WO2015156251A1 - ビニルアミン単位含有重合体の製造方法、および重合生成物 - Google Patents

ビニルアミン単位含有重合体の製造方法、および重合生成物 Download PDF

Info

Publication number
WO2015156251A1
WO2015156251A1 PCT/JP2015/060747 JP2015060747W WO2015156251A1 WO 2015156251 A1 WO2015156251 A1 WO 2015156251A1 JP 2015060747 W JP2015060747 W JP 2015060747W WO 2015156251 A1 WO2015156251 A1 WO 2015156251A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinylformamide
formamide
containing polymer
polymerization
mass
Prior art date
Application number
PCT/JP2015/060747
Other languages
English (en)
French (fr)
Inventor
明宏 石井
康治 森
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to EP15776209.7A priority Critical patent/EP3130614B1/en
Priority to JP2015520448A priority patent/JP5991432B2/ja
Priority to CA2943935A priority patent/CA2943935C/en
Priority to US15/301,459 priority patent/US10723820B2/en
Priority to BR112016022741A priority patent/BR112016022741A8/pt
Priority to KR1020167026108A priority patent/KR20160127052A/ko
Priority to MX2016013147A priority patent/MX2016013147A/es
Priority to CN201580018509.1A priority patent/CN106164105B/zh
Publication of WO2015156251A1 publication Critical patent/WO2015156251A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/03Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/04Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/34Per-compounds with one peroxy-radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis

