WO2015167178A1 - 반도체 소자 테스트용 소켓장치 - Google Patents

반도체 소자 테스트용 소켓장치 Download PDF

Info

Publication number
WO2015167178A1
WO2015167178A1 PCT/KR2015/004141 KR2015004141W WO2015167178A1 WO 2015167178 A1 WO2015167178 A1 WO 2015167178A1 KR 2015004141 W KR2015004141 W KR 2015004141W WO 2015167178 A1 WO2015167178 A1 WO 2015167178A1
Authority
WO
WIPO (PCT)
Prior art keywords
socket
contact
semiconductor device
plate
pusher plate
Prior art date
Application number
PCT/KR2015/004141
Other languages
English (en)
French (fr)
Inventor
황동원
황재석
황재백
Original Assignee
황동원
하이콘 주식회사
황재석
황재백
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황동원, 하이콘 주식회사, 황재석, 황재백 filed Critical 황동원
Priority to JP2016564624A priority Critical patent/JP6411546B2/ja
Priority to CN201580021262.9A priority patent/CN106561084B/zh
Priority to US15/306,151 priority patent/US10241132B2/en
Publication of WO2015167178A1 publication Critical patent/WO2015167178A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/0466Details concerning contact pieces or mechanical details, e.g. hinges or cams; Shielding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0483Sockets for un-leaded IC's having matrix type contact fields, e.g. BGA or PGA devices; Sockets for unpackaged, naked chips

