WO2015194596A1 - 空気調和装置の室内機、及びその室内機を備えた空気調和装置 - Google Patents

空気調和装置の室内機、及びその室内機を備えた空気調和装置 Download PDF

Info

Publication number
WO2015194596A1
WO2015194596A1 PCT/JP2015/067485 JP2015067485W WO2015194596A1 WO 2015194596 A1 WO2015194596 A1 WO 2015194596A1 JP 2015067485 W JP2015067485 W JP 2015067485W WO 2015194596 A1 WO2015194596 A1 WO 2015194596A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
indoor
indoor unit
air
heat exchanger
Prior art date
Application number
PCT/JP2015/067485
Other languages
English (en)
French (fr)
Inventor
幸治 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/315,087 priority Critical patent/US10060645B2/en
Priority to AU2015277826A priority patent/AU2015277826B2/en
Priority to JP2016529409A priority patent/JP6355734B2/ja
Priority to EP15810109.7A priority patent/EP3159633B1/en
Publication of WO2015194596A1 publication Critical patent/WO2015194596A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an indoor unit of an air conditioner having means for detecting refrigerant leakage, and an air conditioner including the indoor unit.
  • HFC refrigerant R410A has been mainly used as an air conditioner circulating in the refrigerant circuit. Unlike the conventional HCFC refrigerant such as R22, this R410A has the property that the ozone depletion coefficient ODP is zero and does not destroy the ozone layer, but has a high global warming potential GWP. Therefore, as part of the prevention of global warming, there is a movement to change from an HFC refrigerant having a high GWP such as R410A to an HFC refrigerant having a low GWP.
  • a low GWP HFC refrigerant for example, there is a halogenated hydrocarbon having a carbon double bond in its composition, and a typical one is HFO-1234yf (CF 3 CF ⁇ CH 2 ; tetrafluoropropane. ), HFO-1234ze (CF 3 —CH ⁇ CHF), and HFO-1123 (CF 2 ⁇ CHF).
  • HFO-1234yf CF 3 CF ⁇ CH 2 ; tetrafluoropropane.
  • HFO-1234ze CF 3 —CH ⁇ CHF
  • HFO-1123 CF 2 ⁇ CHF
  • HFO refrigerants have a carbon double bond in the composition such as R32 (CH 2 F 2 ; difluoromethane) and R125 (CHF 2 —CF 3 ; pentafluoroethane) constituting R410A. Shall be distinguished from no HFC refrigerant.
  • Such a low GWP HFO refrigerant may be used as a single refrigerant, but may also be used as a mixed refrigerant with other HFC refrigerants represented by R32.
  • these HFO refrigerants or mixed refrigerants of HFO refrigerants and HFC refrigerants are not as flammable as HC refrigerants such as R290 (C 3 H 8 ; propane), they are slightly inflammable unlike R410A, which is nonflammable. It is flammable. Therefore, it is necessary to pay attention to the leakage of the refrigerant.
  • the refrigerant having flammability including the slight flammability to the strong flammability is referred to as a flammable refrigerant.
  • R32 exhibits slight flammability as a single refrigerant, similar to the HFO refrigerant. That is, since it is a flammable refrigerant, a mixed refrigerant of HFO refrigerant and R32 also becomes a flammable refrigerant.
  • R410A in which R125 is mixed with R125 is nonflammable due to the characteristics of R125.
  • the present invention has been made to solve the above problems, and includes an indoor unit of an air conditioner that can detect refrigerant leakage more reliably while the indoor blower is stopped, and the indoor unit. It aims to provide an air conditioning apparatus.
  • An indoor unit of an air conditioner according to the present invention has a suction port, a blower outlet, and an air passage extending from the suction port to the blower outlet, and a housing in which the suction port is located below the blower outlet, An indoor heat exchanger provided, an indoor fan provided in the housing and supplying air to the indoor heat exchanger, and provided in the middle of the air path, below the indoor heat exchanger and the outlet And a control device that determines whether or not there is a refrigerant leak based on a detection result of the refrigerant leak detection sensor.
  • the air conditioner has a housing in which a suction port is formed below the air outlet, and the first refrigerant detection sensor is below the indoor heat exchanger in the housing. Therefore, it is possible to more reliably detect refrigerant leakage while the indoor blower is stopped.
  • FIG. 1 It is a figure which shows an example of the refrigerant circuit structure of the air conditioning apparatus 200 which concerns on Embodiment 1 of this invention.
  • FIG. 2 It is a schematic diagram of the indoor unit 100 of the air conditioning apparatus 200 according to Embodiment 1 of the present invention. It is the figure which looked at the external structure and internal structure of the indoor unit 100 shown in FIG. 2 from the side. It is a figure which shows typically the installation position of 6 A of refrigerant
  • FIG. 1 is a diagram illustrating an example of a refrigerant circuit configuration of the air-conditioning apparatus 200 according to Embodiment 1.
  • the indoor unit 100 of the air-conditioning apparatus 200 according to Embodiment 1 is provided with an improvement in which refrigerant leakage can be detected more reliably both during operation and when the indoor blower 2 is stopped.
  • the air conditioner 200 includes, for example, an indoor unit 100 installed in an air-conditioning target space (such as a room, a room in a building, a warehouse), and an outdoor unit 150 installed outside the air-conditioning target space. It is what has. And the air conditioning apparatus 200 has the refrigerant circuit C comprised by connecting the indoor unit 100 and the outdoor unit 150 with refrigerant
  • the air conditioner 200 functions as a compressor 10 that compresses a refrigerant, a flow path switching valve 11 that is used to switch between cooling and heating, a condenser (radiator) during cooling, and an evaporator during heating. It has an outdoor heat exchanger 16 that functions, a throttling device 13 that decompresses the refrigerant, and an indoor heat exchanger 3 that functions as an evaporator during cooling and functions as a condenser during heating.
  • the outdoor heat exchanger 16 is provided with an outdoor blower 16A used to promote heat exchange between air and the refrigerant.
  • the refrigerant coolant used for the air conditioning apparatus 200 is demonstrated.
  • a combustible refrigerant is used as the refrigerant sealed in the refrigerant circuit C.
  • this combustible refrigerant for example, a single refrigerant of HFO1234yf-based refrigerant, a mixed refrigerant having a tetrafluoropropene-based refrigerant, or a combustible refrigerant such as a hydrocarbon-based refrigerant can be employed.
  • FIG. 2 is a schematic diagram of the indoor unit 100 of the air-conditioning apparatus 200 according to Embodiment 1.
  • FIG. 3 is a side view of the external structure and internal structure of the indoor unit 100 shown in FIG.
  • FIG. 4 is a diagram schematically showing the installation position of the refrigerant leakage detection sensor 6A of the indoor unit 100.
  • FIG. 5 is an explanatory diagram of the configuration of the control device 7 and the like of the indoor unit 100 of the air-conditioning apparatus 200 according to Embodiment 1. The configuration and the like of the indoor unit 100 will be described with reference to FIGS. As shown in FIG.
  • the indoor unit 100 includes a casing 1 that forms an outer shell, an indoor blower 2 provided in the casing 1, a first heat exchanger 3A, and a second heat exchanger 3B.
  • the indoor heat exchanger 3 has a drain pan 4 that stores condensed water and the like adhering to the indoor heat exchanger 3, and a filter 5 that captures dust and the like.
  • the indoor unit 100 is also in operation with a refrigerant leakage detection sensor 6A used to detect refrigerant leaking into the housing 1, an electrical component box 18 provided with a control device 7 for controlling various devices, and the like.
  • the display panel unit 8 that can display the presence of the screen and the partition plate 17 that partitions the air path R1 in the housing 1 and the space R2 in which the electrical component box 18 and the like are arranged are provided.
  • the housing 1 has, for example, a rectangular parallelepiped outer shape, and has an air passage R1 through which air flows.
  • the housing 1 is formed with an air outlet 1A used for releasing air and an inlet 1B used for taking air.
  • an inlet 1B, a filter 5, an indoor heat exchanger 3, an indoor fan 2, and an outlet 1A are located from the downstream side in the air flow direction.
  • the suction port 1B is provided with a grill portion 1B1 extending in parallel with the horizontal direction. Insertion of fingers into the suction port 1B can be prevented by the grill portion 1B1.
  • the blower outlet 1A is provided with a rotatable louver 1A1 and a louver 1A2.
  • the louver 1A1 and the louver 1A2 By providing the louver 1A1 and the louver 1A2, the direction of the air released by the action of the indoor blower 2 can be adjusted. Further, when the indoor unit 100 is stopped, the air outlet 1 ⁇ / b> A can be closed to prevent dust and the like from entering the air path of the housing 1.
  • the casing 1 is continuous with a front panel 1C constituting a part of the front surface of the indoor unit 100, a lower surface portion 1D with which the lower end side of the filter 5 abuts, an inclined surface portion 1E having an inclined surface, and an upper end side of the inclined surface portion 1E. 1F, the support part 1G and the support part 1J that support the upper end side of the indoor heat exchanger 3, and the curved surface part 1H that is formed into a curved surface.
  • the front panel 1 ⁇ / b> C is provided so that the front surface (front surface) side is a design surface of the indoor unit 100 and the back surface (rear surface) side is opposed to the filter 5.
  • a suction port 1B is located below the front panel 1C.
  • a display panel unit 8 is disposed on the upper side of the front panel 1C.
  • the lower surface portion 1 ⁇ / b> D has a lower surface side in contact with the floor surface of the air-conditioning target space and an upper surface side in contact with the lower end side of the filter 5.
  • a grill portion 1B1 formed in the suction port 1B is disposed above the front end portion of the lower surface portion 1D. Further, the rear end portion of the lower surface portion 1D is provided so as to contact the inclined surface portion 1E.
  • the inclined surface portion 1E has an inclined surface that is inclined upward from the front side toward the back side.
  • a refrigerant leakage detection sensor 6A is attached to the inclined surface of the inclined surface portion 1E.
  • the front side of the inclined surface portion 1E is connected to the lower surface portion 1D, and the upper end portion of the inclined surface of the inclined surface portion 1E is connected to the standing surface portion 1F. Since the inclined surface portion 1E has an inclined surface, the air taken into the housing 1 from the suction port 1B flows smoothly into the indoor heat exchanger 3.
  • the standing surface portion 1F is provided on the back side of the indoor heat exchanger 3 (first heat exchanger 3A) and the drain pan 4, and is formed to extend from the upper end side of the inclined surface portion 1E to the support portion 1G. It is.
  • a support part 1G, a support part 1J, and a curved surface part 1H are arranged.
  • the support portion 1G is provided on the upper end side of the standing surface portion 1F, and supports the upper end side of the first heat exchanger 3A.
  • the support portion 1J is provided at a height position on the upper side of the front panel 1C, and supports the upper end side of the second heat exchanger 3B.
  • the curved surface portion 1H is formed in a preset curved surface shape so that the air sent out from the indoor blower 2 is quickly discharged out of the housing 1.
  • the indoor blower 2 includes, for example, a crossflow fan and a motor unit that drives the crossflow fan, and takes in air into the housing 1 and discharges air out of the housing 1.
  • the indoor blower 2 is disposed on the downstream side of the indoor heat exchanger 3. Further, the indoor blower 2 is disposed on the upper part of the indoor heat exchanger 3.
  • the indoor heat exchanger 3 has a first heat exchanger 3A and a second heat exchanger 3B.
  • the first heat exchanger 3A and the second heat exchanger 3B are arranged in the housing 1 so as to form a V shape. More specifically, in the first heat exchanger 3A and the second heat exchanger 3B, the lower end side of the first heat exchanger 3A and the lower end side of the second heat exchanger 3B are brought close to each other. It arrange
  • the indoor heat exchanger 3 can be composed of, for example, a fin and tube heat exchanger.
  • the indoor heat exchanger 3 is connected to an outdoor heat exchanger 16 provided in the outdoor unit 150 via a refrigerant pipe P.
  • the refrigerant pipe P is provided from the air path R1 side to the space R2 side.
  • Drain pan 4 stores condensed water and the like attached to the indoor heat exchanger 3.
  • a refrigerant leakage detection sensor 6 ⁇ / b> A provided on the inclined surface portion 1 ⁇ / b> E is disposed, and the indoor heat exchanger 3 is disposed above the drain pan 4.
  • a filter 5 is disposed on the front side of the drain pan 4.
  • the filter 5 is used to capture dust or the like in the air taken into the housing 1 through the suction port 1B.
  • the filter 5 is disposed obliquely so as to incline downward in the direction from the front side to the back side of the housing 1.
  • the refrigerant leakage detection sensor 6 ⁇ / b> A is used to detect a refrigerant staying on the lower side in the housing 1 when the refrigerant leaks into the housing 1.
  • the refrigerant leakage detection sensor 6A is provided in the middle of the air path R1.
  • the refrigerant leakage detection sensor 6 ⁇ / b> A is disposed on the inclined surface portion 1 ⁇ / b> E located below the indoor heat exchanger 3. Of the refrigerant piping connected to the indoor heat exchanger 3, the portion located in the housing 1 is damaged, and when refrigerant leakage occurs, most of the flammable refrigerant is heavier than air. It moves below the position of the exchanger 3.
  • the refrigerant leakage detection sensor 6A can detect the refrigerant that has moved to the lower side.
  • the refrigerant leakage detection sensor 6A for example, an oxygen concentration method, a combustible gas detection method, or the like can be adopted.
  • the refrigerant leakage detection sensor 6A and the control device 7 are connected by a wiring CA. Thereby, the detection result of the refrigerant leakage detection sensor 6 ⁇ / b> A is output to the control device 7.
