WO2015176562A1 - 一种pta工业装置氧化单元中醋酸溶剂的处理方法 - Google Patents

一种pta工业装置氧化单元中醋酸溶剂的处理方法 Download PDF

Info

Publication number
WO2015176562A1
WO2015176562A1 PCT/CN2015/072719 CN2015072719W WO2015176562A1 WO 2015176562 A1 WO2015176562 A1 WO 2015176562A1 CN 2015072719 W CN2015072719 W CN 2015072719W WO 2015176562 A1 WO2015176562 A1 WO 2015176562A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
tank
liquid
filtrate
acetic acid
Prior art date
Application number
PCT/CN2015/072719
Other languages
English (en)
French (fr)
Inventor
赵旭
张万尧
孙中心
张麦奎
谭永鹏
瞿向楠
王天宝
申涛
王瑞
梁元月
冯小朋
张国海
Original Assignee
天华化工机械及自动化研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天华化工机械及自动化研究设计院有限公司 filed Critical 天华化工机械及自动化研究设计院有限公司
Priority to RU2016148916A priority Critical patent/RU2652090C1/ru
Priority to ES15796649T priority patent/ES2826602T3/es
Priority to JP2016568822A priority patent/JP6298179B2/ja
Priority to EP15796649.0A priority patent/EP3147276B1/en
Priority to US15/312,504 priority patent/US9902680B2/en
Publication of WO2015176562A1 publication Critical patent/WO2015176562A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/12Filter presses, i.e. of the plate or plate and frame type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid

