WO2015156097A1 - 衝突防止装置 - Google Patents

衝突防止装置 Download PDF

Info

Publication number
WO2015156097A1
WO2015156097A1 PCT/JP2015/058283 JP2015058283W WO2015156097A1 WO 2015156097 A1 WO2015156097 A1 WO 2015156097A1 JP 2015058283 W JP2015058283 W JP 2015058283W WO 2015156097 A1 WO2015156097 A1 WO 2015156097A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
vehicle
motion
collision
unit
Prior art date
Application number
PCT/JP2015/058283
Other languages
English (en)
French (fr)
Inventor
小幡 康
洋志 亀田
響介 小西
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580015922.2A priority Critical patent/CN106164999B/zh
Priority to JP2016512646A priority patent/JP6207723B2/ja
Priority to US15/126,731 priority patent/US10011276B2/en
Priority to DE112015001754.2T priority patent/DE112015001754B4/de
Publication of WO2015156097A1 publication Critical patent/WO2015156097A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/277Analysis of motion involving stochastic approaches, e.g. using Kalman filters
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4045Intention, e.g. lane change or imminent movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/805Azimuth angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/30Longitudinal distance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads

Definitions

  • the present invention relates to a collision prevention apparatus that predicts a target motion existing around a mobile body on which the device is mounted and avoids a collision with the mobile body.
  • a typical example is automobile collision prevention technology.
  • the other vehicle (target) is observed with a radar and an optical sensor mounted on the own vehicle (moving body), and if the distance and approach speed to the own vehicle reach the threshold value, there is a possibility of a collision. Judgment and control of the warning or the running of the vehicle itself.
  • extrapolation of the motion estimation results of the current time of the host vehicle and the other vehicle is performed to calculate a prediction range of the host vehicle and the other vehicle at a certain time in the future.
  • the possibility of collision is determined by the presence or absence. For example, in FIG. 15, prediction ranges for four sampling times are calculated for the host vehicle 50 and the other vehicle 60. In this example, since the prediction range of the own vehicle 50 and the prediction range of the other vehicle 60 do not overlap at any sampling time, it is determined that “there is no possibility of collision”.
  • Patent Document 1 predicts the position of the other vehicle 60 in the future by extrapolating the current movement of the other vehicle 60. Therefore, as shown in FIG. 16, when the other vehicle 60 suddenly interrupts the front of the own vehicle 50, the motion prediction of the other vehicle 60 (broken line shown in FIG. 16) and the actual motion (solid line shown in FIG. 16). Discrepancies with. As a result, there is a problem that it is difficult to predict a collision.
  • the cause of the interruption may be that the vehicle ahead of a certain vehicle is slow and there is a possibility of a collision if the lane is maintained.
  • An example is shown in FIG.
  • the host vehicle 50 travels in the right lane
  • the other vehicles 60a and 60b travel in the left lane
  • the speed of the other vehicle 60a in front is extremely small compared to the speed of the other vehicle 60b.
  • the other vehicle 60b may interrupt the lane in which the host vehicle 50 travels in order to avoid a collision with the other vehicle 60a. Therefore, it is considered that the interruption can be predicted by detecting the motions of a plurality of vehicles (other vehicles 60a and 60b in the example of FIG. 17).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a collision prevention device that can detect motions of a plurality of targets and improve motion prediction accuracy.
  • a collision prevention apparatus includes a target observation sensor for observing a target existing around a mobile body on which the aircraft is mounted, a target tracking unit that tracks a target based on an observation result by the target observation sensor, Based on the tracking result by the target tracking unit, the target motion prediction unit that calculates the target motion prediction range, and when there are multiple targets, the overlap of the target motion prediction range calculated by the target motion prediction unit If the target-to-target collision probability estimation unit estimates the possibility of collision between targets and the target-to-target collision possibility estimation unit estimates that there is a target-to-target collision possibility, A target motion re-prediction unit that re-calculates the motion prediction range, a self-motion sensor that observes the motion of the mobile body, and a self-motion that calculates the motion prediction range of the mobile body based on the observation results of the self-motion sensor A movement prediction range of the target with no possibility of collision between the targets calculated by the measurement unit, the target motion prediction unit or the target motion re-prediction unit, and a movement prediction range
  • the present invention since it is configured as described above, it is possible to detect motions of a plurality of targets and improve motion prediction accuracy.
  • FIG. 1 is a diagram showing a configuration of a collision preventing apparatus according to Embodiment 1 of the present invention.
  • the anti-collision device is mounted on the own vehicle (moving body) 50 and predicts the movement of the own vehicle 50 and other vehicles (targets) 60 around it to avoid collision between the own vehicle 50 and the other vehicles 60. To do. As shown in FIG.
  • the collision prevention apparatus includes a target observation sensor 1, a target observation value data storage unit 2, a target tracking unit 3, a target tracking data storage unit 4, a target motion prediction unit 5, and an inter-target collision possibility estimation.
  • Unit 6 target motion re-prediction unit 7, own-device motion sensor 8, own-device motion data storage unit 9, own-device motion prediction unit 10, own-device collision possibility estimation unit 11, braking determination unit 12, automatic brake unit 13,
  • the warning generation unit 14 is configured.
  • the target observation sensor 1 is for observing the other vehicle 60 existing around the own vehicle 50 on which the collision prevention device is mounted.
  • the target observation sensor 1 periodically observes the other vehicle 60 existing in the vicinity, and calculates the position of the other vehicle 60 from the observation result.
  • Information indicating the observation result by the target observation sensor 1 is output to the target observation value data storage unit 2.
  • the target observation value data storage unit 2 stores target observation value data from the target observation sensor 1.
  • the target observation value data storage unit 2 is configured by an HDD, a DVD, a memory, and the like.
  • the target tracking unit 3 tracks the other vehicle 60 based on the target observation value data stored in the target observation value data storage unit 2.
  • the position of the other vehicle 60 obtained by the target observation sensor 1 is time-sequentially processed, so that more accurate motion specifications including the position and speed of the other vehicle 60 are estimated.
  • Information (target tracking data) indicating the tracking result by the target tracking unit 3 is output to the target tracking data storage unit 4.
  • the target tracking data storage unit 4 stores target tracking data from the target tracking unit 3.
  • the target tracking data storage unit 4 includes an HDD, a DVD, a memory, and the like.
  • the target motion prediction unit 5 calculates the movement prediction range of the other vehicle 60 based on the target tracking data stored in the target tracking data storage unit 4. Information indicating the predicted movement range of the other vehicle 60 calculated by the target motion prediction unit 5 is output to the target collision possibility estimation unit 6.
  • the target-to-target collision possibility estimation unit 6 estimates the possibility of collision between the other vehicles 60 from the overlap of the movement prediction ranges of the other vehicles 60 calculated by the target motion prediction unit 5. To do. Information indicating the possibility of collision between other vehicles 60 by the inter-target collision possibility estimation unit 6 is output to the target motion re-prediction unit 7.
  • the target motion re-prediction unit 7 is based on the target tracking data stored in the target tracking data storage unit 4 when the possibility of collision between the other vehicles 60 is estimated by the target collision possibility estimation unit 6.
  • the movement prediction range of the other vehicle 60 that avoids the collision is recalculated.
  • Information indicating the predicted movement range of the other vehicle 60 recalculated by the target motion re-prediction unit 7 is output to the own vehicle collision possibility estimation unit 11.
  • the other vehicle calculated by the target motion prediction unit 5 is used.
  • Information indicating the 60 predicted movement ranges is output to the own-collision possibility estimation unit 11 as it is.
  • the self-motion sensor 8 is for observing the motion of the own vehicle 50.
  • the own machine motion sensor 8 is composed of, for example, an own car mileage meter, and observes motion specifications including the position and speed of the own car 50.
  • Information indicating the observation result by the self-motion sensor 8 (self-motion data) is output to the self-motion data storage unit 9.
  • the self-motion data storage unit 9 stores the self-motion data from the self-motion sensor 8.
