WO2015158341A2 - Verfahren zur parametrierung eines softwaretilgers zur dämpfung von rupfschwingungen - Google Patents

Verfahren zur parametrierung eines softwaretilgers zur dämpfung von rupfschwingungen Download PDF

Info

Publication number
WO2015158341A2
WO2015158341A2 PCT/DE2015/200194 DE2015200194W WO2015158341A2 WO 2015158341 A2 WO2015158341 A2 WO 2015158341A2 DE 2015200194 W DE2015200194 W DE 2015200194W WO 2015158341 A2 WO2015158341 A2 WO 2015158341A2
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
transmission behavior
software
torque
transmission
Prior art date
Application number
PCT/DE2015/200194
Other languages
English (en)
French (fr)
Other versions
WO2015158341A3 (de
Inventor
Florian Eppler
Ulrich Neuberth
Daniel Müller
Alejandro MUNOZ CASAS
Michael Reuschel
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112015001851.4T priority Critical patent/DE112015001851A5/de
Priority to CN201580020122.XA priority patent/CN106233031B/zh
Priority to US15/304,327 priority patent/US10197115B2/en
Publication of WO2015158341A2 publication Critical patent/WO2015158341A2/de
Publication of WO2015158341A3 publication Critical patent/WO2015158341A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/22Vibration damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/30806Engaged transmission ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/3081Signal inputs from the transmission from the input shaft
    • F16D2500/30816Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3107Vehicle weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/312External to the vehicle
    • F16D2500/3125Driving resistance, i.e. external factors having an influence in the traction force, e.g. road friction, air resistance, road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/312External to the vehicle
    • F16D2500/3125Driving resistance, i.e. external factors having an influence in the traction force, e.g. road friction, air resistance, road slope
    • F16D2500/3127Road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3163Using the natural frequency of a component as input for the control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3168Temperature detection of any component of the control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50287Torque control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50293Reduction of vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70422Clutch parameters
    • F16D2500/70438From the output shaft
    • F16D2500/7044Output shaft torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/70605Adaptive correction; Modifying control system parameters, e.g. gains, constants, look-up tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/7061Feed-back
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/70668Signal filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/70673Statistical calculations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/708Mathematical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/708Mathematical model
    • F16D2500/7082Mathematical model of the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/71Actions
    • F16D2500/7107Others
    • F16D2500/7109Pulsed signal; Generating or processing pulsed signals; PWM, width modulation, frequency or amplitude modulation

