WO2015158342A2 - Verfahren zur auslegung eines softwaretilgers einer kupplungssteuerung und softwaretilger zur dämpfung von rupfschwingungen - Google Patents

Verfahren zur auslegung eines softwaretilgers einer kupplungssteuerung und softwaretilger zur dämpfung von rupfschwingungen Download PDF

Info

Publication number
WO2015158342A2
WO2015158342A2 PCT/DE2015/200195 DE2015200195W WO2015158342A2 WO 2015158342 A2 WO2015158342 A2 WO 2015158342A2 DE 2015200195 W DE2015200195 W DE 2015200195W WO 2015158342 A2 WO2015158342 A2 WO 2015158342A2
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
software
filter
frequency response
vibrations
Prior art date
Application number
PCT/DE2015/200195
Other languages
English (en)
French (fr)
Other versions
WO2015158342A3 (de
Inventor
Ulrich Neuberth
Florian Eppler
Daniel Müller
Michael Reuschel
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112015001832.8T priority Critical patent/DE112015001832A5/de
Priority to CN201580019992.5A priority patent/CN106233023B/zh
Priority to US15/300,475 priority patent/US10012275B2/en
Publication of WO2015158342A2 publication Critical patent/WO2015158342A2/de
Publication of WO2015158342A3 publication Critical patent/WO2015158342A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/22Vibration damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/30806Engaged transmission ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/3081Signal inputs from the transmission from the input shaft
    • F16D2500/30816Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3107Vehicle weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/312External to the vehicle
    • F16D2500/3125Driving resistance, i.e. external factors having an influence in the traction force, e.g. road friction, air resistance, road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/312External to the vehicle
    • F16D2500/3125Driving resistance, i.e. external factors having an influence in the traction force, e.g. road friction, air resistance, road slope
    • F16D2500/3127Road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3163Using the natural frequency of a component as input for the control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3168Temperature detection of any component of the control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50287Torque control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50293Reduction of vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70422Clutch parameters
    • F16D2500/70438From the output shaft
    • F16D2500/7044Output shaft torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/70605Adaptive correction; Modifying control system parameters, e.g. gains, constants, look-up tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/7061Feed-back
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/70668Signal filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/70673Statistical calculations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/708Mathematical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/708Mathematical model
    • F16D2500/7082Mathematical model of the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/71Actions
    • F16D2500/7107Others
    • F16D2500/7109Pulsed signal; Generating or processing pulsed signals; PWM, width modulation, frequency or amplitude modulation

Definitions

  • the invention relates to a software filter and a method for the design of a clutch controller switched software to dampen Rupfschwingungen a arranged between an internal combustion engine and a transmission, automated, controlled by the clutch control friction bungskupplung to be transmitted clutch torque, wherein by means of the software filter a transmission input speed on Output of the friction clutch detected and corrected by means of a negative feedback, the loaded by judder vibrations clutch desired torque.
  • Automated friction clutches for example friction clutches combined to form a dual clutch, are well known and are used in drive trains with an internal combustion engine and a transmission, for example an automatic transmission, dual clutch transmission or the like, between the internal combustion engine and the transmission.
  • the friction clutch is actuated by means of a clutch actuator such as clutch actuator.
  • the clutch actuator is controlled by a clutch control.
  • the clutch control includes a controller, which is based on a desired clutch torque, which can be determined by a driving strategy program, for example, depending on a driver's desired torque, driving situations, road conditions and the like, the friction clutch operated so that at the output of a predetermined clutch torque is applied.
  • DE 10 2013 204 698 A1 discloses a method for reducing juddering vibrations, in which the clutch actuator for the desired clutch torque is superposed by an emulated vibration absorber, that is to say a software-bound vibration absorber such as software suppressor.
  • the object of the invention is to propose the advantageous development of a software filter and a method for its interpretation.
  • the proposed method is used to design a software controller connected to a clutch control system for damping chatter vibrations of an automated clutch torque controlled by the clutch control to be transmitted via a clutch between a combustion engine and a transmission.
  • a transmission input speed at the output of the friction clutch is detected by means of the software silencer and damped by a negative feedback, the loaded by chatter vibrations clutch torque at the output of the friction clutch by the clutch desired torque is corrected accordingly.
  • the software filter in a robust manner, that is to determine its control parameter, by determining a transmission behavior upon excitation of the nominal clutch torque in a frequency range relevant to juddering vibrations, for example at frequencies up to 30 Hz. is determined via the controlled system of the clutch control.
  • an undamped first frequency response of the transmission input speed and a second frequency response at the output of the software filter are determined.
  • the negative feedback of the software filter ie its control parameter, is determined and thus the software filter designed and configured.
  • the two frequency responses are represented as complex functions having an amplitude and a phase for determining the feedback and calculating the feedback from them by calculation.
  • the first undamped frequency response can be represented as a complex function X (f) and the second frequency response as a complex function Y (f), and the feedback can be represented by their ratio X (f) / (1 + X (f) x Y (f )) be calculated.
  • a maximum of a juddering vibration at a predetermined picking frequency can be damped while flanks of the maximum are raised. This results in a smoothing of the frequency response with moderate amplification of the feedback.
  • the proposed software filter is used to carry out the method described and has a filter which feeds a negative, the juddering vibrations attenuating feedback to the clutch desired torque from a transmission input speed with a subject by chattering frequency response.
  • the linear filter may be designed as a recursive infinite impulse response filter, infinite impulse response (IIR) filter or finite impulse response (FIR) filter.
  • a gain of the software filter that is to say a quantity of the feedback
  • the software silencers are turned off when juddering vibrations are less likely to occur, and are turned on when their likelihood increases, for example, when starting the vehicle, crawling, engaging after gear changes, and the like.
  • transition regions can be provided.
  • a regulation of the amplification can be provided by means of a characteristic dependent on a stability of the software filter.
  • a maximum gain of the feedback can be limited.
  • gain may be limited to 150% of an amplitude of the frequency response of the transmission input speed.
  • Driveline with an applied load and its dynamics can be calculated using a linear controller such as software filters the damped frequency response with activated controller.
  • the controller can thus be optimally designed for a defined target frequency response in the sense of a best fit.
  • this design of the target frequency response is also possible automatically by means of appropriate optimization algorithms
  • this is particularly simple and without the use of recursive fit algorithms predictable.
  • the design of the software filter can be carried out or evaluated.
  • a relative increase in the amplitude is provided outside the resonance.
  • the frequency response as flat as possible is provided without generating too large amplifications, which can lead to instability of the regulator.
  • an automated design can be carried out with defined design criteria.
  • An interpretation criterion can be, for example, to minimize the maximum of the amplitude of the damped frequency response. while keeping the maximum gain less than 150%.
  • the design can be determined using standard optimization algorithms.
  • the regulator or filter in which a linear filter is provided by a so-called FIR filter.
  • the design of the controller in the form of the software filter can be calculated directly from a target frequency response, for example, without using recursive fit algorithms.
  • a weighted summation of a limited number of past measured values of the transmission input rotational speed or of the nominal clutch torque, for example stored in a buffer takes place.
  • a particular challenge here is the consideration of the fact that no values can be used "from the future.”
  • the following boundary conditions can be provided: maximum amplification, maximum amplitude, sampling interval, and the filter order dependent buffer time and the like can be specified.
  • the controlled shutdown of the controller during the transition to operating areas in which a stable controller design is no longer possible can be provided.
  • the shutdown can be carried out continuously over a total gain. As the gain decreases, the control of the controller becomes increasingly “stable” and approaches the unregulated clutch system.
  • FIG. 1 is a block diagram of a software filter
  • Figure 2 is a diagram illustrating a design of a software filter
  • FIG. 3 shows a diagram for the automated design of a software filter
  • FIG. 1 shows the block diagram 1 with the sequence of a method for damping juddering vibrations along the controlled system 2 by means of the software filter 3.
  • the associated friction clutch by means of a clutch actuator and a clutch control by means of a control algorithm to a predetermined depending on a driving situation clutch target torque m (k) regulated, for example by means of a position controller.
  • clutch target torque m (k) regulated, for example by means of a position controller.
  • the software accelerator 3 picks up the transmission input rotational speed r (g) at the output of the friction clutch and generates the modulation torque m (m) as a negative feedback to the juddering vibrations in a state adapted to the disturbance variables 4, 5, 6 corrected so that at the node 7, the clutch desired torque m (k).
  • the corrected clutch setpoint torque m (k) influences the clutch torque to be transmitted via the clutch actuator on the friction clutch and thus compensates the juddering vibrations.
  • the switch 8 is provided, which weights the effect of the software filter 3 digitally or in accordance with a predetermined characteristic curve.
  • the switch can switch off the software filter or reduce its effect. Furthermore, by means of the switch 8, a gain of the software filter 3 can be set.
  • the design of the software filter 3 is effected as a function of the disturbance variables 4, 5, 6.
  • the transmission behavior is determined via the controlled system 2, for example empirically on the vehicle, by means of model calculations or the like.
  • the desired clutch torque m (k) is applied to predetermined oscillations, vibration patterns or the like, which lie in the region of the frequency (s) of a Rupfvorgangs on the friction clutch.
  • the frequency paths of the controlled system 2 and the software filter 3 are detected as complex functions X (f) and Y (f) assuming a linear controlled system 2 and a linear software filter 3. From the context X (f) / (1 + X (f) x Y (f)) the software filter 3 is designed, that is, determines the parameterization.
  • diagram II shows in solid line the amplitude and in dashed line the phase of the frequency response of the complex function X (f) via the controlled system 2 of Figure 1.
  • the partial diagram II shows the frequency response determined therefrom with the complex function Y (f).
  • the partial diagram III shows the amplitudes of the transfer function in active, designed software filter 3 ( Figure 1) in a solid line with respect to the illustrated in dashed line uncompensated frequency response with the complex function X (f) of the partial diagram I.
  • the partial diagram IV shows the amplification of the software filter 3 designed in accordance with partial diagrams I-III via the excitation frequency.
  • the maximum gain can be limited to 150%, for example.
  • FIG. 3 shows the diagram 12 with the partial diagrams V, VI, VII, VIII, IX for the automated design of a software filter with an FIR filter.
  • the partial diagram V indicates the frequency response of the transmission input speed in a dashed line.
  • the target frequency response shown in dotted line is specified.
  • the FIR filter is tuned by means of the actual frequency response and the target frequency response by means of optimization algorithms, so that the frequency response shown in a solid line results.
  • the partial diagram VI shows the phase of the actual uncompensated frequency response in dashed line and the compensated by the FIR filter frequency response in a solid line.
  • the partial diagram VII shows the gain V of the FIR filter over the excitation frequency such as picking frequency.
  • Partial diagrams VIII shows a limitation of the filter amplitude A (F) and sub-diagram IX the limitation of the filter phases cp (F) by corresponding application of boundary conditions in thick line versus non-limited amplitude and non-limited filter phase, shown in thin line.