  • the self-motion data storage unit 9 includes an HDD, a DVD, a memory, and the like.
  • the own-vehicle motion prediction unit 10 calculates the movement prediction range of the own vehicle 50 based on the own-device motion data stored in the own-device motion data storage unit 9. Information indicating the predicted movement range of the host vehicle 50 calculated by the host aircraft motion prediction unit 10 is output to the host aircraft collision possibility estimation unit 11.
  • the own vehicle collision possibility estimation unit 11 includes the movement prediction range of the other vehicle 60 with no possibility of collision between the other vehicles 60 calculated by the target motion prediction unit 5 or the target motion re-prediction unit 7, and the own device motion prediction unit. 10 is used to estimate the possibility of collision between the own vehicle 50 and the other vehicle 60 from the overlap with the predicted movement range of the own vehicle 50 calculated according to 10. Information indicating the possibility of collision between the host vehicle 50 and the other vehicle 60 estimated by the host vehicle collision possibility estimation unit 11 is output to the brake determination unit 12.
  • the braking determination unit 12 determines whether or not the host vehicle 50 needs to be braked based on the estimation result by the own vehicle collision possibility estimation unit 11. Information indicating the determination result by the brake determination unit 12 is output to the automatic brake unit 13 and the warning generation unit 14.
  • the automatic brake unit 13 operates a deceleration function of the own vehicle 50 by the automatic braking when the braking determination unit 12 determines that the own vehicle 50 needs to be braked.
  • the warning generation unit 14 presents a message indicating that a braking operation is currently necessary to the driver of the host vehicle 50 or a voice message. Output.
  • the automatic brake unit 13 and the warning generation unit 14 are executed by a program process using a CPU based on software.
  • the target observation sensor 1 periodically performs observation of the other vehicle 60 existing around the host vehicle 50, and based on the observation result, the target vehicle 60.
  • the position is calculated (step ST201, target observation step).
  • Information (target observation value data) indicating the observation result by the target observation sensor 1 is output to and stored in the target observation value data storage unit 2.
  • the target tracking unit 3 performs time-series processing (tracking processing) on the position of the other vehicle 60 based on the target observation value data stored in the target observation value data storage unit 2, so that the more accurate other vehicle 60 can be obtained.
  • Is estimated step ST202, target tracking step. That is, dynamic information is obtained by adding speed information to the static position of the other vehicle 60 obtained by the target observation sensor 1, and a more accurate position of the other vehicle 60 can be obtained.
  • the target tracking unit 3 reads information indicating the observation result (observation value) at the latest observation time from the target observation sensor 1.
  • the gate of the existing wake is calculated.
  • the wake is assumed to be a vector having four elements of the following expression (1) composed of the position and speed of the other vehicle 60 in the two-dimensional space of xy.
  • FIG. 3 shows five movement models ((a) constant speed model (main lane keeping), (b) acceleration model (own lane keeping), (c) deceleration model (own lane keeping), (D) shows a case where a right lane movement model (route change model) and (e) a left lane movement model (route change model) are assumed.
  • Exercise shall be performed.
  • a motion model a “model that moves to the right lane or the left lane while decelerating or accelerating” may be added.
  • the transition matrix ⁇ k ⁇ 1 of the above equation (2) is set as a matrix corresponding to each motion model.
  • the transition matrix ⁇ k ⁇ 1 is expressed by the following equation (3).
  • T is a sampling interval (elapsed time from the previous observation time by the target observation sensor 1 to the current time).
  • X k ⁇ 1 hat (+) is a smooth vector one observation time before.
  • the prediction error covariance matrix P k ( ⁇ ) is calculated by the following equation (4).
  • P k ⁇ 1 (+) is a smoothing error covariance matrix one observation time before.
  • Q k ⁇ 1 is a drive noise covariance matrix and is expressed by the following equation (5).
  • q is a parameter of power spectral density set in advance, and I 2 ⁇ 2 is a unit matrix of 2 rows and 2 columns.
  • the residual covariance matrix S k is calculated according to the following equation (6).
  • H k is an observation matrix
  • R k is an observation error covariance matrix of the target observation sensor 1
  • ⁇ 2 (k) is an observation noise conversion matrix.
  • 0 2 ⁇ 2 is a matrix in which all elements in 2 rows and 2 columns are 0.
  • ⁇ R is the distance observation error standard deviation of the target observation sensor 1
  • ⁇ By is the azimuth angle observation error standard deviation.
  • This observation value z k is a vector obtained by converting the observation information represented by the distance and the azimuth into a position on the orthogonal coordinates.
  • the gate inside / outside determination is determined by the success or failure of the following inequality (10).
  • z k ( ⁇ ) is a predicted observation value and can be calculated by the following equation (11).
  • D is a boundary value parameter determined by the significance level in the ⁇ square test.
  • the reliability of the motion model at the previous sampling time is ⁇ k ⁇ 1, b (+) (b ⁇ ⁇ (a), (b), (c), (d), (e) ⁇ ), the current sampling time
  • the prediction model reliability ⁇ k, a ( ⁇ ) (a ⁇ ⁇ (a), (b), (c), (d), (e) ⁇ ) in is calculated by the following equation (12).
  • p k, ab is a transition probability parameter indicating the probability that the motion model transitions from (b) to (a).
  • This transition probability parameter can be expressed as a matrix that defines transitions by all combinations of (b) and (a).
  • the transition probability parameter p k, ab is normally set as shown in the following equation (15), for example.
  • the diagonal component is 0.6 and the non-diagonal component is 0.1.
  • the probability of maintaining the current motion model is 0.6, and the probability of transitioning between different motion models is 0.1 for any combination of transitions.
  • the future movement of the other vehicle 60 is 80% constant speed, 10% acceleration, 10% right lane movement, and other 0%”.
  • the result is obtained and the constant velocity model is selected to set the movement prediction range.
  • the motion model filter performs weighted mixing according to the degree of accuracy required for tracking.
  • the smooth specifications at the observation time of these wakes are calculated, and the wake likelihood corresponding to the correlation result is further calculated for the updated wakes.
  • the smooth vector is calculated by the following equation (14).
  • K k is a filter gain and can be calculated by the following equation (15).
  • the smooth error covariance matrix is calculated by the following equation (16).
  • the likelihood (likelihood) of the wake is calculated from the following equation (17) on the assumption that the probability distribution of the observed values is a Gaussian distribution centered on the predicted position (two-dimensional position).
  • ⁇ k, a is the likelihood for the motion model (a) calculated based on the observed value, and is represented by the following equation (19).
  • the estimated value of the selected motion model of the position and speed of the other vehicle 60 and the estimated error covariance matrix are estimated for each tracking track.
  • These pieces of information are output and stored in the target tracking data storage unit 4 and are used by the target motion prediction unit 5 to determine whether steering is possible.
  • the target motion prediction unit 5 calculates the movement prediction range of the other vehicle 60 based on the target tracking data stored in the target tracking data storage unit 4 (step ST203, target motion prediction step).
  • the target motion prediction unit 5 calculates a future motion prediction range from the estimated values of the position and speed of the other vehicle 60 and the estimated error covariance matrix.
  • the predicted time is a plurality of discrete times set according to a certain sampling interval from the current time to the completion of the right turn. These sampling times are completely matched with the sampling times set in the self-motion estimation step described later.
  • Information indicating the predicted movement range of the other vehicle 60 calculated by the target motion prediction unit 5 is output to the target collision possibility estimation unit 6.
  • the target-to-target collision possibility estimation unit 6 determines the possibility of collision between the other vehicles 60 from the overlap of the movement prediction ranges of the other vehicles 60 calculated by the target motion prediction unit 5.
  • Step ST204 target collision possibility estimation step.
  • the possibility of collision is estimated for all combinations of other vehicles 60 around which the host vehicle 50 observes. For example, when the surrounding environment of the host vehicle 50 is the situation shown in FIG. 4 (when there are three other vehicles 60a to 60c), the combination of the other vehicle 60a and the other vehicle 60b, the combination of the other vehicle 60b and the other vehicle 60c.
