WO2015193982A1 - リチウムイオン電池およびその製造方法 - Google Patents

リチウムイオン電池およびその製造方法 Download PDF

Info

Publication number
WO2015193982A1
WO2015193982A1 PCT/JP2014/066087 JP2014066087W WO2015193982A1 WO 2015193982 A1 WO2015193982 A1 WO 2015193982A1 JP 2014066087 W JP2014066087 W JP 2014066087W WO 2015193982 A1 WO2015193982 A1 WO 2015193982A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion battery
internal short
electrode
preventing agent
Prior art date
Application number
PCT/JP2014/066087
Other languages
English (en)
French (fr)
Inventor
和明 直江
新平 尼崎
祐介 加賀
正志 西亀
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2016528702A priority Critical patent/JP6295324B2/ja
Priority to PCT/JP2014/066087 priority patent/WO2015193982A1/ja
Priority to TW104115784A priority patent/TWI552423B/zh
Publication of WO2015193982A1 publication Critical patent/WO2015193982A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion battery and a manufacturing method thereof.
  • Patent Document 1 discloses that at least one of a positive electrode plate, a negative electrode plate, a separator, and a nonaqueous electrolyte has an organic and / or inorganic Cu corrosion inhibitor, or an organic and / or inorganic Cu trap. An example in which an inhibitor which is an agent is added is described.
  • an inhibitor is dispersed or coated on the surface of an electrode active material. Therefore, when an inorganic compound is used as the inhibitor, the inorganic compound coated on the surface of the electrode active material may remain because the solubility of the inorganic compound in the electrolytic solution is small. The inorganic compound remaining on the surface of the electrode active material may inhibit electronic conduction between the surface of the electrode active material and lithium ion conduction between the surface of the electrode active material and the electrolytic solution. As a result, the internal resistance of the lithium ion battery increases, and the battery performance may deteriorate.
  • an object of the present invention is to provide a lithium ion battery capable of preventing internal short circuit failure and improving reliability without affecting battery performance.
  • the present invention provides a positive electrode and a negative electrode containing an electrode active material, a separator that insulates the positive electrode and the negative electrode, an electrolytic solution in which lithium ions move, and at least the positive electrode and the negative electrode.
  • a lithium ion battery comprising an internal short-circuit preventing agent that is contained in any of the interiors and contains an inorganic material.
  • FIG. 1 is a diagram showing a schematic configuration of a lithium ion battery in Example 1.
  • FIG. 2 is a diagram illustrating a configuration of an electrode winding body in Example 1.
  • FIG. 1 is a diagram showing a configuration of an electrode in Example 1.
  • FIG. It is a figure which shows the powder which the active material powder in Example 1, the conductive support agent powder, and the internal short circuit prevention agent powder mixed.
  • FIG. 3 is a diagram showing a slurry production process in Example 1.
  • 2 is a schematic cross-sectional view of an electrode of a lithium ion battery in Example 1.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • FIG. 1 is a diagram showing a schematic configuration of a lithium ion battery.
  • the lithium ion battery has an electrode winding body WRF inside an outer can CS mainly made of, for example, iron (Fe) or stainless steel.
  • the body WRF is filled with an electrolytic solution EL.
  • FIG. 2 is a diagram showing a configuration of the electrode winding body WRF.
  • the positive electrode PER, the separator SP, and the negative electrode NER are wound around the axis CR to form the electrode winding body WRF.
  • the separator SP has a function as a spacer that allows lithium ions to pass through while preventing electrical contact between the positive electrode PER and the negative electrode NER.
  • the separator SP for example, polyethylene, polypropylene, or a combination of these materials can be used.
  • a non-aqueous electrolyte is used as the electrolyte EL.
  • the lithium ion battery is a battery that performs charging / discharging using insertion / extraction of lithium ions in an electrode active material, and lithium ions move in the electrolyte EL.
  • Lithium is a strong reducing agent and reacts violently with water to generate hydrogen gas. Therefore, in a lithium ion battery in which lithium ions move in the electrolytic solution EL, an aqueous solution cannot be used as the electrolytic solution EL unlike a conventional battery. For this reason, in the lithium ion battery, a non-aqueous electrolyte is used as the electrolyte EL.
  • LiPF 6 LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof is used.
  • LiPF 6 LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof is used. can do.
  • organic solvent examples include ethylene carbonate, dimethyl carbonate, propylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4- Methyl-1,3 dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, etc., or a mixture thereof can be used.
  • FIG. 3 is a diagram showing the configuration of the electrode ER.
  • an electrode mixture EC containing an electrode active material AS, a conductive additive CA, a binder (binder) BD, and an internal short-circuit preventing agent ISM is formed on the current collector EP.