Definitions

  • the invention relates to a method for the parameterization of a software coupled to a clutch controller for damping Rupfschwingonne a arranged between an internal combustion engine and a transmission in a drive train of a motor vehicle, automated, controlled by the clutch control by means of a Kupplungssollmoments friction clutch to be transmitted clutch torque, wherein by means of Softwaretilgers the clutch desired torque loaded in predetermined operating states by picking vibrations is corrected, wherein a transmission behavior of a clutch torque transmitted by the clutch desired torque via the friction clutch is determined during a modulation of the nominal clutch torque and parameterized on the basis of the determined transmission behavior of the software accelerator.
  • Automated friction clutches for example friction clutches combined to form a dual clutch, are well known and are used in drive trains with an internal combustion engine and a transmission, for example an automated manual transmission, double clutch transmission or the like, between internal combustion engine and transmission.
  • the friction clutch is actuated by means of a clutch actuator such as clutch actuator.
  • the clutch actuator is controlled by a clutch control.
  • the clutch control includes a controller which can be determined based on a clutch desired torque, which can be determined, for example depending on a driver's desired torque, driving situations, road conditions and the like by means of a Fahrstrategiepro- program, that at the output of a predetermined clutch torque is applied.
  • juddering vibrations are simulated by modulating the desired clutch torque and using the resulting signals relevant for driving comfort, such as the longitudinal acceleration of the motor vehicle or the transmission input speed for the design and parameterization of the software filter, for example a controller or filter , This is done by modulations of the desired clutch torque in the relevant frequency range of juddering vibrations, typically between 2 Hz and 30 Hz.
  • a frequency response of the system for example via a controlled system starting with the clutch control via the clutch actuator via the frictionally engaged friction clutch to its output, for example a transmission input shaft coupled vibrationally determined by for periods of typically a few seconds sine excitation fixed frequency in the desired operating condition on the clutch torque, for example, with a step size of 0.5 Hz over the relevant frequency range of Jupschwingungen in relevant operating conditions, such as starting and Ankriechsituationen and when engaging after gear changes is performed.
  • the evaluation of the transmission behavior is largely done by hand by the amplitudes of modulating moment and transmission input speed or longitudinal acceleration are related to each other in a component-wise consideration of the frequency components after a discrete Fourier transform. This creates a transfer function, which is used to parameterize the software filter. This method is very time consuming.
  • the object of the invention is the advantageous development of a method for the design and parameterization of a software filter.
  • the object is solved by the features of the method of claim 1.
  • the dependent of this claims give advantageous embodiments of the method of claim 1 again.
  • the proposed method is used for the parameterization of a software controller connected to a clutch control, which is provided for damping chatter vibrations of a clutch torque.
  • the clutch torque is transmitted depending on a specified from a driving strategy clutch desired torque via a see between an internal combustion engine and a transmission arranged in a drive train of a motor vehicle friction clutch.
  • the friction clutch is controlled by a clutch actuator by means of a position controller whose input signal, inter alia, the clutch desired torque and the output signal is an actuating travel or the like.
  • the software controller is superimposed on the position controller, which corrects picking vibrations occurring in predetermined operating states by correcting the loaded clutch setpoint torque.
  • a transmission behavior of the clutch torque is determined via the system, in particular the friction clutch, wherein the desired clutch torque is modulated by means of oscillations in the range of expected, modeled and / or picking vibration frequencies determined empirically on the motor vehicle.
  • the software filter is subsequently identified and parameterized.
  • the nominal clutch torque is modulated by means of a broadband excitation in a frequency range of the juddering vibrations and the transmission behavior is determined as a function of the operating parameters of the drive train.
  • the proposed method for exciting the controlled system for example, the drive train provides, instead of the previously used sine-fixed frequency functions to use a broadband signal to modulate the clutch desired torque, which is modulated in the relevant operating state of Rupfschwingept to the resulting from the driving strategy clutch torque ,
  • the spectrum relevant for the system identification is determined over the entire determination of the transmission behavior covered. This achieves a significantly improved frequency resolution in the transmission function in a significantly shorter test time. In this case, a maximum amplitude of the nominal clutch torque is maintained at a predetermined fixed value in a preferred manner.
  • PRBS pseudorandom binary sequence
  • PRBS is a binary signal that is modeled on the white noise spectrum.
  • the PRBS essentially consists of two signal levels, between which, for example, in 20ms clock is switched. This switching between the levels produces a rectangular modulation, which in the spectrum by a
  • An advantageous embodiment of a broadband excitation may be in the form of a sinusoidal signal with a time-variable frequency, for example in the form of a so-called sine sweep.
  • the frequency is continuously changed in the frequency band desired for the transmission behavior. Through this continuous change, the entire frequency band can be covered within a relatively short period of time.
  • Advantageous embodiments of a broadband excitation can also be provided for example by means of adaptive filters, for example by means of transversal filters with an LMS algorithm (Least Mean Squares algorithm).
  • LMS algorithm Least Mean Squares algorithm
  • the transmission behavior of the drive train is of central importance for a successful anti-judder control.
  • the software filter for example in the form of a controller or filter, can be parametrized so stably and robustly that additional suggestions are unlikely.
  • the transmission behavior can be determined as a function of operating states and parameters of the controlled system, of the drive train and finally of the entire motor vehicle as well as its components which are in vibratory communication with one another.
  • the transmission behavior in non-exhaustive list depending on a mean transmitted via the friction clutch torque, an engaged gear of the transmission of mutually coupled masses of the drive train, for example, on and off auxiliary units of the internal combustion engine, a hybrid module and the like of mass coupled with the drive train, for example the vehicle body with a vehicle mass, a trailer of the motor vehicle and the like, of at least one temperature of a component of the drive train, for example the temperature of the clutch actuator, the friction clutch, the internal combustion engine and / or the transmission or the like, are determined by a driving resistance of the motor vehicle, for example the tire condition, the tire pressure or the like.
  • the predetermined by the driving strategy clutch setpoint acts as a preload, which corresponds to a biasing of the drive train.
  • a preload which corresponds to a biasing of the drive train.
  • the drive train has a gear-dependent gear ratio
  • the coupling of the masses contained in the drive train differs with differently selected gears and their transmission.
  • the entirety of the coupled oscillatory mass is changed when a gear is engaged or disengaged on the inactive shaft. This also influences the transmission behavior of the drive train, in that switching on a gear decreases the resonance frequency, while laying out an additional gear increases the frequency so that the transmission behavior is determined as a function of this.
  • the detection of a change in the vehicle mass may be part of an integrated controller concept, for example by means of a drive train observer from a clutch torque model, the vehicle mass is taken into account in the transmission behavior.
  • the detection can be done by evaluating a combination of signals and an observer structure. Relevant measurement signals include, for example, engine torque, engine speed, transmission speed, acceleration of the motor vehicle and also additional information sources, for example a seat occupancy detection and / or the like.
  • the slope which the motor vehicle has to overcome during the start-up process plays an important role in terms of the transmission behavior, since, for example, the internal combustion engine is supported in its bearings in a different manner than is the case in the plane.
  • the vibration modes of the engine mass are changed and the transmission behavior of the drive train changes. Similar to the changed vehicle mass, this can be recognized on the basis of the acceleration of the motor vehicle, for example by means of an acceleration sensor, and incorporated into the determination of the transmission behavior.
  • the tires of the motor vehicle also influence these vibrations and thus also the transmission behavior.
  • the changed rolling resistance plays a key role here. Therefore, for example, the rolling resistance and / or similar parameters are taken into account in determining the transmission behavior.
  • the tire pressure is often known in modern vehicles by corresponding sensors in the tire and can therefore be available in the transfer function.
  • the sum of the coupled masses changes when connected.
  • the electric motor for additional damping provide in the system or even actively influence the system behavior by its control. These factors influence the transfer function of the drive train and are taken into account during route identification and parameterization.
  • the temperatures in the actuating or transmission elements influence the vibration behavior, because friction / damping changes accordingly.
  • known temperatures of the actuator, the friction clutch, the environment and / or the like can be detected and included in the determination of the transmission behavior.
  • switchable units such as air conditioning, recuperation and the like
  • additional masses can be coupled to the drive train and possibly additional damping elements are connected. This results in this case, a changed dynamics of the powertrain, which is considered in terms of determining the transmission behavior in an advantageous manner.
  • the activation and deactivation of the anti-judder control can be meaningfully controlled during operation.
  • initially controllable and non-controllable driving situations are identified and determined.
  • the definition of a non-controllable driving situation takes place during the design of the software filter as part of a system identification.
  • These driving situations can be detected while driving, so that a corresponding deactivation of the software filter can be carried out.
  • an optionally occurring deterioration of the ride comfort - for example, by an abrupt on and off behavior of the software spoiler - be avoided for example by a steady transition between on and off state of the controller, which by a continuous raising or lowering of the total gain factor is reached.
  • switch-off conditions refer here to a minimum speed, below which the control is disabled, since in this area for technical reasons, the speed measurement, the signal quality decreases sharply and reliable control can not be guaranteed.
  • a certain minimum slip speed is preferably set at the frictional contact of the friction clutch, so that adhesion of the friction clutch and thus unwanted additional suggestions of the drive train natural frequency can be avoided.
  • the controller Since the proposed switch-off conditions in the event of a plucking occurring with the picking frequency over and fallen below again, the controller would therefore switched on and off with the picking frequency. This would introduce a further excitation of this frequency and thus further destabilize the system.
  • the shutdown is therefore instantaneous, while the restarting of the controller is debounced in time. In this case, the switch-off condition must be continually violated again for a certain period of time so that the overall amplification factor is raised again. This prevents constant switching on and off of the controller.
  • the controller can be switched off or hidden for stability reasons, if the driving condition underlying clutch characteristic has too high a slope. This too steep course, the resolution of the clutch control could be too coarse for a meaningful modulation moment, which overmodulation of the software filter and thus a negative impact on the stability of the system would be possible. Therefore, no regulation takes place in this case.
  • the entire modulation moment introduced by the software filter can be limited by an internal characteristic so that possible identified modulation moments which are too large and therefore no longer controllable can not be fully incorporated into the nominal clutch torque.
  • Another stability-relevant measure may be the reinitialization of the software suppressor. In order to avoid any errors in the phase position of the active control signal with respect to the juddering vibration to be controlled, the controller is reinitialized when changing the active friction clutch of a dual-clutch transmission.
  • the runtime of the control algorithm as part of the vehicle software in the control unit of the motor vehicle can be minimized.
  • the less time-critical parts of the software filter are executed at a slower rate to save both memory and processor resources and to optimize the overall run time of the controller.
  • FIG. 1 shows a time profile of a sine sweep
  • Figure 2 is a diagram illustrating a broadband excitation of
  • Figure 3 is a diagram showing the time course of the clutch torque modulating PBRS signal.
  • FIG. 4 shows a diagram with the spectrum of a PRBS signal.
  • the sine sweep shown in FIG. 1 is generated by means of a signal generator.
  • a sine signal with a predetermined frequency and torque amplitude is generated.
  • the frequency is increased in a fixed interval, resulting in a stepped frequency response.
  • the frequency range used is between 1.5 Hz and 30 Hz, resulting in the modulated signal shown. This procedure achieves a very broadband spectrum which allows the determination of the most detailed frequency response of the system possible via the controlled system.
  • FIGS. 2 to 4 show a method, which is alternative to the method of FIG. 1, in order to achieve a broadband excitation of the nominal clutch torque.
  • This method relies on excitation with a pseudorandom binary sequence (PRBS) signal.
  • PRBS pseudorandom binary sequence
  • a so-called "Linear Feedback Shift Register” (LFSR) is implemented, which outputs quasi randomly zero or one after each call, thereby generating a randomly varying signal level with a given amplitude.
  • LFSR Linear Feedback Shift Register
  • the linear feedback shift register shown in FIG The following values are generated by first picking off certain digits of the number dependent on the length of the register and connecting them to a new bit via suitable logic operations .This new bit is then inserted at the beginning of the register and In Figure 3, the random level S is added to the desired clutch torque from a driving strategy for setting a static clutch torque at the friction clutch Excitation of the drive strand with a broadband modulation of a modulated
  • the illustrated level S represents a rectangular modulation, which in the spectrum by an amplitude dependence of the shape
  • V distinguished.
  • the switching time of 20ms causes the amplitude dependency to take effect only at frequencies above approx. 50Hz, since the first frequency components disappear here.
  • FIG. 4 shows the spectrum of the PRBS signal for this purpose. This is available at any time.
  • the required duration of an experiment for determining the transmission behavior of the modulated desired clutch torque is essentially determined by the frequency resolution desired in the transmission function and the desired signal-to-noise ratio.
  • T Ex 1 / ⁇ of the experiment, where ⁇ is the desired frequency resolution.
  • a measurement duration of typically at least 30 s is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Acoustics & Sound (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Parametrierung eines einer Kupplungssteuerung zugeschalteten Softwaretilgers zur Dämpfung von Rupfschwingungen eines über eine zwischen einer Brennkraftmaschine und einem Getriebe in einem Antriebsstrang eines Kraftfahrzeugs angeordnete, automatisierte, von der Kupplungssteuerung mittels eines Kupplungssollmoments gesteuerte Reibungskupplung zu übertragenden Kupplungsmoments, wobei mittels des Softwaretilgers das in vorgegebenen Betriebszuständen durch Rupfschwingungen belastete Kupplungssollmoment korrigiert wird, wobei ein Übertragungsverhalten eines anhand des Kupplungssollmoments über die Reibungskupplung übertragenen Kupplungsmoments bei einer Modulation des Kupplungssollmoments ermittelt und anhand des ermittelten Übertragungsverhaltens der Softwaretilger parametriert wird. Um den Softwaretilger schnell und umfassend parametrieren zu können, wird das Kupplungssollmoment mittels einer breitbandigen Anregung in einem Frequenzbereich der Rupfschwingungen moduliert und das Übertragungsverhalten abhängig von Betriebsparametern des Antriebsstrangs ermittelt.