  • the refrigerant leakage detection sensor 6A is provided on the partition plate 17 side. In other words, the refrigerant leakage detection sensor 6A is provided so as to approach the right end side of the air passage R1 when the casing 1 is viewed from the front side. Therefore, a portion of the wiring CA located in the air path R1 can be reduced. Thereby, it can suppress that the air which flows through the air path R1 collides with wiring CA, and a pressure loss increases. Further, the refrigerant leakage detection sensor 6A and the control device 7 can be easily connected, and maintenance and the like can be easily performed. Furthermore, since the length of the wiring CA can be reduced, it is easy to avoid the wiring CA from being tangled.
  • the electrical component box 18 is provided in a space R ⁇ b> 2 formed by the partition plate 17 and the housing 1.
  • the electrical component box 18 is provided with a control device 7 that executes various controls.
  • the control device 7 determines whether or not refrigerant leakage has occurred based on the detection result of the refrigerant leakage detection sensor 6A. And the control apparatus 7 controls the alerting
  • the control device 7 includes a leakage determination unit 7A that outputs a detection result of the refrigerant leakage detection sensor 6A, a notification control unit 7B that notifies the notification unit 9, a compressor control unit 7C that stops the compressor 10, and an indoor blower And a rotational speed control means 7D for increasing the rotational speed of 2.
  • the leakage determination means 7A determines whether or not refrigerant leakage has occurred based on the output (for example, voltage) from the refrigerant leakage detection sensor 6A. Leakage determination means 7A determines that there is refrigerant leakage when refrigerant leakage detection sensor 6A detects refrigerant leakage. Leakage determination means 7A determines that refrigerant leakage has occurred, for example, when the output from refrigerant leakage detection sensor 6A changes and falls within a preset first range. In the refrigerant leak detection sensor 6A, it is assumed that the indoor blower 2 is stopped and the refrigerant that falls and stays below the housing 1 is detected.
  • the notification control means 7B causes the notification means 9 to notify when the leakage determination means 7A determines that there is a refrigerant leak. By being notified, it is possible to notify the user or the like that refrigerant leakage has occurred.
  • the output of the notification control unit 7B may be output to a centralized management room or the like.
  • the compressor control means 7C is for stopping the compressor 10 when the leakage determination means 7A determines that there is refrigerant leakage.
  • the leakage determination means 7A determines that there is refrigerant leakage.
  • the rotational speed control means 7D increases the rotational speed of the indoor blower 2 when it is determined that there is a refrigerant leak while the indoor unit 100 is in operation (the indoor blower 2 is in operation).
  • the rotational speed control means 7D may control the indoor fan 2 to increase from the rotational speed at the time of the current operation, or may be a preset rotational speed (for example, the maximum rotational speed). Control may be performed. Further, the rotational speed control means 7D operates the indoor blower 2 when it is determined that there is a refrigerant leak while the indoor unit 100 is stopped (the indoor blower 2 is stopped). In addition, it is good for the rotation speed control means 7D to implement control with respect to the indoor air blower 2 to the maximum rotation speed, for example.
  • the rotational speed control means 7D can diffuse the refrigerant leaked into the housing 1 into the air-conditioning target space by performing these controls. Therefore, when the refrigerant concentration in the housing 1 increases, it is possible to avoid a situation in which an electrical component or the like is short-circuited to generate a spark and a fire occurs.
  • the display panel unit 8 is disposed on the upper part of the housing 1, for example.
  • the display panel unit 8 is provided with a display unit 8A capable of displaying information such as cooling operation, heating operation, and set temperature. Further, the display panel unit 8 is provided with a notification means 9.
  • the notification means 9 has a lamp portion 9A and a speaker portion 9B.
  • the lamp unit 9A receives information to notify the refrigerant leakage from the notification control means 7B
  • the lamp unit 9A is used to notify the user that the refrigerant is leaking by, for example, turning on or blinking red.
  • the speaker unit 9B receives information from the notification control unit 7B to notify the refrigerant leakage
  • the speaker unit 9B outputs that information by voice.
  • reporting means 9 is not limited to this. For example, it may be installed at the position of the front panel 1C.
  • the partition plate 17 is a plate-like member that partitions a space (air path R1) arranged on the right side and a space (space R2) arranged on the left side when the housing 1 is viewed from the front. More specifically, the partition plate 17 is a space in which the indoor fan 2, the indoor heat exchanger 3 and the like are arranged, and is sucked from the suction port 1B, and the air path R1 through which the air blown from the blower outlet 1A flows, The electric component box 18 and the space R2 in which the refrigerant pipe P and the like are arranged are partitioned. The refrigerant pipe P located in the space R2 is connected to a refrigerant pipe routed from the outdoor unit 150 side.
  • a pipe connection portion that is a portion where the pipes are connected is arranged. Since the partition plate 17 is disposed, the air flowing into the housing 1 from the suction port 1B flows to the side where the electrical component box 18 and the like are disposed, and the pressure loss and the like increase. Can be avoided.
  • the partition plate 17 has an opening H through which the wiring CA connecting the refrigerant leakage detection sensor 6A and the control device 7 passes. In addition, an opening is formed in the partition plate 17 so that the refrigerant pipe P passes therethrough.
  • the notification control means 7B When the leakage determination means 7A determines that there is refrigerant leakage based on the detection result of the refrigerant leakage detection sensor 6A, the notification control means 7B notifies the notification means 9 and the compressor control means 7C stops the compressor 10. . Moreover, the rotation speed control means 7D operates the indoor blower 2 to diffuse the refrigerant in the housing 1 into the air-conditioning target space.
  • the indoor unit 100 of the air-conditioning apparatus 200 according to Embodiment 1 can detect refrigerant leakage whether or not the indoor blower 2 is in operation. That is, the indoor unit 100 of the air-conditioning apparatus 200 according to Embodiment 1 can detect refrigerant leakage more reliably both during operation and when the indoor blower 2 is stopped.
  • the indoor unit 100 of the air-conditioning apparatus 200 according to Embodiment 1 has been described as an example of a floor-standing indoor unit, it is not limited thereto.
  • the same effect as that of the indoor unit 100 of the air-conditioning apparatus 200 according to Embodiment 1 can be obtained.
  • FIG. 6 is a view of the external structure and internal structure of the indoor unit 100B according to Modification 1 of Embodiment 1 as viewed from the side.
  • FIG. 7 is a diagram schematically illustrating an installation position of the refrigerant leakage detection sensor 6A of the indoor unit 100B according to the first modification of the first embodiment. With reference to FIG.6 and FIG.7, the modification 1 of this Embodiment 1 is demonstrated centering on a different part from this Embodiment 1.
  • FIG. 7 is a diagram schematically illustrating an installation position of the refrigerant leakage detection sensor 6A of the indoor unit 100B according to the first modification of the first embodiment.
  • the installation position of the refrigerant leak detection sensor 6A is different between the indoor unit 100 according to Embodiment 1 and the indoor unit 100B according to Modification 1.
  • the refrigerant leakage detection sensor 6A is the same as the refrigerant leakage detection sensor 6A of the indoor unit 100 according to Embodiment 1 in that the refrigerant leakage detection sensor 6A is disposed in the middle of the air path R1.
  • the refrigerant leakage detection sensor 6A is disposed on the support portion 1G so as to be located downstream of the indoor heat exchanger 3 in the air flow direction and upstream of the indoor blower 2 in the air flow direction. Is provided.
  • the refrigerant leakage detection sensor 6 ⁇ / b> A can detect the refrigerant that has moved to the downstream side of the indoor heat exchanger 3 when the refrigerant leaks into the housing 1.
  • the refrigerant leaks from the indoor heat exchanger 3 while the indoor unit 100 is in operation (during operation of the indoor blower 2), the refrigerant moves upward due to the action of the indoor blower 2, and is detected by the refrigerant leak detection sensor 6A. , Refrigerant leakage is detected.
  • the leakage determination means 7A determines that there is refrigerant leakage based on the detection result of the refrigerant leakage detection sensor 6A
  • the notification control means 7B notifies the notification means 9 and the compressor control means 7C stops the compressor 10. .
  • the rotational speed of the indoor blower 2 is increased and the refrigerant in the housing 1 is diffused into the air-conditioning target space.
  • the indoor unit 100 is in operation (the indoor fan 2 is in operation) has been described.
  • the indoor unit 100B is Refrigerant leakage can be detected.
  • the specific gravity of the refrigerant is heavier than that of air, the refrigerant often stays on the lower side in the casing of the indoor unit 100B.
  • the leaked refrigerant may move to the upper side in the casing of the indoor unit 100B.
  • the refrigerant can be detected by the refrigerant leakage detection sensor 6A of the indoor unit 100B according to Modification 1. Further, when the amount of refrigerant leakage increases, the refrigerant may accumulate in the casing of the indoor unit 100B, and the refrigerant may rise to the position of the refrigerant leakage detection sensor 6A provided in the support portion 1G. Also in this case, the refrigerant can be detected by the refrigerant leakage detection sensor 6A even when the operation of the indoor unit 100 is stopped.
  • the indoor unit 100B according to the first modification of the first embodiment has the same effect as that of the indoor unit 100 of the air conditioner 200 according to the first embodiment.
  • FIG. 8 is a view of the external structure and internal structure of the indoor unit 100C according to Modification 2 of Embodiment 1 as viewed from the side.
  • FIG. 9 is a diagram schematically illustrating an installation position of the refrigerant leakage detection sensor 6A of the indoor unit 100C according to the second modification of the first embodiment. With reference to FIG.8 and FIG.9, the modification 2 of this Embodiment 1 is demonstrated centering on a different part from this Embodiment 1.
  • FIG. 9 is a diagram schematically illustrating an installation position of the refrigerant leakage detection sensor 6A of the indoor unit 100C according to the second modification of the first embodiment.
  • the indoor unit 100 according to the first embodiment and the indoor unit 100B of the first modification are combined. That is, the indoor unit 100C includes a refrigerant leakage detection sensor 6A provided at the same installation position as the refrigerant leakage detection sensor 6A of the indoor unit 100 according to Embodiment 1, and the refrigerant leakage of the indoor unit 100B according to Modification 1.
  • the refrigerant leakage detection sensor 6B provided in the same installation position as the detection sensor 6A is provided.
  • the indoor unit 100C according to the second modification of the first embodiment has the following effects in addition to the same effects as the effects of the indoor unit 100 of the air conditioning apparatus 200 according to the first embodiment. That is, since the indoor unit 100C includes a plurality of refrigerant leak detection sensors, even if one refrigerant leak detection sensor fails and cannot be used, the other refrigerant leak detection sensor can detect refrigerant leak. It is possible to avoid a situation where the refrigerant ignites more reliably.
  • FIG. 10 is an explanatory diagram of the suction port 1B of the indoor unit 102 of the air-conditioning apparatus 200 according to Embodiment 2 and its surroundings, and is a diagram illustrating a state in which the suction port 1B is open.
  • FIG. 11 is an explanatory diagram of the suction port 1B of the indoor unit 102 of the air-conditioning apparatus 200 according to Embodiment 2 and its surroundings, and is a diagram illustrating a state in which the suction port 1B is closed.
  • FIG. 12 is an enlarged view of the rotating portion 12 of the inlet opening / closing portion 30 shown in FIGS. 10 and 11.
  • FIG. 13 is a configuration explanatory diagram of the control device 7 and the like of the indoor unit 102 of the air-conditioning apparatus 200 according to Embodiment 2.
  • the second embodiment will be described with reference to FIGS.
  • parts that are the same as those in the first embodiment are given the same reference numerals, and parts that are different from the first embodiment are mainly described.
  • a suction port opening / closing unit 30 provided rotatably in the suction port 1B is provided.
  • the control device 7 includes an opening / closing control means 7E that rotates the suction port opening / closing unit 30.
  • the suction port opening / closing part 30 is rotatably provided in the suction port 1B.
  • the inlet opening / closing part 30 has a plurality of rotating parts 12.
  • a plurality of rotating units 12 are arranged in the casing 1 so as to be arranged in the vertical direction.
  • the rotating part 12 is disposed inside the grill part 1B1.
  • the rotating part 12 has a plate-like plate-like part 12A and a rotatable shaft part 12B connected to the plate-like part 12A.
  • the plate-like portion 12A is parallel to the vertical direction when closing the suction port 1B, and parallel to the horizontal direction when opening the suction port 1B. Note that, here, the case of being parallel to the vertical direction and parallel to the horizontal direction will be described as an example.
  • the opening / closing control means 7E rotates the shaft portion 12B of the rotating portion 12 so that the inlet opening / closing portion 30 is opened as shown in FIG. 12A is parallel to the horizontal direction.
  • the opening / closing control means 7E rotates the shaft portion 12B of the rotating portion 12 so that the plate-like portion 12A is parallel to the vertical direction as shown in FIG. To.
  • the rotation speed control means 7D operates the indoor blower 2.
  • the rotation speed of the indoor air blower 2 it is good for the rotation speed of the indoor air blower 2 to be the largest rotation speed etc., for example.