Abstract

Die Erfindung betriffteinen Softwaretilger (3) undein Verfahren zur Auslegung eines einer Kupplungssteuerung zugeschalteten Softwaretilgers (3) zur Dämpfung von Rupfschwingungen eines über eine zwischen einer Brennkraftmaschine und einem Getriebe angeordneten, automatisierten, von der Kupplungssteuerung gesteuerten Reibungskupplung zu übertragenden Kupplungsmoments, wobei mittels des Softwaretilgers (3) eine Getriebeeingangsdrehzahl (r(g)) am Ausgang der Reibungskupplung erfasst und mittels einer negativen Rückkoppelung das durch Rupfschwingungen belastete Kupplungssollmoment (m(k)) korrigiert wird. Um den Softwaretilger (3) auszulegen, wird ein Übertragungsverhalten bei Anregung des Kupplungssollmoments in einem für Rupfschwingungen relevanten Frequenzbereich über eine Regelstrecke (2) der Kupplungssteuerung ermittelt, bei diesem Übertragungsverhalten ein ungedämpfter erster Frequenzgang der Getriebeeingangsdrehzahl (r(g)) und ein zweiter Frequenzgang am Ausgang des Softwaretilgers (3) ermittelt und mittels Vergleich der beiden Frequenzgänge die negative Rückkoppelung des Softwaretilgers (3) bestimmt.