Description

Verfahren zur Parametrierung eines Softwaretilgers zur Dämpfung von Rupfschwingungen
Die Erfindung betrifft ein Verfahren zur Parametrierung eines einer Kupplungssteuerung zugeschalteten Softwaretilgers zur Dämpfung von Rupfschwingungen eines über eine zwischen einer Brennkraftmaschine und einem Getriebe in einem Antriebsstrang eines Kraftfahrzeugs angeordnete, automatisierte, von der Kupplungssteuerung mittels eines Kupplungssollmoments gesteuerte Reibungskupplung zu übertragenden Kupplungsmoments, wobei mittels des Softwaretilgers das in vorgegebenen Betriebs- zuständen durch Rupfschwingungen belastete Kupplungssollmoment korrigiert wird, wobei ein Übertragungsverhalten eines anhand des Kupplungssollmoments über die Reibungskupplung übertragenen Kupplungsmoments bei einer Modulation des Kupplungssollmoments ermittelt und anhand des ermittelten Übertragungsverhaltens der Softwaretilger parametriert wird .
Automatisierte Reibungskupplungen, beispielsweise zu einer Doppelkupplung zu- sammengefasste Reibungskupplungen sind hinreichend bekannt und werden in Antriebssträngen mit einer Brennkraftmaschine und einem Getriebe, beispielsweise ei- nem automatisierten Schaltgetriebe, Doppelkupplungsgetriebe oder dergleichen, zwischen Brennkraftmaschine und Getriebe eingesetzt. Die Reibungskupplung wird dabei mittels eines Kupplungsstellers wie Kupplungsaktor betätigt. Der Kupplungsaktor wird von einer Kupplungssteuerung gesteuert. Die Kupplungssteuerung enthält einen Regler, der anhand eines Kupplungssollmoments, welches mittels eines Fahrstrategiepro- gramms beispielsweise abhängig von einem Fahrerwunschmoment, Fahrsituationen, Fahrbahngegebenheiten und dergleichen ermittelt werden kann, die Reibungskupplung so betätigt, dass an deren Ausgang ein vorgegebenes Kupplungsmoment anliegt.
Aufgrund der Eigenschaften der Reibungskupplung, der Brennkraftmaschine, des Ge- triebes und dergleichen können an der Reibungskupplung Rupfvorgänge auftreten, die zu einer schwingungsbehafteten Übertragung des Kupplungssollmoments mit einem vorgegebenen Frequenzgang in einem Frequenzbereich bis zu beispielsweise 30 Hz führen. Um diesen Frequenzgang zu bedampfen, ist aus der DE 10 2013 204 698 A1 ein Verfahren zum Vermindern von Rupfschwingungen bekannt, bei dem dem Kupplungsstel- ler für das Kupplungssollmoment ein emulierter Schwingungstilger, das heißt ein softwaregebundener Schwingungstilger wie Softwaretilger überlagert ist.
Zur System Identifikation und Auslegung ist die Kenntnis des Antriebstrangverhaltens beziehungsweise des Übertragungsverhaltens aufgrund des Kupplungssollmoments nötig. Um dieses Übertragungsverhalten zu ermitteln, werden Rupfschwingungen simuliert, indem das Kupplungssollmoment moduliert wird und die daraus resultieren- den, für einen Fahrkomfort relevanten Signale wie beispielsweise die Längsbeschleunigung des Kraftfahrzeuges oder die Getriebeeingangsdrehzahl zur Auslegung und Parametrisierung des Softwaretilgers, beispielsweise eines Reglers oder Filters herangezogen werden. Hierzu dienen Modulationen des Kupplungssollmoments im relevanten Frequenzbereich von Rupfschwingungen, typischerweise zwischen 2 Hz und 30 Hz. Hierbei wird eine Frequenzantwort des Systems, beispielsweise über eine Regelstrecke beginnend mit der Kupplungssteuerung über den Kupplungssteller, über die mit Rupfschwingungen behaftete Reibungskupplung bis zu deren Ausgang, beispielsweise einer Getrie- beeingangswelle schwingungstechnisch gekoppelt bestimmt, indem für Zeiträume von typischerweise einigen Sekunden eine Sinusanregung mit fester Frequenz im gewünschten Betriebszustand auf das Kupplungsmoment beispielsweise mit einer Schrittweite von 0,5 Hz über den relevanten Frequenzbereich der Rupfschwingungen in relevanten Betriebszuständen, beispielsweise Anfahr- und Ankriechsituationen und beim Einkuppeln nach Gangwechseln durchgeführt wird. Die Auswertung des Übertragungsverhaltens erfolgt dabei weitgehend von Hand, indem in einer komponentenweisen Betrachtung der Frequenzanteile nach einer diskreten Fourier-Transformation die Amplituden von Modulationsmoment und Getriebeeingangsdrehzahl beziehungsweise Längsbeschleunigung aufeinander bezogen werden. Dadurch entsteht eine Übertragungsfunktion, welche zur Parametrierung des Softwaretilgers herangezogen wird. Diese Methode ist sehr zeitintensiv.
Aufgabe der Erfindung ist die vorteilhafte Weiterbildung eines Verfahrens zur Auslegung und Parametrierung eines Softwaretilgers. Die Aufgabe wird durch die Merkmale des Verfahrens des Anspruchs 1 gelöst. Die von diesem abhängigen Ansprüche geben vorteilhafte Ausführungsformen des Verfahrens des Anspruchs 1 wieder.
Das vorgeschlagene Verfahren dient der Parametrierung eines einer Kupplungssteuerung zugeschalteten Softwaretilgers, welcher zur Dämpfung von Rupfschwingungen eines Kupplungsmoments vorgesehen ist. Das Kupplungsmoment wird abhängig von einem aus einer Fahrstrategie vorgegebenen Kupplungssollmoment über eine zwi- sehen einer Brennkraftmaschine und einem Getriebe in einem Antriebsstrang eines Kraftfahrzeugs angeordneten Reibungskupplung übertragen. Hierbei wird die Reibungskupplung von einem Kupplungssteller mittels einer Lagereglers gesteuert, dessen Eingangssignal unter anderem das Kupplungssollmoment und dessen Ausgangssignal ein Betätigungsweg oder dergleichen ist. Dem Lageregler ist der Softwaretilger überlagert, der in vorgegebenen Betriebszuständen auftretende Rupfschwingungen korrigiert, indem dieser das belastete Kupplungssollmoment korrigiert. Zur Parametri- sierung des Softwarereglers wird ein Übertragungsverhalten des Kupplungsmoments über das System, insbesondere die Reibungskupplung ermittelt, wobei das Kupplungssollmoment mittels Schwingungen im Bereich erwarteter, modellierter und/oder empirisch am Kraftfahrzeug ermittelter Rupfschwingungsfrequenzen moduliert wird. Anhand des ermittelten Übertragungsverhaltens wird der Softwaretilger anschließend identifiziert und parametriert. Um eine schnelle und umfassende Parametrierung zu erzielen wird das Kupplungssollmoment mittels einer breitbandigen Anregung in einem Frequenzbereich der Rupfschwingungen moduliert und das Übertragungsverhal- ten abhängig von Betriebsparametern des Antriebsstrangs ermittelt.
Das vorgeschlagene Verfahren zur Anregung der Regelstrecke, beispielsweise des Antriebstranges sieht vor, statt der bisher verwendeten Sinus-Funktionen fester Frequenz ein breitbandiges Signal zur Modulation des Kupplungssollmoments zu ver- wenden, welches im relevanten Betriebszustand der Rupfschwingungen auf das aus der Fahrstrategie resultierende Kupplungsmoment moduliert wird.
Durch diese permanente breitbandige Anregung wird über die gesamte Ermittlung des Übertragungsverhaltens hinweg das für die Systemidentifikation relevante Spektrum abgedeckt. Damit erreicht man in deutlich verkürzter Versuchszeit eine stark verbesserte Frequenzauflösung in der Ü bertrag ungsfunktion. Hierbei wird in bevorzugter Weise eine Maximalamplitude des Kupplungssollmomentes auf einem vorgegebenen festen Wert gehalten.
Zur Umsetzung einer derart breitbandigen Anregung des Systems können verschiedene vorteilhafte Methoden vorgesehen werden. In einer ersten Form der Anregung kann eine sogenannte Pseudorandom Binary Sequence (PRBS) auf das Kupplungssollmoment aufmoduliert werden. Unter PRBS ist ein binäres Signal zu verstehen, welches dem Spektrum des weißen Rauschens nachempfunden ist. Das PRBS besteht im Wesentlichen aus zwei Signalpegeln, zwischen welchen beispielsweise im 20ms Takt umgeschaltet wird. Durch dieses Umschalten zwischen den Pegeln entsteht eine rechteckförmige Modulation, die sich im Spektrum durch eine
Amplitudenabhängigkeit der Form
Figure imgf000006_0001
v
mit der Frequenz v auszeichnet. Jedoch kommt diese Abhängigkeit aufgrund der schnellen Umschaltzeit von 20ms erst bei Frequenzen ab ca. 50 Hz zum Tragen, da hier die ersten Frequenzanteile verschwinden. Das hier beschriebene Spektrum des PRBS Signals liegt zu jedem beliebigen Zeitpunkt vor. Dadurch ist die benötigte Dauer des Experimentes lediglich bestimmt durch die in der Übertragungsfunktion gewünschte Frequenzauflösung. Dabei gilt nach den Zusammenhängen der diskreten Fouriertransformation für die Gesamtdauer TEx = 1 / Δν der Ermittlung des Übertragungsverhaltens, wobei Δν die angestrebte Frequenzauflösung ist. Zusätzliche Messzeit erhöht das Signal-zu-Rausch-Verhältnis.