  • the electrode ER can be used as the positive electrode PER.
  • the positive electrode active material for example, a material typified by lithium cobaltate, lithium nickelate, lithium manganate and the like can be used.
  • a positive electrode active material is used for the electrode active material AS, for example, a metal foil or a net-like metal made of a conductive metal such as aluminum can be used for the current collector EP.
  • the electrode ER can be used as the negative electrode NER.
  • the negative electrode active material for example, a material typified by a carbon material can be used.
  • a negative electrode active material for example, a metal foil or a net-like metal made of a conductive metal such as copper can be used for the current collector EP.
  • the binder BD for example, polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene or the like can be used.
  • the internal short-circuit preventing agent ISM is made of an inorganic compound that is hardly soluble in an electrolytic solution EL (non-aqueous electrolytic solution) such as nitrite, nitrate, phosphate, and chromate, and collects metal ions.
  • an electrolytic solution EL non-aqueous electrolytic solution
  • Internal short-circuit prevention agents composed of inorganic compounds such as nitrite, nitrate, phosphate, chromate, transition metals such as iron and nickel, and alloys based on transition metals such as stainless steel are non-aqueous.
  • a chelate compound is formed with the metal ion, so that precipitation of the metal can be prevented.
  • the lithium ion battery of this example is characterized in that the surface of the electrode active material AS is not covered with the internal short circuit preventing agent ISM made of an inorganic compound.
  • electrode active is obtained by immersing the electrode plate in the compound dissolved in a soluble solvent, or by applying the compound to the electrode plate using a method such as spraying or brushing. A method for coating the surface of the material with the compound is described.
  • the addition method of Patent Document 1 when an inorganic compound is added, the inorganic compound coated on the surface of the electrode active material remains because the solubility of the inorganic compound in the non-aqueous electrolyte is small. .
  • the inorganic compound remaining on the surface of the electrode active material may inhibit electronic conduction between the surface of the electrode active material and lithium ion conduction between the surface of the electrode active material and the electrolytic solution. As a result, the internal resistance of the lithium ion battery increases, and the battery performance may deteriorate.
  • the internal short-circuit preventing agent ISM made of an inorganic compound does not cover the surface of the electrode active material AS, even when the inorganic compound is added and the inorganic compound remains in the nonaqueous electrolytic solution. The electron conduction between the electrode active material surfaces and the lithium ion conduction between the electrode active material surfaces and the electrolytic solution are not inhibited. Therefore, the internal short circuit failure can be suppressed without affecting the battery performance, and the reliability of the lithium ion battery can be improved.
  • FIG. 4 is a view showing a powder in which an active material AS powder, a conductive additive CA powder, and an internal short circuit preventing agent ISM powder are mixed.
  • the internal short circuit preventing agent ISM is in the form of primary particles or secondary particles in which the primary particles are aggregated.
  • FIG. 5 is a diagram illustrating a manufacturing process of the slurry SL.
  • a solvent is removed by drying and electrode mixture EC is produced.
  • the electrode ER is pressurized to increase the density of the active material AS in the electrode mixture EC and to smooth the surface of the electrode mixture EC.
  • FIG. 6 is a schematic cross-sectional view of the electrode EL of the lithium ion battery of this example.
  • the internal short circuit preventing agent ISM is present in the electrode mixture EC in the form of primary particles or secondary particles in which primary particles are aggregated. This is because, as shown in FIG. 4, when the electrode mixture EC is produced, the active material AS powder, the conductive additive CA powder, and the primary particles or the secondary particles formed by aggregation of the primary particles are prevented from internal short circuit.
  • the internal short circuit preventing agent ISM includes an internal short circuit preventing agent ISM1 existing on the surface of the electrode mixture EC and an internal short circuit preventing agent ISM2 existing inside the electrode mixture EC.
  • the internal short circuit preventing agent ISM is bound to either or both of the electrode active material AS particles and the conductive auxiliary agent CA particles via the binder BD, or the electrode assembly without intervening the binder BD. It enters the void VD in the agent EC.
  • the internal short-circuit preventing agent ISM3 shown in FIG. 6 is an internal short-circuit preventing agent that has entered the pores VD in the electrode mixture EC without using the binder BD.
