable state.
  • the Judgment Judgment Device 74 determines the swaying state of the head of the driver accompanying the external force while the vehicle 10 is traveling, and the driver operates when the head sways differently from normal. It is determined that it is disabled. Specifically, the shake determination device 74 has an amplitude of the head shake detected by the head detection device 61 when an external force is applied to the vehicle 10 smaller than the amplitude Am1 (first amplitude), or the amplitude Am2. If it is greater than (second amplitude) and the state continues for a predetermined time T4 or more, it is determined that the driver is in an inoperable state. The amplitude Am2 is larger than the amplitude Am1.
  • the white eye determination device 75 determines the white eye while the vehicle 10 is traveling, and the white eye detection device 64 detects that the white eye is peeled off, so that the driver is disabled. It is determined that Specifically, the white-eye determination device 75 operates when the driver operates when the white-eye degree calculated by the white-eye degree calculation device 66 is larger than the threshold Th3 (white-eye threshold) and the state continues for a predetermined time T5 or more. It is determined that it is disabled.
  • Th3 white-eye threshold
  • the white-eye determination device 75 determines that the driver is in an inoperable state when a state in which white eyes are peeled is detected.
  • the storage device 52 stores each threshold value and each determination value used in each determination device. Further, the storage device 52 stores the inclination ⁇ of the head, the orientation of the face, and the amplitude of the shaking of the head learned by the learning device 51. In the storage device 52, personal information including the medical history and age of the driver is registered. When there are a plurality of drivers, personal information of each driver is registered. Further, the storage device 52 is registered with the posture of the driver that is not determined as being incapable of driving and the posture of the driver that is determined as being incapable of driving. The posture of the driver who is not determined to be incapable of driving is, for example, a normal driving posture or a posture improved during driving.
  • the posture of the driver that is determined as being incapable of driving is, for example, the posture that a driver who has illness makes during an attack.
  • the driver captures the posture desired to be registered in the driver's seat in advance with the driver camera 21 and registers it in the storage device 52.
  • the times T1 to T5 in each of the above determinations are about several seconds (for example, about 1 to 5 seconds), and may be set as times having different lengths, or may be set as the same time. Further, each of the times T1 to T5 may be variably set according to various conditions. Specifically, each of the times T1 to T5 may be set based on personal information registered in the storage device 52. For example, time T1 to T5 is shorter for older people than for younger people. In addition, a person with a specific medical history makes the time T1 to T5 shorter than a person without a specific medical history. Further, the times T1 to T5 are changed according to the driver's condition and the driving environment.
  • a driver abnormality occurs when it is determined that the vehicle 10 exhibits unstable behavior while the vehicle 10 is traveling, and the vehicle behavior determination function determines that the vehicle 10 exhibits unstable behavior. It has a time shortening function for shortening the determination time (T1 to T5) used for the determination, and the details will be described below.
  • the vehicle 10 runs meandering (staggered running) as shown in FIG. 5 (a), or the vehicle 10 goes out of the course (crossing the white line) as shown in FIG. 5 (b). 5 (c), the vehicle 10 may be accelerated abnormally, or the vehicle 10 may abnormally approach the preceding vehicle C as shown in FIG. 5 (d).
  • the vehicle control device 90 is based on the vehicle speed sensor 31, the rudder angle sensor 32, the accelerator sensor 33, the front / rear camera 41, the front / rear sensor 42, etc.
  • the unstable behavior of the vehicle 10 such as abnormal approach is determined.
  • the vehicle control device 90 determines that the vehicle 10 is meandering based on the change in the steering angle of the handle 15, and the vehicle 10 goes out of the course from the relationship between the position of the vehicle 10 and the white line on the road surface.
  • the vehicle 10 is abnormally accelerated based on the vehicle speed and the accelerator depression amount, and the vehicle 10 is abnormal with respect to the preceding vehicle based on the distance between the preceding vehicle and the acceleration of the vehicle 10. Determine that you are approaching.
  • the degree of danger is higher than the state where only the abnormal behavior of the driver occurs.
  • the determination time T1 to T5 used for determining a driver abnormality when the unstable behavior of the vehicle 10 occurs. ) Is shortened. As a result, the abnormality determination according to the actual risk level in the vehicle 10 is performed.
  • the time T1 to T5 is shortened as the vehicle speed of the host vehicle is high. Further, in order to avoid a collision, the time T1 to T5 is shortened as the TTC (collision margin time) obtained by dividing the inter-vehicle distance from the preceding vehicle by the relative speed with the preceding vehicle is shorter. Also, when driving support control such as ACC (Adaptive Cruise Control) or LKA (Lane Keep ⁇ ⁇ Assist) is executed in the host vehicle, the driver may break his posture for a long time, so the time T1 to T5 is extended. To do.
  • ACC Adaptive Cruise Control
  • LKA Lia Keep ⁇ ⁇ Assist
  • step S11 it is determined whether or not an execution condition for determining the inoperable state is satisfied. In this case, for example, if the vehicle speed of the host vehicle is greater than a predetermined value (for example, 0 km / h) and the host vehicle is in a traveling state, it is determined that the execution condition is satisfied. If the execution condition is satisfied, the process proceeds to the subsequent step S12. If the execution condition is not satisfied, the present process is terminated.
  • a predetermined value for example, 0 km / h
  • step S12 various parameters used for determining the inoperable state are acquired.
  • -Information on the driver's head and trunk detected from the driver's seat image ⁇ Information on the inclination ⁇ of the head relative to the body of the driver, -Information on the direction of the driver's face relative to the front of the vehicle, Driver white eye detection information, Etc.
  • step S13 it is determined whether or not the behavior of the driver is in an abnormal state using the various parameters acquired in step S12.
  • the driver monitoring apparatus 50 performs a driver abnormality determination based on the determination criteria of the determination processes (1) to (5) described above.
  • step S13 is affirmed and the process proceeds to step S14.
  • step S14 the increment of the abnormality counter is started. If the abnormal state of the driver is continued, the abnormal counter is incremented at a predetermined cycle. Thereafter, in step S ⁇ b> 15, information related to the abnormal behavior (unstable behavior) of the vehicle 10 is acquired from the vehicle control device 90. If it is determined that the behavior abnormality of the vehicle 10 has not occurred, the process proceeds to step S16, and if it is determined that the behavior abnormality of the vehicle 10 has occurred, the process proceeds to step S17.
  • the vehicle control device 90 determines whether or not the vehicle 10 has a behavior abnormality according to the procedure shown in FIG. Briefly, in step S31 of FIG. 7, it is determined whether or not the vehicle 10 is meandering. In step S32, it is determined whether the vehicle 10 is out of course. In step S33, it is determined whether or not the vehicle 10 is abnormally accelerated. In step S34, it is determined whether or not the vehicle 10 is abnormally approaching the preceding vehicle. If any of steps S31 to S34 is YES, the process proceeds to step S35, and it is determined that a behavior abnormality has occurred in the vehicle 10.
  • the determination time (T1 to T5) used for driver abnormality determination is set to a predetermined base value.
  • T1 to T5 may be set as times having different lengths, or may be set as the same time.
  • Each time T1 to T5 may be set based on personal information such as age and medical history.
  • step S17 a time reduction process for shortening the determination time (T1 to T5) used for driver abnormality determination with respect to the base value is performed.
  • the duration of the behavior abnormality of the vehicle 10 and the number of occurrences (occurrence frequency) of the behavior abnormality in the past predetermined period are acquired from the vehicle control device 90, and the determination time is shortened based on these parameters.
  • the shorter the duration of behavior abnormality of the vehicle 10 is, or the shorter the number of occurrences of behavior abnormality in the past predetermined period (for example, 10 minutes), the shorter the reduction width ⁇ T. Use a large value.
  • the shortening width ⁇ T may be set based on both the abnormality duration and the number of occurrences of abnormality, or may be set based on either one. Then, the determination time to be used this time is calculated by subtracting the shortening width ⁇ T from the base value of the determination time.
  • the determination time may be shortened based on the vehicle speed of the vehicle 10. Specifically, using the relationship shown in FIG. 8B, the shortening width ⁇ T is set to a larger value as the vehicle speed increases. However, it is also possible to set the shortening width ⁇ T as a fixed time.
  • step S18 it is determined whether or not the value of the abnormality counter has reached a threshold value Th corresponding to the determination time set in steps S16 and S17. If the abnormality counter ⁇ Th, the process is terminated as it is. If the abnormality counter ⁇ Th, the process proceeds to step S19. In this case, that Step S18 becomes YES means that it was determined that the driver is in an inoperable state.
  • step S19 a sound from the speaker 82 or a display on the display 81 is implemented as a warning to the driver (in-vehicle alarm) when it is determined that the driver has become unable to drive.
  • the response confirmation counter is incremented by one.
  • the response confirmation counter is a time measuring device that measures an elapsed time since it is determined that the driver has become inoperable (that is, an elapsed time since step S18 becomes YES).
  • step S21 it is determined whether or not the driver has responded after it is determined that the driver has become inoperable. Specifically, whether or not the driver has noticed an alarm to the driver and touched the touch display, the driver's voice, the own vehicle operation using the handle 15 or the brake, or the operation of the cancel switch 83 has been performed. judge. In this case, if there is a driver's response, it is determined that the driver is not in an inoperable state or the state is resolved, and the process proceeds to step S22. If there is no driver's response, the inoperable state is continued and step S24 is performed. Proceed to
  • step S22 the response confirmation counter is cleared to zero.
  • step S23 the fact that it is recognized that the driving by the driver is possible is notified by voice from the speaker 82, display on the display 81, or the like.
  • step S24 it is determined whether or not a predetermined time has elapsed since it was determined that the driver has become inoperable. Specifically, it is determined whether or not the response confirmation counter has reached a predetermined value.
  • the predetermined value is, for example, about several seconds (for example, about 3 to 5 seconds).
  • step S25 it is instructed to carry out risk avoidance processing such as deceleration, stop, and road shoulder evacuation of the vehicle 10, and instruct to cause the hazard lamp 95 to blink.
  • the driver monitoring device 50 outputs a danger avoidance processing command signal to the vehicle control device 90, and the vehicle control device 90, based on the command signal, the engine 91, the transmission 92, the brake actuator 93, the steering.
  • the actuator 94 is appropriately controlled to stop the vehicle 10 safely.
  • the driver monitoring device 50 outputs a hazard blinking command signal to the vehicle control device 90, and the vehicle control device 90 performs blinking display of the hazard lamp 95 based on the command signal.
  • FIG. 9 is a time chart specifically showing a measure when the driver becomes inoperable.
  • the driver has started to be in some abnormal state (any of frame-out abnormality, posture failure abnormality, orientation failure abnormality, shaking abnormality, white eye abnormality) due to a sudden illness or the like while the vehicle is traveling, and the abnormality counter is incremented. Is started.
  • the determination time for determining the inoperable state of the driver is shortened. It is changed from Th1 to Th2. Then, when the counter value reaches the threshold value Th2 at timing t13, it is determined that the driver has become inoperable. At this time, a warning to the driver (in-vehicle warning) by voice or display is started, and an increment of the response confirmation counter is started.
  • risk avoidance processing such as deceleration, stop, and road shoulder evacuation of the vehicle 10 is performed, and an out-of-vehicle alarm by blinking the hazard lamp 95 is performed.
  • risk avoidance processing such as deceleration, stop, and road shoulder evacuation of the vehicle 10 is performed, and an out-of-vehicle alarm by blinking the hazard lamp 95 is performed.
  • the degree of danger is higher than the state where only the abnormal behavior of the driver occurs.
  • the determination time used for driver abnormality determination is shortened.
  • the abnormality determination according to the actual risk level in the vehicle 10 can be performed, and a rapid abnormality determination can be performed under a high risk level. As a result, it is possible to properly determine a driver abnormality.
  • the degree of danger when a driver abnormality occurs varies depending on the degree of unstable behavior of the vehicle 10. For this reason, by setting the reduction time ⁇ T of the determination time variably on the basis of at least one of the duration of the unstable behavior of the vehicle 10 and the number of occurrences of the unstable behavior in the past predetermined period, the actual risk can be increased. A suitable abnormality determination corresponding to the above can be realized.
  • the reduction width ⁇ T of the determination time is variably set based on the vehicle speed of the vehicle 10, a suitable abnormality determination can be realized taking into consideration that the degree of danger differs according to the vehicle speed.
  • the determination time is based on which of the plurality of determination devices (first determination device) is determined to have a behavior abnormality.
  • the shortening width ⁇ T may be variably set.
  • step S17 of FIG. 6 the reason why it is determined in step S15 that the behavior of the vehicle 10 is abnormal is grasped, and the shortening width ⁇ T is set based on the reason.
  • a plurality of correlations may be defined in the relationship between the setting parameter and the shortening width ⁇ T, and the shortening width ⁇ T may be set using the plurality of correlations.
  • two correlations C1 and C2 are set, in which when the setting parameters (abnormal continuation time, number of occurrences of abnormality, and vehicle speed) are the same, different reduction widths ⁇ T are set.
  • the shortening width ⁇ T is set by selectively using the correlations C1 and C2. For example, when the meandering and the course-out are compared, the former is unstable but the vehicle course is self-corrected, while the latter is considered to have a high risk of collision with other vehicles. Therefore, the shortening width ⁇ T is set using the correlation C2 during meandering, and the shortening width ⁇ T is set using the correlation C1 when going out of course. In this case, if the set parameters are the same, “determination time during meandering traveling> determination time during course out”. It should be noted that the shortening width ⁇ T may be set using the correlation C1 during abnormal acceleration or abnormal approach.
  • the determination time reduction width ⁇ T is variable based on which of the plurality of determination devices (second determination devices) is determined to have a behavior abnormality. You may make it set to.
  • step S17 in FIG. 6 the reason why it is determined in step S13 that the driver behavior is abnormal is grasped, and the shortening width ⁇ T is set based on the reason.
  • the shortening width ⁇ T may be set using the correlations C1 and C2 shown in FIG.
  • the correlation C1, C2 is selectively used to set the shortening width ⁇ T.
  • the shortening width ⁇ T is set using the correlation C1 when the frame out is abnormal and the white eye is abnormal, and the shortening width ⁇ T is set using the correlation C2 when other abnormalities occur.
  • the determination time reduction width ⁇ T may be variably set based on the acquired information.
  • step S17 in FIG. 6 the road type information indicating whether the road currently being traveled is an automobile-only road, a mountain road, an urban road, or the like is acquired, and the traffic congestion information indicating the traffic congestion status is acquired.
  • the shortening width ⁇ T is set based on the acquired information.
  • the shortening width ⁇ T may be set using the correlations C1 and C2 shown in FIG. For example, it is considered that the vehicle speeds of the host vehicle and the surrounding vehicles are relatively high while traveling on a motor vehicle road, and the risk at the time of course out is high while traveling on a mountain road.
  • the shortening width ⁇ T is set using the correlation C1 when traveling on an automobile-only road or a mountain road, and the shortening width ⁇ T is set using the correlation C2 when traveling on an urban road. Further, the shortening width ⁇ T is set using the correlation C1 when traveling on a congested road, and the shortening width ⁇ T is set using the correlation C2 when traveling on a non-congested road.
  • the driver as a determination that the driver has entered an abnormal state that interferes with vehicle driving, it is configured to determine that the driver has become unable to drive due to sudden illness, etc. It is good also as a structure which determines that the driver is in a doze state or a mumble state. In this case, for example, based on the image of the driver camera 21, the driver's eyelid is more closed than usual, and since it is continued, it is preferable to determine the dozing state or the casual state. Even in such a case, as described above, when it is determined that the host vehicle exhibits an unstable behavior, it is preferable to shorten the determination time used for determination of a dozing state or a sloppy state.
  • each section is expressed as S11, for example.
  • each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section.
  • each section configured in this manner can be referred to as a device, module, or means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Combustion & Propulsion (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Traffic Control Systems (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Regulating Braking Force (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