  • the possibility of collision is estimated for a total of three combinations of the other vehicle 60a and the other vehicle 60c.
  • the collision possibility is estimated based on the success or failure of the following equation (20). And when this Formula (20) is materialized, it is estimated that there exists a possibility of a collision in the combination.
  • threshold c on the right side is a threshold parameter set in advance.
  • the left side is the probability that two other vehicles 60 in the combination will be in the same position, and as shown in the following equation (21), it covers the entire position space of the simultaneous existence probability density at a specific position of the own vehicle 50 and the other vehicle 60. It is an integral.
  • x p, 1, k ( ⁇ ) and P p, 1, k ( ⁇ ) are the prediction center of one other vehicle 60 and its covariance matrix
  • x p, 2, k ( ⁇ ) and P p, 2, k ( ⁇ ) are the prediction center of the other vehicle 60 and its covariance matrix.
  • the target motion re-prediction unit 7 when the inter-target collision possibility estimation unit 6 estimates that there is a collision possibility between the other vehicles 60, the movement prediction range of the other vehicle 60 that avoids the collision. Is recalculated (step ST205, target motion re-prediction step).
  • the behavior for avoiding a collision is assumed to be taken by a rear vehicle (another vehicle 60b in the example of FIG. 4) that is easier to grasp the opponent including the driver's visual observation, and the movement prediction range is corrected. .
  • re-prediction is performed by selecting a motion model that does not cause a collision. This re-prediction is realized by adjusting the transition probability between the motion models according to the possibility of collision with the other vehicle 60 and eliminating the motion model in which a collision occurs.
  • the motion model selection policy for the other vehicle 60 b is as follows, reflecting the action for avoiding the collision with respect to the example of FIG. 4. That is, (a) the constant velocity model (main lane keeping) collides with the other vehicle 60a, so it is not selected. Further, (b) the acceleration model (main lane keeping) collides with the other vehicle 60a, so it is not selected. In addition, (c) deceleration model (main lane keeping) is selected as a candidate. (D) The right lane movement model is selected as a candidate. (E) The left lane movement model is not selected because there is no road. As a result, the motion model selectable for the other vehicle 60b is either the deceleration model or the right lane movement model as shown in FIG.
  • transition probability parameter pk, ab is changed from normal to the following equation (22). This is a matrix for allocating so that the first term on the right side transitions to either (c) a deceleration model or (d) a right lane movement model.
  • the distance from the nearest vehicle in front of the other vehicle 60b (left lane: other vehicle 60a, right lane: other vehicle 60c) is set as a guideline.
  • it is determined by the ratio between the relative distance and the relative speed as shown in the following formula (23).
  • the speed of V 1 was another vehicle 60a
  • V 2 is the distance between the speed of the other vehicle 60b
  • V 3 is the velocity of the other vehicle 60c
  • R 23 is other This is the distance between the vehicle 60c and the other vehicle 60b (see FIG. 6).
  • the allocation parameter is calculated based on the relative distance and relative speed between the vehicle in each lane and the preceding vehicle, but there is also a method of calculating based on the relative distance and relative speed between the vehicle in front of the vehicle and the rear vehicle in each lane. It is possible. Further, instead of the ratio of the relative distance and the relative speed, the ratio of the relative distance may be simply used as the distribution parameter.
  • the present invention is not limited to this, and for example, the movement may be weighted so that the other vehicle 60 stays in the own lane and prioritizes the straight movement.
  • the distribution parameter is calculated from the following equation (24), with the probability measure that the other vehicle 60 stays in the own lane being set to a predetermined parameter value ⁇ or more.
  • FIG. 7 shows an example of the recalculation result of the movement prediction range of the other vehicle 60 by the above processing.
  • Information indicating the predicted movement range of the other vehicle 60 recalculated by the target motion re-prediction unit 7 is output to the own vehicle collision possibility estimation unit 11.
  • the other vehicle calculated by the target motion prediction unit 5 is used.
  • Information indicating the 60 predicted movement ranges is output to the own-collision possibility estimation unit 11 as it is.
  • the own device motion sensor 8 observes the motion specifications including the position and speed of the own vehicle 50 (step ST206, own device motion observation step).
  • Information (self-motion data) indicating the observation result by the self-motion sensor 8 is output to and stored in the self-motion data storage unit 9.
  • the own-motion prediction unit 10 predicts the future position and speed of the own vehicle 50 based on the own-motion data stored in the own-motion data storage unit 9, and based on the prediction error covariance matrix.
  • the movement prediction range of the own vehicle 50 is calculated (step ST207, own machine motion prediction step).
  • the predicted time is a plurality of discrete times set according to a certain sampling interval from the current time. In the following, the sampling time number of the predicted future time is assumed to be k.
  • the movement of the own vehicle 50 at each sampling time is a vector having four elements of the following expression (25) composed of the position and speed of the own vehicle 50 in a two-dimensional space on the xy plane.
  • the estimated motion value of the vehicle 50 at the current time is self-motion information obtained from a sensor such as the vehicle sensor or GPS.
  • the predicted future position of the host vehicle 50 is calculated by the following equation (26).
  • ⁇ uf, k is expressed by the following equation (27) on the assumption that the vehicle 50 has a constant velocity motion.
  • T p is the sampling interval in the future prediction process
  • an error covariance matrix P uf, k ( ⁇ ) for future prediction is calculated by the following equation (28).
  • P uf, k (+) is an estimation error covariance matrix of the motion specifications of the host vehicle 50 at the current time, and is calculated by extrapolating the latest smoothing error covariance matrix.
  • Q uf, k is a drive noise covariance matrix and is expressed by the following equation (29).
  • FIG. 7 shows an example of the calculation result of the movement prediction range of the host vehicle 50 by the above processing.
  • Information indicating the predicted movement range of the host vehicle 50 calculated by the host aircraft motion prediction unit 10 is output to the host aircraft collision possibility estimation unit 11.
  • the own vehicle collision possibility estimation unit 11 calculates the movement prediction range of the other vehicle 60 with no possibility of collision between the other vehicles 60 calculated by the target motion prediction unit 5 or the target motion re-prediction unit 7, and the own device motion.
  • the possibility of collision between the own vehicle 50 and the other vehicle 60 is estimated from the overlap with the predicted movement range of the own vehicle 50 calculated by the prediction unit 10 (step ST208, own vehicle collision possibility estimation step).
  • the collision possibility is estimated based on the success or failure of the following expression (30). If the following expression (30) is established, it is estimated that the own vehicle 50 and the other vehicle 60 may collide.
  • threshold M on the right side is a threshold parameter set in advance.
  • the left side is the probability that the own vehicle 50 and the other vehicle 60 will be at the same position, and the integration over the entire position space of the simultaneous existence probability density at a specific position of the own vehicle 50 and the other vehicle 60 as shown in the following equation (31). It is. This can be approximated by numerical calculation.
  • Information indicating the possibility of collision between the host vehicle 50 and the other vehicle 60 estimated by the host vehicle collision possibility estimation unit 11 is output to the brake determination unit 12.
  • the brake determination unit 12 determines whether or not the host vehicle 50 needs to be braked based on the estimation result by the own vehicle collision possibility estimation unit 11 (step ST209, braking determination step).
  • the own vehicle collision possibility estimating unit 11 estimates that there is a possibility of collision between the own vehicle 50 and the other vehicle 60 and the brake determining unit 12 determines that the own vehicle 50 needs to be braked
  • the automatic brake unit 13 a deceleration function of the own vehicle 50 by automatic braking is operated, and a message to the effect that a brake operation is currently necessary is given to the driver of the own vehicle 50 or a voice is output through the warning generation unit 14.