Definitions

  • the present invention relates to a method for producing a vinylamine unit-containing polymer, and a polymerization product containing an N-vinylformamide unit-containing polymer which is an intermediate for producing a vinylamine unit-containing polymer.
  • Vinylamine unit-containing polymers are widely used for flocculants, papermaking chemicals, fiber treatment agents, and the like.
  • Various production methods are known as a method for producing a vinylamine unit-containing polymer.
  • a carboxylic acid amide group (—NHC ( ⁇ O ) R (where R is a hydrogen atom, a hydrocarbon group, etc.)) is useful, is relatively easy to hydrolyze, and can be easily derived into a vinylamine unit-containing polymer.
  • the method of hydrolyzing the formamide group (—NHC ( ⁇ O) H) of the N-vinylformamide unit-containing polymer is particularly useful (Patent Documents 1 and 2).
  • N-vinylformamide which is a raw material for an N-vinylformamide unit-containing polymer.
  • a method of thermally decomposing N-methoxyethylformamide to obtain N-vinylformamide Patent Document 3
  • a method of obtaining N-vinylformamide by thermally decomposing N-cyanoethylformamide Patent Document 4).
  • -Formamide is also mixed in the resulting vinylamine unit-containing polymer.
  • the vinylamine unit-containing polymer is used as a papermaking agent, a fiber treatment agent or the like, it is not preferable in terms of quality that formamide is mixed therein.
  • formamide has a larger chain transfer constant than water, the molecular weight of an N-vinylformamide unit-containing polymer obtained by polymerizing N-vinylformamide in the presence of formamide is N-vinylformamide in the absence of formamide. It is lower than the N-vinylformamide unit-containing polymer obtained by polymerizing.
  • an N-vinylformamide unit-containing polymer is produced using the purified N-vinylformamide. Hydrolysis of the formamide group of the formamide unit-containing polymer produces a vinylamine unit-containing polymer.
  • the purification method of crude N-vinylformamide include a distillation method and an extraction method.
  • the distillation method has the following problems. Since the boiling point of formamide is close to that of N-vinylformamide, multi-stage precision distillation (fractional distillation) with reflux is required to separate N-vinylformamide and formamide by distillation (Patent Document 5) 6). Multi-stage precision distillation requires complicated and large equipment (such as a rectification column), and therefore, purification by crude N-vinylformamide cannot be easily performed by the distillation method. -N-vinylformamide is unstable compared to other vinylamides, and is particularly thermally unstable, so it must be handled with care. When trying to obtain high purity purified N-vinylformamide by multistage precision distillation with reflux, the yield of N-vinylformamide may decrease due to decomposition or the like.
  • the extraction method has the following problems. -Since the equipment for extraction is large and a large amount of solvent is required, the extraction method is not practical.
  • the present invention provides a method capable of producing a high-quality vinylamine unit-containing polymer that can suppress a decrease in molecular weight even when a crude N-vinylformamide containing formamide is used, and an intermediate in producing a vinylamine unit-containing polymer. It is an object of the present invention to provide a polymerized product containing an N-vinylformamide unit-containing polymer as a polymer and easily pulverized after drying.
  • the present inventors have found that (i) the chain transfer constant of formamide is not so large during the polymerization of N-vinylformamide.
  • the effect on the polymerization of vinylformamide is small, and (ii) in the presence of an acid (preferably a strong acid) or a base (preferably a strong base) than the rate of hydrolysis of the formamide group of a polymer containing N-vinylformamide units. Since the hydrolysis rate of formamide is sufficiently high, the present inventors have found that the presence of some formamide has little influence on the hydrolysis of the formamide group of the N-vinylformamide unit-containing polymer.
  • this invention has the following aspects. ⁇ 1> A crude N-vinylformamide containing N-vinylformamide and formamide, wherein the content of the formamide is 1 part by mass or more with respect to 100 parts by mass of the N-vinylformamide, A step of preparing a polymerization mixture (a) containing N-vinylformamide, and polymerizing the monomer component in the polymerization mixture (a) to contain a N-vinylformamide unit-containing polymer and formamide A step of obtaining a polymerization product (b) and a step of obtaining a hydrolysis product (c) containing a vinylamine unit-containing polymer by performing a hydrolysis treatment of the polymerization product (b) using an acid or a base.
  • a process for producing a vinylamine unit-containing polymer ⁇ 2> Production of vinylamine unit-containing polymer according to ⁇ 1>, wherein the content of formamide in the hydrolysis product (c) is 0.1 parts by mass or less with respect to 100 parts by mass of the vinylamine unit-containing polymer.
  • ⁇ 4> When the polymerization product (b) is hydrolyzed, 10 mol% or more of 100 mol% of formamide groups before hydrolysis of the N-vinylformamide unit-containing polymer is hydrolyzed, ⁇ 1 A method for producing a vinylamine unit-containing polymer as defined in any one of> to ⁇ 3>.
  • ⁇ 5> Thermal decomposition of crude N-methoxyethylformamide containing N-methoxyethylformamide and formamide to obtain a thermal decomposition product containing N-vinylformamide and formamide, followed by the purification method without refluxing.
  • ⁇ 1> to ⁇ 4> further comprising a step of purifying the pyrolysis product to obtain crude N-vinylformamide having a formamide content of 1 part by mass or more with respect to 100 parts by mass of N-vinylformamide.
  • a method for producing any vinylamine unit-containing polymer ⁇ 6> The vinylamine according to any one of ⁇ 1> to ⁇ 5>, further comprising a step of drying the polymerization product (b) to form a powder before hydrolyzing the polymerization product (b) A method for producing a unit-containing polymer.
  • ⁇ 7> The amount (mol) of formamide contained in the crude N-vinylformamide is less than the amount (mol) of formamide group to be hydrolyzed in the N-vinylformamide unit-containing polymer.
  • ⁇ 1> A process for producing a vinylamine unit-containing polymer according to any one of ⁇ 6>.
  • ⁇ 8> The vinylamine unit-containing weight according to any one of ⁇ 1> to ⁇ 7>, wherein the content of formamide in the crude N-vinylformamide is 1 to 20 parts by mass with respect to 100 parts by mass of N-vinylformamide Manufacturing method of coalescence.
  • ⁇ 9> The method for producing a vinylamine unit-containing polymer according to any one of ⁇ 1> to ⁇ 8>, wherein the polymerization in the step of obtaining the polymerization product (b) is adiabatic polymerization or photopolymerization.
  • ⁇ 10> Production of vinylamine unit-containing polymer according to any one of ⁇ 1> to ⁇ 9>, wherein the polymerization in the step of obtaining the polymerization product (b) is adiabatic polymerization and ferrous sulfate is used as a polymerization initiator.
  • a polymerization product containing an N-vinylformamide unit-containing polymer and formamide obtained by polymerizing a monomer component containing N-vinylformamide, the content of formamide in the polymerization product Is a polymerization product wherein 1 to 20 parts by mass per 100 parts by mass of the N-vinylformamide unit-containing polymer.
  • the polymerization product of the present invention is a polymerization product containing an N-vinylformamide unit-containing polymer, which is an intermediate for producing a vinylamine unit-containing polymer, and is easily pulverized after drying.
  • “Monomer” means a compound having an ethylenically unsaturated bond.
  • the “unit” in the polymer is a structural unit derived from a monomer formed by polymerizing the monomer, or a part of the structural unit is converted to another structure by processing the polymer.
  • “N-vinylformamide unit-containing polymer” means a homopolymer composed of N-vinylformamide units, or a copolymer having an N-vinylformamide unit and other structural units (however, N-vinyl Excluding copolymers having formamide units and vinylamine units).
  • the “vinylamine unit-containing polymer” means a homopolymer composed of vinylamine units, or a copolymer having a vinylamine unit and other constituent units.
  • the vinylamine unit may be in a salt state.
  • “Crude N-methoxyethylformamide” means a mixture comprising N-methoxyethylformamide and formamide.
  • the “crude N-vinylformamide” means a mixture containing N-vinylformamide and formamide, and the content of formamide is 1 part by mass or more with respect to 100 parts by mass of N-vinylformamide.
  • “Purified N-vinylformamide” is obtained by purifying crude N-vinylformamide, which contains N-vinylformamide free of formamide, or contains N-vinylformamide and formamide, and Is a mixture having a content of less than 1 part by mass with respect to 100 parts by mass of N-vinylformamide.
  • the “polymerization mixture (a)” means a mixture containing monomer components prepared using at least a monomer-containing raw material (crude N-vinylformamide or the like).
  • the polymerization mixture (a) may contain compounds other than the monomer component (impurities mixed in the monomer-containing raw material, polymerization initiator, solvent, other known additives, etc.).
  • the “polymerization product (b)” means a product obtained by polymerizing monomer components in the polymerization mixture (a).
  • the polymerization product (b) may contain a compound other than the monomer component contained in the polymerization mixture (a), and the polymerization product (b) obtained immediately after the polymerization of the monomer component. May be dried and powdered, or the powdered polymerization product (b) may be dissolved or dispersed again in water.
  • “Hydrolysis product (c)” means a product obtained by subjecting the polymerization product (b) to hydrolysis.
  • the hydrolysis product (c) may contain a compound other than the polymer contained in the polymerization product (b) and impurities generated as a by-product in the hydrolysis treatment, and the hydrolysis product obtained immediately after the hydrolysis treatment.
  • the decomposition product (c) may be dried and powdered, or the powdered hydrolysis product (c) may be dissolved or dispersed again in water.
  • “(Meth) acrylic acid” is a general term for acrylic acid and methacrylic acid.
  • (Meth) acrylic acid ester” is a general term for acrylic acid ester and methacrylic acid ester.
  • (Meth) acrylonitrile” is a general term for acrylonitrile and methacrylonitrile.
  • (Meth) acrylamide” is a general term for acrylamide and methacrylamide.
  • Examples of the method for producing the vinylamine unit-containing polymer of the present invention include a method having the following steps (I) to (V).
  • step III A step of polymerizing the monomer component in the polymerization mixture (a) to obtain a polymer containing N-vinylformamide unit and a polymerization product (b) containing formamide.
  • step IV A step of drying the polymerization product (b) into a powder form between step (III) and step (V) as necessary.
  • step V The process of obtaining the hydrolysis product (c) containing a vinylamine unit containing polymer by hydrolyzing the polymerization product (b) using an acid or a base.
  • N-vinylformamide examples include the following methods. (1) A method of thermally decomposing N-methoxyethylformamide to obtain N-vinylformamide (Patent Document 3). (2) A method of obtaining N-vinylformamide by thermally decomposing N-cyanoethylformamide (Patent Document 4). (3) A method for obtaining N-vinylformamide from ethylene bisformamide.
  • step (V) since formamide is hydrolyzed in step (V), it is not necessary to perform multistage precision distillation with reflux in step (I). Therefore, the yield of N-vinylformamide does not decrease due to decomposition or the like, and as a result, the yield of the finally obtained vinylamine unit-containing polymer does not decrease. Furthermore, N-methoxyethylformamide contained as other impurities in the crude N-vinylformamide is hydrolyzed in the step (V) and changes to a substance that does not affect the quality of the vinylamine unit-containing polymer.
  • the method (2) since hydrogen cyanide is generated as a by-product, it is necessary to perform multistage precision distillation with reflux for the separation of hydrogen cyanide.
  • equimolar formamide is formed with N-vinylformamide, so that it is necessary to perform multistage precision distillation with reflux.
  • step (II) When the thermal decomposition product (crude N-vinylformamide) obtained by the method (1) is subjected to step (II) without performing multistage precision distillation with reflux, formamide does not polymerize and has a boiling point. Since it is high, it remains in the polymerization product (b). However, in the present invention, since formamide is hydrolyzed in step (V), some formamide may remain in the crude N-vinylformamide or the polymerization product (b).
  • the content of formamide in the crude N-vinylformamide is 1 part by mass or more with respect to 100 parts by mass of N-vinylformamide. If the content of formamide is 1 part by mass or more, it is not necessary to perform multistage precision distillation with reflux, and the yield of N-vinylformamide is not reduced by decomposition or the like, resulting in the final vinylamine unit content. The yield of the polymer does not decrease.
  • the content of formamide is 1 part by mass or more, a polymerization product obtained by polymerizing the monomer component in the polymerization mixture (a) prepared using crude N-vinylformamide ( Also in b), the content of formamide is 1 part by mass or more. Therefore, even if the polymerization product (b) is dried and water is sufficiently removed in the step (IV), formamide having a high boiling point remains, so that the dried polymerization product (b) does not become too hard and is powdered. It can be easily pulverized.
  • the content of formamide in the crude N-vinylformamide is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and even more preferably 7 parts by mass or less based on 100 parts by mass of N-vinylformamide for the following reasons. .
  • the preferable upper limit of the content of formamide depends on the hydrolysis rate when the formamide group of the N-vinylformamide unit-containing polymer is hydrolyzed to be a vinylamine unit-containing polymer. That is, as will be described later, in the step (V), the formamide is converted by utilizing the fact that the hydrolysis rate of the remaining formamide is sufficiently faster than the hydrolysis rate of the formamide group of the N-vinylformamide unit-containing polymer. Decompose. Therefore, if the content of formamide is larger than the hydrolysis rate difference, a large amount of formamide may remain in the hydrolysis product (c) containing the vinylamine unit-containing polymer.
  • the amount (mol) of formamide contained in the crude N-vinylformamide is preferably less than the amount (mol) of formamide group to be hydrolyzed in the N-vinylformamide unit-containing polymer for the following reasons.
  • the amount of the formamide group to be hydrolyzed in the N-vinylformamide unit-containing polymer is more preferably 50 mol% or less, and further preferably 30 mol% or less.
  • 15 mol% of formamide groups in the N-vinylformamide unit-containing polymer are to be hydrolyzed and converted to amino groups, 15 mol% or more of formamide remains in the polymerization product (b).
  • the hydrolysis of the formamide group of the N-vinylformamide unit-containing polymer further proceeds.
  • the thermal decomposition product (crude N-vinylformamide) obtained by the method (1) contains methanol, high boiling components (coloring components, etc.), etc. as by-products, methanol, It is preferable to separate and purify high boiling components and the like.
  • the purification method not involving reflux include a method of evaporating methanol under reduced pressure when methanol is separated. In the case of separating a high-boiling component or the like, wet-wall type simple distillation, thin film evaporation of a type that forcibly forms a thin film, and the like can be mentioned.
  • the loss of N-vinylformamide associated with purification can be minimized.
  • the loss of N-vinylformamide accompanying purification is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, relative to 100 parts by mass of N-vinylformamide before purification.
  • step (I ′) is preferable as the step (I).
  • step (I ′) Thermal decomposition of crude N-methoxyethylformamide containing N-methoxyethylformamide and formamide to obtain a thermal decomposition product containing N-vinylformamide and formamide, followed by a purification method without reflux A step of purifying the pyrolysis product to obtain crude N-vinylformamide having a formamide content of 1 part by mass or more based on 100 parts by mass of N-vinylformamide.
  • a polymerization mixture (a) containing N-vinylformamide as a monomer component is prepared using crude N-vinylformamide having a formamide content of 1 part by mass or more with respect to 100 parts by mass of N-vinylformamide. Therefore, the polymerization mixture (a) contains 1 part by mass or more of formamide with respect to N-vinylformamide (100 parts by mass).
  • the polymerization mixture (a) may contain a monomer other than N-vinylformamide as a monomer component.
  • Other monomers include (meth) acrylic acid, (meth) acrylic acid salts, (meth) acrylic acid esters, (meth) acrylonitrile, (meth) acrylamide, N-alkyl (meth) acrylamide, N, N Dialkyl (meth) acrylamide, dialkylaminoethyl (meth) acrylamide, dialkylaminoethyl (meth) acrylamide salt or quaternary, dialkylaminopropyl (meth) acrylamide, dialkylaminopropyl (meth) acrylamide salt or quaternized , Diacetone acrylamide, N-vinyl pyrrolidone, N-vinyl caprolactam, vinyl acetate and the like.
  • the proportion of N-vinylformamide in 100 mol% of the monomer component is usually 5 mol% or more, preferably 10 mol% or more, more preferably 50 mol% or more, and further preferably 70 to 100 mol%.
  • the proportion of each monomer is reflected as the proportion of each constituent unit in the N-vinylformamide unit-containing polymer or the vinylamine unit-containing polymer.
  • the polymerization mixture (a) may contain, in addition to the monomer component and formamide, a polymerization initiator, a solvent, other known additives, and the like as necessary. What is necessary is just to select a polymerization initiator suitably from well-known polymerization initiators according to the polymerization method employ
  • the polymerization initiator include azo initiators, redox initiators, peroxide initiators, and photopolymerization initiators.
  • Examples of the azo initiator include water-soluble azo initiators and oil-soluble azo initiators.
  • Specific examples of water-soluble azo initiators include 2,2′-azobis (amidinopropane) dihydrochloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] Examples thereof include dihydrochloride and 4,4′-azobis (4-cyanovaleric acid).
  • Specific examples of oil-soluble azo initiators include 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexanecarbonitrile), 2,2′-azobis (2-methylbutyronitrile). 2,2′-azobis (2-methylpropionate), 4,4′-azobis (4-methoxy-2,4dimethyl) valeronitrile and the like.
  • the redox initiator are selected from at least one of peroxides such as tert-butyl hydroperoxide and ammonium peroxodisulfate, and sodium sulfite, sodium bisulfite, trimethylamine, tetramethylethylenediamine, and ferrous sulfate.
  • peroxides such as tert-butyl hydroperoxide and ammonium peroxodisulfate
  • sodium sulfite sodium bisulfite, trimethylamine, tetramethylethylenediamine, and ferrous sulfate.
  • ferrous sulfate since ferrous sulfate is not easily affected by impurities contained in the crude N-vinylformamide, it is sufficient even if the purity of the crude N-vinylformamide used for the preparation of the polymerization mixture (a) is low. It is preferable because a high polymerization rate can be maintained.
  • peroxide initiator examples include tert-butyl hydroperoxide, ammonium peroxodisulfate, potassium peroxodisulfate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, succinic peroxide, tert-butylperoxy- Examples include 2-ethylhexanoate.
  • the photopolymerization initiator can be appropriately selected from known compounds. Examples include benzophenone series, benzoin series, benzoin alkyl ether series, benzyl dimethyl ketal series, ⁇ -hydroxy ketone series, bisacylphosphine oxide series photopolymerization initiators, and the like.
  • solvent suitably from well-known solvents according to the polymerization method employ
  • the solvent include water and hydrocarbon solvents.