Eine vorteilhafte Ausführungsform einer breitbandigen Anregung kann in Form eines sinusförmigen Signals mit zeitvariabler Frequenz, beispielsweise in Form eines sogenannten Sinus-Sweeps ausgebildet sein. Hierbei wird die Frequenz kontinuierlich in dem für das Übertragungsverhalten gewünschten Frequenzband verändert. Durch diese kontinuierliche Veränderung kann innerhalb einer relativ kurzen Zeitspanne das komplette Frequenzband abgedeckt werden. Vorteilhafte Ausführungsformen einer breitbandigen Anregung können zudem beispielsweise mittels adaptiver Filtern beispielsweise mittels Transversalfiltern mit einem LMS-Algorithmus (Least-Mean-Squares-Algorithmus) vorgesehen werden. Als Anregungsquellen zur Ermittlung des Übertragungsverhaltens können insbesondere im Fahrbetrieb eines Kraftfahrzeugs ermittelte Impulsantworten des Kupplungsmoments beziehungsweise des Kupplungssollmoments auf eingespeiste Impulse dienen.
Das Übertragungsverhalten des Triebstranges ist für eine erfolgreiche Anti-Rupf Regelung von zentraler Bedeutung. Durch hinreichend genaue Ermittlung der Übertra- gungsfunktion beziehungsweise des Übertragungsverhaltens kann der Softwaretilger, beispielsweise in Form eines Reglers oder Filters so stabil und robust parametrisiert werden, dass zusätzliche Anregungen unwahrscheinlich sind.
Um eine Anpassung des Softwaretilgers an ein sich abhängig von Betriebszuständen des Kraftfahrzeugs änderndes Übertragungsverhalten des Antriebstranges abhängig vom gegebenen Kupplungssollmoment hin zur Getriebeeingangsdrehzahl oder der Fahrzeuglängsbeschleunigung zu erzielen, wird vorgeschlagen, möglichst alle das Übertragungsverhalten ändernde Betriebszustände in dessen Ermittlung einzubezie- hen.
Zur möglichst umfassenden Ermittlung des Übertragungsverhaltens und der damit verbundenen Parametrisierung des Softwaretilgers kann daher das Übertragungsverhalten abhängig von Betriebszuständen und Paramatern der Regelstrecke, des Antriebsstrangs und schließlich des gesamten Kraftfahrzeugs sowie dessen untereinan- der in schwingungsfähiger Verbindung stehender Komponenten ermittelt werden. In bevorzugter Form kann das Übertragungsverhalten in nicht abschließender Aufzählung abhängig von einem mittleren über die Reibungskupplung übertragenen Moment, einem eingelegten Gang des Getriebes, von miteinander gekoppelten Massen des Antriebsstrangs, beispielsweise zu- und abschaltbaren Nebenaggregaten der Brenn- kraftmaschine, einem Hybridmodul und dergleichen, von mit dem Antriebsstrang schwingungsfähig gekoppelten Massen, beispielsweise der Fahrzeugkarosserie mit einer Fahrzeugmasse, einem Anhänger des Kraftfahrzeugs und dergleichen, von zumindest einer Temperatur eines Bauteils des Antriebsstrangs, beispielsweise der Temperatur des Kupplungsstellers, der Reibungskupplung, der Brennkraftmaschine und/oder des Getriebes oder dergleichen, von einem Fahrwiderstand des Kraftfahrzeugs, beispielsweise der Reifenbeschaffenheit, des Reifendrucks oder dergleichen ermittelt werden. Hierbei wirkt das von der Fahrstrategie vorgegebene Kupplungssollmoment als Vorlast, die einem Vorspannen des Antriebstranges entspricht. Dadurch werden etwaige Spiele überwunden und elastische Glieder im Antriebstrang unter Spannung gesetzt - dies beeinflusst das Übertragungsverhalten des Triebstranges signifikant. Daraus resultierend wird beispielsweise bei unterschiedlicher Vorlast - also unterschiedlichen Betriebspunkten der Reibungskupplung - das Übertragungsverhalten abhängig von dem übertragenen Kupplungsmoment ermittelt.
Da der Antriebstrang über eine gangabhängige Übersetzung verfügt, unterscheidet sich die Kopplung der im Antriebstrang enthaltenen Massen mit unterschiedlich ge- wählten Gängen und deren Übersetzung. Weiterhin wird im Falle eines Doppelkupplungsgetriebes die Gesamtheit der gekoppelten schwingfähigen Masse verändert, wenn auf der inaktiven Welle ein Gang ein- oder ausgelegt wird. Dies beeinflusst ebenfalls das Übertragungsverhalten des Antriebstrangs, indem ein Zuschalten eines Ganges die Resonanzfrequenz absenkt, während ein Auslegen eines zusätzlichen Ganges die Frequenz erhöht, so dass hiervon abhängig das Übertragungsverhalten ermittelt wird.
Da das Fahrzeug in seiner Gesamtheit ein Teil eines schwingungsfähigen Systems ist, beeinflusst seine Masse das Übertragungsverhalten. Dies muss bei einer entspre- chenden Änderung der Gesamtmasse berücksichtigt werden. Die Erkennung einer Änderung der Fahrzeugmasse kann Teil eines integrierten Reglerkonzeptes sein, indem beispielsweise mittels eines Triebstrangbeobachters aus einem Kupplungsmo- mentenmodell die Fahrzeugmasse im Übertragungsverhalten berücksichtigt wird. Die Erkennung kann über das Auswerten einer Kombination von Signalen und einer Be- obachterstruktur erfolgen. Zu relevanten Messsignalen zählen beispielsweise Motormoment, Motordrehzahl, Getriebedrehzahl, Beschleunigung des Kraftfahrzeugs und auch zusätzliche Informationsquellen, beispielsweise eine Sitzbelegungserkennung und/oder dergleichen. Die Steigung, die das Kraftfahrzeug während des Anfahrvorgangs zu überwinden hat, spielt hinsichtlich des Übertragungsverhaltens eine wichtige Rolle, da zum Beispiel die Brennkraftmaschine sich auf eine andere Weise in seinen Lagern abstützt, als dies in der Ebene der Fall ist. Dadurch werden die Schwingungsmoden der Motormasse ver- ändert und das Übertragungsverhalten des Triebstranges verändert sich. Dies kann ähnlich der geänderten Fahrzeugmasse anhand der Beschleunigung des Kraftfahrzeugs beispielsweise mittels eines Beschleunigungssensors erkannt werden und in die Ermittlung des Übertragungsverhaltens einfließen. Da das Gesamtsystem des Kraftfahrzeuges von Rupfschwingungen betroffen ist, be- einflusst auch die Bereifung des Kraftfahrzeuges diese Schwingungen und damit auch das Übertragungsverhalten. Dabei spielt der veränderte Rollwiderstand eine zentrale Rolle. Daher werden beispielsweise der Rollwiderstand und/oder ähnliche Parameter bei der Ermittlung des Übertragungsverhaltens berücksichtigt. Der Reifendruck ist bei modernen Fahrzeugen oftmals durch entsprechende Sensorik in den Reifen bekannt und kann daher bei der Übertragungsfunktion zur Verfügung stehen.
Neben der Änderung durch die schwingungsfähige Gesamtmasse - hier sollte der Einfluss analog zu dem der geänderten Fahrzeugmasse sein - bildet die Verwendung eines Anhängers eine zusätzliche Quelle für Änderungen am schwingungsfähigen System. Dies resultiert daraus, dass, wenn die Karosserie des Fahrzeuges schwingt, die angehängte Masse beispielsweise auch entgegengesetzt zum Fahrzeug schwingen kann und damit das Resonanzverhalten grundlegend ändern kann, so dass ein Anhängerbetrieb entsprechend bei der Ermittlung des Übertragungsverhaltens in vor- teilhafter Weise berücksichtigt wird.
Durch die eventuell mögliche Zuschaltung eines Allradantriebes ändern sich die im System gekoppelten Massen und damit das Schwing- und Übertragungsverhalten des Systems. Außerdem kann davon ausgegangen werden, dass die im System enthalte- nen Steifigkeiten verstärkt werden. Dies kann in dem betreffenden Fall in der Ermittlung des Übertragungsverhaltens berücksichtigt werden.
Im Falle eines zuschaltbaren Hybridmoduls ändert sich bei Zuschaltung die Summe der gekoppelten Massen. Außerdem kann der Elektromotor für zusätzliche Dämpfung im System sorgen oder sogar durch seine Ansteuerung aktiv das Systemverhalten beeinflussen. Diese Faktoren beeinflussen die Übertragungsfunktion des Antriebstranges und werden bei der Streckenidentifikation und der Parametrisierung berücksichtigt.
Die Temperaturen in den Stell- bzw. Übertragungselementen beeinflussen das Schwingungsverhalten, weil sich Reibungen/ Dämpfungen entsprechend verändern. Beispielsweise können bekannte Temperaturen des Aktuators, der Reibungskupplung, der Umgebung und/oder dergleichen erfasst werden und in die Ermittlung des Übertragungsverhaltens eingehen.
Durch im Kraftfahrzeug eventuell verwendete, zuschaltbare Aggregate wie beispielsweise Klimaanlage, Rekuperationsmodul und dergleichen können zusätzliche Massen an den Antriebstrang gekoppelt werden und unter Umständen zusätzliche dämpfende Elemente angebunden werden. Daraus ergibt sich in diesem Fall eine veränderte Dynamik des Antriebstrangs, die hinsichtlich der Ermittlung des Übertragungsverhaltens in vorteilhafter Weise berücksichtigt wird.