Definitions

  • the present invention relates to a socket device for testing a semiconductor device.
  • a socket for a semiconductor device is provided in a test board or a burn-in board, and is required for driving an IC through an I / O terminal (input / output terminal) formed on a board (test board, burn-in board).
  • the burn-in chamber or its peripherals, which allow input and output of power and electrical signals, and separate test devices for measuring the characteristics of the IC, are connected to the system for a series of IC tests.
  • the BGA (Ball Grid Array) IC is an innovative reduction in the size and thickness of the IC by arranging the terminals, or balls, of the IC on the entire bottom surface of the IC.
  • LGA Land Grid Array
  • IC is an IC in a state in which a ball is not attached to a pad (or land) in a BGA type IC.
  • LGA or BGA and LGA complex ICs are also produced in various ways, and the socket for testing the LGA or IC is equipped with a plurality of contacts having a predetermined elastic force in the vertical direction, and the bottom of the contact.
  • the terminals are connected to the PCB by contact or soldering.
  • the upper terminal of the contact is formed to be in contact with the terminal of the IC loaded in the socket (Loading), and the pressure device for pressing the IC downward for electrical stable contact should be provided in the socket.
  • the physical force applied to the contact is about 10 (gf) per contact, for example, when there are 500 terminals of the IC, a strong physical force of about 5.0 (Kgf) should be applied. It can be seen.
  • the socket for testing the IC should be provided with pressing means capable of effectively applying the strong physical force as described above to the IC.
  • Fig. 1 (a) (b) (c) is a plan view, side view, and bottom view of a typical IC, respectively, and is a 0.35 mm pitch BGA IC having a number of leads of 456 and an IC size of 14 ⁇ 15.5. The latest production representative IC with a thickness of 0.5mm is shown.
  • minute projections 2 are formed on the upper surface of the semiconductor element 1 to be processed similarly to the surface of sandpaper, and a plurality of terminals are provided on the lower surface as terminals of the semiconductor element.
  • the balls 3 are arranged.
  • the thickness of the semiconductor device will be thinned up to 0.25 mm in the future, the terminal pitch is 0.30mm, 0.25mm, 0.2mm pitch is minimized, the number of the singular can also be up to 500 to about 1000.
  • 2A and 2B are respectively a plan view and a cross-sectional view taken along line A-A of a socket device for testing a semiconductor device according to the prior art.
  • the socket device 10 for testing a semiconductor device includes a socket body 11 and a socket body 11 provided with a plurality of contacts 12 having a curved shape.
  • a cover 13 that is movable up and down and an upper portion and a latch 14 that is rotatably assembled to the socket body 11 to lock or release the semiconductor element 20 in association with the vertical movement of the cover 13. .
  • the latch 14 is formed with a guide slot 14a.
  • the guide slot 14a is coupled to the guide pin 15a, and the guide pin 15a has a driving link 15 hinged to the cover 13. It is fixed to).
  • the cover 13 is elastically supported by the coil spring 16.
  • the latch 14 is opened to the outside and the semiconductor element can be loaded.
  • the latch is released by the elastic restoring force of the coil spring 16. 14 presses the upper part of the semiconductor element to fix it.
  • the end of the latch is repeatedly pressed to fix the upper portion of the semiconductor element with a strong force.
  • the upper surface of the semiconductor element has a rough surface.
  • test socket device of the conventional LGA type semiconductor device has to arrange and assemble the contacts by additional parts for assembling the contacts having the bow-shaped bends, and the number of parts is difficult and the assembling is difficult, and the semiconductor has a strong physical force.
  • the structure of the socket device is complicated by requiring a structure and a driving mechanism for pressing the device, and in particular, due to the structure of the complicated socket device, there is a problem in that the cost of the unit and the overall quality of the socket are lowered.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2013-0135563 (published date: 2013.12.11)
  • Patent Document 2 Republic of Korea Patent Publication No. 10-1345816 (Notice date: 2014.01.10)
  • the present invention is to improve such a conventional socket device for testing a semiconductor device, the recent or future trend of IC changes in the number of terminals increases, the terminal pitch (LEAD PITCH) becomes narrow pitch, the thickness becomes thinner It is an object of the present invention to provide a socket device for testing a semiconductor device having a means for effectively pressing and fixing a semiconductor device to a socket device in consideration of characteristics of the semiconductor device.
  • a socket device for testing a semiconductor device includes: a socket body (100) having a plurality of first receiving holes (101) for contact insertion; A plurality of second accommodation holes 201 are provided below the socket body 100 and communicate with the first accommodation hole 101 so that the lower contact portion of the contact 400 makes electrical contact with the PCB terminals.
  • the socket body 100 is elastically supported by a plurality of first elastic bodies (S1) is provided to be able to move up and down, the upper side is provided as a seating surface of the semiconductor element and the upper contact portion of each contact is located through A floating plate 300 having a plurality of through holes 301 formed therein; A plurality of contacts inserted into the first accommodation hole 101 and the second accommodation hole 201 such that a lower contact part contacts a terminal of a PCB and an upper contact part contacts a terminal of a semiconductor element through the through hole 301; 400); An adapter plate 500 provided on the floating plate 300 and having a guide inclined surface to allow the semiconductor device to be seated on the floating plate 300; It is elastically supported by a plurality of second elastic body (S2) is assembled with the socket body 100 by a plurality of hooks 620 to be able to flow up and down on the socket body 100, a semiconductor element on the guide inclined surface An opening 601 formed to be guided and loadable, and a socket cover 600 having an opening pro
  • a pusher plate 710 disposed at a lower end of the opening protrusion 610 to press the upper surface of the semiconductor element by surface contact, including an opening cam 711 which is in contact with the opening protrusion 610;
  • a latch 720 having one end hinged to the socket cover 600 and the other end hinged to the pusher plate 710;
  • a link 730 having one end hinged to the socket body 100 and the other end hinged to the latch 720.
  • a socket device for testing a semiconductor device includes: body elements 100 and 200 into which a contact 400 is inserted and fixed; The semiconductor device IC is placed in a seating position so that the terminal of the semiconductor device and the upper end of the contact can be contacted, and are elastically supported by the body elements 100 and 200 to enable vertical movement within a set height range.
  • Movable elements 300 and 500 A socket cover 600 which is assembled to an upper portion of the movable elements 300 and 500 and is elastically assembled to the body elements 100 and 200;
  • a semiconductor element pressurizing part 700 for pressurizing and fixing the semiconductor element IC which is interlocked with the upper and lower positions of the cover element 600 and is positioned on the movable elements 300 and 500, and pressurizes the semiconductor element.
  • the part 700 may include an opening cam 711 positioned at a lower end of the inner wall surface structure of the socket cover 600 to be in contact with the socket cover 600 when the socket cover 600 moves downward to face the top surface of the semiconductor device IC.
  • a link 730 having one end hinged to the body elements 100 and 200 and the other end hinged to the latch 720.
  • the hinge shaft of the pusher plate 710 and the latch 720 is elastically supported by the first torsion spring (SS1), more preferably, the pusher plate 710 ) Includes a rotation stop surface 716 such that the rotation angle is limited in contact with the latch 720 so that the distal end is first in contact with the upper surface of the semiconductor device.
  • SS1 first torsion spring
  • the hinge shaft of the socket body 100 and the link 730 is elastically supported by a second torsion spring (SS2), more preferably, the link 730 Is connected to the latch 720 and the socket body 100 and the hinge pin at the top and bottom, respectively, the hinge hole is formed so that the two link plates 731, 732 are provided in parallel; The two link plates 731 and 732 are fixed to each other, and the fixing plate 733 is formed with a fixing hole for fixing one end of the second torsion spring SS2.
  • SS2 second torsion spring
  • the hinge shafts of the body elements 100 and 200 and the link 730 are elastically supported by the second torsion spring SS2.
  • the floating plate 300 is characterized in that the ball cup 320 is formed in communication with the through hole on the mounting surface of the semiconductor element recessed to accommodate the terminal of the semiconductor element.
  • the contact is formed by punching a plate and integrally processed, having an upper head portion 410 having an upper tip portion 411 protruding upward;
  • a compression part 420 formed of a strip bent in a cylindrical shape from an upper shoulder part 412 extending downward from the upper head part 410;
  • a lower head part 430 extending downward from the lower shoulder part 432 extending from the lower part of the compression part 420 and having a lower tip part 431 at a lower part thereof, wherein the compression part is a coil spring. It is done.
  • the pusher plate 710 is characterized in that a plurality of irregularities 715 are formed along the rotational direction of the pusher plate 710 on the bottom pressing surface where direct contact with the semiconductor element is made.
  • the socket body 100 is mounted by a test board and a plurality of screws, the contact 400 is compressible and the lower tip portion 431 is compressed with the terminals of the test board to contact This is characterized in that it is made.
  • the lower side of the lower plate 200 further comprises a guide plate formed with a contact guide hole for guiding the contact, the contact 400 is compressible and the lower tip portion 431 is It is characterized by being soldered to the terminals of the test board.
  • the socket device for testing a semiconductor device of the present invention provides a means capable of strongly pressurizing while keeping the entire surface of the IC horizontal in response to an upward contact force applied to terminals of the semiconductor device.
  • the present invention has the effect that it is possible to provide a socket device for a micro pitch multi-pin that can more effectively test a semiconductor device that the number of terminals of the semiconductor element is increased, the terminal pitch is made smaller pitch, and the thickness thereof becomes thinner.
  • 2 (a) and 2 (b) are a plan view and a cross-sectional view taken along line A-A of a socket device for testing a semiconductor device according to the prior art, respectively,
  • FIG. 3 is a plan view of a socket device for testing a semiconductor device according to the present invention.
  • FIG. 4 is a cross-sectional view taken along the line B-B of FIG.
  • FIG. 5 is a cross-sectional view taken along the line C-C of FIG.
  • 6 (a) and 6 (b) are cross-sectional views of a front view and a D-D line of a contact of a socket device for testing a semiconductor device according to the present invention, respectively;
  • FIG. 7 is a cross-sectional view showing a preferred embodiment of the movable element in the socket device for testing a semiconductor device of the present invention
  • FIG. 8 are a plan view of a socket cover, a sectional view of a F-F line, a bottom view, and a sectional view of an E-E line, respectively, in the socket device for testing a semiconductor device according to the present invention
  • 9A, 9B, and 9C are a plan view, a left side view, and a front view of a link in the socket device for testing a semiconductor device according to the present invention, respectively;
  • FIG. 11 are diagrams illustrating an initial process of pressurizing a semiconductor device of a pusher plate in a semiconductor device pressurizing unit in the semiconductor device test socket device of the present invention
  • Figure 12 (a) (b) (c) (d) is a view showing a semiconductor device loading process of the semiconductor device test socket device of the present invention.
  • the socket device for testing a semiconductor device of the present invention includes: body elements 100 and 200 into which the contact 400 is inserted and fixed;
  • the semiconductor device IC is placed in a seating position so that the terminal of the semiconductor device and the upper end of the contact can be contacted, and are elastically supported by the body elements 100 and 200 to enable vertical movement within a set height range.
  • a socket cover 600 which is assembled to an upper portion of the movable elements 300 and 500 so as to be elastically assembled to the body elements 100 and 200 so as to be movable up and down; And a semiconductor device pressurizing unit configured to pressurize and fix the semiconductor device IC, which is interlocked with the upper and lower positions of the socket cover 600 to be seated on the movable elements 300 and 500.
  • a pusher plate 710 including an opening cam 711 which is in contact with the cover 600 and presses the upper surface of the semiconductor device IC in surface contact with the pusher plate 710;
  • a latch 720 having one end hinged to the socket cover 600 and the other end hinged to the pusher plate 710;
  • a link 730 having one end hinged to the body elements 100 and 200 and the other end hinged to the latch 720.
  • 6 (a) and 6 (b) are respectively a front view and a sectional view taken along the line D-D of a contact of a socket device for testing a semiconductor device according to the present invention.
  • the contact 400 has a cylindrical shape in an upper head portion 410 having an upper tip portion 411 protruding upward, and an upper shoulder portion 412 extending downward from the upper head portion 410.
  • Compression portion 420 made of a strip bent in the shape, and the lower head portion 430 having a lower tip portion 431 is formed extending downward from the lower shoulder portion 432 extending from the compression portion 420 bottom
  • the compression unit 420 may be a coil spring, which is a compressive contact having an elastic force in the longitudinal direction, and is an integral contact processed by stamping a plate integrally.
  • the body elements 100 and 200 are composed of the socket body 100 and the lower plate 200.
  • the socket body 100 has a rectangular or square structure as a whole, and a plurality of first accommodation holes 101 are formed to insert and fix the plurality of contacts 100, respectively.
  • the socket body 100 may be fixed to a plurality of screws on a test board (PCB) (not shown), and the lower contact portion of the contact 100 supported by the socket body 100 is in contact with the terminal of the test board in a compressed state. This is done.
  • PCB test board
  • the lower plate 200 is provided under the socket body 100, and a plurality of second accommodation holes 201 are formed to communicate with the first accommodation hole 101, so that the lower contact portion of the contact 100 has a second accommodation hole. It penetrates 201 and makes electrical contact with the terminal of the test substrate.
  • the socket body is mainly fixed to the test board such that the lower contact portion of the contact of the present invention is in compression contact with the test board
  • the leader guide having a contact leader guide hole for guiding the contact leaders on the lower side of the lower plate.
  • the socket structure further includes a plate, and lower contacts of the contacts are further extended to be soldered to the PCB, which is a modified embodiment of the present invention.
  • the movable elements 300 and 500 are composed of a floating plate 300 and an adapter plate 500.
  • the floating plate 300 is elastically supported on the socket body 100 by a plurality of first elastic bodies S1 and is provided to be vertically movable.
  • the floating plate 300 is provided as a seating surface of the semiconductor device, and each of the contacts 400 A plurality of through holes are formed through which the upper contact portion is located.
  • the floating plate 300 is provided with a plurality of hooks 310 in the lower portion, the socket body 100 is a socket body 100 is formed by the engaging end 110 corresponding to each hook 310 is protruded
  • the floating plate 300 that can be vertically flown from the upper side is elastically supported by the first elastic body S1 because the upward movement height is limited.
  • the adapter plate 500 is provided on the floating plate 300 and has a guide inclined surface to allow the semiconductor device to be seated on the floating plate 300.
  • FIG. 7 is a cross-sectional view showing a preferred embodiment of the movable element in the socket device for testing a semiconductor device of the present invention.
  • the floating plate 300 has a guide surface 511 which forms sidewalls surrounding the periphery of the semiconductor device IC mounting surface, and has a predetermined slope discontinuously at the guide surface 511.
  • An inclined surface 512 extending laterally is formed so that the semiconductor device IC is positioned on the guide surface 511 along the inclined surface 512, so that the semiconductor device IC may be loaded at a proper position.
  • a ball cup 320 for accommodating the solder ball B of the semiconductor device in a proper position may be provided in the floating plate 300, wherein the ball cup 320 may be provided.
  • the upper contact portion of the contact is in communication with the through hole 301 which is located through.
  • the socket cover 600 is elastically supported by the plurality of second elastic bodies S2 and is formed by the plurality of second hooks 620 such that the socket cover 600 can vertically flow over the socket body 100. It is assembled with the socket body 100, the semiconductor element is guided to the guide inclined surface is formed to be openable loading.
  • FIG. 8 are a plan view of a socket cover, a sectional view of an F-F line, a bottom view, and a sectional view of an E-E line, respectively, in the socket device for testing a semiconductor device of the present invention.
  • the socket cover 600 has a rectangular or square structure having the same size as that of the socket body, and an opening 601 is formed in the center to insert a semiconductor element.
  • the inner surface of the socket cover 600 is provided with an opening protrusion 610 protruding as a wall structure, the opening protrusion 610 assists the opening operation of the pressing portion of the semiconductor element.
  • the wall structure may be a structure protruding from the inner plane, or a pressing operation of the opening cam 711 of the pressing portion of the semiconductor element may be performed by the lower end of the inner surface of the socket cover. It will be described in detail again with reference to the drawings.
  • the socket cover 600 extends perpendicularly to the lower end of the socket cover 600, and is provided with a hinge bracket 630 having the first hinge hole 631.
  • the lower end of the latch is rotatably assembled through the hinge pin.
  • the semiconductor element pressing unit is fixed to the semiconductor element to be seated on the floating plate 300 in conjunction with the vertical position of the socket cover 600.
  • the semiconductor element pressing unit is provided to be symmetrical to the left and right, and the same configuration to be symmetrical will be described using only one reference numeral.
  • the semiconductor element pressing portion of the present invention may be composed of two or more, for example, it may be provided symmetrically in the left and right and front and rear direction and configured as four.
  • the semiconductor element pressing unit includes a pusher plate 710, a latch 720, and a link 730.
  • the pusher plate 710 is in surface contact with the upper surface of the semiconductor element and pressurizes the semiconductor element.
  • the pusher plate 710 substantially covers the entire upper surface of the semiconductor element so that the contact area between the pusher plate and the semiconductor element is as large as possible. This would be desirable.
  • One end of the latch 720 is hinge-assembled with the socket cover 600, and the other end is hinge-assembled with the pusher plate 710.
  • One end of the link 730 is hinge-assembled with the socket body 100 and the other end is assembled with the latch 720.
  • the hinge shafts of the pusher plate 710 and the latch 720 are elastically supported by the first torsion spring SS1, and the hinge shafts of the socket body 100 and the link 730 are second torsion springs SS2. It is elastically supported by.
  • the first torsion spring SS1 and the second torsion spring SS2 maintain the pusher plate 710 in a closed state.
  • the semiconductor element pressing unit configured as described above becomes a hinge shaft at which the lower end of the link 730 is fixed, and the hinge shaft at the bottom of the latch 720 moves up and down in accordance with the vertical operation of the socket body 600 to open and close the pusher plate 710. / close) action.
  • the pusher plate 710 in the present invention is characterized in that the opening cam is made in direct contact with the socket cover 600 during the opening operation to increase the open rotation angle of the pusher plate 710, the semiconductor device pressurization
  • the main configuration of the section will be described in detail.
  • 9A, 9B, and 9C show a plan view, a left side view, and a front view of the link of the present invention, respectively.
  • the link 730 may be composed of a pair of parallelly provided link plates 731 and 732 and a fixing plate 733 for fixing the two link plates 731 and 732 to each other. have.
  • the link plate has a second hinge hole 732a and a third hinge hole 732b at upper and lower ends, respectively, and the second hinge hole 732a is assembled with the latch by a hinge pin, and the third hinge hole 732b. Is assembled with the socket body 100 by a hinge pin.
  • the fixing plate 733 may be provided with a fixing hole 732c for fixing one end of the second torsion spring SS2.
  • (A) (b) (c) (d) is the front view, the top view, the back view, the bottom view, and the side view of the pusher plate in the socket device for semiconductor element test of this invention, respectively.
  • the pusher plate 710 is provided with a shaft hole 712 for assembling the latch and the hinge, and is assembled to the latch by the hinge pin 713 to be rotatable.
  • An opening cam 711 is formed to protrude upwardly toward the rear end of the shaft hole 712, and the opening cam 711 opens the opening protrusion 610 of the socket cover 600 during the opening operation of the pusher plate 710.
  • the open rotation angle of the pusher plate 710 may be increased by relatively pressing 711.
  • the pusher plate 710 is formed with a recess 714 to fix one end of the first torsion spring SS1.
  • the pusher plate 710 is formed with a plurality of unevenness 715 along the rotation direction of the pusher plate 710 on the bottom pressing surface where direct contact with the semiconductor element is made so that the pusher plate 710 and the semiconductor element contact the semiconductor element. It is possible to reduce the occurrence of friction in the process of pressing.
  • the pusher plate 710 may be formed with a rotation stop surface 716 to contact the latch so as to limit the rotation angle of the pusher plate 710.
  • the rotation angle limit of the pusher plate 710 is a semiconductor device. In the initial loading process of the pusher plate 710 to pressurize the semiconductor device, the end of the pusher plate 710 may be pressed while pressing the upper surface of the semiconductor device first.
  • FIG. 11 are diagrams for explaining an initial process of pressurizing a semiconductor device of a pusher plate in a semiconductor device pressurizing part in the socket device for testing a semiconductor device of the present invention. Only the pressing part 700 is shown as a center.
  • the pusher plate 710 rotates to pressurize the semiconductor device IC, and is pushed by the elastic force of the first torsion spring SS1.
  • the rotation stop surface 716 of the plate 710 is rotated in the state where the end of the pusher plate 710 is directed downward while being in contact with the latch 720 so that the end of the pusher plate 710 is the first semiconductor device (IC). Contact is made.
  • the pusher plate 710 when the pusher plate 710 continuously rotates in the pressing direction, the pusher plate 710 is completely in contact with the semiconductor device IC to firmly fix the semiconductor device IC.
  • the rotation stop surface 716 of the pusher plate 710 is spaced apart from the latch 720.
  • the pusher plate 710 when the pusher plate 710 is in contact with the semiconductor device as a whole when the semiconductor device is initially pressed, the front end portion of the pusher plate 710 is first contacted with the semiconductor device and the thickness of the semiconductor device loaded as the pressing is performed. Even if a difference occurs, the semiconductor device can be stably fixed.
  • FIG. 12 (a), (b), (c) and (d) are diagrams illustrating a semiconductor device loading process of the socket device for testing a semiconductor device of the present invention.
  • FIG. 12A illustrates a natural state of the socket, and the socket cover 600 and the floating plate 300 are positioned at the upper end by the first elastic body S1 and the second elastic body S2.
  • FIG. 12 (b) shows a state in which the socket cover 600 is pressed, and the socket cover 600 and the hinged latch 720 are moved downward together with the socket body 100 and the hinge fastening.
  • the link 730 is rotated by using the lower end of the link 730 as a fixed rotation axis, and the pusher plate 710 rotates outward from the center of the socket.
  • FIG. 12 (c) is a state in which the socket cover 600 is pressed to the maximum, and the pusher plate 710 has a hinge shaft coupled to the upper end of the latch 720 as an axis of rotation.
  • the cam 711 opens the socket cover 600. Pressed by the opening protrusion 610 of the open as far as possible to rotate outward.
  • the pusher plate 710a indicated by the dotted line in FIG. 12C shows the pusher plate while pressing the socket cover 600 by the same displacement without the open cam 711. It can be seen that the opening distance (M) between the 710a is short compared with the opening distance (N) in the present invention, and thus the present invention provides a pusher at the time of loading a semiconductor element by securing a large opening rotation angle of the pusher plate. Interference with the plate can be prevented.
  • FIG. 12 (d) illustrates that when the pressing force applied to the socket cover 600 is removed after the loading of the semiconductor device is completed, the socket cover 600 is moved upward by the elastic force of the second elastic material S2.
  • the pusher plate 710 pressurizes the semiconductor device IC and tests the semiconductor device IC. Proceeds.
  • the front end portion of the pusher plate 710 first contacts the semiconductor device IC, and the entire pressing surface of the pusher plate 710 contacts the semiconductor device IC. It will be desirable to pressurize.
  • socket body 101 the first accommodation ball
  • socket cover 610 opening protrusion
  • link S1 first elastic body