Definitions

  • the invention relates to the technical field of energy saving and consumption reduction, in particular to a method for treating acetic acid (CTA) solvent in crude terephthalic acid in an oxidation unit of a PTA industrial device.
  • CTA acetic acid
  • the crude terephthalic acid slurry produced by the reaction contains a large amount of acetic acid, and the acetic acid in the crude terephthalic acid needs to be removed before the PTA purification according to the process requirements.
  • the process technology of “centrifuge or vacuum filter filtration + steam rotary drying” is commonly used in industrial production. The process is mainly divided into two parts: filtration and drying.
  • the process route is: the crude terephthalic acid slurry containing a large amount of acetic acid produced by the reaction first enters into a centrifuge or a vacuum filter under the action of a slurry pump, where the slurry Part of the acetic acid is separated, and the formed crude terephthalic acid filter cake is then introduced into a steam rotary dryer, and indirectly heated and dried under the action of steam, and the acetic acid in the crude terephthalic acid is further removed by drying. The dried crude terephthalic acid is then beaten by process water and sent to a refining unit.
  • the filtration and drying processes in this process are carried out in different equipments, including vacuum filters, steam rotary dryers, washing towers, etc., as well as more auxiliary equipment and fittings such as fans, pumps and valves.
  • the process flow is long, which makes the operation cumbersome, and the equipment failure rate and safety hazard increase.
  • the process technology includes a lot of electric equipment such as a centrifuge or a vacuum filter, a steam rotary dryer, a pump, a fan, etc., and consumes a large amount of electric energy; the steam rotary dryer uses the latent heat of steam to be used in crude terephthalic acid. Acetic acid is evaporated. This drying process requires a large amount of steam and consumes a large amount of heat. The acetic acid in the dry tail gas requires a large amount of washing water for washing. In addition, since the crude terephthalic acid has a low moisture content after drying, a large amount of process water is required. It is beaten; therefore, the process technology has the disadvantages of high energy consumption and high water consumption.
  • an integrated device-pressure filter is also used to replace the "vacuum centrifuge, dryer, washing tower, powder tank" in the conventional process device, as disclosed in Chinese Patent Application No. CN102476994A.
  • the method comprises the steps of: coarsely filtering the crude terephthalic acid suspension in a pressure filter, and sequentially replacing the crude terephthalic acid with a plurality of washings by using fresh water to replace the acetic acid in the crude terephthalic acid to remove the acetic acid. purpose.
  • the pressure filter is divided into a plurality of chambers. Due to the progress of the washing process, the content of acetic acid in the filter cake is different, which inevitably results in different pressure drops in each chamber, and the long-term operation will be between the chambers. The seal causes damage, causing the washing liquid to flow between the chambers.
  • the technical problem to be solved by the present invention is to provide a method for treating acetic acid (CTA) solvent in an oxidation unit of a PTA industrial device to improve the efficiency of removing acetic acid.
  • CTA acetic acid
  • the method for treating an acetic acid solvent in the oxidation unit of the PTA industrial device of the present invention comprises the following steps:
  • the pressure-containing acetic acid CTA slurry from the upstream PTA industrial unit oxidation unit is first introduced into a filtration zone of a pressure filter to separate the solid particles and acetic acid in the CTA slurry to form a CTA filter cake.
  • the separated mother liquor, and the residual liquid in the filtrate pipeline, and then the separated mother liquor is discharged into a mother liquor tank, and the residual liquid in the filtrate pipeline is biased to the mother liquor tank;
  • the CTA filter cake is sequentially passed through a plurality of washing zones by the rotation of the pressure filter.
  • Level washing in this step, in addition to the washing zone of the last stage washing, each washing zone is connected with a washing liquid tank, and each washing liquid tank supplies washing liquid to each corresponding washing zone to wash the CTA filter cake.
  • the washing water in the last stage washing adopts fresh process water as the washing liquid
  • the washing in the remaining stages adopts multi-stage countercurrent washing method to reflux the washing liquid in the latter stage back to the washing liquid tank in the previous stage;
  • the stepwise washing is performed, the step of biasing the residual liquid in the filtrate pipeline of each stage to the corresponding level of the washing liquid tank;
  • the CTA filter cake after multiple washings is entered into the discharge area by the rotation of the pressure filter, and the CTA filter cake entering the discharge area is sent to a beating tank by back blowing nitrogen and gravity. Mixing with process water from the outside; and, during the process of entering the discharge zone of the CTA filter cake, including draining the residual liquid in the filtrate pipe to a filtrate tank and further diverting to the washing area of the penultimate stage washing Connected washing tank steps.
  • the method for treating an acetic acid solvent in the oxidation unit of the PTA industrial device wherein the mother liquid tank and each of the washing liquid tanks are respectively provided with a pressure adjusting device, and when the pressure of a certain tank is higher than a set pressure drop, the The pressure regulating device on the tank performs a certain venting of the gas in the tank.
  • a certain nitrogen gas is charged into the tank through the pressure regulating device on the tank.
  • the above method for treating an acetic acid solvent in an oxidation unit of a PTA industrial plant further comprising the step of introducing a nitrogen gas into the mother liquid tank and each of the washing liquid tanks to maintain a pressure equalization step of the entire system.
  • the residual liquid in the filtrate pipe is biased to the mother liquid tank by adjusting the position of the spacer in the control head of the pressure filter.
  • the residual liquid in the filtrate conduit is drained to the filtrate tank by adjusting the position of the spacer in the control head of the pressure filter.
  • the washing liquid in the filtrate tank is sent to the washing liquid tank connected to the washing stage of the penultimate stage washing by a pump.
  • the present invention has the following advantages: in the present invention, the technique of biasing and draining is adopted, and the residual liquid in the filtrate pipeline is returned to the washing liquid tank of the corresponding washing zone, thus ensuring the former region.
  • the washing liquid does not enter the next washing area, which has an effect on the washing of the next stage.
  • the actual washing process is basically the same as the ideal washing process, and the washing efficiency is improved.
  • the residual washing liquid can be separated separately by the means of drainage, and can be continuously used as the washing liquid of the upper stage washing, thereby reducing the amount of washing liquid and reducing the cost.
  • the pressure in the mother liquid tank and the washing liquid tank is adjusted by nitrogen gas to adjust the pressure balance of the system, and the method for adjusting the pressure is not only convenient and accurate; and the between the chambers is avoided. The seal is broken, thereby avoiding the problem of the flow of washing liquid between the chambers.
  • Figure 1 is a block diagram showing the flow of a conventional crude terephthalic acid centrifugal or vacuum filtration system.
  • FIG. 2 is a schematic diagram of multi-stage countercurrent washing of crude terephthalic acid in the prior unbiased flow.
  • Figure 3 is a schematic diagram of the process flow of the present invention.
  • Figure 4 is a block diagram showing the process flow of the present invention.
  • Figure 5 is a schematic diagram of multistage countercurrent washing of crude terephthalic acid of the present invention.
  • Fig. 6 is a schematic view showing multistage countercurrent washing of crude terephthalic acid after biasing and drainage according to the present invention.
  • Figure 7 is a simplified schematic view of the pressure filter of Figure 3.
  • Figure 8 is an outline view of the control head of Figure 7.
  • a method for processing an acetic acid (CTA) solvent in an oxidation unit of a PTA industrial device includes the following steps:
  • the crude terephthalic acid slurry produced by the reaction contains ⁇ 35% of TA solids, ⁇ 60% of acetic acid, and enters the filtration zone of the pressure filter 1 at a pressure of 0.3 MPG to 0.6 MPG.
  • the rotation of the pressure filter 1, the TA solid particles in the slurry and acetic acid are gradually separated, and a CTA filter cake is formed, and the separated mother liquid passes through the control head of the pressure filter 1 and enters the mother liquid tank 2;
  • the filter cake formed by the filtration enters the first washing zone as the pressure filter 1 rotates, and at the same time, the washing liquid in the primary washing liquid tank 4 is pressurized by a washing liquid circulation pump 5 to a pressure of 0.3 to 0.6 MPaG.
  • the filter cake is continuously washed in a washing zone (ie, the first stage washing), and the filter cake after one washing enters the second washing zone with the rotation of the pressure filter 1, and the first washing after washing
  • the liquid is distributed through the control head and then enters the recovery washing liquid tank 3;
  • the washing liquid in the secondary washing liquid tank 6 is fed into the second washing zone by the secondary washing liquid circulation pump 7 and the pressure of 0.3-0.6 MPaG, and the washing cake after one washing is continuously washed (ie, the second Level Washing), the filter cake after the second washing enters the third washing zone with the rotation of the pressure filter 1, and the second washing liquid after washing is distributed into the washing liquid tank 4 through the control head;