 車載制御装置(50,90)は、自車両の走行中においてドライバの挙動が異常となりそれが所定の判定時間以上、継続される場合に、ドライバが車両運転に支障を来す異常状態になったと判定するドライバ異常判定装置と、車載制御装置は、判定結果に基づいて自車両の危険回避処理を実施し、自車両の走行中において当該自車両が不安定挙動を呈していることを判定する車両挙動判定装置と、前記車両挙動判定装置により自車両が不安定挙動を呈していると判定された場合に、前記ドライバ異常判定装置の異常判定に用いる前記判定時間を短くする時間短縮装置とを備える。

Description

車載制御装置 関連出願の相互参照
 本出願は、2014年8月22日に出願された日本出願番号2014-169542号に基づくもので、ここにその記載内容を援用する。
 本開示は、車載制御装置に関するものである。
 車両の運転中に、急病により運転に必要な認知・判断・操作ができなくなり、事故に至ることが問題となっている。そこで、姿勢崩れ等のドライバ異常を判定する技術が提案されており、例えば特許文献1に記載の運転制御装置では、運転席の座部に対する臀部の押圧力、背凭れ部に対する背部の押圧力、床部に対する左足の押圧力を検出し、押圧力の分布に基づいて、ドライバの姿勢が、正常な姿勢、前のめり姿勢及び仰向け姿勢のいずれの状態であるかを判定している。そして、ドライバの姿勢が前のめり姿勢又は仰向け姿勢の状態のときに、ドライバの体調に異常が生じたと判定している。
 また、ドライバ異常を判定する際には、一般に異常判定を行う判定時間が定められている。そして、ドライバが通常時とは異なる異常姿勢となり、それが判定時間以上、継続される場合に、ドライバの挙動が異常である旨を判定するようにしている。
 ここで、上記のとおり異常判定を行うための判定時間を定めておくことは、ドライバ異常の誤判定を抑制する上で望ましいと考えられる。しかしながら、急病等によりドライバに異常が生じていると判定された時点では、既に車両挙動が不安定で危険な状態になっていることが考えられる。そのため、適正に危険回避を行わせるべく技術の改善の余地があると考えられる。
特開2012-254745号公報
 本開示は、ドライバの異常を適正に判定することができる車載制御装置を提供することを目的とする。
 本開示の態様において、自車両の危険回避処理を実施する車載制御装置は、自車両の走行中においてドライバの挙動が異常となりそれが所定の判定時間以上、継続される場合に、ドライバが車両運転に支障を来す異常状態になったと判定するドライバ異常判定装置と、車載制御装置は、判定結果に基づいて自車両の危険回避処理を実施し、自車両の走行中において当該自車両が不安定挙動を呈していることを判定する車両挙動判定装置と、前記車両挙動判定装置により自車両が不安定挙動を呈していると判定された場合に、前記ドライバ異常判定装置の異常判定に用いる前記判定時間を短くする時間短縮装置と備える。
 ドライバに異常が生じる場合、それはドライバ自身の挙動の変化として現れることに加え、ドライバが操作する自車両の挙動の変化としても現れる。この場合、ドライバの挙動異常に加えて自車両の不安定挙動が生じている状態では、ドライバの挙動異常のみが生じている状態よりも危険度が高いと考えられる。この点を考慮し、自車両が不安定挙動を呈していることを判定し、自車両の不安定挙動が生じている場合に、ドライバ異常判定に用いる判定時間を短くするようにした。これにより、自車両における実際の危険度に即した異常判定を実施でき、危険度の高い状態下において迅速なる異常判定が可能となる。その結果、ドライバの異常を適正に判定することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車載システムの構成を示すブロック図であり、 図2は、車室内の構成を示す図であり、 図3は、車両の運転席を示す図であり、 図4は、ドライバ監視装置の機能を示すブロック図であり、 図5(a)から図5(d)は、車両の挙動異常を説明するための図であり、 図6は、ドライバの運転不能判定に関する処理手順を示すフローチャートであり、 図7は、両挙動異常の判定に関する処理手順を示すフローチャートであり、 図8(a)から図8(b)は、判定時間の短縮幅を求めるための関係図であり、 図9は、運転不能状態での処置を具体的に示すタイムチャートであり、 図10は、判定時間の短縮幅を求めるための関係図である。
 以下、本開示を具体化した実施形態について図面を参照しつつ説明する。まず、本実施形態に係る車載システムの構成について、図1~図3を参照して説明する。本システムは、ドライバ監視装置50、ドライバ状態認識装置20、車両情報認識装置30、走行環境認識装置40、HMI(Human Machine Interface)80、車両制御装置90を備えている。概要として、ドライバ監視装置50は、各認識装置20,30,40からの情報に基づいて、ドライバが運転不能状態であるか否かを判定し、運転不能状態であると判定した場合にその旨をHMI80や車両制御装置90に通知する。車両制御装置90は、ドライバが運転不能状態である場合に、自車両の内外に対する警報を実施するとともに、車両を安全に停止させる等の危険回避処理を実施する。
 ドライバ状態認識装置20は、複数のドライバカメラ21、シートベルトセンサ22、座面センサ23を備える。ドライバカメラ21は、例えばCCDカメラであり、近赤外LED等の照明装置により照らされた運転席を撮像する。ドライバカメラ21は、図2及び図3に示すように、メータパネル14と、バックミラー16の下端の略中央と、左右のAピラー17とにそれぞれドライバに向けて搭載されている。ドライバカメラ21は、メータパネル14に代えて、ダッシュボード13の上やステアリングコラムに設置されていてもよい。また、バックミラー16の下端に代えて、バックミラー16の左端や右端に設置されていてもよい。これら4つのドライバカメラ21はドライバステータスモニタを構成し、運転席のシート11に座ったドライバの上半身を正面側から1秒に数十画像分撮像する。
 シートベルトセンサ22は、シートベルト12の引き出し量を検出するセンサである。具体的には、シートベルトセンサ22は、シートベルト12の送り出し及び巻き取りを行うモータの回転角度を検出するエンコーダである。座面センサ23は、運転席のシート11の座部11aの圧力分布を検出するセンサである。
 車両情報認識装置30は、車速センサ31、舵角センサ32、アクセルセンサ33、及びブレーキセンサ34を備える。車速センサ31は、車両10の速度を検出するセンサである。舵角センサ32は、ハンドル15(ステアリングホイール)の操舵角を検出するセンサである。アクセルセンサ33は、アクセル開度すなわちアクセルペダルの操作量を検出するセンサである。ブレーキセンサ34は、ブレーキペダルの操作量を検出するセンサである。
 走行環境認識装置40は、前方・後方カメラ41、前方・後方センサ42、カーナビゲーション装置43、及びGセンサ44を備える。前方・後方カメラ41は、道路の白線を含む車両10の前方を撮像するカメラや、車両10の後方及び後側方を撮像するカメラである。前方・後方センサ42は、超音波センサ、レーザレーダ、ミリ波レーダ等のセンサであり、車両10の前方や後方の物体を検出し、車両10と前方や後方の物体との距離を取得する。前方・後方センサ42により取得された車両10と前方車両や後方車両との距離に基づいて、前方車両や後方車両との相対速度が算出できる。
 カーナビゲーション装置43は、GPS受信機により受信されたGPS信号や、Gセンサを含む各種センサにより取得された情報を用いて、車両10の現在位置を算出し、現在位置から目的地までの誘導経路を算出する。Gセンサ44は、例えばシート11に設置され、車両10の前後、左右、上下の3次元の加速度を検出するセンサである。
 ドライバ監視装置50は、CPU、ROM、RAM及びI/O等を備えるマイクロコンピュータにより構成されており、ドライバ状態認識装置20、車両情報認識装置30、走行環境認識装置40、HMI80、記憶装置52から各種情報を取得する。ドライバ監視装置50と各種装置とは、CAN等の有線通信や、LAN、Bluetooth(登録商標)等の
無線通信で接続されている。また、ドライバ監視装置50は、ROMに記憶されている各種プログラムをCPUが実行することにより、画像解析装置60、学習装置51、状態判定装置70の機能を実現し、ドライバが運転不能状態か否かの判定を実施する。各装置についての詳しい説明は後で述べる。なお、本実施形態では、ドライバの運転不能状態は、ドライバが急病を発症して意識がなくなり運転操作できない状態と、ドライバが心臓発作等の急病を発症して、意識はあるが体を動かせないために運転操作できない状態とを含む。
