WO2015186596A1 - 表面改質シリカナノ粒子の製造方法、および表面改質シリカナノ粒子 - Google Patents
表面改質シリカナノ粒子の製造方法、および表面改質シリカナノ粒子 Download PDFInfo
- Publication number
- WO2015186596A1 WO2015186596A1 PCT/JP2015/065382 JP2015065382W WO2015186596A1 WO 2015186596 A1 WO2015186596 A1 WO 2015186596A1 JP 2015065382 W JP2015065382 W JP 2015065382W WO 2015186596 A1 WO2015186596 A1 WO 2015186596A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silica nanoparticles
- silica
- dispersion
- dispersion medium
- modified silica
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/145—Preparation of hydroorganosols, organosols or dispersions in an organic medium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/146—After-treatment of sols
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/3081—Treatment with organo-silicon compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/12—Treatment with organosilicon compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Definitions
- the present invention relates to a method for producing surface-modified silica nanoparticles and surface-modified silica nanoparticles.
- the invention also relates to a dispersion of surface modified silica nanoparticles.
- colloidal silica materials composed of nano-sized silica particles have been widely used.
- Colloidal silica is known to improve the thermal characteristics and mechanical characteristics of blended materials, and is used by being added to various resins and dispersion media.
- colloidal silica is in an aqueous colloidal state or in powder form, dispersibility is not good when blended with an organic dispersion medium or resin. Therefore, in order to solve such a problem of dispersibility, a non-aqueous colloid (also referred to as an organosol) has been demanded.
- the present inventors have studied a method for solving such a problem, and include at least one selected from a silica ester dispersion containing silica nanoparticles and an aqueous dispersion medium, wherein the aqueous dispersion medium is selected from cyclic esters and cyclic amides.
- an object of the present invention is to provide a method for producing surface-modified silica nanoparticles that exhibit high dispersibility and transparency as well as storage stability when dispersed in an organic dispersion medium, and surface-modified silica nanoparticles. .
- Another object of the present invention is to provide a surface-modified silica nanoparticle dispersion in which surface-modified silica nanoparticles produced by the method according to the present invention are dispersed in an organic dispersion medium.
- a method for producing surface-modified silica nanoparticles comprising: Preparing a first silica nanoparticle dispersion containing silica nanoparticles and an aqueous dispersion medium; Replacing the aqueous dispersion medium in the first silica nanoparticle dispersion with an organic dispersion medium containing at least one selected from a cyclic ester and a cyclic amide to obtain a second silica nanoparticle dispersion;
- the formula (1) In the second silica nanoparticle dispersion, the formula (1): (In the formula, each R 1 is independently a C 1 to C 20 hydrocarbon group, and R 2 is a C 1 to C 3 hydrocarbon group.)
- a silane coupling agent represented by:
- the organic dispersion medium in the above embodiment has the formula (2): (Wherein X is O or NR 3 , R 3 is H or a C 1 to C 3 hydrocarbon group, and n is an integer of 2 to 5)
- a method is provided which is an organic dispersion medium comprising at least one selected from a cyclic ester and a cyclic amide represented by:
- the surface-modified silica nanoparticles obtained by the above method and the surface-modified silica nanoparticle dispersion obtained by dispersing the surface-modified silica nanoparticles in an organic dispersion medium.
- the present invention it is possible to provide surface-modified silica nanoparticles that are well dispersed in various organic dispersion media and provide a highly transparent silica nanoparticle dispersion and a method for producing the same.
- the method for producing surface-modified silica nanoparticles according to the present invention includes a step of preparing a first silica nanoparticle dispersion liquid containing silica nanoparticles and an aqueous dispersion medium, and an aqueous dispersion medium in the first silica nanoparticle dispersion liquid as a cyclic ester and Substitution with an organic dispersion medium containing at least one selected from cyclic amides to obtain a second silica nanoparticle dispersion (substitution step), and adding a specific silane coupling agent to the second silica nanoparticle dispersion And a step of modifying the surface of the silica nanoparticles (surface modification step).
- a first silica nanoparticle dispersion containing silica nanoparticles and an aqueous dispersion medium is prepared.
- the first silica nanoparticle dispersion can be prepared by adding silica nanoparticles to an aqueous dispersion medium and stirring.
- a commercially available silica nanoparticle dispersion such as colloidal silica may be prepared.
- silica nanoparticles examples include dry silica obtained by a dry method such as a combustion method (also referred to as fumed silica), wet silica obtained by a wet method such as a precipitation method, a gel method, and a sol-gel method. it can.
- a combustion method also referred to as fumed silica
- wet silica obtained by a wet method such as a precipitation method, a gel method, and a sol-gel method.
- silica nanoparticles commercially available products such as Leoroseal (registered trademark) series dry silica manufactured by Tokuyama Corporation may be used.
- the particle diameter of the silica nanoparticles used in the present invention is preferably 100 nm or less in terms of volume average particle diameter, and more preferably 50 nm or less. Such a volume average particle diameter can be measured by a device such as a Nikkiso Nanotrack particle size analyzer in accordance with a dynamic light scattering method (DLS:
- the aqueous dispersion medium used in the present invention is mainly composed of water, and may contain a small amount of other components as required, but the components other than water are preferably 30% by weight or less.
- the concentration of silica nanoparticles in the first silica nanoparticle dispersion can be selected as appropriate, but is preferably in the range of 10 to 60% by weight, and more preferably in the range of 20 to 50% by weight. .
- silica nanoparticle aqueous dispersions examples include Klebosol (registered trademark) series manufactured by AZ Electronic Materials Co., Ltd., Snowtex (registered trademark) series manufactured by Nissan Chemical Industries, Ltd., Fuso Examples include, but are not limited to, Quartron (registered trademark) PLEASE series manufactured by Chemical Industry Co., Ltd. and Adelite (registered trademark) AT series manufactured by ADEKA Corporation.
- silica nanoparticles are substituted by replacing the aqueous dispersion medium in the first silica nanoparticle dispersion with an organic dispersion medium containing at least one selected from cyclic esters and cyclic amides.
- a second silica nanoparticle dispersion is obtained in which is dispersed in an organic dispersion medium.
- an organic dispersion medium containing at least one selected from a cyclic ester and a cyclic amide is used.
- these organic dispersion media cover the nanoparticle surface, maintain the dispersion state, and the reaction efficiency when reacting with the silicon coupling agent It is thought that the effect of improving the reaction and suppressing the side reaction is achieved.
- room temperature means a temperature of 20 to 30 ° C.
- the second silica nanoparticle dispersion liquid may contain a further dispersion medium selected from ethers, acyclic esters, acyclic amides, and mixtures thereof.
- ethers include tetrahydrofuran (THF), 1,4-dioxane, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, and the like
- acyclic esters include ethyl acetate and propylene glycol.
- acyclic amides include N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAC). It is not limited to.
- DMF N-dimethylformamide
- DMAC N-dimethylacetamide
- These additional dispersion media may be contained in an amount of up to about 15% by weight with respect to the organic dispersion media containing at least one selected from cyclic esters and cyclic amides.