  • Other additives include gel improvers (polyalkylene glycols and the like), pH adjusters (phosphoric acid and the like), inorganic salts, chain transfer agents, emulsifiers (dispersion stabilizers), sensitizers and the like.
  • Step (III) Examples of the polymerization method of the monomer component containing N-vinylformamide include an aqueous solution polymerization method, an aqueous solution adiabatic polymerization method, a reverse phase suspension polymerization method, an emulsion polymerization method, and a sheet-like photopolymerization method.
  • the polymerization of the monomer component is usually performed at pH 5-9. When the pH is in the range of 5 to 9, hydrolysis of N-vinylformamide can be suppressed.
  • the polymerization temperature varies depending on the polymerization method, but is usually 0 to 110 ° C., preferably 0 to 100 ° C.
  • the molecular weight of the N-vinylformamide unit-containing polymer obtained by polymerizing the monomer component in the presence of formamide is the same as that in the absence of formamide. This is lower than the N-vinylformamide unit-containing polymer obtained by polymerization.
  • the degree of decrease in molecular weight is such that the reduced viscosity is reduced by 10% when 3 parts by mass of formamide is present per 100 parts by mass of N-vinylformamide. Therefore, as long as several parts by mass of formamide are present with respect to 100 parts by mass of N-vinylformamide, a decrease in molecular weight can be suppressed by adjusting the polymerization initiator and polymerization temperature.
  • the polymerization product (b) When formamide is contained in the polymerization product (b) obtained in the step (III), the polymerization product (b) is dried and powdered in the step (IV), so that pulverization becomes easy.
  • the content of formamide in the polymerization product (b) is preferably 1 to 20 parts by weight, more preferably 1 to 10 parts by weight, based on 100 parts by weight of the N-vinylformamide unit-containing polymer for the following reasons. 1 to 7 parts by mass is more preferable.
  • the preferable upper limit of the content of formamide depends on the hydrolysis rate when the formamide group of the N-vinylformamide unit-containing polymer is hydrolyzed to be a vinylamine unit-containing polymer.
  • the formamide is converted by utilizing the fact that the hydrolysis rate of the remaining formamide is sufficiently faster than the hydrolysis rate of the formamide group of the N-vinylformamide unit-containing polymer. Decompose. Therefore, if the content of formamide is larger than the hydrolysis rate difference, a large amount of formamide may remain in the hydrolysis product (c) containing the vinylamine unit-containing polymer.
  • the preferable lower limit of the content of formamide depends on the grindability of the polymerization product (b).
  • step (IV) if the content of formamide is large, even if the polymerization product (b) is dried in step (IV) and the water is sufficiently removed, formamide with a high boiling point remains, so that the water content to be removed is strictly limited. Even if it does not control, the polymerization product (b) of the hardness which is easy to grind
  • the state of the polymerization product (b) obtained in the step (III) is a blocky aqueous gel, and in the case of reverse phase suspension polymerization, the non-aqueous solvent is a fine particle gel. It is a dispersion.
  • the polymerization product (b) may be subjected to the step (V) as it is, or may be subjected to the step (V) after the polymerization product (b) is dried and powdered.
  • the polymerization product (b) after the drying is also called “dry body.”
  • dry body From the viewpoint of efficiently performing the hydrolysis treatment of the polymerization product (b) in the step (V), it is preferable to dry the polymerization product (b) by a known method to form a powder.
  • the powdery polymerization product (b) is again dissolved or dispersed in water and then subjected to step (V).
  • the polymerization product (b) When the polymerization product (b) is dried and powdered, if a large amount of moisture remains in the polymerization product (b), the dried product is soft and difficult to grind. If the moisture is removed too much, the dried product becomes too hard and pulverization becomes difficult.
  • the moisture content of the dried product is usually controlled by adjusting the drying temperature and residence time, but in the case of a polymerized product (b) having a low formamide content, the adjustment range of the drying temperature and residence time is narrow, Control of the amount of water is not easy.
  • the polymerization product (b) having a high content of formamide since formamide has a high boiling point, formamide does not evaporate at the drying temperature for removing water and remains in the dried product. If formamide remains, the dried product is hard to be hardened, and the adjustment range of the drying temperature and residence time is widened. Therefore, the moisture content can be easily controlled, and as a result, a dried product that can be easily pulverized can be obtained.
  • the final product is a vinylamine unit-containing polymer in which the formamide group of the N-vinylformamide unit-containing polymer is hydrolyzed.
  • the hydrolysis treatment of the polymerization product (b) is performed in the presence of water. Specifically, a state of a bulky aqueous gel obtained by aqueous solution adiabatic polymerization or sheet-like photopolymerization in step (III); a non-aqueous solvent for fine particle gel obtained by reverse phase suspension polymerization in step (III) State of dispersion: The dispersion is carried out in a state where the powdered polymerization product (b) obtained in step (IV) is dissolved or dispersed in water.
  • the hydrolysis treatment of the polymerization product (b) is performed in the presence of an acid or a base.
  • the acid is preferably a strong acid
  • the base is preferably a strong base.
  • the "strong acid” is the acid dissociation constant pK a in aqueous solution at 25 ° C. means 0 following compounds.
  • the "strong base” refers to bases acid dissociation constant pK b in aqueous solution at 25 ° C. means 0 following compounds.
  • the strong acid monovalent mineral acids such as hydrochloric acid and nitric acid are preferable.
  • As the strong base lithium hydroxide, sodium hydroxide, potassium hydroxide and the like are preferable.
  • the hydrolysis rate of formamide is sufficiently faster than the hydrolysis rate of the formamide group of the N-vinylformamide unit-containing polymer.
  • the hydrolysis rate of the formamide group of the N-vinylformamide unit-containing polymer is preferably 10 mol% or more out of 100 mol% of the formamide group before the hydrolysis treatment. If the target hydrolysis rate is too low, it may be difficult to accurately adjust the hydrolysis rate.
  • the upper limit of the hydrolysis rate is preferably 80 mol% or less out of 100 mol% of formamide groups before the hydrolysis treatment. When hydrolyzing more than 80 mol% of the formamide group of the N-vinylformamide unit-containing polymer, an excessive amount of acid or base is required.
  • the amount of acid or base may be adjusted in consideration of the amount of acid or base required for hydrolysis of the formamide group, etc. of the formamide or N-vinylformamide unit-containing polymer.
  • the N-vinylformamide unit-containing polymer can be obtained at the target hydrolysis rate regardless of the content of formamide contained in the polymerization product (b). It is possible to hydrolyze the formamide group.
  • the amount (mole) of formamide contained in the polymerization product (b) is preferably smaller than the amount (mole) of the formamide group to be hydrolyzed in the N-vinylformamide unit-containing polymer.
  • the amount of acid or base basically depends on the amount of formamide and the amount of other low molecular weight compounds to be hydrolyzed and the amount of formamide groups to be hydrolyzed in the polymer containing N-vinylformamide units.
  • the amount of substance is sufficient. In particular, when the hydrolysis rate of the formamide group of the target N-vinylformamide unit-containing polymer is low, it is necessary to adjust the amount of acid or base.
  • the polymerization product (b) is preferably hydrolyzed at 50 ° C. or higher, and more preferably hydrolyzed at 50 to 100 ° C. If the temperature at the time of hydrolyzing the polymerization product (b) is 50 ° C. or higher, the hydrolysis reaction is promoted, and a desired hydrolysis rate can be obtained in a relatively short time. If the temperature at the time of hydrolyzing the polymerization product (b) is 100 ° C. or lower, a high-quality vinylamine unit-containing polymer can be obtained without causing molecular weight reduction or insolubilization due to heat.
  • the time for performing the hydrolysis treatment of the polymerization product (b) is appropriately determined according to the content of formamide, the target hydrolysis rate, the temperature at which the polymerization product (b) is hydrolyzed, and the like. That's fine.
  • the content of formamide in the hydrolysis product (c) is preferably 0.1 parts by mass or less and more preferably 0.05 parts by mass or less with respect to 100 parts by mass of the vinylamine unit-containing polymer.
  • the content of formamide is 0.1 parts by mass or less, the influence on the quality of the vinylamine unit-containing polymer can be sufficiently reduced.
  • the hydrolysis product (c) includes ammonia and formic acid generated by hydrolysis of formamide, formic acid generated by hydrolysis of formamide group of N-vinylformamide unit-containing polymer, and N-methoxyethylformamide. Ammonia, formic acid, and acetaldehyde.
  • Formic acid may be removed by a known method. Specifically, a method of adding alcohol under acidic conditions, esterifying and distilling off can be mentioned. Ammonia may be removed by aeration through nitrogen, air or the like, or may be retained in the hydrolysis product (c) in a salt state by neutralization. Acetaldehyde is preferably removed by a known method because it may cause cross-linking insolubilization of the vinylamine unit-containing polymer during the hydrolysis treatment. Specific examples include a method of reducing with a reducing agent and a method of oximation with hydroxylamine.
  • an acid preferably a strong acid
  • a base preferably a strong base
  • formamide is sufficiently hydrolyzed. Therefore, high-quality vinylamine with little formamide contamination despite the use of crude N-vinylformamide whose raw material is 1 part by mass or more with respect to 100 parts by mass of N-vinylformamide.
  • a unit-containing polymer can be produced.
  • the polymerization mixture has a content of formamide of 1 part by mass or more with respect to 100 parts by mass of N-vinylformamide. Even if the monomer component containing N-vinylformamide is polymerized in (a), a decrease in the molecular weight (reduced viscosity) of the N-vinylformamide unit-containing polymer can be suppressed. Therefore, the fall of the molecular weight (reduced viscosity) of the vinylamine unit containing polymer finally obtained can also be suppressed.
  • the process (I) is a process for producing crude N-vinylformamide by using crude N-vinylformamide having a formamide content of 1 part by mass or more with respect to 100 parts by mass of N-vinylformamide as a raw material.
  • the purification of crude N-vinylformamide can be omitted, or the purification of crude N-vinylformamide can be carried out by a purification method without reflux. That is, the process (I) can be simplified as compared with the conventional multistage precision distillation with reflux. As a result, the following advantages are also obtained.
  • -Since step (I) can be simplified, crude N-vinylformamide can be produced at low cost, and the resulting vinylamine unit-containing polymer can also be produced at low cost.
  • -Since it is not necessary to perform multistage precision distillation with reflux in step (I), the yield of N-vinylformamide is not reduced by decomposition or the like, and as a result, the yield of the vinylamine unit-containing polymer finally obtained is It does not decline.
  • process (I) can be performed comparatively safely.
  • the content of formamide is 1 part by mass or more with respect to 100 parts by mass of the N-vinylformamide unit-containing polymer. Even if water is sufficiently removed, formamide having a high boiling point remains. Therefore, the dried polymerization product does not become too hard and can be easily pulverized when powdered.
  • ⁇ sp / C (t ⁇ t 0 ) / t 0 /0.1
  • ⁇ sp / C the reduced viscosity (dL / g)
  • t the flow time (seconds) of the sample solution
  • t 0 the flow time (seconds) of 1N saline.
  • the hydrolysis product (c) containing the vinylamine unit-containing polymer was dissolved in 1N saline so that the concentration of the vinylamine unit-containing polymer was 0.1 g / dL to obtain a sample solution.
  • the flow time of the sample solution was measured using an Ostwald viscometer.
  • the flow time of 1N saline was measured, and the reduced viscosity of the vinylamine unit-containing polymer was determined by the following formula.
  • ⁇ sp / C (t ⁇ t 0 ) / t 0 /0.1
  • ⁇ sp / C the reduced viscosity (dL / g)
  • t the flow time (seconds) of the sample solution
  • t 0 the flow time (seconds) of 1N saline.
  • the content (parts by mass) of formamide and N-methoxyethylformamide with respect to the N-vinylformamide unit-containing polymer (100 parts by mass) The content (parts by mass) was determined.
  • Analysis system LC analysis system manufactured by Shimadzu Corporation Column: ODP column (ShodexODP 4.6 mm ⁇ 250 mmH), Eluent: 0.01 mol / L sodium dihydrogen phosphate aqueous solution, Flow rate: 1 mL / min, Analysis temperature: 40 ° C. Sample injection volume: 20 ⁇ L, Detector: UV detector (wavelength 200 nm).
  • Analysis system LC analysis system manufactured by Shimadzu Corporation Column: ODP column (ShodexODP 4.6 mm ⁇ 250 mmH), Eluent: 0.01 mol / L sodium dihydrogen phosphate aqueous solution, Flow rate: 1 mL / min, Analysis temperature: 40 ° C. Sample injection volume: 20 ⁇ L, Detector: UV detector (wavelength 200 nm).
  • the content of formamide is 5.5 parts by mass with respect to 100 parts by mass of N-vinylformamide, the content of N-methoxyethylformamide is 2.4 parts by mass, The content was 47 parts by mass, and the others (high boiling components, etc.) were 6.6 parts by mass.
  • Methanol was distilled off from the pyrolysis product under a reduced pressure of 100 mmHg. Further, using a horizontal centrifugal thin film evaporator, thin film evaporation was performed under conditions of 3 mmHg and 71 ° C. to obtain crude N-vinylformamide.
  • the content of formamide was 6.5 parts by mass and the content of N-methoxyethylformamide was 2.2 parts by mass with respect to 100 parts by mass of N-vinylformamide.
  • the monomer adjustment liquid was cooled to 0 ° C., it was transferred to an adiabatic reaction vessel equipped with a thermometer and aerated with nitrogen for 15 minutes.
  • a 10% by mass aqueous solution of 2,2′-azobis (2-amidinopropane) dihydrochloride (manufactured by Wako Pure Chemical Industries, Ltd., V-50) was added to the monomer adjusting solution with respect to 100 parts by mass of N-vinylformamide.
  • 2,2′-Azobis (2-amidinopropane) dihydrochloride was added so as to be 0.15 parts by mass.
  • a 10% by mass aqueous solution of tert-butyl hydroperoxide (Nippon Yushi Co., Ltd., Perbutyl H-69) is 0.03 parts by mass of tert-butyl hydroperoxide with respect to N-vinylformamide (100 parts by mass).
  • a 10% by mass aqueous solution of sodium hydrogen sulfite was added so that the sodium hydrogen sulfite was 0.04 parts by mass with respect to 100 parts by mass of N-vinylformamide, whereby N -Polymerization of vinylformamide was started.
  • Example 1 (Production of purified N-vinylformamide)
  • Example 1 using a rectification column (13 stages) with a diameter of 5 cm packed with regular priority material (Sruzer Lab Packing), using a raw material supply stage: 5th stage, tower top: reduced pressure of 4 mmHg, reflux ratio: 2.
  • the crude N-vinylformamide obtained in (1) was subjected to multistage precision distillation to obtain purified N-vinylformamide from the top of the column. During the distillation, parabenzoquinone was added to the crude N-vinylformamide so that the amount was 0.03 parts by mass with respect to N-vinylformamide (100 parts by mass).
  • the content of formamide was 0.8 parts by mass and the content of N-methoxyethylformamide was 0.2 parts by mass with respect to 100 parts by mass of N-vinylformamide.
  • the yield of N-vinylformamide from crude N-vinylformamide was 86% by mass.
  • the monomer adjustment liquid was cooled to 0 ° C., it was transferred to an adiabatic reaction vessel equipped with a thermometer and aerated with nitrogen for 15 minutes.
  • a 10% by mass aqueous solution of 2,2′-azobis (2-amidinopropane) dihydrochloride (manufactured by Wako Pure Chemical Industries, Ltd., V-50) is added to N-vinylformamide (100 parts by mass) as a monomer adjustment solution.
  • 2,2′-azobis (2-amidinopropane) dihydrochloride was added so as to be 0.15 parts by mass.
  • a 10% by mass aqueous solution of tert-butyl hydroperoxide (Nippon Yushi Co., Ltd., Perbutyl H-69) was added so that the tert-butyl hydroperoxide was 0.02 parts by mass with respect to 100 parts by mass of N-vinylformamide. Added. Furthermore, a 10% by mass aqueous solution of sodium hydrogen sulfite was added so that the sodium hydrogen sulfite was 0.02 parts by mass with respect to 100 parts by mass of N-vinylformamide, whereby N 2 -Polymerization of vinylformamide was started.
  • Step (II) to Step (III): Reversed Phase Suspension Polymerization After mixing deionized water and the crude N-vinylformamide obtained in Example 1 (amount of N-vinylformamide to be 80 g) to a total of 95 g, sodium hypophosphite (N-vinylformamide) was mixed. 0.025 parts by mass with respect to 100 parts by mass) 2,2′-azobis (2-amidinopropane) dihydrochloride (manufactured by Wako Pure Chemical Industries, V-50) (N-vinylformamide 100 parts by mass) The amount of 0.4 parts by mass) was added to obtain a polymerization mixture (a).
  • Deionized water and the purified N-vinylformamide obtained in Comparative Example 1 (amount to give 80 g of N-vinylformamide) were mixed to a total of 95 g, and then sodium hypophosphite (N-vinylformamide). 0.02 parts by mass with respect to 100 parts by mass) 2,2′-azobis (2-amidinopropane) dihydrochloride (manufactured by Wako Pure Chemical Industries, V-50) (N-vinylformamide 100 parts by mass) The amount of 0.4 parts by mass) was added to obtain a polymerization mixture (a).
  • Example 3 In addition to the polymerization initiator used in Example 1, 5 parts by weight of an aqueous ferrous sulfate solution (0.005 parts by weight of ferrous sulfate with respect to 100 parts by weight of N-vinylformamide) was added. Polymerization was carried out in the same manner as in Example 1. The time for the system temperature to reach the maximum temperature was 240 minutes, compared with 310 minutes in Example 1, and the polymerization rate was improved.
  • step (II) As described above, adjustment of polymerization conditions for both aqueous adiabatic polymerization and reverse phase suspension polymerization is possible even when crude N-vinylformamide is used in step (II) without performing multistage precision distillation with reflux in step (I). As a result, a polymer having substantially the same molecular weight (reduced viscosity) as that obtained when purified N-vinylformamide was used was obtained. Further, even when crude N-vinylformamide is used in step (II), formamide is very little mixed into the vinylamine unit-containing polymer obtained in step (V).
  • Examples 1 and 2 in which the multistage precision distillation with reflux in Step (I) was not performed were compared with Comparative Examples 1 and 2 in which the multistage precision distillation with reflux in Step (I) was performed. Greatly improved.
  • Example 1 having a high formamide content is easier to grind than Comparative Example 1 having a low formamide content.
  • the time required from pulverization to passing through the sieve was half of 15 minutes.
  • Example 3 using ferrous sulfate as a polymerization initiator compared with Example 1, the time for the system temperature to reach the maximum temperature was shortened, and the polymerization rate was improved.
  • the vinylamine unit-containing polymer obtained by the production method of the present invention is useful as a flocculant, a papermaking agent, a fiber treatment agent and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerization Catalysts (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 本発明は、N-ビニルホルムアミドおよびホルムアミドを含み、ホルムアミドの含有量がN-ビニルホルムアミド100質量部に対して1質量部以上である粗N-ビニルホルムアミドを用いて、単量体成分としてN-ビニルホルムアミドを含む重合用混合物(a)を調製する工程と、重合用混合物(a)中にて単量体成分を重合させて、N-ビニルホルムアミド単位含有重合体およびホルムアミドを含む重合生成物(b)を得る工程と、酸または塩基を用いて重合生成物(b)の加水分解処理を行うことによって、ビニルアミン単位含有重合体を含む加水分解生成物(c)を得る工程とを有するビニルアミン単位含有重合体の製造方法に関する。