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Connecting Device With Holders (AREA)

Abstract

본 발명은 반도체 소자 테스트용 소켓장치에 관한 것으로, 콘택트(400)가 삽입 고정되는 몸체요소(100)(200)와; 반도체 소자의 단자와 상기 콘택트의 상단이 접촉이 이루어질 수 있도록 반도체 소자(IC)가 안착 위치하게 되며, 상기 몸체요소(100)(200)에 탄성 지지되어 설정 높이 범위 내에서 상하 이동이 가능하게 마련되는 가동요소(300)(500)와; 상기 가동요소(300)(500)의 상부에 조립되어 상기 몸체요소(100)(200)에 상하 탄성적으로 조립되는 소켓커버(600)와; 상기 커버요소(600)의 상하 위치에 연동되어 상기 가동요소(300)(500)에 안착 위치하게 되는 반도체 소자(IC)를 가압 고정하는 반도체 소자 가압부(700)를 포함하며, 상기 반도체 소자 가압부(700)는, 상기 소켓커버(600)의 내측 벽면 구조물 하단에 위치하여 소켓커버(600)의 하방 이동 시에 접촉이 가능한 열림캠(711)을 포함하여 반도체 소자(IC)의 상면을 면접촉하여 가압하는 푸셔 플레이트(710)와; 일단이 상기 커버요소(600)와 힌지 조립되고 타단이 상기 푸셔 플레이트(710)와 힌지 조립되는 래치(720)와; 일단이 상기 몸체요소(100)(200)와 힌지 조립되고 타단이 상기 래치(720)와 힌지 조립되는 링크(730);를 포함한다.