- the replacement of the dispersion medium can be performed using any known method. Therefore, the dispersion medium may be replaced by adding an organic dispersion medium after removing the aqueous dispersion medium by centrifugation. Alternatively, it may be performed by distillation under reduced pressure using a rotary evaporator or the like, or may be performed using a separation membrane such as an ultrafiltration membrane. The replacement of the dispersion medium may be performed at room temperature or may be performed while heating, if necessary. After the replacement of the dispersion medium, the dispersion medium of the second silica nanoparticle dispersion liquid is substantially composed of only the organic dispersion medium, and the content of the aqueous dispersion medium is preferably 1% or less.
- one or more alcohols having a boiling point 30 ° C. or lower than the boiling point of the organic dispersion medium can be added to the aqueous dispersion medium.
- alcohols with relatively low boiling points include methanol, ethanol, 1-propanol, 2-propanol (or isopropyl alcohol (IPA)) and 1- And methoxy-2-propanol (or propylene glycol monomethyl ether (PGME)).
- IPA isopropyl alcohol
- PGME propylene glycol monomethyl ether
- Such alcohols are preferably used in an amount of 3 to 10 times, more preferably 5 to 8 times the weight ratio of the aqueous dispersion.
- the concentration of the silica nanoparticles in the second silica nanoparticle dispersion can be selected as appropriate, but is preferably in the range of 1 to 45% by weight, and more preferably in the range of 10 to 30% by weight. . By adjusting the concentration of the silica nanoparticles in the second silica nanoparticle dispersion within this range, it is possible to suppress the viscosity of the dispersion from becoming too high and maintain good working efficiency.
- the second silica nanoparticle dispersion obtained in the above substitution step is subjected to the following formula (1) (In the formula, each R 1 is independently a C 1 to C 20 hydrocarbon group, and R 2 is a C 1 to C 3 hydrocarbon group.) It is performed by adding a silane coupling agent represented by: Examples of the silane coupling agent satisfying the formula (1) include methoxytrimethylsilane, methoxytriethylsilane, methoxytripropylsilane, methoxytributylsilane, ethoxytripropylsilane, ethoxytributylsilane, propoxytrimethylsilane, and allyloxytrimethylsilane.
- Methoxymethyldiethylsilane methoxy (dimethyl) butylsilane, methoxy (dimethyl) octylsilane, methoxy (dimethyl) decylsilane, methoxy (dimethyl) tetradecylsilane, methoxy (dimethyl) octadecylsilane, and the like. It is not a thing.
- the amount of the silane coupling agent used in the surface modification step can be appropriately selected depending on the type of the silane coupling agent, but it is about 2 to 5 times in molar ratio with respect to the number of silanol groups present on the surface of the silica nanoparticles. Is preferably added.
- the number of silanol groups present on the surface of the silica nanoparticles is the literature by Iler "The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, Author Ralph K. Iler 1979 by John Wiley & Sons, Inc.” It can be measured by the method described in 1. This document describes that 4 to 5 hydroxyl groups exist per 1 nm 2 (100 2 ) of the silica surface.
- the surface modification step may be performed at room temperature, but may be heated as necessary. From the viewpoint of promoting and homogenizing the reaction, it is preferable to add the above silane coupling agent to the second silica nanoparticle dispersion and stir with a magnetic stirrer.
- the time for performing the surface modification step can be appropriately selected depending on the temperature and the amount of silica nanoparticles used.
- the surface of the silica nanoparticles dispersed in the dispersion medium is modified by the surface modification step.
- at least a part of the silanol groups present on the surface of the silica nanoparticles reacts with the silane coupling agent represented by the above formula (1), and —OSiR 1 3 groups are present on the silica nanoparticle surface. This is considered to change the affinity of the silica nanoparticle surface for the aqueous dispersion medium and the organic dispersion medium.
- This surface modification high transparency can be exhibited when the silica nanoparticles are dispersed in the organic dispersion medium.
- FT-IR FT / IR-4000 manufactured by JASCO Corporation. Specifically, by comparing the FT-IR absorption spectra of the silica particles before and after the surface modification, and observing the change in the Si—OH-derived peak (3400-3500 cm ⁇ 1 ), the surface of the silica nanoparticles is a silane cup. It can be judged whether it has been modified with a ring agent.
- the transparency of the surface-modified silica nanoparticle dispersion can be evaluated by visual sensory evaluation. Further, the dispersibility of the surface-modified silica nanoparticle dispersion liquid can also be evaluated visually.
- the present inventors can select the type of organic dispersion medium that exhibits high transparency when the surface-modified silica nanoparticles are dispersed by changing the type of silane coupling agent. Obtained unexpected findings. Specifically, when the silane coupling agent represented by the formula (1) in which all R 1 is a C 1 to C 7 hydrocarbon group is used, the surface-modified silica nanoparticles are used as the hydrophilic organic dispersion medium. On the other hand, it exhibits high dispersibility and transparency, and storage stability.
- Such silane coupling agents include methoxytrimethylsilane, methoxytriethylsilane, methoxytripropylsilane, methoxytributylsilane, ethoxytripropylsilane, ethoxytributylsilane, propoxytrimethylsilane, allyloxytrimethylsilane, methoxymethyldiethylsilane, And methoxy (dimethyl) butylsilane.
- hydrophilic organic dispersion medium examples include alcohols such as methanol, ethanol, propanol and butanol, polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin, dimethyl ether, ethyl methyl ether and tetrahydrofuran. Ethers, ketones such as acetone, methyl ethyl ketone, and diethyl ketone, lactones (cyclic esters) such as ⁇ -propiolactone, ⁇ -butyrolactone, and ⁇ -valerolactone, and 2-pyrrolidone and N-methyl-2-pyrrolidone And other lactams (cyclic amides).
- alcohols such as methanol, ethanol, propanol and butanol
- polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin
- dimethyl ether dimethyl ether
- ethyl methyl ether ethyl
- silane coupling agent represented by the formula (1) in which at least one of R 1 is a C 8 to C 20 hydrocarbon group high dispersibility and transparency with respect to a hydrophobic organic dispersion medium As well as storage stability.
- silane coupling agents include methoxy (dimethyl) octylsilane, methoxy (dimethyl) decylsilane, methoxy (dimethyl) tetradecylsilane, methoxy (dimethyl) octadecylsilane, and the like.
- hydrophobic organic dispersion medium examples include linear aliphatic hydrocarbons such as pentane, hexane and heptane, and cyclic aliphatic hydrocarbons such as cyclohexane, cycloheptane and decalin (decahydronaphthalene). And aromatic hydrocarbons such as benzene, toluene and xylene.
- hydrophilic organic dispersion medium ⁇ -butyrolactone and N-methyl-2-pyrrolidone are preferable, and as the hydrophobic organic dispersion medium, hexane, decalin and toluene are preferable.
- the effect of the dispersion medium selectivity described above is that, among the three R 1 of the silane coupling agent represented by the formula (1), two R 1 are short-chain hydrocarbon groups (for example, C 1 to C 3 This is particularly noticeable when it is a hydrocarbon group.