Description

ビニルアミン単位含有重合体の製造方法、および重合生成物
 本発明は、ビニルアミン単位含有重合体の製造方法、およびビニルアミン単位含有重合体を製造する際の中間体であるN-ビニルホルムアミド単位含有重合体を含む重合生成物に関する。
 本願は、2014年04月08日に日本に出願された特願2014-079413に基づき優先権を主張し、その内容をここに援用する。
 ビニルアミン単位含有重合体は、凝集剤、製紙用薬剤、繊維処理剤等に広く利用されている。ビニルアミン単位含有重合体の製造方法としては、各種の製造方法が知られており、工業的な見地の点から、N-ビニルカルボン酸アミド単位含有重合体のカルボン酸アミド基(-NHC(=O)R(ただし、Rは水素原子、炭化水素基等である。))を加水分解する方法が有用であり、加水分解を比較的行いやすく、ビニルアミン単位含有重合体への誘導が容易な点から、N-ビニルホルムアミド単位含有重合体のホルムアミド基(-NHC(=O)H)を加水分解する方法が特に有用である(特許文献1、2)。
 N-ビニルホルムアミド単位含有重合体の原材料である、N-ビニルホルムアミドの製造方法としては、下記の方法が知られている。
 (1)N-メトキシエチルホルムアミドを熱分解してN-ビニルホルムアミドを得る方法(特許文献3)。
 (2)N-シアノエチルホルムアミドを熱分解してN-ビニルホルムアミドを得る方法(特許文献4)。
 (1)の方法および(2)の方法ともに、出発物質はホルムアミドであるため、N-メトキシエチルホルムアミドやN-シアノエチルホルムアミドの熱分解によって得られるN-ビニルホルムアミドには、ホルムアミドが混入している。そのため、ホルムアミドを含む粗N-ビニルホルムアミドを用いてN-ビニルホルムアミド単位含有重合体を製造し、N-ビニルホルムアミド単位含有重合体のホルムアミド基を加水分解してビニルアミン単位含有重合体を製造した場合、下記の問題が発生する。
 ・得られるビニルアミン単位含有重合体にも、ホルムアミドが混入する。ビニルアミン単位含有重合体を、製紙用薬剤、繊維処理剤等として用いる場合、ホルムアミドが混入していることは品質上好ましくはない。
 ・ホルムアミドは水よりも連鎖移動常数が大きいため、ホルムアミドの存在下にN-ビニルホルムアミドを重合して得られるN-ビニルホルムアミド単位含有重合体の分子量は、ホルムアミドの非存在下にN-ビニルホルムアミドを重合して得られるN-ビニルホルムアミド単位含有重合体に比べて低下する。
 そこで、通常は、ホルムアミドを含む粗N-ビニルホルムアミドを精製して精製N-ビニルホルムアミドを得た後、精製N-ビニルホルムアミドを用いてN-ビニルホルムアミド単位含有重合体を製造し、N-ビニルホルムアミド単位含有重合体のホルムアミド基を加水分解してビニルアミン単位含有重合体を製造することが行われる。粗N-ビニルホルムアミドの精製方法としては、蒸留による方法、抽出による方法等が挙げられる。
 しかし、蒸留による方法には、下記の問題がある。
 ・ホルムアミドの沸点は、N-ビニルホルムアミドの沸点に近いため、N-ビニルホルムアミドとホルムアミドとを蒸留によって分離するためには、還流を伴う多段精密蒸留(分別蒸留)が必要となる(特許文献5、6)。多段精密蒸留には、複雑で大掛かりな設備(精留塔等)が必要になるため、蒸留による方法では、粗N-ビニルホルムアミドの精製を簡便に行えない。
 ・N-ビニルホルムアミドは、他のビニルアミドに比べ不安定であり、特に熱的に不安定であるため、取り扱いに注意が必要である。還流を伴う多段精密蒸留によって高純度の精製N-ビニルホルムアミドを得ようとする場合、分解等によってN-ビニルホルムアミドの収率が低下する場合がある。
 抽出による方法には、下記の問題がある。
 ・抽出のための設備が大きく、かつ多量の溶媒が必要となるため、抽出による方法は、実用的ではない。
特開昭58-23809号公報 米国特許第6797785号明細書 特開昭61-97309号公報 特開昭61-134359号公報 特開昭62-190153号公報 特開平9-323963号公報
 本発明は、ホルムアミドを含む粗N-ビニルホルムアミドを用いても、分子量の低下が抑えられ、かつ高品質のビニルアミン単位含有重合体を製造できる方法、およびビニルアミン単位含有重合体を製造する際の中間体であるN-ビニルホルムアミド単位含有重合体を含む重合生成物であって、乾燥後に粉砕が容易な重合生成物を提供することを目的とする。
 本発明者らは、上記実情に鑑み鋭意検討した結果、(i)N-ビニルホルムアミドの重合の際にはホルムアミドの連鎖移動常数がさほど大きくないことから、ホルムアミドが多少存在していてもN-ビニルホルムアミドの重合への影響は小さいこと、および(ii)酸(好ましくは強酸)または塩基(好ましくは強塩基)の存在下ではN-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解速度よりもホルムアミドの加水分解速度が充分に速いため、ホルムアミドが多少存在していてもN-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解への影響は小さいことを見出し、本発明に到達した。
 また、(iii)ビニルアミン単位含有重合体を製造する際の中間体であるN-ビニルホルムアミド単位含有重合体を含む重合生成物が特定の量のホルムアミドを含むと、重合生成物を乾燥して水分が十分に除去されても、沸点の高いホルムアミドは残存するため、乾燥した重合生成物が固くなり過ぎず、粉末状にする際に容易に粉砕できることを見出し、本発明に到達した。
 すなわち、本発明は、以下の態様を有する。
 <1>N-ビニルホルムアミドおよびホルムアミドを含み、前記ホルムアミドの含有量が前記N-ビニルホルムアミド100質量部に対して1質量部以上である粗N-ビニルホルムアミドを用いて、単量体成分として前記N-ビニルホルムアミドを含む重合用混合物(a)を調製する工程と、前記重合用混合物(a)中にて前記単量体成分を重合させて、N-ビニルホルムアミド単位含有重合体およびホルムアミドを含む重合生成物(b)を得る工程と、酸または塩基を用いて前記重合生成物(b)の加水分解処理を行うことによって、ビニルアミン単位含有重合体を含む加水分解生成物(c)を得る工程とを有する、ビニルアミン単位含有重合体の製造方法。
 <2>前記加水分解生成物(c)中のホルムアミドの含有量が、ビニルアミン単位含有重合体100質量部に対して0.1質量部以下である、<1>のビニルアミン単位含有重合体の製造方法。
 <3>前記重合生成物(b)を50℃以上で加水分解処理する、<1>または<2>のビニルアミン単位含有重合体の製造方法。
 <4>前記重合生成物(b)を加水分解処理する際、前記N-ビニルホルムアミド単位含有重合体の加水分解処理前のホルムアミド基100モル%のうち10モル%以上を加水分解する、<1>~<3>のいずれかのビニルアミン単位含有重合体の製造方法。
 <5>N-メトキシエチルホルムアミドおよびホルムアミドを含む粗N-メトキシエチルホルムアミドの熱分解処理を行ってN-ビニルホルムアミドおよびホルムアミドを含む熱分解生成物を得た後、還流を伴わない精製方法によって前記熱分解生成物を精製して、ホルムアミドの含有量がN-ビニルホルムアミド100質量部に対して1質量部以上である粗N-ビニルホルムアミドを得る工程をさらに有する、<1>~<4>のいずれかのビニルアミン単位含有重合体の製造方法。
 <6>前記重合生成物(b)を加水分解処理する前に、前記重合生成物(b)を乾燥し、粉末状にする工程をさらに有する、<1>~<5>のいずれかのビニルアミン単位含有重合体の製造方法。
 <7>前記粗N-ビニルホルムアミドに含まれるホルムアミドの物質量(モル)が、N-ビニルホルムアミド単位含有重合体中の加水分解されるホルムアミド基の物質量(モル)よりも少ない、<1>~<6>のいずれかのビニルアミン単位含有重合体の製造方法。
 <8>前記粗N-ビニルホルムアミド中のホルムアミドの含有量が、N-ビニルホルムアミド100質量部に対して1~20質量部である、<1>~<7>のいずれかのビニルアミン単位含有重合体の製造方法。
 <9>前記重合生成物(b)を得る工程における重合が断熱重合または光重合である、<1>~<8>のいずれかのビニルアミン単位含有重合体の製造方法。
 <10>前記重合生成物(b)を得る工程における重合が断熱重合であり、重合開始剤として硫酸第一鉄を用いる、<1>~<9>のいずれかのビニルアミン単位含有重合体の製造方法。
 <11>N-ビニルホルムアミドを含む単量体成分を重合させて得られた、N-ビニルホルムアミド単位含有重合体およびホルムアミドを含む重合生成物であって、前記重合生成物中のホルムアミドの含有量が前記N-ビニルホルムアミド単位含有重合体100質量部に対して1~20質量部である、重合生成物。
 本発明のビニルアミン単位含有重合体の製造方法によれば、ホルムアミドを含む粗N-ビニルホルムアミドを用いても、分子量の低下が抑えられ、かつ高品質のビニルアミン単位含有重合体を製造できる。
 本発明の重合生成物は、ビニルアミン単位含有重合体を製造する際の中間体であるN-ビニルホルムアミド単位含有重合体を含む重合生成物であって、乾燥後に粉砕が容易である。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「単量体」とは、エチレン性不飽和結合を有する化合物を意味する。
 重合体における「単位」とは、単量体が重合することによって形成された単量体に由来する構成単位、または重合体を処理することによって構成単位の一部が別の構造に変換された構成単位を意味する。
 「N-ビニルホルムアミド単位含有重合体」とは、N-ビニルホルムアミド単位からなる単独重合体、またはN-ビニルホルムアミド単位とこれ以外の他の構成単位とを有する共重合体(ただし、N-ビニルホルムアミド単位およびビニルアミン単位を有する共重合体は除く。)を意味する。
 「ビニルアミン単位含有重合体」とは、ビニルアミン単位からなる単独重合体、またはビニルアミン単位とこれ以外の他の構成単位とを有する共重合体を意味する。ビニルアミン単位は、塩の状態であってもよい。
 「粗N-メトキシエチルホルムアミド」とは、N-メトキシエチルホルムアミドおよびホルムアミドを含む混合物を意味する。
 「粗N-ビニルホルムアミド」とは、N-ビニルホルムアミドおよびホルムアミドを含み、かつホルムアミドの含有量がN-ビニルホルムアミド100質量部に対して1質量部以上である混合物を意味する。
 「精製N-ビニルホルムアミド」とは、粗N-ビニルホルムアミドを精製して得られたものであって、ホルムアミドが混入していないN-ビニルホルムアミド、またはN-ビニルホルムアミドおよびホルムアミドを含み、かつホルムアミドの含有量がN-ビニルホルムアミド100質量部に対して1質量部未満である混合物を意味する。
 「重合用混合物(a)」とは、少なくとも単量体含有原材料(粗N-ビニルホルムアミド等)を用いて調製された、単量体成分を含む混合物を意味する。重合用混合物(a)は、単量体成分以外の化合物(単量体含有原材料に混入していた不純物、重合開始剤、溶媒、公知の他の添加剤等)を含んでいてもよい。
 「重合生成物(b)」とは、重合用混合物(a)中にて単量体成分を重合させて得られたものを意味する。重合生成物(b)は、重合用混合物(a)に含まれていた単量体成分以外の化合物を含んでいてもよく、単量体成分の重合直後に得られた重合生成物(b)を乾燥し、粉末状にしたものであってもよく、粉末状の重合生成物(b)を再度水に溶解または分散させたものであってもよい。
 「加水分解生成物(c)」とは、重合生成物(b)の加水分解処理を行って得られたものを意味する。加水分解生成物(c)は、重合生成物(b)に含まれていた重合体以外の化合物や加水分解処理で副生した不純物を含んでいてもよく、加水分解処理直後に得られた加水分解生成物(c)を乾燥し、粉末状にしたものであってもよく、粉末状の加水分解生成物(c)を再度水に溶解または分散させたものであってもよい。
 「(メタ)アクリル酸」は、アクリル酸およびメタクリル酸の総称である。
 「(メタ)アクリル酸エステル」は、アクリル酸エステルおよびメタクリル酸エステルの総称である。
 「(メタ)アクリロニトリル」は、アクリロニトリルおよびメタクリロニトリルの総称である。
 「(メタ)アクリルアミド」は、アクリルアミドおよびメタクリルアミドの総称である。
<ビニルアミン単位含有重合体の製造方法>
 本発明のビニルアミン単位含有重合体の製造方法としては、例えば、下記工程(I)~工程(V)を有する方法が挙げられる。
 (I)必要に応じて、ホルムアミドの含有量がN-ビニルホルムアミド100質量部に対して1質量部以上である粗N-ビニルホルムアミドを得る工程。
 (II)ホルムアミドの含有量がN-ビニルホルムアミド100質量部に対して1質量部以上である粗N-ビニルホルムアミドを用いて、単量体成分としてN-ビニルホルムアミドを含む重合用混合物(a)を調製する工程。
 (III)重合用混合物(a)中にて単量体成分を重合させて、N-ビニルホルムアミド単位含有重合体およびホルムアミドを含む重合生成物(b)を得る工程。
 (IV)必要に応じて、工程(III)と工程(V)の間で、重合生成物(b)を乾燥し、粉末状にする工程。
 (V)酸または塩基を用いて重合生成物(b)の加水分解処理を行うことによって、ビニルアミン単位含有重合体を含む加水分解生成物(c)を得る工程。
 (工程(I))
 N-ビニルホルムアミドの製造方法としては、下記の方法が挙げられる。
 (1)N-メトキシエチルホルムアミドを熱分解してN-ビニルホルムアミドを得る方法(特許文献3)。
 (2)N-シアノエチルホルムアミドを熱分解してN-ビニルホルムアミドを得る方法(特許文献4)。
 (3)エチレンビスホルムアミドからN-ビニルホルムアミドを得る方法。
 これらの方法のうち、以下に説明するように、粗N-ビニルホルムアミドの精製を簡略化して全体収率を向上させる点、および高品質のビニルアミン単位含有重合体が得られる点から、(1)の方法が好ましい。
 ・(1)の方法によれば、特許文献3に記載されているように、N-メトキシエチルホルムアミドおよびホルムアミドを含む粗N-メトキシエチルホルムアミドの熱分解処理を行って得られるN-ビニルホルムアミドおよびホルムアミドを含む熱分解生成物(粗N-ビニルホルムアミド)中のホルムアミドの含有量は数質量%程度である。ホルムアミドの含有量が数質量%程度であれば、ホルムアミドは工程(V)で加水分解され、ビニルアミン単位含有重合体の品質に影響を及ぼさない。また、ホルムアミドは工程(V)で加水分解されるため、工程(I)において還流を伴う多段精密蒸留を行う必要がない。そのため、分解等によってN-ビニルホルムアミドの収率が低下せず、結果として最終的に得られるビニルアミン単位含有重合体の収率が低下しない。さらに、粗N-ビニルホルムアミドに他の不純物として含まれるN-メトキシエチルホルムアミドは、工程(V)で加水分解され、ビニルアミン単位含有重合体の品質に影響を及ぼさないものに変化する。
 ・(2)の方法では、シアン化水素が副生成物として生成するため、シアン化水素の分離のために還流を伴う多段精密蒸留を行う必要がある。
 ・(3)の方法では、N-ビニルホルムアミドと等モルのホルムアミドが生成するため、還流を伴う多段精密蒸留を行う必要がある。
 (1)の方法で得られた熱分解生成物(粗N-ビニルホルムアミド)を、還流を伴う多段精密蒸留を行うことなく工程(II)に供した場合、ホルムアミドは重合せず、かつ沸点が高いため、重合生成物(b)中に残存する。
 しかし、本発明においては、ホルムアミドは工程(V)で加水分解されるため、粗N-ビニルホルムアミドや重合生成物(b)中に多少のホルムアミドが残存していてもよい。
 粗N-ビニルホルムアミド中のホルムアミドの含有量は、N-ビニルホルムアミド100質量部に対して1質量部以上である。ホルムアミドの含有量が1質量部以上であれば、還流を伴う多段精密蒸留を行う必要がなく、分解等によってN-ビニルホルムアミドの収率が低下せず、結果として最終的に得られるビニルアミン単位含有重合体の収率が低下しない。
 また、ホルムアミドの含有量が1質量部以上であれば、粗N-ビニルホルムアミドを用いて調製された重合用混合物(a)中にて単量体成分を重合させて得られた重合生成物(b)においても、ホルムアミドの含有量が1質量部以上となる。そのため、工程(IV)において重合生成物(b)を乾燥して水分が十分に除去されても、沸点の高いホルムアミドは残存するため、乾燥した重合生成物(b)が固くなり過ぎず、粉末状にする際に容易に粉砕できる。
 粗N-ビニルホルムアミド中のホルムアミドの含有量は、下記の理由から、N-ビニルホルムアミド100質量部に対して20質量部以下が好ましく、10質量部以下がより好ましく、7質量部以下がさらに好ましい。
 ホルムアミドの含有量の好ましい上限は、N-ビニルホルムアミド単位含有重合体のホルムアミド基を加水分解してビニルアミン単位含有重合体に誘導する際の加水分解率に依存する。すなわち、後述するように、工程(V)においては、残存するホルムアミドの加水分解速度が、N-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解速度に比べ充分に速いことを利用してホルムアミドを分解する。そのため、加水分解速度差以上にホルムアミドの含有量が多いと、ビニルアミン単位含有重合体を含む加水分解生成物(c)にホルムアミドが多く残存するおそれがある。
