WO2015174143A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2015174143A1
WO2015174143A1 PCT/JP2015/059080 JP2015059080W WO2015174143A1 WO 2015174143 A1 WO2015174143 A1 WO 2015174143A1 JP 2015059080 W JP2015059080 W JP 2015059080W WO 2015174143 A1 WO2015174143 A1 WO 2015174143A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
outer peripheral
semiconductor device
fixing member
inner peripheral
Prior art date
Application number
PCT/JP2015/059080
Other languages
English (en)
French (fr)
Inventor
良輔 久保田
錬 木村
田中 聡
一仁 小橋
Original Assignee
住友電気工業株式会社
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, ルネサスエレクトロニクス株式会社 filed Critical 住友電気工業株式会社
Priority to US15/310,549 priority Critical patent/US9831080B2/en
Priority to DE112015002243.0T priority patent/DE112015002243T5/de
Priority to CN201580025703.2A priority patent/CN106415815B/zh
Publication of WO2015174143A1 publication Critical patent/WO2015174143A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02027Setting crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device capable of further reducing the time for heat treatment of a semiconductor substrate.
  • Patent Document 1 discloses an electrostatic chuck that is integrated with a heater for adjusting the temperature of a semiconductor substrate.
  • the substrate is placed at a predetermined position on the electrostatic chuck in a state where the heater is energized and the electrostatic chuck is heated to a predetermined temperature. Then, the electrostatic chuck power source is activated, and the applied voltage to the attracting electrode is cumulatively increased until the substrate temperature reaches a predetermined reference temperature.
  • a device that heats a semiconductor substrate fixed on an electrostatic chuck for example, an ion implantation device or a film forming device
  • heat conduction from the electrostatic chuck to the substrate is non-uniform due to the warp shape inherent to the substrate. Accordingly, the warpage of the substrate placed on the electrostatic chuck is increased. Since it is difficult to attract and hold a substrate with increased warpage in this way, there is a problem that a long stabilization time is required to eliminate the warpage, and as a result, the heat treatment time becomes longer. In particular, since the silicon carbide substrate has an inherent warpage shape depending on the crystal plane orientation, the above problem is more remarkable.
  • an object of the method for manufacturing a semiconductor device according to one embodiment of the present invention is to further shorten the time for heat treatment of the semiconductor substrate.
  • a manufacturing method of a semiconductor device includes a step of preparing a semiconductor substrate, a heating step of fixing the semiconductor substrate on a fixing member and heat-treating the semiconductor substrate, fixing the heating to the fixing member, and heating And a process of processing the processed semiconductor substrate.
  • the heating process is started after the outer peripheral side chucking process for generating an adsorption force between the outer peripheral area of the semiconductor substrate and the outer peripheral part of the fixing member facing the outer peripheral area, and the outer peripheral side chucking process.
  • the time for heat treatment of the semiconductor substrate can be further shortened.
  • FIG. 4 is a flowchart schematically showing a method for manufacturing a semiconductor device according to an aspect of the present invention. It is the schematic for demonstrating the process (S10) of the manufacturing method of the semiconductor device which concerns on 1 aspect of this invention. It is the schematic for demonstrating the process (S21) of the manufacturing method of the semiconductor device which concerns on 1 aspect of this invention. It is a schematic plan view which shows one aspect
  • a method of manufacturing a semiconductor device includes a step of preparing a semiconductor substrate (SiC substrate 10), and fixing the semiconductor substrate on a fixing member (electrostatic chuck 20, vacuum chuck 30).
  • the heating process is started after the outer peripheral side chucking process for generating an adsorbing force between the outer peripheral area 12 of the semiconductor substrate and the outer peripheral part 22 facing the outer peripheral area 12 in the fixing member, and the outer peripheral side chucking process.
  • an inner peripheral chucking step of generating an adsorption force between the inner peripheral region 11 of the semiconductor substrate and the inner peripheral portion 21 facing the inner peripheral region 11 in the fixing member.
  • the suction of the inner peripheral region 11 is started after the start of the suction of the outer peripheral region 12, and the semiconductor substrate is fixed on the fixing member and subjected to heat treatment.
  • region 12 of a semiconductor substrate can be attracted and held to a fixing member more reliably, generation
  • substrate can be suppressed when a semiconductor substrate is mounted on a fixing member. This eliminates the need for a long stabilization time after the semiconductor substrate is placed on the fixing member until the warp is eliminated, and as a result, the heat treatment time can be further shortened.
  • the temperature T 1 of the semiconductor substrate (SiC substrate 10) in the outer peripheral region 12 is 30% or more of the heat treatment temperature T 0 in the heating step. It starts after reaching up to.
  • the inner circumferential side chucking step it is preferable that the temperature of the peripheral region 12 is started after reaching 30% or more of the temperature of the heat treatment temperature T 0, 40% or more of the temperature of the heat treatment temperature T 0 More preferably it is started after reaching.
  • the preparing step the first main surface (main surface 10a) made of silicon carbide and including the (0001) plane and the second main surface including the (000-1) plane A semiconductor substrate (SiC substrate 10) having a surface (main surface 10b) is prepared.
  • the semiconductor substrate is fixed on the fixing member in a state where the second main surface faces the fixing member (electrostatic chuck 20, vacuum chuck 30) side.
  • the SiC substrate 10 has an inherent warp in which the central portion is deformed in a convex shape in the thickness direction from the main surface 10a to the main surface 10b. Therefore, when the SiC substrate 10 is mounted with the main surface 10b facing the fixing member, the inner peripheral region 11 is in contact with the mounting surface 23 and the outer peripheral region 12 is separated from the mounting surface 23 (projecting downward). State). In this case, the heat conduction from the fixing member to the SiC substrate 10 becomes uneven, and the SiC substrate 10 may warp so that the outer peripheral region 12 is further away from the placement surface 23.
  • the state in which the second main surface including the (000-1) plane faces the fixing member side means that the second main surface including the (000-1) surface faces the fixing member side, and This includes a state in which the second main surface having a predetermined off angle (for example, 10 ° or less) with respect to the (000-1) surface faces the fixing member.
  • a predetermined off angle for example, 10 ° or less
  • the fixing member includes an electrostatic chuck 20 that generates an electrostatic attraction force between the semiconductor substrate (SiC substrate 10) and fixes the semiconductor substrate, and preferably the fixing member.
  • the member is an electrostatic chuck 20.
  • the semiconductor substrate can be more firmly fixed on the fixing member by using the electrostatic adsorption force.
  • a voltage is applied to the outer periphery side attracting electrode 20A disposed on the outer periphery portion 22 of the electrostatic chuck 20 to thereby form the outer periphery region 12 and the outer periphery portion 22.