 HMI80は、ディスプレイ81、スピーカ82、キャンセルスイッチ83を備える。ディスプレイ81は、カーナビゲーション装置43のディスプレイや、メータパネル14内に設けられている車載ディスプレイである。ディスプレイ81は、液晶パネルや有機ELパネルを備えたタッチディスプレイでもよい。ディスプレイ81は、画像から検出されたドライバの姿勢に基づいて、ドライバの姿勢の崩れ度合を報知する。詳しくは、ディスプレイ81は、ドライバの姿勢のステータスを5段階で表示する。最も崩れ度合の高い姿勢崩れレベル5は、ドライバが急病を発症して運転姿勢を維持できなくなった状態、すなわち運転不能状態と判定されるレベルである。ドライバは、ディスプレイ81に表示された姿勢のステータスを見て自分の運転姿勢を確認できるので、姿勢崩れレベルが5に近づいた場合には、運転不能状態と判定される前に運転姿勢を修正できる。
 スピーカ82は、カーナビゲーション装置43やオーディオ装置等と共用される車載スピーカである。スピーカ82は、ドライバが運転不能状態であると判定された場合に、ドライバに対して運転不能状態であるか否かを音声で確認する。なお、ディスプレイ81が、運転不能状態を確認する画面を表示してもよい。また、スピーカ82が、ドライバの姿勢崩れレベルを音声で報知してもよい。
 キャンセルスイッチ83は、運転不能状態の判定を中止するスイッチである。キャンセルスイッチ83が1回操作されると、1トリップの間、運転不能状態の判定が中止されるようにしてもよい。また、トリップ中に、運転不能状態の判定結果に関係なくキャンセルスイッチ83が操作された場合には、キャンセルスイッチ83が操作されている間、又は操作されてから一定時間(数秒程度)、運転不能状態の判定が中止される。よって、ドライバが物を取る動作を行う際に、予めキャンセルスイッチ83を操作すれば、ドライバの姿勢が崩れても運転不能状態であると誤判定されるおそれがない。
 また、車両制御装置90は、ドライバ監視装置50においてドライバが運転不能状態であると判定された場合に、車両10の挙動を制御して危険回避処理を実施する。例えば、車両10においてエンジン91や変速機92、ブレーキアクチュエータ93の制御により、車両10を減速又は停止させる。また、ステアリングアクチュエータ94によるハンドル15の操舵角制御を併せて実施することで、車両10を路肩に退避させる。
 また、車両制御装置90は、警報装置としてのハザードランプ95(非常点滅表示灯)の点滅を制御する機能を有しており、ドライバが運転不能状態であると判定された場合に、ハザードランプ95を点滅させ、それにより車外への警報を実施する。ハザードランプ95は、周知のとおり車両の前後に設けられたウィンカ(方向指示器)と兼用の表示器であり、ダッシュボード13等に設けられたハザードスイッチを押し操作することで、ハザードランプ95の点滅状態、消灯状態が切り替えられるようになっている。
 次に、ドライバ監視装置50が実現する各種機能について、図4を参照して説明する。画像解析装置60は、頭部検出装置61、傾き検出装置62、顔向き検出装置63、白目検出装置64を含む。
 頭部検出装置61は、ドライバカメラ21により撮像された運転席の画像に基づいて、ドライバの首よりも上の頭部を逐次検出する。詳しくは、頭部検出装置61は、ドライバカメラ21により運転席の画像が撮像される都度、運転席の画像からドライバの頭部の輪郭を表すエッジを抽出し、抽出したエッジで囲まれた領域を頭部として検出する。
 傾き検出装置62は、運転席の画像に基づいて、ドライバの胴体部に対する頭部の傾きθを検出する。詳しくは、傾き検出装置62は、頭部及び胴体部の輪郭を表すエッジに囲まれた領域を、それぞれ頭部及び胴体部として検出するとともに、頭部及び胴体部の中心軸線を検出する。そして、傾き検出装置62は、胴体部の中心軸線に対する頭部の中心軸線の傾きを頭部の傾きθとする。胴体部の中心軸線は、予め用意されている胴体部の向きのパターンと、検出した胴体部の向きとのマッチングを行って胴体部の向きを決め、向きを決めた胴体部から検出する。また、頭部の中心軸線は、頭部に含まれる顔の目、鼻、口等の特徴点を抽出し、顔の特徴点の3次元的な配置から検出する。頭部が前方に傾いた場合は、顔の特徴点と車両前方との距離が近づき、頭部が仰け反った場合は、顔の特徴点と車両前方との距離が遠ざかる。頭部の中心軸線を検出する際に、車両の前後方向における顔の特徴点の距離を用いてもよい。
 あるいは、傾き検出装置62は、運転席の画像から運転席のシートベルト12を検出し、シートベルト12と頭部との位置関係から、胴体部に対する頭部の傾きθを検出する。ドライバの胴体部はシートベルト12により拘束されているため、シートベルト12の位置から胴体部の位置を推定できる。
 顔向き検出装置63は、運転席の画像に基づいて、車両10の前方に対するドライバの顔の向きを検出する。顔向き検出装置63は、車両10の前面に対向する垂直平面に対する顔面の傾きを、顔向きとして検出する。
 白目検出装置64は、表情検出装置65及び白目度合算出装置66を含み、ドライバが白目をむいた状態を検出する。ここで、白目をむいた状態とは、完全に白目をむいた状態に限らず、黒目領域が所定量よりも小さくなった状態も含む。すなわち、白目をむいた状態は、黒目が偏ることにより視野が所定範囲よりも狭くなっている状態をいう。
 表情検出装置65は、運転席の画像に基づいて、ドライバの目の輪郭及び黒目領域を検出する。ここで、ドライバの目の輪郭は、瞼と目との境界線である。また、黒目領域は、目の輪郭の内側の領域において、白目よりも明度の低い領域であり、黒色に限らず、青色、茶色、灰色等の色がついた領域である。また、表情検出装置65は、抽出された口の輪郭を表すエッジから、ドライバの口の開きを検出する。
 白目度合算出装置66は、表情検出装置65により検出された目の輪郭及び黒目領域に基づいて、ドライバの目の白目度合を算出する。具体的には、白目度合算出装置66は、・黒目領域の縦方向の長さ、
・黒目領域の面積、
・目の輪郭で囲まれた領域の縦方向の長さと黒目領域の縦方向の長さとの比、
・黒目領域の偏平率、
等のいずれかに基づいて白目度合を算出する。
 学習装置51は、ドライバが運転不能状態でない場合において、傾き検出装置62により検出された頭部の傾きθを学習する。また、学習装置51は、ドライバが運転不能状態でない場合において、顔向き検出装置63により検出された顔の向きを学習する。さらに、学習装置51は、ドライバが運転不能状態でない場合において、頭部検出装置61により検出された頭部の揺れの振幅を学習する。すなわち、学習装置51は、ドライバの運転姿勢の癖を学習する。車両10を運転するドライバが複数いる場合には、ドライバごとに運転姿勢の癖を学習する。
 状態判定装置70は、画像解析装置60により得られる各種のドライバ監視情報に基づいて、
(1)フレームアウト判定、
(2)姿勢崩れ判定、
(3)向き崩れ判定、
(4)揺れ判定、
(5)白目判定、
を実施し、これらのいずれかにより、ドライバが運転不能状態になったことの判定を実施する。状態判定装置70は、フレームアウト判定装置71、姿勢崩れ判定装置72、向き崩れ判定装置73、揺れ判定装置74、及び白目判定装置75を含んでおり、以下これらを順に説明する。
 (1)フレームアウト判定
 フレームアウト判定装置71は、車両10の走行中に、ドライバ頭部のフレームアウトを判定して、フレームアウトしている場合に、ドライバが運転不能状態になっていると判定する。詳しくは、フレームアウト判定装置71は、頭部検出装置61により検出されたドライバの頭部が画像の範囲FA(図2参照)から外れており、その状態が所定の時間T1以上継続する場合に、ドライバが運転不能状態になっていると判定する。ここで、範囲FAは、ドライバカメラ21により撮像された画像における所定の範囲である。通常の運転時には、ドライバの頭部が範囲FAから外れることはない。範囲FAを、撮像された画像の全体としてもよい。範囲FAは、車両前方から見てフロントガラスを通じて認識される範囲に定められているとよい。
 ドライバが車両10を正常に運転している場合は、ドライバが物を取る動作をしても、ドライバの頭部は画像の範囲FAに収まることが多い。これに対して、急病を発症してドライバの意識がなくなると、ドライバの頭部が範囲FAから外れることがある。よって、フレームアウト判定装置71は、ドライバの頭部が画像の範囲FAから外れている場合に、ドライバが運転不能状態になっていると判定する。なお、過去の頭部位置情報を用い、ドライバの頭部が範囲FAから外れるまでの軌跡を考慮して、運転不能状態の判定を実施することも可能である。