Description

Verfahren zur Auslegung eines Softwaretilgers einer Kupplungssteuerung und Softwa- retilger zur Dämpfung von Rupfschwingungen
Die Erfindung betrifft einen Softwaretilger und ein Verfahren zur Auslegung eines einer Kupplungssteuerung zugeschalteten Softwaretilgers zur Dämpfung von Rupfschwingungen eines über eine zwischen einer Brennkraftmaschine und einem Getriebe angeordneten, automatisierten, von der Kupplungssteuerung gesteuerten Rei- bungskupplung zu übertragenden Kupplungsmoments, wobei mittels des Softwaretilgers eine Getriebeeingangsdrehzahl am Ausgang der Reibungskupplung erfasst und mittels einer negativen Rückkoppelung das durch Rupfschwingungen belastete Kupplungssollmoment korrigiert wird.
Automatisierte Reibungskupplungen, beispielsweise zu einer Doppelkupplung zu- sammengefasste Reibungskupplungen sind hinreichend bekannt und werden in Antriebssträngen mit einer Brennkraftmaschine und einem Getriebe, beispielsweise einem automatisierten Schaltgetriebe, Doppelkupplungsgetriebe oder dergleichen, zwischen Brennkraftmaschine und Getriebe eingesetzt. Die Reibungskupplung wird dabei mittels eines Kupplungsstellers wie Kupplungsaktor betätigt. Der Kupplungsaktor wird von einer Kupplungssteuerung gesteuert. Die Kupplungssteuerung enthält einen Regler, der anhand eines Kupplungssollmoments, welches mittels eines Fahrstrategieprogramms beispielsweise abhängig von einem Fahrerwunschmoment, Fahrsituationen, Fahrbahngegebenheiten und dergleichen ermittelt werden kann, die Reibungskupplung so betätigt, dass an deren Ausgang ein vorgegebenes Kupplungsmoment anliegt. Aufgrund der Eigenschaften der Reibungskupplung, der Brennkraftmaschine, des Getriebes und dergleichen können an der Reibungskupplung Rupfvorgänge auftreten, die zu einer schwingungsbehafteten Übertragung des Kupplungssollmoments mit einem vorgegebenen Frequenzgang in einem Frequenzbereich bis zu beispielsweise 30 Hz führen.
Um diesen Frequenzgang zu bedampfen, ist aus der DE 10 2013 204 698 A1 ein Ver- fahren zum Vermindern von Rupfschwingungen bekannt, bei dem dem Kupplungsstel- ler für das Kupplungssollmoment ein emulierter Schwingungstilger, das heißt ein softwaregebundener Schwingungstilger wie Softwaretilger überlagert ist.
Aufgabe der Erfindung ist die vorteilhafte Weiterbildung eines Softwaretilgers und ein Verfahren zu dessen Auslegung vorzuschlagen.
Die Aufgabe wird durch die Merkmale des Verfahrens des Anspruchs 1 und den Gegenstand des Anspruchs 5 gelöst. Die von diesen abhängigen Ansprüche geben vorteilhafte Ausführungsformen des Gegenstands des Anspruchs 1 beziehungsweise des Verfahrens des Anspruchs 9 wieder.
Das vorgeschlagene Verfahren dient der Auslegung eines einer Kupplungssteuerung zugeschalteten Softwaretilgers zur Dämpfung von Rupfschwingungen eines über eine zwischen einer Brennkraftmaschine und einem Getriebe angeordneten, automatisierten, von der Kupplungssteuerung gesteuerten Reibungskupplung zu übertragenden Kupplungsmoments. Hierbei wird mittels des Softwaretilgers eine Getriebeeingangsdrehzahl am Ausgang der Reibungskupplung erfasst und mittels einer negativen Rückkoppelung das durch Rupfschwingungen belastete Kupplungsmoment am Ausgang der Reibungskupplung gedämpft, indem das Kupplungssollmoment entsprechend korrigiert wird. Hierzu wird vorgeschlagen, den Softwaretilger in robuster Weiser auszulegen, das heißt, dessen Regelparamater festzulegen, indem ein Übertragungsverhalten bei Anregung des Kupplungssollmoments in einem für Rupfschwin- gungen relevanten Frequenzbereich, beispielsweise bei Frequenzen bis zu 30 Hz, über die Regelstrecke der Kupplungssteuerung ermittelt wird. Bei diesem Übertragungsverhalten werden ein ungedämpfter erster Frequenzgang der Getriebeeingangsdrehzahl und ein zweiter Frequenzgang am Ausgang des Softwaretilgers ermittelt. Durch Vergleich der beiden Frequenzgänge werden dabei die negative Rückkop- pelung des Softwaretilgers, das heißt dessen Regelparameter bestimmt und damit der Softwaretilger ausgelegt wie konfiguriert.
Gemäß einer vorteilhaften Ausführungsform werden die beiden Frequenzgänge als komplexe Funktionen mit einer Amplitude und einer Phase zur Bestimmung der Rück- koppelung dargestellt und aus diesen rechnerisch die Rückkoppelung berechnet. Bei- spielsweise kann der erste ungedämpfte Frequenzgang als komplexe Funktion X(f) und der zweite Frequenzgang als komplexe Funktion Y(f) dargestellt werden und die Rückkoppelung aus deren Verhältnis X(f) / (1 +X(f) x Y(f)) berechnet werden. Hierbei kann ein Maximum einer Rupfschwingung bei einer vorgegebenen Rupffrequenz gedämpft werden, während Flanken des Maximums angehoben werden. Hieraus resul- tiert eine Glättung des Frequenzgangs bei moderaten Verstärkungen der Rückkopplung.
Der vorgeschlagene Softwaretilger dient der Durchführung des beschriebenen Verfahrens und weist ein Filter auf, welches aus einer Getriebeeingangsdrehzahl mit einem durch Rupfschwingungen behafteten Frequenzgang eine negative, die Rupfschwin- gungen dämpfende Rückkoppelung auf das Kupplungssollmoment einspeist. Das lineare Filter kann als rekursives Filter mit unendlicher Impulsantwort, IIR-Filter (infinite impulse response filter) oder als Filter mit endlicher Impulsantwort, FIR-Filter (finite impulse response filter) ausgebildet sein.
Gemäß einer bevorzugten Ausführungsform ist eine Verstärkung des Softwaretilgers, also eine Quantität der Rückkoppelung abschaltbar eingestellt. Beispielsweise kann der Softwaretilger abgeschaltet werden, wenn Rupfschwingungen mit geringerer Wahrscheinlichkeit auftreten, und eingeschaltet werden, wenn deren Wahrscheinlichkeit beispielsweise beim Anfahren des Fahrzeugs, Ankriechen, Einkuppeln nach Gangwechseln und dergleichen zunimmt. Zwischen dem abgeschalteten und dem ge- schalteten Zustand können Übergangsbereiche vorgesehen sein. Beispielsweise kann eine Regelung der Verstärkung mittels einer von einer Stabilität des Softwaretilgers abhängigen Kennlinie vorgesehen sein.