  • the opening / closing control means 7E controls the inlet opening / closing part 30 to open the inlet 1B.
  • the indoor unit 102 of the air conditioning apparatus 200 according to Embodiment 2 has the following effects in addition to the effects of the indoor unit 100 of the air conditioning apparatus 200 according to Embodiment 1. Since the indoor unit 102 of the air conditioner 200 according to Embodiment 2 keeps the suction port 1B closed by the suction port opening / closing unit 30 when the indoor unit 102 is stopped, the refrigerant leakage detection sensor 6A is particularly preferable.
  • the inlet opening / closing part 30 is opened and the indoor fan 2 is operated, so that an increase in the refrigerant concentration in the housing 1 is suppressed and a fire is generated. Can be avoided.
  • FIG. 14 is a view of the external structure and internal structure of the indoor unit 103 of the air-conditioning apparatus 200 according to Embodiment 3 as viewed from the side.
  • FIG. 15 is a diagram schematically illustrating an installation position of the refrigerant leakage detection sensor 6A of the indoor unit 103 of the air-conditioning apparatus 200 according to Embodiment 3.
  • the third embodiment will be described with reference to FIGS. In the third embodiment, the same reference numerals are given to the components corresponding to those in the first and second embodiments, and the differences from the first and second embodiments will be mainly described.
  • the indoor unit 103 has a suction port 1 ⁇ / b> B disposed on the upper side of the housing 1, and an air outlet 1 ⁇ / b> A disposed on the lower side of the housing 1. That is, the positional relationship between the inlet 1B and the outlet 1A is reversed between the first and second embodiments and the third embodiment.
  • the indoor unit 103 includes a housing 1 that forms an outer shell, an indoor blower 2 provided in a lower portion of the housing 1, a first heat exchanger 3A, and a second heat exchanger 3B. And a filter 5 for capturing dust and the like.
  • the indoor unit 103 includes a refrigerant leakage detection sensor 6A that is used to detect refrigerant leaking into the housing 1.
  • the housing 1 includes an upper surface portion 1DD with which the upper end side of the filter 5 abuts, an inclined surface portion 1E having an inclined surface formed so that the height on the back side is lower than the near side, and the indoor heat exchanger 3 It has a support part 1G and a support part 1J that support the lower end side.
  • the indoor blower 2 is arrange
  • the filter 5 is disposed obliquely so as to incline downward in the direction from the back side to the front side of the housing 1. Furthermore, the refrigerant leakage detection sensor 6 ⁇ / b> A is disposed in the housing 1 and above the upper end of the indoor heat exchanger 3. That is, the refrigerant leakage detection sensor 6A is disposed downstream of the indoor heat exchanger 3 in the air flow direction.
  • the indoor unit 103 of the air-conditioning apparatus 200 according to Embodiment 3 has the same effect as the effect of the indoor unit 100 of the air-conditioning apparatus 200 according to Embodiment 1.
  • the indoor unit 103 of the air-conditioning apparatus 200 according to Embodiment 3 can also be provided with the configuration of the inlet opening / closing unit 30 and the like described in Embodiment 2 in the inlet 1B.
  • FIG. 16 is a view of the external structure and internal structure of the indoor unit 103B according to Modification 1 of Embodiment 3 as viewed from the side.
  • FIG. 17 is a diagram schematically illustrating an installation position of the refrigerant leakage detection sensor 6A of the indoor unit 103B according to the first modification of the third embodiment.
  • the modified example 1 of this Embodiment 3 is demonstrated centering on a different part from this Embodiment 3.
  • FIG. The first modification of the third embodiment corresponds to the first modification of the first embodiment.
  • the refrigerant leak detection sensor 6A is disposed below the suction port 1B, and the first heat exchanger 3A and the second heat exchanger 3B are connected to each other. It is located on the lower side of the gathered part (top).
  • the refrigerant leakage detection sensor 6 ⁇ / b> A is disposed immediately above the indoor fan 2.
  • the refrigerant leakage detection sensor 6A is provided on the support portion 1G so as to be located downstream of the indoor heat exchanger 3 in the air flow direction and upstream of the indoor blower 2 in the air flow direction. .
  • the indoor unit 103B according to the first modification of the third embodiment can also obtain the same effects as those of the first modification of the first embodiment.
  • FIG. 18 is a view of the external structure and internal structure of the indoor unit 103C according to Modification 2 of Embodiment 3 as viewed from the side.
  • FIG. 19 is a diagram schematically illustrating the installation position of the refrigerant leakage detection sensor 6A of the indoor unit 103C according to the second modification of the third embodiment.
  • the modification 2 of this Embodiment 3 is demonstrated centering on a different part from this Embodiment 3.
  • FIG. The second modification of the third embodiment corresponds to the second modification of the first embodiment. That is, the second modification of the third embodiment is a mode in which the indoor unit 103 according to the third embodiment and the indoor unit 103B of the first modification are combined.
  • the indoor unit 103C includes a refrigerant leak detection sensor 6A provided at the same installation position as the refrigerant leak detection sensor 6A of the indoor unit 103 according to Embodiment 3, and the indoor unit according to Modification 1.
  • the refrigerant leakage detection sensor 6B provided at the same installation position as the refrigerant leakage detection sensor 6A of 100B is provided. Thereby, the effect similar to the modification 2 of Embodiment 1 can be acquired.
  • FIG. 20 is a view of the external structure and internal structure of the indoor unit 104 of the air-conditioning apparatus 200 according to Embodiment 4 as viewed from the side.
  • FIG. 21 is a diagram schematically illustrating the installation position of the refrigerant leakage detection sensor 6A of the indoor unit 104 of the air-conditioning apparatus 200 according to Embodiment 4 of the present invention.
  • the fourth embodiment will be described with reference to FIGS. In the fourth embodiment, components corresponding to those in the first to third embodiments are denoted by the same reference numerals, and differences from the first to third embodiments will be mainly described.
  • the indoor unit 104 is different from the first to third embodiments in that a suction port 1B is formed at the center of the front surface of the housing 1. And 1 A of blower outlets are each provided in the upper part and the lower part of the housing
  • the indoor unit 104 includes a housing 1 in which an air inlet 1B and two air outlets 1A are formed, and the air inlet 1B is located between one air outlet 1A and the other air outlet 1A.
  • the indoor heat exchanger 3 provided at a position opposite to the grill portion 1B1 provided in the suction port 1B, the indoor blower 2A provided in the housing 1 and releasing air from the upper outlet 1A and the lower side
  • the indoor blower 2B that discharges air from the air outlet 1A, the refrigerant leakage detection sensor 6A that is disposed between the suction port 1B and the indoor heat exchanger 3 and detects refrigerant leakage, and the detection results of the refrigerant leakage detection sensor 6A
  • a control device 7 for determining whether or not there is refrigerant leakage based on the above.
  • the housing 1 has a suction port 1 ⁇ / b> B formed in the center of the front surface.
  • the grill portion 1B1 of the suction port 1B is disposed so as to face the indoor heat exchanger 3.
  • the area of the suction port 1B is made larger than that of the indoor units according to the first to third embodiments.
  • the area of the suction port 1B is, for example, approximately the same as the area when the indoor heat exchanger 3 is viewed from the front.
  • the area of the suction inlet 1B is not limited to this.
  • the casing 1 is formed with air outlets 1A at the top and bottom.
  • a rotatable louver 1A1 and a louver 1A2 are provided at the upper outlet 1A.
  • louver 1A3 is provided at the outlet 1A on the lower side.
  • the louver 1A1, louver 1A2 and louver 1A3 function to adjust the direction of air blown out from the inside of the casing 1 or close the outlet 1A so that dust or the like enters the air path R1 of the casing 1. Can be suppressed.
  • the housing 1 is provided with a curved surface portion 1K.
  • the curved surface portion 1 ⁇ / b> K is disposed at a position facing the back surface portion of the indoor heat exchanger 3.
  • the curved surface portion 1K has a convex portion 1K1 formed so as to protrude from the rear side toward the front side. Therefore, the curved surface portion 1K can divide the air that has passed through the indoor heat exchanger 3 into the indoor fan 2A side and the indoor fan 2B side while avoiding an increase in pressure loss.
  • the curved surface portion 1K has concave portions 1K2 formed above and below the convex portion 1K1, respectively.
  • the concave portion 1K2 is formed so as to be recessed from the front side toward the rear side. Since the upper concave portion 1K2 has a curved surface, air can be smoothly guided to the indoor fan 2A side. Similarly, since the lower concave portion 1K2 has a curved surface, air can be smoothly guided to the indoor fan 2B side.
  • the indoor blower 2 ⁇ / b> A is disposed downstream of the indoor heat exchanger 3 in the air flow direction, and is disposed, for example, so as to face the upper portion of the back surface portion of the indoor heat exchanger 3.
  • the indoor blower 2B is disposed downstream of the indoor heat exchanger 3 in the air flow direction, and is disposed, for example, so as to face the lower portion of the back surface portion of the indoor heat exchanger 3.
  • the indoor heat exchanger 3 does not include two heat exchangers. That is, in Embodiment 4, the indoor heat exchanger 3 is configured by a single heat exchanger.
  • the indoor heat exchanger 3 is arranged in parallel to the vertical direction.
  • the refrigerant leak detection sensor 6A is disposed between the grill 1B1 of the suction port 1B and the indoor heat exchanger 3.
  • the refrigerant leakage detection sensor 6 ⁇ / b> A is disposed so as to face the lower part of the front surface portion of the indoor heat exchanger 3.
  • the refrigerant leakage detection sensor 6A is disposed upstream of the indoor heat exchanger 3 in the air flow direction.
  • the indoor unit 104 of the air conditioning apparatus 200 according to Embodiment 4 has the same effect as the effects of the indoor units 100 and 103 of the air conditioning apparatus 200 according to Embodiments 1 and 3.
  • the indoor unit 104 of the air-conditioning apparatus 200 according to Embodiment 4 can be provided with the structure of the inlet opening / closing unit 30 and the like described in Embodiment 2 in the inlet 1B.
  • FIG. 22 is a side view of the external structure and internal structure of the indoor unit 104B according to the first modification of the fourth embodiment.
  • FIG. 23 is a diagram schematically illustrating the installation position of the refrigerant leakage detection sensor 6A of the indoor unit 104B according to the first modification of the fourth embodiment.
  • the modification 1 of this Embodiment 4 is demonstrated centering on a different part from this Embodiment 4.
  • FIG. Modification 1 of Embodiment 4 differs from Embodiment 4 in that refrigerant leakage detection sensor 6A is provided on curved surface portion 1K.
  • the refrigerant leakage detection sensor 6A is provided below the curved surface portion 1K. Thereby, refrigerant leakage can be detected more reliably.
  • the refrigerant leakage detection sensor 6 ⁇ / b> A is disposed on the back side of the indoor heat exchanger 3.
  • the refrigerant leakage detection sensor 6A is disposed downstream of the indoor heat exchanger 3 in the air flow direction.
  • the indoor unit 104B according to the first modification of the fourth embodiment can also obtain the same effects as the indoor unit 104 of the air conditioner 200 according to the fourth embodiment.
  • FIG. 24 is a side view of an external structure and an internal structure of an indoor unit 104C according to Modification 2 of Embodiment 4.
  • FIG. 25 is a diagram schematically illustrating the installation position of the refrigerant leakage detection sensor 6A of the indoor unit 104C according to the second modification of the fourth embodiment.
  • a second modification of the fourth embodiment will be described with a focus on differences from the fourth embodiment.
  • the indoor unit 104 according to the fourth embodiment and the indoor unit 104B of the second modification are combined.
  • the indoor unit 104C includes the refrigerant leakage detection sensor 6A provided at the same installation position as the refrigerant leakage detection sensor 6A of the indoor unit 104 according to the fourth embodiment, and the refrigerant leakage of the indoor unit 104B according to the first modification.
  • the refrigerant leakage detection sensor 6B provided in the same installation position as the detection sensor 6A is provided.
  • the indoor unit 104C according to the second modification of the fourth embodiment includes a plurality of refrigerant leak detection sensors, even if one of the refrigerant leak detection sensors cannot be used due to failure or the like, the other refrigerant leak detection is detected.
  • the refrigerant leakage can be detected by the sensor, and the situation where the refrigerant is ignited more reliably can be avoided.
  • 1 housing 1A outlet, 1A1 louver, 1A2 louver, 1A3 louver, 1B inlet, 1B1 grille, 1C front panel, 1D lower surface, 1DD upper surface, 1E inclined surface, 1F standing surface, 1G support, 1H curved surface part, 1J support part, 1K curved surface part, 1K1 convex part, 1K2 concave part, 2 indoor fan, 2A indoor fan, 2B indoor fan, 3 indoor heat exchanger, 3A first heat exchanger, 3B second Heat exchanger, 4 drain pan, 5 filter, 6A refrigerant leakage detection sensor, 6B refrigerant leakage detection sensor, 7 control device, 7A leakage determination means, 7B notification control means, 7C compressor control means, 7D rotation speed control means, 7E Open / close control means, 8 display panel, 8A display, 9 notification means, 9A lamp, 9B -10 parts, compressor, 11 flow path switching valve, 12 rotating part, 12A plate-like part, 12B shaft part, 13 throttling device,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 吸込口と吹出口と吸込口から吹出口に至る風路とが形成され、吹出口より下側に吸込口が位置する筐体と、筐体内に設けられた室内熱交換器と、筐体内に設けられ、前記室内熱交換器に空気を供給する室内送風機と、風路の途中に設けられ、前記室内熱交換器及び前記吹出口よりも下側に配置され、冷媒漏洩を検知する冷媒漏洩検知センサと、冷媒漏洩検知センサの検知結果に基づいて冷媒漏洩があるか否かを判定する制御装置と、を備えたものである。