Description

반도체 소자 테스트용 소켓장치
본 발명은 반도체 소자 테스트용 소켓장치에 관한 것이다.
일반적으로 반도체 소자(IC)용 소켓은 테스트 보드 또는 번인 보드(Burn-In Board)에 구비되어, 보드(테스트 보드, 번인 보드)에 형성된 I/O 단자(입출력 단자)를 통해 IC의 구동에 필요한 전원과 전기적 신호를 입출력할 수 있도록 하는 번인 챔버 또는 그 주변장치와 IC의 특성을 측정하기 위한 별도의 테스트장치들이 연결됨으로써, 일련의 IC 테스트를 위한 시스템에 이용된다.
일반적으로 널리 이용되고 있는 IC 중에서, BGA(Ball Grid Array)형 IC는 IC의 바닥 면 전체에 IC의 단자, 즉 볼(Ball)을 배열하여 IC의 크기 및 두께를 혁신적으로 줄인 것이다.
한편, LGA(Land Grid Array)형 IC는 BGA형 IC에서 패드(PAD)(혹은 Land)에 볼(Ball)이 붙어 있지 않은 상태의 IC이다.
최근 LGA형 혹은 BGA 및 LGA 복합형 IC들도 다양하게 생산되며, LGA형 혹은 복합형 IC를 테스트하기 위한 소켓은 상하 방향으로 소정 탄성력을 갖는 다수개의 콘택트(Contact)를 구비하고 있으며, 콘택트의 하부단자는 PCB와 접촉방식 혹은 솔더링 방식으로 연결된다.
여기서 콘택트의 상부단자는 소켓에 로딩(Loading)되는 IC의 단자와 접촉하도록 형성하고, 전기적으로 안정된 접촉을 위하여 IC를 하향으로 눌러주는 가압장치가 소켓에 구비되어 있어야 한다.
참고적으로 가압장치에 의해 IC 상면에 가해지는 물리적인 힘을 콘택트 수로 나누면, 한 개의 콘택트 당 인가되는 물리적인 힘을 산출할 수 있다.
더욱 상세하게는, 콘택트에 인가되는 물리적인 힘은, 한 개의 콘택트 당 10(gf)정도이며, 예를 들어 IC의 단자가 500개일 경우, 5.0(Kgf)정도의 강력한 물리적인 힘을 인가해야 함을 알 수 있다.
따라서 IC를 테스트하기 위한 소켓은, 상술한 바와 같은 강력한 물리적인 힘을 효과적으로 IC에 인가할 수 있는 가압수단을 구비해야 한다.
최근 혹은 향후 IC의 변화 추세가 단자(LEAD) 수가 증가하고, 단자 피치(LEAD PITCH)가 협피치화되며, IC의 두께가 더욱 얇아지는 IC를 특히 고온에서 장시간 번인(BURN IN) 테스트를 진행할 경우에 IC의 단자들에 가해지는 상 방향 콘택트 힘(CONTACT FORCE)에 대응하여 IC의 전체 면을 수평하게 유지하면서, 강력하게 가압할 수 있는 가압수단을 구비한 소켓이 필요하게 되었다.
도 1의 (a)(b)(c)는 각각 일반적인 IC의 평면도, 측면도 및 저면도로써, 0.35mm 피치(pitch) 의 BGA IC로서 단자(lead) 수가 456이며, IC 사이즈가 14×15.5에 두께가 0.5mm인 최근 생산되는 대표적이 IC를 보여주고 있다.
도 1의 (a)(b)(c)를 참고하면, 반도체 소자(1) 상면에는 미세한 돌기(2)가 형성되어 사포의 면과 유사하게 처리되어 있으며, 하면에는 반도체 소자의 단자로서 다수개의 볼(3)이 배열된다.
이러한 반도체 소자의 두께는 향후 0.25mm까지 얇아지게 되고, 단자 피치가 0.30mm, 0.25mm, 0.2mm 로 극소 피치화 되고, 단수의 숫자 역시도 500 이상 약 1000개까지 이를 수 있다.
도 2의 (a)(b)는 각각 종래기술에 따른 반도체 소자 테스트용 소켓장치의 평면도 및 A-A 선의 단면도이다.
도 2의 (a)(b)를 참고하면, 종래의 반도체 소자 테스트용 소켓장치(10)는, 굴곡형상을 갖는 다수의 콘택트(12)가 마련된 소켓몸체(11)와, 소켓몸체(11) 상부에 상하 유동 가능한 커버(13)와, 커버(13)의 상하 이동과 연동되어 반도체 소자(20)를 고정 또는 고정 해제하도록 소켓몸체(11)에 회동 가능하게 조립되는 래치(14)를 포함한다.
래치(14)는 가이드슬롯(14a)이 형성되며, 이 가이드슬롯(14a)에는 가이드핀(15a)에 체결되고 이 가이드핀(15a)은 일단이 커버(13)와 힌지 체결되는 구동링크(15)에 고정된다. 커버(13)는 코일스프링(16)에 의해 탄성 지지된다.
이러한 종래의 소켓장치는 커버(13)를 누르게 되면, 래치(14)가 바깥으로 벌어지면서 반도체 소자의 로딩이 가능하며, 커버(13)를 놓게 되면, 코일스프링(16)의 탄성 복원력에 의해 래치(14)가 반도체 소자 상부를 눌러 고정하게 된다.
이러한 종래의 소켓장치는 래치의 끝이 반복하여 강한 힘으로 반도체 소자 상부를 눌러서 고정하게 되며, 한편 반도체 소자 상부면은 거친 표면을 갖고 있으므로 반복하여 사용되는 경우에 테스트 횟수의 증가에 따라서 반도체 소자와 접촉하게 되는 래치 선단부의 마모가 심해지면서 결국에는 반도체 소자의 단자와 콘택트들이 전기적으로 안정되게 접촉하지 못하고 테스트 신뢰성이 저하되는 문제점이 발생한다.
통상적으로 대략 5만회 전후 테스트 시점에서 래치 끝단의 마모에 의해 더 이상 테스트를 할 수 없는 시점이 되고 있다.
또한 종래 LGA형 반도체 소자의 테스트 소켓장치는, 활 모양의 굴곡부를 갖는 콘택트의 조립을 위한 부가적인 부품들에 의하여 콘택트를 배열 조립하여야 하며, 그 부품수가 많고 조립이 어려우며, 강력한 물리적인 힘으로 반도체 소자를 눌러 고정하기 위한 구조와, 구동기구를 필요로 하여 소켓장치의 구조가 복잡하다는 문제점이 있으며, 특히 복잡한 소켓장치의 구조로 인하여 단가의 상승 및 소켓의 전체적인 품질이 낮아진다는 문제점이 있었다.
또한 도 2에서와 같이 바우빔(bow beam) 콘택트, 혹은 일명 버클빔(buckle beam) 콘택트를 사용할 경우 콘택트간의 절연을 확보하기 어렵고 소켓의 조립이 어려우며, 그에 따라서 소켓 가격이 상승되고, 소켓 품질확보가 어렵다. 또한 IC를 고온 장시간 번인(Burn in) 테스트 후에 IC 혹은 IC 내부 웨이퍼(wafer)의 Crack 발생, 휨발생, 뒤틀림이 발생하는 문제점이 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개특허공보 제10-2013-0135563호(공개일자: 2013.12.11)
(특허문헌 2) 대한민국 등록특허공보 제10-1345816호(공고일자: 2014.01.10)
본 발명은 이러한 종래의 반도체 소자 테스트용 소켓장치를 개선하고자 하는 것으로써, 최근 혹은 향후 IC의 변화 추세가 단자 수가 증가 하고, 단자 피치(LEAD PITCH)가 협피치화 되며, 그 두께가 더욱 얇아지는 반도체 소자의 특성을 고려하여 소켓장치에 반도체 소자를 효과적으로 가압 고정할 수 있는 수단을 갖는 반도체 소자 테스트용 소켓장치를 제공하고자 한다.
본 발명에 따른 반도체 소자 테스트용 소켓장치는, 콘택트 삽입을 위한 다수개의 제1수용공(101)이 형성된 소켓몸체(100)와; 상기 소켓몸체(100) 하부에 구비되며, 상기 콘택트(400)의 하측 접촉부가 PCB 단자들에 전기적 접촉이 가능하도록 상기 제1수용공(101)과 연통되는 다수의 제2수용공(201)이 관통 형성된 하측 플레이트(200)와; 상기 소켓몸체(100) 상부에 복수 개의 제1탄성체(S1)에 의해 탄성 지지되어 상하 유동 가능하게 마련되며, 상측면이 반도체 소자의 안착면으로 제공되고 각 콘택트들의 상측 접촉부가 관통하여 위치하게 되는 다수개의 관통공(301)이 형성된 플로팅 플레이트(300)와; 상기 제1수용공(101)과 제2수용공(201)에 삽입되어 하측 접촉부가 PCB의 단자와 접촉되고 상측 접촉부가 상기 관통공(301)을 통하여 반도체 소자의 단자와 접촉하는 다수개의 콘택트(400)와; 상기 플로팅 플레이트(300) 상부에 구비되어 반도체 소자가 상기 플로팅 플레이트(300)에 안착 위치할 수 있도록 가이드 경사면을 갖는 어댑터 플레이트(500)와; 복수개의 제2탄성체(S2)에 의해 탄성 지지되어 상기 소켓몸체(100) 상부에 상하 유동 가능하도록 복수개의 후크(620)에 의해 상기 소켓몸체(100)와 조립되며, 반도체 소자가 상기 가이드 경사면에 안내되어 로딩 가능하게 개구부(601)가 형성되고 개구부(601)의 내측 벽면에 열림돌기(610)가 돌출 형성된 소켓커버(600)와; 상기 소켓커버(600)의 상하 위치에 연동되어 상기 플로팅 플레이트(300)에 안착 위치하게 되는 반도체 소자를 가압 고정하게 되는 반도체 소자 가압부(700)를 포함하며, 상기 반도체 소자 가압부(700)는, 상기 열림돌기(610)의 하단에 배치되어 상기 열림돌기(610)와 접촉이 가능한 열림캠(711)을 포함하여 반도체 소자의 상면을 면접촉하여 가압하게 되는 푸셔 플레이트(710)와; 일단이 상기 소켓커버(600)와 힌지 조립되고 타단이 상기 푸셔 플레이트(710)와 힌지 조립되는 래치(720)와; 일단이 상기 소켓몸체(100)와 힌지 조립되고 타단이 상기 래치(720)와 힌지 조립되는 링크(730);를 포함한다.
본 발명에 따른 실시예에 따른 반도체 소자 테스트용 소켓장치는, 콘택트(400)가 삽입 고정되는 몸체요소(100)(200)와; 반도체 소자의 단자와 상기 콘택트의 상단이 접촉이 이루어질 수 있도록 반도체 소자(IC)가 안착 위치하게 되며, 상기 몸체요소(100)(200)에 탄성 지지되어 설정 높이 범위 내에서 상하 이동이 가능하게 마련되는 가동요소(300)(500)와; 상기 가동요소(300)(500)의 상부에 조립되어 상기 몸체요소(100)(200)에 상하 탄성적으로 조립되는 소켓커버(600)와; 상기 커버요소(600)의 상하 위치에 연동되어 상기 가동요소(300)(500)에 안착 위치하게 되는 반도체 소자(IC)를 가압 고정하는 반도체 소자 가압부(700)를 포함하며, 상기 반도체 소자 가압부(700)는, 상기 소켓커버(600)의 내측 벽면 구조물 하단에 위치하여 소켓커버(600)의 하방 이동 시에 접촉이 가능한 열림캠(711)을 포함하여 반도체 소자(IC)의 상면을 면접촉하여 가압하는 푸셔 플레이트(710)와; 일단이 상기 커버요소(600)와 힌지 조립되고 타단이 상기 푸셔 플레이트(710)와 힌지 조립되는 래치(720)와; 일단이 상기 몸체요소(100)(200)와 힌지 조립되고 타단이 상기 래치(720)와 힌지 조립되는 링크(730);를 포함한다.