Über die Systemidentifikation und Ermittlung des Übertragungsverhaltens hinaus kann während des Betriebs die Aktivierung und Deaktivierung der Anti-Rupf-Regelung sinnvoll gesteuert werden. Dazu werden zunächst regelbare und nicht regelbare Fahrsituationen identifiziert und bestimmt. Die Definition einer nicht regelbaren Fahrsituation erfolgt bei der Auslegung des Softwaretilgers im Rahmen einer Systemidentifikation. Diese Fahrsituationen können im Fahrbetrieb erkannt werden, so dass ein entspre- chendes Deaktivieren des Softwaretilgers vorgenommen werden kann. Dabei wird eine gegebenenfalls auftretende Verschlechterung des Fahrkomforts - zum Beispiel durch ein abruptes An- und Ausschaltverhalten des Softwaretilgers - beispielsweise durch einen stetigen Übergang zwischen An- und Aus-Zustand des Reglers vermieden werden, welcher durch ein stetiges Anheben bzw. Absenken des Gesamtverstär- kungsfaktors erreicht wird. Dieser Übergang wird beim Erreichen eines nicht regelbaren Zustandes und ebenso beim abermaligen Erreichen eines regelbaren Fahrzustandes eingeleitet. Desweiteren können unerwünschte Effekte, die zu einer eventuellen Rückkopplung mit der Resonanzfrequenz des Systems führen können, ausgeblendet werden, damit diese nicht vom Softwaretilger erkannt werden. Dies ist zum einen durch feste Abschaltbedingungen und zum anderen durch eine geeignete zeitliche Filterung der Ein- gangssignale des Softwaretilgers gegeben. Die Abschaltbedingungen beziehen sich hierbei auf eine Minimaldrehzahl, unterhalb derer die Regelung deaktiviert wird, da in diesem Bereich aus technischen Gründen der Drehzahlmessung die Signalqualität stark abnimmt und eine zuverlässige Regelung nicht mehr gewährleistet werden kann. Außerdem wird bevorzugt eine gewisse minimale Schlupfdrehzahl am Reibkontakt der Reibungskupplung eingestellt, damit ein Anhaften der Reibungskupplung und damit unerwünschte zusätzliche Anregungen der Triebstrangeigenfrequenz vermieden werden. Da die vorgeschlagenen Abschaltbedingungen im Falle eines auftretenden Rupfens mit der Rupffrequenz über- und wieder unterschritten werden, würde der Regler demnach mit der Rupffrequenz an- und ausgeschaltet. Dadurch würde eine weitere Anregung dieser Frequenz eingebracht und damit das System weiter destabilisiert. Der Abschaltvorgang erfolgt daher instantan, während das Wiederanschalten des Reglers zeitlich entprellt wird. Dabei muss die Abschaltbedingung für einen bestimmten Zeitraum wieder kontinuierlich verletzt werden, damit der Gesamtverstärkungsfaktor wieder angehoben wird. Dadurch wird ein ständiges An- und Abschalten des Reg- lers verhindert.
Außerdem kann der Regler aus Stabilitätsgründen abgeschaltet bzw. ausgeblendet werden, wenn die dem Fahrzustand zugrundeliegende Kupplungskennlinie eine zu hohe Steigung aufweist. Durch diesen zu steilen Verlauf könnte die Auflösung der Kupplungsansteuerung zu grob für ein sinnvolles Modulationsmoment werden, wodurch ein Übersteuern des Softwaretilgers und damit ein negativer Einfluss auf die Stabilität des Systems möglich wären. Deshalb findet in diesem Fall keine Regelung statt. Alternativ oder zusätzlich kann das gesamte, durch den Softwaretilger eingebrachte Modulationsmoment durch eine interne Kennlinie begrenzt werden, damit mögliche identifizierte, zu große und damit nicht mehr beherrschbare Modulationsmomente nicht in vollem Umfang in das Kupplungssollmoment eingebracht werden. Eine weitere stabilitätsrelevante Maßnahme kann die Neuinitialisierung des Software- tilgers sein. Um etwaige Fehler in der Phasenlage des aktiven Regelsignals bezüglich der zu regelnden Rupfschwingung zu vermeiden, wird der Regler bei einem Wechsel der aktiven Reibungskupplung eines Doppelkupplungsgetriebes neu initialisiert.
Dadurch können Veränderungen in der Rupfcharakteristik, welche durch den Kupplungswechsel zu erwarten sind, entsprechend unabhängig vom bisherigen Verhalten erkannt und kompensiert werden.
Weiterhin kann für eine stabile Regelung des Softwaretilgers die Laufzeit des Re- gelalgorithmus als Teil der Fahrzeugsoftware im Steuergerät des Kraftfahrzeugs minimiert werden. Je schneller die Antirupf-Softwarekomponente im Steuergerät läuft, desto schneller kann sie auf Änderungen des Systems und dessen Verhalten reagieren. Außerdem muss gewährleistet sein, dass der Speicherbedarf der Reglerkomponente möglichst gering gehalten wird. Dadurch und durch die oftmals im Steuergerät verwendeten zwei verschiedenen Taktungen ergibt sich die Notwendigkeit, den Soft- waretilger derart zu konzipieren, dass zeitkritische Teile des Regelalgorithmus im schnelleren der beiden zur Verfügung stehenden Takte ausgeführt wird und damit eine möglichst schnelle Reaktion auf Änderungen der Eingangsgrößen gewährleistet ist Die weniger zeitkritischen Teile des Softwaretilgers hingegen werden im langsameren Takt ausgeführt, um sowohl Speicher- als auch Prozessorressourcen zu sparen und die Gesamtlaufzeit des Reglers zu optimieren.
Die Erfindung wird anhand des in den Figuren 1 bis 4 dargestellten Ausführungsbeispiels näher erläutert. Dabei zeigen:
Figur 1 einen zeitlichen Verlauf eines Sinus-Sweeps,
Figur 2 ein Diagramm zur Darstellung einer breitbandigen Anregung des
Kupplungssollmoments mittels eines Linear Feedback Shift Registers zur Erzeugung eines PRBS-Signals,
Figur 3 ein Diagramm mit dem zeitlichen Verlauf eines das Kupplungsmoment modulierenden PBRS-Signals.
und
Figur 4 ein Diagramm mit dem Spektrum eines PRBS-Signals. Der in Figur 1 gezeigte Sinus-Sweep wird mittels eines Signalgenerators erzeugt. Dabei wird ein Sinus-Signal mit vorgegebener Frequenz und Momenten-Amplitude erzeugt. Im gezeigten Ausführungsbeispiel wird die Frequenz in einem festen Intervall erhöht, wodurch sich ein gestufter Frequenzverlauf ergibt. Typischerweise liegt der verwendete Frequenzbereich zwischen 1 ,5 Hz und 30 Hz, wodurch sich das gezeigte modulierte Signal ergibt. Durch dieses Vorgehen wird ein sehr breitbandiges Spektrum erreicht, welches die Ermittlung einer möglichst detaillierten Frequenzantwort des Systems über die Regelstrecke erlaubt.
Die Figuren 2 bis 4 zeigen eine zu der Methode der Figur 1 alternative Methode, um eine breitbandige Anregung des Kupplungssollmoments zu erzielen. Diese Methode beruht auf der Anregung mit einem Pseudorandom Binary Sequence (PRBS)-Signal. Dazu wird ein sogenanntes„Linear Feedback Shift Register" (LFSR) implementiert, das nach jedem Aufruf quasi zufällig Null oder Eins ausgibt. Dadurch wird ein zufällig variierender Signalpegel mit gegebener Amplitude generiert. Das in Figur 2 gezeigte Linear Feedback Shift Register wird durch eine binär interpretierte Zahl von gewünschter Größe realisiert. Die folgenden Werte werden generiert, indem man zunächst bestimmte, von der Länge des Registers abhängige Stellen der Zahl abgreift und über geeignete logische Verknüpfungen zu einem neuen Bit verbindet. Dieses neue Bit wird dann am Anfang des Registers eingeschoben und die restlichen Bits um jeweils eine Position verschoben. Durch den Abgriff des letzten Bits wird ein zufälliger Pegel realisiert. In Figur 3 wird der zufällige Pegel S auf das Kupplungssollmoment aus einer Fahrstrategie zur Einstellung eines statischen Kupplungsmoments an der Reibungskupplung addiert. Durch diese Modulation wird eine Anregung des Antriebstrangs mit einer breitbandigen Modulation eines modulierten
Kupplungsmomentes erreicht. Der dargestellte Pegel S stellt eine rechteckförmige Modulation dar, die sich im Spektrum durch eine Amplitudenabhängigkeit der Form
Figure imgf000013_0001
V auszeichnet. Dabei bewirkt die Umschaltzeit von 20ms, dass die Amplitudenabhängigkeit erst bei Frequenzen ab ca. 50Hz zum Tragen kommt, da hier die ersten Frequenzanteile verschwinden.
Die Figur 4 zeigt hierzu das Spektrum des PRBS Signals. Dieses liegt zu jedem beliebigen Zeitpunkt vor. Dadurch ist die benötigte Dauer eines Experimentes zur Ermittlung des Übertragungsverhaltens des modulierten Kupplungssollmoments im Wesentlichen bestimmt durch die in der Übertragungsfunktion gewünschte Frequenzauflö- sung und das gewünschte Signal-zu-Rausch-Verhältnis. Dabei gilt nach den Zusammenhängen der diskreten Fouriertransformation für die Mindest-Gesamtdauer TEx = 1 / Δν des Experimentes, wobei Δν die angestrebte Frequenzauflösung ist. Für eine typische Messung mit ausreichender Qualität für eine Auslegung wie Parametrisierung des Softwaretilgers wird eine Messdauer von typischerweise mindestens 30 s ver- wendet.