Description

空気調和装置の室内機、及びその室内機を備えた空気調和装置
 本発明は、冷媒漏洩を検知する手段を有する空気調和装置の室内機、及びその室内機を備えた空気調和装置に関するものである。
 これまで空気調和機には、冷媒回路内を循環する冷媒としてHFC冷媒のR410Aが主として用いられていた。このR410Aは、従来のR22のようなHCFC冷媒と異なり、オゾン層破壊係数ODPがゼロであってオゾン層を破壊することはないが、地球温暖化係数GWPが高いという性質を有している。そのため、地球の温暖化防止の一環として、R410AのようなGWPが高いHFC冷媒から、GWPが低いHFC冷媒へと変更する動きが出てきている。
 そのような低GWPのHFC冷媒としては、例えば、組成中に炭素の二重結合を有するハロゲン化炭化水素があり、代表的なものとして、HFO-1234yf(CFCF=CH;テトラフルオロプロパン)やHFO-1234ze(CF-CH=CHF)、HFO-1123(CF=CHF)がある。これらはHFC冷媒の一種ではあるが、炭素の二重結合を持つ不飽和炭化水素がオレフィンと呼ばれることから、オレフィンのOを使って、HFOと表現されることが多い。そこで、これらをHFO冷媒と称して、R410Aを構成するR32(CH;ジフルオロメタン)やR125(CHF-CF;ペンタフルオロエタン)のように組成中に炭素の二重結合を持たないHFC冷媒と区別するものとする。
 このような低GWPのHFO冷媒は、単一冷媒として使用される場合もあろうが、R32に代表されるような他のHFC冷媒との複数種の混合冷媒として用いられる可能性もある。これらHFO冷媒もしくはHFO冷媒とHFC冷媒との混合冷媒は、R290(C;プロパン)のようなHC冷媒ほど強燃性ではないものの、不燃性であるR410Aとは異なり、微燃レベルの可燃性を有している。そのため、冷媒漏洩に対する注意が必要であり、これ以降、微燃性から強燃性まで含めて可燃性を有する冷媒のことを可燃性冷媒と称する。R32は単体冷媒としてはHFO冷媒と同じように微燃性を呈する。すなわち可燃性冷媒であるので、HFO冷媒とR32との混合冷媒も可燃性冷媒となる。なお、R32にR125が混合されたR410AはR125の特性により不燃性である。
 このような可燃性冷媒は、室内に漏洩した場合、漏洩冷媒が拡散することなく滞留すれば、そこに可燃濃度の気相が形成される可能性があり、もしこの可燃濃度の気相に何らかの着火源が存在していれば、冷媒に引火する恐れがある。そのような室内における漏洩冷媒の燃焼という事態の発生を回避するためには、空気調和機としてまずは、冷媒の漏洩を検知することが必要となってくる。
特開2002-98393号公報(たとえば、第5頁、第1図及び第2図参照)
 特許文献1に記載の空気調和装置の室内機とは、吸込口と吹出口との上下の位置関係が逆の室内機(床置き型室内機)が存在する。つまり、吹出口よりも吸込口が下側に形成された室内機筐体を有する室内機が存在する。
 ここで、特許文献1に記載のガスセンサ位置では、吸込口と熱交換器、吹出口との間で冷媒漏洩が発生した場合、冷媒漏洩を検知することができない場合がある。
 また特許文献1に記載のガスセンサ位置では、吸込口、吹出口との間で冷媒漏洩が発生した場合、吹出口から漏洩した冷媒が室内空間に排出され、ケーシング外表面に備えられたガスセンサで検知させようとすると、検知までに時間がかかる事や、室内空間で拡散された漏洩冷媒を検知させなければならないため高精度なガスセンサが必要となる。
 本発明は、上記のような問題を解決するためになされたもので、室内送風機の停止中に、より確実に冷媒漏洩を検知することができる空気調和装置の室内機、及びその室内機を備えた空気調和装置を提供することを目的としている。
 本発明に係る空気調和装置の室内機は、吸込口と吹出口と吸込口から吹出口に至る風路とが形成され、吹出口より下側に吸込口が位置する筐体と、筐体内に設けられた室内熱交換器と、筐体内に設けられ、前記室内熱交換器に空気を供給する室内送風機と、風路の途中に設けられ、前記室内熱交換器及び前記吹出口よりも下側に配置され、冷媒漏洩を検知する冷媒漏洩検知センサと、冷媒漏洩検知センサの検知結果に基づいて冷媒漏洩があるか否かを判定する制御装置と、を備えたものである。
 本発明に係る空気調和装置の室内機によれば、吹出口より下側に吸込口が形成された筐体を有し、第1の冷媒検知センサが筐体内の室内熱交換器よりも下側に配置されたので、室内送風機の停止中に、より確実に冷媒漏洩を検知することができる。
本発明の実施の形態1に係る空気調和装置200の冷媒回路構成の一例を示す図である。 本発明の実施の形態1に係る空気調和装置200の室内機100の模式図である。 図2に示す室内機100の外部構造及び内部構造を側方から見た図である。 室内機100の冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。 本発明の実施の形態1に係る空気調和装置200の室内機100の制御装置7等の構成の説明図である。 本発明の実施の形態1の変形例1に係る室内機100Bの外部構造及び内部構造を側方から見た図である。 本発明の実施の形態1の変形例1に係る室内機100Bの冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。 本発明の実施の形態1の変形例2に係る室内機100Cの外部構造及び内部構造を側方から見た図である。 本発明の実施の形態1の変形例2に係る室内機100Cの冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。 本発明の実施の形態2に係る空気調和装置200の室内機102の吸込口1B及びその周囲の説明図であって、吸込口1Bを開いている状態の説明図である。 本発明の実施の形態2に係る空気調和装置200の室内機102の吸込口1B及びその周囲の説明図であって、吸込口1Bを閉じている状態の説明図である。 図10及び図11に示す吸込口開閉部30の回転部12の拡大図である。 本発明の実施の形態2に係る空気調和装置200の室内機102の制御装置7等の構成の説明図である。 本発明の実施の形態3に係る空気調和装置200の室内機103の外部構造及び内部構造を側方から見た図である。 本発明の実施の形態3に係る空気調和装置200の室内機103の冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。 本発明の実施の形態3の変形例1に係る室内機103Bの外部構造及び内部構造を側方から見た図である。 本発明の実施の形態3の変形例1に係る室内機103Bの冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。 本発明の実施の形態3の変形例2に係る室内機103Cの外部構造及び内部構造を側方から見た図である。 本発明の実施の形態3の変形例2に係る室内機103Cの冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。 本発明の実施の形態4に係る空気調和装置200の室内機104の外部構造及び内部構造を側方から見た図である。 本発明の実施の形態4に係る空気調和装置200の室内機104の冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。 本発明の実施の形態4の変形例1に係る室内機104Bの外部構造及び内部構造を側方から見た図である。 本発明の実施の形態4の変形例1に係る室内機104Bの冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。 本発明の実施の形態4の変形例2に係る室内機104Cの外部構造及び内部構造を側方から見た図である。 本発明の実施の形態4の変形例2に係る室内機104Cの冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。
 以下、本発明に係る空気調和装置の室内機の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
 図1は、本実施の形態1に係る空気調和装置200の冷媒回路構成の一例を示す図である。図1を参照して、空気調和装置200の構成等について説明する。
 本実施の形態1に係る空気調和装置200の室内機100は、室内送風機2の運転中及び停止中の両方で、より確実に冷媒漏洩を検知することができる改良が加えられたものである。
[構成説明]
 空気調和装置200は、図1に示すように、たとえば空調対象空間(室内、ビルの一室、倉庫等)に設置される室内機100と、たとえば空調対象空間外に設置される室外機150とを有しているものである。そして、空気調和装置200は、室内機100と室外機150とが冷媒配管で接続されて構成された冷媒回路Cを有している。
 空気調和装置200は、冷媒を圧縮する圧縮機10と、冷房及び暖房等を切り替えるのに利用される流路切替弁11と、冷房時には凝縮器(放熱器)として機能し、暖房時には蒸発器として機能する室外熱交換器16と、冷媒を減圧させる絞り装置13と、冷房時には蒸発器として機能し、暖房時には凝縮器として機能する室内熱交換器3とを有している。なお、室外熱交換器16には、空気と冷媒との熱交換を促進するのに利用される室外送風機16Aが付設されている。
 ここで、空気調和装置200に用いられる冷媒について説明する。
 冷媒回路Cに封入される冷媒としては、可燃性冷媒が用いられている。この可燃性冷媒は、たとえば、HFO1234yf系冷媒の単一冷媒、テトラフルオロプロペン系冷媒を有する混合冷媒、又は、炭化水素系冷媒等の可燃性冷媒等を採用することができる。
 図2は、本実施の形態1に係る空気調和装置200の室内機100の模式図である。図3は、図2に示す室内機100の外部構造及び内部構造を側方から見た図である。図4は、室内機100の冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。図5は、本実施の形態1に係る空気調和装置200の室内機100の制御装置7等の構成の説明図である。図2~図5を参照して室内機100の構成等について説明する。
 室内機100は、図2に示すように、外郭等を構成する筐体1と、筐体1内に設けられた室内送風機2と、第1の熱交換器3A及び第2の熱交換器3Bを有する室内熱交換器3と、室内熱交換器3に付着した結露水等を貯留するドレンパン4と、塵埃等を捕捉するフィルター5とを備えている。
 また、室内機100は、筐体1に漏洩する冷媒を検知するのに利用される冷媒漏洩検知センサ6Aと、各種機器を制御する制御装置7が設けられた電気品箱18と、運転中であること等を表示することができる表示パネル部8と、筐体1内の風路R1と電気品箱18等が配置される空間R2とを区画する仕切板17とを備えている。
(筐体1)
 筐体1は、たとえば直方体形状の外郭を有するものであり、内部に空気が流れる風路R1が形成されているものである。筐体1は、空気を放出するのに利用される吹出口1A及び空気を取り込むのに利用される吸込口1Bが形成されている。筐体1には、空気流れ方向の下流側から、吸込口1B、フィルター5、室内熱交換器3、室内送風機2及び吹出口1Aが位置している。吸込口1Bには、水平方向に平行に延びるグリル部1B1が設けられている。グリル部1B1により吸込口1Bに手指を挿入する等を防止することができる。また、吹出口1Aには、回転自在のルーバー1A1及びルーバー1A2が設けられている。ルーバー1A1及びルーバー1A2が設けられていることにより、室内送風機2の作用で放出される空気の方向を調節することができる。また、室内機100の停止時には、吹出口1Aを閉塞して塵埃等が筐体1の風路内に入ってしまうことを抑制することができる。
 筐体1は、室内機100の前面の一部を構成する前面パネル1Cと、フィルター5の下端側が当接する下面部1Dと、傾斜面を有する傾斜面部1Eと、傾斜面部1Eの上端側に連続して形成された立設面部1Fと、室内熱交換器3の上端側を支持する支持部1G及び支持部1Jと、曲面状に形成された曲面部1Hとを有している。
 前面パネル1Cは、表面(前面)側が室内機100の意匠面となり、裏面(背面)側がフィルター5に対向するように設けられているものである。前面パネル1Cの下側には、吸込口1Bが位置している。また、前面パネル1Cの上側には表示パネル部8が配置されている。下面部1Dは、下面側が空調対象空間の床面に当接し、上面側がフィルター5の下端側と当接しているものである。下面部1Dの前端部の上側には、吸込口1Bに形成されたグリル部1B1が配置されている。また、下面部1Dの後端部は、傾斜面部1Eに当接するように設けられている。
 傾斜面部1Eは、前面側から背面側に向かって上側に傾斜する傾斜面を有するものである。傾斜面部1Eの傾斜面には、冷媒漏洩検知センサ6Aが取り付けられている。傾斜面部1Eの前側は、下面部1Dに接続され、傾斜面部1Eの傾斜面の上端部は、立設面部1Fに接続されている。傾斜面部1Eは、傾斜面を有するため、吸込口1Bから筐体1内に取り込まれた空気が滑らかに室内熱交換器3に流れるようになっている。立設面部1Fは、室内熱交換器3(第1の熱交換器3A)及びドレンパン4よりも背面側に設けられ、傾斜面部1Eの上端側から支持部1Gへ延びるように形成されているものである。
 室内送風機2の周囲には、支持部1G、支持部1J、及び曲面部1Hが配置されている。支持部1Gは、立設面部1Fの上端側に設けられ、第1の熱交換器3Aの上端側を支持するものである。また、支持部1Jは、前面パネル1Cの上側の高さ位置に設けられ、第2の熱交換器3Bの上端側を支持するものである。曲面部1Hは、室内送風機2から送り出される空気が、すみやかに筐体1外に放出されるように、予め設定された曲面状に形成されている。
(室内送風機2)
 室内送風機2は、たとえば、クロスフローファン及びクロスフローファンを駆動するモーター部等で構成されるものであり、筐体1内に空気を取り込み、筐体1外に空気を放出するものである。室内送風機2は、室内熱交換器3の下流側に配置されている。また、室内送風機2は、室内熱交換器3の上部に配置されている。
(室内熱交換器3)
 室内熱交換器3は、第1の熱交換器3A及び第2の熱交換器3Bを有している。第1の熱交換器3A及び第2の熱交換器3Bは、V字をなすように筐体1内に配置されている。より詳細には、第1の熱交換器3A及び第2の熱交換器3Bは、第1の熱交換器3Aの下端側と第2の熱交換器3Bの下端側とが寄せられ、第1の熱交換器3Aの上端側と第2の熱交換器3Bの上端側とが離れるように、筐体1内に配置されている。第1の熱交換器3A及び第2の熱交換器3Bの下端側は、ドレンパン4の上部に位置し、第1の熱交換器3Aの上端側は支持部1Gに支持され、第2の熱交換器3Bの上端側は支持部1Jに支持されている。
 室内熱交換器3は、たとえば、フィンアンドチューブ熱交換器等で構成することができる。室内熱交換器3は、室外機150に設けられた室外熱交換器16に冷媒配管Pを介して接続されている。冷媒配管Pは、風路R1側から空間R2側にかけて設けられている。