Desweiteren kann eine maximale Verstärkung der Rückkoppelung begrenzt sein. Beispielsweise kann eine Verstärkung auf 150% einer Amplitude des Frequenzgangs der Getriebeeingangsdrehzahl begrenzt sein.
Mit anderen Worten können die Aufgaben durch ein Verfahren und einen Gegenstand der Ansprüche 1 beziehungsweise 5 wie folgt gelöst werden:
Mit Kenntnis des Frequenzgangs eines näherungsweise linearen Systems wie Kupplungssystem mit einem Kupplungssteller, der diesen steuernden Kupplungssteuerung sowie dem an dem Kupplungsausgang wie Getriebeeingang angekoppelte
Triebstrang mit einer angelegten Last sowie deren Dynamik lässt sich bei Einsatz eines linearen Reglers wie Softwaretilgers der gedämpfte Frequenzgang bei aktiviertem Regler berechnen. Der Regler lässt sich so optimal auf einen definierten Ziel- Frequenzgang im Sinne eines Best-Fits auslegen. Neben der schrittweisen nicht au- tomatisierten Auslegung„von Hand" ist diese Auslegung des Ziel-Frequenzgangs auch automatisiert durch entsprechende Optimierungsalgorithmen möglich. Bei einer alternativen Ausbildung des mittels einer Rückkopplung über ein FIR-Filter ist dies besonders einfach und ohne Einsatz rekursiver Fit-Algorithmen berechenbar.
Beim Übergang in Betriebsbereiche, in denen keine stabile Auslegung des Reglers mehr möglich ist, wird dieser in vorteilhafter Weise deaktiviert. Eine Deaktivierung kann kontinuierlich über eine Rücknahme der Gesamtverstärkung des Reglers erfolgen, da mit Verringerung der Verstärkung die Regelung zunehmend„stabiler" wird und sich dem ungeregelten Kupplungssystem annähert. Falls die Regelung doch einmal instabil wird, kann der Reglerausgang über eine Kennlinie begrenzt werden. Bei Kenntnis des Übertragungsverhaltens eines modulierten Sollmoments auf eine gemessene Getriebeeingangsdrehzahl in einem Betriebspunkt eines Triebstrangs in Form eines Frequenzgangs beispielsweise über eine Amplituden- und Phasenantwort über die Anregungsfrequenz lässt sich hierbei unter der Annahme linearen Verhaltens ein effektiver gedämpfter Frequenzgang berechnen, wenn der eingesetzte Regler zur Dämpfung ebenfalls linear ausgebildet wird. Hierbei stellt diese Linearität eine genäherte Eigenschaft realer Kupplungssysteme dar, die in der Regel nicht streng linear sind. Ist das ungedämpfte System durch den komplexen Frequenzgang X(f) und die negative Rückkopplung durch den komplexen Frequenzgang Y(f) gegeben, so lässt sich der Frequenzgang bei aktivem Regler durch die komplexe Funktion
X(f)/(1 +X(f)*Y(f)) berechnen. Anhand des berechneten gedämpften Frequenzgangs lässt sich die Auslegung des Softwaretilgers durchführen beziehungsweise bewerten. Neben einer Reduktion der Amplitude des Frequenzgangs im Bereich der Resonanz wird hierbei eine relative Erhöhung der Amplitude außerhalb der Resonanz vorgesehen. Zur Erzielung einer robusten Auslegung wird ein möglichst flacher Verlauf des Frequenzgangs vorgesehen, ohne zu große Verstärkungen, die zu einer Instabilität des Reglers führen können, zu erzeugen.
Da insbesondere bei komplexem Übertragungsverhalten eine optimale Auslegung „von Hand" schwierig ist, kann bei definierten Auslegungskriterien eine automatisierte Auslegung durchgeführt werden. Ein Auslegungskriterium kann beispielsweise sein, das Maximum der Amplitude der gedämpften Frequenzantwort möglichst klein vorzu- sehen und dabei die maximale Verstärkung kleiner 150% zu halten. Die Auslegung lässt sich dabei mit Hilfe üblicher Optimierungsalgorithmen bestimmen.
Besonders geeignet für eine automatisierte Auslegung ist dabei eine Ausbildung des Reglers beziehungsweise Filters, bei der ein lineares Filter durch einen sogenannten FIR-Filter vorgesehen ist. In diesem Fall kann die Auslegung des Reglers in Form des Softwaretilgers direkt anhand einer Ziel-Frequenzantwort beispielsweise ohne Verwendung rekursiver Fit-Algorithmen berechnet werden. Bei einem FIR-Filter findet eine gewichtete Summation einer begrenzten Anzahl vergangener, beispielsweise in einem Puffer gespeicherter Messwerte der Getriebeeingangsdrehzahl beziehungsweise des Kupplungssollmoments statt. Eine besondere Herausforderung ist hierbei die Berücksichtigung der Tatsache, dass keine Werte„aus der Zukunft" verwendet werden können. Um dennoch eine sichere Auslegung zu erzielen, können folgende Randbedingungen vorgesehen werden: Es können eine Maximalverstärkung, eine maximale Amplitude, ein Abtastintervall und eine von der Filterordnung abhängige Pufferzeit und dergleichen vorgegeben werden.
Gemäß einer vorteilhaften Ausführungsform kann die kontrollierte Abschaltung des Reglers beim Übergang in Betriebsbereiche, in denen eine stabile Reglerauslegung nicht mehr möglich ist, vorgesehen sein. Die Abschaltung kann kontinuierlich über eine Gesamtverstärkung erfolgen. Mit Verringerung der Verstärkung wird die Ansteue- rung des Reglers zunehmend„stabiler" und nähert sich dem ungeregelten Kupplungssystem an.
Falls die Regelung in einem Betriebsbereich des Kraftfahrzeugs beziehungsweise des Antriebsstrangs instabil wird, beispielsweise durch unvorhersehbare Änderungen von Betriebsparametern, erfolgt eine geeignete Korrektur des Reglers, indem der Regler- ausgang und damit die negativen Auswirkungen begrenzt werden. Dies kann bei- spielsweise mittels einer in der Kupplungssteuerung hinterlegten Kennlinie erfolgen, die das unbegrenzte Reglerausgangssignal als Eingang und ein begrenztes Reglerausgangssignal als Ausgang hat. Für kleine Signale hat diese Kennlinie beispielsweise die Steigung eins und wird bei größeren Signalen flacher beziehungsweise hat die Steigung Null.
Die Erfindung wird anhand des in den Figuren 1 bis 3 dargestellten Ausführungsbeispiels näher erläutert. Dabei zeigen:
Figur 1 ein Blockschaltbild eines Softwaretilgers,
Figur 2 ein Diagramm zur Darstellung einer Auslegung eines Softwaretilgers und