Claims

Patentansprüche
1 . Verfahren zur Parametherung eines einer Kupplungssteuerung zugeschalteten Softwaretilgers zur Dämpfung von Rupfschwingungen eines über eine zwischen einer Brennkraftmaschine und einem Getriebe in einem Antriebsstrang eines Kraftfahrzeugs angeordnete, automatisierte, von der Kupplungssteuerung mittels eines Kupplungssollmoments gesteuerte Reibungskupplung zu übertragenden Kupplungsmoments, wobei mittels des Softwaretilgers das in vorgegebenen Betriebszuständen durch Rupfschwingungen belastete Kupplungssollmoment korrigiert wird, wobei ein Übertragungsverhalten eines anhand des Kupplungssollmoments über die Reibungskupplung übertragenen Kupplungsmoments bei einer Modulation des Kupplungssollmoments ermittelt und anhand des ermittelten Übertragungsverhaltens der Softwaretilger parametriert wird, dadurch gekennzeichnet, dass das Kupplungssollmoment mittels einer breit- bandigen Anregung in einem Frequenzbereich der Rupfschwingungen moduliert und das Übertragungsverhalten abhängig von Betriebsparametern des Antriebsstrangs ermittelt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die breitbandige Anregung mittels eines PRBS-Signals erzeugt wird.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die breitbandige Anregung mittels eines sinusförmigen Signals mit zeitvariabler Frequenz erzeugt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Übertragungsverhalten abhängig von einem mittleren Kupplungsmoment ermittelt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Übertragungsverhalten abhängig von einem eingelegten Gang des Getriebes ermittelt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Übertragungsverhalten abhängig von miteinander gekoppelten Massen des Antriebsstrangs ermittelt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Übertragungsverhalten abhängig von mit dem Antriebsstrang schwingungsfähig gekoppelten Massen ermittelt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Übertragungsverhalten abhängig von zumindest einer Temperatur eines
Bauteils des Antriebsstrangs ermittelt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Übertragungsverhalten abhängig von Zusatzaggregaten der Brennkraftmaschine ermittelt wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Übertragungsverhalten abhängig von einem Fahrwiderstand des Kraftfahrzeugs ermittelt wird.
PCT/DE2015/200194 2014-04-16 2015-03-26 Verfahren zur parametrierung eines softwaretilgers zur dämpfung von rupfschwingungen WO2015158341A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015001851.4T DE112015001851A5 (de) 2014-04-16 2015-03-26 Verfahren zur Parametrierung eines Softwaretilgers zur Dämpfung von Rupfschwingungen
CN201580020122.XA CN106233031B (zh) 2014-04-16 2015-03-26 用于确定用于衰减抖振振动的软件减振器的参数的方法
US15/304,327 US10197115B2 (en) 2014-04-16 2015-03-26 Method for parameterizing a software damper for damping chatter vibrations

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
DE102014207361.8 2014-04-16
DE102014207361 2014-04-16
DE102014207310 2014-04-16
DE102014207354 2014-04-16
DE102014207310.3 2014-04-16
DE102014207354.5 2014-04-16
DE102014207833 2014-04-25
DE102014207833.4 2014-04-25
DE102014213703.9 2014-07-15
DE102014213703 2014-07-15
DE102014213925 2014-07-17
DE102014213927 2014-07-17
DE102014213925.2 2014-07-17
DE102014213927.9 2014-07-17
DE102014214196.6 2014-07-22
DE102014214196 2014-07-22

Publications (2)

Publication Number Publication Date
WO2015158341A2 true WO2015158341A2 (de) 2015-10-22
WO2015158341A3 WO2015158341A3 (de) 2015-12-10