  • the particle size of the internal short circuit preventing agent ISM is preferably smaller than the thickness of the electrode mixture EC.
  • a protrusion made of the internal short-circuit preventing agent ISM is formed on the surface of the electrode mixture EC.
  • the protrusion has a risk of penetrating the separator SP and impairing the safety of the lithium ion battery.
  • the particle size of the internal short circuit preventing agent ISM is preferably 0.05 ⁇ m or more.
  • the internal short-circuit preventing agent ISM When the particle size of the internal short-circuit preventing agent ISM is less than 0.05 ⁇ m, the internal short-circuit preventing agent ISM tends to aggregate, and the slurry in which the internal short-circuit preventing agent ISM particles are uniformly dispersed in the slurry SL manufacturing process shown in FIG. Cannot be produced. When the internal short circuit preventing agent ISM particles are uniformly dispersed and the slurry cannot be prepared, the internal short circuit preventing agent ISM is not uniformly present in the electrode mixture EC, so the internal short circuit preventing effect varies within the electrode EL surface, and the metal foreign matter Even if mixed, the internal short circuit prevention effect may not be obtained.
  • the internal short circuit preventing agent ISM can be contained in either the positive electrode PER or the negative electrode NER, or both.
  • the internal short circuit preventing agent ISM is contained in the positive electrode PER, a higher internal short circuit preventing effect is obtained.
  • the metal foreign matter that causes the internal short circuit is dissolved in the electrolytic solution as metal ions by the high potential of the positive electrode PER. Therefore, the inclusion probability of the internal short circuit preventing agent ISM in the positive electrode PER increases the encounter probability between the dissolved metal ions and the internal short circuit preventing agent, so that a higher short circuit preventing effect is obtained.
  • the content of the internal short-circuit preventing agent ISM in the electrode mixture EC is preferably 0.1% by volume or more. This is because when the concentration of the internal short circuit preventing agent ISM is less than 0.1% by volume, the function of preventing the internal short circuit cannot be exhibited sufficiently. That is, the reason why the internal short circuit is prevented by adding the internal short circuit preventing agent ISM even if the metal foreign matter is mixed is 0.0001 wt% (1 ppm) to 0.001 wt% (10 ppm) in the electrolyte EL. This is because the metal ions eluted from the metal foreign matter are collected by the internal short circuit preventing agent ISM that has been slightly dissolved.
  • the concentration of the internal short-circuit preventing agent is extremely low, the encounter probability between the internal short-circuit preventing agent and the metal ions is extremely low, and the metal ions eluted from the metal foreign matter cannot be sufficiently collected.
  • the additive concentration of the internal short-circuit preventing agent ISM in the electrode mixture EC is 0.1% by volume or more, even if metallic foreign matter is mixed in the manufacturing process of the lithium ion battery, It has been confirmed that a short circuit can be prevented.
  • an electrode plate can be used as a method of adding an organic and / or inorganic Cu corrosion inhibitor or an organic and / or inorganic Cu trapping agent.
  • a method of immersing in the compound dissolved in a soluble solvent, or a method of applying the compound to the electrode plate using a method such as spraying or brushing, and a step of immersing the compound in the electrode, or A process of applying is required.
  • the internal short-circuit preventing agent ISM powder may be added to the step of mixing the electrode active material AS powder and the conductive additive CA powder, and a new step is not required. . Therefore, compared with the manufacturing method of the lithium ion battery of the conventional structure, it is excellent in manufacturing cost.
  • an electrode plate can be used as a method of adding an organic and / or inorganic Cu corrosion inhibitor or an organic and / or inorganic Cu trapping agent.
  • a method of dipping in the compound dissolved in a soluble solvent or a method of applying the compound to the electrode plate using a method such as spraying or brushing is described.
  • the technical idea of the present invention has been described by taking a wound type lithium ion battery as an example, but the technical idea of the present invention is not limited to the wound type lithium ion battery, It can be widely applied to an electricity storage device (for example, a battery or a capacitor) including a positive electrode, a negative electrode, and a separator that electrically separates the positive electrode and the negative electrode.
  • an electricity storage device for example, a battery or a capacitor
  • the present invention can be widely used in, for example, a manufacturing industry for manufacturing a battery typified by a lithium ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 電池性能への影響を及ぼすことなく内部短絡不良を防止し、信頼性向上を図ることができるリチウムイオン電池を提供する。 本発明は、電極活物質を含有する正極および負極と、前記正極と前記負極とを絶縁するセパレータとリチウムイオンが移動する電解液と、前記正極と前記負極の少なくともいずれかの内部に含有され、無機系材料を含む内部短絡防止剤とを備えるリチウムイオン電池を提供する