- the surface-modified silica nanoparticles according to the present invention can be used as they are after undergoing the above-mentioned surface modification step, but may be used after further filtration and drying steps.
- the method for producing surface-modified silica nanoparticles according to the present invention preferably further includes a step of filtering and drying the second silica nanoparticle dispersion after the step of modifying the surface of the silica nanoparticles.
- the method for producing surface-modified silica nanoparticles according to the present invention may further include a step of washing the surface-modified silica nanoparticles between the filtration and drying steps.
- Any cleaning liquid such as alcohol can be used for cleaning.
- silane coupling agents, cyclic esters, cyclic amides, and the like remaining after the surface modification process can be removed.
- a surface-modified silica nanoparticle dispersion with fewer impurities can be obtained.
- the surface-modified silica nanoparticles obtained by the production method according to the present invention can exhibit high dispersibility and transparency as well as storage stability when dispersed in an organic dispersion medium.
- the particle diameter of the surface-modified silica nanoparticles is preferably 100 nm or less, more preferably 50 nm or less in terms of volume average particle diameter. Such a volume average particle diameter can be measured by a device such as Nikkiso's Nanotrac particle size analyzer in accordance with Dynamic Light Scattering (DLS).
- a surface-modified silica nanoparticle dispersion can be obtained by dispersing the surface-modified silica nanoparticles in a desired organic dispersion medium.
- the concentration of the surface-modified silica nanoparticles in the dispersion can be selected as appropriate, but is preferably in the range of 3 to 40% by weight, and more preferably in the range of 5 to 30% by weight. Within this range, the surface-modified silica nanoparticles according to the present invention can exhibit good dispersibility and transparency as well as storage stability.
- Example 1 (1) Preparation of second silica nanoparticle dispersion using GBL Aqueous dispersion (30 of silica sol (manufactured by AZ Electronic Materials Co., Ltd .: Klebosol 30HB 25K, SiO 2 concentration: 30 wt%, average particle size: 25 nm)) 1.0 g), 13.5 g of ⁇ -butyrolactone (GBL) as a cyclic ester (0.45 times the weight of the silica sol aqueous dispersion) was added and stirred, and the silica sol aqueous solution was distilled under reduced pressure using a rotary evaporator.
- GBL ⁇ -butyrolactone
- a silica nanoparticle-GBL dispersion (22.5 g) having a SiO 2 concentration of 40% by weight and a water concentration of 1% by weight or less was prepared by replacing the dispersion medium with ⁇ -butyrolactone.
- reaction dispersion was poured into water (300 g: about 5 times the amount of the reaction dispersion), and the precipitate was filtered. After filtration, the filtrate was washed with isopropyl alcohol and vacuum dried at 40 ° C. to obtain a product (surface modified silica nanoparticles) with a yield of 85%.
- the concentration was 5% by weight, 15% by weight and 30% by weight with respect to ⁇ -butyrolactone and N-methyl-2-pyrrolidone as the hydrophilic organic dispersion medium. It showed good dispersibility and transparency.
- the obtained ⁇ -butyrolactone dispersion and NMP dispersion of the surface-modified silica nanoparticles were each a microfilter having a pore diameter of 0.20 ⁇ m (Millex®-FG (Syring-driven Filter Unit) Hydrophobic Fluoropore TM manufactured by Millipore). (PTFE) Membrane for Fine Particle Removal from Organic Solution).
- Example 2 (1) Preparation of second silica nanoparticle dispersion using GBL A second silica nanoparticle dispersion was prepared in the same manner as described in Example 1. (2) Silica nanoparticle-GBL dispersion (9.275 g) after the above-described dispersion medium substitution step in a reactor equipped with a silica nanoparticle surface-modified stirrer, methoxy (dimethyl) octylsilane (3.29 g), and ⁇ -Butyrolactone (38.16 g) was added and stirred. Then, it was made to react at room temperature for 48 hours, and the deposit was filtered. After filtration, the filtrate was washed with isopropyl alcohol and vacuum dried at 40 ° C. to obtain a product (surface-modified silica nanoparticles) with a yield of 83%.
- the decalin dispersion and the toluene dispersion of the surface-modified silica nanoparticles are each a microfilter having a pore diameter of 0.20 ⁇ m (Millex®-FG (Syring-driven Filter Unit) Hydrophobic Fluoropore TM (PTFE) Membrane for Millipore) Fine Particle Removal from Organic Solution).
- Example 3 (1) Preparation of second silica nanoparticle dispersion using GBL A second silica nanoparticle dispersion was prepared in the same manner as described in Example 1. (2) Silica nanoparticle-GBL dispersion (9.275 g) after the above-mentioned dispersion medium substitution step in a reactor equipped with a silica nanoparticle surface-modified stirrer, methoxy (dimethyl) octadecylsilane (5.565 g), and GBL (38.16 g) was added and stirred. Then, it was made to react at room temperature for 48 hours, and the deposit was filtered. After filtration, the filtrate was washed with isopropyl alcohol and vacuum dried at 40 ° C. to obtain a product (surface modified silica nanoparticles) with a yield of 87%.
- the decalin dispersion and the toluene dispersion of the surface-modified silica nanoparticles are each a microfilter having a pore diameter of 0.20 ⁇ m (Millex®-FG (Syring-driven Filter Unit) Hydrophobic Fluoropore TM (PTFE) Membrane for Millipore) Fine Particle Removal from Organic Solution).
- Example 4 (1) Preparation of second silica nanoparticle dispersion using IPA and GBL Aqueous dispersion of silica sol (manufactured by AZ Electronic Materials Co., Ltd .: Klebosol 30HB 25K, SiO 2 concentration: 30 wt%, average particle size: 25 nm) (30.0 g), 180 g of isopropanol (IPA) (6 times the weight of silica sol aqueous dispersion) and 13.5 g of cyclic ester ⁇ -butyrolactone (GBL) (based on silica sol aqueous dispersion) The aqueous dispersion medium of silica sol was replaced with ⁇ -butyrolactone by stirring under reduced pressure using a rotary evaporator.
- IPA isopropanol
- GBL cyclic ester ⁇ -butyrolactone
- silica nanoparticle-GBL dispersion (22.5 g) having a SiO 2 concentration of 40% by weight and water and IPA concentrations of 1% by weight or less was prepared.
- the decalin dispersion and the toluene dispersion of the surface-modified silica nanoparticles are each a microfilter having a pore diameter of 0.20 ⁇ m (Millex®-FG (Syring-driven Filter Unit) Hydrophobic Fluoropore TM (PTFE) Membrane for Millipore) Fine Particle Removal from Organic Solution).
- Example 5 (1) Preparation of second silica nanoparticle dispersion using DVL Aqueous dispersion (30 of silica sol (manufactured by AZ Electronic Materials Co., Ltd .: Klebosol 30HB 25K, SiO 2 concentration: 30 wt%, average particle size: 25 nm)) 0.05), 13.5 g of ⁇ -valerolactone (DVL) as a cyclic ester (0.45 times the weight of the silica sol aqueous dispersion) was added and stirred, and the silica sol was distilled under reduced pressure using a rotary evaporator.