  • An electrostatic attraction force is generated between the two.
  • a voltage is applied to the inner peripheral side attracting electrode 20 ⁇ / b> B disposed on the inner peripheral portion 21 of the electrostatic chuck 20, thereby electrostatically connecting the inner peripheral region 11 and the inner peripheral portion 21.
  • Voltages of different polarities are applied to the outer peripheral adsorption electrode 20A and the inner peripheral adsorption electrode 20B.
  • the fixing member includes a vacuum chuck 30 that generates a vacuum adsorption force between the semiconductor substrate (SiC substrate 10) and fixes the semiconductor substrate.
  • the fixing member is This is a vacuum chuck 30.
  • the semiconductor substrate can be more firmly fixed on the fixing member by utilizing the vacuum adsorption force.
  • a semiconductor substrate (SiC substrate 10) having a diameter of 100 mm or more is prepared.
  • the large-diameter SiC substrate 10 Since the large-diameter SiC substrate 10 has a large amount of warpage, the warpage of the substrate that occurs when placed on the fixing member becomes larger. Therefore, when the diameter of SiC substrate 10 is 100 mm or more, it is preferable to start the suction of inner peripheral region 11 after the start of suction of outer peripheral region 12 to suppress the occurrence of warping of the substrate.
  • a semiconductor substrate (SiC substrate 10) having a thickness of 550 ⁇ m or less (preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less) is prepared.
  • the SiC substrate 10 having a small thickness has a large amount of warpage, the warpage of the substrate that occurs when placed on the fixed member becomes larger. Therefore, when the thickness of the SiC substrate is 550 ⁇ m or less, it is preferable to start the suction of the inner peripheral region 11 after the start of the suction of the outer peripheral region 12 to suppress the occurrence of the warp of the substrate.
  • ion implantation may be performed on the semiconductor substrate (SiC substrate 10). Thereby, the time of the ion implantation process can be further shortened.
  • the “process for processing the semiconductor substrate” is not limited to the case where ion implantation is performed.
  • an etching process such as a semiconductor film, an ashing process such as organic substance removal, or an annealing process for heat treatment may be performed. Thereby, each processing time can be shortened.
  • a semiconductor substrate preparation process is first implemented as process (S10).
  • SiC substrate 10 semiconductor substrate
  • SiC substrate 10 semiconductor substrate
  • the SiC substrate 10 includes a main surface 10a (first main surface) that is a (0001) surface (silicon surface) and a main surface 10b (carbon surface) that is the (000-1) surface (carbon surface) opposite to the main surface 10a.
  • Second main surface main surface
  • the thickness of the SiC substrate 10 is 550 ⁇ m or less, preferably 400 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the diameter of SiC substrate 10 is 100 mm or more (4 inches or more), preferably 150 mm or more (6 inches or more).
  • the SiC substrate 10 has a shape in which the central portion warps in a convex shape in the thickness direction from the main surface 10a to the main surface 10b, and the amount of warpage is equal to or less than the substrate thickness.
  • the amount of warpage of SiC substrate 10 is defined by the length h1 between the highest point and the lowest point in the thickness direction.
  • the semiconductor substrate prepared in this step (S10) is not limited to the SiC substrate 10, and another semiconductor substrate made of a wide band gap semiconductor (a semiconductor having a larger band gap than silicon) may be prepared.
  • a wide band gap semiconductor examples include gallium nitride (GaN) and diamond in addition to silicon carbide.
  • a semiconductor substrate heating step is performed as a step (S20).
  • steps (S21) to (S23) described below are sequentially performed, and the SiC substrate 10 is fixed on the electrostatic chuck 20 and is heated until reaching a predetermined processing temperature.
  • a semiconductor substrate mounting step is performed as a step (S21).
  • SiC substrate 10 is carried into, for example, an ion implantation apparatus (not shown) and placed on placement surface 23 of electrostatic chuck 20.
  • SiC substrate 10 is mounted on electrostatic chuck 20 with main surface 10b facing mounting surface 23.
  • SiC substrate 10 is mounted on mounting surface 23 in a state where inner peripheral region 11 is in contact with mounting surface 23 and outer peripheral region 12 is separated from mounting surface 23.
  • the electrostatic chuck 20 includes, for example, a carbon heater (not shown) and an electrostatic adsorption electrode (an outer circumferential adsorption electrode 20A and an inner circumferential adsorption electrode 20B) inside a ceramic substrate such as boron nitride (p-BN). Is arranged. A coating layer made of a ceramic material such as boron nitride is formed on the surface of the ceramic substrate, and the mounting surface 23 is subjected to a smoothing process such as polishing in order to improve the adhesion of the substrate. ing. The heater and the electrostatic chucking electrode are connected to a power source (not shown). Then, by energizing each of the heater and the electrostatic chucking electrode, the SiC substrate 10 can be fixed on the mounting surface 23 by electrostatic chucking force and heat-treated.
  • a carbon heater not shown
  • an electrostatic adsorption electrode an outer circumferential adsorption electrode 20A and an inner circumferential adsorption electrode 20B
  • the electrostatic chuck 20 includes a circular inner peripheral suction electrode 20 ⁇ / b> B, and an outer peripheral suction electrode 20 ⁇ / b> A having a ring shape and disposed so as to surround the inner peripheral suction electrode 20 ⁇ / b> B. Is arranged. A voltage having the same polarity may be applied to the outer circumferential adsorption electrode 20A and the inner circumferential adsorption electrode 20B, or voltages having different polarities may be applied.
  • suction electrodes are not limited to what was illustrated in FIG.
  • the inner peripheral attracting electrode 20B is disposed in a region within 1/3 of the radius from the central portion of the electrostatic chuck 20, and the outer peripheral attracting electrode 20A is within 1/3 of the radius of the electrostatic chuck 20 from the central portion. You may arrange
  • the inner circumference side adsorption electrode 20B is arranged in a region within 3/4 of the radius from the central portion in the electrostatic chuck 20, and the outer circumference side
  • the side attracting electrode 20 ⁇ / b> A may be disposed in a region located on the outer side in the radial direction of the electrostatic chuck 20 from a region within 3/4 of the radius from the center.
  • the outer peripheral adsorption electrode 20 ⁇ / b> A may be divided into a plurality of electrodes (for example, four divisions) in the circumferential direction. At this time, a voltage having the same polarity may be applied to adjacent electrodes, or a voltage having a different polarity may be applied.
  • outer periphery-side adsorption electrode 20 ⁇ / b> A and inner periphery-side adsorption electrode 20 ⁇ / b> B may be divided into a plurality of electrodes (for example, divided into two) in the radial direction.
  • step (S22) referring to FIG. 7, a predetermined voltage is applied to outer peripheral attracting electrode 20A disposed on outer peripheral portion 22 of electrostatic chuck 20. Thereby, as indicated by an arrow in FIG. 7, an electrostatic adsorption force is generated between the outer peripheral region 12 of the SiC substrate 10 and the outer peripheral portion 22 of the electrostatic chuck 20 to fix the SiC substrate 10.