Description

リチウムイオン電池およびその製造方法
 本発明は、リチウムイオン電池およびその製造方法に関する。
 本技術分野の背景技術として、特開2001-273927号公報(特許文献1)がある。特許文献1には、正極板、負極板、セパレータ、及び非水電解質の少なくともいずれかに、有機系、及び/又は、無機系Cu腐食抑制剤、あるいは有機系、及び/又は、無機系Cuトラップ剤であるインヒビターを添加した例が記載されている。
特開2001-273927号公報
 特許文献1では、電極活物質表面にインヒビターを分散または被覆される。そのため、インヒビターとして無機化合物を用いる場合、無機化合物の電解液に対する溶解度が小さいため、電極活物質表面に被覆された無機系化合物が残存する場合がある。電極活物質表面に残存した無機系化合物は、電極活物質表面間の電子伝導や電極活物質表面と電解液間のリチウムイオン伝導を阻害する恐れがある。それにより、リチウムイオン電池の内部抵抗が増大し、電池性能が劣化する可能性がある。
 上記問題点に鑑み本発明は、電池性能への影響を及ぼすことなく内部短絡不良を防止し、信頼性向上を図ることができるリチウムイオン電池を提供することを目的とする。
 上記課題を解決するために、本発明は、電極活物質を含有する正極および負極と、前記正極と前記負極とを絶縁するセパレータとリチウムイオンが移動する電解液と、前記正極と前記負極の少なくともいずれかの内部に含有され、無機系材料を含む内部短絡防止剤とを備えるリチウムイオン電池を提供する。
 本発明によれば、電池性能への影響を及ぼすことなく内部短絡不良を防止し、信頼性向上を図ることができるリチウムイオン電池を提供することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
実施例1におけるリチウムイオン電池の模式的な構成を示す図である。 実施例1における電極捲回体の構成を示す図である。 実施例1における電極の構成を示す図である。 実施例1における活物質粉末と導電助剤粉末と内部短絡防止剤粉末が混合した粉末を示す図である。 実施例1におけるスラリーの製造工程を示す図である。 実施例1におけるリチウムイオン電池の電極の断面模式図である。
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
 本発明の実施例1について図1-6を用いて説明する。図1は、リチウムイオン電池の模式的な構成を示す図である。図1において、リチウムイオン電池は、例えば、鉄(Fe)やステンレスを主材料とする外装缶CSの内部に電極捲回体WRFを有しており、この外装缶CSの内部、及び電極捲回体WRFの内部には、電解液ELが充填されている。
 図2は、電極捲回体WRFの構成を示す図である。正極PER、セパレータSP、負極NER、が軸芯CRの回りに捲回して電極捲回体WRFを構成する。セパレータSPは、正極PERと負極NERとの電気的な接触を防止しつつ、リチウムイオンを通過させるスペーサとしての機能を有している。セパレータSPは、例えば、ポリエチレン、ポリプロピレン、あるいは、これらの材料の組み合わせた構成物を使用することができる。電解液ELは、非水電解液が使用される。リチウムイオン電池は、電極活物質でのリチウムイオンの挿入・脱離を利用して充放電を行う電池であり、電解液EL中をリチウムイオンが移動する。リチウムは、強い還元剤であり、水と激しく反応して水素ガスを発生する。したがって、リチウムイオンが電解液EL中を移動するリチウムイオン電池では、従来の電池のように水溶液を電解液ELに使用することができない。このことから、リチウムイオン電池では、電解液ELとして非水電解液が使用される。非水電解液の電解質としては、例えば、LiPF、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLiなどやこれらの混合物を使用することができる。また、有機溶媒としては、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジエチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリルなどや、これらの混合液を使用することができる。
 図3は、電極ERの構成を示す図である。電極ERは、電極活物質AS、導電助剤CA、結着剤(バインダ)BD、内部短絡防止剤ISMを含有する電極合剤ECが、集電体EP上に形成されている。電極活物質ASに正極活物質を用いた場合、電極ERを正極PERとして、利用できる。正極活物質には、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどに代表される材料を使用することができる。電極活物質ASに正極活物質を用いた場合、集電体EPには、例えば、アルミニウムなどの導電性金属からなる金属箔や網状金属などを使用できる。また、電極活物質ASに負極活物質を用いた場合、電極ERを負極NERとして、利用できる。負極活物質には、例えば、炭素材料などに代表される材料を使用することができる。電極活物質ASに負極活物質を用いた場合、集電体EPには、例えば、銅などの導電性金属からなる金属箔や網状金属などを使用できる。結着剤BDは、例えば、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどを使用することができる。