- DVL Aqueous dispersion 30 of silica sol (manufactured by AZ Electronic Materials Co., Ltd .: Klebosol 30HB 25K, SiO 2 concentration: 30 wt%, average particle size: 25 nm)
- DDL ⁇ -valerolactone
- (2) Surface Modification of Silica Nanoparticles Surface modification of silica nanoparticles was performed by the same method as described in Example 3 except that DVL was added instead of GBL to obtain surface modified silica nanoparticles.
- the decalin dispersion and the toluene dispersion of the surface-modified silica nanoparticles are each a microfilter having a pore diameter of 0.20 ⁇ m (Millex®-FG (Syring-driven Filter Unit) Hydrophobic Fluoropore TM (PTFE) Membrane for Millipore) Fine Particle Removal from Organic Solution).
- Example 6 (1) Preparation of second silica nanoparticle dispersion using EHL Aqueous dispersion of silica sol (manufactured by AZ Electronic Materials Co., Ltd .: Klebosol 30HB 25K, SiO 2 concentration: 30 wt%, average particle size: 25 nm) 0.03), 13.5 g of ⁇ -caprolactone (EHL) as a cyclic ester (0.45 times by weight with respect to silica sol) was added and stirred, and the aqueous dispersion medium of silica sol was distilled by rotary distillation with a rotary evaporator.
- EHL ⁇ -caprolactone
- a silica nanoparticle-EHL dispersion (22.5 g) substituted with ⁇ -caprolactone and having a SiO 2 concentration of 40% by weight and a water concentration of 1% by weight or less was prepared.
- (2) Surface Modification of Silica Nanoparticles Surface modification of silica nanoparticles was performed by the same method as described in Example 3 except that EHL was added instead of GBL to obtain surface modified silica nanoparticles.
- the decalin dispersion and the toluene dispersion of the surface-modified silica nanoparticles are each a microfilter having a pore diameter of 0.20 ⁇ m (Millex®-FG (Syring-driven Filter Unit) Hydrophobic Fluoropore TM (PTFE) Membrane for Millipore) Fine Particle Removal from Organic Solution).
- Example 7 (1) Preparation of second silica nanoparticle dispersion using NMP Aqueous dispersion of silica sol (manufactured by AZ Electronic Materials Co., Ltd .: Klebosol 30HB 25K, SiO 2 concentration: 30 wt%, average particle size: 25 nm) 1.0 g), 13.5 g of 1-methyl-2-pyrrolidone (NMP) as a cyclic amide (0.45 times by weight with respect to the silica sol) was added and stirred, and the silica sol was distilled under reduced pressure using a rotary evaporator.
- NMP 1-methyl-2-pyrrolidone
- (2) Surface Modification of Silica Nanoparticles Surface modification of silica nanoparticles was performed by the same method as that described in Example 3 except that NMP was added instead of GBL.
- the decalin dispersion and the toluene dispersion of the surface-modified silica nanoparticles are each a microfilter having a pore diameter of 0.20 ⁇ m (Millex®-FG (Syring-driven Filter Unit) Hydrophobic Fluoropore TM (PTFE) Membrane for Millipore) Fine Particle Removal from Organic Solution).
- [Comparative Example 1] Aqueous silica sol (manufactured by AZ Electronic Materials Co., Ltd .: Kleboso1 30HB 25K, SiO 2 concentration: 30% by weight, average particle size: 25 nm) in a reactor equipped with a surface modification stirrer of silica nanoparticles in water / alcohol dispersion A dispersion (7.64 g), methoxy (dimethyl) n-octadecylsilane (3.44 g), pure water (0.05 g), and isopropyl alcohol (21.61 g) were added and stirred. Then, it was made to react at room temperature for 48 hours, and the deposit was filtered. After filtration, the filtrate was washed with isopropyl alcohol and vacuum dried at 40 ° C. to obtain a product (surface-modified silica nanoparticles) with a yield of 88%.
- the dispersibility of the product When the dispersibility of the product was confirmed, it showed good dispersibility at a concentration of 5% by weight with respect to decalin and toluene which are hydrophobic organic dispersion media. However, white turbidity was observed and the transparency was poor. Further, the decalin dispersion and the toluene dispersion of the surface-modified silica nanoparticles were each converted into a microfilter having a pore diameter of 0.20 ⁇ m (Millex®-FG (Syring-driven Filter Unit) Hydrophobic Fluoropore TM (PTFE) manufactured by Millipore). When filtration was performed with Membrane for Fine Particle Removal from Organic Solution, filtration was not possible, and aggregation of silica nanoparticles was confirmed.
- Millex®-FG Syring-driven Filter Unit
- PTFE Hydrophobic Fluoropore TM
- Example 2 Silica nanoparticle-GBL dispersion after dispersion medium replacement step by a method similar to the method described in Example 1 in a reactor equipped with a silica nanoparticle surface-modified stirrer using a trialkoxyl monoalkylsilane coupling agent (3.01 g), ⁇ -butyrolactone (31.39 g) and n-octadecyltrimethoxysilane (1.57 g) were added and stirred. Then, it was made to react at room temperature for 48 hours, and the deposit was filtered. After filtration, the filtrate was washed with isopropyl alcohol and vacuum dried at 40 ° C. to obtain a product (surface modified silica nanoparticles) with a yield of 90%.
- a trialkoxyl monoalkylsilane coupling agent 3.01 g
- ⁇ -butyrolactone 31.39 g
- n-octadecyltrimethoxysilane (1.
- the dispersibility of the product was confirmed, but at a concentration of 5% by weight, hydrophobic organic dispersion media such as decalin and toluene, and hydrophilic organic dispersion media such as N-methyl-2-pyrrolidone and ⁇ -butyrolactone were used. In any case, the dispersibility was low.
- the average particle diameter of the surface-modified silica nanoparticles obtained in Examples 1 to 7 was measured by a dynamic light scattering method (Nikkiso: Nanotrac particle size analyzer). For the measurement, a 1 wt% organosol dispersion prepared by dispersing surface-modified silica nanoparticles in each dispersion medium was used. The median particle diameter (D50) was used as the average particle diameter value.
- the average particle diameter of the surface modified silica nanoparticles obtained in Comparative Example 1 could not be measured by the dynamic light scattering method. Further, since the particles did not pass through the filter having a pore size of 0.20 ⁇ m, the average particle size of the surface-modified silica nanoparticles obtained in Comparative Example 1 was set to be more than 0.2 ⁇ m.