 粗N-ビニルホルムアミドに含まれるホルムアミドの物質量(モル)は、下記の理由から、N-ビニルホルムアミド単位含有重合体中の加水分解されるホルムアミド基の物質量(モル)よりも少ないことが好ましく、N-ビニルホルムアミド単位含有重合体中の加水分解されるホルムアミド基の50モル%以下がより好ましく、30モル%以下がさらに好ましい。
 ・例えば、N-ビニルホルムアミド単位含有重合体中の15モル%のホルムアミド基を加水分解してアミノ基に変換しようとする場合、重合生成物(b)中に15モル%以上のホルムアミドが残存すると、ホルムアミドをすべて加水分解しようとしたときにN-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解もさらに進んでしまう。
 (1)の方法で得られた熱分解生成物(粗N-ビニルホルムアミド)は、副生成物としてメタノール、高沸成分(着色成分等)等を含むため、還流を伴わない精製方法によってメタノール、高沸成分等を分離し、精製することが好ましい。
 還流を伴わない精製方法としては、メタノールを分離する場合、減圧下でメタノールを蒸発させる方法等が挙げられる。高沸成分等を分離する場合、濡れ壁式の単蒸留、強制的に薄膜を形成するタイプの薄膜蒸発等が挙げられる。
 還流を伴わない精製方法を採用することによって、精製に伴うN-ビニルホルムアミドのロスを最小限に抑えることができる。精製に伴うN-ビニルホルムアミドのロスは、具体的には精製前のN-ビニルホルムアミド100質量部に対して10質量部以下が好ましく、8質量部以下がより好ましい。
 以上のことから、工程(I)としては、下記工程(I’)が好ましい。
 (I’)N-メトキシエチルホルムアミドおよびホルムアミドを含む粗N-メトキシエチルホルムアミドの熱分解処理を行ってN-ビニルホルムアミドおよびホルムアミドを含む熱分解生成物を得た後、還流を伴わない精製方法によって熱分解生成物を精製して、ホルムアミドの含有量がN-ビニルホルムアミド100質量部に対して1質量部以上である粗N-ビニルホルムアミドを得る工程。
 (工程(II))
 ホルムアミドの含有量がN-ビニルホルムアミド100質量部に対して1質量部以上である粗N-ビニルホルムアミドを用いて、単量体成分としてN-ビニルホルムアミドを含む重合用混合物(a)を調製するため、重合用混合物(a)には、N-ビニルホルムアミド(100質量部)に対して1質量部以上のホルムアミドが含まれる。
 重合用混合物(a)は、単量体成分として、N-ビニルホルムアミド以外の他の単量体を含んでいてもよい。
 他の単量体としては、(メタ)アクリル酸、(メタ)アクリル酸の塩、(メタ)アクリル酸エステル、(メタ)アクリロニトリル、(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、ジアルキルアミノエチル(メタ)アクリルアミド、ジアルキルアミノエチル(メタ)アクリルアミドの塩または4級化物、ジアルキルアミノプロピル(メタ)アクリルアミド、ジアルキルアミノプロピル(メタ)アクリルアミドの塩または4級化物、ジアセトンアクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、酢酸ビニル等が挙げられる。
 単量体成分100モル%のうちのN-ビニルホルムアミドの割合は、通常5モル%以上であり、10モル%以上が好ましく、50モル%以上がより好ましく、70~100モル%がさらに好ましい。N-ビニルホルムアミドの割合が多いほど、その特徴が発揮される。各単量体の割合は、N-ビニルホルムアミド単位含有重合体やビニルアミン単位含有重合体における各構成単位の割合として反映される。
 重合用混合物(a)は、必要に応じて、単量体成分およびホルムアミド以外に、重合開始剤、溶媒、公知の他の添加剤等を含んでいてもよい。
 重合開始剤は、工程(III)において採用される重合法に応じて、公知の重合開始剤の中から適宜選択すればよい。重合開始剤としては、アゾ系開始剤、レドックス系開始剤、過酸化物系開始剤、光重合開始剤等が挙げられる。
 アゾ系開始剤としては、水溶性アゾ系開始剤または油溶性アゾ系開始剤が挙げられる。
 水溶性アゾ系開始剤の具体例としては、2,2’-アゾビス(アミジノプロパン)二塩酸塩、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]二塩酸塩、4,4’-アゾビス(4-シアノ吉草酸)等が挙げられる。
 油溶性アゾ系開始剤の具体例としては、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2-メチルプロピオネ-ト)、4,4’-アゾビス(4-メトキシ-2,4ジメチル)バレロニトリル等が挙げられる。
 レドックス系開始剤の具体例としては、tert-ブチルヒドロペルオキシド、ペルオクソ二硫酸アンモニウム等の過酸化物の少なくとも一種と、亜硫酸ナトリウム、亜硫酸水素ナトリウム、トリメチルアミン、テトラメチルエチレンジアミン、硫酸第一鉄等から選ばれる少なくとも一種の組合せが挙げられる。特に、硫酸第一鉄は、粗N-ビニルホルムアミドに含まれていた不純物の影響を受けにくいため、重合用混合物(a)の調製に用いた粗N-ビニルホルムアミドの純度が低くても、十分な重合速度を保つことができるため好ましい。
 過酸化物系開始剤の具体例としては、tert-ブチルヒドロペルオキシド、ペルオクソ二硫酸アンモニウム、ペルオクソ二硫酸カリウム、過酸化水素、ベンゾイルペルオキシド、ラウロイルペルオキシド、オクタノイルペルオキシド、サクシニックペルオキシド、tert-ブチルペルオキシ-2-エチルヘキサノエート等が挙げられる。
 光重合開始剤としては、公知の化合物から適宜選定することができる。例えば、ベンゾフェノン系、ベンゾイン系、ベンゾインアルキルエーテル系、ベンジルジメチルケタール系、α-ヒドロキシケトン系、ビスアシルフォスフィンオキシド系光重合開始剤等が挙げられる。具体的には、ベンゾフェノン、ベンゾイン、ベンゾインエチルエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-1-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、(2,4,6-トリメチルベンゾイル)-ジフェニルフォスフィンオキサイド等が挙げられる。
 溶媒は、工程(III)において採用される重合法に応じて、公知の溶媒の中から適宜選択すればよい。溶媒としては、水、炭化水素系溶媒等が挙げられる。
 他の添加剤としては、ゲル質改善剤(ポリアルキレングリコール類等)、pH調整剤(リン酸等)、無機塩、連鎖移動剤、乳化剤(分散安定剤)、増感剤等が挙げられる。
 (工程(III))
 N-ビニルホルムアミドを含む単量体成分の重合法としては、水溶液重合法、水溶液断熱重合法、逆相懸濁重合法、乳化重合法、シート状光重合法等が挙げられる。
 単量体成分の重合は、通常、pH5~9で行われる。pH5~9の範囲であれば、N-ビニルホルムアミドの加水分解が抑えられる。
 重合温度は、重合法によって異なるが、通常0~110℃であり、0~100℃が好ましい。
 ホルムアミドは水よりも連鎖移動常数が大きいため、ホルムアミドの存在下に単量体成分を重合して得られるN-ビニルホルムアミド単位含有重合体の分子量は、ホルムアミドの非存在下に単量体成分を重合して得られるN-ビニルホルムアミド単位含有重合体に比べて低下する。しかし、分子量の低下の程度は、N-ビニルホルムアミド100質量部に対して3質量部のホルムアミドが存在する場合で、還元粘度が1割低下する程度である。したがって、N-ビニルホルムアミド100質量部に対して数質量部のホルムアミドが存在する程度であれば、重合開始剤や重合温度の調節によって分子量の低下を抑えることができる。
 工程(III)で得られる重合生成物(b)にホルムアミドが含まれると、工程(IV)において重合生成物(b)を乾燥し、粉末状にする際に、粉砕が容易になる。
 重合生成物(b)中のホルムアミドの含有量は、下記の理由から、N-ビニルホルムアミド単位含有重合体100質量部に対して1~20質量部が好ましく、1~10質量部がより好ましく、1~7質量部がさらに好ましい。
 ホルムアミドの含有量の好ましい上限は、N-ビニルホルムアミド単位含有重合体のホルムアミド基を加水分解してビニルアミン単位含有重合体に誘導する際の加水分解率に依存する。すなわち、後述するように、工程(V)においては、残存するホルムアミドの加水分解速度が、N-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解速度に比べ充分に速いことを利用してホルムアミドを分解する。そのため、加水分解速度差以上にホルムアミドの含有量が多いと、ビニルアミン単位含有重合体を含む加水分解生成物(c)にホルムアミドが多く残存するおそれがある。
 ホルムアミドの含有量の好ましい下限は、重合生成物(b)の粉砕性に依存する。すなわち、ホルムアミドの含有量が多いと、工程(IV)において重合生成物(b)を乾燥して水分が十分に除去されても、高沸点のホルムアミドが残存するため、除去される水分の厳密な制御を行わなくとも、粉砕容易な硬さの重合生成物(b)が得られる。一方、ホルムアミドの含有量が少ないと、粉砕容易な硬さの重合生成物(b)が得られるような水分量の幅が狭くなるため、水分量の制御が難しくなる。
 (工程(IV))
 工程(III)で得られる重合生成物(b)の状態は、水溶液断熱重合およびシート状光重合の場合、塊状の水性ゲルであり、逆相懸濁重合の場合、微粒子状ゲルの非水溶媒分散物である。重合生成物(b)は、このままの状態で工程(V)に供してもよく、重合生成物(b)を乾燥し、それを粉末状にした後に工程(V)に供してもよい。なお、乾燥して水分量を低減させる場合、その乾燥後の重合生成物(b)を「乾燥体」とも称する。工程(V)において重合生成物(b)の加水分解処理を効率的に行う点から、重合生成物(b)を公知の方法で乾燥し、粉末状にすることが好ましい。粉末状の重合生成物(b)は、水に再度溶解または分散させた後、工程(V)に供される。
 重合生成物(b)を乾燥し、粉末状にする際、重合生成物(b)中に多量に水分が残存すると、乾燥体が柔らかいため、粉砕が困難になる。水分を除去し過ぎると、乾燥体は固くなり過ぎるため、粉砕が困難になる。乾燥体の水分量は、通常、乾燥温度や滞留時間を調整することにより制御されるが、ホルムアミドの含有量が少ない重合生成物(b)の場合、乾燥温度や滞留時間の調整幅が狭く、水分量の制御は容易ではない。一方、ホルムアミドの含有量が多い重合生成物(b)の場合、ホルムアミドが高沸点のため、水分を除去するための乾燥温度ではホルムアミドは揮散せず、乾燥体中に残存する。ホルムアミドが残存すると、乾燥体は固くなりにくく乾燥温度や滞留時間の調整幅が拡がるため、水分量の制御は容易となり、結果として粉砕容易な乾燥体を得ることが可能となる。
 (工程(V))
 本発明においては、ホルムアミドを加水分解することが必須であるため、最終製品はN-ビニルホルムアミド単位含有重合体のホルムアミド基が加水分解された、ビニルアミン単位含有重合体となる。
 重合生成物(b)の加水分解処理は、水の存在下で行われる。具体的には、工程(III)において水溶液断熱重合またはシート状光重合で得られた塊状の水性ゲルの状態;工程(III)において逆相懸濁重合で得られた微粒子状ゲルの非水溶媒分散物の状態;工程(IV)において得られた粉末状の重合生成物(b)を水に溶解または分散させた状態等において行われる。
 重合生成物(b)の加水分解処理は、酸または塩基の存在下で行われる。酸としては強酸が好ましく、また塩基としては強塩基が好ましい。ここで、「強酸」とは、25℃における水溶液での酸解離定数pKが0以下の化合物を意味する。また「強塩基」とは、25℃における水溶液での塩基酸解離定数pKが0以下の化合物を意味する。強酸としては、塩酸、硝酸等の1価の鉱酸が好ましい。強塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が好ましい。強酸または強塩基の存在下では、N-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解速度よりもホルムアミドの加水分解速度が充分に速い。
 重合生成物(b)を加水分解処理する際、N-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解率は、加水分解処理前のホルムアミド基100モル%のうち10モル%以上が好ましい。目標とする加水分解率が低すぎる場合、加水分解率を正確に調節することが困難になるおそれがある。加水分解率の上限は、加水分解処理前のホルムアミド基100モル%のうち80モル%以下が好ましい。N-ビニルホルムアミド単位含有重合体のホルムアミド基の80モル%超を加水分解する場合、過剰量の酸または塩基が必要となる。
 酸または塩基の量は、ホルムアミド、N-ビニルホルムアミド単位含有重合体のホルムアミド基等の加水分解に必要となる酸または塩基の量を見込んで調節すればよい。加水分解に必要となる酸または塩基の量を見込むことによって、重合生成物(b)に含まれるホルムアミドの含有量にかかわらず、目標とする加水分解率にてN-ビニルホルムアミド単位含有重合体のホルムアミド基を加水分解することが可能である。この際、重合生成物(b)に含まれるホルムアミドの物質量(モル)は、N-ビニルホルムアミド単位含有重合体中の加水分解されるホルムアミド基の物質量(モル)よりも少ないことが好ましい。酸または塩基の量は、基本的には、ホルムアミドの物質量および加水分解する他の低分子量化合物の物質量ならびにN-ビニルホルムアミド単位含有重合体中の加水分解するホルムアミド基の物質量を加水分解するに足る物質量となる。特に、目標とするN-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解率が低い場合、酸または塩基の量の調節が必要である。
 重合生成物(b)を50℃以上で加水分解処理することが好ましく、50~100℃で加水分解処理することがより好ましい。重合生成物(b)の加水分解処理を行う際の温度が50℃以上であれば、加水分解反応が促進され、比較的短時間で所望の加水分解率が得られる。重合生成物(b)の加水分解処理を行う際の温度が100℃以下であれば、熱による分子量低下や不溶化を引き起こさず、高品質なビニルアミン単位含有重合体が得られる。
 重合生成物(b)の加水分解処理を行う時間は、ホルムアミドの含有量、目標とする加水分解率、重合生成物(b)の加水分解処理を行う際の温度等に応じて、適宜決定すればよい。
 加水分解生成物(c)中のホルムアミドの含有量は、ビニルアミン単位含有重合体100質量部に対して0.1質量部以下が好ましく、0.05質量部以下がより好ましい。ホルムアミドの含有量が0.1質量部以下であれば、ビニルアミン単位含有重合体の品質への影響を充分に少なくできる。
 加水分解生成物(c)には、ホルムアミドの加水分解によって生成するアンモニアおよび蟻酸、N-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解によって生成する蟻酸、N-メトキシエチルホルムアミドの加水分解によって生成するアンモニア、蟻酸、アセトアルデヒドが含まれる。
 蟻酸は、公知の方法で除去してもよい。具体的には、酸性条件でアルコールを加え、エステル化して留去する方法が挙げられる。
 アンモニアは、窒素、空気等を通じて曝気により除去してもよく、中和によって塩の状態で加水分解生成物(c)中にとどめてもよい。
 アセトアルデヒドは、加水分解処理の際にビニルアミン単位含有重合体の架橋不溶化を起こすことがあるため、公知の方法で除去することが好ましい。具体的には、還元剤によって還元する方法、ヒドロキシルアミンによってオキシム化する方法等が挙げられる。
 (作用機序)
 以上説明した本発明のビニルアミン単位含有重合体の製造方法にあっては、酸(好ましくは強酸)または塩基(好ましくは強塩基)を用いて、N-ビニルホルムアミド単位含有重合体およびホルムアミドを含む重合生成物(b)の加水分解処理を行うと、ホルムアミドが充分に加水分解される。そのため、原材料として、ホルムアミドの含有量がN-ビニルホルムアミド100質量部に対して1質量部以上である粗N-ビニルホルムアミドを用いているにもかかわらず、ホルムアミドの混入が少ない、高品質のビニルアミン単位含有重合体を製造できる。また、N-ビニルホルムアミドの重合の際にはホルムアミドの連鎖移動常数がさほど大きくないことから、ホルムアミドの含有量がN-ビニルホルムアミド100質量部に対して1質量部以上となっている重合用混合物(a)中にてN-ビニルホルムアミドを含む単量体成分を重合させても、N-ビニルホルムアミド単位含有重合体の分子量(還元粘度)の低下は抑えられる。そのため、最終的に得られるビニルアミン単位含有重合体の分子量(還元粘度)の低下も抑えられる。
 また、原材料として、ホルムアミドの含有量がN-ビニルホルムアミド100質量部に対して1質量部以上である粗N-ビニルホルムアミドを用いることによって、粗N-ビニルホルムアミドの製造工程である工程(I)において、粗N-ビニルホルムアミドの精製を省略できる、または粗N-ビニルホルムアミドの精製を還流を伴わない精製方法で行うことができる。すなわち、従来の還流を伴う多段精密蒸留を行う場合に比べ、工程(I)を簡略化できる。その結果、下記の利点も得られる。