 シートベルトセンサ22及び座面センサ23の情報を用いてフレームアウト判定を実施することも可能である。具体的には、ドライバの頭部がフレームアウトしている状態で、シートベルト12の引き出し量が、シートベルト12の装着時に検出された引き出し量よりも第1引き出し量を超えて多く、且つ座部11aの圧力分布において高圧部分が座部11aの端部に偏っている場合に、ドライバが運転不能状態になっていると判定する。
 (2)姿勢崩れ判定
 姿勢崩れ判定装置72は、車両10の走行中に、ドライバの姿勢崩れの判定をして、姿勢崩れしている場合に、ドライバが運転不能状態になっていると判定する。詳しくは、姿勢崩れ判定装置72は、傾き検出装置62により検出された頭部の傾きθが閾値Th1(相対傾き閾値)よりも大きくなっており、その状態が所定の時間T2以上継続する場合に、ドライバが運転不能状態になっていると判定する。
 通常、ドライバの胴体部は運転席のシート11やシートベルト12により拘束されているため、ドライバの意識がなくなっても胴体部は比較的動きにくい。一方、ドライバの頭部は拘束されていないことが多いため、ドライバの意思で頭部の位置を維持する必要がある。そのため、急病を発症してドライバの意識がなくなると、ドライバは頭部の位置を維持できなくなり、頭部は胴体部に対していずれかの方向に大きく傾くことが多い。
 これに対して、走行中にドライバが脇見をするときは、一般的にドライバは首を回転させて見るため、胴体部に対する頭部の傾きは小さくなることが多い。また、ドライバが運転席から離れた位置の物を取るときは、一般的にドライバは意識して胴体部を傾けるため、胴体部に対する頭部の傾きθは小さくなることが多い。よって、姿勢崩れ判定装置72は、頭部の傾きθが閾値Th1よりも大きい場合に、ドライバが運転不能状態になっていると判定する。このとき、姿勢崩れ判定装置72は、更にドライバの顔が車両10の前方を向いていないことを条件として運転不能状態であることを判定すると、運転不能状態の誤判定を抑制できる。
 (3)向き崩れ判定
 向き崩れ判定装置73は、車両10の走行中に、ドライバの顔向きの崩れの判定をして、顔向きが崩れている場合に、ドライバが運転不能状態になっていると判定する。詳しくは、向き崩れ判定装置73は、顔向き検出装置63により検出された車両10の前方に対する顔の向きが閾値Th2(顔向き閾値)よりも大きくなっており、その状態が所定の時間T3以上継続する場合に、ドライバが運転不能状態になっていると判定する。
 一般的に、急病を発症すると、ドライバは顔の向きを維持できなくなり、車両10の前方に対する顔の向きが崩れたままの状態になる。これに対して、走行中にドライバが脇見をするときは、一般的にドライバは顔の向きを変えてもすぐに戻すことが多い。よって、向き崩れ判定装置73は、車両前方に対する顔の向きが閾値Th2よりも大きい場合に、ドライバが運転不能状態になっていると判定する。
 また、向き崩れ判定装置73は、
・顔向き検出装置63により検出された車両10の前方に対する顔の向きが、閾値Th2よりも大きく、且つドライバがハンドル15を放している場合、
・顔向き検出装置63により検出された顔の向きが閾値Th2よりも大きく、且つアクセル開度が所定開度よりも大きい場合、
・顔向き検出装置63により検出された顔の向きが閾値Th2よりも大きく、且つ所定時間よりも長い時間アクセル操作及びブレーキ操作が行われていない場合、
のいずれかにおいて、ドライバが運転不能状態になっていると判定してもよい。
 (4)揺れ判定
 揺れ判定装置74は、車両10の走行中において、外力に伴うドライバの頭部の揺れ状態を判定して、頭部が通常と異なる揺れをしている場合に、ドライバが運転不能状態になっていると判定する。詳しくは、揺れ判定装置74は、車両10に外力が加わった際において頭部検出装置61により検出された頭部の揺れの振幅が、振幅Am1(第1振幅)よりも小さいか、又は振幅Am2(第2振幅)よりも大きくなっており、その状態が所定の時間T4以上継続する場合に、ドライバが運転不能状態になっていると判定する。振幅Am2は振幅Am1よりも大きい値である。
 車両10に外力が加わると、所定の時間差の後、ドライバに振動が伝わる。通常、ドライバの意識がある場合、車両10に外力(詳しくは上下方向の外力)が加わった際に、ドライバの頭部は振幅Am1から振幅Am2の範囲内の振幅で揺れる。これに対して、ドライバが急病を発症して体が硬直していると、正常時よりも頭部の揺れの振幅が小さくなる。また、ドライバが急病を発症して体が弛緩していると、正常時よりも頭部の揺れの振幅が大きくなる。よって、揺れ判定装置74は、上述した場合にドライバの運転不能状態を判定する。
 (5)白目判定
 白目判定装置75は、車両10の走行中に、白目の判定をして、白目検出装置64により白目をむいた状態が検出された場合に、ドライバが運転不能状態になっていると判定する。詳しくは、白目判定装置75は、白目度合算出装置66により算出された白目度合が閾値Th3(白目閾値)よりも大きくなっており、その状態が所定の時間T5以上継続する場合に、ドライバが運転不能状態になっていると判定する。
 通常、ドライバが運転可能な状態の場合は、ドライバが白目をむくことはない。これに対して、ドライバが急病を発症すると、ドライバが白目をむくことがある。よって、白目判定装置75は、白目をむいた状態が検出された場合に、ドライバが運転不能状態になっていると判定する。
 記憶装置52には、各判定装置にて用いられる各閾値及び各判定値が記憶されている。さらに、記憶装置52には、学習装置51により学習された頭部の傾きθ、顔の向き及び頭部の揺れの振幅が記憶される。また、記憶装置52には、ドライバの病歴及び年齢を含む個人情報が登録されている。ドライバが複数いる場合には、各ドライバの個人情報が登録されている。また、記憶装置52には、運転不能状態と判定しないドライバの姿勢、及び運転不能状態と判定するドライバの姿勢が登録されている。運転不能状態と判定しないドライバの姿勢は、例えば通常の運転姿勢や運転中によくする姿勢である。運転不能状態と判定するドライバの姿勢は、例えば持病があるドライバが発作時にする姿勢である。ドライバは、予め運転席で登録したい姿勢をドライバカメラ21で撮像して、記憶装置52に登録する。
 上記各判定における時間T1~T5は数秒程度(例えば1~5秒程度)であり、各々に長さの異なる時間として設定されていてもよいし、同じ時間として設定されていてもよい。また、各時間T1~T5は、種々の条件に応じて可変に設定されてもよい。具体的には、各時間T1~T5は、記憶装置52に登録されている個人情報に基づいて設定されるとよい。例えば、年齢が高い人は低い人よりも時間T1~T5を短くする。また、特定の病歴がある人は、特定の病歴がない人よりも時間T1~T5を短くする。さらに、時間T1~T5を、ドライバの状態や走行環境に応じて変更する。ドライバが運転不能状態になる兆候を示している状態や、ドライバが運転不能状態である可能性が高い状態や、ドライバが運転不能状態となった場合に衝突の危険性が高い走行環境では、時間T1~T5を短縮してドライバの運転不能状態が判定されやすくする。
 また、本車載システムでは、車両走行中において車両10が不安定挙動を呈していることを判定する車両挙動判定機能と、車両10が不安定挙動を呈していると判定された場合に、ドライバ異常判定に用いる判定時間(T1~T5)を短くする時間短縮機能とを有しており、以下、その詳細を説明する。
 ドライバに異常が生じる場合、それはドライバ自身の挙動の変化として現れることに加え、ドライバが操作する車両10の挙動の変化としても現れる。具体的には、不安定挙動として、図5(a)に示すように車両10が蛇行走行(ふらつき走行)したり、図5(b)に示すように車両10がコースアウト(白線跨ぎ)したり、図5(c)に示すように車両10が異常加速したり、図5(d)に示すように車両10が先行車両Cに対して異常接近したりすることが生じると考えられる。この場合、車両制御装置90は、車速センサ31や、舵角センサ32、アクセルセンサ33、前方・後方カメラ41、前方・後方センサ42等に基づいて、蛇行走行、コースアウト、異常加速、先行車両に対する異常接近といった車両10の不安定挙動を判定する。