  • the other vehicles 60 existing around the host vehicle 50 are observed, the collision possibility between the other vehicles 60 is estimated, and when there is a collision possibility, Since the motion of the other vehicle 60 that avoids the collision is re-predicted, the motion prediction accuracy can be improved by detecting the motion of the plurality of other vehicles 60. As a result, it is possible to obtain a collision prevention device for detecting earlier the possibility that the other vehicle 60 may interrupt the lane of the host vehicle 50 due to the relative movement of the plurality of other vehicles 60 and to take measures early. .
  • FIG. 8 is a diagram showing a configuration of a collision preventing apparatus according to Embodiment 2 of the present invention.
  • the collision prevention apparatus according to the second embodiment shown in FIG. 8 includes a target motion prediction unit 5, an inter-target collision possibility estimation unit 6, and a target motion re-prediction unit from the collision prevention apparatus according to the first embodiment shown in FIG. 7 and the target motion prediction unit 15 is added.
  • Other configurations are the same, and only the different parts are described with the same reference numerals.
  • the target tracking unit 3 In the target tracking unit 3 according to the first embodiment, the other vehicle 60 is tracked assuming a plurality of motion models for the other vehicle 60. On the other hand, the target tracking unit 3 according to the second embodiment assumes a constant velocity model (main lane maintenance) as a motion model.
  • the target motion prediction unit 15 sets a motion model from the position and speed of the other vehicles 60 based on the target tracking data stored in the target tracking data storage unit 4, and the movement prediction range and the movement of the other vehicle 60.
  • the reliability of the prediction range is calculated.
  • the reliability is an index indicating a possibility that the other vehicle 60 may move to the movement prediction range.
  • the target motion prediction unit 15 calculates relative reliability, which is an index indicating relative reliability in each movement prediction range, from the calculated reliability, and lists the movement prediction range and relative reliability. To do.
  • the target motion prediction unit 15 also deletes information indicating an unnecessary movement prediction range based on the target observation value data stored in the target observation value data storage unit 2.
  • the target motion prediction unit 15 includes a constant speed prediction unit 151, a deceleration prediction unit 152, a course change start time setting unit 153, a plurality of course change prediction units 154 (154-1 to 154-N), and a course change prediction storage unit 155. And a reliability comparison unit 156.
  • the constant speed prediction unit 151 assumes a constant speed model (main lane maintenance) as a motion model of the other vehicle 60, and based on the target tracking data stored in the target tracking data storage unit 4, the movement prediction range of the other vehicle 60. (Constant velocity movement prediction range) is calculated. Information indicating the movement prediction range of the other vehicle 60 calculated by the constant speed prediction unit 151 is output to the reliability comparison unit 156.
  • the deceleration prediction unit 152 assumes a deceleration model (main lane keeping) as the motion model of the other vehicle 60, and based on the target tracking data stored in the target tracking data storage unit 4, the movement prediction range (deceleration) (Movement prediction range) is calculated. Information indicating the predicted movement range of the other vehicle 60 calculated by the deceleration prediction unit 152 is output to the reliability comparison unit 156.
  • the course change start time setting unit 153 starts lane change in the lane movement model of the other vehicle 60 according to the position and speed between the other vehicles 60 based on the target tracking data stored in the target tracking data storage unit 4. One or more times (course change start times) are set. Information indicating the lane change start time set by the route change start time setting unit 153 is output to the corresponding route change prediction unit 154.
  • the course change prediction unit 154 assumes a lane movement model as the motion model of the other vehicle 60, and follows the corresponding predicted lane change start time set by the course change start time setting unit 153 (the movement prediction range (lane movement) of the other vehicle 60). (Prediction range) is calculated. Information indicating the predicted movement range of the other vehicle 60 calculated by the route change prediction unit 154 is output to the route change prediction storage unit 155.
  • the course change prediction storage unit 155 stores information indicating the movement prediction range of the other vehicle 60 calculated by each course change prediction unit 154.
  • the course change prediction storage unit 155 includes an HDD, a DVD, a memory, and the like.
  • the reliability comparison unit 156 Based on the target tracking data stored in the target tracking data storage unit 4, the reliability comparison unit 156 gives the reliability to each movement prediction range of the other vehicle 60 calculated by each prediction unit 151, 152, 154. The relative reliability is calculated and listed. The reliability comparison unit 156 also deletes information indicating an unnecessary movement prediction range in the course change prediction storage unit 155 based on the target observation value data stored in the target observation value data storage unit 2. A list indicating each movement prediction range of the other vehicle 60 and its relative reliability obtained by the reliability comparison unit 156 is output to the own vehicle collision possibility estimation unit 11b.
  • the own vehicle collision possibility estimation unit 11b includes the movement prediction range of the other vehicle 60 shown in the list obtained by the target motion prediction unit 15, and the movement prediction range of the own vehicle 50 calculated by the own device motion prediction unit 10.
  • the possibility of collision between the host vehicle 50 and the other vehicle 60 is estimated from the overlap with the above and the reliability (relative reliability) of the movement prediction range of the other vehicle 60 shown in the list.
  • Information indicating the possibility of collision between the host vehicle 50 and the other vehicle 60 estimated by the host vehicle collision possibility estimation unit 11 b is output to the braking determination unit 12.
  • the target observation sensor 1 periodically performs observation of the other vehicle 60 existing around the host vehicle 50 and observes the observation.
  • the position of the other vehicle 60 is calculated from the result (step ST901, target observation step).
  • Information (target observation value data) indicating the observation result by the target observation sensor 1 is output to and stored in the target observation value data storage unit 2.
  • the target tracking unit 3 performs time-series processing (tracking processing) on the position of the other vehicle 60 based on the target observation value data stored in the target observation value data storage unit 2, so that the more accurate other vehicle 60 can be obtained.
  • time-series processing tilt processing
  • the target tracking unit 3 performs time-series processing (tracking processing) on the position of the other vehicle 60 based on the target observation value data stored in the target observation value data storage unit 2, so that the more accurate other vehicle 60 can be obtained.
  • target tracking step target tracking step
  • the target tracking unit 3 first reads information indicating the observation result (observed value) at the latest observation time from the target observation sensor 1. Next, the gate of the existing wake is calculated. Next, it is checked whether or not the read observation value is in the gate, and it is determined which wake can be correlated with the observation value.
  • the wake is assumed to be a vector having four elements of the above equation (1) composed of the position and speed of the other vehicle 60 in the two-dimensional space of xy.
  • the predicted vector X k ( ⁇ ) hat of the other vehicle 60 at the latest observation time k is calculated by the above equation (2). Further, the transition matrix ⁇ k ⁇ 1 in the above equation (2) is expressed by the above equation (3) because the constant velocity model is assumed as the motion model of the other vehicle 60 in the second embodiment.
  • the prediction error covariance matrix P k ( ⁇ ) is calculated by the above equation (4), and the driving noise covariance matrix Q k ⁇ 1 is represented by the above equation (5). Then, the residual covariance matrix S k is calculated according to the above equation (6).
  • the observation matrix H k in equation (6), the observation noise conversion matrix ⁇ 2 (k), and the observation error of the target observation sensor 1 are both The dispersion matrix R k is expressed by the above equations (7) to (9), respectively.
  • This observation value z k is a vector obtained by converting the observation information represented by the distance and the azimuth into a position on the orthogonal coordinates.
  • the gate inside / outside determination is determined by the success or failure of the inequality (10). Note that the predicted observation value z k ( ⁇ ) in the inequality (10) can be calculated by the above equation (11).
  • the estimated value of the position and speed of the other vehicle 60 and the above estimation error covariance matrix are estimated for each tracking track.
  • These pieces of information are output and stored in the target tracking data storage unit 4 and are used by the target motion prediction unit 15.
  • the constant speed prediction unit 151 assumes a constant speed model (main lane keeping) as a motion model of the other vehicle 60, and moves the other vehicle 60 based on the target tracking data stored in the target tracking data storage unit 4.
  • a prediction range (constant speed movement prediction range) is calculated (step ST903, constant speed prediction step). That is, the constant speed prediction unit 151 estimates the position at each sampling time from the current time to the maximum predicted time S seconds after assuming that the other vehicle 60 maintains the estimated speed at the current time.