  • the washing liquid in the three washing liquid tanks 8 is fed into the third washing zone by the pressure of 0.3 to 0.6 MPaG by the three washing liquid circulation pump 9, and the washing cake after the second washing is continuously washed (ie, the first The third-stage washing), the filter cake after three washings enters the fourth washing zone as the pressure filter 1 rotates, and the three washing liquids after washing are distributed through the control head and then enter the secondary washing liquid tank 6;
  • the washing liquid in the four washing liquid tanks 10 is fed into the fourth washing zone by the pressure of 0.3 to 0.6 MPaG after four times of the washing liquid circulation pump 11, and the washing cake after three washings is continuously washed (ie, the first Four-stage washing), the filter cake after four washings enters the fifth washing zone as the pressure filter 1 rotates, and the four washing liquids after washing are distributed through the control head and then into the three washing liquid tanks 8;
  • process water from the outside enters the fifth washing zone of the pressure filter 1, and further washes the filter cake after four washings (ie, the fifth stage washing) to remove the crude terephthalic acid Acetic acid in formic acid; the five washing liquids after washing are distributed into the washing liquid tank 10 through the control head, and the filter cake after five washings enters the discharge area with the rotation of the pressure filter 1, in Under the action of back-blowing nitrogen (0.1 to 0.3 MPaG) and gravity, it enters the beating tank 12 and is mixed with process water from the outside to be beaten.
  • back-blowing nitrogen 0.1 to 0.3 MPaG
  • the present invention provides a bias flow between different regions of the pressure filter 1, and the bias flow direction is: fifth washing zone - fourth washing zone - third washing zone - second washing zone - first
  • the washing zone-filtration zone after the bias flow, can return the liquid remaining in the filtrate tube to the corresponding area (see Figure 6).
  • the present invention further has a step of biasing the residual liquid in the filtrate conduit to the mother liquid tank; and in the above steps b, c, d, and e, the residue in the filtrate pipeline for washing the various stages is included.
  • the liquid is biased to the washing liquid tank in the corresponding stage; in the above step f, the liquid residue in the filtrate pipe is drained to the filtrate tank 13 and further drained to the countdown in the process of entering the discharge zone of the CTA cake.
  • the washing liquid tank ie, four washing liquid tanks 10) connected to the washing zone of the second washing stage, preferably, the washing liquid in the filtrate tank is passed through the pump 14 (the pump is also called a drainage liquid circulating pump according to its action) It is delivered to the four washing liquid tanks 10.
  • the pressure filter Since the pressure filter is divided into a plurality of chambers, the filtration zone, the first to fifth washing chambers, due to washing During the process, the content of acetic acid in the filter cake is different, which will inevitably lead to different pressure drop in each chamber. The long-term operation will cause damage to the seal between the chambers, causing the washing liquid to flow between the chambers.
  • nitrogen is used to adjust the pressure of the pressure filter, the mother liquid tank and each of the washing liquid tanks, thereby adjusting the pressure drop in each chamber to make them substantially uniform.
  • the present invention further includes a step of introducing 0.1 to 0.2 MPaG of nitrogen into the mother liquid tank and each of the washing liquid tanks to adjust the pressure of the mother liquid tank and the washing liquid tank by nitrogen to maintain the pressure balance of the entire system
  • the mother liquid tank and each The washing liquid tank is respectively provided with a pressure adjusting device.
  • the pressure of a tank is higher than a set pressure drop
  • the gas in the tank is vented through the pressure adjusting device on the tank, when a certain tank is When the pressure is below the set pressure drop, a certain amount of nitrogen is charged into the tank through the pressure regulating device on the tank, thereby maintaining the pressure balance of the entire system.
  • the present invention achieves biasing and drainage by adjusting the position of the spacers within the control head of the pressure filter. That is, the residual liquid in the filtrate pipe is biased to the mother liquid tank by adjusting the position of the isolation block in the control head of the pressure filter; and the position of the isolation block in the control head of the pressure filter is adjusted to make the filtrate in each stage of the filtrate The residual liquid is biased to the washing liquid tank of the corresponding stage; the residual liquid in the filtrate pipe is drained to the filtrate tank by adjusting the position of the partition in the control head of the pressure filter.
  • the pressure filter 1 employed in the present invention includes a frame 18 and a control head 23.
  • the frame 18 is divided into a feeding zone 19, a primary washing unit chamber 24, and a secondary washing unit chamber by an isolation block A21, an isolation block B25, an isolation block C30, an isolation block D35, an isolation block E40, an isolation block F44, and an isolation block G48.
  • Three washing unit chambers 33, four washing unit chambers 37, five washing unit chambers 42, and discharging unit II 46; the control head 23 is provided by the partition block a22, the partition block b28, the partition block c31, the partition block d36, and the partition block.
  • isolation block f43, isolation block g47 is divided into mother liquid chamber 20, primary filtrate chamber 26, secondary filtrate chamber 29, tertiary filtrate chamber 32, four filtrate chambers 38, five filtrate chambers 41, unloading Material area I 45; isolation block A21, isolation block B25, isolation block C30, isolation block D35, isolation block E40, isolation block F44, isolation block G48 and isolation block a22, isolation block b28, isolation block c31, isolation block d36, isolation
  • the block e39, the block f43, and the block g47 are in one-to-one correspondence; the control head 23 is provided with an adjustment plate 49; the end of the fifth filtrate chamber 41 is provided with a drain port 50; the primary washing unit chamber 24, the secondary washing unit chamber 27, The three washing unit chambers 33, the four washing unit chambers 37, and the five washing unit chambers 42 respectively pass A liquid pipe 34 and the filtrate chamber 26, the secondary filtrate chamber 29, chamber 32 and the filtrate three times, four times and the filtrate chamber 38, one-f
  • the separation of the control head 23 can be adjusted.
  • the block a22 is advanced by an angle ⁇ 1 from the corresponding frame 18 isolating block A21 so that the residual mother liquid enters the corresponding mother liquid chamber 20 during the time when the drum rotates by ⁇ 1, and the mother liquid chamber 20 communicates with the mother liquid tank 2 through the pipeline.
  • the position of the partition b28 between the filtrate chamber 26 and the secondary filtrate chamber 29 can be adjusted to isolate the primary liquid.
  • the block b28 is advanced by an angle ⁇ 2 from the corresponding frame 18 isolation block B25 so that the remaining filtrate enters the corresponding primary filtrate chamber 26 during the time when the drum rotates by ⁇ 2, and the primary filtrate chamber 26 communicates with the primary washing liquid tank 4 through the pipeline.
  • the position of the partition block c31 between the secondary filtrate chamber 29 and the tertiary filtrate chamber 32 can be adjusted.
  • the spacer block c31 is advanced by ⁇ 3 angle from the corresponding frame 18 isolation block C30, so that the residual secondary filtrate enters the corresponding secondary filtrate chamber 29 during the time when the drum rotates by ⁇ 3, and the secondary filtrate chamber 29 passes through the pipeline and the secondary washing.
  • the liquid tank 6 is in communication.
  • the position of the partition block d36 between the three filtrate chambers 32 and the four filtrate chambers 38 can be adjusted to isolate
  • the block d36 leads the block D35 by an angle ⁇ 4 than the corresponding frame 18, so that the remaining three filtrates enter the corresponding three filtrate chambers 32 during the time when the drum rotates by ⁇ 4, and the three filtrate chambers 32 communicate with the three washing liquid tanks 8 through the pipeline.
  • the position of the partition block e39 between the filtrate chamber 38 and the five filtrate chambers 41 can be adjusted four times.
  • the isolation block e39 is advanced by an angle of ⁇ 5 from the corresponding frame 18 isolation block E40, so that the remaining four filtrates enter the corresponding four-stage filtrate chamber 38 during the time when the drum rotates by ⁇ 5, and the four filtrate chambers 38 pass through the pipeline and four times.
  • the washing liquid tank 10 is in communication.
  • the position of the partition block f43 between the filtrate chamber 41 and the discharge area I 45 can be adjusted five times to make the partition block f43.
  • Corresponding frame 18 isolating block F40, and draining the residual liquid from the drain port 50 on the filtrate line to the filtrate tank 13 by means of a suction unit, and transporting it to the fourth filtrate tank 10 through the drain liquid circulation pump 14 connected to the filtrate tank 13. in.
  • the invention adopts the techniques of bias flow and drainage to return the residual liquid in the filtrate pipeline to the washing liquid tank of the corresponding washing zone, thereby ensuring that the washing liquid in the previous area does not enter the next washing area, and the next stage The washing effect is affected and the washing efficiency is improved.
  • the residual washing liquid can be separated separately by the means of drainage, and can be continuously used as the washing liquid of the upper stage washing, thereby reducing the amount of washing liquid and reducing the cost.
  • the present invention regulates the pressure balance of the system by adjusting the pressure in the pressure filter, the mother liquid tank and the washing liquid tank by means of nitrogen gas. This method of adjusting the pressure is not only convenient and accurate, but also avoids between the chambers. The seal is broken, thereby avoiding the problem of the flow of washing liquid between the chambers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种PTA工业装置氧化单元中醋酸溶剂的处理方法,该方法利用压力过滤机将粗对苯二甲酸浆料进行过滤,随后使用多级逆流的方法,利用洗涤水将醋酸溶剂进行洗涤,并设置偏流、引流的手段,防止滤液管中残留的液体随着压力过滤机的转动进入到下一区域,提高了洗涤效率、减少了洗涤水的用量,本发明将粗对苯二甲酸的过滤、洗涤过程集成于单台压力过滤机,使得流程缩短,减少了占地面积,能耗较低。并采用了向母液罐及洗涤液罐中通入氮气的方法来调节系统的压力平衡。