- Storage stability was evaluated after the surface-modified silica nanoparticle dispersions obtained in Examples 1 to 7 and Comparative Examples 1 and 2 were stored in a sealed container at room temperature for 3 months. The evaluation was performed on the presence or absence of a change in transparency by visual observation, the presence or absence of an increase in particle diameter by the dynamic light scattering method, and the presence or absence of sedimentation of particles.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Silicon Compounds (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Colloid Chemistry (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Abstract
Description
シリカナノ粒子と水性分散媒とを含む第1のシリカナノ粒子分散液を用意する工程と、
前記第1のシリカナノ粒子分散液における前記水性分散媒を、環状エステルおよび環状アミドから選択される少なくとも1種類を含む有機分散媒で置換して第2のシリカナノ粒子分散液を得る工程と、
前記第2のシリカナノ粒子分散液に、式(1):
で表わされるシランカップリング剤を加えて、シリカナノ粒子の表面を改質する工程と
を含む、方法が提供される。
上記態様における有機分散媒が、式(2):
で表わされる環状エステルおよび環状アミドから選択される少なくとも1種類を含む有機分散媒である、方法が提供される。
以下、本発明による表面改質シリカナノ粒子の製造方法を具体的に説明する。本発明による表面改質シリカナノ粒子の製造方法は、シリカナノ粒子と水性分散媒とを含む第1のシリカナノ粒子分散液を用意する工程と、第1のシリカナノ粒子分散液における水性分散媒を環状エステルおよび環状アミドから選択される少なくとも1種類を含む有機分散媒で置換し、第2のシリカナノ粒子分散液を得る工程(置換工程)と、第2のシリカナノ粒子分散液に特定のシランカップリング剤を加えてシリカナノ粒子の表面を改質する工程(表面改質工程)とを含む。各工程について、より詳細に説明すると以下の通りである。
本発明による表面改質シリカナノ粒子の製造方法においては、まず、シリカナノ粒子と水性分散媒とを含む第1のシリカナノ粒子分散液を用意する。ここで、第1のシリカナノ粒子分散液は、水性分散媒にシリカナノ粒子を加えて撹拌することで用意することができる。あるいは、コロイダルシリカのような市販のシリカナノ粒子分散液を用意してもよい。
本発明による表面改質シリカナノ粒子の製造方法において、第1のシリカナノ粒子分散液における水性分散媒を環状エステルおよび環状アミドから選択される少なくとも1種類を含む有機分散媒で置換することによって、シリカナノ粒子が有機分散媒に分散した第2のシリカナノ粒子分散液を得る。
で表わされる環状エステルまたは環状アミドを用いることが好ましい。このような式(2)を満たす環状エステルとしては、β-プロピオラクトン(四員環)(n=2)、γ-ブチロラクトン(五員環)(n=3)、δ-バレロラクトン(六員環)(n=4)、ε-カプロラクトン(七員環)(n=5)等が挙げられる。環状アミドとしては、R3が水素の場合、β-ラクタム(四員環)(n=2)、γ-ラクタム(五員環)(n=3)、δ-ラクタム(六員環)(n=4)等が挙げられる。また、R3がC1~C3の炭化水素基の場合、1-メチル-2-ピロリドン(五員環)(n=3)、1-メチル-2-ピペリドン(六員環)(n=4)等が挙げられる。その中でも特に、取扱性(コストが高くなりすぎると好ましくない)や作業性(水との沸点の差が低過ぎたり高過ぎたりすると好ましくない)の観点から、γ-ブチロラクトン(沸点:205℃)を用いることが特に好ましい。なお、本明細書において「室温」とは、20~30℃の温度を意味するものとする。
本発明による製造方法における表面改質工程は、上記置換工程で得られた第2のシリカナノ粒子分散液に、下記式(1):
で表わされるシランカップリング剤を加えることで行われる。このような式(1)を満たすシランカップリング剤としては、メトキシトリメチルシラン、メトキシトリエチルシラン、メトキシトリプロピルシラン、メトキシトリブチルシラン、エトキシトリプロピルシラン、エトキシトリブチルシラン、プロポキシトリメチルシラン、アリルオキシトリメチルシラン、メトキシメチルジエチルシラン、メトキシ(ジメチル)ブチルシラン、メトキシ(ジメチル)オクチルシラン、メトキシ(ジメチル)デシルシラン、メトキシ(ジメチル)テトラデシルシラン、メトキシ(ジメチル)オクタデシルシラン等が挙げられるが、これらに限定されるものではない。
本発明による表面改質シリカナノ粒子は、上記表面改質工程を経た後、そのまま使用することもできるが、さらに濾過および乾燥工程を経てから使用してもよい。濾過および乾燥工程を経ることで、粉末状の表面改質シリカナノ粒子を得ることができ、保管面および輸送面において分散液の場合よりも好ましい。したがって、本発明による表面改質シリカナノ粒子の製造方法は、シリカナノ粒子の表面を改質する工程の後に、第2のシリカナノ粒子分散液を濾過し、乾燥する工程をさらに含むことが好ましい。なお、表面改質工程後の分散液中に沈殿等が生じておらず、濾過ができない場合は、分散液を水に投入して沈殿物を生じさせた後に濾過をしてもよい。濾過後に表面改質シリカナノ粒子を再度有機分散媒に分散することで、表面改質シリカナノ粒子分散液を得ることができる。
本発明による製造方法によって得られた表面改質シリカナノ粒子は、有機分散媒に分散した場合に高い分散性および透明性、ならびに保存安定性を示すことができる。表面改質シリカナノ粒子の粒子径は、体積平均粒子径で100nm以下であることが好ましく、50nm以下であることがより好ましい。このような体積平均粒子径は動的光散乱法(DLS: Dynamic Light Scattering)に準拠して、日機装製のナノトラック粒度分析計等の装置によって測定することができる。
上記の表面改質シリカナノ粒子を、所望の有機分散媒に分散することで表面改質シリカナノ粒子分散液を得ることができる。分散液中の表面改質シリカナノ粒子の濃度は、適宜選択することができるが、3~40重量%の範囲内であることが好ましく、5~30重量%の範囲内であることがより好ましい。この範囲内であれば、本発明による表面改質シリカナノ粒子は分散性および透明性、ならびに保存安定性を良好に示すことができる。
(1)GBLを使用した第2のシリカナノ粒子分散液の調製
シリカゾル(AZエレクトロニックマテリアルズ株式会社製:Klebosol 30HB 25K、SiO2濃度:30重量%、平均粒子径:25nm)の水性分散液(30.0g)に、環状エステルとしてγ-ブチロラクトン(GBL)を13.5g(シリカゾルの水性分散液に対して0.45倍の重量)加えて撹拌し、ロータリーエバポレーターで減圧蒸留することによりシリカゾルの水性分散媒をγ-ブチロラクトンで置換した、SiO2濃度が40重量%、かつ、水の濃度が1重量%以下であるシリカナノ粒子-GBL分散液(22.5g)を調製した。
(2)シリカナノ粒子の表面改質
撹拌器を取り付けた反応器に上記した分散媒置換工程後のシリカナノ粒子-GBL分散液(9.275g)、メトキシトリメチルシラン(1.69g)、およびγ-ブチロラクトン(38.16g)を加え、撹拌した。その後、室温にて48時間反応させた。反応分散液を水(300g:反応分散液に対して約5倍量)に投入し、沈殿物をろ過した。ろ過後、ろ過物をイソプロピルアルコールで洗浄して、40℃で真空乾燥することにより生成物(表面改質シリカナノ粒子)を収率85%で得た。
(1)GBLを使用した第2のシリカナノ粒子分散液の調製
実施例1に記載の方法と同様の方法で、第2のシリカナノ粒子分散液を調製した。
(2)シリカナノ粒子の表面改質
撹拌器を取り付けた反応器に上記した分散媒置換工程後のシリカナノ粒子-GBL分散液(9.275g)、メトキシ(ジメチル)オクチルシラン(3.29g)、およびγ-ブチロラクトン(38.16g)を加え、撹拌した。その後、室温にて48時間反応させ、析出物をろ過した。ろ過後、ろ過物をイソプロピルアルコールで洗浄して、40℃で真空乾燥することにより生成物(表面改質シリカナノ粒子)を収率83%で得た。