(ドレンパン4)
 ドレンパン4は、室内熱交換器3に付着した結露水等を貯留するものである。ドレンパン4の下側には、傾斜面部1Eに設けられた冷媒漏洩検知センサ6Aが配置され、ドレンパン4の上部には、室内熱交換器3が配置されている。また、ドレンパン4の前面側には、フィルター5が配置されている。
(フィルター5)
 フィルター5は、吸込口1Bを介して筐体1内に取り込まれる空気中の塵埃等を捕捉するのに利用されるものである。フィルター5は、筐体1の前面側から背面側に向かう方向において、下側に傾斜するように斜めに配置されている。
(冷媒漏洩検知センサ6A)
 冷媒漏洩検知センサ6Aは、筐体1内に冷媒が漏洩したときにおいて、筐体1内の下側に滞留する冷媒を検知するのに利用されるものである。冷媒漏洩検知センサ6Aは、風路R1の途中に設けられている。冷媒漏洩検知センサ6Aは、室内熱交換器3よりも下側に位置している傾斜面部1Eに配置されている。室内熱交換器3に接続された冷媒配管のうち筐体1内に位置している部分が損傷等することで、冷媒漏洩が発生した場合に、可燃性冷媒の多くは空気より重いので室内熱交換器3の位置よりも下側に移動する。冷媒漏洩検知センサ6Aは、この下側に移動してきた冷媒を検知することができる。冷媒漏洩検知センサ6Aは、たとえば、酸素濃度式、可燃性ガス検知式等を採用することができる。
 冷媒漏洩検知センサ6Aと制御装置7とは、配線CAによって接続されている。これにより、冷媒漏洩検知センサ6Aの検知結果が制御装置7に出力される。また、冷媒漏洩検知センサ6Aは、仕切板17側に設けられている。すなわち、冷媒漏洩検知センサ6Aは、筐体1を正面側から見たときに、風路R1の右端側に寄せるように設けられている。したがって、配線CAのうち風路R1内に位置する部分を小さくすることができる。これにより、配線CAに風路R1を流れる空気が衝突して圧力損失が増大することを抑制することができる。また、冷媒漏洩検知センサ6Aと制御装置7との接続も容易となり、メンテナンス等も実施しやすい。さらに、配線CAの長さを小さくすることができるので、配線CAが絡まってしまうことを回避しやすい。
(電気品箱18)
 電気品箱18は、仕切板17と筐体1とによって形成される空間R2に設けられているものである。電気品箱18には、各種の制御を実行する制御装置7等が設けられている。制御装置7は、冷媒漏洩検知センサ6Aの検知結果に基づいて冷媒漏洩が発生しているか否かを判定するものである。そして、制御装置7は、この判定結果に基づいて、後述する報知手段9及び圧縮機10等を制御するものである。
 制御装置7は、冷媒漏洩検知センサ6Aの検知結果が出力される漏洩判定手段7Aと、報知手段9に報知させる報知制御手段7Bと、圧縮機10を停止させる圧縮機制御手段7Cと、室内送風機2の回転数を増大させる回転数制御手段7Dとを有している。
 漏洩判定手段7Aは、冷媒漏洩検知センサ6Aからの出力(たとえば、電圧)に基づいて冷媒漏洩が発生しているか否かを判定する。漏洩判定手段7Aは、冷媒漏洩検知センサ6Aで冷媒漏洩を検知すると、冷媒漏洩があると判定する。漏洩判定手段7Aは、たとえば、冷媒漏洩検知センサ6Aからの出力が変化して、予め設定された第1の範囲内になった場合に、冷媒漏洩が発生したと判定する。なお、冷媒漏洩検知センサ6Aでは、室内送風機2が停止しており、筐体1内の下側に下降して滞留する冷媒を検知することを想定している。
 報知制御手段7Bは、漏洩判定手段7Aが冷媒漏洩があると判定した場合に報知手段9に報知させるものである。報知されることにより、ユーザー等に冷媒漏洩が発生したことを知らせることができる。なお、空気調和装置200がビル用マルチエアコン等である場合には、報知制御手段7Bの出力が、集中管理室等に出力される態様であってもよい。
 圧縮機制御手段7Cは、漏洩判定手段7Aが冷媒漏洩があると判定した場合に圧縮機10を停止させるものである。室内熱交換器3等が損傷して冷媒漏洩が発生した場合に、圧縮機10が運転を継続すると、冷媒漏洩量が増大してしまう。そこで、冷媒漏洩があると判定した場合には、圧縮機10を停止させて、冷媒漏洩量を抑制する。
 回転数制御手段7Dは、室内機100が運転中(室内送風機2が運転中)に冷媒漏洩があると判定された場合には、室内送風機2の回転数を増大させるものである。なお、回転数制御手段7Dは、室内送風機2に対して、現在の運転時における回転数から増大させる制御を実施してもよいし、予め設定された回転数(たとえば、最大の回転数)とする制御を実施してもよい。
 また、回転数制御手段7Dは、室内機100が停止中(室内送風機2が停止中)に冷媒漏洩があると判定された場合には、室内送風機2を運転させるものである。なお、回転数制御手段7Dは、室内送風機2に対して、たとえば、最大の回転数とする制御を実施するとよい。
 回転数制御手段7Dは、これらの制御を実施することにより、筐体1内に漏洩した冷媒を空調対象空間に拡散させることができる。したがって、筐体1内の冷媒濃度が上昇したときに、電気部品等がショートして火花が発生し、火災が起こるような事態を回避することができる。
(表示パネル部8)
 表示パネル部8は、たとえば、筐体1の上部に配置されているものである。表示パネル部8には、たとえば、冷房運転、暖房運転、設定温度等の情報を表示することができる表示部8Aが設けられている。また、表示パネル部8には、報知手段9が設けられている。
 報知手段9は、ランプ部9A及びスピーカ部9Bを有している。ランプ部9Aは、報知制御手段7Bより冷媒漏洩を報知する旨の情報を受けると、たとえば、赤色に点灯、点滅等をしてユーザーに冷媒漏洩があることを報知するのに利用される。また、スピーカ部9Bは、報知制御手段7Bより冷媒漏洩を報知する旨の情報を受けると、音声でその旨を出力する。なお、報知手段9の設置位置は、これに限定されるものではない。たとえば、前面パネル1Cの位置に設置されていてもよい。
(仕切板17)
 仕切板17は、筐体1を正面から見たときに、右側に配置される空間(風路R1)と左側に配置される空間(空間R2)とを区画する板状部材である。より詳細には、仕切板17は、室内送風機2及び室内熱交換器3等が配置される空間であって吸込口1Bから吸い込まれ、吹出口1Aから吹き出される空気が流れる風路R1と、電気品箱18及び冷媒配管P等が配置される空間R2とを仕切るものである。空間R2に位置する冷媒配管Pは、室外機150側から引き回される冷媒配管に接続されている。つまり、空間R2は、配管同士が接続される部分である配管接続部が配置されている。
 仕切板17が配置されていることにより、吸込口1Bから筐体1内に流入した空気が、電気品箱18等が配置されている側に流れてしまい、圧力損失等が増大してしまうことを回避することができる。仕切板17には、冷媒漏洩検知センサ6Aと制御装置7とを接続する配線CAを通す開口部Hが形成されている。また、仕切板17には、冷媒配管Pが通るように開口部が形成されている。
[動作説明]
 まず、室内機100の運転停止中(室内送風機2の運転停止中)に、冷媒が室内熱交換器3より漏洩した場合について説明する。冷媒が、たとえばHFO1234-yfの単一冷媒であれば、密度が1.1[g/cm]程度であり、空気よりも重い。また、室内送風機2の動作による室内空気循環が無い。したがって、漏洩した冷媒は、筐体1内における室内熱交換器3より下側に流れていく。このため、主に、冷媒漏洩検知センサ6Aにより、冷媒漏洩が検知される。
 漏洩判定手段7Aは、冷媒漏洩検知センサ6Aの検知結果に基づいて冷媒漏洩があると判定すると、報知制御手段7Bは報知手段9に報知させ、圧縮機制御手段7Cは、圧縮機10を停止させる。また、回転数制御手段7Dは、室内送風機2を運転させて、筐体1内の冷媒を空調対象空間に拡散させる。
[本実施の形態1に係る空気調和装置200の室内機100の効果]
 本実施の形態1に係る空気調和装置200の室内機100は、吸込口1Bが筐体1の下側に形成され、吹出口1Aが筐体1の上側に形成されている。そして、冷媒漏洩検知センサ6Aが筐体1内の室内熱交換器3よりも下側に配置されている。
 したがって、室内機100の運転が停止しているときに冷媒漏洩が発生すると、空気よりも重い可燃性冷媒は漏洩箇所から下側に移動して、冷媒漏洩検知センサ6Aで冷媒漏洩が検知される。また、室内機100が運転しているときに冷媒漏洩が発生すると、室内送風機2の作用により空気とともに冷媒が吹出口1Aより空調対象空間に放出され拡散される。仮に空調対象空間で冷媒濃度が高くなっても、空調対象空間の空気を吸口より吸込むことにより、冷媒漏洩検知センサで検知することが可能である。このように、本実施の形態1に係る空気調和装置200の室内機100は、室内送風機2が運転中であってもそうでなくても、冷媒漏洩を検知することができる。すなわち、本実施の形態1に係る空気調和装置200の室内機100は、室内送風機2の運転中及び停止中の両方で、より確実に冷媒漏洩を検知することができる。
 なお、本実施の形態1に係る空気調和装置200の室内機100は、床置き型室内機である場合を例に説明したが、それに限定されるものではない。たとえば、壁掛け側の室内機であっても、本実施の形態1に係る空気調和装置200の室内機100と同様の効果を得ることができる。
[実施の形態1の変形例1]
 図6は、本実施の形態1の変形例1に係る室内機100Bの外部構造及び内部構造を側方から見た図である。図7は、本実施の形態1の変形例1に係る室内機100Bの冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。図6及び図7を参照して、本実施の形態1との相違する部分を中心に、本実施の形態1の変形例1について説明する。
 実施の形態1に係る室内機100と変形例1に係る室内機100Bとは、冷媒漏洩検知センサ6Aの設置位置が異なっている。変形例1において冷媒漏洩検知センサ6Aが風路R1の途中に配置されている点で、実施の形態1に係る室内機100の冷媒漏洩検知センサ6Aと同様である。しかし、変形例1において冷媒漏洩検知センサ6Aは、室内熱交換器3よりも空気流れ方向の下流側であって室内送風機2よりも空気流れ方向の上流側に位置するように、支持部1Gに設けられている。この冷媒漏洩検知センサ6Aでは、筐体1内に冷媒が漏洩したときにおいて、室内熱交換器3よりも下流側に移動してきた冷媒を検知することができる。
 室内機100が運転中(室内送風機2の運転中)に、冷媒が室内熱交換器3より漏洩した場合には、冷媒は、室内送風機2の作用により上側に移動し、冷媒漏洩検知センサ6Aにより、冷媒漏洩が検知される。
 漏洩判定手段7Aは、冷媒漏洩検知センサ6Aの検知結果に基づいて冷媒漏洩があると判定すると、報知制御手段7Bは報知手段9に報知させ、圧縮機制御手段7Cは、圧縮機10を停止させる。また、室内機100が運転中に冷媒漏洩が検知された場合には、室内送風機2の回転数を増大させ、筐体1内の冷媒を空調対象空間に拡散させる。
 なお、上記では室内機100が運転中(室内送風機2が運転中)である場合について説明したが、室内機100が停止中(室内送風機2が停止中)であっても、室内機100Bは、冷媒漏洩を検知することができる。
 一般的には、冷媒は、空気よりも比重が重たいため、室内機100Bの筐体内の下側に滞留することが多い。しかし、室内熱交換器3から冷媒が勢いよく漏洩する場合等のように、漏洩した冷媒が、室内機100Bの筐体内の上側に移動してくる場合もある。この場合には、室内機100の運転停止中であっても、変形例1に係る室内機100Bの冷媒漏洩検知センサ6Aで冷媒を検知することができる。
 また、冷媒の漏洩量が増大すると、冷媒が室内機100Bの筐体内に溜まっていき、冷媒が支持部1Gに設けられた冷媒漏洩検知センサ6Aの位置まで上がってくる場合がある。この場合においても、室内機100の運転停止中であっても、冷媒漏洩検知センサ6Aで冷媒を検知することができる。
 本実施の形態1の変形例1に係る室内機100Bは、本実施の形態1に係る空気調和装置200の室内機100の有する効果と同様の効果を有する。
[実施の形態1の変形例2]
 図8は、本実施の形態1の変形例2に係る室内機100Cの外部構造及び内部構造を側方から見た図である。図9は、本実施の形態1の変形例2に係る室内機100Cの冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。図8及び図9を参照して、本実施の形態1との相違する部分を中心に、本実施の形態1の変形例2について説明する。
 本実施の形態1の変形例2では、本実施の形態1に係る室内機100と変形例1の室内機100Bとを組み合わせた態様となっている。すなわち、室内機100Cには、本実施の形態1に係る室内機100の冷媒漏洩検知センサ6Aと同じ設置位置に設けられた冷媒漏洩検知センサ6Aと、変形例1に係る室内機100Bの冷媒漏洩検知センサ6Aと同じ設置位置に設けられた冷媒漏洩検知センサ6Bとを備えている。
 本実施の形態1の変形例2に係る室内機100Cは、本実施の形態1に係る空気調和装置200の室内機100の有する効果と同様の効果を有することに加えて次の効果を有する。すなわち、室内機100Cは、複数の冷媒漏洩検知センサを備えているため、一方の冷媒漏洩検知センサが故障等して使用できなくなっても、他方の冷媒漏洩検知センサで冷媒漏洩を検知することができ、より確実に冷媒に引火してしまう事態を回避することができる。
実施の形態2.
 図10は、本実施の形態2に係る空気調和装置200の室内機102の吸込口1B及びその周囲の説明図であって、吸込口1Bを開いている状態の説明図である。図11は、本実施の形態2に係る空気調和装置200の室内機102の吸込口1B及びその周囲の説明図であって、吸込口1Bを閉じている状態の説明図である。図12は、図10及び図11に示す吸込口開閉部30の回転部12の拡大図である。図13は、本実施の形態2に係る空気調和装置200の室内機102の制御装置7等の構成説明図である。
 図10~図13を参照して本実施の形態2について説明する。なお、本実施の形態2では、実施の形態1と共通する部分については同一符号を付し、実施の形態1と相違する部分について中心に説明する。
 室内機102の運転停止時に冷媒が漏洩した場合には、冷媒が吸込口1Bを介して空調対象空間に拡散する。このため、冷媒漏洩検知センサ6Aの周囲の冷媒濃度が上昇しにくく、冷媒漏洩の検知精度が低下する可能性がある。そこで、本実施の形態2では、実施の形態1の室内機102の構成に加えて、吸込口1Bに回転自在に設けられた吸込口開閉部30を設けている。また、制御装置7は、吸込口開閉部30を回転させる開閉制御手段7Eを有している。
 吸込口開閉部30は、吸込口1Bに回転自在に設けられているものである。吸込口開閉部30は、複数の回転部12を有している。回転部12は、筐体1内に、上下方向に並ぶように複数配置されている。回転部12は、グリル部1B1よりも内側に配置されている。