 ・工程(I)を簡略化できるため、粗N-ビニルホルムアミドを低コストで製造でき、結果として最終的に得られるビニルアミン単位含有重合体も低コストで製造できる。
 ・工程(I)において還流を伴う多段精密蒸留を行う必要がないため、分解等によってN-ビニルホルムアミドの収率が低下せず、結果として最終的に得られるビニルアミン単位含有重合体の収率が低下しない。
 ・工程(I)において還流を伴う多段精密蒸留を行う必要がないため、工程(I)を比較的安全に行うことができる。
 また、以上説明した本発明の重合生成物にあっては、ホルムアミドの含有量がN-ビニルホルムアミド単位含有重合体100質量部に対して1質量部以上であるため、重合生成物を乾燥して水分が十分に除去されても、沸点の高いホルムアミドは残存する。そのため、乾燥した重合生成物が固くなり過ぎず、粉末状にする際に容易に粉砕できる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
 (N-ビニルホルムアミド単位含有重合体の還元粘度)
 N-ビニルホルムアミド単位含有重合体およびホルムアミドを含む重合生成物(b)を、1規定の食塩水に、N-ビニルホルムアミド単位含有重合体の濃度が0.1g/dLとなるように溶解してサンプル溶液を得た。25℃において、オストワルド粘度計を用いてサンプル溶液の流下時間を測定した。同様に、1規定の食塩水の流下時間を測定し、次式によってN-ビニルホルムアミド単位含有重合体の還元粘度を求めた。
 ηsp/C=(t-t)/t/0.1
 ただし、ηsp/Cは還元粘度(dL/g)であり、tはサンプル溶液の流下時間(秒)であり、tは1規定の食塩水の流下時間(秒)である。
 (ビニルアミン単位含有重合体の還元粘度)
 ビニルアミン単位含有重合体を含む加水分解生成物(c)を、1規定の食塩水に、ビニルアミン単位含有重合体の濃度が0.1g/dLとなるように溶解してサンプル溶液を得た。25℃において、オストワルド粘度計を用いてサンプル溶液の流下時間を測定した。同様に、1規定の食塩水の流下時間を測定し、次式によってビニルアミン単位含有重合体の還元粘度を求めた。
 ηsp/C=(t-t)/t/0.1
 ただし、ηsp/Cは還元粘度(dL/g)であり、tはサンプル溶液の流下時間(秒)であり、tは1規定の食塩水の流下時間(秒)である。
 (重合生成物(b)中のホルムアミドおよびN-メトキシエチルホルムアミドの含有量)
 重合生成物(b)を50mLの三角フラスコに秤量し、重合生成物(b)の濃度が10質量%になるようイソプロピルアルコールを添加し、5.5時間撹拌した。撹拌後の上澄み液2.5mLを25mLのメスフラスコに分取し、0.01モル/Lのリン酸二水素ナトリウム水溶液を標線まで加え、希釈した。希釈液について、下記装置を用い、下記条件にて液体クロマトグラフィーによる分析を行い、N-ビニルホルムアミド単位含有重合体(100質量部)に対するホルムアミドの含有量(質量部)およびN-メトキシエチルホルムアミドの含有量(質量部)を求めた。
 分析システム:島津製作所社製のLC分析システム、
 カラム:ODPカラム (ShodexODP 4.6mm×250mmH)、
 溶離液:0.01モル/Lのリン酸二水素ナトリウム水溶液、
 流速:1mL/分、
 分析温度:40℃、
 サンプル注入量:20μL、
 検出器:UV検出器(波長200nm)。
 (加水分解生成物(c)中のホルムアミドの含有量)
 加水分解生成物(c)を50mLの三角フラスコに秤量し、加水分解生成物(c)の濃度が10質量%になるようイソプロピルアルコールを添加し、5.5時間撹拌した。撹拌後の上澄み液2.5mLを25mLのメスフラスコに分取し、0.01モル/Lのリン酸二水素ナトリウム水溶液を標線まで加え、希釈した。希釈液について、下記装置を用い、下記条件にて液体クロマトグラフィーによる分析を行い、ビニルアミン単位含有重合体(100質量部)に対するホルムアミドの含有量(質量部)を求めた。
 分析システム:島津製作所社製のLC分析システム、
 カラム:ODPカラム (ShodexODP 4.6mm×250mmH)、
 溶離液:0.01モル/Lのリン酸二水素ナトリウム水溶液、
 流速:1mL/分、
 分析温度:40℃、
 サンプル注入量:20μL、
 検出器:UV検出器(波長200nm)。
 (N-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解率)
 加水分解生成物(c)を、ビニルアミン単位含有重合体の濃度が0.025質量%になるよう脱塩水に溶解し、pH=2.5において、トルイジンブルーを指示薬として、1/400規定のポリビニル硫酸カリウム水溶液によって滴定した。滴定量からビニルアミン単位含有重合体のカチオン当量を算出し、次式によってN-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解率を求めた。
 加水分解率(モル%)=カチオン当量×100/((1000-(カチオン当量×79.5))/71+カチオン当量)
<実施例1>
 (工程(I))
 N-メトキシエチルホルムアミド100質量部に対するホルムアミドの含有量が3質量部である粗N-メトキシエチルホルムアミドを用意した。
 特開平3-181451号公報に記載された装置を用い、120mmHgの減圧下、450℃の気相にて粗N-メトキシエチルホルムアミドを連続的に熱分解し、熱分解生成物を得た。
 熱分解生成物においては、N-ビニルホルムアミド100質量部に対して、ホルムアミドの含有量が5.5質量部であり、N-メトキシエチルホルムアミドの含有量が2.4質量部であり、メタノールの含有量が47質量部であり、その他(高沸成分等)が6.6質量部であった。
 熱分解生成物から100mmHgの減圧下にてメタノールを留去した。さらに、横型遠心式薄膜蒸発機を用い、3mmHg、71℃の条件にて薄膜蒸発を行い、粗N-ビニルホルムアミドを得た。
 粗N-ビニルホルムアミドにおいては、N-ビニルホルムアミド100質量部に対して、ホルムアミドの含有量が6.5質量部であり、N-メトキシエチルホルムアミドの含有量が2.2質量部であった。
 (工程(II)~工程(IV):水溶液断熱重合)
 脱イオン水、ポリエチレングリコール(平均分子量:20000)の0.3質量部、粗N-ビニルホルムアミド(N-ビニルホルムアミドが30質量部になる量)を、全体で100質量部になるように混合した後、リン酸によってpH=6.3となるように調整し、単量体調整液を得た。
 単量体調整液を0℃まで冷却した後、温度計を取り付けた断熱反応容器に移して15分間窒素曝気を行った。単量体調整液に、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(和光純薬社製、V-50)の10質量%水溶液を、N-ビニルホルムアミド100質量部に対して2,2’-アゾビス(2-アミジノプロパン)二塩酸塩が0.15質量部となるように添加した。さらに、tert-ブチルヒドロペルオキシド(日本油脂社製、パーブチルH-69)の10質量%水溶液を、N-ビニルホルムアミド(100質量部)に対してtert-ブチルヒドロペルオキシドが0.03質量部となるように添加した。さらに、亜硫酸水素ナトリウムの10質量%水溶液を、N-ビニルホルムアミド100質量部に対して亜硫酸水素ナトリウムが0.04質量部となるように添加することによって、重合用混合物(a)中にてN-ビニルホルムアミドの重合を開始した。
 系内温度が最高温度に達した後、さらに1時間熟成した。反応容器から塊状の水性ゲルである重合生成物(b)を取り出し、ミートチョッパにて粉砕し、110℃の通風乾燥機で1.5時間乾燥した後、粉砕し、目開き2mmの篩を通過させ、粉末状とした。粉砕開始から篩を通過するまでに要した時間は15分間であった。N-ビニルホルムアミド単位含有重合体の還元粘度、重合生成物(b)中のホルムアミドおよびN-メトキシエチルホルムアミドの含有量を求めた。結果を表1に示す。
 (工程(V))
 水の123g、48質量%の水酸化ナトリウム水溶液の8.5gおよび亜二チオン酸ナトリウムの0.6gを混合した水溶液に、粉末状の重合生成物(b)の15gを少量ずつ加え、50℃で2時間かけて溶解し、80℃で3時間かけて加水分解処理を行い、水溶液状態の加水分解生成物(c)を得た。N-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解率、ビニルアミン単位含有重合体の還元粘度、加水分解生成物(c)中のホルムアミドの含有量を求めた。結果を表1に示す。
<比較例1>
 (精製N-ビニルホルムアミドの製造)
 規則重点物(スルーザーラボパッキン)を充填した直径5cmの精留塔(13段)を用い、原料供給段:5段目、塔頂:4mmHgの減圧、還流比:2にて、実施例1で得られた粗N-ビニルホルムアミドの多段精密蒸留を行い、塔頂から精製N-ビニルホルムアミドを得た。蒸留に際しては、粗N-ビニルホルムアミドに、パラベンゾキノンを、N-ビニルホルムアミド(100質量部)に対して0.03質量部となるように添加した。
 精製N-ビニルホルムアミドにおいては、N-ビニルホルムアミド100質量部に対して、ホルムアミドの含有量が0.8質量部であり、N-メトキシエチルホルムアミドの含有量が0.2質量部であった。粗N-ビニルホルムアミドからのN-ビニルホルムアミドの収率は、86質量%であった。
 (工程(II)~工程(IV):水溶液断熱重合)
 脱イオン水、ポリエチレングリコール(平均分子量:20000)の0.3質量部、精製N-ビニルホルムアミド(N-ビニルホルムアミドが30質量部になる量)を、全体で100質量部になるように混合した後、リン酸によって単量体水溶液がpH=6.3となるように調整し、単量体調整液を得た。
 単量体調整液を0℃まで冷却した後、温度計を取り付けた断熱反応容器に移して15分間窒素曝気を行った。単量体調整液に、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(和光純薬社製、V-50)の10質量%水溶液を、N-ビニルホルムアミド(100質量部)に対して2,2’-アゾビス(2-アミジノプロパン)二塩酸塩が0.15質量部となるように添加した。さらに、tert-ブチルヒドロペルオキシド(日本油脂社製、パーブチルH-69)の10質量%水溶液を、N-ビニルホルムアミド100質量部に対してtert-ブチルヒドロペルオキシドが0.02質量部となるように添加した。さらに、亜硫酸水素ナトリウムの10質量%水溶液を、N-ビニルホルムアミド100質量部に対して亜硫酸水素ナトリウムが0.02質量部となるように添加することによって、重合用混合物(a)中にてN-ビニルホルムアミドの重合を開始した。
 系内温度が最高温度に達した後、さらに1時間熟成した。反応容器から塊状の水性ゲルである重合生成物(b)を取り出し、ミートチョッパにて粉砕し、110℃の通風乾燥機で1.5時間乾燥した後、粉砕し、目開き2mmの篩を通過させ、粉末状とした。粉砕開始から篩を通過するまでに要した時間は30分間であった。N-ビニルホルムアミド単位含有重合体の還元粘度、重合生成物(b)中のホルムアミドおよびN-メトキシエチルホルムアミドの含有量を求めた。結果を表1に示す。
 (工程(V))
 水の123g、48質量%の水酸化ナトリウム水溶液の7.2gおよび亜二チオン酸ナトリウムの0.6gを混合した水溶液に、粉末状の重合生成物(b)の15gを少量ずつ加え、50℃で2時間かけて溶解し、80℃で3時間かけて加水分解処理を行い、水溶液状態の加水分解生成物(c)を得た。N-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解率、ビニルアミン単位含有重合体の還元粘度、加水分解生成物(c)中のホルムアミドの含有量を求めた。結果を表1に示す。
<実施例2>
 (工程(II)~工程(III):逆相懸濁重合)
 脱イオン水、実施例1で得られた粗N-ビニルホルムアミド(N-ビニルホルムアミドが80gとなる量)を、全体で95gになるように混合した後、次亜リン酸ナトリウム(N-ビニルホルムアミド100質量部に対して0.025質量部となる量)、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(和光純薬社製、V-50)(N-ビニルホルムアミド100質量部に対して0.4質量部となる量)を加えて、重合用混合物(a)を得た。
 撹拌機、滴下ロートおよびジャケットを備えた反応容器に、シクロヘキサンの400mL、乳化剤(ポリオキシエチレンアルキルエーテル、HLB:14)の9.4g、20質量%の塩化アンモニウム水溶液の20g、脱塩水の24gを入れた。55℃加温、撹拌下に、重合用混合物(a)を3時間かけて滴下し、さらに56℃で2時間保持し、重合生成物(b)を得た。
 重合生成物(b)の一部を取り出し、60℃の真空乾燥機で1.5時間乾燥した後、粉砕し、目開き2mmの篩を通過させ、粉末状とした。粉砕開始から篩を通過するまでに要した時間は5分間であった。N-ビニルホルムアミド単位含有重合体の還元粘度、重合生成物(b)中のホルムアミドおよびN-メトキシエチルホルムアミドの含有量を求めた。結果を表2に示す。
 (工程(V))
 重合生成物(b)に、25質量%のヒドロキシルアミン硫酸塩水溶液の24gを添加し、塩化水素ガスの20.7gを吹き込み、80℃で3時間還流させた。50℃に降温し、メタノールの18gを添加し、65℃で撹拌した。70~77℃に昇温して蒸発した水およびシクロヘキサンを凝縮させ、シクロヘキサンのみを還流させる操作を30分間行うことで脱水し、粉末状の加水分解生成物(c)を得た。N-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解率、ビニルアミン単位含有重合体の還元粘度、加水分解生成物(c)中のホルムアミドの含有量を求めた。結果を表2に示す。
<比較例2>
 (工程(II)~工程(III):逆相懸濁重合)
 脱イオン水、比較例1で得られた精製N-ビニルホルムアミド(N-ビニルホルムアミドが80gとなる量)を、全体で95gになるように混合した後、次亜リン酸ナトリウム(N-ビニルホルムアミド100質量部に対して0.037質量部となる量)、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(和光純薬社製、V-50)(N-ビニルホルムアミド100質量部に対して0.4質量部となる量)を加えて、重合用混合物(a)を得た。
 撹拌機、滴下ロートおよびジャケットを備えた反応容器に、シクロヘキサンの400mL、乳化剤(ポリオキシエチレンアルキルエーテル、HLB:14)の9.4g、20質量%の塩化アンモニウム水溶液の20g、脱塩水の24gを入れた。55℃加温、撹拌下に、重合用混合物(a)を3時間かけて滴下し、さらに56℃で2時間保持し、重合生成物(b)を得た。
 重合生成物(b)の一部を取り出し、60℃の真空乾燥機で1.5時間乾燥した後、粉砕し、目開き2mmの篩を通過させ、粉末状とした。粉砕開始から篩を通過するまでに要した時間は10分間であった。N-ビニルホルムアミド単位含有重合体の還元粘度、重合生成物(b)中のホルムアミドおよびN-メトキシエチルホルムアミドの含有量を求めた。結果を表2に示す。
 (工程(V))
 重合生成物(b)に、25質量%のヒドロキシルアミン硫酸塩水溶液の24gを添加し、塩化水素ガスの17gを吹き込み、80℃で3時間還流させた。50℃に降温し、メタノールの15gを添加し、65℃で撹拌した。70~77℃に昇温して蒸発した水およびシクロヘキサンを凝縮させ、シクロヘキサンのみを還流させる操作を30分間行うことで脱水し、粉末状の加水分解生成物(c)を得た。N-ビニルホルムアミド単位含有重合体のホルムアミド基の加水分解率、ビニルアミン単位含有重合体の還元粘度、加水分解生成物(c)中のホルムアミドの含有量を求めた。
<実施例3>
 実施例1で用いた重合開始剤に加え、硫酸第一鉄の水溶液の5質量部(N-ビニルホルムアミド100質量部に対して硫酸第一鉄が0.005質量部)を添加したこと以外は実施例1と同様にして重合を実施した。系内温度が最高温度に達した時間は、実施例1の310分に対し、240分となり、重合速度の向上を達成した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上の通り、工程(I)において還流を伴う多段精密蒸留を行うことなく、工程(II)において粗N-ビニルホルムアミドを用いても、水溶液断熱重合、逆相懸濁重合ともに、重合条件の調整によって、精製N-ビニルホルムアミドを用いた場合とほぼ同じ分子量(還元粘度)の重合体が得られた。また、工程(II)において粗N-ビニルホルムアミドを用いても、工程(V)で得られるビニルアミン単位含有重合体へのホルムアミドの混入は極めて少ない。さらに、工程(I)において還流を伴う多段精密蒸留を行わなかった実施例1、2は、工程(I)において還流を伴う多段精密蒸留を行った比較例1、2に比べ、全体収率が大きく改善した。
 また、工程(IV)で行った重合生成物(b)の乾燥体を粉末状にする際に、ホルムアミド含量が多い実施例1は、ホルムアミド含量が少ない比較例1に比べ、粉砕が容易であり、粉砕から篩を通過するまでに要する時間が半分の15分であった。
 また、重合開始剤として硫酸第一鉄を用いた実施例3において、実施例1と比較し、系内温度が最高温度に到達する時間が短縮され、重合速度の向上を達成した。
 本発明の製造方法で得られるビニルアミン単位含有重合体は、凝集剤、製紙用薬剤、繊維処理剤等として有用である。