(1)GBLを使用した第2のシリカナノ粒子分散液の調製
実施例1に記載の方法と同様の方法で、第2のシリカナノ粒子分散液を調製した。
(2)シリカナノ粒子の表面改質
撹拌器を取り付けた反応器に上記した分散媒置換工程後のシリカナノ粒子-GBL分散液(9.275g)、メトキシ(ジメチル)オクタデシルシラン(5.565g)、およびGBL(38.16g)を加え、撹拌した。その後、室温にて48時間反応させ、析出物をろ過した。ろ過後、ろ過物をイソプロピルアルコールで洗浄して、40℃で真空乾燥することにより生成物(表面改質シリカナノ粒子)を収率87%で得た。
(1)IPAとGBLを使用した第2のシリカナノ粒子分散液の調製
シリカゾル(AZエレクトロニックマテリアルズ株式会社製:Klebosol 30HB 25K、SiO2濃度:30重量%、平均粒子径:25nm)の水性分散液(30.0g)に、イソプロパノール(IPA)を180g(シリカゾルの水性分散液に対して6倍の重量)と、環状エステルとしてγ-ブチロラクトン(GBL)を13.5g(シリカゾルの水性分散液に対して0.45倍の重量)加えて撹拌し、ロータリーエバポレーターで減圧蒸留することによりシリカゾルの水性分散媒をγ-ブチロラクトンで置換した。これにより、SiO2濃度が40重量%、かつ、水およびIPAの濃度が1重量%以下であるシリカナノ粒子-GBL分散液(22.5g)を調製した。
(2)シリカナノ粒子の表面改質
実施例3に記載の方法と同様の方法でシリカナノ粒子の表面改質を行い、表面改質シリカナノ粒子を得た。
(1)DVLを使用した第2のシリカナノ粒子分散液の調製
シリカゾル(AZエレクトロニックマテリアルズ株式会社製:Klebosol 30HB 25K、SiO2濃度:30重量%、平均粒子径:25nm)の水性分散液(30.0g)に、環状エステルとしてδ-バレロラクトン(DVL)を13.5g(シリカゾルの水性分散液に対して0.45倍の重量)加えて撹拌し、ロータリーエバポレーターで減圧蒸留することによりシリカゾルの水性分散媒をδ-バレロラクトンで置換した、SiO2濃度が40重量%、かつ、水の濃度が1重量%以下であるシリカナノ粒子-DVL分散液(22.5g)を調製した。
(2)シリカナノ粒子の表面改質
GBLの代わりにDVLを加えた以外は、実施例3に記載の方法と同様の方法でシリカナノ粒子の表面改質を行い、表面改質シリカナノ粒子を得た。
(1)EHLを使用した第2のシリカナノ粒子分散液の調製
シリカゾル(AZエレクトロニックマテリアルズ株式会社製:Klebosol 30HB 25K、SiO2濃度:30重量%、平均粒子径:25nm)の水性分散液(30.0g)に、環状エステルとしてε-カプロラクトン(EHL)を13.5g(シリカゾルに対して0.45倍の重量%)加えて撹拌し、ロータリーエバポレーターで減圧蒸留することによりシリカゾルの水性分散媒をε-カプロラクトンで置換した、SiO2濃度が40重量%、かつ、水の濃度が1重量%以下であるシリカナノ粒子-EHL分散液(22.5g)を調製した。
(2)シリカナノ粒子の表面改質
GBLの代わりにEHLを加えた以外は、実施例3に記載の方法と同様の方法でシリカナノ粒子の表面改質を行い、表面改質シリカナノ粒子を得た。
(1)NMPを使用した第2のシリカナノ粒子分散液の調製
シリカゾル(AZエレクトロニックマテリアルズ株式会社製:Klebosol 30HB 25K、SiO2濃度:30重量%、平均粒子径:25nm)の水性分散液(30.0g)に、環状アミドとして1-メチル-2-ピロリドン(NMP)を13.5g(シリカゾルに対して0.45倍の重量%)加えて撹拌し、ロータリーエバポレーターで減圧蒸留することによりシリカゾルの水性分散媒を1-メチル-2-ピロリドンで置換した、SiO2濃度が40重量%、かつ、水の濃度が1重量%以下であるシリカナノ粒子-NMP分散液(22.5g)を調製した。
(2)シリカナノ粒子の表面改質
GBLの代わりにNMPを加えた以外は、実施例3に記載の方法と同様の方法でシリカナノ粒子の表面改質を行い、表面改質シリカナノ粒子を得た。
水/アルコール分散液におけるシリカナノ粒子の表面改質
撹拌器を取り付けた反応器にシリカゾル(AZエレクトロニックマテリアルズ株式会社製:Kleboso1 30HB 25K、SiO2濃度:30重量%、平均粒子径:25nm)の水性分散液(7.64g)と、メトキシ(ジメチル)n-オクタデシルシラン(3.44g)と、純水(0.05g)と、イソプロピルアルコール(21.61g)を加え、撹拌した。その後、室温にて48時間反応させ、析出物をろ過した。ろ過後、ろ過物をイソプロピルアルコールで洗浄して、40℃で真空乾燥することにより生成物(表面改質シリカナノ粒子)を収率88%で得た。
トリアルコキシルモノアルキルシランカップリング剤を用いたシリカナノ粒子の表面改質
撹拌器を取り付けた反応器に、実施例1に記載の方法と同様の方法による分散媒置換工程後のシリカナノ粒子-GBL分散液(3.01g)と、γ-ブチロラクトン(31.39g)と、n-オクタデシルトリメトキシシラン(1.57g)を加え、撹拌した。その後、室温にて48時間反応させ、析出物をろ過した。ろ過後、ろ過物をイソプロピルアルコールで洗浄して、40℃で真空乾燥することにより生成物(表面改質シリカナノ粒子)を収率90%で得た。
上記実施例1~7において得られた表面改質シリカナノ粒子の平均粒子径は、動的光散乱法(日機装製:ナノトラック粒度分析計)により測定した。測定には、表面改質シリカナノ粒子を各分散媒に分散させて調製した、1重量%のオルガノゾル分散液を使用した。
平均粒子径の値として、中央粒子径(D50)を用いた。なお、比較例1において得られた表面改質シリカナノ粒子の平均粒子径は、動的光散乱法で測定を行うことができなかった。また、粒子が孔径0.20μmのフィルタを通過しなかったため、比較例1において得られた表面改質シリカナノ粒子の平均粒子径は、0.2μm超とした。
上記実施例1~7および比較例1~2において得られた表面改質シリカナノ粒子分散液の透明性は、以下の基準に従って評価した。
透明性が非常に高く、白濁が全く認められない :A
僅かに白濁しているが問題にならない :B
白濁が認められる :C
白濁が明らかに認められる :D
上記実施例1~7および比較例1~2において得られた表面改質シリカナノ粒子分散液の分散性は、以下の基準に従って評価した。
沈殿が観察されなかった :A
沈殿が観察された :B
保存安定性については、上記実施例1~7および比較例1~2において得られた表面改質シリカナノ粒子分散液を、密閉容器中、室温で、3ヶ月保管した後に評価した。評価は、目視による透明性の変化の有無、動的光散乱法による粒子径増加の有無、及び粒子の沈降の有無について行った。
Claims (10)
- 前記シランカップリング剤の全てのR1が、C1~C7の炭化水素基である、請求項1に記載の方法。
- 前記シランカップリング剤のR1の少なくとも1つが、C8~C20の炭化水素基である、請求項1に記載の方法。
- 前記第2のシリカナノ粒子分散液が、エーテル類、非環状エステル類、非環状アミド類及びこれらの混合物から選択されるさらなる分散媒を含む、請求項1~4のいずれか一項に記載の方法。
- 前記水性分散媒を前記有機分散媒で置換する前に、前記水性分散媒に前記有機分散媒の沸点よりも30℃以上低い沸点を有する1種以上のアルコール類を加える、請求項1~5のいずれか一項に記載の方法。
- 前記表面改質シリカナノ粒子の平均粒子径が100nm以下である、請求項1~6のいずれか一項に記載の方法。
- 前記シリカナノ粒子の表面を改質する工程の後に、前記第2のシリカナノ粒子分散液を濾過し、乾燥する工程をさらに含む、請求項1~7のいずれか一項に記載の方法。
- 請求項1~8のいずれか一項に記載の方法によって得られる、表面改質シリカナノ粒子。
- 請求項9に記載の表面改質シリカナノ粒子を有機分散媒に分散することによって得られる、表面改質シリカナノ粒子分散液。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016525130A JPWO2015186596A1 (ja) | 2014-06-03 | 2015-05-28 | 表面改質シリカナノ粒子の製造方法、および表面改質シリカナノ粒子 |
US15/315,616 US10106428B2 (en) | 2014-06-03 | 2015-05-28 | Method for producing surface-modified silica nanoparticles, and surface-modified silica nanoparticles |