Figur 3 ein Diagramm zur automatisierten Auslegung eines Softwaretilgers
mit einem FIR-Filter.
Die Figur 1 zeigt das Blockdiagramm 1 mit dem Ablauf eines Verfahrens zur Dämpfung von Rupfschwingungen entlang der Regelstrecke 2 mittels des Softwaretilgers 3. Die zugehörige Reibungskupplung wird mittels eines Kupplungsstellers und einer Kupplungssteuerung mittels eines Steueralgorithmus auf ein abhängig von einer Fahrsituation vorgegebenes Kupplungssollmoment m(k) geregelt, beispielsweise mittels eines Lagereglers. Bei bestimmten Betriebssituationen, beispielsweise beim Anfahren, Ankriechen, beim Einkuppeln nach Gangwechseln und dergleichen kann ein Rupfen der Reibungskupplung auftreten, das entlang der Regelstrecke 2 von den Störgrößen 4, 5, 6, beispielsweise der Software der Kupplungssteuerung, der Kupp- lungs- und Kupplungsstellerdynamik und von der Triebstrangdynamik abhängt. Der Softwaretilger 3 greift die Getriebeeingangsdrehzahl r(g) am Ausgang der Reibungskupplung ab und erzeugt in an die Störgrößen 4, 5, 6 angepasstem Zustand das Mo- dulationsmoment m(m) als negative Rückkoppelung zu den Rupfschwingungen und korrigiert damit an dem Verknüpfungspunkt 7 das Kupplungssollmoment m(k). Das korrigierte Kupplungssollmoment m(k) nimmt über den Kupplungssteller Einfluss auf das zu übertragende Kupplungsmoment an der Reibungskupplung und kompensiert damit die Rupfschwingungen. Zwischen dem Verknüpfungspunkt 7 und dem Softwa- retilger 3 ist der Schalter 8 vorgesehen, der die Wirkung des Softwaretilgers 3 digital oder entsprechend einer vorgegebenen Kennlinie wichtet. Der Schalter kann beispielsweise bei instabilem Softwaretilger 3, bei Betriebszuständen, bei denen Rupfschwingungen nicht auftreten, beispielsweise bei gegenüber einer vorgegebenen Drehzahlschwelle erhöhten Drehzahlen oder Drehzahldifferenzen zwischen Eingangs- und Ausgangsdrehzahl der Reibungskupplung und dergleichen den Softwaretilger abschalten oder dessen Wirkung vermindern. Desweiteren kann mittels des Schalters 8 eine Verstärkung des Softwaretilgers 3 eingestellt werden.
Die Auslegung des Softwaretilgers 3 erfolgt abhängig von den Störgrößen 4, 5, 6. Hierzu wird das Übertragungsverhalten über die Regelstrecke 2 beispielsweise empi- risch am Fahrzeug, mittels Modellrechnungen oder dergleichen ermittelt. Anschließend wird das Kupplungssollmoment m(k) mit vorgegebenen Schwingungen, Schwingungsmustern oder dergleichen beaufschlagt, die im Bereich der Frequenz(en) eines Rupfvorgangs an der Reibungskupplung liegen. Abhängig von verschiedenen Betriebssituationen des Fahrzeugs beziehungsweise des Antriebstrangs werden die Fre- quenzgänge der Regelstrecke 2 und des Softwaretilgers 3 als komplexe Funktionen X(f) und Y(f) unter Annahme einer linearen Regelstrecke 2 und eines linearen Softwaretilgers 3 erfasst. Aus dem Zusammenhang X(f) / (1 + X(f) x Y(f)) wird der Softwaretilger 3 ausgelegt, das heißt, dessen Parametrierung bestimmt.
Die Figur 2 zeigt das Diagramm 9 mit den Teildiagrammen I, II, III, IV über die Anre- gungsfrequenz in einem typischen Frequenzbereich zwischen 0 und 14 Hz. Das Teil- diagramnn I zeigt in durchgezogener Linie die Amplitude und in gestrichelter Linie die Phase des Frequenzgangs der komplexen Funktion X(f) über die Regelstrecke 2 der Figur 1 . Das Teildiagramm II zeigt den daraus ermittelten Frequenzgang mit der komplexen Funktion Y(f). Das Teildiagramm III zeigt die Amplituden der Übertragungs- funktion bei aktivem, ausgelegtem Softwaretilger 3 (Figur 1 ) in durchgezogener Linie gegenüber dem in gestrichelter Linie dargestellten unkompensierten Frequenzgang mit der komplexen Funktion X(f) des Teildiagramms I. Hierbei wird deutlich, dass zur robusten Auslegung des Softwaretilgers 3 das Maximum M nur unvollständig in Richtung des Pfeils 10 vermindert und die Flanken F1 , F2 in Richtung der Pfeile 1 1 ange- hoben werden. Das Teildiagramm IV zeigt die Verstärkung des gemäß Teildiagrammen I - III ausgelegten Softwaretilgers 3 über die Anregungsfrequenz. Die maximale Verstärkung kann dabei beispielsweise auf 150% begrenzt sein.
Die Figur 3 zeigt das Diagramm 12 mit den Teildiagrammen V, VI, VII, VIII, IX zur automatisierten Auslegung eines Softwaretilgers mit einem FIR-Filter. Das Teildiagramm V gibt hierbei den Frequenzgang der Getriebeeingangsdrehzahl in gestrichelter Linie wieder. Zur Auslegung des FIR-Filters wird der in gepunkteter Linie dargestellte Zielfrequenzgang vorgegeben. Der FIR-Filter wird mittels des tatsächlichen Frequenzgangs und des Zielfrequenzgangs mittels Optimierungsalgorithmen abgestimmt, so dass der in durchgezogener Linie dargestellte Frequenzgang resultiert. Das Teildia- gramm VI zeigt die Phase des tatsächlichen unkompensierten Frequenzgangs in gestrichelter Linie und den mittels des FIR-Filters kompensierten Frequenzgang in durchgezogener Linie. Das Teildiagramm VII zeigt die Verstärkung V des FIR-Filters über die Anregungsfrequenz wie Rupffrequenz. Dargestellt ist die aufgrund des Zielfrequenzgangs des Teildiagramms V resultierende Verstärkung in gestrichelter Linie und in durchgezogener Linie die resultierende Verstärkung nach Auslegung des FIR- Filters. Teildiagrannnn VIII zeigt eine Begrenzung der Filteramplitude A(F) und Teildiagramm IX die Begrenzung der Filterphasen cp(F) durch entsprechende Anwendung von Randbedingungen in dicker Linie gegenüber nicht begrenzter Amplitude und nicht begrenzter Filterphase, dargestellt in dünner Linie.
Bezuqszeichenliste
1 Blockdiagramm
2 Regelstrecke
3 Softwaretilger
4 Störgröße
5 Störgröße
6 Störgröße
7 Verknüpfungspunkt
8 Schalter
9 Diagramm
10 Pfeil
1 1 Pfeil
12 Diagramm
A Amplitude
A(F) Filteramplitude
F1 Flanke
F2 Flanke
M Maximum
m(k) Kupplungssollmoment
m(m) Modulationsmoment
r(9) Gethebeeingangsdrehzahl
V Verstärkung
I Teildiagramm
II Teildiagramm
III Teildiagramm
IV Teildiagramm
V Teildiagramm
VI Teildiagramm
VII Teildiagramm
VIII Teildiagramm
IX Teildiagramm
Φ Phase
<P(F) Filterphase