  • the constant velocity prediction unit 151 first calculates a prediction vector x (ConstVel) k, m ( ⁇ ) of the constant velocity movement prediction range of the other vehicle 60 after m seconds from the current time k from the following equation (32).
  • ⁇ (ConstVel) k, m ⁇ 1 is expressed by the following equation (33).
  • T p is a sampling interval in the future from the current time.
  • the initial value of the prediction vector in the constant speed movement prediction range is expressed by the following equation (34).
  • the prediction error covariance matrix of the constant velocity movement prediction range is calculated by the following equation (35).
  • Q k, m ⁇ 1 is a drive noise covariance matrix and is expressed by the following equation (36).
  • q is a parameter of power spectral density set in advance
  • I 2 ⁇ 2 is a unit matrix of 2 rows and 2 columns.
  • the initial value of the prediction error covariance matrix in the constant velocity movement prediction range is expressed by the following equation (37).
  • the movement prediction range and the prediction error covariance matrix up to S seconds after the other vehicle 60 moves straight ahead at a constant speed are calculated for each tracking track. These pieces of information are output to the reliability comparison unit 156 and used to calculate the possibility that the other vehicle 60 will move straight ahead at a constant speed.
  • the deceleration prediction unit 152 assumes a deceleration model (main lane maintenance) as a motion model of the other vehicle 60, and based on the target tracking data stored in the target tracking data storage unit 4, the movement prediction range of the other vehicle 60. (Deceleration movement prediction range) is calculated (step ST904, deceleration prediction step). That is, the deceleration prediction unit 152 estimates the position at each sampling time from the current time to the maximum predicted time S seconds after assuming that the other vehicle 60 decelerates from the current time. Details of the processing of the deceleration prediction unit 152 will be described below.
  • the deceleration prediction unit 152 calculates a prediction vector x (Brake) k, m ( ⁇ ) of the predicted deceleration movement range of the other vehicle 60 m seconds after the current time k from the following equation (38).
  • ⁇ (Brake) k, m ⁇ 1 and a (Brake) k, m ⁇ 1 are expressed by the following equations (39) and (40).
  • T p is a sampling interval in the future from the current time
  • is a negative scalar representing the acceleration of deceleration set in advance.
  • the initial value of the prediction vector of the deceleration movement prediction range is expressed by the following equation (41).
  • the prediction error covariance matrix of the deceleration movement prediction range is calculated by the following equation (42).
  • Q k, m ⁇ 1 is a drive noise covariance matrix, and is expressed by the following equation (43).
  • q is a parameter of power spectral density set in advance
  • I 2 ⁇ 2 is a unit matrix of 2 rows and 2 columns.
  • the initial value of the prediction error covariance matrix of the deceleration movement prediction range is expressed by the following equation (44).
  • the movement prediction range up to S seconds after the other vehicle 60 decelerates and the prediction error covariance matrix are calculated. These pieces of information are output to the reliability comparison unit 156 and used to calculate the possibility that the other vehicle 60 will decelerate.
  • the course change start time setting unit 153 determines the lane in the lane movement model of the other vehicle 60 according to the position and speed between the other vehicles 60 based on the target tracking data stored in the target tracking data storage unit 4.
  • One or more change start times are set (step ST905, course change start time setting step). Details of the process of the course change start time setting unit 153 will be described below.
  • FIG. 10 shows a case where the lane change start time of the other vehicle 60b moves in the right lane after estimating the situation of the right lane.
  • the other vehicle 60b gives priority to avoiding a collision with the other vehicle 60a. In this case, the right lane movement is suddenly performed.
  • TTC Time To Collation
  • the lane change start time of the other vehicle 60b is set as follows, for example. First, when 0 second ⁇ TTC ⁇ 1 second, the lane change start time is set after 0 second (first condition). When 1 second ⁇ TTC ⁇ 2 seconds, the lane change start time is set after 0 seconds and after 0.5 seconds (second condition). If 2 seconds ⁇ TTC ⁇ 3 seconds, the lane change start time is set after 0 seconds, 0.5 seconds, 1 second, and 1.5 seconds (third condition). If 3 seconds ⁇ TTC, the lane change start time is set after 0 seconds, 0.5 seconds, 1 second, 1.5 seconds, 2 seconds, and 2.5 seconds ( Fourth condition).
  • the lane change start time is set after 0 seconds, 0.5 seconds, 1 second, 1.5 seconds, 2 seconds, and 2.5 seconds ( (Fifth condition).
  • An example of setting the lane change start time according to this condition is shown in FIG. In FIG. 11, the TTC is 2 seconds or more and less than 3 seconds, and the lane change start time is set in four ways from 0 seconds to 1.5 seconds, thereby generating four lane movement prediction ranges. Represents.
  • the feature of the above setting is that the number of lane change start times is increased as the time until the other vehicle 60b collides with the other vehicle 60a has a margin.
  • the other vehicle 60b has time to start moving the lane. Assuming that there is almost no prediction of a motion model that immediately starts changing lanes is considered sufficient.
  • the other vehicle 60b can start lane movement at various times, so a large number of lane change start times are set. To do.
  • the lane change start time is defined as the number of seconds elapsed from the current time, but there may be a method of defining this by the ratio of the relative distance between the other vehicle 60b and the other vehicle 60a.
  • the lane change start time T n (Steer) is expressed as the following expression (46) as a time until the vehicle travels a certain distance R 12 n / N.
  • n is an integer from 1 to N, and N is calculated by the following equation (47).
  • one or more lane change start times at which the other vehicle 60b can be selected are set.
  • Information indicating the N lane change start times set by the route change start time setting unit 153 is output to the corresponding route change prediction unit 154.
  • the number of lane change start times set by this processing is described as N.
  • the course change prediction unit 154 assumes a lane movement model as the motion model of the other vehicle 60, and follows the corresponding lane change start time set by the course change start time setting unit 153 according to the movement prediction range ( (Lane movement prediction range) is calculated (step ST906, lane movement prediction step). That is, the course change prediction unit 154 determines the position at each sampling time from the current time to the maximum predicted time S seconds when the other vehicle 60b starts moving in the lane at the elapsed time T n (Steer) from the current time. presume. Note that n is an integer of 1 to N. Details of the process of the course change prediction unit 154 will be described below.
  • the course change prediction unit 154 calculates a prediction vector x (Steer, n) k, m ( ⁇ ) of the lane movement prediction range of the other vehicle 60b after m seconds from the current time k from the following equation (48).
  • ⁇ (Steer, n) k, m ⁇ 1 is expressed by the following equation (49).
  • ⁇ (ConstVel) k, m ⁇ 1 is a matrix representing a constant velocity model
  • ⁇ (Steer) k, m ⁇ 1 is a matrix set in accordance with a lane movement model that starts lane movement from time k + m. is there.
  • the initial value of the prediction vector on the lane movement prediction range is expressed by the following equation (50).
  • the prediction error covariance matrix of the lane movement prediction range is calculated by the following equation (51).
  • Q k, m ⁇ 1 is a drive noise covariance matrix and is expressed by the following equation (52).
  • q is a parameter of power spectral density set in advance
  • I 2 ⁇ 2 is a unit matrix of 2 rows and 2 columns.
  • the initial value of the prediction error covariance matrix of the lane movement prediction range is expressed by the following equation (53).
  • the movement prediction range was calculated on the assumption that the other vehicle 60b moves straight ahead at a constant speed until the lane change start time.
  • the present invention is not limited to this, and there may be an exercise model that starts lane change after exercising at a preset constant acceleration.
  • the speed and acceleration until the lane change is made based on the relative distance and relative speed between the other vehicle 60 (the other vehicle 60b in FIG. 10) and the surrounding vehicles (the other vehicle 60a, the other vehicle 60c, and the own vehicle 50 in FIG. 10).
  • the movement prediction range and the prediction error covariance matrix up to S seconds after the other vehicle 60b changes lanes at time T n are calculated. These pieces of information are output to and stored in the course change prediction storage unit 155. A total of N pieces of information indicating the predicted lane movement range are stored.