Description

一种PTA工业装置氧化单元中醋酸溶剂的处理方法 技术领域
本发明涉及到节能降耗技术领域,具体地说,是涉及PTA工业装置氧化单元中,粗对苯二甲酸中醋酸(CTA)溶剂的处理方法。
背景技术
在PTA工业装置氧化单元中,反应产生的粗对苯二甲酸浆料中含有大量的醋酸,根据工艺的需求,在PTA精制之前,需将粗对苯二甲酸中的醋酸除去。目前,工业生产中普遍采用“离心机或真空过滤机过滤+蒸汽回转干燥”的工艺技术,该工艺主要分为过滤、干燥两部分。
如图1所示,该工艺路线是:反应产生的含有大量醋酸的粗对苯二甲酸浆料在浆料泵的作用下首先进入到离心机或真空过滤机中,在此,浆料中的部分醋酸被分离,形成的粗对苯二甲酸滤饼随后进入到蒸汽回转干燥机中,并在蒸汽的作用下进行间接加热干燥,利用干燥的方法进一步将粗对苯二甲酸中的醋酸除去,经过干燥后的粗对苯二甲酸再通过工艺水打浆后输送到精制单元。
该工艺技术的不足之处在于:
①工艺流程长,附属设备多
此工艺技术中的过滤、干燥过程分别在不同的设备中进行,主要包括:真空过滤机、蒸汽回转干燥机、洗涤塔等,另外还包括风机、泵、阀门等较多的附属设备及管件,工艺流程较长,从而使得操作繁琐,设备的故障率及安全隐患增加。
②设备投资高,占地面积大
该工艺技术中,设备较多,从而导致设备的投资较高,由于粗对苯二甲酸的粘性高,需要对真空过滤机的滤芯进行经常的清洗或更换,因此,在工业生产装置中,真空过滤机一般采用一开一备的方式,从而进一步增加了压力过滤机的投资。蒸汽回转干燥机较大的体积以及较多的附属压力过滤机均增加了占地面积。
③耗能较高
该工艺技术中,包括离心机或真空过滤机、蒸汽回转干燥机、泵、风机等较多的动设备,需消耗大量的电能;蒸汽回转干燥机采用蒸汽的潜热将粗对苯二甲酸中的醋酸进行蒸发,此干燥过程需要大量的蒸汽,消耗大量的热能;干燥尾气中的醋酸需要大量的洗涤水进行洗涤,另外,由于干燥后粗对苯二甲酸湿含量很低,需要大量的工艺水对其进行打浆;因此,该工艺技术具有高耗能、高水耗的缺点。
现有技术中也有采用集成设备-压力过滤机替代传统工艺装置中的“真空离心机、干燥机、洗涤塔、粉料罐”多套设备,如,公布号为CN102476994A的中国发明专利申请公开的方法,其利用压力过滤机中对粗对苯二甲酸悬浮液粗过滤后,利用新鲜水依次轮换对粗对苯二甲酸进行多次洗涤来置换粗对苯二甲酸中的醋酸,达到去除醋酸的目的。
然而,由于压力过滤机在实际运行的过程中,前一洗涤区的洗涤液会通过滤液管进入到下一洗涤区域,如图2所示,这样会导致下一洗涤区内洗涤液浓度的增加,从而会大大降低洗涤过程的洗涤效率,为了达到产品的要求,不得不增加洗涤水的用量。另外,压力过滤机分为多个腔室,由于洗涤过程的进行,滤饼中醋酸的含量是不同的,必然会导致每个腔室的压降不同,长期运行下去会对腔室之间的密封造成破坏,导致洗涤液在腔室之间串流。
发明公开
本发明所要解决的技术问题是:提供一种PTA工业装置氧化单元中醋酸(CTA)溶剂的处理方法,以提高去除醋酸的效率。
为了解决上述技术问题,本发明的PTA工业装置氧化单元中醋酸溶剂的处理方法,包括如下步骤:
S100,将来自上游PTA工业装置氧化单元中的带有压力的醋酸CTA浆料首先进入到一压力过滤机的过滤区中,以对CTA浆料中的固体颗粒和醋酸进行分离,形成CTA滤饼、分离后的母液、以及滤液管道内的残留液,然后将分离后的母液排入至一母液罐中,并将滤液管道内的残留液偏流至所述母液罐中;
S200,借助所述压力过滤机的转动将CTA滤饼依次通过多个洗涤区进行逐 级洗涤,在本步骤中,除最后一级洗涤的洗涤区外,每一洗涤区对应连接一洗涤液罐,每一洗涤液罐向各自对应的洗涤区提供洗涤液以对CTA滤饼进行洗涤,最后一级洗涤的洗涤区采用新鲜的工艺水作为洗涤液,而其余各级洗涤采用多级逆流洗涤方式将后一级洗涤后的洗涤液逆流回前一级的洗涤液罐;并,在进行逐级洗涤时,包括将各级洗涤的滤液管道内的残留液偏流至对应级的洗涤液罐内步骤;
S300,借助所述压力过滤机的转动将经多次洗涤后的CTA滤饼进入到卸料区,通过反吹氮气及重力的作用将进入到卸料区的CTA滤饼送入到一打浆罐中,与来自外界的工艺水混合打浆;并,在CTA滤饼进入到卸料区过程中,包括将滤液管道内的残留液引流至一滤液罐并进一步引流至倒数第二级洗涤的洗涤区连接的洗涤液罐步骤。
上述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其中,最前一洗涤区还对应连接一回收用洗涤液罐,在所述步骤S200中,还包括通过该回收用洗涤液罐回收最前一级洗涤的洗涤液步骤。
上述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其中,所述母液罐及各洗涤液罐上分别设置有压力调节装置,当某罐子的压力高于一设定的压降时,通过该罐上的压力调节装置将该罐子中的气体进行一定的放空,当某个罐子的压力低于设定的压降时,通过该罐上的压力调节装置将一定氮气充入到该罐子中。
上述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其中,还包括向母液罐及各洗涤液罐中通入氮气以维持整个系统的压力平衡步骤。
上述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其中,在所述步骤S100中,通过调整压力过滤机的控制头内的隔离块位置使滤液管道内的残留液偏流至母液罐中。
上述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其中,在所述步骤S200中,通过调整压力过滤机的控制头内的隔离块位置使各级洗涤的滤液管道内的残留液偏流至对应级的洗涤液罐内。