Claims

Patentansprüche
Verfahren zur Auslegung eines einer Kupplungssteuerung zugeschalteten Softwaretilgers (3) zur Dämpfung von Rupfschwingungen eines über eine zwischen einer Brennkraftmaschine und einem Getriebe angeordneten, automatisierten, von der Kupplungssteuerung gesteuerten Reibungskupplung zu übertragenden Kupplungsmoments, wobei mittels des Softwaretilgers (3) eine Getriebeeingangsdrehzahl (r(g)) am Ausgang der Reibungskupplung erfasst und mittels einer negativen Rückkoppelung das durch Rupfschwingungen belastete Kupplungssollmoment (m(k)) korrigiert wird, dadurch gekennzeichnet, dass der Softwaretilger (3) ausgelegt wird, indem ein Übertragungsverhalten bei Anregung des Kupplungssollmoments (m(k)) in einem für Rupfschwingungen relevanten Frequenzbereich über die Regelstrecke (2) der Kupplungssteuerung ermittelt wird, bei diesem Übertragungsverhalten ein ungedämpfter erster Frequenzgang der Getriebeeingangsdrehzahl (r(g)) und ein zweiter Frequenzgang am Ausgang des Softwaretilgers (3) ermittelt werden und mittels Vergleich der beiden Frequenzgänge die negative Rückkoppelung des Softwaretilgers (3) bestimmt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die beiden Frequenzgänge als komplexe Funktionen (X(f), Y(f)) mit einer Amplitude (A) und einer Phase (φ) zur Bestimmung der Rückkoppelung dargestellt werden.
Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der erste ungedämpfte Frequenzgang als komplexe Funktion X(f) und der zweite Frequenzgang als komplexe Funktion Y(f) dargestellt werden und die Rückkoppelung aus deren Verhältnis X(f) / (1 +X(f) x Y(f)) berechnet wird.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Maximum (M) einer Rupfschwingung reduziert wird und Flanken (F1 , F2) des Maximums (M) angehoben werden. Softwaretilger (3) zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4 mit einem Filter, welches aus einer Getriebeeingangsdrehzahl (r(g)) mit einem durch Rupfschwingungen behafteten Frequenzgang ein die Rupfschwingungen dämpfendes Modulationsmoment (m(m)) auf das Kupplungssollmoment (m(k)) einspeist.
Softwaretilger (3) nach Anspruch 5, dadurch gekennzeichnet, dass der Softwaretilger aus einem FIR-Filter gebildet ist.
Softwaretilger (3) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass eine Verstärkung (V) des Softwaretilgers (3) abschaltbar eingestellt ist.
Softwaretilger (3) nach Anspruch 7, dadurch gekennzeichnet, dass eine Regelung der Verstärkung (V) mittels einer von einer Stabilität des Softwaretilgers (3) abhängigen Kennlinie vorgesehen ist.
Softwaretilger (3) nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass eine maximale Verstärkung (V) der Rückkoppelung auf 150% einer Amplitude (A) des Frequenzgangs der Getriebeeingangsdrehzahl (r(g)) begrenzt ist.
PCT/DE2015/200195 2014-04-16 2015-03-26 Verfahren zur auslegung eines softwaretilgers einer kupplungssteuerung und softwaretilger zur dämpfung von rupfschwingungen WO2015158342A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015001832.8T DE112015001832A5 (de) 2014-04-16 2015-03-26 Verfahren zur Auslegung eines Softwaretilgers einer Kupplungssteuerung und Softwaretilger zur Dämpfung von Rupfschwingungen
CN201580019992.5A CN106233023B (zh) 2014-04-16 2015-03-26 用于设计离合器控制装置的软件减振器的方法和用于衰减抖振振动的软件减振器
US15/300,475 US10012275B2 (en) 2014-04-16 2015-03-26 Method for configuring a software damper of a clutch control system and software damper for damping chatter vibrations

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
DE102014207361.8 2014-04-16
DE102014207354.5 2014-04-16
DE102014207354 2014-04-16
DE102014207361 2014-04-16
DE102014207310 2014-04-16
DE102014207310.3 2014-04-16
DE102014207833.4 2014-04-25
DE102014207833 2014-04-25
DE102014213703.9 2014-07-15
DE102014213703 2014-07-15
DE102014213925 2014-07-17
DE102014213927.9 2014-07-17
DE102014213925.2 2014-07-17
DE102014213927 2014-07-17
DE102014214196.6 2014-07-22
DE102014214196 2014-07-22

Publications (2)

Publication Number Publication Date
WO2015158342A2 true WO2015158342A2 (de) 2015-10-22
WO2015158342A3 WO2015158342A3 (de) 2015-12-10

Family

ID=53175214

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/DE2015/200196 WO2015158343A2 (de) 2014-04-16 2015-03-26 Verfahren zur verminderung niederfrequenter schwingungen in einem antriebsstrang eines kraftfahrzeugs
PCT/DE2015/200194 WO2015158341A2 (de) 2014-04-16 2015-03-26 Verfahren zur parametrierung eines softwaretilgers zur dämpfung von rupfschwingungen
PCT/DE2015/200197 WO2015158344A2 (de) 2014-04-16 2015-03-26 Verfahren zur verminderung von rupfschwingungen einer reibungskupplung in einem antriebsstrang eines kraftfahrzeugs
PCT/DE2015/200195 WO2015158342A2 (de) 2014-04-16 2015-03-26 Verfahren zur auslegung eines softwaretilgers einer kupplungssteuerung und softwaretilger zur dämpfung von rupfschwingungen

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/DE2015/200196 WO2015158343A2 (de) 2014-04-16 2015-03-26 Verfahren zur verminderung niederfrequenter schwingungen in einem antriebsstrang eines kraftfahrzeugs
PCT/DE2015/200194 WO2015158341A2 (de) 2014-04-16 2015-03-26 Verfahren zur parametrierung eines softwaretilgers zur dämpfung von rupfschwingungen
PCT/DE2015/200197 WO2015158344A2 (de) 2014-04-16 2015-03-26 Verfahren zur verminderung von rupfschwingungen einer reibungskupplung in einem antriebsstrang eines kraftfahrzeugs

Country Status (4)

Country Link
US (4) US10215240B2 (de)
CN (4) CN106233022B (de)
DE (4) DE112015001851A5 (de)
WO (4) WO2015158343A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017123953A1 (de) * 2017-10-16 2019-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung einer Übertragungsfunktioin einer Antriebsstrangkomponente