 内部短絡防止剤ISMには、例えば、亜硝酸塩、硝酸塩、リン酸塩、クロム酸塩といった電解液EL(非水電解液)に対して難溶性の無機化合物からなり、かつ、金属イオンを捕集する物質が挙げられる。亜硝酸塩、硝酸塩、リン酸塩、クロム酸塩、といった無機化合物からなる内部短絡防止剤は、鉄、ニッケルなどの遷移金属、及びステンレス鋼などの遷移金属を主成分とする合金が、非水系の電解液EL中でイオン化した場合、当該金属イオンとキレート化合物を形成するため、当該金属の析出を防止することができる。
 本実施例のリチウムイオン電池は、無機化合物からなる内部短絡防止剤ISMが電極活物質AS表面を被覆していないことを特徴とする。従来構造である特許文献1には、電極板を可溶な溶剤に溶かした当該化合物に浸漬する方法、スプレーや刷毛塗り等の方法を用いて電極板に当該化合物を塗布する方法により、電極活物質表面に当該化合物を被覆する方法が記載されている。ところが、特許文献1の添加方法では無機系化合物を添加する場合、無機系化合物の非水電解液中への溶解度が小さいため、電極活物質表面に被覆された無機系化合物は残存することになる。電極活物質表面に残存した無機系化合物は、電極活物質表面間の電子伝導や電極活物質表面と電解液間のリチウムイオン伝導を阻害する恐れがある。それにより、リチウムイオン電池の内部抵抗が増大し、電池性能が劣化する可能性がある。一方、本実施例では、無機化合物からなる内部短絡防止剤ISMが電極活物質AS表面を被覆していないため、無機系化合物を添加し、無機系化合物が非水電解液中に残存した場合でも、電極活物質表面間の電子伝導や電極活物質表面と電解液間のリチウムイオン伝導を阻害しない。したがって、電池性能への影響を及ぼすことなく内部短絡不良を抑制し、リチウムイオン電池の信頼性向上を図ることができる。
 本実施例で、無機化合物からなる内部短絡防止剤ISMを電極活物質AS表面に被覆しないで電極板中に含有させる方法を説明する。まず、例えば、コバルト酸リチウムからなる活物質AS粉末と、例えば、カーボンからなる導電助剤CA粉末と、内部短絡防止剤ISM粉末(粒径は、例えば、1μm)を混合する。図4は活物質AS粉末と導電助剤CA粉末と内部短絡防止剤ISM粉末が混合した粉末を示す図である。このとき、内部短絡防止剤ISMは、一次粒子もしくは一次粒子が凝集した二次粒子の形状をしている。次に、例えば、ポリフッ化ビニリデンからなる結着剤BDを、例えば、Nメチルピロリドンからなる溶剤OSに溶解させた溶液を形成し、この溶液に活物質AS粉末、導電助剤CA粉末、および内部短絡防止剤ISM粉末を混合し、スラリーSLを作製する。図5はスラリーSLの製造工程を示す図である。そして、スラリーSLを集電体EPに塗布後、乾燥により溶剤を取り除き、電極合剤ECを作製する。最後に、電極ERを加圧することで、電極合剤EC中の活物質ASの高密度化と電極合剤EC表面の平滑化を図る。
 以上のようにして、電極合剤ECを作製した場合、内部短絡防止剤ISMが正極PERまたは負極NERの少なくともいずれかの内部に含有され、活物質AS表面を被覆しない電極合剤ECが得られる。図6は本実施例のリチウムイオン電池の電極ELの断面模式図である。内部短絡防止剤ISMは、一次粒子もしくは一次粒子が凝集した二次粒子の形状で電極合剤EC中に存在する。これは、図4に示すように、電極合剤EC作製時に、活物質AS粉末と、導電助剤CA粉末と、一次粒子もしくは一次粒子が凝集した二次粒子の形状をしている内部短絡防止剤ISM粉末が混合した粉末を使用したためである。内部短絡防止剤ISMには、電極合剤EC表面に存在する内部短絡防止剤ISM1と、電極合剤EC内部に存在する内部短絡防止剤ISM2がある。内部短絡防止剤ISMは結着剤BDを介して、電極活物質AS粒子、導電助剤CA粒子のいずれか、またはその両方と結着しているか、結着剤BDを介さずに、電極合剤EC内の空孔VDに入り込んでいる。図6に示す内部短絡防止剤ISM3は、結着剤BDを介さずに、電極合剤EC内の空孔VDに入り込んでいる内部短絡防止剤である。
 内部短絡防止剤ISMの粒径は、電極合剤ECの厚みより小さいことが望ましい。内部短絡防止剤ISMの粒径が電極合剤ECの厚みより大きい場合、電極合剤EC表面に内部短絡防止剤ISMからなる突起物を形成する。当該突起物は、電極捲回体WRF作製時に、セパレータSPを貫通し、リチウムイオン電池の安全性を損なう危険性がある。また、内部短絡防止剤ISMの粒径は、0.05μm以上であることが望ましい。内部短絡防止剤ISMの粒径が0.05μm未満の場合、内部短絡防止剤ISMが凝集しやすくなり、図5に示すスラリーSL作製の工程で、内部短絡防止剤ISM粒子が均一に分散したスラリーを作製することができなくなる。内部短絡防止剤ISM粒子が均一に分散しスラリーが作製できない場合、内部短絡防止剤ISMが電極合剤EC中に均一に存在しないため、電極EL面内で内部短絡防止効果がばらつき、金属異物が混入しても内部短絡防止効果が得られない場合がある。