上述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其中,在所述步骤S300中,通过调整压力过滤机的控制头内的隔离块位置将滤液管道内的残留液引流至滤液罐。
上述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其中,在所述步骤S300中,通过一泵将滤液罐内的洗涤液输送至倒数第二级洗涤的洗涤区连接的洗涤液罐内。
本发明与现有技术相比具有以下优点:本发明中,采用了偏流和引流的技术,使滤液管道内的残留液返回到相对应洗涤区的洗涤液罐中,这样就保证了前一区域的洗涤液不会进入到下一洗涤区域,对下一级的洗涤造成影响,通过偏流和引流后,其实际的洗涤过程与理想的洗涤过程基本相同,提高了洗涤效率。并通过引流的手段可以将残留的洗涤液单独分离出来,作为上一级洗涤的洗涤液继续使用,从而能减少洗涤液用量,降低成本。
更进一步地,本发明中,通过氮气来调节母液罐及洗涤液罐中的压力,以此来调节系统的压力平衡,这种调节压力的方法不仅方便、准确;且避免了腔室之间的密封破坏,从而避免了洗涤液在腔室之间串流的问题。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图简要说明
图1为现有粗对苯二甲酸离心或真空过滤系统的流程方框图。
图2为现有未偏流时粗对苯二甲酸的多级逆流洗涤示意图。
图3为本发明的工艺流程简图。
图4为本发明的工艺流程方框图。
图5为本发明粗对苯二甲酸多级逆流洗涤示意图。
图6为本发明偏流和引流后粗对苯二甲酸多级逆流洗涤示意图。
图7为图3中的压力过滤机简化示意图。
图8为图7中的控制头外形图。
其中,附图标记
1-压力过滤机
2-母液罐
3-回收用洗涤液罐
4-一次洗涤液罐
5-一次洗涤液循环泵
6-二次洗涤液罐
7-二次洗涤液循环泵
8-三次洗涤液罐
9-三次洗涤液循环泵
10-四次洗涤液罐
11-四次洗涤液循环泵
12-打浆罐
13-滤液罐
14-引流液循环泵
18-框架
19-进料区
20-母液腔室
21-隔离块A
22-隔离块a
23-控制头
24-一次洗涤单元室
25-隔离块B
26-一次滤液腔室
27-二次洗涤单元室
28-隔离块b
29-二次滤液腔室
30-隔离块C
31-隔离块c
32-三次滤液腔室
33-三次洗涤单元室
34-滤液管
35-隔离块D
36-隔离块d
37-四次洗涤单元室
38-四次滤液腔室
39-隔离块e
40-隔离块E
41-五次滤液腔室
42-五次洗涤单元室
43-隔离块f
44-隔离块F
45-卸料区I
46-卸料区II
47-隔离块g
48-隔离块G
49-调节板
50-引流口
实现本发明的最佳方式
下面结合附图和具体实施例对本发明技术方案进行详细的描述,以更进一步了解本发明的目的、方案及功效,但并非作为本发明所附权利要求保护范围的限制。
结合参阅图3至图6,本发明实施例中的PTA工业装置氧化单元中醋酸(CTA)溶剂的处理方法,其步骤包括:
a.反应产生的粗对苯二甲酸浆料中,含有~35%的TA固体,~60%的醋酸,在0.3MPG~0.6MPG的压力下进入到压力过滤机1的过滤区中,随着压力过滤机1的转动,浆料中的TA固体颗粒和醋酸逐渐进行分离,并形成CTA滤饼,分离后的母液,通过压力过滤机1的控制头后进入到母液罐2中;
b.过滤形成的滤饼随着压力过滤机1的转动进入到第一洗涤区,同时,一次洗涤液罐4中的洗涤液通过一次洗涤液循环泵5加0.3~0.6MPaG压力后进入到第一洗涤区中对滤饼不断的进行洗涤(即,第一级洗涤),经一次洗涤后的滤饼随着压力过滤机1的转动进入到第二洗涤区中,洗涤后的第一次洗涤液通过控制头分配后进入到回收用洗涤液罐3中;
c.二次洗涤液罐6中的洗涤液通过二次洗涤液循环泵7加0.3~0.6MPaG压力后进到第二洗涤区中,对一次洗涤后的滤饼不断的进行洗涤(即,第二级 洗涤),经二次洗涤后的滤饼随着压力过滤机1的转动进入到第三洗涤区中,洗涤后的第二次洗涤液通过控制头分配后进入到一次洗涤液罐4中;
d.三次洗涤液罐8中的洗涤液通过三次洗涤液循环泵9加0.3~0.6MPaG压力后进入到第三洗涤区中,并对二次洗涤后的滤饼不断的进行洗涤(即,第三级洗涤),经三次洗涤后的滤饼随着压力过滤机1的转动进入到第四洗涤区中,洗涤后的三次洗涤液通过控制头分配后进入到二次洗涤液罐6中;
e.四次洗涤液罐10中的洗涤液通过四次洗涤液循环泵11加0.3~0.6MPaG压力后进入到第四洗涤区中,对三次洗涤后的滤饼不断的进行洗涤(即,第四级洗涤),经四次洗涤后的滤饼随着压力过滤机1的转动进入到第五洗涤区中,洗涤后的四次洗涤液通过控制头分配后进入到三次洗涤液罐8中;
f.来自外界的90~100℃工艺水进入到压力过滤机1的第五洗涤区中,并对四次洗涤后的滤饼进一步进行洗涤(即,第五级洗涤),除去粗对苯二甲酸中的醋酸;洗涤后的五次洗涤液通过控制头分配后进入到四次洗涤液罐10中,经五次洗涤后的滤饼随着压力过滤机1的转动进入到卸料区,在反吹氮气(0.1~0.3MPaG)及重力的作用下进入到打浆罐12中,并与来自外界的工艺水混合打浆。
在上述步骤中,若不进行偏流处理,粗对苯二甲酸的过滤、洗涤过程中,滤液管中的残留液体会随着压力过滤机1的转动带入到下一洗涤区域,残留液体的流动方向为:过滤区-第一洗涤区-第二洗涤区-第三洗涤区-第四洗涤区-第五洗涤区-卸料区。为了避免这-情况的发生,本发明通过在压力过滤机1不同区域之间设置偏流,偏流经过方向为:第五洗涤区-第四洗涤区-第三洗涤区-第二洗涤区-第一洗涤区-过滤区,通过偏流后,可以将滤液管中残留的液体返回到相对应的区域(见图6)。正因为如此,本发明在上述步骤a中,还具有将滤液管道内的残留液偏流至母液罐中步骤;在上述b、c、d、e步骤中包括将各级洗涤的滤液管道内的残留液偏流至对应级的洗涤液罐内步骤;在上述f步骤中,还包括在CTA滤饼进入到卸料区过程中,将滤液管道内的残留液引流至滤液罐13并进一步引流至倒数第二级洗涤的洗涤区连接的洗涤液罐(即四次洗涤液罐10)步骤,较佳地,通过泵14(该泵根据其作用,亦叫引流液循环泵)将滤液罐内的洗涤液输送至四次洗涤液罐10内。