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102373491B1 (ko) * 2015-07-15 2022-03-11 삼성전자주식회사 회전체의 회전 인식 방법 및 그 방법을 처리하는 전자 장치
CN105511268B (zh) * 2016-01-07 2017-06-16 北京交通大学 一种针对列车执行器故障的复合控制方法
US10228035B2 (en) 2016-06-20 2019-03-12 Kongsberg Automotive As Velocity dependent brake for clutch actuator
DE102016211735B4 (de) * 2016-06-29 2022-01-27 Volkswagen Aktiengesellschaft Verfahren und Steuergerät zur Steuerung und/oder zur Regelung eines Antriebsstrangs eines Kraftfahrzeugs mit einem Antriebsmotor und mit mindestens einer Kupplung
US10486681B2 (en) * 2017-01-13 2019-11-26 Ford Global Technologies, Llc Method and system for torque management in hybrid vehicle
DE102017218686A1 (de) * 2017-10-19 2019-04-25 Zf Friedrichshafen Ag Dämpfungsanordnung zum Dämpfen von Drehungleichförmigkeiten in einem Antriebsstrang eines Kraftfahrzeugs
EP3518216A1 (de) * 2018-01-30 2019-07-31 Volvo Car Corporation Co-simulations-system mit verzögerungskompensation und verfahren zur steuerung des co-simulations-systems
DE102018111150B4 (de) 2018-05-09 2019-12-05 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung der Triebstrangsensitivität eines Antriebsstrangs eines Kraftfahrzeugs
JP7095834B2 (ja) * 2018-05-21 2022-07-05 株式会社トランストロン 制御パラメータ計算方法、制御パラメータ計算プログラム、及び制御パラメータ計算装置
CN109211215B (zh) * 2018-10-26 2022-03-18 哈尔滨工业大学 一类三自由度挠性支撑转子倾侧振动控制方法
CN111985042B (zh) * 2019-05-21 2023-12-22 上海汽车集团股份有限公司 一种减振参数的确定方法和装置
KR20210002268A (ko) * 2019-06-28 2021-01-07 현대자동차주식회사 차량의 클러치 제어장치
DE102019214208A1 (de) * 2019-09-18 2021-03-18 Volkswagen Aktiengesellschaft Steuerung für eine Verbrennungskraftmaschine in einem Hybrid-Fahrzeug, Antriebsstrang für ein Hybrid-Fahrzeug, Hybrid-Fahrzeug und Verfahren in einer Steuerung für eine Verbrennungskraftmaschine
DE102021116187B4 (de) 2021-05-25 2023-07-27 Schaeffler Technologies AG & Co. KG Verfahren zum Betrieb eines Antriebsstrangs eines Kraftfahrzeugs
WO2022247980A1 (de) 2021-05-25 2022-12-01 Schaeffler Technologies AG & Co. KG Verfahren zum betrieb eines antriebsstrangs eines kraftfahrzeugs
CN114475610B (zh) * 2022-02-21 2023-10-20 同济大学 车辆耸车现象确定方法、系统以及计算机可读存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204698A1 (de) 2012-04-11 2013-10-17 Schaeffler Technologies AG & Co. KG Verfahren zur Verminderung von Rupfschwingungen

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4009200A1 (de) * 1990-03-22 1991-09-26 Diehl Gmbh & Co Anordnung zur rekursiven modell-parameteranpassung
US5293316A (en) 1991-10-07 1994-03-08 Eaton Corporation Closed loop launch and creep control for automatic clutch
US5403249A (en) * 1991-10-07 1995-04-04 Eaton Corporation Method and apparatus for robust automatic clutch control
US5439428A (en) * 1994-02-22 1995-08-08 Eaton Corporation Method and apparatus for robust automatic clutch control with pid regulation
US5638267A (en) * 1994-06-15 1997-06-10 Convolve, Inc. Method and apparatus for minimizing unwanted dynamics in a physical system
US5620390A (en) * 1994-10-07 1997-04-15 Toyota Jidosha Kabushiki Kaisha Motor vehicle lock-up clutch control apparatus, having means for detecting clutch judder with high accuracy
US5630773A (en) 1996-02-02 1997-05-20 Eaton Corporation Method and apparatus for slip mode control of automatic clutch
US7031949B2 (en) 1998-01-22 2006-04-18 Mts Systems Corporation Method and apparatus for generating input signals in a physical system
JP2002501245A (ja) * 1998-01-22 2002-01-15 エムティエス・システムズ・コーポレーション 物理的システムにおいて入力信号を発生する方法及び装置
DE19857552A1 (de) * 1998-12-14 2000-06-15 Rolls Royce Deutschland Verfahren zum Erkennen eines Wellenbruches in einer Strömungskraftmaschine
DE19907454A1 (de) * 1999-02-22 2000-08-24 Schenck Vibro Gmbh Verfahren zur modellbasierten schwingungsdiagnostischen Überwachung rotierender Maschinen
US6577908B1 (en) 2000-06-20 2003-06-10 Fisher Rosemount Systems, Inc Adaptive feedback/feedforward PID controller
US8831847B2 (en) * 2001-08-24 2014-09-09 Schaeffler Technologies AG & Co. KG Regulated drivetrain for damping out vibrations
DE10293810D2 (de) * 2001-08-24 2004-07-22 Luk Lamellen & Kupplungsbau Verfahren und System zur Steuerung einer zwischen einem Motor und einem Getriebe eines Kraftfahrzeuges angeordneten, automatisierten Reibungskupplung
DE10310831A1 (de) * 2002-04-10 2003-11-06 Luk Lamellen & Kupplungsbau Antriebsstrang und Verfahren zu dessen Betrieb
DE10323567A1 (de) * 2002-05-27 2003-12-11 Luk Lamellen & Kupplungsbau Verfahren und Vorrichtung zum Modulieren des von einer Fahrzeugkupplung übertragenen Moments
WO2004027285A1 (de) * 2002-09-12 2004-04-01 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum vermindern von rupfschwingungen
EP1546581B1 (de) * 2002-09-21 2007-12-12 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren und system zum vermindern eines bei der bereichsumschaltung eines cvt-getriebes mit leistungsverzweigung entstehenden rucks
DE10254392A1 (de) * 2002-11-18 2004-05-27 Volkswagen Ag Verfahren und Vorrichtung zur Fahrdynamikregelung
JP3846438B2 (ja) * 2003-03-17 2006-11-15 トヨタ自動車株式会社 車両用摩擦係合装置の制御装置
JP2005233356A (ja) * 2004-02-23 2005-09-02 Jatco Ltd 発進クラッチの制御装置
DE502005008093D1 (de) * 2004-08-24 2009-10-22 Luk Lamellen & Kupplungsbau Verfahren zur Verringerung von Stellpositionsschwingungen eines von einem Lageregler angesteuerten Stellglieds eines Kupplungsaktors
DE102006014072A1 (de) * 2006-03-28 2007-10-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Antriebssteuerung
DE102007023850B3 (de) * 2007-05-23 2008-08-21 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2008149814A1 (ja) * 2007-06-01 2008-12-11 Sharp Kabushiki Kaisha 光情報記録媒体および光情報処理装置
EP2009313B1 (de) * 2007-06-25 2012-10-31 Schaeffler Technologies AG & Co. KG Verfahren zur Adaption einer Kupplungskennlinie bei vorhandener Kupplungshysterese
DE102007032206A1 (de) * 2007-07-11 2009-01-15 Zf Friedrichshafen Ag Verfahren und Vorrichtung zu einem Ermitteln und einer Dämpfung von Rupfschwingungen eines Antriebsstrangs
US7998026B2 (en) * 2008-01-17 2011-08-16 Ford Global Technologies, Llc Vehicle launch using a transmission input clutch
DE102008052058B3 (de) * 2008-10-17 2009-11-12 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Dämpfungseinrichtung und Dämpfungsverfahren zur Unterdrückung von Torsionsschwingungen im Antriebsstrang von Kraftfahrzeugen
JP2012076537A (ja) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd 制御装置
DE102010042625B4 (de) * 2010-10-19 2023-09-28 Dr. Johannes Heidenhain Gmbh Verfahren zum Bestimmen eines Bode-Diagramms
DE102012217132B4 (de) * 2011-10-04 2021-12-02 Schaeffler Technologies AG & Co. KG Verfahren zur Verminderung von Rupfschwingungen
DE102011084844A1 (de) 2011-10-20 2013-04-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum näherungsweisen Ermitteln des von einer Kupplung eines Antriebsstrangs eines Fahrzeugs tatsächlichen übertragenen Drehmoments
KR20140063199A (ko) * 2012-11-16 2014-05-27 현대자동차주식회사 자동변속기 차량의 댐퍼 클러치 제어장치 및 방법
DE102014206183A1 (de) * 2013-04-11 2014-10-16 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Verminderung von Rupfschwingungen einer Reibungskupplung in einem Antriebsstrang eines Kraftfahrzeugs
JP6206320B2 (ja) * 2014-05-14 2017-10-04 トヨタ自動車株式会社 クラッチの制御装置
JP6337876B2 (ja) * 2015-12-07 2018-06-06 マツダ株式会社 遠心振子ダンパ付きパワートレインの制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204698A1 (de) 2012-04-11 2013-10-17 Schaeffler Technologies AG & Co. KG Verfahren zur Verminderung von Rupfschwingungen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017123953A1 (de) * 2017-10-16 2019-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung einer Übertragungsfunktioin einer Antriebsstrangkomponente
DE102017123953B4 (de) 2017-10-16 2021-09-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung einer Übertragungsfunktion einer Antriebsstrangkomponente