바람직하게는 본 발명에 있어서, 상기 푸셔 플레이트(710)와 상기 래치(720)의 힌지축은 제1토션스프링(SS1)에 의해 탄성 지지되는 것을 특징으로 하며, 보다 바람직하게는, 상기 푸셔 플레이트(710)는 상기 래치(720)와 접촉하여 회동각이 제한되도록 회동 정지면(716)을 포함하여 반도체 소자에 대한 가압 초기에 선단부가 먼저 반도체 소자의 상면과 접촉이 이루어지도록 하는 것을 특징으로 한다.
바람직하게는 본 발명에 있어서, 상기 소켓몸체(100)와 상기 링크(730)의 힌지축은 제2토션스프링(SS2)에 의해 탄성 지지되는 것을 특징으로 하며, 보다 바람직하게는, 상기 링크(730)는, 상단과 하단에 각각 래치(720) 및 소켓몸체(100)와 힌지핀으로 조립이 이루어지도록 힌지공이 형성되어 평행하게 마련된 두 개의 링크 플레이트(731)(732)와; 두 링크 플레이트(731)(732)를 서로 고정하며, 상기 제2토션스프링(SS2) 일단을 고정하게 되는 고정홀이 형성된 고정 플레이트(733)로 구성됨을 특징으로 한다.
바람직하게는 본 발명에 있어서, 상기 몸체요소(100)(200)와 상기 링크(730)의 힌지축은 제2토션스프링(SS2)에 의해 탄성 지지되는 것을 특징으로 한다.
바람직하게는 본 발명에 있어서, 상기 플로팅 플레이트(300)는 반도체 소자의 안착면에 상기 관통공과 연통되어 반도체 소자의 단자가 수용되도록 함몰 형성된 볼컵(320)이 형성되는 것을 특징으로 한다.
바람직하게는 본 발명에 있어서, 상기 콘택트는 판재를 타발하여 일체형으로 가공된 것으로써, 상방으로 돌출 형성된 상측첨단부(411)를 갖는 상측머리부(410)와; 상측머리부(410)에서 아래로 연장된 상측어깨부(412)에서 원통 형상으로 벤딩된 스트립으로 이루어진 압축부(420)와; 압축부(420) 하단에서 연장된 하측어깨부(432)에서 아래로 연장 형성되어 하단에 하측첨단부(431)를 갖는 하측머리부(430);를 포함하며, 상기 압축부는 코일스프링인 것을 특징으로 한다.
바람직하게는 본 발명에 있어서, 상기 푸셔 플레이트(710)는 반도체 소자와 직접 접촉이 이루어지는 바닥 가압면에 푸셔 플레이트(710)의 회동 방향을 따라서 다수의 요철(715)이 형성됨을 특징으로 한다.
바람직하게는 본 발명에 있어서, 상기 소켓몸체(100)는 테스트보드와 복수개의 스크류에 의해 장착되며, 상기 콘택트(400)는 압축성을 갖고 하측첨단부(431)가 테스트보드의 단자와 압축되어 접촉이 이루어지는 것을 특징으로 한다.
바람직하게는 본 발명에 있어서, 상기 하측 플레이트(200)의 하측에 콘택트를 안내하게 되는 콘택트 가이드 홀이 형성된 가이드 플레이트를 더 구비하고, 상기 콘택트(400)는 압축성을 갖고 하측첨단부(431)가 테스트보드의 단자와 솔더링되는 것을 특징으로 한다.
본 발명의 반도체 소자 테스트용 소켓장치는, 반도체 소자의 단자들에 가해지는 상방향 접촉력(contact force)에 대응하여 IC의 전체면을 수평하게 유지하면서, 강력하게 가압할 수 있는 수단을 제공하며, 특히 반도체 소자의 로딩 시에 가압수단과 간섭 발생을 최소화할 수 있도록 가압수단인 푸셔 플레이트를 최대한 열어주는 효과가 있다.
또한 본 발명은 반도체 소자의 단자 수가 증가 하고, 단자 피치가 극소 피치화되며, 그 두께가 더욱 얇아지는 반도체 소자를 보다 효과적으로 테스트할 수 있는 극소 피치 다핀용 소켓장치를 제공할 수 있는 효과가 있다.
도 1의 (a)(b)(c)는 각각 일반적인 IC의 평면도, 측면도 및 저면도,
도 2의 (a)(b)는 각각 종래기술에 따른 반도체 소자 테스트용 소켓장치의 평면도 및 A-A 선의 단면도,
도 3은 본 발명의 따른 반도체 소자 테스트용 소켓장치의 평면도,
도 4는 도 3의 B-B 선의 단면도,
도 5는 도 3의 C-C 선의 단면도,
도 6의 (a)(b)는 각각 본 발명의 본 발명에 반도체 소자 테스트용 소켓장치의 콘택트의 정면도 및 D-D 선의 단면도,
도 7은 본 발명의 반도체 소자 테스트용 소켓장치에 있어서, 가동요소의 바람직한 실시예를 보여주는 단면 구성도,
도 8의 (a)(b)(c)(d)는 각각 본 발명의 반도체 소자 테스트용 소켓장치에 있어서, 소켓커버의 평면도, F-F 선의 단면도, 저면도, 및 E-E 선의 단면도,
도 9의 (a)(b)(c)는 각각 본 발명의 반도체 소자 테스트용 소켓장치에 있어서, 링크에 대한 평면도, 좌측면도 및 정면도,
도 10의 (a)(b)(c)(d)는 각각 본 발명의 반도체 소자 테스트용 소켓장치에 있어서, 푸셔 플레이트의 정면도, 평면도, 배면도, 저면도, 및 측면도,
도 11의 (a)(b)는 본 발명의 반도체 소자 테스트용 소켓장치에 있어서, 반도체 소자 가압부에서 푸셔 플레이트의 반도체 소자 가압 초기 과정을 보여주는 도면,
도 12의 (a)(b)(c)(d)는 본 발명의 반도체 소자 테스트용 소켓장치의 반도체 소자 로딩과정을 보여주는 도면.
먼저 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면에 의하여 상세하게 설명한다.
도 3 내지 도 5를 참고하면, 본 발명의 반도체 소자 테스트용 소켓장치는 콘택트(400)가 삽입 고정되는 몸체요소(100)(200)와; 반도체 소자의 단자와 상기 콘택트의 상단이 접촉이 이루어질 수 있도록 반도체 소자(IC)가 안착 위치하게 되며, 상기 몸체요소(100)(200)에 탄성 지지되어 설정 높이 범위 내에서 상하 이동이 가능하게 마련되는 가동요소(300)(500)와; 상기 가동요소(300)(500)의 상부에 조립되어 상기 몸체요소(100)(200)에 상하 유동 가능하게 탄성적으로 조립되는 소켓커버(600)와; 상기 소켓커버(600)의 상하 위치에 연동되어 상기 가동요소(300)(500)에 안착 위치하게 되는 반도체 소자(IC)를 가압 고정하는 반도체 소자 가압부를 포함하며, 상기 반도체 소자 가압부는, 상기 소켓커버(600)와 접촉이 가능한 열림캠(711)을 포함하여 반도체 소자(IC)의 상면을 면접촉하여 가압하는 푸셔 플레이트(710)와; 일단이 상기 소켓커버(600)와 힌지 조립되고 타단이 상기 푸셔 플레이트(710)와 힌지 조립되는 래치(720)와; 일단이 상기 몸체요소(100)(200)와 힌지 조립되고 타단이 상기 래치(720)와 힌지 조립되는 링크(730);를 포함한다.
도 6의 (a)(b)는 각각 본 발명의 본 발명에 반도체 소자 테스트용 소켓장치의 콘택트의 정면도 및 D-D선의 단면도이다.
도 6을 참고하면, 콘택트(400)는 상방으로 돌출 형성된 상측첨단부(411)를 갖는 상측머리부(410)와, 상측머리부(410)에서 아래로 연장된 상측어깨부(412)에서 원통 형상으로 벤딩된 스트립으로 이루어진 압축부(420)와, 압축부(420) 하단에서 연장된 하측어깨부(432)에서 아래로 연장 형성되어 하단에 하측첨단부(431)를 갖는 하측머리부(430)를 갖는다.
압축부(420)는 코일스프링일 수 있으며, 길이 방향의 탄성력을 갖는 압축성 콘택트로써 판재를 일체형으로 타발(stamping)하여 가공한 일체형 콘택트이다.
다음으로 본 실시예에서 몸체요소(100)(200)는 소켓몸체(100)와 하측 플레이트(200)로 구성된다.
소켓몸체(100)는 전체적으로 장방형상 혹은 정방형상의 구조를 가지며, 다수개의 콘택트(100)가 각각 삽입 고정되도록 다수개의 제1수용공(101)이 형성된다. 소켓몸체(100)는 테스트기판(PCB)(미도시)에 복수개의 스크류에 고정될 수 있으며, 소켓몸체(100)에 지지되는 콘택트(100) 하측 접촉부는 테스트기판의 단자에 압축된 상태로 접촉이 이루어진다.
하측 플레이트(200)는 소켓몸체(100) 하부에 구비되며, 제1수용공(101)과 연통되도록 다수의 제2수용공(201)이 형성되어 콘택트(100)의 하측 접촉부는 제2수용공(201)을 관통하여 테스트기판의 단자와 전기적으로 접촉한다.
또한 상기에서 본 발명의 콘택트의 하측 접촉부가 테스트기판에 압축 접촉되도록 소켓몸체를 테스트기판에 스크류 고정하는 방식을 주로 하지만, 하측 플레이트의 하측에 콘택트 리더들을 가이드하는 콘택트 리더 가이드 홀을 형성한 리더 가이드 플레이트를 더 구비하고, 콘택트들의 하측 접촉부가 더 연장되어 PCB에 솔더링 되는 것을 특징으로 하는 소켓구조도 가능하며 본 발명의 변형 실시 예이다.
본 실시예에서 가동요소(300)(500)는 플로팅 플레이트(300)와 어댑터 플레이트(500)로 구성된다.
플로팅 플레이트(300)는 소켓몸체(100) 상부에 복수 개의 제1탄성체(S1)에 의해 탄성 지지되어 상하 유동 가능하게 마련되며, 상측면이 반도체 소자의 안착면으로 제공되고 각 콘택트(400)들의 상측 접촉부가 관통하여 위치하게 되는 다수개의 관통공이 형성된다.
바람직하게는, 플로팅 플레이트(300)는 하부에 다수의 후크(310)가 마련되며, 소켓몸체(100)는 각 후크(310)와 대응되는 걸림단(110)이 돌출 형성되어 소켓몸체(100) 상부에서 상하 유동 가능한 플로팅 플레이트(300)는 상방 이동 높이가 제한되어 제1탄성체(S1)에 의해 탄성 지지된다.
어댑터 플레이트(500)는 플로팅 플레이트(300) 상부에 구비되어 반도체 소자가 플로팅 플레이트(300)에 안착 위치할 수 있도록 가이드 경사면을 갖는다.
도 7은 본 발명의 반도체 소자 테스트용 소켓장치에 있어서 가동요소의 바람직한 실시예를 보여주는 단면 구성도이다.
도 7을 참고하면, 플로팅 플레이트(300)는 반도체 소자(IC) 안착면의 주변을 감싸게 되는 측벽을 형성하게 되는 가이드면(511)과, 가이드면(511)에서 불연속적으로 소정의 경사를 갖고 측상방으로 연장되는 경사면(512)이 형성되어 반도체 소자(IC)는 경사면(512)을 따라서 가이드면(511)에 위치하게 되어 정위치에 로딩(loading)이 이루어질 수 있다.
바람직하게는 BGA 타입의 반도체 소자(IC)의 경우에 반도체 소자의 솔더볼(B)을 정위치에 수용하게 되는 볼컵(320)이 플로팅 플레이트(300)에 마련될 수 있으며, 이때 볼컵(320)은 콘택트의 상측 접촉부가 관통하여 위치하게 되는 관통공(301)과 연통된다.