 例えば、車両制御装置90は、ハンドル15の操舵角の変動に基づいて車両10が蛇行走行していることを判定し、車両10の位置と路面上の白線との関係から車両10がコースアウトしていることを判定し、車速やアクセル踏み込み量に基づいて車両10が異常加速していることを判定し、先行車両との車間距離や車両10の加速度に基づいて車両10が先行車両に対して異常接近していることを判定する。
 また、ドライバの挙動異常に加えて車両10の不安定挙動が生じている状態では、ドライバの挙動異常のみが生じている状態よりも危険度が高いと考えられる。この点を考慮し、本実施形態では、車両10が不安定挙動を呈していることを判定し、車両10の不安定挙動が生じている場合に、ドライバ異常判定に用いる判定時間(T1~T5)を短くするようにしている。そしてこれにより、車両10における実際の危険度に即した異常判定を実施するようにしている。
 また、衝突を回避するために、車速が速いほど早く適切な車両制御を開始する必要があるので、自車両の車速が高いほど時間T1~T5を短くする。また、衝突を回避するために、先行車両との車間距離を先行車両との相対速度で除したTTC(衝突余裕時間)が短いほど時間T1~T5を短くする。また、自車両においてACC(Adaptive Cruise Control)やLKA(Lane Keep Assist)等の運転支援制御が実行されている場合には、ドライバは長い時間姿勢を崩すことがあるので、時間T1~T5を延長する。
 次に、ドライバの運転不能状態を判定する処理手順について、図6のフローチャートを参照して説明する。本処理は、ドライバ監視装置50により所定周期で繰り返し実施される。
 まず、ステップS11では、運転不能状態の判定を実施する実施条件が成立しているか否かを判定する。この場合、例えば自車両の車速が所定値(例えば0km/h)よりも大きく自車両が走行状態にあれば、実施条件が成立していると判定する。実施条件が成立していれば後続のステップS12に進み、実施条件が成立していなければそのまま本処理を終了する。
 ステップS12では、運転不能状態の判定に用いる各種パラメータを取得する。具体的には、
・運転席の画像から検出したドライバの頭部及び胴体部の情報、
・ドライバの胴体部に対する頭部の傾きθの情報、
・車両の前方に対するドライバの顔の向きの情報、
・ドライバの白目検出の情報、
等を取得する。
 次に、ステップS13では、ステップS12で取得した各種パラメータを用い、ドライバの挙動が異常な状態になっているか否かを判定する。このとき、ドライバ監視装置50は、上述の(1)~(5)の各判定処理の判定基準に基づいてドライバ異常の判定を実施する。
 具体的には、頭部位置が画像の範囲FAから外れている場合に、フレームアウト異常の兆候があると判定する。ドライバの胴体部に対する頭部の傾きθが閾値Th1よりも大きい場合に、姿勢崩れ異常の兆候があると判定する。車両前方に対するドライバの顔向きが閾値Th2よりも大きい場合に、向き崩れ異常の兆候があると判定する。外力に対してドライバの頭部が通常とは異なる揺れをしている場合に、揺れ異常の兆候があると判定する。ドライバの白目度合が閾値Th3よりも大きい場合に、白目異常の兆候があると判定する。そして、これらの異常判定のうち少なくとも1つで異常有りと判定された場合に、ステップS13を肯定してステップS14に進む。
 ステップS14では、異常カウンタのインクリメントを開始する。なお、ドライバの異常状態が継続されていれば、所定周期で異常カウンタがインクリメントされることになる。その後、ステップS15では、車両10の挙動異常(不安定挙動)に関する情報を車両制御装置90から取得する。そして、車両10の挙動異常が生じていないと判定される場合はステップS16に進み、車両10の挙動異常が生じていると判定される場合はステップS17に進む。
 なお、車両制御装置90では、図7に示す手順に従い車両10の挙動異常の有無を判定する。簡単に説明すると、図7のステップS31では、車両10が蛇行走行しているか否かを判定する。ステップS32では、車両10がコースアウトしているか否かを判定する。ステップS33では、車両10が異常加速しているか否かを判定する。ステップS34では、車両10が先行車両に対して異常接近しているか否かを判定する。そして、ステップS31~S34のいずれかがYESの場合、ステップS35に進み、車両10において挙動異常が生じている旨を判定する。
 図6の説明に戻り、ステップS16では、ドライバ異常判定に用いる判定時間(T1~T5)をあらかじめ定めたベース値とする。このとき、上述したとおりT1~T5は、各々に長さの異なる時間として設定されていてもよいし、同じ時間として設定されていてもよい。また、各時間T1~T5は、年齢や病歴等の個人情報に基づいて設定されていてもよい。
 また、ステップS17では、ドライバ異常判定に用いる判定時間(T1~T5)を、ベース値に対して短くする時間短縮処理を実施する。このとき、車両10の挙動異常の継続時間や、過去所定期間における挙動異常の発生回数(発生頻度)を車両制御装置90から取得し、これらのパラメータに基づいて判定時間を短縮する。具体的には、図8(a)の関係を用い、車両10の挙動異常の継続時間が長いほど、又は過去所定期間(例えば10分間)における挙動異常の発生回数が多いほど、短縮幅ΔTを大きい値とする。なお、短縮幅ΔTは、異常継続時間と異常発生回数との両方に基づいて設定されてもよいし、いずれか一方に基づいて設定されてもよい。そして、判定時間のベース値から短縮幅ΔTを減算することで、今回使用する判定時間を算出する。
 また、車両10の車速に基づいて判定時間を短縮してもよい。具体的には、図8(b)の関係を用い、車速が大きいほど、短縮幅ΔTを大きい値とする。ただし、短縮幅ΔTを一定時間として定めておくことも可能である。
 その後、ステップS18では、異常カウンタの値が、ステップS16,S17で設定した判定時間に相当する閾値Thに達しているか否かを判定する。そして、異常カウンタ<Thであればそのまま本処理を終了し、異常カウンタ≧ThであればステップS19に進む。この場合、ステップS18がYESになることは、ドライバが運転不能状態になっていると判定されたことを意味する。
 ステップS19では、ドライバが運転不能状態になったと判定された際の対ドライバ警報(車内警報)として、スピーカ82からの音声、又はディスプレイ81上での表示を実施する。その後、ステップS20では、応答確認カウンタを1インクリメントする。応答確認カウンタは、ドライバが運転不能状態になったと判定されてからの経過時間(すなわち、ステップS18がYESになってからの経過時間)を計測する計時装置である。
 ステップS21では、ドライバが運転不能状態になったと判定された後におけるドライバの応答の有無を判定する。具体的には、ドライバが対ドライバ警報に気づいて、タッチディスプレイへの接触、ドライバの音声、ハンドル15やブレーキ等による自車両操作、キャンセルスイッチ83の操作等のいずれかが行われたか否かを判定する。この場合、ドライバの応答があれば、ドライバが運転不能状態になっていない又は当該状態が解消されたとしてステップS22に進み、ドライバの応答がなければ、運転不能状態が継続されているとしてステップS24に進む。
 ステップS22では、応答確認カウンタを0にクリアする。続くステップS23では、ドライバによる運転が可能であると認識したことを、スピーカ82からの音声、又はディスプレイ81上での表示等で通知する。
 また、ステップS24では、ドライバが運転不能状態になったと判定されてから所定時間が経過したか否かを判定する。具体的には、応答確認カウンタが所定値に到達したか否かを判定する。所定値は例えば数秒程度(例えば3~5秒程度)である。
 そして、ドライバの応答がないまま所定時間が経過した場合(ステップS24がYESの場合)には、ステップS25に進む。ステップS25では、車両10の減速、停止、路肩退避といった危険回避処理を実施する旨を指令するとともに、ハザードランプ95を点滅表示させる旨を指令する。この場合、ドライバ監視装置50が車両制御装置90に対して危険回避処理の指令信号を出力し、車両制御装置90は、その指令信号に基づいて、エンジン91や変速機92、ブレーキアクチュエータ93、ステアリングアクチュエータ94を適宜制御して、車両10を安全に停車させる。また、ドライバ監視装置50が車両制御装置90に対してハザード点滅の指令信号を出力し、車両制御装置90は、その指令信号に基づいてハザードランプ95の点滅表示を実施する。
 図9は、ドライバが運転不能状態になった場合の処置を具体的に示すタイムチャートである。