 本実施例におけるリチウムイオン電池では、内部短絡防止剤ISMは、正極PERまたは負極NERのいずれか、あるいはその両方に含有することができる。ただし、内部短絡防止剤ISMを正極PERに含有した場合、より高い内部短絡防止効果が得られる。内部短絡を引き起こす金属異物は、正極PERの高い電位によって金属イオンとなって電解液中に溶解する。したがって、内部短絡防止剤ISMを正極PERに含有させることで、溶解した金属イオンと内部短絡防止剤の遭遇確率が増加するため、より高い短絡防止効果が得られる。
 本実施例におけるリチウムイオン電池では、電極合剤EC中の内部短絡防止剤ISMの含有量は、0.1体積%以上であることが望ましい。これは、内部短絡防止剤ISMの添加濃度が0.1体積%未満になると、内部短絡を防止する機能が十分発揮できなくなるからである。すなわち、内部短絡防止剤ISMを添加することにより金属異物が混入しても内部短絡が防止される理由は、電解液EL中に0.0001重量%(1ppm)~0.001重量%(10ppm)程度わずかに溶け出した内部短絡防止剤ISMによって、金属異物から溶出した金属イオンが捕集されるためである。したがって、内部短絡防止剤の添加濃度が極めて低くなると、内部短絡防止剤と金属イオンの遭遇確率が極めて低くなり、金属異物から溶出する金属イオンを十分に捕集出来なくなる。例えば、本発明者の実験によると、電極合剤EC中の内部短絡防止剤ISMの添加濃度が0.1体積%以上であれば、リチウムイオン電池の製造工程で金属異物が混入しても内部短絡を防止出来ることを確認している。
 また、本実施例のリチウムイオン電池の製造方法は、従来構造のリチウムイオン電池の製造方法に比べ、製造コストに優れる。従来構造である特許文献1には、有機系、及び/又は、無機系Cu腐食抑制剤、あるいは有機系、及び/又は、無機系Cuトラップ剤であるインヒビターを添加する方法として、電極板を可溶な溶剤に溶かした当該化合物に浸漬する方法、もしくは、スプレーや刷毛塗り等の方法を用いて電極板に当該化合物を塗布する方法が記載されており、電極に当該化合物を浸漬する工程、もしくは塗布する工程が必要となる。一方、本実施例のリチウムイオン電池の製造方法では、電極活物質AS粉末と導電助剤CA粉末を混合する工程に内部短絡防止剤ISM粉末を追加で加えればよく、新たな工程を必要としない。従って、従来構造のリチウムイオン電池の製造方法に比べ、製造コストに優れる。
 また、本実施例のリチウムイオン電池の製造方法は、従来構造のリチウムイオン電池の製造方法に比べ、リチウムイオン電池の充放電特性に優れる。従来構造である特許文献1には、有機系、及び/又は、無機系Cu腐食抑制剤、あるいは有機系、及び/又は、無機系Cuトラップ剤であるインヒビターを添加する方法として、電極板を可溶な溶剤に溶かした当該化合物に浸漬する方法、もしくは、スプレーや刷毛塗り等の方法を用いて電極板に当該化合物を塗布する方法が記載されている。ところが、無機系化合物を添加する場合、無機系化合物は非水系溶剤への溶解度が小さいため、当該化合物を浸漬、または塗布するためには、水系溶剤を使用する必要がある。水系溶剤を使用した場合、乾燥が不十分であると、残存した水分と電解液に溶解した電解質が反応し、HFを生成する。HFが発生した場合、リチウムイオン電池内部の金属が腐食し、電池内でさまざまな副反応を引き起こすため、リチウムイオン電池の充放電特性が劣化する。一方、本実施例のリチウムイオン電池の製造方法では、水系溶剤を使用する必要がないため、電池内部に水分が残存する危険性が低く、そのため、リチウムイオン電池の充放電特性が劣化する可能性が低くなる。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 実施の形態では、捲回型リチウムイオン電池を例に挙げて、本発明の技術的思想について説明したが、本発明の技術的思想は、捲回型リチウムイオン電池に限定されるものではなく、正極、負極、および、正極と負極とを電気的に分離するセパレータとを備える蓄電デバイス(例えば、電池やキャパシタなど)に幅広く適用することができる。
 本発明は、例えば、リチウムイオン電池に代表される電池を製造する製造業に幅広く利用することができる。
CS 外装缶
WRF 電極捲回体
EL 電解液
PER 正極
NER 負極
SP セパレータ
CR 軸心
ER 電極
AS 電極活物質
CA 導電助剤
BD 結着剤
ISM 内部短絡防止剤
ISM1 内部短絡防止剤
ISM2 内部短絡防止剤
ISM3 内部短絡防止剤
EC 電極合剤
EP 集電体
OS 有機溶剤
SL スラリー
VD 空孔