다시 도 3 내지 도 5를 참고하면, 소켓커버(600)는 복수개의 제2탄성체(S2)에 의해 탄성 지지되어 소켓몸체(100) 상부에 상하 유동 가능하도록 복수개의 제2후크(620)에 의해 상기 소켓몸체(100)와 조립되며, 반도체 소자가 가이드 경사면에 안내되어 로딩 가능하게 개구부가 형성된다.
도 8의 (a)(b)(c)(d)는 각각 본 발명의 반도체 소자 테스트용 소켓장치에 있어서, 소켓커버의 평면도, F-F선의 단면도, 저면도, 및 E-E선의 단면도이다.
도 8을 참고하면, 소켓커버(600)는 소켓몸체와 동일한 크기의 장방형상 또는 정방형상의 구조를 가지며, 중앙에는 반도체 소자가 삽입되도록 개구부(601)가 형성된다.
바람직하게는 소켓커버(600)의 내측면에는 벽면 구조물로써 돌출 형성된 열림돌기(610)가 마련되며, 열림돌기(610)는 반도체 소자 가압부의 개방 동작을 보조한다. 한편, 이러한 벽면 구조물은 내측 평면에서 돌출된 구조일 수 있으며 또는 소켓커버의 내측면 하단부에 의해 반도체 소자 가압부의 열림캠(711)에 대한 누름 조작이 이루어질 수도 있음을 이해하여야 할 것이며, 이에 대해서는 관련 도면을 참고하여 다시 구체적으로 설명한다.
소켓커버(600)는 하단에 수직하게 연장되어 제1힌지공(631)이 형성된 힌지브라켓(630)이 마련되어 힌지핀을 통해 래치 하단이 회동 가능하게 조립된다.
다시 도 3 내지 도 5를 참고하면, 반도체 소자 가압부는 소켓커버(600)의 상하 위치에 연동되어 플로팅 플레이트(300)에 안착 위치하게 되는 반도체 소자를 가압 고정한다. 본 실시예에서 반도체 소자 가압부는 좌우 대칭되게 마련되며, 이에 대칭되는 동일 구성에 대해 하나의 도면부호만을 사용하여 설명한다. 한편, 본 발명의 반도체 소자 가압부는 2개 이상으로 구성될 수 있으며, 예를 들어 좌우 및 전후 방향으로 대칭되게 마련되어 4개로 구성될 수가 있다.
구체적으로 반도체 소자 가압부는 푸셔 플레이트(710)와, 래치(720) 및 링크(730)로 구성된다.
푸셔 플레이트(710)는 반도체 소자의 상면과 면접촉하여 반도체 소자를 가압하게 되며, 좌우 두 개의 푸셔 플레이트가 반도체 소자의 상면 전체를 거의 덮도록 하여 가능하면 푸셔 플레이트와 반도체 소자의 접촉 면적을 크게 함이 바람직할 것이다.
래치(720)는 일단이 소켓커버(600)와 힌지 조립되며 타단은 푸셔 플레이트(710)와 힌지 조립이 이루어진다.
링크(730)는 일단이 소켓몸체(100)와 힌지 조립되며 타단은 래치(720)와 힌지 조립된다.
바람직하게는 푸셔 플레이트(710)와 래치(720)의 힌지축은 제1토션스프링(SS1)에 의해 탄성 지지되며, 또한 소켓몸체(100)와 링크(730)의 힌지축은 제2토션스프링(SS2)에 의해 탄성 지지된다. 제1토션스프링(SS1)과 제2토션스프링(SS2)은 푸셔 플레이트(710)가 닫힘(close) 상태를 유지하도록 한다.
이와 같이 구성된 반도체 소자 가압부는 링크(730) 하단이 고정된 힌지축이 되어 소켓몸체(600)의 상하 조작에 따라서 래치(720) 하단의 힌지축이 상하 이동하여 푸셔 플레이트(710)의 개폐(open/close) 동작이 이루어진다.
특히 본 발명에서 푸셔 플레이트(710)는 개방 동작 시에 소켓커버(600)와 직접 접촉이 이루어는 열림캠이 마련되어 푸셔 플레이트(710)의 개방 회전각을 크게 함을 특징으로 하며, 이하 반도체 소자 가압부의 주요 구성에 대해서 구체적으로 설명하도록 한다.
도 9의 (a)(b)(c)는 각각 본 발명의 링크에 대한 평면도, 좌측면도 및 정면도를 나타낸다.
도 9를 참고하면, 링크(730)는 한 쌍의 평행하게 마련된 링크 플레이트(731)(732)와, 두 링크 플레이트(731)(732)를 서로 고정하게 되는 고정 플레이트(733)로 구성될 수 있다.
링크 플레이트는 상단과 하단에 각각 제2힌지공(732a)과 제3힌지공(732b)이 형성되며, 제2힌지공(732a)은 힌지핀에 의해 래치와 조립되고 제3힌지공(732b)은 힌지핀에 의해 소켓몸체(100)와 조립된다.
고정 플레이트(733)는 제2토션스프링(SS2) 일단을 고정하기 위한 고정홀(732c)이 마련될 수 있다.
도 10의 (a)(b)(c)(d)는 각각 본 발명의 반도체 소자 테스트용 소켓장치에 있어서, 푸셔 플레이트의 정면도, 평면도, 배면도, 저면도, 및 측면도이다.
도 10을 참고하면, 푸셔 플레이트(710)는 래치와 힌지 조립을 위한 축공(712)이 마련되며, 힌지핀(713)에 의해 래치와 회동 가능하게 조립된다.
축공(712)의 후단으로 상방으로 돌출 형성된 열림캠(711)이 형성되며, 열림캠(711)은 푸셔 플레이트(710)의 개방 동작 시에 소켓커버(600)의 열림돌기(610)가 열림캠(711)을 상대적으로 가압하여 푸셔 플레이트(710)의 개방 회전각을 크게 할 수 있다.
푸셔 플레이트(710)는 제1토션스프링(SS1) 일단을 고정할 수 있도록 요홈(714)이 형성된다.
푸셔 플레이트(710)는 반도체 소자와 직접 접촉이 이루어지는 바닥 가압면에 푸셔 플레이트(710)의 회동 방향을 따라서 다수의 요철(715)이 형성되어 푸셔 플레이트(710)와 반도체 소자가 접촉하여 반도체 소자를 가압하는 과정에서 마찰력 발생을 줄일 수 있다.
또한 푸셔 플레이트(710)는 래치와 접촉하여 푸셔 플레이트(710)의 회동각을 제한하도록 하는 회동 정지면(716)이 형성될 수 있으며, 바람직하게는 푸셔 플레이트(710)의 회동각 제한은 반도체 소자의 로딩 과정에서 푸셔 플레이트(710)가 반도체 소자를 가압하는 초기에 푸셔 플레이트(710)의 끝단이 먼저 반도체 소자의 상면을 누르면서 가압이 이루어지도록 할 수 있다.
도 11의 (a)(b)는 본 발명의 반도체 소자 테스트용 소켓장치에 있어서, 반도체 소자 가압부에서 푸셔 플레이트의 반도체 소자 가압 초기 과정을 설명하기 위한 도면으로, 이해를 돕기 위하여 하나의 반도체 소자 가압부(700)만을 중심으로 도시한다.
도 11의 (a)를 참고하면, 반도체 소자(IC)가 로딩된 후에 푸셔 플레이트(710)가 회전하여 반도체 소자(IC)를 가압하게 되는 초기에는 제1토션스프링(SS1)의 탄성력에 의해 푸셔 플레이트(710)의 회동 정지면(716)은 래치(720)와 접촉된 상태에서 푸셔 플레이트(710) 끝단이 하방을 지향한 상태에서 회전이 이루어져 푸셔 플레이트(710) 끝단이 먼저 반도체 소자(IC)와 접촉이 이루어진다.
한편 도 11의 (b)를 참고하면, 이후 푸셔 플레이트(710)가 가압 방향으로 계속 회전이 이루어지면 푸셔 플레이트(710) 전체가 반도체 소자(IC)와 완전히 접촉되어 반도체 소자(IC)를 견고히 고정하게 되며, 이때 푸셔 플레이트(710)의 회동 정지면(716)은 래치(720)와는 이격된다.
이와 같이 반도체 소자의 초기 가압 시에 푸셔 플레이트(710) 전체가 반도체 소자와 접촉이 이루어지는 것과 비교하여 푸셔 플레이트(710)의 전단부가 먼저 반도체 소자와 접촉하면서 가압이 이루어짐에 따라서 로딩되는 반도체 소자의 두께 차이가 발생되더라도 안정적으로 반도체 소자의 고정이 이루어질 수 있다.
도 12의 (a)(b)(c)(d)는 본 발명의 반도체 소자 테스트용 소켓장치의 반도체 소자 로딩과정을 보여주는 도면이다.
도 12의 (a)는 소켓의 자연 상태를 보여주고 있으며, 제1탄성체(S1)와 제2탄성체(S2)에 의해 소켓커버(600)와 플로팅 플레이트(300)는 상단에 위치한다.
도 12의 (b)는 소켓커버(600)를 가압한 상태를 보여주고 있으며, 이때 소켓커버(600)와 힌지 체결된 래치(720) 하단이 같이 아래로 이동하면서 소켓몸체(100)와 힌지 체결된 링크(730) 하단을 고정 회전축으로 하여 링크(730)가 회전하여 푸셔 플레이트(710)는 소켓 중앙에서 바깥으로 회전한다.
도 12의 (c)는 소켓커버(600)를 최대로 누른 상태이며, 이때 푸셔 플레이트(710)는 래치(720) 상단과 힌지 체결된 축을 회전축으로 하여 열림캠(711)이 소켓커버(600)의 열림돌기(610)에 의해 눌리면서 바깥으로 최대한 회전하여 벌어진다.
참고로, 도 12의 (c)에서 점선으로 표시된 푸셔 플레이트(710a)는 열림캠(711)이 없는 상태에서 소켓커버(600)를 동일 변위만큼 누른 상태의 푸셔 플레이트를 보여주고 있으며, 이때 푸셔 플레이트(710a) 사이의 개방 거리(M)는 본 발명에서의 개방 거리(N)와 비교하여 짧은 것을 알 수 있으며, 따라서 본 발명은 푸셔 플레이트의 개방 회전각을 크게 확보함으로써 반도체 소자의 로딩 시에 푸셔 플레이트와의 간섭을 방지할 수 있다.
도 12의 (d)는 반도체 소자의 로딩이 완료된 후에 소켓커버(600)를 가압하였던 누름력을 제거하게 되면, 제2탄성체(S2)의 탄성력에 의해 소켓커버(600)는 상단으로 이동하게 되며, 소켓커버(600)와 힌지 체결된 래치(720) 하단이 같이 상단으로 이동하면서 래치(730)가 닫히게 되면서 푸셔 플레이트(710)는 반도체 소자(IC)를 가압하고 반도체 소자(IC)에 대한 테스트가 진행된다.
한편 도 11에서 설명한 것과 같이, 푸셔 플레이트(710)가 반도체 소자(IC)를 가압하게 되는 초기에는 푸셔 플레이트(710) 전단부가 먼저 반도체 소자(IC)와 접촉하면서 가압면 전체가 반도체 소자(IC)를 가압하게 됨이 바람직할 것이다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
[부호의 설명]
100 : 소켓몸체 101 : 제1수용공
110 : 걸림단 200 : 하측 플레이트
201 : 제2수용공 300 : 플로팅 플레이트
301 : 관통공 310 : 후크
400 : 콘택트 500 : 어댑터플레이트
600 : 소켓커버 610 : 열림돌기
700 : 반도체 소자 가압부 710 : 푸셔 플레이트
711 : 열림캠 720 : 래치
730 : 링크 S1 : 제1탄성체
S2 : 제2탄성체 SS1 : 제1토션스프링
SS2 : 제2토션스프링