  • step (S23) is performed along with the above step (S22).
  • the inner peripheral side attracting electrode 20B disposed on the inner peripheral portion 21 of the electrostatic chuck 20 is predetermined. Is applied.
  • an electrostatic force is generated between the inner peripheral region 11 of the SiC substrate 10 and the inner peripheral portion 21 of the electrostatic chuck 20. Adsorption force is generated and SiC substrate 10 is fixed.
  • FIG. 9 is a graph showing temporal changes in the temperature (A) of the inner peripheral region 11 and the temperature (B) of the outer peripheral region 12 of the SiC substrate 10 in the steps (S22) and (S23).
  • the horizontal axis indicates time
  • the vertical axis indicates the substrate temperature.
  • t 0 indicates the start point of voltage application to the outer periphery side adsorption electrode 20A
  • t 1 indicates the start point of voltage application to the inner periphery side adsorption electrode 20B.
  • the temperature of SiC substrate 10 in outer peripheral region 12 is 30% or more of heat treatment temperature T 0 in the semiconductor substrate heating step (S20) (preferably It starts after reaching a temperature T 1 of 40% or more.
  • the temperature of outer peripheral region 12 is the temperature of a region located at a distance of 20% of the radius radially inward from the outer peripheral portion of SiC substrate 10. This temperature can be measured using, for example, a contact-type temperature sensor having a thermocouple or a non-contact-type temperature sensor having a radiation thermometer.
  • the temperature of the outer peripheral region 12 may be a value measured at one measurement point, or may be an average value when measured at a plurality of measurement points.
  • the voltages for the outer periphery side adsorption electrode 20A and the inner periphery side adsorption electrode 20B may be applied so that the voltage value increases stepwise, or may be applied so as to reach the target voltage value at a time. .
  • steps (S22) and (S23) voltages having different polarities may be applied to outer circumferential adsorption electrode 20A and inner circumferential adsorption electrode 20B, or voltages having the same polarity may be applied. May be.
  • the same polarity voltage may be applied to each outer peripheral adsorption electrode 20 ⁇ / b> A, or adjacent outer circumferences A voltage having a different polarity may be applied to the side adsorption electrode 20A.
  • FIG. 5 when the outer peripheral adsorption electrode 20 ⁇ / b> A is divided in the circumferential direction, the same polarity voltage may be applied to each outer peripheral adsorption electrode 20 ⁇ / b> A, or adjacent outer circumferences A voltage having a different polarity may be applied to the side adsorption electrode 20A.
  • FIG. 5 when the outer peripheral adsorption electrode 20 ⁇ / b> A is divided in the circumferential direction, the same polarity voltage may be applied to each outer peripheral adsorption
  • outer periphery side adsorption electrode 20 ⁇ / b> A and inner periphery side adsorption electrode 20 ⁇ / b> B are divided into a plurality of portions in the radial direction, outer periphery side chucking step (S ⁇ b> 21) and inner periphery side chucking are performed.
  • steps (S22) may be further divided into a plurality of steps.
  • the SiC substrate 10 is fixed on the mounting surface 23 of the electrostatic chuck 20 by performing the steps (S21) to (S23). Then, heat treatment is performed until SiC substrate 10 reaches a predetermined processing temperature.
  • an ion implantation step is performed as a step (S30).
  • ion implantation is performed on SiC substrate 10 fixed on electrostatic chuck 20 in the step (S20) and heat-treated until a predetermined processing temperature is reached. Is done. More specifically, a p-type impurity such as aluminum (Al) or boron (B) or an n-type impurity such as phosphorus (P) is implanted into an epitaxial growth layer (not shown) of SiC substrate 10 (FIG. 10 middle arrow). Thereby, p-type and n-type impurity regions are formed in the epitaxial growth layer.
  • an unloading step is performed as a step (S40).
  • this step (S40) first, the polarities of the voltages applied to the outer periphery side adsorption electrode 20A and the inner periphery side adsorption electrode 20B are reversed to reduce the respective electrostatic adsorption forces. Then, after the energization of the suction electrode and the heater is stopped, the SiC substrate 10 is unloaded from the electrostatic chuck 20.
  • a MOSFET Metal Oxide Semiconductor Field Effect
  • a MOSFET Metal Oxide Semiconductor Field Effect
  • a semiconductor device such as a transistor is completed, and the manufacturing method of the semiconductor device according to the present embodiment is completed.
  • the semiconductor device manufacturing method is not limited to the MOSFET manufacturing process, and can be similarly applied to other semiconductor device manufacturing processes such as diodes and IGBTs (Insulated Gate Bipolar Transistors).
  • the manufacturing method of the semiconductor device according to the present embodiment is basically performed by the same process as the manufacturing method of the semiconductor device according to the first embodiment and has the same effects.
  • the semiconductor device manufacturing method according to the present embodiment is different from the first embodiment in the method of fixing the SiC substrate 10 in the step (S20).
  • FIG. 11 shows a planar structure of the vacuum chuck 30 used as a fixing member in the step (S20).
  • vacuum chuck 30 has a mounting surface 30a for mounting SiC substrate 10, and a plurality of suction holes 30b are provided in mounting surface 30a.
  • the SiC substrate 10 is fixed on the mounting surface 30a by a vacuum suction force through the suction holes 30b.
  • the vacuum chuck 30 is provided with an outer peripheral suction region 33 and an inner peripheral suction region 34, and in these regions, vacuum suction force can be generated at different timings.
  • step (S21) SiC substrate 10 is placed on placement surface 30a of vacuum chuck 30.
  • step (S22) referring to FIG. 13, a vacuum suction force is generated between the outer periphery side suction region 33 of the vacuum chuck 30 and the SiC substrate 10.
  • a vacuum adsorption force is generated between the outer peripheral region 12 of the SiC substrate 10 and the outer peripheral portion 32 of the vacuum chuck 30 to fix the SiC substrate 10.
  • step (S23) is performed along with the above step (S22).
  • a vacuum suction force is generated between the inner periphery side suction region 34 of the vacuum chuck 30 and the SiC substrate 10.
  • a vacuum is applied between the inner peripheral region 11 of the SiC substrate 10 and the inner peripheral portion 31 of the vacuum chuck 30 in addition to the vacuum suction force in the outer peripheral suction region 33.
  • Adsorption force is generated and SiC substrate 10 is fixed.
  • the SiC substrate 10 is fixed on the mounting surface 30a of the vacuum chuck 30 by the vacuum adsorption force, and is heated until reaching a predetermined processing temperature.
  • the method for manufacturing a semiconductor device of one embodiment of the present invention can be particularly advantageously applied to a method for manufacturing a semiconductor device that requires a shorter time for heat treatment of a semiconductor substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 半導体装置の製造方法は、SiC基板(10)を準備する工程と、SiC基板(10)を静電チャック(20)上に固定してSiC基板(10)を加熱処理する工程と、静電チャック(20)上に固定され、加熱処理されたSiC基板(10)をイオン注入処理する工程とを備えている。上記加熱処理する工程は、SiC基板(10)の外周領域(12)と、静電チャック(20)において外周領域(12)と対向する外周部分(22)との間に静電吸着力を発生させる外周側チャッキング工程と、外周側チャッキング工程の開始後に開始され、SiC基板(10)の内周領域(11)と、静電チャック(20)において内周領域(11)と対向する内周部分(21)との間に静電吸着力を発生させる内周側チャッキング工程とを含んでいる。