Claims (11)

  1.  電極活物質を含有する正極および負極と、
     前記正極と前記負極とを絶縁するセパレータと
     リチウムイオンが移動する電解液と、
     前記正極と前記負極の少なくともいずれかの内部に含有され、無機系材料を含む内部短絡防止剤とを備えるリチウムイオン電池。
  2.  前記内部短絡防止剤が1次粒子もしくは1次粒子が凝集した2次粒子を形成していることを特徴とする請求項1に記載のリチウムイオン電池。
  3.  前記1次粒子及び2次粒子の粒径が、前記正極と前記負極に含有される電極合剤の厚みより小さいことを特徴とする請求項2に記載のリチウムイオン電池。
  4.  前記1次粒子及び2次粒子の粒径が、0.05μm以上であることを特徴とする請求項2に記載のリチウムイオン電池。
  5.  前記内部短絡防止剤が、前記正極と前記負極に含有される電極合剤中において、0.1体積%以上含有されたことを特徴とする請求項1乃至4のいずれかに記載のリチウムイオン電池。
  6.  前記内部短絡防止剤が、前記正極のみに含有されたことを特徴とする請求項1乃至5のいずれかに記載のリチウムイオン電池。
  7.  前記内部短絡防止剤が、亜硝酸塩、硝酸塩、クロム酸塩のいずれかを含むことを特徴とする請求項1乃至6に記載のリチウムイオン電池。
  8.  前記内部短絡防止剤は、前記正極と前記負極に含有される電極合剤の表面または内部に存在することを特徴とする請求項1に記載のリチウムイオン電池。
  9.  前記内部短絡防止剤に前記電極活物質表面が被覆されていないことを特徴とする請求項1に記載のリチウムイオン電池。
  10.  電極活物質の粉末と、導電助剤の粉末と、内部短絡を防止する無機系材料からなる内部短絡防止剤の粉末を混合し、溶剤に溶解させる工程を有することを特徴とするリチウムイオン電池の製造方法。
  11.  前記内部短絡防止剤が、亜硝酸塩、硝酸塩、クロム酸塩のいずれかを含むことを特徴とする請求項10に記載のリチウムイオン電池の製造方法。
PCT/JP2014/066087 2014-06-18 2014-06-18 リチウムイオン電池およびその製造方法 WO2015193982A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016528702A JP6295324B2 (ja) 2014-06-18 2014-06-18 リチウムイオン電池およびその製造方法
PCT/JP2014/066087 WO2015193982A1 (ja) 2014-06-18 2014-06-18 リチウムイオン電池およびその製造方法
TW104115784A TWI552423B (zh) 2014-06-18 2015-05-18 鋰離子電池及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/066087 WO2015193982A1 (ja) 2014-06-18 2014-06-18 リチウムイオン電池およびその製造方法

Publications (1)

Publication Number Publication Date
WO2015193982A1 true WO2015193982A1 (ja) 2015-12-23

Family

ID=54935014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066087 WO2015193982A1 (ja) 2014-06-18 2014-06-18 リチウムイオン電池およびその製造方法

Country Status (3)