Claims (13)

  1. 콘택트 삽입을 위한 다수개의 제1수용공(101)이 형성된 소켓몸체(100)와;
    상기 소켓몸체(100) 하부에 구비되며, 상기 콘택트(400)의 하측 접촉부가 PCB 단자들에 전기적 접촉이 가능하도록 상기 제1수용공(101)과 연통되는 다수의 제2수용공(201)이 관통 형성된 하측 플레이트(200)와;
    상기 소켓몸체(100) 상부에 복수 개의 제1탄성체(S1)에 의해 탄성 지지되어 상하 유동 가능하게 마련되며, 상측면이 반도체 소자의 안착면으로 제공되고 각 콘택트들의 상측 접촉부가 관통하여 위치하게 되는 다수개의 관통공(301)이 형성된 플로팅 플레이트(300)와;
    상기 제1수용공(101)과 제2수용공(201)에 삽입되어 하측 접촉부가 PCB의 단자와 접촉되고 상측 접촉부가 상기 관통공(301)을 통하여 반도체 소자의 단자와 접촉하는 다수개의 콘택트(400)와;
    상기 플로팅 플레이트(300) 상부에 구비되어 반도체 소자가 상기 플로팅 플레이트(300)에 안착 위치할 수 있도록 가이드 경사면을 갖는 어댑터 플레이트(500)와;
    복수개의 제2탄성체(S2)에 의해 탄성 지지되어 상기 소켓몸체(100) 상부에 상하 유동 가능하도록 복수개의 후크(620)에 의해 상기 소켓몸체(100)와 조립되며, 반도체 소자가 상기 가이드 경사면에 안내되어 로딩 가능하게 개구부(601)가 형성되고 개구부(601)의 내측 벽면에 열림돌기(610)가 돌출 형성된 소켓커버(600)와;
    상기 소켓커버(600)의 상하 위치에 연동되어 상기 플로팅 플레이트(300)에 안착 위치하게 되는 반도체 소자를 가압 고정하게 되는 반도체 소자 가압부(700)를 포함하며,
    상기 반도체 소자 가압부(700)는,
    상기 열림돌기(610)의 하단에 배치되어 상기 열림돌기(610)와 접촉이 가능한 열림캠(711)을 포함하여 반도체 소자의 상면을 면접촉하여 가압하게 되는 푸셔 플레이트(710)와;
    일단이 상기 소켓커버(600)와 힌지 조립되고 타단이 상기 푸셔 플레이트(710)와 힌지 조립되는 래치(720)와;
    일단이 상기 소켓몸체(100)와 힌지 조립되고 타단이 상기 래치(720)와 힌지 조립되는 링크(730);를 포함하는 반도체 소자 테스트용 소켓장치.
  2. 콘택트(400)가 삽입 고정되는 몸체요소(100)(200)와;
    반도체 소자의 단자와 상기 콘택트의 상단이 접촉이 이루어질 수 있도록 반도체 소자(IC)가 안착 위치하게 되며, 상기 몸체요소(100)(200)에 탄성 지지되어 설정 높이 범위 내에서 상하 이동이 가능하게 마련되는 가동요소(300)(500)와;
    상기 가동요소(300)(500)의 상부에 조립되어 상기 몸체요소(100)(200)에 상하 탄성적으로 조립되는 소켓커버(600)와;
    상기 커버요소(600)의 상하 위치에 연동되어 상기 가동요소(300)(500)에 안착 위치하게 되는 반도체 소자(IC)를 가압 고정하는 반도체 소자 가압부(700)를 포함하며,
    상기 반도체 소자 가압부(700)는,
    상기 소켓커버(600)의 내측 벽면 구조물 하단에 위치하여 소켓커버(600)의 하방 이동 시에 접촉이 가능한 열림캠(711)을 포함하여 반도체 소자(IC)의 상면을 면접촉하여 가압하는 푸셔 플레이트(710)와;
    일단이 상기 커버요소(600)와 힌지 조립되고 타단이 상기 푸셔 플레이트(710)와 힌지 조립되는 래치(720)와;
    일단이 상기 몸체요소(100)(200)와 힌지 조립되고 타단이 상기 래치(720)와 힌지 조립되는 링크(730);를 포함하는 반도체 소자 테스트용 소켓장치.
  3. 제1항 또는 제2항에 있어서, 상기 푸셔 플레이트(710)와 상기 래치(720)의 힌지축은 제1토션스프링(SS1)에 의해 탄성 지지되는 것을 특징으로 하는 반도체 소자 테스트용 소켓장치.
  4. 제1항에 있어서, 상기 소켓몸체(100)와 상기 링크(730)의 힌지축은 제2토션스프링(SS2)에 의해 탄성 지지되는 것을 특징으로 하는 반도체 소자 테스트용 소켓장치.
  5. 제2항에 있어서, 상기 몸체요소(100)(200)와 상기 링크(730)의 힌지축은 제2토션스프링(SS2)에 의해 탄성 지지되는 것을 특징으로 하는 반도체 소자 테스트용 소켓장치.
  6. 제3항에 있어서, 상기 푸셔 플레이트(710)는 상기 래치(720)와 접촉하여 회동각이 제한되도록 회동 정지면(716)을 포함하여 반도체 소자에 대한 가압 초기에 선단부가 먼저 반도체 소자의 상면과 접촉이 이루어지도록 하는 것을 특징으로 하는 반도체 소자 테스트용 소켓장치.
  7. 제1항에 있어서, 상기 플로팅 플레이트(300)는 반도체 소자의 안착면에 상기 관통공과 연통되어 반도체 소자의 단자가 수용되도록 함몰 형성된 볼컵(320)이 형성되는 것을 특징으로 하는 반도체 소자 테스트용 소켓장치.
  8. 제4항에 있어서, 상기 링크(730)는,
    상단과 하단에 각각 래치(720) 및 소켓몸체(100)와 힌지핀으로 조립이 이루어지도록 힌지공이 형성되어 평행하게 마련된 두 개의 링크 플레이트(731)(732)와;
    두 링크 플레이트(731)(732)를 서로 고정하며, 상기 제2토션스프링(SS2) 일단을 고정하게 되는 고정홀이 형성된 고정 플레이트(733)로 구성됨을 특징으로 하는 반도체 소자 테스트용 소켓장치.
  9. 제1항 또는 제2항에 있어서, 상기 콘택트는 판재를 타발하여 일체형으로 가공된 것으로써,
    상방으로 돌출 형성된 상측첨단부(411)를 갖는 상측머리부(410)와;
    상측머리부(410)에서 아래로 연장된 상측어깨부(412)에서 원통 형상으로 벤딩된 스트립으로 이루어진 압축부(420)와;
    압축부(420) 하단에서 연장된 하측어깨부(432)에서 아래로 연장 형성되어 하단에 하측첨단부(431)를 갖는 하측머리부(430);를 포함하는 반도체 소자 테스트용 소켓장치.
  10. 제9항에 있어서 상기 압축부는 코일스프링인 것을 특징으로 하는 반도체 소자 테스트용 소켓장치.
  11. 제1항 또는 제2항에 있어서, 상기 푸셔 플레이트(710)는 반도체 소자와 직접 접촉이 이루어지는 바닥 가압면에 푸셔 플레이트(710)의 회동 방향을 따라서 다수의 요철(715)이 형성됨을 특징으로 하는 반도체 소자 테스트용 소켓장치.
  12. 제1항에 있어서, 상기 소켓몸체(100)는 테스트보드와 복수개의 스크류에 의해 장착되며, 상기 콘택트(400)는 압축성을 갖고 하측첨단부(431)가 테스트보드의 단자와 압축되어 접촉이 이루어지는 것을 특징으로 하는 반도체 소자 테스트용 소켓장치.
  13. 제1항에 있어서, 상기 하측 플레이트(200)의 하측에 콘택트를 안내하게 되는 콘택트 가이드 홀이 형성된 가이드 플레이트를 더 구비하고, 상기 콘택트(400)는 압축성을 갖고 하측첨단부(431)가 테스트보드의 단자와 솔더링되는 것을 특징으로 하는 반도체 소자 테스트용 소켓장치.
PCT/KR2015/004141 2014-04-28 2015-04-27 반도체 소자 테스트용 소켓장치 WO2015167178A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016564624A JP6411546B2 (ja) 2014-04-28 2015-04-27 半導体素子テスト用ソケット装置
CN201580021262.9A CN106561084B (zh) 2014-04-28 2015-04-27 半导体器件测试用插座装置
US15/306,151 US10241132B2 (en) 2014-04-28 2015-04-27 Socket apparatus for semiconductor device test

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140050435A KR101585182B1 (ko) 2014-04-28 2014-04-28 반도체 소자 테스트용 소켓장치
KR10-2014-0050435 2014-04-28

Publications (1)

Publication Number Publication Date
WO2015167178A1 true WO2015167178A1 (ko) 2015-11-05

Family

ID=54358848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004141 WO2015167178A1 (ko) 2014-04-28 2015-04-27 반도체 소자 테스트용 소켓장치

Country Status (5)