Description

半導体装置の製造方法
 本発明は、半導体装置の製造方法に関し、より特定的には、半導体基板の加熱処理の時間をより短縮することが可能な半導体装置の製造方法に関する。
 従来、シリコン(Si)などの半導体基板への不純物ドーピングや半導体基板上の成膜には、静電吸着力により半導体基板を吸着保持する静電チャックが用いられている。静電チャックとしては、たとえば特開2001-152335号公報(特許文献1)において、半導体基板の温度調整のためのヒータと一体に構成されたものが開示されている。上記特許文献1では、ヒータに通電して静電チャックを所定温度に加熱した状態で基板が静電チャック上の所定位置に載置される。そして、静電チャック電源を起動し、基板温度が所定の基準温度に到達するまで、吸着電極に対する印加電圧を累積的に増加させる。
特開2001-152335号公報
 半導体基板を静電チャック上に固定して加熱処理する装置(たとえばイオン注入装置や成膜装置など)では、基板固有の反り形状などに起因して静電チャックから基板への熱伝導が不均一となり、静電チャック上に載置された基板の反りが大きくなる。このように反りが増大した基板を吸着保持することは困難であるため、当該反りを解消するために長い安定化時間を要し、その結果加熱処理の時間が長くなるという問題がある。特に、炭化珪素基板は結晶の面方位に依存して固有の反り形状を有しているため、上記問題がより顕著である。
 そこで、本発明の一態様に係る半導体装置の製造方法では、半導体基板の加熱処理の時間をより短縮することを目的とする。
 本発明の一態様に係る半導体装置の製造方法は、半導体基板を準備する工程と、半導体基板を固定部材上に固定して半導体基板を加熱処理する加熱工程と、固定部材上に固定され、加熱処理された半導体基板を処理する工程とを備えている。加熱工程は、半導体基板の外周領域と、固定部材において外周領域と対向する外周部分との間に吸着力を発生させる外周側チャッキング工程と、外周側チャッキング工程の開始後に開始され、半導体基板の内周領域と、固定部材において内周領域と対向する内周部分との間に吸着力を発生させる内周側チャッキング工程とを含んでいる。
 本発明の一態様に係る半導体装置の製造方法によれば、半導体基板の加熱処理の時間をより短縮することができる。
本発明の一態様に係る半導体装置の製造方法を概略的に示すフローチャートである。 本発明の一態様に係る半導体装置の製造方法の工程(S10)を説明するための概略図である。 本発明の一態様に係る半導体装置の製造方法の工程(S21)を説明するための概略図である。 本発明の一態様に係る半導体装置の製造方法に用いられる静電チャックの構造の一態様を示す概略平面図である。 本発明の一態様に係る半導体装置の製造方法に用いられる静電チャックの他の態様を示す概略平面図である。 本発明の一態様に係る半導体装置の製造方法に用いられる静電チャックのさらに他の態様を示す概略平面図である。 本発明の一態様に係る半導体装置の製造方法の工程(S22)を説明するための概略図である。 本発明の一態様に係る半導体装置の製造方法の工程(S23)を説明するための概略図である。 本発明の一態様に係る半導体装置の製造方法の工程(S22)および(S23)における時間と基板温度との関係を示すグラフである。 本発明の一態様に係る半導体装置の製造方法の工程(S30)を説明するための概略図である。 本発明の他の態様に係る半導体装置の製造方法に用いられる真空チャックの構造の一態様を示す概略平面図である。 本発明の他の態様に係る半導体装置の製造方法の工程(S21)を説明するための概略図である。 本発明の他の態様に係る半導体装置の製造方法の工程(S22)を説明するための概略図である。 本発明の他の態様に係る半導体装置の製造方法の工程(S23)を説明するための概略図である。
 [本発明の実施形態の説明]
 最初に本発明の実施形態を列記して説明する。
 (1)本発明の一態様に係る半導体装置の製造方法は、半導体基板(SiC基板10)を準備する工程と、半導体基板を固定部材(静電チャック20,真空チャック30)上に固定して半導体基板を加熱処理する加熱工程と、固定部材上に固定され、加熱処理された半導体基板を処理する工程とを備えている。加熱工程は、半導体基板の外周領域12と、固定部材において外周領域12と対向する外周部分22との間に吸着力を発生させる外周側チャッキング工程と、外周側チャッキング工程の開始後に開始され、半導体基板の内周領域11と、固定部材において内周領域11と対向する内周部分21との間に吸着力を発生させる内周側チャッキング工程とを含んでいる。
 上記半導体装置の製造方法では、外周領域12の吸着開始後に内周領域11の吸着が開始され、半導体基板が固定部材上に固定されて加熱処理される。これにより、半導体基板の外周領域12をより確実に固定部材に吸着保持することができるため、半導体基板を固定部材上に載置した際に基板の反りの発生を抑制することができる。そのため、半導体基板を固定部材上に載置した後から反りが解消するまでの長時間の安定化時間が必要なくなり、結果として加熱処理の時間をより短縮することができる。
 (2)上記半導体装置の製造方法において、内周側チャッキング工程は、外周領域12における半導体基板(SiC基板10)の温度が、加熱工程での熱処理温度T0の30%以上の温度T1にまで到達した後に開始される。
 半導体基板の外周領域12の温度が上記温度T1に到達する前に内周側チャッキング工程が開始される場合、半導体基板の反りの発生を十分に抑制することが困難になる。そのため、内周側チャッキング工程は、外周領域12の温度が上記熱処理温度T0の30%以上の温度に到達した後に開始されることが好ましく、上記熱処理温度T0の40%以上の温度に到達した後に開始されることがより好ましい。
 (3)上記半導体装置の製造方法において、上記準備する工程では、炭化珪素からなり、(0001)面を含む第1主面(主面10a)と、(000-1)面を含む第2主面(主面10b)とを有する半導体基板(SiC基板10)が準備される。加熱工程では、第2主面が固定部材(静電チャック20,真空チャック30)側に向いた状態で半導体基板が固定部材上に固定される。
 SiC基板10は、主面10aから主面10bに向かう厚み方向において中央部が凸状に変形した固有の反りを有する。そのため、主面10bを固定部材側に向けてSiC基板10を載置した場合、内周領域11が載置面23と接触して外周領域12が載置面23から離れた状態(下に凸の状態)となる。この場合、固定部材からSiC基板10への熱伝導が不均一となり、外周領域12が載置面23からより大きく離れるようにSiC基板10が反る場合がある。これに対して、上述のように外周領域12の吸着開始後に内周領域11の吸着を開始してSiC基板10を固定することにより、SiC基板10における反りの増大を抑制して加熱処理の時間の短縮を図ることができる。
 ここで、「(000-1)面を含む第2主面が固定部材側に向いた状態」とは、(000-1)面からなる第2主面が固定部材側に向いた状態、および(000-1)面に対して所定の(たとえば10°以下の)オフ角を有する第2主面が固定部材側に向いた状態などが含まれる。
 (4)上記半導体装置の製造方法において、固定部材は、半導体基板(SiC基板10)との間に静電吸着力を発生させて半導体基板を固定する静電チャック20を含み、好ましくは上記固定部材は静電チャック20である。
 これにより、静電吸着力を利用して半導体基板を固定部材上においてより強固に固定することができる。