Country Link
JP (1) JP6295324B2 (ja)
TW (1) TWI552423B (ja)
WO (1) WO2015193982A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098027A (ja) * 2016-12-13 2018-06-21 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935720A (ja) * 1995-07-21 1997-02-07 Matsushita Electric Ind Co Ltd アルカリ電池
JP2000011996A (ja) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2000077103A (ja) * 1998-08-31 2000-03-14 Hitachi Ltd リチウム二次電池および機器
JP2007048623A (ja) * 2005-08-10 2007-02-22 Fdk Energy Co Ltd アルカリ乾電池
JP2007207690A (ja) * 2006-02-06 2007-08-16 Asahi Kasei Chemicals Corp リチウムイオン二次電池
JP2009087872A (ja) * 2007-10-02 2009-04-23 Fdk Energy Co Ltd アルカリ電池、およびアルカリ電池における正極合剤の製造方法
JP2009527089A (ja) * 2006-02-17 2009-07-23 エルジー・ケム・リミテッド マンガン系リチウム二次電池
JP2010049873A (ja) * 2008-08-20 2010-03-04 Toyo Ink Mfg Co Ltd 電池用組成物
JP2010061912A (ja) * 2008-09-02 2010-03-18 Tdk Corp 電極の製造方法、及び電極
JP2012084426A (ja) * 2010-10-13 2012-04-26 Hitachi Maxell Energy Ltd 非水電解質二次電池
JP2013093238A (ja) * 2011-10-26 2013-05-16 Toyota Motor Corp 非水電解液二次電池
JP2013101867A (ja) * 2011-11-09 2013-05-23 Toyota Motor Corp 非水電解質二次電池、及びその製造方法
WO2013146285A1 (ja) * 2012-03-26 2013-10-03 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
JP2014082084A (ja) * 2012-10-16 2014-05-08 Toyota Industries Corp リチウムイオン二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874003B2 (ja) * 2004-10-27 2007-01-31 セイコーエプソン株式会社 配線パターン形成方法、及び膜パターン形成方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935720A (ja) * 1995-07-21 1997-02-07 Matsushita Electric Ind Co Ltd アルカリ電池
JP2000011996A (ja) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2000077103A (ja) * 1998-08-31 2000-03-14 Hitachi Ltd リチウム二次電池および機器
JP2007048623A (ja) * 2005-08-10 2007-02-22 Fdk Energy Co Ltd アルカリ乾電池
JP2007207690A (ja) * 2006-02-06 2007-08-16 Asahi Kasei Chemicals Corp リチウムイオン二次電池
JP2009527089A (ja) * 2006-02-17 2009-07-23 エルジー・ケム・リミテッド マンガン系リチウム二次電池
JP2009087872A (ja) * 2007-10-02 2009-04-23 Fdk Energy Co Ltd アルカリ電池、およびアルカリ電池における正極合剤の製造方法
JP2010049873A (ja) * 2008-08-20 2010-03-04 Toyo Ink Mfg Co Ltd 電池用組成物
JP2010061912A (ja) * 2008-09-02 2010-03-18 Tdk Corp 電極の製造方法、及び電極
JP2012084426A (ja) * 2010-10-13 2012-04-26 Hitachi Maxell Energy Ltd 非水電解質二次電池
JP2013093238A (ja) * 2011-10-26 2013-05-16 Toyota Motor Corp 非水電解液二次電池
JP2013101867A (ja) * 2011-11-09 2013-05-23 Toyota Motor Corp 非水電解質二次電池、及びその製造方法
WO2013146285A1 (ja) * 2012-03-26 2013-10-03 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
JP2014082084A (ja) * 2012-10-16 2014-05-08 Toyota Industries Corp リチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098027A (ja) * 2016-12-13 2018-06-21 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池

Also Published As

Publication number Publication date
JPWO2015193982A1 (ja) 2017-04-20
TWI552423B (zh) 2016-10-01
TW201601373A (zh) 2016-01-01
JP6295324B2 (ja) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6705384B2 (ja) リチウム二次電池
JP6237791B2 (ja) 非水電解質二次電池用負極
WO2015115051A1 (ja) 非水電解質二次電池用負極
JP2007265668A (ja) 非水電解質二次電池用正極及びその製造方法
JP2018163833A (ja) 非水電解質二次電池及びその製造方法
JP6380269B2 (ja) リチウムイオン二次電池の製造方法
JP5729588B2 (ja) リチウムイオン二次電池
JP2010073580A (ja) 非水電解質電池
JP2007052935A (ja) 非水電解質電池
JP2010231960A (ja) 非水電解質電池
JP2013152870A (ja) 非水電解質二次電池およびその製造方法
JP6390902B2 (ja) 非水電解液二次電池
US20160056436A1 (en) Negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method for manufacturing said negative electrode and lithium-ion secondary battery
RU2644590C1 (ru) Вспомогательный аккумулятор с неводным электролитом и способ изготовления вспомогательного аккумулятора с неводным электролитом
JP6889751B2 (ja) デュアルイオン蓄電デバイス
WO2015079893A1 (ja) リチウム二次電池
WO2017122359A1 (ja) リチウムイオン電池およびその製造方法
JP2019164907A (ja) リチウム金属二次電池
JP2019040722A (ja) リチウムイオン二次電池
KR20150062118A (ko) 축전 소자 및 축전 장치
JP6324418B2 (ja) リチウムイオン電池
JP6295324B2 (ja) リチウムイオン電池およびその製造方法
KR20160032673A (ko) 비수 전해질 이차 전지
JP6258180B2 (ja) リチウム二次電池用電解液の添加剤及びそれを用いたリチウム二次電池用電解液、リチウム二次電池
JP7198600B2 (ja) 正極活物質粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528702

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895057

Country of ref document: EP

Kind code of ref document: A1