 回転部12は、平板状の板状部12Aと板状部12Aと連結している回転自在の軸部12Bとを有している。板状部12Aは、吸込口1Bを閉じる場合には垂直方向に平行となり、吸込口1Bを開く場合には水平方向に平行となる。なお、ここでは、垂直方向に平行、水平方向に平行である場合を一例に説明するが、垂直方向或いは水平方向からずれていてもよい。
 開閉制御手段7Eは、室内機102が運転している場合には、図10に示すように吸込口開閉部30が開放されるように、回転部12の軸部12Bを回転させて板状部12Aが水平方向と平行になるようにする。
 一方、開閉制御手段7Eは、室内機102が停止している場合には、図11に示すように、回転部12の軸部12Bを回転させて板状部12Aが垂直方向と平行になるようにする。これにより、室内機102が停止している場合に冷媒漏洩があると、吸込口開閉部30により、筐体1内の冷媒濃度がある程度上昇しやすく、冷媒漏洩検知センサ6Aにおいて、より確実に冷媒漏洩を検知することができる。
 室内機102が停止している場合において冷媒漏洩が検知されると、回転数制御手段7Dが室内送風機2を運転する。なお、室内送風機2の回転数は、たとえば、最大の回転数等とするとよい。また、開閉制御手段7Eは、吸込口開閉部30を制御して吸込口1Bを開く。これにより、筐体1内の冷媒を空調対象空間に拡散させることができ、筐体1内の冷媒濃度が上昇したときに、電気部品等がショートして火花が発生し、火災が起こるような事態を回避することができる。
[本実施の形態2に係る空気調和装置200の室内機102の効果]
 本実施の形態2に係る空気調和装置200の室内機102は、実施の形態1に係る空気調和装置200の室内機100の有する効果に加えて次の効果を有する。
 本実施の形態2に係る空気調和装置200の室内機102は、室内機102が停止している場合において、吸込口開閉部30で吸込口1Bを閉じておくので、特に、冷媒漏洩検知センサ6Aにおける冷媒漏洩の検知精度を向上させることができる。また、冷媒漏洩を検知した後には、吸込口開閉部30を開くとともに室内送風機2を運転するので、筐体1内の冷媒濃度が上昇してしまうことが抑制され、火災が発生してしまうような事態を回避することができる。
実施の形態3.
 図14は、本実施の形態3に係る空気調和装置200の室内機103の外部構造及び内部構造を側方から見た図である。図15は、本実施の形態3に係る空気調和装置200の室内機103の冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。図14及び図15を参照して本実施の形態3について説明する。なお、本実施の形態3では、実施の形態1、2の構成と対応する構成については同一符号を付し、実施の形態1、2と相違する部分について中心に説明する。
 室内機103は、実施の形態1、2とは異なり、吸込口1Bが筐体1の上側に配置され、吹出口1Aが筐体1の下側に配置されている。つまり、吸込口1Bと吹出口1Aとの位置関係が、実施の形態1、2と本実施の形態3とで逆になっている。
 室内機103は、外郭等を構成する筐体1と、筐体1内の下部に設けられた室内送風機2と、第1の熱交換器3A及び第2の熱交換器3Bを有する室内熱交換器3と、塵埃等を捕捉するフィルター5とを備えている。また、室内機103は、筐体1に漏洩する冷媒を検知するのに利用される冷媒漏洩検知センサ6Aを備えている。
 筐体1は、フィルター5の上端側が当接する上面部1DDと、手前側よりも奥側の方が高さが低くなるように形成された傾斜面を有する傾斜面部1Eと、室内熱交換器3の下端側を支持する支持部1G及び支持部1Jとを有している。
 また、室内送風機2は、室内熱交換器3よりも空気流れ方向の下流側に配置されており、例えば室内熱交換器3の下側に配置される。
 また、室内熱交換器3は、第1の熱交換器3Aの上端側と第2の熱交換器3Bの上端側とが寄せられ、第1の熱交換器3Aの下端側と第2の熱交換器3Bの下端側とが離れるように、筐体1内に配置されている。
 また、フィルター5は、筐体1の背面側から前面側に向かう方向において、下側に傾斜するように斜めに配置されている。
 さらに、冷媒漏洩検知センサ6Aは、筐体1内であって室内熱交換器3の上端よりも上側に配置されている。すなわち、冷媒漏洩検知センサ6Aは、室内熱交換器3よりも空気流れ方向の下流側に配置されている。
[本実施の形態3に係る空気調和装置200の室内機103の効果]
 本実施の形態3に係る空気調和装置200の室内機103は、実施の形態1に係る空気調和装置200の室内機100の有する効果と同様の効果を有する。
 なお、本実施の形態3に係る空気調和装置200の室内機103にも、実施の形態2で説明した吸込口開閉部30等の構成を吸込口1Bに設けることもできる。
[実施の形態3の変形例1]
 図16は、本実施の形態3の変形例1に係る室内機103Bの外部構造及び内部構造を側方から見た図である。図17は、本実施の形態3の変形例1に係る室内機103Bの冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。図16及び図17を参照して、本実施の形態3との相違する部分を中心に、本実施の形態3の変形例1について説明する。
 本実施の形態3の変形例1は、実施の形態1の変形例1に対応している。すなわち、本実施の形態3の変形例1は、冷媒漏洩検知センサ6Aが、吸込口1Bよりも下側に配置され、また、第1の熱交換器3Aと第2の熱交換器3Bとが寄せられた部分(頂部)の下側に位置している。また、冷媒漏洩検知センサ6Aは、室内送風機2の直上に配置されている。さらに、冷媒漏洩検知センサ6Aは、室内熱交換器3よりも空気流れ方向の下流側であって室内送風機2よりも空気流れ方向の上流側に位置するように、支持部1Gに設けられている。本実施の形態3の変形例1に係る室内機103Bも、実施の形態1の変形例1と同様の効果を得ることができる。
[実施の形態3の変形例2]
 図18は、本実施の形態3の変形例2に係る室内機103Cの外部構造及び内部構造を側方から見た図である。図19は、本実施の形態3の変形例2に係る室内機103Cの冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。図18及び図19を参照して、本実施の形態3との相違する部分を中心に、本実施の形態3の変形例2について説明する。
 本実施の形態3の変形例2は、実施の形態1の変形例2に対応している。すなわち、本実施の形態3の変形例2は、本実施の形態3に係る室内機103と変形例1の室内機103Bとを組み合わせた態様となっている。より具体的には、室内機103Cには、本実施の形態3に係る室内機103の冷媒漏洩検知センサ6Aと同じ設置位置に設けられた冷媒漏洩検知センサ6Aと、変形例1に係る室内機100Bの冷媒漏洩検知センサ6Aと同じ設置位置に設けられた冷媒漏洩検知センサ6Bとを備えている。これにより、実施の形態1の変形例2と同様の効果を得ることができる。
実施の形態4.
 図20は、本実施の形態4に係る空気調和装置200の室内機104の外部構造及び内部構造を側方から見た図である。図21は、本発実施の形態4に係る空気調和装置200の室内機104の冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。図20及び図21を参照して本実施の形態4について説明する。なお、本実施の形態4では、実施の形態1~3の構成と対応する構成については同一符号を付し、実施の形態1~3と相違する部分について中心に説明する。
 室内機104は、実施の形態1~3とは異なり、筐体1の前面中央部に吸込口1Bが形成されている。そして、吹出口1Aは、筐体1の上部及び下部にそれぞれ1つずつ設けられている。
 室内機104は、吸込口1B及び2つの吹出口1Aが形成され、一方の吹出口1Aと他方の吹出口1Aとの間に吸込口1Bが位置する筐体1と、筐体1内に設けられ、吸込口1Bに設けられたグリル部1B1の対向位置に設けられた室内熱交換器3と、筐体1内に設けられ、上側の吹出口1Aから空気を放出する室内送風機2A及び下側の吹出口1Aから空気を放出する室内送風機2Bと、吸込口1Bと室内熱交換器3との間に配置され、冷媒漏洩を検知する冷媒漏洩検知センサ6Aと、冷媒漏洩検知センサ6Aの検知結果に基づいて冷媒漏洩があるか否かを判定する制御装置7と、を備えている。
 筐体1には、前面中央部に吸込口1Bが形成されている。吸込口1Bのグリル部1B1は、室内熱交換器3に対向するように配置されている。本実施の形態4では、吸込口1Bの面積を、実施の形態1~3に係る室内機と比較すると大きくしている。本実施の形態4では、吸込口1Bの面積は、例えば室内熱交換器3を正面視したときの面積と同程度である。なお、吸込口1Bの面積は、これに限定されるものではない。
 筐体1には、上下にそれぞれ吹出口1Aが形成されている。上側の吹出口1Aには、回転自在のルーバー1A1及びルーバー1A2が設けられている。また、下側に吹出口1Aには、回転自在のルーバー1A3が設けられている。このルーバー1A1、ルーバー1A2及びルーバー1A3の作用により、筐体1内から吹き出される空気の方向を調整したり、吹出口1Aを閉塞して塵埃等が筐体1の風路R1内に入ってしまうことを抑制することができる。
 筐体1には、曲面部1Kが設けられている。曲面部1Kは、室内熱交換器3の背面部の対向位置に配置されている。曲面部1Kは、後側から前側に向かって突出するように形成された凸状部1K1を有している。したがって、曲面部1Kは、圧力損失が増大することを回避しながら、室内熱交換器3を通過した空気を室内送風機2A側と室内送風機2B側とに分けることができる。また、曲面部1Kは、凸状部1K1の上下にそれぞれ凹状部1K2が形成されている。凹状部1K2は、前側から後側に向かって凹むように形成されている。上側の凹状部1K2は、表面が曲面状に形成されているため、空気を室内送風機2A側に滑らかに導くことができる。同様に、下側の凹状部1K2は、表面が曲面状に形成されているため、空気を室内送風機2B側に滑らかに導くことができる。
 また、室内送風機2Aは、室内熱交換器3よりも空気流れ方向の下流側に配置されており、例えば室内熱交換器3の背面部の上部に対向するように配置される。室内送風機2Bは、室内熱交換器3よりも空気流れ方向の下流側に配置されており、例えば室内熱交換器3の背面部の下部に対向するように配置される。
 また、室内熱交換器3は、実施の形態1~3とは異なり、2つの熱交換器を備えていない。つまり、本実施の形態4において、室内熱交換器3は、単数の熱交換器で構成されている。室内熱交換器3は、鉛直方向に平行に配置されている。
 さらに、冷媒漏洩検知センサ6Aは、吸込口1Bのグリル部1B1と室内熱交換器3との間に配置されている。また、冷媒漏洩検知センサ6Aは、室内熱交換器3の前面部の下部に対向するように配置されている。冷媒漏洩検知センサ6Aは、室内熱交換器3よりも空気流れ方向の上流側に配置されている。
[本実施の形態4に係る空気調和装置200の室内機104の効果]
 本実施の形態4に係る空気調和装置200の室内機104は、実施の形態1、3に係る空気調和装置200の室内機100、103の有する効果と同様の効果を有する。
 なお、本実施の形態4に係る空気調和装置200の室内機104には、実施の形態2で説明した吸込口開閉部30等の構成を吸込口1Bに設けることもできる。
[実施の形態4の変形例1]
 図22は、本実施の形態4の変形例1に係る室内機104Bの外部構造及び内部構造を側方から見た図である。図23は、本実施の形態4の変形例1に係る室内機104Bの冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。図22及び図23を参照して、本実施の形態4との相違する部分を中心に、本実施の形態4の変形例1について説明する。
 本実施の形態4の変形例1は、冷媒漏洩検知センサ6Aが曲面部1Kに設けられている点で本実施の形態4と異なっている。なお、冷媒は、空気よりも比重が重いため、室内機104Bの筐体1内の下側に滞留することが多い。したがって、冷媒漏洩検知センサ6Aは、曲面部1Kの下側に設けられている。これにより、冷媒漏洩をより確実に検知することができる。冷媒漏洩検知センサ6Aは、室内熱交換器3の背面側に配置されている。この冷媒漏洩検知センサ6Aは、室内熱交換器3の空気流れ方向の下流側に配置されている。本実施の形態4の変形例1に係る室内機104Bも、本実施の形態4に係る空気調和装置200の室内機104と同様の効果を得ることができる。
[実施の形態4の変形例2]
 図24は、本実施の形態4の変形例2に係る室内機104Cの外部構造及び内部構造を側方から見た図である。図25は、本実施の形態4の変形例2に係る室内機104Cの冷媒漏洩検知センサ6Aの設置位置を模式的に示す図である。図24及び図25を参照して、本実施の形態4との相違する部分を中心に、本実施の形態4の変形例2について説明する。
 本実施の形態4の変形例2では、本実施の形態4に係る室内機104と変形例2の室内機104Bとを組み合わせた態様となっている。すなわち、室内機104Cには、本実施の形態4に係る室内機104の冷媒漏洩検知センサ6Aと同じ設置位置に設けられた冷媒漏洩検知センサ6Aと、変形例1に係る室内機104Bの冷媒漏洩検知センサ6Aと同じ設置位置に設けられた冷媒漏洩検知センサ6Bとを備えている。
 本実施の形態4の変形例2に係る室内機104Cは、複数の冷媒漏洩検知センサを備えているため、一方の冷媒漏洩検知センサが故障等して使用できなくなっても、他方の冷媒漏洩検知センサで冷媒漏洩を検知することができ、より確実に冷媒に引火してしまう事態を回避することができる。
 1 筐体、1A 吹出口、1A1 ルーバー、1A2 ルーバー、1A3 ルーバー、1B 吸込口、1B1 グリル部、1C 前面パネル、1D 下面部、1DD 上面部、1E 傾斜面部、1F 立設面部、1G 支持部、1H 曲面部、1J 支持部、1K 曲面部、1K1 凸状部、1K2 凹状部、2 室内送風機、2A 室内送風機、2B 室内送風機、3 室内熱交換器、3A 第1の熱交換器、3B 第2の熱交換器、4 ドレンパン、5 フィルター、6A 冷媒漏洩検知センサ、6B 冷媒漏洩検知センサ、7 制御装置、7A 漏洩判定手段、7B 報知制御手段、7C 圧縮機制御手段、7D 回転数制御手段、7E 開閉制御手段、8 表示パネル部、8A 表示部、9 報知手段、9A ランプ部、9B スピーカ部、10 圧縮機、11 流路切替弁、12 回転部、12A 板状部、12B 軸部、13 絞り装置、16 室外熱交換器、16A 室外送風機、17 仕切板、18 電気品箱、30 吸込口開閉部、100 室内機、100B 室内機、100C 室内機、102 室内機、103 室内機、103B 室内機、103C 室内機、104 室内機、104B 室内機、104C 室内機、150 室外機、200 空気調和装置、C 冷媒回路、CA 配線、H 開口部、P 冷媒配管、R1 風路、R2 空間。