Family

ID=53175214

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/DE2015/200197 WO2015158344A2 (de) 2014-04-16 2015-03-26 Verfahren zur verminderung von rupfschwingungen einer reibungskupplung in einem antriebsstrang eines kraftfahrzeugs
PCT/DE2015/200196 WO2015158343A2 (de) 2014-04-16 2015-03-26 Verfahren zur verminderung niederfrequenter schwingungen in einem antriebsstrang eines kraftfahrzeugs
PCT/DE2015/200194 WO2015158341A2 (de) 2014-04-16 2015-03-26 Verfahren zur parametrierung eines softwaretilgers zur dämpfung von rupfschwingungen
PCT/DE2015/200195 WO2015158342A2 (de) 2014-04-16 2015-03-26 Verfahren zur auslegung eines softwaretilgers einer kupplungssteuerung und softwaretilger zur dämpfung von rupfschwingungen

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/DE2015/200197 WO2015158344A2 (de) 2014-04-16 2015-03-26 Verfahren zur verminderung von rupfschwingungen einer reibungskupplung in einem antriebsstrang eines kraftfahrzeugs
PCT/DE2015/200196 WO2015158343A2 (de) 2014-04-16 2015-03-26 Verfahren zur verminderung niederfrequenter schwingungen in einem antriebsstrang eines kraftfahrzeugs

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/DE2015/200195 WO2015158342A2 (de) 2014-04-16 2015-03-26 Verfahren zur auslegung eines softwaretilgers einer kupplungssteuerung und softwaretilger zur dämpfung von rupfschwingungen

Country Status (4)

Country Link
US (4) US10197115B2 (de)
CN (4) CN106233031B (de)
DE (4) DE112015001829A5 (de)
WO (4) WO2015158344A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511268A (zh) * 2016-01-07 2016-04-20 北京交通大学 一种针对列车执行器故障的复合控制方法
DE102017123953A1 (de) * 2017-10-16 2019-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung einer Übertragungsfunktioin einer Antriebsstrangkomponente
DE102018111150A1 (de) * 2018-05-09 2019-11-14 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung der Triebstrangsensitivität eines Antriebsstrangs eines Kraftfahrzeugs

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102373491B1 (ko) * 2015-07-15 2022-03-11 삼성전자주식회사 회전체의 회전 인식 방법 및 그 방법을 처리하는 전자 장치
US10228035B2 (en) 2016-06-20 2019-03-12 Kongsberg Automotive As Velocity dependent brake for clutch actuator
DE102016211735B4 (de) * 2016-06-29 2022-01-27 Volkswagen Aktiengesellschaft Verfahren und Steuergerät zur Steuerung und/oder zur Regelung eines Antriebsstrangs eines Kraftfahrzeugs mit einem Antriebsmotor und mit mindestens einer Kupplung
US10486681B2 (en) * 2017-01-13 2019-11-26 Ford Global Technologies, Llc Method and system for torque management in hybrid vehicle
DE102017218686A1 (de) * 2017-10-19 2019-04-25 Zf Friedrichshafen Ag Dämpfungsanordnung zum Dämpfen von Drehungleichförmigkeiten in einem Antriebsstrang eines Kraftfahrzeugs
EP3518216A1 (de) * 2018-01-30 2019-07-31 Volvo Car Corporation Co-simulations-system mit verzögerungskompensation und verfahren zur steuerung des co-simulations-systems
JP7095834B2 (ja) * 2018-05-21 2022-07-05 株式会社トランストロン 制御パラメータ計算方法、制御パラメータ計算プログラム、及び制御パラメータ計算装置
CN109211215B (zh) * 2018-10-26 2022-03-18 哈尔滨工业大学 一类三自由度挠性支撑转子倾侧振动控制方法
CN111985042B (zh) * 2019-05-21 2023-12-22 上海汽车集团股份有限公司 一种减振参数的确定方法和装置
KR20210002268A (ko) * 2019-06-28 2021-01-07 현대자동차주식회사 차량의 클러치 제어장치
DE102021116187B4 (de) 2021-05-25 2023-07-27 Schaeffler Technologies AG & Co. KG Verfahren zum Betrieb eines Antriebsstrangs eines Kraftfahrzeugs
WO2022247980A1 (de) 2021-05-25 2022-12-01 Schaeffler Technologies AG & Co. KG Verfahren zum betrieb eines antriebsstrangs eines kraftfahrzeugs
CN114475610B (zh) * 2022-02-21 2023-10-20 同济大学 车辆耸车现象确定方法、系统以及计算机可读存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204698A1 (de) 2012-04-11 2013-10-17 Schaeffler Technologies AG & Co. KG Verfahren zur Verminderung von Rupfschwingungen

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4009200A1 (de) * 1990-03-22 1991-09-26 Diehl Gmbh & Co Anordnung zur rekursiven modell-parameteranpassung
US5293316A (en) 1991-10-07 1994-03-08 Eaton Corporation Closed loop launch and creep control for automatic clutch
US5403249A (en) 1991-10-07 1995-04-04 Eaton Corporation Method and apparatus for robust automatic clutch control
US5439428A (en) * 1994-02-22 1995-08-08 Eaton Corporation Method and apparatus for robust automatic clutch control with pid regulation
US5638267A (en) * 1994-06-15 1997-06-10 Convolve, Inc. Method and apparatus for minimizing unwanted dynamics in a physical system
US5620390A (en) * 1994-10-07 1997-04-15 Toyota Jidosha Kabushiki Kaisha Motor vehicle lock-up clutch control apparatus, having means for detecting clutch judder with high accuracy
US5630773A (en) 1996-02-02 1997-05-20 Eaton Corporation Method and apparatus for slip mode control of automatic clutch
US7031949B2 (en) 1998-01-22 2006-04-18 Mts Systems Corporation Method and apparatus for generating input signals in a physical system
WO1999038054A1 (en) * 1998-01-22 1999-07-29 Mts Systems Corporation Method and apparatus for generating input signals in a physical system
DE19857552A1 (de) * 1998-12-14 2000-06-15 Rolls Royce Deutschland Verfahren zum Erkennen eines Wellenbruches in einer Strömungskraftmaschine
DE19907454A1 (de) * 1999-02-22 2000-08-24 Schenck Vibro Gmbh Verfahren zur modellbasierten schwingungsdiagnostischen Überwachung rotierender Maschinen
US6577908B1 (en) 2000-06-20 2003-06-10 Fisher Rosemount Systems, Inc Adaptive feedback/feedforward PID controller
BR0205943A (pt) * 2001-08-24 2003-12-23 Luk Lamellen & Kupplungsbau Linha de acionamento com regulagem para amortecimento de oscilações
DE10293810D2 (de) 2001-08-24 2004-07-22 Luk Lamellen & Kupplungsbau Verfahren und System zur Steuerung einer zwischen einem Motor und einem Getriebe eines Kraftfahrzeuges angeordneten, automatisierten Reibungskupplung
DE10310831A1 (de) * 2002-04-10 2003-11-06 Luk Lamellen & Kupplungsbau Antriebsstrang und Verfahren zu dessen Betrieb
AU2003245842A1 (en) * 2002-05-27 2003-12-12 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Method and device for modulating the torque transmitted from a vehicle clutch
KR101290352B1 (ko) * 2002-09-12 2013-07-26 섀플러 테크놀로지스 아게 운트 코. 카게 저더 진동 저감 방법
DE50308810D1 (de) * 2002-09-21 2008-01-24 Luk Lamellen & Kupplungsbau Verfahren und system zum vermindern eines bei der bereichsumschaltung eines cvt-getriebes mit leistungsverzweigung entstehenden rucks
DE10254392A1 (de) * 2002-11-18 2004-05-27 Volkswagen Ag Verfahren und Vorrichtung zur Fahrdynamikregelung
JP3846438B2 (ja) * 2003-03-17 2006-11-15 トヨタ自動車株式会社 車両用摩擦係合装置の制御装置
JP2005233356A (ja) * 2004-02-23 2005-09-02 Jatco Ltd 発進クラッチの制御装置
EP1630628B1 (de) * 2004-08-24 2009-09-09 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren zur Verringerung von Stellpositionsschwingungen eines von einem Lageregler angesteuerten Stellglieds eines Kupplungsaktors
DE102006014072A1 (de) * 2006-03-28 2007-10-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Antriebssteuerung
DE102007023850B3 (de) * 2007-05-23 2008-08-21 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP2251863A3 (de) * 2007-06-01 2010-12-22 Sharp Kabushiki Kaisha Optisches Informationsaufzeichnungsmedium und optisches Informationsverarbeitungsverfahren
DE102008028180A1 (de) 2007-06-25 2009-01-08 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zur Adaption einer Kupplungskennlinie bei vorhandener Kupplungshysterese
DE102007032206A1 (de) * 2007-07-11 2009-01-15 Zf Friedrichshafen Ag Verfahren und Vorrichtung zu einem Ermitteln und einer Dämpfung von Rupfschwingungen eines Antriebsstrangs
US7998026B2 (en) * 2008-01-17 2011-08-16 Ford Global Technologies, Llc Vehicle launch using a transmission input clutch
DE102008052058B3 (de) * 2008-10-17 2009-11-12 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Dämpfungseinrichtung und Dämpfungsverfahren zur Unterdrückung von Torsionsschwingungen im Antriebsstrang von Kraftfahrzeugen
JP2012076537A (ja) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd 制御装置
DE102010042625B4 (de) * 2010-10-19 2023-09-28 Dr. Johannes Heidenhain Gmbh Verfahren zum Bestimmen eines Bode-Diagramms
DE102012217132B4 (de) * 2011-10-04 2021-12-02 Schaeffler Technologies AG & Co. KG Verfahren zur Verminderung von Rupfschwingungen
DE102011084844A1 (de) 2011-10-20 2013-04-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum näherungsweisen Ermitteln des von einer Kupplung eines Antriebsstrangs eines Fahrzeugs tatsächlichen übertragenen Drehmoments
KR20140063199A (ko) * 2012-11-16 2014-05-27 현대자동차주식회사 자동변속기 차량의 댐퍼 클러치 제어장치 및 방법
CN105074250B (zh) * 2013-04-11 2018-01-12 舍弗勒技术股份两合公司 用于减小机动车辆的动力传动系中的摩擦离合器的拉拔振动的方法
JP6206320B2 (ja) * 2014-05-14 2017-10-04 トヨタ自動車株式会社 クラッチの制御装置
JP6337876B2 (ja) * 2015-12-07 2018-06-06 マツダ株式会社 遠心振子ダンパ付きパワートレインの制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204698A1 (de) 2012-04-11 2013-10-17 Schaeffler Technologies AG & Co. KG Verfahren zur Verminderung von Rupfschwingungen