 タイミングt11では、車両走行中において、急病等によりドライバが何らかの異常状態(フレームアウト異常、姿勢崩れ異常、向き崩れ異常、揺れ異常、白目異常のいずれか)になり始めたと判定され、異常カウンタのインクリメントが開始される。かかる場合、t11後のタイミングt12(又はt11前)に車両10の挙動異常が生じていると判定されているため、ドライバの運転不能状態を判定するための判定時間が短縮され、図では閾値がTh1からTh2に変更されている。そして、タイミングt13でカウンタ値が閾値Th2に達すると、ドライバが運転不能状態になった旨が判定される。このとき、音声やディスプレイ表示による対ドライバ警報(車内警報)が開始されるとともに、応答確認カウンタのインクリメントが開始される。
 そして、ドライバの応答がないまま所定時間が経過してタイミングt14になると、車両10の減速、停止、路肩退避といった危険回避処理が実施されるとともに、ハザードランプ95の点滅表示による車外警報が実施される。なお図示は省略するが、タイミングt14になる前にドライバの応答が有った場合には危険回避処理は実施されない。
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。
 ドライバの挙動異常に加えて車両10の不安定挙動が生じている状態では、ドライバの挙動異常のみが生じている状態よりも危険度が高いと考えられる。この点を考慮し、車両10が不安定挙動を呈していることを判定し、車両10の不安定挙動が生じている場合に、ドライバ異常判定に用いる判定時間を短くするようにした。これにより、車両10における実際の危険度に即した異常判定を実施でき、危険度の高い状態下において迅速なる異常判定が可能となる。その結果、ドライバの異常を適正に判定することができる。
 ドライバの異常発生時における危険度は、車両10の不安定挙動の程度に応じて変わると考えられる。そのため、車両10の不安定挙動の継続時間、及び過去所定期間における不安定挙動の発生回数の少なくともいずれかに基づいて、判定時間の短縮幅ΔTを可変に設定することで、実際の危険度に対応させた好適な異常判定を実現できる。
 車両10の車速に基づいて、判定時間の短縮幅ΔTを可変に設定するようにしたため、車速に応じて危険度が相違することを加味して好適な異常判定を実現できる。
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
 ・複数の判定基準により車両10の不安定挙動(挙動異常)を判定する構成において、その複数の判定装置(第1判定装置)のうちいずれで挙動異常有りと判定されたかに基づいて、判定時間の短縮幅ΔTを可変に設定するようにしてもよい。
 具体的には、図6のステップS17において、ステップS15で車両10の挙動異常有りと判定された理由を把握するとともに、その理由に基づいて短縮幅ΔTを設定する。この場合、例えば図10に示すように、設定パラメータと短縮幅ΔTとの関係において複数の相関を定めておき、その複数の相関を用いて短縮幅ΔTを設定するとよい。図10では、設定パラメータ(異常継続時間や異常発生回数、車速)が同一である場合に、大小異なる短縮幅ΔTが設定される2つの相関C1,C2が定められている。
 本実施形態では、車両10の不安定挙動の判定として、蛇行走行、コースアウト、異常加速、先行車両に対する異常接近をそれぞれ判定するようにしており、異常判定の結果がこれらのうちいずれであるかに応じて、相関C1,C2を選択的に用いて短縮幅ΔTを設定する。例えば、蛇行走行とコースアウトとを比べると、前者は不安定挙動であるものの車両進路が自己修正されているのに対し、後者は他車両等との衝突危険性が高いと考えられる。そのため、蛇行走行時には相関C2を用いて短縮幅ΔTを設定し、コースアウト時には相関C1を用いて短縮幅ΔTを設定する。この場合、設定パラメータが同一であれば「蛇行走行時の判定時間>コースアウト時の判定時間」となる。なお、異常加速時、異常接近時には相関C1を用いて短縮幅ΔTを設定するとよい。
 要するに、車両10の不安定挙動としては種々の形態があるが、他車両と接触する等の危険度は各々相違すると考えられる。この場合、複数の車両異常判定のどれで異常判定されたかを加味して判定時間の短縮を実施することで、より一層適正な異常判定を実現できる。判定時間を短縮することは、ドライバ異常の早期把握を行う上で望ましいが、その反面、誤判定の可能性が高くなることにもなり、誤判定の発生によりドライバが不快感を覚えることが懸念される。この点、車両の不安定挙動の内容を加味して判定時間を短縮する構成にしたため、誤判定を抑制できることも期待できる。
 ・複数の判定基準によりドライバの挙動異常を判定する構成において、その複数の判定装置(第2判定装置)のうちいずれで挙動異常有りと判定されたかに基づいて、判定時間の短縮幅ΔTを可変に設定するようにしてもよい。
 具体的には、図6のステップS17において、ステップS13でドライバの挙動異常有りと判定された理由を把握するとともに、その理由に基づいて短縮幅ΔTを設定する。この場合、上述した図10に示す相関C1,C2を用いて短縮幅ΔTを設定するとよい。
 本実施形態では、ドライバの異常判定として、5つの判定処理(フレームアウト判定、姿勢崩れ判定、向き崩れ判定、揺れ判定、白目判定)を実施するようにしており、異常判定の結果がこれらのうちいずれであるかに応じて、相関C1,C2を選択的に用いて短縮幅ΔTを設定する。例えば、これら各判定処理のうち、フレームアウト判定により異常の兆候有りと判定された場合と、白目判定により異常の兆候有りと判定された場合においては、ドライバが、車両前方に対する視認不可の状態になっているとみなすことができる。この場合、ドライバが重篤な状態にあり、運転危険度が高いと判断できる。そのため、フレームアウト異常時と白目異常時には相関C1を用いて短縮幅ΔTを設定し、それ以外の異常時には相関C2を用いて短縮幅ΔTを設定する。
 要するに、ドライバの挙動異常としては種々の形態があるが、他車両と接触する等の危険度は各々相違すると考えられる。この場合、複数のドライバ異常判定のどれで異常判定されたかを加味して判定時間の短縮を実施することで、より一層適正な異常判定を実現できる。
 ・車両10が走行する道路に関する道路種別情報及び渋滞情報の少なくともいずれかを取得し、その取得情報に基づいて、判定時間の短縮幅ΔTを可変に設定するようにしてもよい。
 具体的には、図6のステップS17において、今現在走行中の道路が自動車専用道路、山岳道路、市街地道路等のいずれであるかを示す道路種別情報を取得するとともに、渋滞状況を示す渋滞情報を取得し、これらの取得情報に基づいて短縮幅ΔTを設定する。この場合、上述した図10に示す相関C1,C2を用いて短縮幅ΔTを設定するとよい。例えば、自動車専用道路の走行中は自車両及び周辺車両の車速が比較的大きいと考えられ、山岳道路の走行中はコースアウト時における危険度が高くなると考えられる。そのため、自動車専用道路や山岳道路の走行時には相関C1を用いて短縮幅ΔTを設定し、市街地道路の走行時には相関C2を用いて短縮幅ΔTを設定する。また、渋滞道路の走行時には相関C1を用いて短縮幅ΔTを設定し、非渋滞道路の走行時には相関C2を用いて短縮幅ΔTを設定する。
 上記構成によれば、自車両の走行環境を加味して判定時間の短縮を実施することで、より一層適正な異常判定を実現できる。
 ・上記実施形態では、ドライバが車両運転に支障を来す異常状態になったことの判定として、ドライバが急病等により運転不能状態になったことを判定する構成としたが、これに限らず、ドライバが居眠り状態や漫然状態になっていることを判定する構成としてもよい。この場合、例えば、ドライバカメラ21の画像に基づいて、ドライバの瞼が通常よりも閉じ気味になっており、それが継続されていることから、居眠り状態や漫然状態を判定するとよい。かかる場合にも、上記同様、自車両が不安定挙動を呈していると判定された場合に、居眠り状態や漫然状態の判定に用いる判定時間を短くするとよい。
 ここで、この出願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のセクション(あるいはステップと言及される)から構成され、各セクションは、たとえば、S11と表現される。さらに、各セクションは、複数のサブセクションに分割されることができる、一方、複数のセクションが合わさって一つのセクションにすることも可能である。さらに、このように構成される各セクションは、デバイス、モジュール、ミーンズとして言及されることができる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (8)