Claims (11)

  1.  N-ビニルホルムアミドおよびホルムアミドを含み、前記ホルムアミドの含有量が前記N-ビニルホルムアミド100質量部に対して1質量部以上である粗N-ビニルホルムアミドを用いて、単量体成分として前記N-ビニルホルムアミドを含む重合用混合物(a)を調製する工程と、
     前記重合用混合物(a)中にて前記単量体成分を重合させて、N-ビニルホルムアミド単位含有重合体およびホルムアミドを含む重合生成物(b)を得る工程と、
     酸または塩基を用いて前記重合生成物(b)の加水分解処理を行うことによって、ビニルアミン単位含有重合体を含む加水分解生成物(c)を得る工程と
     を有する、ビニルアミン単位含有重合体の製造方法。
  2.  前記加水分解生成物(c)中のホルムアミドの含有量が、ビニルアミン単位含有重合体100質量部に対して0.1質量部以下である、請求項1に記載のビニルアミン単位含有重合体の製造方法。
  3.  前記重合生成物(b)を50℃以上で加水分解処理する、請求項1に記載のビニルアミン単位含有重合体の製造方法。
  4.  前記重合生成物(b)を加水分解処理する際、前記N-ビニルホルムアミド単位含有重合体の加水分解処理前のホルムアミド基100モル%のうち10モル%以上を加水分解する、請求項1に記載のビニルアミン単位含有重合体の製造方法。
  5.  N-メトキシエチルホルムアミドおよびホルムアミドを含む粗N-メトキシエチルホルムアミドの熱分解処理を行ってN-ビニルホルムアミドおよびホルムアミドを含む熱分解生成物を得た後、還流を伴わない精製方法によって前記熱分解生成物を精製して、ホルムアミドの含有量がN-ビニルホルムアミド100質量部に対して1質量部以上である粗N-ビニルホルムアミドを得る工程をさらに有する、請求項1に記載のビニルアミン単位含有重合体の製造方法。
  6.  前記重合生成物(b)を加水分解処理する前に、前記重合生成物(b)を乾燥し、粉末状にする工程をさらに有する、請求項1に記載のビニルアミン単位含有重合体の製造方法。
  7.  前記粗N-ビニルホルムアミドに含まれるホルムアミドの物質量(モル)が、N-ビニルホルムアミド単位含有重合体中の加水分解されるホルムアミド基の物質量(モル)よりも少ない、請求項1に記載のビニルアミン単位含有重合体の製造方法。
  8.  前記粗N-ビニルホルムアミド中のホルムアミドの含有量が、N-ビニルホルムアミド100質量部に対して1~20質量部である、請求項1に記載のビニルアミン単位含有重合体の製造方法。
  9.  前記重合生成物(b)を得る工程における重合が断熱重合または光重合である、請求項1に記載のビニルアミン単位含有重合体の製造方法。
  10.  前記重合生成物(b)を得る工程における重合が断熱重合であり、重合開始剤として硫酸第一鉄を用いる、請求項1~9のいずれか一項に記載のビニルアミン単位含有重合体の製造方法。
  11.  N-ビニルホルムアミドを含む単量体成分を重合させて得られた、N-ビニルホルムアミド単位含有重合体およびホルムアミドを含む重合生成物であって、前記重合生成物中のホルムアミドの含有量が前記N-ビニルホルムアミド単位含有重合体100質量部に対して1~20質量部である、重合生成物。
PCT/JP2015/060747 2014-04-08 2015-04-06 ビニルアミン単位含有重合体の製造方法、および重合生成物 WO2015156251A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP15776209.7A EP3130614B1 (en) 2014-04-08 2015-04-06 Method for producing vinyl-amine-unit-containing polymer, and polymerization product
JP2015520448A JP5991432B2 (ja) 2014-04-08 2015-04-06 ビニルアミン単位含有重合体の製造方法
CA2943935A CA2943935C (en) 2014-04-08 2015-04-06 Method for producing vinylamine unit-containing polymer and polymerization product
US15/301,459 US10723820B2 (en) 2014-04-08 2015-04-06 Method for producing vinylamine unit-containing polymer and polymerization product
BR112016022741A BR112016022741A8 (pt) 2014-04-08 2015-04-06 Método de produção de polímero contendo unidade de vinilamina e produto de polimerização
KR1020167026108A KR20160127052A (ko) 2014-04-08 2015-04-06 비닐아민 단위 함유 중합체의 제조 방법 및 중합 생성물
MX2016013147A MX2016013147A (es) 2014-04-08 2015-04-06 Metodo para producir polimero que contiene unidades de vinilamina y producto de polimerizacion.
CN201580018509.1A CN106164105B (zh) 2014-04-08 2015-04-06 含有乙烯胺单元的聚合物的制备方法及其聚合产物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-079413 2014-04-08
JP2014079413 2014-04-08