Claims (11)

  1.  吸込口と吹出口と前記吸込口から前記吹出口に至る風路とが形成され、前記吹出口より下側に吸込口が位置する筐体と、
     前記筐体内に設けられた室内熱交換器と、
     前記筐体内に設けられ、前記室内熱交換器に空気を供給する室内送風機と、
     前記風路の途中に設けられ、前記室内熱交換器及び前記吹出口よりも下側に配置され、冷媒漏洩を検知する冷媒漏洩検知センサと、
     前記冷媒漏洩検知センサの検知結果に基づいて冷媒漏洩があるか否かを判定する制御装置と、
     を備えた
     空気調和装置の室内機。
  2.  吸込口と吹出口と前記吸込口から前記吹出口に至る風路とが形成され、前記吸込口より下側に吹出口が位置する筐体と、
     前記筐体内に設けられた室内熱交換器と、
     前記筐体内に設けられ、前記室内熱交換器に空気を供給する室内送風機と、
     前記風路の途中に設けられ、冷媒漏洩を検知する冷媒漏洩検知センサと、
     前記冷媒漏洩検知センサの検知結果に基づいて冷媒漏洩があるか否かを判定する制御装置と、
     を備えた
     空気調和装置の室内機。
  3.  前記制御装置は、
     冷媒漏洩があると判定した場合、前記室内送風機が運転していると前記室内送風機の回転数を増加させる
     請求項1又は2に記載の空気調和装置の室内機。
  4.  前記制御装置は、
     冷媒漏洩があると判定した場合、前記室内送風機が停止していると前記室内送風機を運転させる
     請求項1又は2に記載の空気調和装置の室内機。
  5.  前記吸込口に設けられ、前記吸込口を開閉する吸込口開閉部をさらに備え、
     前記制御装置は、
     前記室内送風機の運転が停止している場合、前記吸込口開閉部に前記吸込口を閉じさせる
     請求項4に記載の空気調和装置の室内機。
  6.  前記制御装置は、
     冷媒漏洩があると判定した場合、前記室内送風機を運転させ、前記吸込口開閉部に前記吸込口を開かせる
     請求項5に記載の空気調和装置の室内機。
  7.  冷媒漏洩したことを知らせるのに利用される報知手段をさらに備え、
     前記制御装置は、
     冷媒漏洩があると判定した場合、前記報知手段に報知させる
     請求項1~6のいずれか一項に記載の空気調和装置の室内機。
  8.  前記報知手段は、前記筐体に設けられ、冷媒漏洩の旨を音声で出力する音声出力部を有することを特徴とする請求項7に記載の空気調和装置の室内機。
  9.  請求項1~8のいずれか一項に記載の空気調和装置の室内機と、前記室内機に冷媒配管で接続された室外機と、を有する冷媒回路を備えた
     空気調和装置。
  10.  前記室外機には、
     冷媒を圧縮する圧縮機が搭載され、
     前記室内機の制御装置は、
     冷媒漏洩があると判定した場合、前記圧縮機の運転を停止する
     請求項9に記載の空気調和装置。
  11.  前記冷媒回路には、
     HFO1234yf系冷媒の単一冷媒、テトラフルオロプロペン系冷媒を有する混合冷媒、又は、炭化水素系冷媒等の可燃性冷媒が封入されている
     請求項9又は10に記載の空気調和装置。
PCT/JP2015/067485 2014-06-19 2015-06-17 空気調和装置の室内機、及びその室内機を備えた空気調和装置 WO2015194596A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/315,087 US10060645B2 (en) 2014-06-19 2015-06-17 Indoor unit of air-conditioning apparatus and air-conditioning apparatus including the indoor unit
AU2015277826A AU2015277826B2 (en) 2014-06-19 2015-06-17 Indoor unit of air-conditioning apparatus and air-conditioning apparatus including the indoor unit
JP2016529409A JP6355734B2 (ja) 2014-06-19 2015-06-17 空気調和装置の室内機、及びその室内機を備えた空気調和装置
EP15810109.7A EP3159633B1 (en) 2014-06-19 2015-06-17 Indoor unit for air-conditioning device, and air-conditioning device provided with said indoor unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014126426 2014-06-19
JP2014-126426 2014-06-19

Publications (1)

Publication Number Publication Date
WO2015194596A1 true WO2015194596A1 (ja) 2015-12-23

Family

ID=54935576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067485 WO2015194596A1 (ja) 2014-06-19 2015-06-17 空気調和装置の室内機、及びその室内機を備えた空気調和装置

Country Status (5)