 (5)上記半導体装置の製造方法において、外周側チャッキング工程では、静電チャック20の外周部分22に配置された外周側吸着電極20Aに電圧を印加することにより、外周領域12と外周部分22との間に静電吸着力を発生させる。内周側チャッキング工程では、静電チャック20の内周部分21に配置された内周側吸着電極20Bに電圧を印加することにより、内周領域11と内周部分21との間に静電吸着力を発生させる。外周側吸着電極20Aおよび内周側吸着電極20Bには異なる極性の電圧が印加される。
 これにより、ジョンソン・ラーベック力を利用して、半導体基板を固定部材上においてさらに強固に固定することができる。なお、上述のように外周側吸着電極20Aおよび内周側吸着電極20Bに異なる極性の電圧が印加される場合に限定されず、同じ極性の電圧が印加されてもよい。
 (6)上記半導体装置の製造方法において、固定部材は、半導体基板(SiC基板10)との間に真空吸着力を発生させて半導体基板を固定する真空チャック30を含み、好ましくは上記固定部材は真空チャック30である。
 これにより、真空吸着力を利用して半導体基板を固定部材上において一層強固に固定することができる。
 (7)上記半導体装置の製造方法において、上記準備する工程では、100mm以上の径を有する半導体基板(SiC基板10)が準備される。
 大口径のSiC基板10は反り量が大きいため、固定部材上に載置された際に発生する基板の反りがより大きくなる。そのため、SiC基板10の径が100mm以上である場合には、外周領域12の吸着開始後に内周領域11の吸着を開始して基板の反りの発生を抑制することが好ましい。
 (8)上記半導体装置の製造方法において、上記準備する工程では、550μm以下(好ましくは400μm以下、より好ましくは300μm以下)の厚みを有する半導体基板(SiC基板10)が準備される。
 厚みが小さいSiC基板10は反り量が大きいため、固定部材上に載置された際に発生する基板の反りがより大きくなる。そのため、SiC基板の厚みが550μm以下である場合には、外周領域12の吸着開始後に内周領域11の吸着を開始して基板の反りの発生を抑制することが好ましい。
 (9)上記半導体装置の製造方法において、上記処理する工程では、半導体基板(SiC基板10)に対してイオン注入が実施されてもよい。これにより、イオン注入処理の時間をより短縮することができる。
 なお、「上記半導体基板を処理する工程」としてイオン注入が実施される場合に限定されず、たとえば酸化膜、窒化膜、金属膜および半導体膜などの成膜処理、酸化膜、窒化膜、金属膜および半導体膜などのエッチング処理、有機物除去などのアッシング、または熱処理のためのアニール処理などが実施されてもよい。これにより、各々の処理時間を短縮することができる。
 [本発明の実施形態の詳細]
 次に、本発明の実施形態に係る半導体装置の製造方法の具体例を、以下に図面を参照しつつ説明する。本明細書中においては、個別面を()、集合面を{}でそれぞれ示す。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
 (実施形態1)
 まず、本発明の一態様である実施形態1に係る半導体装置の製造方法について説明する。図1を参照して、まず工程(S10)として半導体基板準備工程が実施される。この工程(S10)では、図2を参照して、たとえばポリタイプが4H型である炭化珪素(SiC)インゴット(図示しない)を所定厚みにスライスすることにより、SiC基板10(半導体基板)が得られる。SiC基板10は、(0001)面(シリコン面)である主面10a(第1主面)と、当該主面10aと反対側の(000-1)面(カーボン面)である主面10b(第2主面)とを有している。
 SiC基板10の厚みは550μm以下であり、好ましくは400μm以下であり、より好ましくは300μm以下である。SiC基板10の直径は100mm以上(4インチ以上)であり、好ましくは150mm以上(6インチ以上)である。
 SiC基板10は、主面10aから主面10bに向かう厚み方向において中央部が凸状に反った形状を有し、反り量は基板厚み以下である。なお、SiC基板10の反り量は、厚み方向における最高点と最低点との間の長さh1により定義される。
 この工程(S10)で準備される半導体基板はSiC基板10に限定されず、ワイドバンドギャップ半導体(シリコンよりもバンドギャップが大きい半導体)からなる他の半導体基板が準備されてもよい。ワイドバンドギャップ半導体の例としては、炭化珪素の他に窒化ガリウム(GaN)やダイヤモンドなどが挙げられる。
 次に、工程(S20)として半導体基板加熱工程が実施される。この工程(S20)では、以下に説明する工程(S21)~(S23)が順に実施され、SiC基板10が静電チャック20上に固定されて所定の処理温度に達するまで加熱処理される。
 まず、工程(S21)として半導体基板載置工程が実施される。この工程(S21)では、図3を参照して、SiC基板10がたとえばイオン注入装置(図示しない)内に搬入され、静電チャック20の載置面23上に載置される。このとき、主面10bが載置面23側に向いた状態でSiC基板10が静電チャック20上に載置される。これにより、内周領域11が載置面23と接触し、外周領域12が載置面23から離れた状態でSiC基板10が載置面23上に載置される。
 静電チャック20は、たとえば窒化硼素(p-BN)などのセラミック基材の内部にカーボン製のヒータ(図示しない)および静電吸着用電極(外周側吸着電極20Aおよび内周側吸着電極20B)を配置して構成されている。当該セラミック基材の表面上には窒化硼素などのセラミック材料からなるコーティング層が形成されており、また載置面23には基板の密着性を向上させるために研磨などの平滑化処理が施されている。ヒータおよび静電吸着用電極は電源(図示しない)と接続されている。そして、ヒータおよび静電吸着用電極のそれぞれに通電することで、SiC基板10を静電吸着力により載置面23上に固定するとともに加熱処理することが可能となっている。
 図4~図6は、静電チャック20の載置面23の上方から見た平面図である。図4を参照して、静電チャック20には、円形状を有する内周側吸着電極20Bと、環形状を有するとともに内周側吸着電極20Bを取り囲むように配置された外周側吸着電極20Aとが配置されている。外周側吸着電極20Aおよび内周側吸着電極20Bには同じ極性の電圧を印加可能となっていてもよいし、異なる極性の電圧を印加可能となっていてもよい。なお、内周側吸着電極20Bおよび外周側吸着電極20Aの大きさや位置は、図4に例示したものに限定されない。たとえば、内周側吸着電極20Bは静電チャック20において中央部から半径の1/3以内の領域に配置され、外周側吸着電極20Aは静電チャック20において中央部から半径の1/3以内の領域よりも径方向外側に位置する領域に配置されていてもよい。また、外周側吸着電極20AによるSiC基板10の吸着効果をより向上させる観点からは、内周側吸着電極20Bは静電チャック20において中央部から半径の3/4以内の領域に配置され、外周側吸着電極20Aは静電チャック20において中央部から半径の3/4以内の領域よりも径方向外側に位置する領域に配置されていてもよい。
 図5を参照して、外周側吸着電極20Aは、周方向において複数の電極に分割(たとえば4分割)されていてもよい。このとき、隣り合う電極には同じ極性の電圧を印加可能となっていてもよいし、異なる極性の電圧を印加可能となっていいてもよい。また、図6を参照して、外周側吸着電極20Aおよび内周側吸着電極20Bは、それぞれ径方向において複数の電極に分割(たとえば2分割)されていてもよい。