Publications (1)

Publication Number Publication Date
WO2015156251A1 true WO2015156251A1 (ja) 2015-10-15

Family

ID=54287827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060747 WO2015156251A1 (ja) 2014-04-08 2015-04-06 ビニルアミン単位含有重合体の製造方法、および重合生成物

Country Status (9)

Country Link
US (1) US10723820B2 (ja)
EP (1) EP3130614B1 (ja)
JP (1) JP5991432B2 (ja)
KR (1) KR20160127052A (ja)
CN (1) CN106164105B (ja)
BR (1) BR112016022741A8 (ja)
CA (1) CA2943935C (ja)
MX (1) MX2016013147A (ja)
WO (1) WO2015156251A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124264A1 (ja) * 2016-12-28 2018-07-05 富士フイルム株式会社 窒素原子含有ポリマー又はその塩の乳化液、その製造方法、及び粒子の製造方法
US11147833B2 (en) 2017-10-16 2021-10-19 Fujifilm Corporation Therapeutic agent for hyperphosphatemia

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823809A (ja) * 1981-07-18 1983-02-12 バスフ・アクチエンゲゼルシヤフト 線状塩基性重合物、その製法及び使用
JPS6197309A (ja) * 1984-10-18 1986-05-15 Mitsubishi Chem Ind Ltd N−ビニルホルムアミド重合物の製造方法
JPH05125109A (ja) * 1990-03-08 1993-05-21 Basf Ag N−ビニルホルムアミドの加水分解された粉末状重合体の製法及び製紙用の脱水剤、保持剤及び凝結剤
JPH06287232A (ja) * 1993-03-31 1994-10-11 Mitsubishi Kasei Corp N−ビニルホルムアミド重合体の製造方法
JPH07258346A (ja) * 1986-02-05 1995-10-09 Basf Ag N−ビニルホルムアミドの単独重合体
JPH11315116A (ja) * 1998-03-09 1999-11-16 Natl Starch & Chem Investment Holding Corp N―ビニルホルムアミドモノマ―からポリマ―を製造する方法
JP2001031717A (ja) * 1999-07-16 2001-02-06 Dainippon Ink & Chem Inc ポリビニルアミンの製造法および製造装置
US6541573B1 (en) * 1998-08-14 2003-04-01 Basf Aktiengesellschaft Method for eliminating formamide from polymerizates containing n-vinyl formamide units
JP2008544054A (ja) * 2005-06-21 2008-12-04 ビーエーエスエフ ソシエタス・ヨーロピア ポリマー中の残存ホルムアミドの酵素的分解

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3443463A1 (de) 1984-11-29 1986-05-28 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von n-vinylformamid
JPH0676458B2 (ja) * 1987-12-29 1994-09-28 三菱化成株式会社 ポリn−ビニルホルムアミドの製造方法
US5391710A (en) * 1993-03-25 1995-02-21 Air Products And Chemicals, Inc. Production of amine functional polymers having improved purity
JP3968814B2 (ja) 1996-04-01 2007-08-29 ダイヤニトリックス株式会社 N−ビニルホルムアミドの精製方法
ES2330694T3 (es) * 1998-04-29 2009-12-14 Roger E. Marchant Tensioactivos que se mimetizan como glicocalix.
US6759388B1 (en) * 1999-04-29 2004-07-06 Nanomimetics, Inc. Surfactants that mimic the glycocalyx
FR2791688B1 (fr) 1999-03-29 2005-03-18 Snf Sa Nouveaux procedes de synthese d'agents floculants et coagulants de type polyvinylamine pva, nouveaux agents obtenus, et leurs utilisations et papiers ameliores ainsi obtenus.
JP3704660B2 (ja) * 2001-11-14 2005-10-12 ダイヤニトリックス株式会社 ポリビニルアミンの製造方法
JP5584962B2 (ja) * 2008-09-01 2014-09-10 三菱レイヨン株式会社 N−ビニルカルボン酸アミド系重合体の製造方法
JP5879041B2 (ja) * 2011-03-29 2016-03-08 ハリマ化成株式会社 カチオン性表面サイズ剤の製造方法およびその方法で得られるサイズ剤

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823809A (ja) * 1981-07-18 1983-02-12 バスフ・アクチエンゲゼルシヤフト 線状塩基性重合物、その製法及び使用
JPS6197309A (ja) * 1984-10-18 1986-05-15 Mitsubishi Chem Ind Ltd N−ビニルホルムアミド重合物の製造方法
JPH07258346A (ja) * 1986-02-05 1995-10-09 Basf Ag N−ビニルホルムアミドの単独重合体
JPH05125109A (ja) * 1990-03-08 1993-05-21 Basf Ag N−ビニルホルムアミドの加水分解された粉末状重合体の製法及び製紙用の脱水剤、保持剤及び凝結剤
JPH06287232A (ja) * 1993-03-31 1994-10-11 Mitsubishi Kasei Corp N−ビニルホルムアミド重合体の製造方法
JPH11315116A (ja) * 1998-03-09 1999-11-16 Natl Starch & Chem Investment Holding Corp N―ビニルホルムアミドモノマ―からポリマ―を製造する方法
US6541573B1 (en) * 1998-08-14 2003-04-01 Basf Aktiengesellschaft Method for eliminating formamide from polymerizates containing n-vinyl formamide units
JP2001031717A (ja) * 1999-07-16 2001-02-06 Dainippon Ink & Chem Inc ポリビニルアミンの製造法および製造装置
JP2008544054A (ja) * 2005-06-21 2008-12-04 ビーエーエスエフ ソシエタス・ヨーロピア ポリマー中の残存ホルムアミドの酵素的分解

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3130614A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124264A1 (ja) * 2016-12-28 2018-07-05 富士フイルム株式会社 窒素原子含有ポリマー又はその塩の乳化液、その製造方法、及び粒子の製造方法
JPWO2018124264A1 (ja) * 2016-12-28 2019-10-31 富士フイルム株式会社 窒素原子含有ポリマー又はその塩の乳化液、その製造方法、及び粒子の製造方法
US11186685B2 (en) 2016-12-28 2021-11-30 Fujifilm Corporation Emulsion of nitrogen atom-containing polymer or salt thereof, production method therefor, and production method for particles
US11147833B2 (en) 2017-10-16 2021-10-19 Fujifilm Corporation Therapeutic agent for hyperphosphatemia

Also Published As

Publication number Publication date
EP3130614A4 (en) 2017-05-17
CN106164105A (zh) 2016-11-23
EP3130614B1 (en) 2022-01-05
MX2016013147A (es) 2017-02-14
CA2943935C (en) 2019-04-30
US10723820B2 (en) 2020-07-28
BR112016022741A2 (ja) 2017-08-15
JPWO2015156251A1 (ja) 2017-04-13
JP5991432B2 (ja) 2016-09-14
EP3130614A1 (en) 2017-02-15
CN106164105B (zh) 2019-07-30
BR112016022741A8 (pt) 2018-01-02
KR20160127052A (ko) 2016-11-02
US20170183425A1 (en) 2017-06-29
CA2943935A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
JP2017524797A (ja) フローリアクタ中でのアクリルポリマーの合成
JP2020172628A (ja) 酢酸ビニルおよび環状ケテンアセタールモノマーの共重合体粒子の水性分散液の調製
JP5991432B2 (ja) ビニルアミン単位含有重合体の製造方法
JPH1081654A (ja) N−ビニルホルムアミドの留出物
JP5584962B2 (ja) N−ビニルカルボン酸アミド系重合体の製造方法
WO2010147011A1 (ja) ポリクロロプレン及びその製造方法並びに接着剤
JP7535864B2 (ja) ビニルアセテートと環状ケテンアセタールモノマーとのコポリマー粒子の水性分散液
JP5577407B2 (ja) N−ビニルラクタム系重合体及びその製造方法
JP5946255B2 (ja) N−ビニルラクタム系重合体及びその製造方法
JP6273855B2 (ja) 有機過酸化物組成物及びこれを用いたビニルモノマーの重合方法
WO2017022459A1 (ja) ビニルアミン単位含有重合体水溶液の使用方法
JPH11292908A (ja) N−ビニルカルボン酸アミドの重合方法、重合体及び重合体の製造方法
EP3608344A1 (en) Water-soluble or water dispersible copolymers having oxazoline and sulfonic acid functional groups
WO2019009057A1 (ja) 高純度アリルアミン(共)重合体及びその製造方法
JP5846731B2 (ja) ポリビニルアミン又はポリアミジンの製造方法
JP6506072B2 (ja) N−ビニルラクタム系重合体およびn−ビニルラクタム系重合体の製造方法
JP2006143899A (ja) クロロプレン系重合体及びその製造法
WO2015068806A1 (ja) ビニルアミン(共)重合体の製造方法
WO2020196833A1 (ja) 水溶性重合体の製造方法
JPS5920311A (ja) アクリルアミド系カチオン性高分子量重合体の製造方法
Sarac et al. Emulsion Polymerization of Vinyl Acetate in the Presence of a New Cationic Surfactant
JP2012122010A (ja) 水溶性ポリマーの製造方法
JPS5918406B2 (ja) 水溶性ポリマ−の製造法
JP2009263293A (ja) アクリル酸の精製方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015520448

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776209

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015776209

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015776209

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020167026108

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2943935

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15301459

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/013147

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016022741

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016022741

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160930