SG11201702130SA SG11201702130SA (en) | 2014-06-03 | 2015-05-28 | Method for producing surface-modified silica nanoparticles, and surface-modified silica nanoparticles |
CN201580029203.6A CN106414328B (zh) | 2014-06-03 | 2015-05-28 | 表面改性二氧化硅纳米颗粒的制造方法以及表面改性二氧化硅纳米颗粒 |
EP15803665.7A EP3153470A4 (en) | 2014-06-03 | 2015-05-28 | Method for producing surface-modified silica nanoparticles, and surface-modified silica nanoparticles |
KR1020167034863A KR20170013902A (ko) | 2014-06-03 | 2015-05-28 | 표면 개질 실리카 나노 입자의 제조 방법, 및 표면 개질 실리카 나노 입자 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014114873 | 2014-06-03 | ||
JP2014-114873 | 2014-06-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015186596A1 true WO2015186596A1 (ja) | 2015-12-10 |
Family
ID=54766669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/065382 WO2015186596A1 (ja) | 2014-06-03 | 2015-05-28 | 表面改質シリカナノ粒子の製造方法、および表面改質シリカナノ粒子 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10106428B2 (ja) |
EP (1) | EP3153470A4 (ja) |
JP (1) | JPWO2015186596A1 (ja) |
KR (1) | KR20170013902A (ja) |
CN (1) | CN106414328B (ja) |
SG (1) | SG11201702130SA (ja) |
TW (1) | TW201607892A (ja) |
WO (1) | WO2015186596A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101872020B1 (ko) * | 2018-01-31 | 2018-06-27 | 한국지질자원연구원 | 실리카 나노유체 제조방법 및 이를 이용한 석유회수증진방법 |
JP2018158875A (ja) * | 2017-03-23 | 2018-10-11 | 富士ゼロックス株式会社 | シリカ複合粒子及びその製造方法 |
EP3968343A2 (en) | 2020-09-15 | 2022-03-16 | Shin-Etsu Chemical Co., Ltd. | Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and silicon material particle |
EP3984456A1 (en) | 2020-10-13 | 2022-04-20 | Shin-Etsu Chemical Co., Ltd. | Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, polymer compound, and composite |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113165885B (zh) * | 2018-11-29 | 2024-05-14 | 赢创运营有限公司 | 用于耐火玻璃的具有长贮存期的二氧化硅水分散体 |
WO2021164102A1 (zh) * | 2020-02-20 | 2021-08-26 | 广州汇富研究院有限公司 | 气相二氧化硅的表面改性联合处理装置和方法 |
CN113539689B (zh) * | 2020-04-15 | 2023-04-18 | 深圳新宙邦科技股份有限公司 | 一种二氧化硅内酯溶胶、制备方法以及铝电解电容器用电解液 |
KR102260014B1 (ko) * | 2020-10-21 | 2021-06-03 | 주식회사 에이아이더뉴트리진 | 미생물 농축 또는 핵산 추출용 개질된 실리카 및 이를 이용한 미생물 농축 또는 핵산 추출 방법 |
CN112898869A (zh) * | 2021-01-22 | 2021-06-04 | 杜磊 | 一种聚己内酯功能化二氧化硅增韧环氧树脂地坪漆及其制法 |
CN117730055A (zh) * | 2022-01-28 | 2024-03-19 | 日产化学株式会社 | 低介质损耗角正切二氧化硅溶胶及低介质损耗角正切二氧化硅溶胶的制造方法 |
WO2024009621A1 (en) * | 2022-07-05 | 2024-01-11 | Sony Group Corporation | Porous film, method of manufacturing porous film, and structure |
CN115536031B (zh) * | 2022-10-24 | 2024-04-26 | 中国科学院过程工程研究所 | 一种二氧化硅微球及其制备方法 |
CN117323847B (zh) * | 2023-10-12 | 2024-06-11 | 山东膜泰环保科技股份有限公司 | 一种重力式pvdf超滤膜材料的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1143319A (ja) * | 1997-05-26 | 1999-02-16 | Nissan Chem Ind Ltd | 疎水性オルガノシリカゾルの製造方法 |
JP2001213617A (ja) * | 2000-01-28 | 2001-08-07 | Jsr Corp | 疎水化コロイダルシリカの製造方法 |
JP2003012320A (ja) * | 2001-06-28 | 2003-01-15 | Catalysts & Chem Ind Co Ltd | シリカ系無機化合物オルガノゾル |
JP2007119310A (ja) * | 2005-10-28 | 2007-05-17 | Fujifilm Corp | 無機微粒子、これを用いた分散液、コーティング組成物、光学フィルム、偏光板および画像表示装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3360846B2 (ja) | 1992-09-10 | 2003-01-07 | 富士シリシア化学株式会社 | 疎水性シリカ形成用シリカゾル並びに疎水性シリカ被膜及び疎水性シリカ粉体 |
EP0881192B1 (en) * | 1997-05-26 | 2002-03-27 | Nissan Chemical Industries, Ltd. | Process of producing hydrophobic organosilica sol |
US20060112860A1 (en) * | 2004-11-16 | 2006-06-01 | Nissan Chemical Industries, Ltd. | Process for producing hydrophobic silica powder |
JP5362209B2 (ja) | 2007-12-25 | 2013-12-11 | 株式会社アドマテックス | 微小粒子含有組成物及び微小粒子含有樹脂組成物並びにそれらの製造方法 |
WO2011109302A2 (en) * | 2010-03-01 | 2011-09-09 | Cabot Corporation | Coating comprising multipopulation fumed silica particles |
CN101914190B (zh) * | 2010-08-17 | 2011-12-21 | 浙江理工大学 | 一种改性纳米二氧化硅单体分散液的制备方法 |
JP2012214554A (ja) | 2011-03-31 | 2012-11-08 | Admatechs Co Ltd | 熱可塑性樹脂組成物 |
-
2015