由于压力过滤机分为多个腔室,过滤区、第一到第五洗涤室,由于洗涤过 程的进行,滤饼中醋酸的含量是不同的,必然会导致每个腔室的压降不同,长期运行下去会对腔室之间的密封造成破坏,导致洗涤液在腔室之间串流,为了避免这一情况的发生,本发明中采用氮气来调节压力过滤机、母液罐及各洗涤液罐的压力,从而调节各个腔室内的压降,使其基本一致。正因为如此,本发明还包括向母液罐及各洗涤液罐中通入0.1~0.2MPaG氮气步骤,以通过氮气调节母液罐及洗涤液罐的压力以维持整个系统的压力平衡,母液罐及各洗涤液罐上分别设置有压力调节装置,当某罐子的压力高于一设定的压降时,通过该罐上的压力调节装置将该罐子中的气体进行一定的放空,当某个罐子的压力低于设定的压降时,通过该罐上的压力调节装置将一定氮气充入到该罐子中,从而维持整个系统的压力平衡。
本发明是通过调整压力过滤机的控制头内的隔离块位置来实现偏流和引流的。即,通过调整压力过滤机的控制头内的隔离块位置使滤液管道内的残留液偏流至母液罐中;通过调整压力过滤机的控制头内的隔离块位置使各级洗涤的滤液管道内的残留液偏流至对应级的洗涤液罐内;通过调整压力过滤机的控制头内的隔离块位置将滤液管道内的残留液引流至滤液罐。
结合参阅图7和图8,本发明采用的压力过滤机1包括框架18和控制头23。框架18由隔离块A21、隔离块B25、隔离块C30、隔离块D35、隔离块E40、隔离块F44、隔离块G 48分为进料区19、一次洗涤单元室24、二二次洗涤单元室27、三次洗涤单元室33、四次洗涤单元室37、五次洗涤单元室42、卸料区II 46;控制头23由隔离块a22、隔离块b28、隔离块c31、隔离块d36、隔离块e39、隔离块f43、隔离块g47分为母液腔室20、一次滤液腔室26、二次滤液腔室29、三次滤液腔室32、四次滤液腔室38、五次滤液腔室41、卸料区I 45;隔离块A21、隔离块B25、隔离块C30、隔离块D35、隔离块E40、隔离块F44、隔离块G48与隔离块a22、隔离块b28、隔离块c31、隔离块d36、隔离块e39、隔离块f43、隔离块g47一一对应;控制头23上设有调节板49;五次滤液腔室41末端设有引流口50;一次洗涤单元室24、二次洗涤单元室27、三次洗涤单元室33、四次洗涤单元室37、五次洗涤单元室42分别通过滤液管34与一次滤液腔室26、二次滤液腔室29、三次滤液腔室32、四次滤液腔室38、五次滤液腔室41一一对应相连。
为了能使滤液管道内的残留液偏流至母液罐中,可通过调整控制头23的隔 离块a22使其比对应框架18隔离块A21超前θ1角度,以便残留母液在转鼓转过θ1角度的时间内进入对应母液腔室20,母液腔室20通过管线与母液罐2连通。
为了能使第一级洗涤后的滤液管道内的残留液偏流至一次洗涤液罐4中,可通过调整一次滤液腔室26与二次滤液腔室29之间的隔离块b28的位置,使隔离块b28比对应框架18隔离块B25超前θ2角度,以便残留一次滤液在转鼓转过θ2角度的时间内进入对应一次滤液腔室26,一次滤液腔室26通过管线与一次洗涤液罐4连通。
为了能使第二级洗涤后的滤液管道内的残留液偏流至二次洗涤液罐6中,可通过调整二次滤液腔室29与三次滤液腔室32之间的隔离块c31的位置,使隔离块c31比对应框架18隔离块C30超前θ3角度,以便残留二次滤液在转鼓转过θ3角度的时间内进入对应二次滤液腔室29,二次滤液腔室29通过管线与二次洗涤液罐6连通。
为了能使第三级洗涤后的滤液管道内的残留液偏流至三次洗涤液罐8中,可通过调整三次滤液腔室32与四次滤液腔室38之间的隔离块d36的位置,使隔离块d36比对应框架18隔离块D35超前θ4角度,使残留三次滤液在转鼓转过θ4角度的时间内进入对应三次滤液腔室32,三次滤液腔室32通过管线与三次洗涤液罐8连通。
为了能使第四级洗涤后的滤液管道内的残留液偏流至四次洗涤液罐10中,可通过调整四次滤液腔室38与五次滤液腔室41之间的隔离块e39的位置,使隔离块e39比对应框架18隔离块E40超前θ5角度,使残留四次滤液在转鼓转过θ5角度的时间内进入对应四次滤液腔室38,四次滤液腔室38通过管线与四次洗涤液罐10连通。
为了能将第五级洗涤后的滤液管道内的残留液引流至滤液罐13中,可通过调整五次滤液腔室41与卸料区I 45之间的隔离块f43的位置,使隔离块f43对应框架18隔离块F40,并借助一抽吸机组将残留液从滤液管道上的引流口50引流至滤液罐13,并通过与滤液罐13相连的引流液循环泵14输送至四次滤液罐10中。
五次洗涤结束后,随着转鼓的旋转滤饼进入框架18中卸料区II 46,同时卸料气从控制头23中的卸料区I 45进入,对滤饼进行反吹,将滤饼卸至打浆罐 12中进行打浆,得到浆料并输出。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业应用性
本发明采用了偏流和引流的技术,使滤液管道内的残留液返回到相对应洗涤区的洗涤液罐中,保证了前一区域的洗涤液不会进入到下一洗涤区域,对下一级的洗涤造成影响,,提高了洗涤效率。并通过引流的手段可以将残留的洗涤液单独分离出来,作为上一级洗涤的洗涤液继续使用,从而能减少洗涤液用量,降低成本。更,本发明通过氮气来调节压力过滤机、母液罐及洗涤液罐中的压力,以此来调节系统的压力平衡,这种调节压力的方法不仅方便、准确;且避免了腔室之间的密封破坏,从而避免了洗涤液在腔室之间串流的问题。