Country Link
US (1) US10060645B2 (ja)
EP (1) EP3159633B1 (ja)
JP (1) JP6355734B2 (ja)
AU (1) AU2015277826B2 (ja)
WO (1) WO2015194596A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765973A (zh) * 2017-01-03 2017-05-31 青岛海尔空调器有限总公司 一种空调缺氟检测的控制方法及空调
CN106839283A (zh) * 2017-01-05 2017-06-13 青岛海尔空调器有限总公司 冷媒泄漏的检测方法
WO2017175300A1 (ja) * 2016-04-05 2017-10-12 三菱電機株式会社 空気調和装置
EP3276284A4 (en) * 2015-03-26 2018-06-20 Mitsubishi Electric Corporation Indoor unit of air conditioner
JP2018115782A (ja) * 2017-01-16 2018-07-26 ダイキン工業株式会社 空気調和装置の室内ユニット
WO2018182037A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 冷媒漏洩箇所の探知方法
EP3450884A4 (en) * 2016-04-27 2019-04-17 Mitsubishi Electric Corporation REFRIGERATION CIRCUIT DEVICE
JP2019060557A (ja) * 2017-09-27 2019-04-18 東芝キヤリア株式会社 空気調和機
EP3460346A4 (en) * 2016-05-17 2019-05-08 Mitsubishi Electric Corporation AIR CONDITIONER
EP3457043A4 (en) * 2016-05-13 2019-05-08 Mitsubishi Electric Corporation AIR CONDITIONER
WO2019162993A1 (ja) * 2018-02-20 2019-08-29 三菱電機株式会社 空気調和機の室内機、及びこの室内機を備えた空気調和機
WO2019198176A1 (ja) * 2018-04-11 2019-10-17 三菱電機株式会社 空気調和装置の室内機
EP3569955A4 (en) * 2017-01-11 2019-12-25 Mitsubishi Electric Corporation COOLED WAREHOUSE
JP2020134033A (ja) * 2019-02-20 2020-08-31 パナソニックIpマネジメント株式会社 室内ユニット
WO2021010296A1 (ja) * 2019-07-12 2021-01-21 ダイキン工業株式会社 冷凍装置の室内機
US10914482B2 (en) 2016-04-18 2021-02-09 Daikin Industries, Ltd. Fan drive circuit for heat pump device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006462A1 (ja) * 2015-07-08 2017-01-12 三菱電機株式会社 空気調和機
JP6613734B2 (ja) * 2015-09-04 2019-12-04 ダイキン工業株式会社 空調システム
JP6477767B2 (ja) * 2017-03-31 2019-03-06 ダイキン工業株式会社 冷凍装置
CN110462299B (zh) * 2017-04-06 2022-08-09 开利公司 中至低全球变暖潜能值制冷剂泄漏检测器及其操作方法
JP6610644B2 (ja) * 2017-11-20 2019-11-27 ダイキン工業株式会社 空気調和機の室内ユニット
US20190170599A1 (en) * 2017-12-01 2019-06-06 Johnson Controls Technology Company Systems and methods for leak management utilizing sub-barometric refrigerant conduit sleeves
US10935454B2 (en) * 2017-12-01 2021-03-02 Johnson Controls Technology Company Systems and methods for refrigerant leak management
US10816247B2 (en) * 2017-12-01 2020-10-27 Johnson Controls Technology Company Heating, ventilation, and air conditioning control system
SE543347C2 (en) * 2018-06-22 2020-12-08 Flaektgroup Sweden Ab A safety system, an air handling system, a method and a computer program product for evacuation of contaminated air
US11927354B2 (en) * 2018-07-06 2024-03-12 Carrier Corporation Method and system for flammable gas detection
US11898763B2 (en) * 2018-07-25 2024-02-13 Daikin Industries, Ltd. Air conditioning system with refrigerant leak management
WO2020110216A1 (ja) * 2018-11-28 2020-06-04 三菱電機株式会社 空気調和装置
EP3910258A4 (en) * 2019-01-09 2022-01-19 Mitsubishi Electric Corporation AIR CONDITIONING DEVICE
EP3933288B1 (en) * 2019-04-29 2023-10-25 GD Midea Air-Conditioning Equipment Co., Ltd. Air conditioner indoor unit
US11662109B2 (en) 2019-06-05 2023-05-30 Carrier Corporation Enclosure for gas detector
JP6922947B2 (ja) * 2019-07-12 2021-08-18 ダイキン工業株式会社 冷凍装置の室内機
US11435101B2 (en) 2019-09-26 2022-09-06 Rheem Manufacturing Company Air mover refrigerant leak detection and risk mitigation
JP7057519B2 (ja) * 2020-02-05 2022-04-20 ダイキン工業株式会社 空気調和システム
US11635339B2 (en) * 2020-03-13 2023-04-25 Honeywell International Inc. Gas leakage monitoring system
EP3974735A1 (en) * 2020-09-25 2022-03-30 Daikin Industries, Ltd. Indoor unit of a heat pump

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110971A (ja) * 1996-10-08 1998-04-28 Hitachi Ltd 液晶操作部を持つ空気調和機
JPH11159924A (ja) * 1997-11-28 1999-06-15 Matsushita Electric Ind Co Ltd 空気調和機の配管接続方法
JPH11173713A (ja) * 1997-12-05 1999-07-02 Matsushita Electric Ind Co Ltd 空気調和機
JP2001208392A (ja) * 2000-01-31 2001-08-03 Matsushita Electric Ind Co Ltd ヒートポンプ装置
JP2002098391A (ja) * 2000-09-26 2002-04-05 Daikin Ind Ltd 空気調和機
JP2002098393A (ja) * 2000-09-26 2002-04-05 Daikin Ind Ltd 空気調和機
JP2002098346A (ja) * 2000-09-26 2002-04-05 Daikin Ind Ltd 空気調和機の室内機
JP2003130383A (ja) * 2001-10-18 2003-05-08 Sharp Corp 空気調和機
JP2003130385A (ja) * 2001-10-25 2003-05-08 Sharp Corp 空気調和機
JP2006275310A (ja) * 2005-03-28 2006-10-12 Matsushita Electric Ind Co Ltd 空気調和装置
JP2012013348A (ja) * 2010-07-02 2012-01-19 Panasonic Corp 空気調和機
WO2013038703A1 (ja) * 2011-09-16 2013-03-21 パナソニック株式会社 空気調和機
WO2013038704A1 (ja) * 2011-09-16 2013-03-21 パナソニック株式会社 空気調和機
JP2014005952A (ja) * 2012-06-21 2014-01-16 Mitsubishi Electric Corp 環境監視装置及びこれを備えた冷凍サイクル装置
JP2014035171A (ja) * 2012-08-10 2014-02-24 Mitsubishi Electric Corp 空気調和機、空気調和方法及びプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769707A (en) * 1995-12-12 1998-06-23 Samsung Electronics Co., Ltd. Method and apparatus for broadening an air discharge pattern from a room air conditioner
JP3733674B2 (ja) * 1997-01-30 2006-01-11 株式会社デンソー 空調装置
JPH11153372A (ja) 1997-11-20 1999-06-08 Matsushita Electric Ind Co Ltd 空気調和機の室外装置
JPH11230648A (ja) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd 可燃性冷媒を用いた冷凍機器の冷媒漏洩警報装置
US7003972B2 (en) * 2003-11-24 2006-02-28 Lg Electronics Inc. Indoor unit for air conditioner
JP2011106697A (ja) * 2009-11-13 2011-06-02 Mitsubishi Electric Corp 空調室内機
WO2013038599A1 (ja) * 2011-09-14 2013-03-21 パナソニック株式会社 空気調和機
EP2851627B1 (en) 2012-04-06 2023-01-25 Mitsubishi Electric Corporation Floor-mounted air conditioner
JP6349150B2 (ja) * 2014-05-28 2018-06-27 日立ジョンソンコントロールズ空調株式会社 空気調和機

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110971A (ja) * 1996-10-08 1998-04-28 Hitachi Ltd 液晶操作部を持つ空気調和機
JPH11159924A (ja) * 1997-11-28 1999-06-15 Matsushita Electric Ind Co Ltd 空気調和機の配管接続方法
JPH11173713A (ja) * 1997-12-05 1999-07-02 Matsushita Electric Ind Co Ltd 空気調和機
JP2001208392A (ja) * 2000-01-31 2001-08-03 Matsushita Electric Ind Co Ltd ヒートポンプ装置
JP2002098391A (ja) * 2000-09-26 2002-04-05 Daikin Ind Ltd 空気調和機
JP2002098393A (ja) * 2000-09-26 2002-04-05 Daikin Ind Ltd 空気調和機
JP2002098346A (ja) * 2000-09-26 2002-04-05 Daikin Ind Ltd 空気調和機の室内機
JP2003130383A (ja) * 2001-10-18 2003-05-08 Sharp Corp 空気調和機
JP2003130385A (ja) * 2001-10-25 2003-05-08 Sharp Corp 空気調和機
JP2006275310A (ja) * 2005-03-28 2006-10-12 Matsushita Electric Ind Co Ltd 空気調和装置
JP2012013348A (ja) * 2010-07-02 2012-01-19 Panasonic Corp 空気調和機
WO2013038703A1 (ja) * 2011-09-16 2013-03-21 パナソニック株式会社 空気調和機
WO2013038704A1 (ja) * 2011-09-16 2013-03-21 パナソニック株式会社 空気調和機
JP2014005952A (ja) * 2012-06-21 2014-01-16 Mitsubishi Electric Corp 環境監視装置及びこれを備えた冷凍サイクル装置
JP2014035171A (ja) * 2012-08-10 2014-02-24 Mitsubishi Electric Corp 空気調和機、空気調和方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3159633A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276284A4 (en) * 2015-03-26 2018-06-20 Mitsubishi Electric Corporation Indoor unit of air conditioner
EP3441689A4 (en) * 2016-04-05 2019-04-03 Mitsubishi Electric Corporation AIR CONDITIONER
EP3699505A1 (en) * 2016-04-05 2020-08-26 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2017175300A1 (ja) * 2016-04-05 2017-10-12 三菱電機株式会社 空気調和装置
US10775061B2 (en) 2016-04-05 2020-09-15 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2017175300A1 (ja) * 2016-04-05 2018-08-30 三菱電機株式会社 空気調和装置
US10914482B2 (en) 2016-04-18 2021-02-09 Daikin Industries, Ltd. Fan drive circuit for heat pump device
EP3450884A4 (en) * 2016-04-27 2019-04-17 Mitsubishi Electric Corporation REFRIGERATION CIRCUIT DEVICE
EP3457043A4 (en) * 2016-05-13 2019-05-08 Mitsubishi Electric Corporation AIR CONDITIONER
EP3460346A4 (en) * 2016-05-17 2019-05-08 Mitsubishi Electric Corporation AIR CONDITIONER
CN106765973A (zh) * 2017-01-03 2017-05-31 青岛海尔空调器有限总公司 一种空调缺氟检测的控制方法及空调
CN106765973B (zh) * 2017-01-03 2020-06-30 青岛海尔空调器有限总公司 一种空调缺氟检测的控制方法及空调
CN106839283A (zh) * 2017-01-05 2017-06-13 青岛海尔空调器有限总公司 冷媒泄漏的检测方法
EP3569955A4 (en) * 2017-01-11 2019-12-25 Mitsubishi Electric Corporation COOLED WAREHOUSE
JP7105538B2 (ja) 2017-01-16 2022-07-25 ダイキン工業株式会社 空気調和装置の室内ユニット
JP2018115782A (ja) * 2017-01-16 2018-07-26 ダイキン工業株式会社 空気調和装置の室内ユニット
WO2018182037A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 冷媒漏洩箇所の探知方法
US11274845B2 (en) 2017-03-31 2022-03-15 Daikin Industries, Ltd. Method of searching for refrigerant leak location
JP2018173266A (ja) * 2017-03-31 2018-11-08 ダイキン工業株式会社 冷媒漏洩箇所の探知方法
JP2019060557A (ja) * 2017-09-27 2019-04-18 東芝キヤリア株式会社 空気調和機
WO2019162993A1 (ja) * 2018-02-20 2019-08-29 三菱電機株式会社 空気調和機の室内機、及びこの室内機を備えた空気調和機
WO2019198176A1 (ja) * 2018-04-11 2019-10-17 三菱電機株式会社 空気調和装置の室内機
JPWO2019198176A1 (ja) * 2018-04-11 2020-10-22 三菱電機株式会社 空気調和装置の室内機
JP2020134033A (ja) * 2019-02-20 2020-08-31 パナソニックIpマネジメント株式会社 室内ユニット
WO2021010296A1 (ja) * 2019-07-12 2021-01-21 ダイキン工業株式会社 冷凍装置の室内機
JP2021014962A (ja) * 2019-07-12 2021-02-12 ダイキン工業株式会社 冷凍装置の室内機
US11441813B2 (en) 2019-07-12 2022-09-13 Daikin Industries, Ltd. Indoor unit of refrigeration apparatus

Also Published As

Publication number Publication date
EP3159633B1 (en) 2019-08-28
EP3159633A1 (en) 2017-04-26
JP6355734B2 (ja) 2018-07-11
JPWO2015194596A1 (ja) 2017-04-20
US10060645B2 (en) 2018-08-28
AU2015277826A1 (en) 2017-01-05
EP3159633A4 (en) 2017-06-21
AU2015277826B2 (en) 2018-01-25
US20170198936A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6355734B2 (ja) 空気調和装置の室内機、及びその室内機を備えた空気調和装置
JP6332552B2 (ja) 空気調和機の室内機
AU2013317055B2 (en) Refrigeration cycle device
JP5818849B2 (ja) 空気調和装置および冷媒漏洩検知方法
JP2020024085A (ja) 空気調和装置の冷媒量設定方法
JP6785883B2 (ja) 空気調和装置
JP6958627B2 (ja) 空気調和機
WO2017013715A1 (ja) 空気調和装置の室内機、及びその室内機を備えた空気調和装置
JP6025944B2 (ja) 冷凍サイクル装置
EP3112768A1 (en) Air conditioner
WO2017168834A1 (ja) 空気調和機の室内機
JP6349150B2 (ja) 空気調和機
JP6584649B2 (ja) 空気調和機
JP6272149B2 (ja) 空気調和装置
JP2017040381A (ja) 空調室内機
WO2016046965A1 (ja) 冷凍サイクル装置
US10254030B2 (en) Refrigeration cycle device
JP6914794B2 (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529409

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15315087

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015810109

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015810109

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015277826

Country of ref document: AU

Date of ref document: 20150617

Kind code of ref document: A