Country Link
US (1) US10241132B2 (ko)
JP (1) JP6411546B2 (ko)
KR (1) KR101585182B1 (ko)
CN (1) CN106561084B (ko)
WO (1) WO2015167178A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108693458A (zh) * 2017-04-12 2018-10-23 环旭电子股份有限公司 用于芯片的测试插座

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628305B1 (ko) * 2015-12-30 2016-06-09 (주) 네스텍코리아 전자부품 테스트용 자동 소켓
KR101895034B1 (ko) * 2017-02-21 2018-10-04 에이아이비트 주식회사 논-포고 타입 커넥터를 포함하는 프로브 검사 장치
KR101992627B1 (ko) 2017-03-31 2019-06-25 주식회사 오킨스전자 프로브 핀이 일정한 간격으로 배열되는 스트립의 릴―투―릴 박막 코팅 방법
JP6809978B2 (ja) * 2017-04-28 2021-01-06 株式会社アドバンテスト 電子部品試験装置用のキャリア
JP2019070562A (ja) * 2017-10-06 2019-05-09 株式会社日本マイクロニクス 電気的接続装置
US10816574B2 (en) * 2018-01-10 2020-10-27 Yamaichi Electronics Usa, Inc. High insertion count test socket
US10551411B2 (en) * 2018-02-09 2020-02-04 Silicon Laboratories Inc. Semiconductor test system with flexible and robust form factor
KR101911496B1 (ko) * 2018-04-13 2018-12-28 황동원 반도체 디바이스 테스트 소켓장치
KR102059094B1 (ko) * 2018-08-02 2019-12-24 주식회사 마이크로컨텍솔루션 반도체 칩 테스트 소켓
KR101930866B1 (ko) * 2018-08-08 2018-12-20 황동원 반도체 디바이스 테스트용 콘택트 및 소켓장치
KR101926387B1 (ko) * 2018-10-10 2018-12-10 황동원 반도체 소자 테스트용 소켓장치
KR102036202B1 (ko) * 2018-10-26 2019-10-24 (주) 나노에이스 회동 레버를 이용한 반도체칩의 네 코너 고정식 지지체
KR102088305B1 (ko) * 2018-11-22 2020-03-13 주식회사 아이에스시 피검사 디바이스 검사용 테스트 소켓
KR101944693B1 (ko) * 2018-12-04 2019-02-01 황동원 반도체 소자 테스트용 bga 소켓장치
KR102146290B1 (ko) * 2019-04-04 2020-08-21 황동원 반도체 소자 테스트용 lidless BGA 소켓장치
CN110045159B (zh) * 2019-05-24 2021-03-05 何华辉 一种取放料方便的bga封装的测试座
CN110045161B (zh) * 2019-05-24 2021-02-09 杨学习 一种bga封装的测试座
CN110320390B (zh) * 2019-08-08 2021-12-10 深圳市研测科技有限公司 一种引脚保护型二极管测试用夹持工装
KR102241523B1 (ko) * 2019-11-01 2021-04-19 (주)마이크로컨텍솔루션 반도체 칩 테스트 소켓
KR102066886B1 (ko) * 2019-12-02 2020-01-16 장병철 가압 거동이 개선된 표면 실장형 집적회로 패키지용 테스트 소켓
KR102193725B1 (ko) * 2019-12-31 2020-12-21 (주)마이크로컨텍솔루션 반도체 칩 패키지 테스트 소켓
CN110780095B (zh) * 2019-12-31 2020-07-07 武汉精毅通电子技术有限公司 产品载具自动压接机构及点屏测试设备
KR102210651B1 (ko) * 2020-04-16 2021-02-02 캠아이티(주) 후크 체결형 반도체 테스트 소켓
KR102138793B1 (ko) * 2020-06-05 2020-07-28 주식회사 와이즈테크 내부 후크를 구비한 디스플레이패널 검사 장치
KR102292037B1 (ko) * 2020-12-18 2021-08-23 황동원 반도체 소자 번인 및 테스트용 콘택트 및 소켓장치
TWI752760B (zh) * 2020-12-18 2022-01-11 致茂電子股份有限公司 測試座之晶片固定裝置
KR102312971B1 (ko) * 2021-07-13 2021-10-14 김상주 결합 구조를 간소화한 테스트 보드용 커넥터
TWI775566B (zh) * 2021-08-13 2022-08-21 美商第一檢測有限公司 晶片檢測設備

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030022736A (ko) * 2001-09-11 2003-03-17 텍사스 인스트루먼츠 인코포레이티드 번인 시험 소켓
KR20030051371A (ko) * 2001-12-17 2003-06-25 텍사스 인스트루먼츠 인코포레이티드 전자 장치 장착용 소켓
KR200425576Y1 (ko) * 2006-06-23 2006-09-06 센서스앤드컨트롤스코리아 주식회사 전자부품용 소켓
KR20120054548A (ko) * 2010-11-19 2012-05-30 센사타 테크놀로지스, 인크 소켓

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329227A (en) * 1993-05-18 1994-07-12 Aries Electronics, Inc. Test socket assembly for testing LCC packages of both rectangular and square configuration
US6140828A (en) * 1997-05-08 2000-10-31 Tokyo Electron Limited Prober and probe method
JP3257994B2 (ja) * 1999-08-30 2002-02-18 日本テキサス・インスツルメンツ株式会社 ソケット
JP4615151B2 (ja) * 2001-06-19 2011-01-19 モレックス インコーポレイテド 半導体パッケージ用ソケット
JP2003168532A (ja) * 2001-11-29 2003-06-13 Texas Instr Japan Ltd 半導体装置用ソケットおよび半導体装置のソケットへの取付け方法
TWI234218B (en) * 2002-03-29 2005-06-11 Toshiba Corp Semiconductor test device, contact substrate for testing semiconductor device, testing method of semiconductor device, semiconductor device and the manufacturing method thereof
KR100495819B1 (ko) * 2003-06-14 2005-06-16 미래산업 주식회사 반도체 소자 테스트 핸들러의 소자 안착장치
KR100675343B1 (ko) * 2004-12-20 2007-01-29 황동원 반도체용 테스트 및 번인 소켓
KR100629958B1 (ko) * 2005-01-15 2006-09-28 황동원 반도체용 테스트 및 번인을 위한 비지에이형 소켓
JP4868413B2 (ja) * 2007-12-04 2012-02-01 センサータ テクノロジーズ インコーポレーテッド ソケット
US7837481B1 (en) * 2008-01-14 2010-11-23 Xilinx, Inc. Socket for an integrated circuit and a method of providing a connection in a socket
KR20110099556A (ko) * 2010-03-02 2011-09-08 삼성전자주식회사 반도체 패키지 테스트장치
KR101830284B1 (ko) * 2011-10-06 2018-02-21 삼성전자주식회사 컨택 장치 및 이를 이용한 반도체 테스트 장치
KR101345815B1 (ko) 2012-06-01 2014-01-10 주식회사 오킨스전자 래치구조물 및 이를 포함하는 반도체 패키지 탑재용 소켓
KR101345816B1 (ko) 2012-07-20 2014-01-10 주식회사 오킨스전자 반도체 패키지 테스트용 소켓

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030022736A (ko) * 2001-09-11 2003-03-17 텍사스 인스트루먼츠 인코포레이티드 번인 시험 소켓
KR20030051371A (ko) * 2001-12-17 2003-06-25 텍사스 인스트루먼츠 인코포레이티드 전자 장치 장착용 소켓
KR200425576Y1 (ko) * 2006-06-23 2006-09-06 센서스앤드컨트롤스코리아 주식회사 전자부품용 소켓
KR20120054548A (ko) * 2010-11-19 2012-05-30 센사타 테크놀로지스, 인크 소켓

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108693458A (zh) * 2017-04-12 2018-10-23 环旭电子股份有限公司 用于芯片的测试插座

Also Published As

Publication number Publication date
KR101585182B1 (ko) 2016-01-14
JP2017518489A (ja) 2017-07-06
US10241132B2 (en) 2019-03-26
CN106561084A (zh) 2017-04-12
US20170045551A1 (en) 2017-02-16
CN106561084B (zh) 2020-06-30
JP6411546B2 (ja) 2018-10-24
KR20150124092A (ko) 2015-11-05

Similar Documents

Publication Publication Date Title
WO2015167178A1 (ko) 반도체 소자 테스트용 소켓장치
WO2014208840A1 (ko) 반도체 소자 테스트용 소켓장치
CN111417857B (zh) 用于半导体器件测试的插座装置
US6572396B1 (en) Low or zero insertion force connector for printed circuit boards and electrical devices
WO2020032318A1 (ko) 반도체 디바이스 테스트용 콘택트 및 소켓장치
US8212579B2 (en) Fixing apparatus for a probe card
US6636057B1 (en) Electric part testing apparatus with movable adapter
WO2013042919A1 (ko) 아이씨 테스트용 소켓장치
WO2015046786A1 (ko) 반도체 칩 검사장치
TWI429148B (zh) A substrate mounting device, a test head, and an electronic component testing device
KR20080097600A (ko) 반도체 테스트를 위한 반도체 소켓의 반도체 고정장치
US7097488B2 (en) Socket for electrical parts
WO2021137527A1 (ko) 테스트 소켓 조립체
WO2012165908A2 (ko) 반도체 패키지용 인서트
JP2004536324A (ja) プログラム可能な試験ソケット
JP6362507B2 (ja) 接触ばねブロック、接触ソケット、接触ばねブロックの接触ばねを交換する方法及び接触ソケットの接触ばねを交換する方法
KR20030004126A (ko) 전자 부품용 소켓
US5196785A (en) Tape automated bonding test apparatus for thermal, mechanical and electrical coupling
KR102139584B1 (ko) 반도체 소자 테스트용 소켓 장치
KR101668270B1 (ko) 전자부품 실장 테스트를 위한 접속장치 및 이를 이용한 테스트 장치
WO2024122952A1 (ko) 반도체 소자 테스트용 소켓장치
JP6877805B1 (ja) 測定用ソケット
CN219016383U (zh) 匹配浮动界面的连接装置、连接器以及测试机
CN220584672U (zh) 一种浮动拔插机构及测试设备
WO2010016749A2 (ko) 일체형 포고 핀 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15306151

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016564624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785639

Country of ref document: EP

Kind code of ref document: A1