  • the reliability comparison unit 156 trusts each movement prediction range of the other vehicle 60 calculated by each prediction unit 151, 152, 154 based on the target tracking data stored in the target tracking data storage unit 4. The degree is calculated, and the relative reliability is calculated and listed. Further, based on the target observation value data stored in the target observation value data storage unit 2, information indicating an unnecessary movement prediction range in the course change prediction storage unit 155 is deleted (step ST907, reliability comparison step). Details of the processing of the reliability comparison unit 156 will be described below with reference to FIG.
  • the constant velocity movement prediction range calculated by the constant velocity prediction unit 151 (the constant velocity movement prediction range for each sampling time from the current time to S seconds later).
  • the prediction error covariance matrix (step ST1201).
  • the reliability of the movement prediction range is an index representing the possibility that the other vehicle 60b moves along the movement prediction range.
  • the process of calculating the reliability from the movement prediction range and the prediction error covariance matrix includes a constant speed movement prediction range (step ST1201), a deceleration movement prediction range (step ST1202), and a lane movement prediction range. In the case (step ST1206), they must be the same.
  • the reliability of the constant velocity movement prediction range is expressed by, for example, the following formula (54).
  • M is the probability that the two movement prediction ranges will be at the same position, and is represented by the following equation (55).
  • x (l) k, m is a movement prediction range m seconds after the current time k of the surrounding vehicle 1 of the other vehicle 60, and is calculated from the following equations (56), (57).
  • x (l) k (+) is a smooth vector of the surrounding vehicle 1 of the other vehicle 60 at the current time.
  • P (l) k, m is a prediction error covariance matrix m seconds after the current time k of the surrounding vehicle 1 of the other vehicle 60, and is calculated from the following equations (58) and (59).
  • P (l) k (+) is a smoothing error covariance matrix of the surrounding vehicle 1 of the other vehicle 60 at the current time.
  • the reliability of the above equation (54) represents an interval when the movement prediction range of the surrounding vehicle moving at a constant speed and the movement prediction range of the other vehicle 60 are closest. Therefore, this definition of reliability is based on the premise that there is a high possibility that the other vehicle 60 will select a movement prediction range away from the surrounding vehicle. For example, in FIG. 13, the first movement prediction range 1301 close to the host vehicle 50 and the third movement prediction range 1303 close to the other vehicle 60a are less likely to be selected, and the reliability is low. The reliability of the second movement prediction range 1302 to be started increases.
  • a reliability is calculated for the deceleration movement prediction range (deceleration movement prediction range and prediction error covariance matrix for each sampling time from the current time to S seconds later) calculated by the deceleration prediction unit 152 (step ST1202). ).
  • the reliability of the constant-velocity movement prediction range is represented by the above equation (54)
  • the reliability of the deceleration movement prediction range is also represented by the following equation (60).
  • one unselected lane movement prediction range at the current time is selected from the course change prediction storage unit 155 (step ST1203).
  • the prediction vector of the selected lane movement prediction range A is X (Steer, A) k ′, m
  • the prediction error covariance matrix of the lane movement prediction range A is P (Steer, A) k ′, m . .
  • the lane movement prediction range stored in the course change prediction storage unit 155 includes those generated in the past, so k ′ represents the current time or the past time.
  • an index (likelihood) representing the likelihood of the lane movement prediction range A is used as the probability distribution of the observation values. Is calculated from the following equation (61) assuming that a Gaussian distribution centered on the predicted position is obtained (step ST1204).
  • Thrhold g is a threshold parameter set in advance.
  • the reliability of the lane movement prediction range A is calculated assuming that the lane movement prediction range A is a motion that the other vehicle 60b can take. (Step ST1206).
  • the reliability of the constant velocity movement prediction range is represented by the above equation (54)
  • the reliability of the lane movement prediction range A is also represented by the following equation (63).
  • step ST1205 determines whether the likelihood does not satisfy the inequality (62) or not satisfy the inequality (62). If it is determined in step ST1205 that the likelihood does not satisfy the inequality (62), the lane movement prediction range A is largely different from the current position of the other vehicle 60, and information indicating the lane movement prediction range A is provided. Is deleted from the course change prediction storage unit 155 (step ST1207).
  • step ST1208 it is determined whether all lane movement prediction ranges stored in the course change prediction storage unit 155 have been selected.
  • step ST1208 when there is information indicating the unselected lane movement prediction range in the course change prediction storage unit 155, the sequence returns to step ST1203 and the above processing is repeated.
  • the reliability of each movement prediction range is converted into a relative reliability (step ST1209).
  • the relative reliability is an index that represents the result of comparing the reliability of each movement prediction range calculated in steps ST1201, 1202, and 1206, and is calculated from, for example, the following equation (64).
  • b p, k is the reliability of any movement prediction range of the other vehicle 60b
  • B k is the sum of the reliability calculated in steps ST1201, 1202, 1206. For example, when the relative reliability of a certain lane movement prediction range A is 0.6, it is predicted that “the other vehicle 60b moves in the lane movement prediction range A with a possibility of 60%”.
  • the relative reliability of the lane movement prediction range may be set low based on the idea that “the other vehicle 60b preferentially selects the movement that maintains the lane”.
  • a list that lists the predicted movement range that the other vehicle 60b can take at the current time k and the relative reliability that indicates how much they can be realized relatively. can get.
  • This list is output to the own vehicle collision possibility estimation unit 11b and is used to determine the possibility of collision with the own vehicle 50.
  • the reliability is calculated based on the relative distance between the other vehicle 60b and the surrounding vehicle, and this is calculated as follows. “The other vehicle 60b avoids a track approaching a vehicle that is likely to be damaged when it collides.” Based on this idea, the reliability may be calculated from the relative speed between the other vehicle 60b and the surrounding vehicle. Further, based on the idea that “the other vehicle 60b is easier to select as the lane changes more slowly”, the reliability may be higher in the movement prediction range where the angle when changing the lane of the other vehicle 60b is gradual.
  • the own machine motion sensor 8 observes the motion parameters including the position and speed of the own vehicle 50 (step ST908, own machine motion step). This process is the same as in the first embodiment.
  • Information (self-motion data) indicating the observation result by the self-motion sensor 8 is output to and stored in the self-motion data storage unit 9.
  • the own-motion prediction unit 10 predicts the future position and speed of the own vehicle 50 based on the own-motion data stored in the own-motion data storage unit 9, and based on the prediction error covariance matrix.
  • the movement prediction range of the own vehicle 50 is calculated (step ST909, own machine motion prediction step). This process is the same as in the first embodiment.
  • Information indicating the predicted movement range of the host vehicle 50 calculated by the host aircraft motion prediction unit 10 is output to the host aircraft collision possibility estimation unit 11b.
  • the own vehicle collision possibility estimation unit 11b includes the predicted movement range of the other vehicle 60 shown in the list obtained by the target motion prediction unit 15, and the movement of the own vehicle 50 calculated by the own device motion prediction unit 10.
  • the possibility of collision between the own vehicle 50 and the other vehicle 60 is estimated from the overlap with the predicted range and the reliability (relative reliability) of the movement predicted range of the other vehicle 60 shown in the list (step ST910, own vehicle). Aircraft collision possibility estimation step).
  • the collision possibility is estimated based on the success or failure of the following equation (65).
  • the following expression (65) it is estimated that the own vehicle 50 and the other vehicle 60 may collide.
  • x p, k and P p, k are the movement prediction range and prediction error covariance matrix of the other vehicle 60b corresponding to the relative reliability ⁇ p, k .
  • Threshold M is a threshold parameter set in advance.
  • Information indicating the possibility of collision between the host vehicle 50 and the other vehicle 60 estimated by the host vehicle collision possibility estimation unit 11 b is output to the braking determination unit 12.
  • the brake determination unit 12 determines whether or not the host vehicle 50 needs to be braked based on the estimation result by the own vehicle collision possibility estimation unit 11b (step ST911, control determination step).