Claims (8)

  1. 一种PTA工业装置氧化单元中醋酸溶剂的处理方法,其特征在于,包括如下步骤:
    S100,将来自上游PTA工业装置氧化单元中的带有压力的醋酸CTA浆料首先进入到一压力过滤机的过滤区中,以对CTA浆料中的固体颗粒和醋酸进行分离,形成CTA滤饼、分离后的母液、以及滤液管道内的残留液,然后将分离后的母液排入至一母液罐中,并将滤液管道内的残留液偏流至所述母液罐中;
    S200,借助所述压力过滤机的转动将CTA滤饼依次通过多个洗涤区进行逐级洗涤,在本步骤中,除最后一级洗涤的洗涤区外,每一洗涤区对应连接一洗涤液罐,每一洗涤液罐向各自对应的洗涤区提供洗涤液以对CTA滤饼进行洗涤,最后一级洗涤的洗涤区采用新鲜的工艺水作为洗涤液,而其余各级洗涤采用多级逆流洗涤方式将后一级洗涤后的洗涤液逆流回前一级的洗涤液罐;并,在进行逐级洗涤时,包括将各级洗涤的滤液管道内的残留液偏流至对应级的洗涤液罐内步骤;
    S300,借助所述压力过滤机的转动将经多次洗涤后的CTA滤饼进入到卸料区,通过反吹氮气及重力的作用将进入到卸料区的CTA滤饼送入到一打浆罐中,与来自外界的工艺水混合打浆;并,在CTA滤饼进入到卸料区过程中,包括将滤液管道内的残留液引流至一滤液罐并进一步引流至倒数第二级洗涤的洗涤区连接的洗涤液罐步骤。
  2. 根据权利要求1所述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其特征在于,最前一洗涤区还对应连接一回收用洗涤液罐,在所述步骤S200中,还包括通过该回收用洗涤液罐回收最前一级洗涤的洗涤液步骤。
  3. 根据权利要求2所述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其特征在于,还包括向母液罐及各洗涤液罐中通入氮气以维持整个系统的压力平衡步骤。
  4. 根据权利要求3所述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其特征在于,所述母液罐及各洗涤液罐上分别设置有压力调节装置,当某罐子的压力高于一设定的压降时,通过该罐上的压力调节装置将该罐子中的气体进行一定的放空,当某个罐子的压力低于设定的压降时,通过该罐上的压力调节装置将一定氮气充入到该罐子中。
  5. 根据权利要求1所述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其特征在于,在所述步骤S100中,通过调整压力过滤机的控制头内的隔离块位置使母液排入至母液罐中,并使滤液管道内的残留液偏流至母液罐中。
  6. 根据权利要求1所述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其特征在于,在所述步骤S200中,通过调整压力过滤机的控制头内的隔离块位置使各级洗涤的滤液管道内的残留液偏流至对应级的洗涤液罐内。
  7. 根据权利要求1所述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其特征在于,在所述步骤S300中,通过调整压力过滤机的控制头内的隔离块位置将滤液管道内的残留液引流至滤液罐。
  8. 根据权利要求1所述的PTA工业装置氧化单元中醋酸溶剂的处理方法,其特征在于,在所述步骤S300中,通过一泵将滤液罐内的洗涤液输送至倒数第二级洗涤的洗涤区连接的洗涤液罐内。
PCT/CN2015/072719 2014-05-20 2015-02-11 一种pta工业装置氧化单元中醋酸溶剂的处理方法 WO2015176562A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2016148916A RU2652090C1 (ru) 2014-05-20 2015-02-11 Способ обработки уксусной кислоты-растворителя в окислительном блоке промышленной установки для рта
ES15796649T ES2826602T3 (es) 2014-05-20 2015-02-11 Método de procesamiento de disolvente de ácido acético en unidad oxidante de aparatos industriales de PTA
JP2016568822A JP6298179B2 (ja) 2014-05-20 2015-02-11 Pta産業装置の酸化ユニットにおける酢酸溶媒の処理方法
EP15796649.0A EP3147276B1 (en) 2014-05-20 2015-02-11 Method for processing acetic acid solvent in oxidising unit of pta industrial apparatus
US15/312,504 US9902680B2 (en) 2014-05-20 2015-02-11 Method for processing acetic acid solvent in oxidising unit of PTA industrial apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410211789.5A CN105085231A (zh) 2014-05-20 2014-05-20 一种pta工业装置氧化单元中醋酸溶剂的处理方法
CN201410211789.5 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015176562A1 true WO2015176562A1 (zh) 2015-11-26

Family

ID=54553391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072719 WO2015176562A1 (zh) 2014-05-20 2015-02-11 一种pta工业装置氧化单元中醋酸溶剂的处理方法

Country Status (8)