Also Published As

Publication number Publication date
CN106233023B (zh) 2019-02-19
CN106233024A (zh) 2016-12-14
US20170045102A1 (en) 2017-02-16
US20170108060A1 (en) 2017-04-20
CN106233022B (zh) 2019-02-15
CN106233031A (zh) 2016-12-14
CN106233031B (zh) 2019-04-19
US10215240B2 (en) 2019-02-26
CN106233023A (zh) 2016-12-14
US20170138419A1 (en) 2017-05-18
DE112015001851A5 (de) 2016-12-29
WO2015158343A2 (de) 2015-10-22
US10012275B2 (en) 2018-07-03
US10197115B2 (en) 2019-02-05
CN106233024B (zh) 2019-06-07
WO2015158341A2 (de) 2015-10-22
WO2015158344A2 (de) 2015-10-22
WO2015158343A3 (de) 2015-12-10
WO2015158344A3 (de) 2015-12-17
DE112015001832A5 (de) 2016-12-29
DE112015001843A5 (de) 2017-01-19
DE112015001829A5 (de) 2016-12-29
US10228028B2 (en) 2019-03-12
WO2015158341A3 (de) 2015-12-10
CN106233022A (zh) 2016-12-14
WO2015158342A3 (de) 2015-12-10
US20170108061A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2015158342A2 (de) Verfahren zur auslegung eines softwaretilgers einer kupplungssteuerung und softwaretilger zur dämpfung von rupfschwingungen
DE10237793B4 (de) Vorrichtung zur Steuerung einer zwischen einem Motor und einem Getriebe eines Kraftfahrzeuges angeordneten, automatisierten Reibungskupplung
EP0444098B1 (de) Verfahren zur regelung einer kupplung
EP0001298B1 (de) Gangwechseleinrichtung für Lastschaltgetriebe
EP2001711B1 (de) Steuergerät zur bordnetzspannungswelligkeit- robusten regelung des elektrischen stroms eines regelmagnetventils sowie zugehöriges verfahren
DE19538784B4 (de) Steuerverfahren für ein Drehmomentübertragungssystem
EP2016312A1 (de) Verfahren und vorrichtung zum adaptieren der steuerung der kupplungen eines doppelkupplungsgetriebes
WO2009003454A2 (de) Verfahren und vorrichtung zum regeln des schlupfes einer fahrzeugkupplung
DE102005033965A1 (de) Motor- und Antriebsstrang-Drehmomentübertragungsvorrichtungs-Steuerung
DE102008009135A1 (de) Verfahren und Steuergerät zur Steuerung eines Triebstrangs eines Kraftfahrzeuges
WO2015048962A2 (de) Verfahren zur steuerung eines antriebsstrangs mit einem doppelkupplungsgetriebe
DE602005000830T2 (de) Anfahrkupplungsvorrichtung und Verfahren
DE102013114959A1 (de) Hochschaltsteuerung eines trockenen Doppelkupplungsgetriebes
DE102004060926A1 (de) Hochschalt-Steuerungsverfahren eines Automatikgetriebes für Fahrzeuge
DE102012210201A1 (de) Verfahren zur Steuerung einer Doppelkupplung ein einem Doppelkupplungsgetriebe
DE112019006099T5 (de) Verwalten von Motorzündanteil-Wechseln während Gangschaltvorgängen
DE102019204402A1 (de) Bestimmung eines Steuerstroms für ein Stetigventil
DE102015211588A1 (de) Verfahren zur Regelung einer automatisierten Reibungskupplung
EP2321166B1 (de) Vorrichtung und verfahren zum erkennen und reduzieren einer störschwingung bei einem fahrzeug
DE102007057786B4 (de) Verfahren zum Betreiben einer Antriebsvorrichtung
DE10052181B4 (de) Verfahren zur Steuerung einer Dämpferkupplung eines Automatikgetriebes
DE19916655B4 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs
EP0894961A2 (de) Verfahren zur Verhinderung von Ruckelschwingungen beim positiven und negativen Beschleunigen von Kraftfahrzeugen
DE102004061544B4 (de) Verfahren zum Reduzieren eines Schaltstoßes bei einem automatischen Getriebe
DE102013224890A1 (de) Verfahren zum Steuern einer Verbrennungskraftmaschine eines Triebstrangs eines Kraftfahrzeuges und Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15722030

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15300475

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015001832

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112015001832

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15722030

Country of ref document: EP

Kind code of ref document: A2