  1.  自車両の危険回避処理を実施する車載制御装置(50,90)であって、
     自車両の走行中においてドライバの挙動が異常となりそれが所定の判定時間以上、継続される場合に、ドライバが車両運転に支障を来す異常状態になったと判定するドライバ異常判定装置と、車載制御装置は、判定結果に基づいて自車両の危険回避処理を実施し、
     自車両の走行中において当該自車両が不安定挙動を呈していることを判定する車両挙動判定装置と、
     前記車両挙動判定装置により自車両が不安定挙動を呈していると判定された場合に、前記ドライバ異常判定装置の異常判定に用いる前記判定時間を短くする時間短縮装置と、
    を備える車載制御装置。
  2.  前記時間短縮装置は、前記車両挙動判定装置により自車両が不安定挙動を呈していると判定された場合に、その不安定挙動の継続時間、及び過去所定期間における不安定挙動の発生回数の少なくともいずれかに基づいて、前記判定時間の短縮幅を可変に設定する請求項1に記載の車載制御装置。
  3.  前記車両挙動判定装置は、自車両の挙動に基づいて各々異なる判定基準により自車両の不安定挙動を判定する複数の第1判定装置を有しており、
     前記時間短縮装置は、前記複数の第1判定装置のいずれか一つで自車両の不安定挙動が判定された場合、それに対応する前記判定時間の短縮幅で可変に設定する請求項1又は2に記載の車載制御装置。
  4.  前記複数の第1判定装置は、前記不安定挙動として自車両の蛇行走行、コースアウト、異常加速、先行車両に対する異常接近の少なくとも2つを各々判定する装置を含む請求項3に記載の車載制御装置。
  5.  前記異常判定装置は、ドライバの状態及び挙動に基づいて各々異なる判定基準によりドライバの挙動異常を判定する複数の第2判定装置を有しており、
     前記時間短縮装置は、前記複数の第2判定装置のいずれか一つでドライバの挙動異常が判定された場合、それに対応する前記判定時間の短縮幅で可変に設定する請求項1乃至4のいずれか1項に記載の車載制御装置。
  6.  前記複数の第2判定装置は、ドライバが自車両の前方に対する視認不可の状態であることを判定する装置を含み、
     前記時間短縮装置は、前記複数の第2判定装置のうち前記視認不可の状態であることに基づいてドライバの挙動異常が判定された場合に、それ以外の第2判定装置によりドライバの挙動異常が判定された場合に比べて、前記判定時間の短縮幅を大きくする請求項5に記載の車載制御装置。
  7.  前記時間短縮装置は、自車両の車速に基づいて、前記判定時間の短縮幅を可変に設定する請求項1乃至6のいずれか1項に記載の車載制御装置。
  8.  自車両が走行する道路に関する道路種別情報及び渋滞情報の少なくともいずれかを取得する情報取得装置をさらに備え、
     前記時間短縮装置は、前記情報取得装置による取得情報に基づいて、前記判定時間の短縮幅を可変に設定する請求項1乃至7のいずれか1項に記載の車載制御装置。
     