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511268A (zh) * 2016-01-07 2016-04-20 北京交通大学 一种针对列车执行器故障的复合控制方法
CN105511268B (zh) * 2016-01-07 2017-06-16 北京交通大学 一种针对列车执行器故障的复合控制方法
DE102017123953A1 (de) * 2017-10-16 2019-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung einer Übertragungsfunktioin einer Antriebsstrangkomponente
DE102017123953B4 (de) 2017-10-16 2021-09-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung einer Übertragungsfunktion einer Antriebsstrangkomponente
DE102018111150A1 (de) * 2018-05-09 2019-11-14 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung der Triebstrangsensitivität eines Antriebsstrangs eines Kraftfahrzeugs
WO2019214767A1 (de) 2018-05-09 2019-11-14 Schaeffler Technologies AG & Co. KG Verfahren zur ermittlung der triebstrangsensitivität eines antriebsstrangs eines kraftfahrzeugs
DE102018111150B4 (de) 2018-05-09 2019-12-05 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung der Triebstrangsensitivität eines Antriebsstrangs eines Kraftfahrzeugs
US11491991B2 (en) 2018-05-09 2022-11-08 Schaeffler Technologies AG & Co. KG Method for determining the drive train sensitivity of a drive train of a motor vehicle

Also Published As

Publication number Publication date
CN106233031B (zh) 2019-04-19
WO2015158344A2 (de) 2015-10-22
WO2015158342A2 (de) 2015-10-22
US20170045102A1 (en) 2017-02-16
US20170108061A1 (en) 2017-04-20
DE112015001829A5 (de) 2016-12-29
DE112015001843A5 (de) 2017-01-19
CN106233023A (zh) 2016-12-14
WO2015158344A3 (de) 2015-12-17
US20170108060A1 (en) 2017-04-20
CN106233023B (zh) 2019-02-19
CN106233024B (zh) 2019-06-07
CN106233022A (zh) 2016-12-14
WO2015158341A3 (de) 2015-12-10
CN106233031A (zh) 2016-12-14
US10215240B2 (en) 2019-02-26
US20170138419A1 (en) 2017-05-18
WO2015158343A2 (de) 2015-10-22
WO2015158343A3 (de) 2015-12-10
CN106233024A (zh) 2016-12-14
WO2015158342A3 (de) 2015-12-10
DE112015001832A5 (de) 2016-12-29
DE112015001851A5 (de) 2016-12-29
US10197115B2 (en) 2019-02-05
US10228028B2 (en) 2019-03-12
US10012275B2 (en) 2018-07-03
CN106233022B (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2015158341A2 (de) Verfahren zur parametrierung eines softwaretilgers zur dämpfung von rupfschwingungen
DE102006030609B4 (de) Fahrzeugsteuervorrichtung und -verfahren
DE19721298C2 (de) Hybrid-Fahrantrieb für ein Kraftfahrzeug
DE102005012864B4 (de) Verfahren zum Steuern von Getriebeschaltpunkten für ein Hybridfahrzeug mit primärer und sekundärer Antriebsquelle
DE102006014072A1 (de) Antriebssteuerung
EP2328788B1 (de) Verfahren und vorrichtung zum betrieb einer hybridantriebsvorrichtung während des startens einer brennkraftmaschine
DE102008032506A1 (de) Fahrzeuggeschwindigkeits-Steuerungsvorrichtung und -verfahren
DE102011115927A1 (de) Verfahren und Vorrichtung zum Erkennen von Drehzahl-/Drehmomentschwankungen in einer Antriebsvorrichtung
DE102013204698A1 (de) Verfahren zur Verminderung von Rupfschwingungen
DE102014206183A1 (de) Verfahren zur Verminderung von Rupfschwingungen einer Reibungskupplung in einem Antriebsstrang eines Kraftfahrzeugs
DE102008054704A1 (de) Verfahren und Vorrichtung zum Betreiben eines Hybridfahrzeuges
DE102008009135A1 (de) Verfahren und Steuergerät zur Steuerung eines Triebstrangs eines Kraftfahrzeuges
DE102006039533B4 (de) Kraftstofflieferungs-Steuersystem und Verfahren zum Deaktivieren der Kraftstofflieferung
WO2016070879A1 (de) Verfahren zur ermittlung eines übertragungsverhaltens eines antriebsstrangs
DE102010028331A1 (de) Verfahren zum Betrieb einer Start/Stopp-Automatik in einem Kraftfahrzeug
DE102019105901B4 (de) Schliessraten-Management des Zahnradspiels in einem Antriebsstrangsystem
DE102011104085A1 (de) Verfahren zur Durchführung einer haptischen Fahrerwarnung und Vorrichtung hierzu
DE102014224067A1 (de) Fahrzeugkarosserieschwingungssteuervorrichtung für ein Fahrzeug
EP1529947B1 (de) Dämpfungseinrichtung und Dämpfungsverfahren zur Unterdrückung von Torsionsschwingungen in einem Antriebsstrang
DE102015205914A1 (de) Verfahren zum Kontrollieren von Rupfschwingungen in einem Antriebsstrang eines Kraftfahrzeugs, Schaltgetriebe und Antriebsstrang
DE102009015149A1 (de) Antriebsstrang und Verfahren zur Steuerung eines Antriebsstrangs
DE102011106900A1 (de) Verfahren zur Erkennung einer Handbetätigung einer Lenkvorrichtung und Kraftfahrzeug mit einer Vorrichtung zur Durchführung des Verfahrens
DE102017216203A1 (de) Verfahren zur Schwingungsdämpfung mittels Differenzdrehzahlregelung des Antriebs eines Fahrzeugs im nicht-linearen Reifenschlupfbereich
EP3698068A1 (de) Dämpfungsanordnung zum dämpfen von drehungleichförmigkeiten in einem antriebsstrang eines kraftfahrzeugs und verfahren dafür
DE102016000544B4 (de) Verfahren und System zum Steuern einer Kupplung eines Fahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15722029

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15304327

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015001851

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112015001851

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15722029

Country of ref document: EP

Kind code of ref document: A2