 次に、工程(S22)および(S23)としてのチャッキング工程が実施される。この工程では、以下に説明するように外周側チャッキング工程(S22)および内周側チャッキング工程(S23)が時間差を設けてそれぞれ実施される。まず、工程(S22)では、図7を参照して、静電チャック20の外周部分22に配置された外周側吸着電極20Aに対して所定の電圧が印加される。これにより、図7中矢印に示すように、SiC基板10の外周領域12と静電チャック20の外周部分22との間に静電吸着力が発生してSiC基板10が固定される。
 また、上記工程(S22)と並んで工程(S23)が実施される。この工程(S23)では、図8を参照して、上記外周側チャッキング工程(S22)の開始後、静電チャック20の内周部分21に配置された内周側吸着電極20Bに対して所定の電圧が印加される。これにより、図8中矢印に示すように、外周側吸着電極20Aによる静電吸着力に加えて、SiC基板10の内周領域11と静電チャック20の内周部分21との間に静電吸着力が発生してSiC基板10が固定される。
 ここで、外周側チャッキング工程(S22)の開始後に内周側チャッキング工程(S23)が開始されるタイミングについて、図9を参照して説明する。図9は、工程(S22)および(S23)において、SiC基板10の内周領域11の温度(A)および外周領域12の温度(B)の時間変化を示すグラフである。図9のグラフ中、横軸は時間を示し、縦軸は基板温度を示している。また図9のグラフ中、t0は外周側吸着電極20Aへの電圧印加の開始時点を示し、t1は内周側吸着電極20Bへの電圧印加の開始時点を示している。
 図9を参照して、内周側吸着電極20Bへの電圧印加は、外周領域12におけるSiC基板10の温度が、半導体基板加熱工程(S20)での熱処理温度T0の30%以上(好ましくは40%以上)の温度T1にまで到達した後に開始される。ここで、外周領域12の温度は、SiC基板10の外周部から径方向内側に半径の20%の距離にある領域の温度である。この温度は、たとえば熱電対を有する接触式の温度センサや、放射温度計を有する非接触式の温度センサを用いて測定することができる。また、外周領域12の温度は、1点の測定点において測定された値であってもよいし、複数の測定点で測定されたときの平均値であってもよい。また、外周側吸着電極20Aおよび内周側吸着電極20Bに対する電圧は、電圧値が段階的に増加するように印加されてもよいし、一度に目標の電圧値となるように印加されてもよい。
 図8を参照して、工程(S22)および(S23)では、外周側吸着電極20Aおよび内周側吸着電極20Bに対して異なる極性の電圧が印加されてもよいし、同じ極性の電圧が印加されてもよい。また、図5を参照して、外周側吸着電極20Aが周方向に分割された場合には、各々の外周側吸着電極20Aに対して同じ極性の電圧が印加されてもよいし、隣り合う外周側吸着電極20Aに対して異なる極性の電圧が印加されてもよい。また、図6を参照して、外周側吸着電極20Aおよび内周側吸着電極20Bのそれぞれが径方向に複数に分割された場合には、外周側チャッキング工程(S21)および内周側チャッキング工程(S22)のそれぞれがさらに複数の工程に分けて実施されてもよい。
 上記工程(S21)~(S23)が実施されることにより、SiC基板10が静電チャック20の載置面23上に固定される。そして、SiC基板10が所定の処理温度に達するまで加熱処理される。
 次に、工程(S30)としてイオン注入工程が実施される。この工程(S30)では、図10を参照して、上記工程(S20)において静電チャック20上に固定され、所定の処理温度に達するまで加熱処理されたSiC基板10に対してイオン注入が実施される。より具体的には、SiC基板10のエピタキシャル成長層(図示しない)内に、たとえばアルミニウム(Al)やホウ素(B)などのp型不純物あるいはリン(P)などのn型不純物が注入される(図10中矢印)。これにより、当該エピタキシャル成長層内においてp型やn型の不純物領域が形成される。
 次に、工程(S40)として搬出工程が実施される。この工程(S40)では、まず、外周側吸着電極20Aおよび内周側吸着電極20Bに印加される電圧の極性を反転させ、それぞれの静電吸着力を低減させる。そして、吸着電極およびヒータへの通電が停止された後、SiC基板10が静電チャック20から搬出される。
 上記工程(S10)~(S40)が完了した後、SiC基板10上にゲート絶縁膜、ゲート電極、層間絶縁膜、ソース/ドレイン電極および配線などを形成することにより、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体装置が完成し、本実施形態に係る半導体装置の製造方法が完了する。なお、上記半導体装置の製造方法はMOSFETの製造プロセスに限定されず、たとえばダイオードやIGBT(Insulated Gate Bipolar Transistor)などの他の半導体装置の製造プロセスにおいても同様に適用可能である。
 (実施形態2)
 次に、本発明の他の態様である実施形態2に係る半導体装置の製造方法について説明する。本実施形態に係る半導体装置の製造方法は、基本的には上記実施形態1に係る半導体装置の製造方法と同様の工程により実施され、かつ同様の効果を奏する。しかし、本実施形態に係る半導体装置の製造方法は、工程(S20)におけるSiC基板10の固定方式において上記実施形態1とは異なっている。
 図11は、工程(S20)において固定部材として用いられる真空チャック30の平面構造を示している。図11を参照して、真空チャック30はSiC基板10を載置するための載置面30aを有し、当該載置面30aには複数の吸着孔30bが設けられている。SiC基板10は、吸着孔30bを介して真空吸着力により載置面30a上で固定される。また、真空チャック30には外周側吸着領域33および内周側吸着領域34が設けられており、これらの領域では互いに異なるタイミングで真空吸着力を発生させることができる。
 図12を参照して、まず工程(S21)では、真空チャック30の載置面30a上にSiC基板10が載置される。次に工程(S22)では、図13を参照して、真空チャック30の外周側吸着領域33においてSiC基板10との間に真空吸着力を発生させる。これにより、図13中矢印に示すように、SiC基板10の外周領域12と真空チャック30の外周部分32との間に真空吸着力が発生してSiC基板10が固定される。
 また、上記工程(S22)と並んで工程(S23)が実施される。この工程(S23)は、図14を参照して、上記工程(S22)の開始後、真空チャック30の内周側吸着領域34においてSiC基板10との間に真空吸着力を発生させる。これにより、これにより、図14中矢印に示すように、外周側吸着領域33における真空吸着力に加えて、SiC基板10の内周領域11と真空チャック30の内周部分31との間に真空吸着力が発生してSiC基板10が固定される。このように、本実施形態では真空吸着力によりSiC基板10が真空チャック30の載置面30a上に固定され、所定の処理温度に達するまで加熱処理される。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の一態様の半導体装置の製造方法は、半導体基板の加熱処理の時間をより短縮することが要求される半導体装置の製造方法において、特に有利に適用され得る。
 10 炭化珪素(SiC)基板、10a,10b 主面、11 内周領域、12 外周領域、20 静電チャック、20A 外周側吸着電極、20B 内周側吸着電極、23,30a 載置面、21,31 内周部分、22,32 外周部分、30 真空チャック、30b 吸着孔、33 外周側吸着領域、34 内周側吸着領域、h1 長さ。