- 2015-05-28 KR KR1020167034863A patent/KR20170013902A/ko unknown
- 2015-05-28 WO PCT/JP2015/065382 patent/WO2015186596A1/ja active Application Filing
- 2015-05-28 CN CN201580029203.6A patent/CN106414328B/zh not_active Expired - Fee Related
- 2015-05-28 SG SG11201702130SA patent/SG11201702130SA/en unknown
- 2015-05-28 EP EP15803665.7A patent/EP3153470A4/en not_active Withdrawn
- 2015-05-28 US US15/315,616 patent/US10106428B2/en not_active Expired - Fee Related
- 2015-05-28 JP JP2016525130A patent/JPWO2015186596A1/ja active Pending
- 2015-06-03 TW TW104117981A patent/TW201607892A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1143319A (ja) * | 1997-05-26 | 1999-02-16 | Nissan Chem Ind Ltd | 疎水性オルガノシリカゾルの製造方法 |
JP2001213617A (ja) * | 2000-01-28 | 2001-08-07 | Jsr Corp | 疎水化コロイダルシリカの製造方法 |
JP2003012320A (ja) * | 2001-06-28 | 2003-01-15 | Catalysts & Chem Ind Co Ltd | シリカ系無機化合物オルガノゾル |
JP2007119310A (ja) * | 2005-10-28 | 2007-05-17 | Fujifilm Corp | 無機微粒子、これを用いた分散液、コーティング組成物、光学フィルム、偏光板および画像表示装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3153470A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018158875A (ja) * | 2017-03-23 | 2018-10-11 | 富士ゼロックス株式会社 | シリカ複合粒子及びその製造方法 |
JP7013662B2 (ja) | 2017-03-23 | 2022-02-01 | 富士フイルムビジネスイノベーション株式会社 | シリカ複合粒子及びその製造方法 |
KR101872020B1 (ko) * | 2018-01-31 | 2018-06-27 | 한국지질자원연구원 | 실리카 나노유체 제조방법 및 이를 이용한 석유회수증진방법 |
EP3968343A2 (en) | 2020-09-15 | 2022-03-16 | Shin-Etsu Chemical Co., Ltd. | Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and silicon material particle |
EP3984456A1 (en) | 2020-10-13 | 2022-04-20 | Shin-Etsu Chemical Co., Ltd. | Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, polymer compound, and composite |
Also Published As
Publication number | Publication date |
---|---|
US10106428B2 (en) | 2018-10-23 |
US20170190586A1 (en) | 2017-07-06 |
TW201607892A (zh) | 2016-03-01 |
CN106414328A (zh) | 2017-02-15 |
CN106414328B (zh) | 2019-01-22 |
EP3153470A4 (en) | 2018-03-14 |
JPWO2015186596A1 (ja) | 2017-05-25 |
EP3153470A1 (en) | 2017-04-12 |
KR20170013902A (ko) | 2017-02-07 |
SG11201702130SA (en) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015186596A1 (ja) | 表面改質シリカナノ粒子の製造方法、および表面改質シリカナノ粒子 | |
US5718907A (en) | Process for the preparation of organophilic metal oxide particles | |
JP6481599B2 (ja) | 無機粒子−ポリシロキサン複合体、それを含む分散液、固体材料、及び該無機粒子−ポリシロキサン複合体の製造方法 | |
US20120264599A1 (en) | Method for producing composite silica particles | |
JP6284443B2 (ja) | コアシェル型シリカ粒子を含有するコロイダルシリカの製造方法 | |
JP6854683B2 (ja) | シリカゾルの製造方法 | |
TW201617287A (zh) | 氧化鋯粒子之有機溶媒分散體及其製造方法 | |
JP6323861B2 (ja) | 表面修飾メソポーラスシリカナノ粒子の製造方法 | |
JP5126714B2 (ja) | 架橋構造を有する高分子でシェル部分を構成したコアシェル型金属酸化物微粒子及びその用途 | |
TW201831402A (zh) | 二氧化矽粒子分散液及其製造方法 | |
CN107250047A (zh) | 氧化钛颗粒的有机溶剂分散体的制造方法 | |
JP6102393B2 (ja) | 中空シリカナノ粒子の製造方法 | |
WO2014119913A1 (ko) | 수분산성이 뛰어난 실리카 나노입자 제조 방법 | |
JP4803630B2 (ja) | 高純度疎水性有機溶媒分散シリカゾルの製造方法 | |
JP5334884B2 (ja) | 塗料組成物 | |
KR100550355B1 (ko) | 글리콜을 이용한 산화아연의 제조방법 | |
JP2017197416A (ja) | シリカ粒子分散体及び表面処理シリカ粒子 | |
JP4044350B2 (ja) | 無孔質球状シリカ及びその製造方法 | |
JP2005194308A (ja) | 徐放性香料担体及びそれを用いた徐放性香料 | |
JP6064338B2 (ja) | 酸化チタンの非極性有機溶媒分散液の製造方法 | |
JP2010235368A (ja) | ジルコニア粒子及びその製造方法、並びにジルコニア粒子を含有する分散液 | |
Kaneko et al. | Sol‐Gel Preparation of Highly Water‐Dispersible Silsesquioxane/Zirconium Oxide Hybrid Nanoparticles | |
JP3729234B2 (ja) | 微粒子分散体およびその製造方法 | |
KR101715777B1 (ko) | 실리콘 입자 및 이의 제조방법 | |
JP5769932B2 (ja) | 酸化チタンゾル及びその製造方法、並びに酸化チタン含有ポリマー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15803665 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15315616 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2016525130 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167034863 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015803665 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015803665 Country of ref document: EP |