  • the own vehicle collision possibility estimating unit 11b estimates that there is a possibility of collision between the own vehicle 50 and the other vehicle 60 and the brake determining unit 12 determines that the own vehicle 50 needs to be braked
  • the automatic brake unit 13 a deceleration function of the own vehicle 50 by automatic braking is operated, and a message indicating that a brake operation is currently necessary is output to the driver of the own vehicle 50 or a voice is output through the warning generation unit 14.
  • the number of lane movement models is made variable from the position and speed between the other vehicles 60, for example, a parallel running vehicle as shown in FIG. Prediction considering the case where the start of the lane change is delayed is possible, and the accuracy of determining the possibility of collision with the host vehicle 50 is further improved as compared with the first embodiment.
  • the calculation process of the movement prediction range with low feasibility is omitted. The calculation load in the calculation process can be reduced.
  • Embodiment 3 In the second embodiment, one or more lane change start times are set according to the empty space around the other vehicle 60, and the number of lane movement models (route change models) is variable. .
  • the third embodiment shows a case where one or more deceleration model parameters and one or more lane movement model parameters are set in accordance with the empty space around the other vehicle 60.
  • FIG. 14 is a diagram showing a configuration of a collision preventing apparatus according to Embodiment 3 of the present invention.
  • a deceleration parameter setting unit 157 is added to the collision prevention apparatus according to the second embodiment shown in FIG.
  • the time setting unit 153 is changed to a course change parameter setting unit 158.
  • Other configurations are the same, and only the different parts are described with the same reference numerals.
  • the deceleration parameter setting unit 157 sets one or more parameters of the deceleration model from the position and speed of the other vehicles 60 based on the target tracking data stored in the target tracking data storage unit 4. Information indicating the parameters set by the deceleration parameter setting unit 157 is output to the corresponding deceleration prediction unit 152. Further, the deceleration prediction unit 152 assumes a deceleration model using the corresponding parameter set by the deceleration parameter setting unit 157, and calculates the movement prediction range (deceleration movement prediction range) of the other vehicle 60.
  • the course change parameter setting unit 158 sets one or more parameters of the lane movement model based on the position and speed of the other vehicles 60 based on the target tracking data stored in the target tracking data storage unit 4. Information indicating the parameters set by the route change parameter setting unit 158 is output to the corresponding route change prediction unit 154. Further, the course change prediction unit 154 assumes a lane movement model using the corresponding parameters set by the course change parameter setting unit 158, and calculates the movement prediction range (lane movement prediction range) of the other vehicle 60.
  • the parameter of the deceleration model set by the deceleration parameter setting unit 157 is, for example, the acceleration of the other vehicle 60.
  • the parameters of the lane movement model set by the course change parameter setting unit 158 include, for example, a lane change start time indicating how many seconds after the current time the lane change starts, and an angle with respect to the lane. Lane change angle (track change angle) indicating whether to change, lane change acceleration indicating how much to accelerate or decelerate before starting lane change, lane change indicating how much to accelerate or decelerate during lane change Medium acceleration, acceleration after lane change indicating how much acceleration or deceleration is performed after lane change is completed.
  • the parameter of the deceleration model and the parameter of the lane movement model are set to 1 from the position and speed between the other vehicles 60 according to the empty space around the other vehicle 60. Since it is configured to set one or more, for example, it is possible to predict the movement of the other vehicle 60 that decelerates according to the speed of the preceding vehicle. The accuracy is further improved. Further, it is possible to predict the movement of the other vehicle 60 that adjusts the lane change angle and the acceleration before and after the lane change according to the distance between the lane change destinations, and the accuracy of determining the possibility of collision with the own vehicle 50 is improved.
  • the collision preventing apparatus according to the present invention is applied to an automobile to avoid a collision between the own vehicle 50 and another vehicle 60 existing around the vehicle.
  • the present invention is not limited to this, and the collision preventing apparatus according to the present invention is applied to other moving bodies (ships, aircrafts, etc.) so as to avoid collisions with targets (ships, aircrafts, etc.) existing around them.
  • the same effect can be obtained.