Claims (9)

  1.  半導体基板を準備する工程と、
     前記半導体基板を固定部材上に固定して前記半導体基板を加熱処理する加熱工程と、
     前記固定部材上に固定され、前記加熱処理された前記半導体基板を処理する工程とを備え、
     前記加熱工程は、
     前記半導体基板の外周領域と、前記固定部材において前記外周領域と対向する外周部分との間に吸着力を発生させる外周側チャッキング工程と、
     前記外周側チャッキング工程の開始後に開始され、前記半導体基板の内周領域と、前記固定部材において前記内周領域と対向する内周部分との間に吸着力を発生させる内周側チャッキング工程とを含む、半導体装置の製造方法。
  2.  前記内周側チャッキング工程は、前記外周領域における前記半導体基板の温度が、前記加熱工程での熱処理温度の30%以上の温度にまで到達した後に開始される、請求項1に記載の半導体装置の製造方法。
  3.  前記準備する工程では、炭化珪素からなり、(0001)面を含む第1主面と、(000-1)面を含む第2主面とを有する前記半導体基板が準備され、
     前記加熱工程では、前記第2主面が前記固定部材側に向いた状態で前記半導体基板が前記固定部材上に固定される、請求項1または請求項2に記載の半導体装置の製造方法。
  4.  前記固定部材は、前記半導体基板との間に静電吸着力を発生させて前記半導体基板を固定する静電チャックを含む、請求項1~請求項3のいずれか1項に記載の半導体装置の製造方法。
  5.  前記外周側チャッキング工程では、前記静電チャックの前記外周部分に配置された外周側吸着電極に電圧を印加することにより、前記外周領域と前記外周部分との間に静電吸着力を発生させ、
     前記内周側チャッキング工程では、前記静電チャックの前記内周部分に配置された内周側吸着電極に電圧を印加することにより、前記内周領域と前記内周部分との間に静電吸着力を発生させ、
     前記外周側吸着電極および前記内周側吸着電極には、異なる極性の電圧が印加される、請求項4に記載の半導体装置の製造方法。
  6.  前記固定部材は、前記半導体基板との間に真空吸着力を発生させて前記半導体基板を固定する真空チャックを含む、請求項1~請求項3のいずれか1項に記載の半導体装置の製造方法。
  7.  前記準備する工程では、100mm以上の径を有する前記半導体基板が準備される、請求項1~請求項6のいずれか1項に記載の半導体装置の製造方法。
  8.  前記準備する工程では、550μm以下の厚みを有する前記半導体基板が準備される、請求項1~請求項7のいずれか1項に記載の半導体装置の製造方法。
  9.  前記処理する工程では、前記半導体基板に対してイオン注入が実施される、請求項1~請求項8のいずれか1項に記載の半導体装置の製造方法。
PCT/JP2015/059080 2014-05-13 2015-03-25 半導体装置の製造方法 WO2015174143A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/310,549 US9831080B2 (en) 2014-05-13 2015-03-25 Method for manufacturing semiconductor device including a heat treatment step
DE112015002243.0T DE112015002243T5 (de) 2014-05-13 2015-03-25 Verfahren zur Herstellung einer Halbleitervorrichtung
CN201580025703.2A CN106415815B (zh) 2014-05-13 2015-03-25 用于制造半导体器件的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014099562A JP6212434B2 (ja) 2014-05-13 2014-05-13 半導体装置の製造方法
JP2014-099562 2014-05-13