     
PCT/JP2015/003601 2014-08-22 2015-07-16 車載制御装置 WO2016027412A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014169542A JP2016045714A (ja) 2014-08-22 2014-08-22 車載制御装置
JP2014-169542 2014-08-22

Publications (1)

Publication Number Publication Date
WO2016027412A1 true WO2016027412A1 (ja) 2016-02-25

Family

ID=55350385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003601 WO2016027412A1 (ja) 2014-08-22 2015-07-16 車載制御装置

Country Status (2)

Country Link
JP (1) JP2016045714A (ja)
WO (1) WO2016027412A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10474914B2 (en) 2014-06-23 2019-11-12 Denso Corporation Apparatus detecting driving incapability state of driver
CN111907524A (zh) * 2019-05-08 2020-11-10 现代自动车株式会社 车辆及其控制方法
US10909399B2 (en) 2014-06-23 2021-02-02 Denso Corporation Apparatus detecting driving incapability state of driver
US20210197835A1 (en) * 2019-12-25 2021-07-01 Toyota Jidosha Kabushiki Kaisha Information recording and reproduction device, a non-transitory storage medium, and information recording and reproduction system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6497349B2 (ja) * 2016-04-13 2019-04-10 トヨタ自動車株式会社 車両走行制御装置
WO2017209225A1 (ja) * 2016-06-02 2017-12-07 オムロン株式会社 状態推定装置、状態推定方法、及び状態推定プログラム
WO2017208529A1 (ja) * 2016-06-02 2017-12-07 オムロン株式会社 運転者状態推定装置、運転者状態推定システム、運転者状態推定方法、運転者状態推定プログラム、対象者状態推定装置、対象者状態推定方法、対象者状態推定プログラム、および記録媒体
JP6508137B2 (ja) 2016-06-24 2019-05-08 トヨタ自動車株式会社 車両走行制御装置
JP6544305B2 (ja) * 2016-06-24 2019-07-17 トヨタ自動車株式会社 車両走行制御装置
JP2018041407A (ja) * 2016-09-09 2018-03-15 マツダ株式会社 車両用運転者異常通知装置
JP2018041408A (ja) * 2016-09-09 2018-03-15 マツダ株式会社 車両用運転者異常通知装置
JP2018055446A (ja) * 2016-09-29 2018-04-05 株式会社デンソー 車両運行管理システム
JP6895731B2 (ja) 2016-10-11 2021-06-30 株式会社東海理化電機製作所 運転者状態推定装置
WO2018225225A1 (ja) * 2017-06-08 2018-12-13 三菱電機株式会社 車両制御装置
JP7234614B2 (ja) * 2018-12-10 2023-03-08 トヨタ自動車株式会社 異常検出装置、異常検出システム及び異常検出プログラム
JP7320188B2 (ja) * 2019-05-07 2023-08-03 マツダ株式会社 ドライバ異常姿勢検出装置
JP7124801B2 (ja) 2019-07-16 2022-08-24 トヨタ自動車株式会社 車両制御装置
JP7318475B2 (ja) * 2019-10-10 2023-08-01 マツダ株式会社 運転者状態判定装置
JP7459633B2 (ja) * 2020-04-13 2024-04-02 マツダ株式会社 ドライバ異常判定装置
DE112021006996T5 (de) 2021-02-03 2023-11-30 Mitsubishi Electric Corporation Anpassungsvorrichtung, Anpassungssystem und Anpassungsverfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219968A (ja) * 2001-01-29 2002-08-06 Nissan Motor Co Ltd 脇見運転および居眠り運転警報装置
JP2007022235A (ja) * 2005-07-14 2007-02-01 Advics:Kk 車両の警告装置
JP2008165348A (ja) * 2006-12-27 2008-07-17 Toyota Motor Corp 居眠り検知装置、居眠り検知方法
JP2010204847A (ja) * 2009-03-02 2010-09-16 Toyota Motor Corp 運転者状態検出装置及びこれを用いた衝突早期検出装置
JP2012173862A (ja) * 2011-02-18 2012-09-10 Denso Corp 車両異常通知装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219968A (ja) * 2001-01-29 2002-08-06 Nissan Motor Co Ltd 脇見運転および居眠り運転警報装置
JP2007022235A (ja) * 2005-07-14 2007-02-01 Advics:Kk 車両の警告装置
JP2008165348A (ja) * 2006-12-27 2008-07-17 Toyota Motor Corp 居眠り検知装置、居眠り検知方法
JP2010204847A (ja) * 2009-03-02 2010-09-16 Toyota Motor Corp 運転者状態検出装置及びこれを用いた衝突早期検出装置
JP2012173862A (ja) * 2011-02-18 2012-09-10 Denso Corp 車両異常通知装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10474914B2 (en) 2014-06-23 2019-11-12 Denso Corporation Apparatus detecting driving incapability state of driver
US10909399B2 (en) 2014-06-23 2021-02-02 Denso Corporation Apparatus detecting driving incapability state of driver
US10936888B2 (en) 2014-06-23 2021-03-02 Denso Corporation Apparatus detecting driving incapability state of driver
US11820383B2 (en) 2014-06-23 2023-11-21 Denso Corporation Apparatus detecting driving incapability state of driver
CN111907524A (zh) * 2019-05-08 2020-11-10 现代自动车株式会社 车辆及其控制方法
US20210197835A1 (en) * 2019-12-25 2021-07-01 Toyota Jidosha Kabushiki Kaisha Information recording and reproduction device, a non-transitory storage medium, and information recording and reproduction system

Also Published As

Publication number Publication date
JP2016045714A (ja) 2016-04-04

Similar Documents

Publication Publication Date Title
WO2016027412A1 (ja) 車載制御装置
JP6331875B2 (ja) 車載制御装置
US11820383B2 (en) Apparatus detecting driving incapability state of driver
US10909399B2 (en) Apparatus detecting driving incapability state of driver
WO2015198542A1 (ja) ドライバの運転不能状態検出装置
JP6341055B2 (ja) 車載制御装置
US20140121927A1 (en) Vehicle emergency evacuation device
JP6379720B2 (ja) ドライバの運転不能状態検出装置
JP6364997B2 (ja) ドライバの運転不能状態検出装置
JP6593486B2 (ja) 車載制御装置及び車載システム
JP6361312B2 (ja) ドライバの運転不能状態検出装置
JP6331751B2 (ja) ドライバの運転不能状態検出装置
JP6614286B2 (ja) ドライバの運転不能状態検出装置
JP2014026332A (ja) 緊急退避支援装置
JP6607287B2 (ja) ドライバの運転不能状態検出装置
JP2023072272A (ja) 車両の乗員支援方法及びその装置
JP2023072270A (ja) 運転者状態判定方法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833100

Country of ref document: EP

Kind code of ref document: A1