Country Link
US (1) US9902680B2 (zh)
EP (1) EP3147276B1 (zh)
JP (1) JP6298179B2 (zh)
CN (1) CN105085231A (zh)
ES (1) ES2826602T3 (zh)
PT (1) PT3147276T (zh)
RU (1) RU2652090C1 (zh)
WO (1) WO2015176562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020502192A (ja) * 2017-03-22 2020-01-23 天華化工機械及自動化研究設計院有限公司Tianhua Institute Of Chemical Machinery And Automation Co.,Ltd. Cta溶媒交換方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627438B (zh) 2017-03-23 2020-11-17 天华化工机械及自动化研究设计院有限公司 旋转压力过滤机试验装置、测试方法及过滤机设计方法
CN107158780A (zh) 2017-06-20 2017-09-15 天华化工机械及自动化研究设计院有限公司 一种设有降低过滤机框架压力波动的装置及压力过滤机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1150945A (zh) * 1991-03-07 1997-06-04 帝国化学工业公司 生产对苯二甲酸的方法
CN101045683A (zh) * 2006-03-27 2007-10-03 三井化学株式会社 高纯度对苯二甲酸的制造方法
CN201534023U (zh) * 2009-10-17 2010-07-28 兰州瑞德干燥技术有限公司 一种过滤、洗涤、干燥一体化的连续式压力过滤机
CN102381964A (zh) * 2010-09-01 2012-03-21 天华化工机械及自动化研究设计院 对苯二甲酸洗涤过滤及水回收一体化工艺
CN102476994A (zh) * 2010-11-30 2012-05-30 天华化工机械及自动化研究设计院 精对苯二甲酸装置氧化单元粗对苯二甲酸的“过滤、洗涤、分离”的方法
CN202270412U (zh) * 2011-10-20 2012-06-13 天华化工机械及自动化研究设计院 连续式压力过滤机控制分配头分配和密封结构
CN102992999A (zh) * 2011-09-17 2013-03-27 中国石油化工股份有限公司 精间苯二甲酸装置氧化单元粗间苯二甲酸“过滤、洗涤”套洗方法
CN103387492A (zh) * 2012-05-11 2013-11-13 天华化工机械及自动化研究设计院有限公司 粗对苯二甲酸器外循环过滤、套洗方法
CN103936581A (zh) * 2014-04-24 2014-07-23 天华化工机械及自动化研究设计院有限公司 一种提高cta溶剂交换效率的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG80548A1 (en) * 1991-04-12 2001-05-22 Amoco Corp Process for preparation of terephthalic acid
SE528716C8 (sv) * 2005-06-03 2007-04-24 Metso Paper Inc Anordning för behandling av cellulosamassa i en tvättanordning
CN102311386B (zh) * 2010-07-02 2013-05-15 天华化工机械及自动化研究设计院有限公司 己内酰胺悬浮液过滤、洗涤方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1150945A (zh) * 1991-03-07 1997-06-04 帝国化学工业公司 生产对苯二甲酸的方法
CN101045683A (zh) * 2006-03-27 2007-10-03 三井化学株式会社 高纯度对苯二甲酸的制造方法
CN201534023U (zh) * 2009-10-17 2010-07-28 兰州瑞德干燥技术有限公司 一种过滤、洗涤、干燥一体化的连续式压力过滤机
CN102381964A (zh) * 2010-09-01 2012-03-21 天华化工机械及自动化研究设计院 对苯二甲酸洗涤过滤及水回收一体化工艺
CN102476994A (zh) * 2010-11-30 2012-05-30 天华化工机械及自动化研究设计院 精对苯二甲酸装置氧化单元粗对苯二甲酸的“过滤、洗涤、分离”的方法
CN102992999A (zh) * 2011-09-17 2013-03-27 中国石油化工股份有限公司 精间苯二甲酸装置氧化单元粗间苯二甲酸“过滤、洗涤”套洗方法
CN202270412U (zh) * 2011-10-20 2012-06-13 天华化工机械及自动化研究设计院 连续式压力过滤机控制分配头分配和密封结构
CN103387492A (zh) * 2012-05-11 2013-11-13 天华化工机械及自动化研究设计院有限公司 粗对苯二甲酸器外循环过滤、套洗方法
CN103936581A (zh) * 2014-04-24 2014-07-23 天华化工机械及自动化研究设计院有限公司 一种提高cta溶剂交换效率的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3147276A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020502192A (ja) * 2017-03-22 2020-01-23 天華化工機械及自動化研究設計院有限公司Tianhua Institute Of Chemical Machinery And Automation Co.,Ltd. Cta溶媒交換方法
US20200157034A1 (en) * 2017-03-22 2020-05-21 Tianhua Institute of Chemical Machinery and Automation Co., Ltd Cta solvent exchanging method
US10906858B2 (en) 2017-03-22 2021-02-02 Tianhua Institute of Chemical Machinery and Automation Co., Ltd CTA solvent exchanging method

Also Published As

Publication number Publication date
RU2652090C1 (ru) 2018-04-27
US20170081269A1 (en) 2017-03-23
US9902680B2 (en) 2018-02-27
EP3147276A4 (en) 2018-01-03
JP2017516773A (ja) 2017-06-22
ES2826602T3 (es) 2021-05-18
JP6298179B2 (ja) 2018-03-20
EP3147276A1 (en) 2017-03-29
PT3147276T (pt) 2020-12-07
EP3147276B1 (en) 2020-09-09
CN105085231A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2015176562A1 (zh) 一种pta工业装置氧化单元中醋酸溶剂的处理方法
WO2015161684A1 (zh) 一种溶剂交换机及提高cta溶剂交换效率的方法
CN205360735U (zh) 一种用于呋喃酚生产的全自动连续脱盐装置
CN104826384B (zh) 用于芳族羧酸的过滤机
CN105771417A (zh) 一种过滤回收pta氧化阶段母液中固体颗粒的方法和应用该方法的过滤器
CN109173422A (zh) 一种医药生产中转晶前工序api药液的批次完全过滤工艺
WO2011017870A1 (zh) 精对苯二甲酸制备中cta分离过滤的方法及系统
CN102443122B (zh) 一种聚醚醚酮精制的生产方法
CN105237391B (zh) 一种进一步提高cta溶剂交换效率的方法
WO2018171027A1 (zh) Cta溶剂交换的方法
CN108245986B (zh) 一种用于凝血因子类血液制品生产的血浆吸附过滤装置
CN109529442A (zh) 一种用于石英砂酸洗除铁除杂反应池的过滤装置
CN108114523B (zh) 一种吡唑酮缩合液多级提浓系统
CN218951164U (zh) 一种离心母液物料回收装置
CN212166877U (zh) 一种用于气体检测气体分离装置
CN106734101A (zh) 废硅泥回收处理装置
CN207769256U (zh) 萘系物料磺化反应的原料回收设备
CN104086440A (zh) 一种邻苯二胺母液处理工艺技术
CN208097459U (zh) 梯度层析管路结构
CN107050981B (zh) 一种循环清洗的过滤设备
CN206570123U (zh) 一种聚氯乙烯母液回收处理装置
CN204779436U (zh) 一种茶多酚多级膜浓缩装置
CN204848704U (zh) 一种改进的山梨醇脱色、离子交换一体化系统
CN104710045A (zh) 一种新型印染废水综合处理系统及方法
CN103991926A (zh) 一种全过程自动控制、采用曝气式离子交换装置的电解锰废水离子交换处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796649

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015796649

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015796649

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15312504

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016568822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016148916

Country of ref document: RU

Kind code of ref document: A