Publications (1)

Publication Number Publication Date
WO2015174143A1 true WO2015174143A1 (ja) 2015-11-19

Family

ID=54479688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059080 WO2015174143A1 (ja) 2014-05-13 2015-03-25 半導体装置の製造方法

Country Status (5)

Country Link
US (1) US9831080B2 (ja)
JP (1) JP6212434B2 (ja)
CN (1) CN106415815B (ja)
DE (1) DE112015002243T5 (ja)
WO (1) WO2015174143A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015003483T5 (de) * 2014-07-30 2017-04-20 Mitsubishi Electric Corporation Halbleitervorrichtung-herstellungsverfahren und halbleitervorrichtung
JP6996251B2 (ja) * 2017-11-22 2022-01-17 大日本印刷株式会社 基板保持装置及びパターン形成装置
JP7101029B2 (ja) * 2018-04-12 2022-07-14 東京エレクトロン株式会社 静電チャック、基板処理装置、及び、基板保持方法
KR102639158B1 (ko) 2019-07-23 2024-02-22 삼성전자주식회사 웨이퍼 처리 장치 및 이를 이용한 웨이퍼 처리 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1086085A (ja) * 1996-09-19 1998-04-07 Dainippon Screen Mfg Co Ltd 基板吸着装置および基板吸着方法
JP4769335B2 (ja) * 2008-05-30 2011-09-07 パナソニック株式会社 プラズマ処理装置および方法
JP2012060175A (ja) * 2011-12-19 2012-03-22 Fujitsu Semiconductor Ltd 基板検知装置及び方法
US20130100572A1 (en) * 2011-10-19 2013-04-25 Semiconductor Manufacturing International Corp. Apparatus and method for holding a wafer
JP2013191601A (ja) * 2012-03-12 2013-09-26 Sumitomo Heavy Ind Ltd 基板保持装置及び基板保持方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127935A (ja) * 1983-12-14 1985-07-08 Fujitsu Ltd ウエハ−チヤツク
JP4330737B2 (ja) 1999-11-24 2009-09-16 株式会社アルバック 真空処理方法
JP2006005095A (ja) * 2004-06-16 2006-01-05 Ngk Insulators Ltd 基板加熱装置とその製造方法
US8336188B2 (en) * 2008-07-17 2012-12-25 Formfactor, Inc. Thin wafer chuck
US7957118B2 (en) * 2009-04-30 2011-06-07 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-zone electrostatic chuck and chucking method
JP5665679B2 (ja) * 2011-07-14 2015-02-04 住友重機械工業株式会社 不純物導入層形成装置及び静電チャック保護方法
KR20130136794A (ko) * 2012-06-05 2013-12-13 삼성전자주식회사 반도체 테스트 장비 및 이를 이용한 반도체 소자 테스트 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1086085A (ja) * 1996-09-19 1998-04-07 Dainippon Screen Mfg Co Ltd 基板吸着装置および基板吸着方法
JP4769335B2 (ja) * 2008-05-30 2011-09-07 パナソニック株式会社 プラズマ処理装置および方法
US20130100572A1 (en) * 2011-10-19 2013-04-25 Semiconductor Manufacturing International Corp. Apparatus and method for holding a wafer
JP2012060175A (ja) * 2011-12-19 2012-03-22 Fujitsu Semiconductor Ltd 基板検知装置及び方法
JP2013191601A (ja) * 2012-03-12 2013-09-26 Sumitomo Heavy Ind Ltd 基板保持装置及び基板保持方法

Also Published As

Publication number Publication date
CN106415815A (zh) 2017-02-15
DE112015002243T5 (de) 2017-02-23
JP2015216307A (ja) 2015-12-03
CN106415815B (zh) 2019-06-07
US20170076934A1 (en) 2017-03-16
US9831080B2 (en) 2017-11-28
JP6212434B2 (ja) 2017-10-11

Similar Documents

Publication Publication Date Title
JP6197461B2 (ja) 炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法
WO2015174143A1 (ja) 半導体装置の製造方法
US7772098B2 (en) Method for manufacturing semiconductor device
JP6176771B2 (ja) 静電チャック装置
US10050109B2 (en) Silicon carbide semiconductor substrate, method for manufacturing silicon carbide semiconductor substrate, and method for manufacturing silicon carbide semiconductor device
US8902561B2 (en) Electrostatic chuck with multi-zone control
JP6217233B2 (ja) 半導体装置の製造方法
JP6248684B2 (ja) 半導体装置の製造方法
US9818608B2 (en) Silicon carbide semiconductor substrate, method for manufacturing silicon carbide semiconductor substrate, and method for manufacturing silicon carbide semiconductor device where depression supression layer is formed on backside surface of base substrate opposite to main surface on which epitaxial layer is formed
CN111183512A (zh) 用于减少损坏基板背侧的基板支撑件
WO2016113924A1 (ja) 半導体積層体
US20130017671A1 (en) Method for manufacturing semiconductor device
JP2017112335A (ja) 半導体素子の製造方法
JP2015154045A (ja) 半導体装置の製造方法
JP6740650B2 (ja) 半導体装置およびその製造方法
JP6643029B2 (ja) 単結晶炭化ケイ素基板の加熱処理容器及びエッチング方法
JP2016001641A (ja) 半導体装置の製造方法および半導体装置の製造装置
US20170283984A1 (en) SUBSTRATE MOUNTING MEMBER, WAFER PLATE, AND SiC EPITAXIAL SUBSTRATE MANUFACTURING METHOD
JP2008251579A (ja) 静電チャックおよび半導体装置の製造方法
CN104126218A (zh) 制造碳化硅半导体器件的方法
JP5953012B2 (ja) 基板保持装置
JP2022069819A (ja) 半導体装置の製造方法及びホットプレート
JP2008251574A (ja) 静電チャック及びその製造方法ならびに半導体装置の製造方法
JP2017183729A (ja) 炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法
JP2016001690A (ja) 半導体装置の製造方法および半導体装置の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15310549

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002243

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792276

Country of ref document: EP

Kind code of ref document: A1