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • the collision prevention apparatus can detect the motion of a plurality of targets to improve the accuracy of motion prediction, predict the motion of the target existing around the mobile body on which the device is mounted, It is suitable for use in a collision prevention device for avoiding a collision with the moving body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Traffic Control Systems (AREA)

Abstract

 自車(50)の周囲の他車(60)を観測する目標観測センサ(1)と、観測結果を基に他車(60)を追尾する目標追尾部(3)と、追尾結果を基に他車(60)の移動予測範囲を算出する目標運動予測部(5)と、他車(60)の移動予測範囲の重なりから他車(60)同士の衝突可能性を推定する目標間衝突可能性推定部(6)と、他車(60)同士の衝突可能性がある場合に、衝突を回避するよう移動予測範囲を再算出する目標運動再予測部(7)と、自車(50)の運動を観測する自機運動センサ(8)と、観測結果を基に自車(50)の移動予測範囲を算出する自機運動予測部(10)と、他車(60)の最終的な移動予測範囲と自車(50)の移動予測範囲との重なりから、自車(50)と他車(60)との衝突可能性を推定する自機衝突可能性推定部(11)とを備えた。

Description

衝突防止装置
 この発明は、自機が搭載された移動体の周囲に存在する目標の運動を予測して、当該移動体との衝突を回避する衝突防止装置に関するものである。
 従来から、移動体(自動車、艦船、航空機等)に搭載されたレーダ、カメラ等のセンサを用いて周囲の目標(自動車、艦船、航空機等)を観測し、当該移動体と目標との衝突を避けるように円滑な運行を支援するシステムが知られている。
 このセンサにより得られた情報から運行を支援する技術については多くの論文、特許文献等で挙げられており、それらを実現する装置及び方法については様々な提案がなされている。
 代表的な例として、自動車の衝突防止技術がある。この技術では、自車(移動体)に搭載されたレーダ及び光学センサで他車(目標)を観測し、自車に対する距離及び接近速度が閾値に達すると判明した場合に衝突の可能性ありと判定し、警告又は自車の走行自体を制御している。
 また、特許文献1に開示された技術では、自車と他車の現時刻の運動推定結果を外挿して、未来のある時刻における自車と他車の予測範囲を計算し、それの重なりの有無により衝突の可能性を判定している。例えば図15では、自車50と他車60について4サンプリング時刻分の予測範囲を計算している。この例では、いずれのサンプリング時刻においても、自車50の予測範囲と他車60の予測範囲が重ならないため、「衝突の可能性はない」と判定する。
特開2000-276696号公報 特開平8-271617号公報
 しかしながら、特許文献1に開示された技術は、現時点での他車60の運動を外挿することにより、他車60の未来での位置を予測するものである。そのため、図16に示すように、他車60が突然、自車50の前方に割込んだ場合、他車60の運動予測(図16に示す破線)と実際の運動(図16に示す実線)との不一致が大きくなる。結果、衝突の予測が困難となるという課題がある。
 ここで、割込みの発生原因として、ある車両の前方車が遅く、車線を維持すると衝突の可能性があるためという場合がある。一例を図17に示す。この例では、右車線で自車50が走行し、左車線で他車60a,60bが走行し、前方の他車60aの速度が他車60bの速度に比べて極めて小さいとする。この場合、他車60bは、他車60aとの衝突を回避するため、自車50が走行する車線に割込む可能性がある。よって、複数の車両(図17の例では他車60a,60b)の運動を検出することで、上記割込みを予測することができるものと考えられる。
 この発明は、上記のような課題を解決するためになされたもので、複数の目標の運動を検出して運動予測の精度を向上することができる衝突防止装置を提供することを目的としている。
 この発明に係る衝突防止装置は、自機が搭載された移動体の周囲に存在する目標を観測する目標観測センサと、目標観測センサによる観測結果に基づいて、目標を追尾する目標追尾部と、目標追尾部による追尾結果に基づいて、目標の移動予測範囲を算出する目標運動予測部と、目標が複数存在する場合に、目標運動予測部により算出された目標の移動予測範囲の重なりから、当該目標同士の衝突可能性を推定する目標間衝突可能性推定部と、目標間衝突可能性推定部により目標同士の衝突可能性があると推定された場合に、衝突を回避するような当該目標の移動予測範囲を再算出する目標運動再予測部と、移動体の運動を観測する自機運動センサと、自機運動センサによる観測結果に基づいて、移動体の移動予測範囲を算出する自機運動予測部と、目標運動予測部又は目標運動再予測部により算出された目標同士の衝突可能性のない当該目標の移動予測範囲と、自機運動予測部により算出された移動体の移動予測範囲との重なりから、当該移動体と当該目標との衝突可能性を推定する自機衝突可能性推定部とを備えたものである。
 この発明によれば、上記のように構成したので、複数の目標の運動を検出して運動予測の精度を向上することができる。
この発明の実施の形態1に係る衝突防止装置の構成を示すブロック図である。 この発明の実施の形態1に係る衝突防止装置の処理手順を示すフローチャートである。 この発明の実施の形態1に係る衝突防止装置による車両の運動モデルを示す図である。 他車同士の衝突可能性がある場合を示す図である。 この発明の実施の形態1に係る衝突防止装置の再予測による該当他車の運動モデル選択を示す図である。 他車同士の相対運動例を示す図である。 この発明の実施の形態1に係る衝突防止装置により再予測された予測経路例を示す図である。 この発明の実施の形態2に係る衝突防止装置の構成を示すブロック図である。 この発明の実施の形態2に係る衝突防止装置の処理手順を表すフローチャートである。 他車の車線変更開始時刻が異なる場合を示す図である。 他車がとり得る車線移動予測範囲の例を示す図である。 この発明の実施の形態2に係る信頼度比較部の処理手順を表すフローチャートである。 この発明の実施の形態2に係る信頼度比較部により算出される信頼度の一例を示す図である。 この発明の実施の形態3に係る衝突防止装置の構成を示すブロック図である。 従来の衝突防止装置による自車と他車の移動予測範囲例を示す図である。 従来の衝突防止装置による他車の移動予測範囲と、割込み発生時の実際の運動との差異を示す図である。 他車の割込みの要因となる状況例を示す図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る衝突防止装置の構成を示す図である。以下の各実施の形態では、本発明の衝突防止装置を自動車に適用した場合について説明する。
 衝突防止装置は、自車(移動体)50に搭載され、自車50とその周囲に存在する他車(目標)60の運動を予測して、自車50と他車60との衝突を回避するものである。この衝突防止装置は、図1に示すように、目標観測センサ1、目標観測値データ記憶部2、目標追尾部3、目標追尾データ記憶部4、目標運動予測部5、目標間衝突可能性推定部6、目標運動再予測部7、自機運動センサ8、自機運動データ記憶部9、自機運動予測部10、自機衝突可能性推定部11、制動判断部12、自動ブレーキ部13及び警告発生部14から構成されている。
 目標観測センサ1は、衝突防止装置が搭載された自車50の周囲に存在する他車60を観測するものである。この目標観測センサ1では、周囲に存在する他車60の観測を定期的に実施し、その観測結果から他車60の位置を算出する。この目標観測センサ1による観測結果を示す情報(目標観測値データ)は目標観測値データ記憶部2に出力される。
 目標観測値データ記憶部2は、目標観測センサ1からの目標観測値データを記憶するものである。この目標観測値データ記憶部2は、HDD、DVD、メモリ等によって構成される。
 目標追尾部3は、目標観測値データ記憶部2に記憶された目標観測値データに基づいて、他車60を追尾するものである。この目標追尾部3では、目標観測センサ1により得られた他車60の位置を時系列処理することで、より正確な他車60の位置及び速度を含む運動諸元を推定する。この目標追尾部3による追尾結果を示す情報(目標追尾データ)は目標追尾データ記憶部4に出力される。
 目標追尾データ記憶部4は、目標追尾部3からの目標追尾データを記憶するものである。この目標追尾データ記憶部4は、HDD、DVD、メモリ等によって構成される。
 目標運動予測部5は、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、他車60の移動予測範囲を算出するものである。この目標運動予測部5により算出された他車60の移動予測範囲を示す情報は目標間衝突可能性推定部6に出力される。
 目標間衝突可能性推定部6は、他車60が複数存在する場合に、目標運動予測部5により算出された他車60の移動予測範囲の重なりから、他車60同士の衝突可能性を推定するものである。この目標間衝突可能性推定部6による他車60同士の衝突可能性を示す情報は目標運動再予測部7に出力される。
 目標運動再予測部7は、目標間衝突可能性推定部6により他車60同士の衝突可能性があると推定された場合に、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、その衝突を回避するような他車60の移動予測範囲を再算出するものである。この目標運動再予測部7により再算出された他車60の移動予測範囲を示す情報は自機衝突可能性推定部11に出力される。
 なお、目標間衝突可能性推定部6により他車60同士の衝突可能性がないと推定された場合、又は他車60が複数存在しない場合には、目標運動予測部5により算出された他車60の移動予測範囲を示す情報がそのまま自機衝突可能性推定部11に出力される。
 自機運動センサ8は、自車50の運動を観測するものである。この自機運動センサ8は、例えば自車走行計等で構成され、自車50の位置及び速度を含む運動諸元を観測する。この自機運動センサ8による観測結果を示す情報(自機運動データ)は自機運動データ記憶部9に出力される。
 自機運動データ記憶部9は、自機運動センサ8からの自機運動データを記憶するものである。この自機運動データ記憶部9は、HDD、DVD、メモリ等によって構成される。
 自機運動予測部10は、自機運動データ記憶部9に記憶された自機運動データに基づいて、自車50の移動予測範囲を算出するものである。この自機運動予測部10により算出された自車50の移動予測範囲を示す情報は自機衝突可能性推定部11に出力される。
 自機衝突可能性推定部11は、目標運動予測部5又は目標運動再予測部7により算出された他車60同士の衝突可能性のない他車60の移動予測範囲と、自機運動予測部10により算出された自車50の移動予測範囲との重なりから、自車50と他車60との衝突可能性を推定するものである。この自機衝突可能性推定部11により推定された自車50と他車60との衝突可能性を示す情報は制動判断部12に出力される。
 制動判断部12は、自機衝突可能性推定部11による推定結果に基づいて、自車50の制動の要否を判断するものである。この制動判断部12による判断結果を示す情報は自動ブレーキ部13及び警告発生部14に出力される。
 自動ブレーキ部13は、制動判断部12により自車50の制動を要すると判断された場合に、自動制動による自車50の減速機能を動作させるものである。
 警告発生部14は、制動判断部12により自車50の制動を要すると判断された場合に、自車50の運転者に対して現時点でブレーキ操作が必要である旨のメッセージの提示や音声の出力を行うものである。
 なお、目標追尾部3、目標運動予測部5、目標間衝突可能性推定部6、目標運動再予測部7、自機運動予測部10、自機衝突可能性推定部11、制動判断部12、自動ブレーキ部13及び警告発生部14は、ソフトウェアに基づくCPUを用いたプログラム処理によって実行される。
 次に、上記のように構成された衝突防止装置の処理の流れについて、図2~7を参照しながら説明する。
 衝突防止装置の処理では、図2に示すように、まず、目標観測センサ1は、自車50の周囲に存在する他車60の観測を定期的に実施し、その観測結果から他車60の位置を算出する(ステップST201、目標観測ステップ)。この目標観測センサ1による観測結果を示す情報(目標観測値データ)は目標観測値データ記憶部2に出力されて記憶される。
 次いで、目標追尾部3は、目標観測値データ記憶部2に記憶された目標観測値データに基づいて、他車60の位置を時系列処理(追尾処理)することで、より正確な他車60の位置、及び速度を推定する(ステップST202、目標追尾ステップ)。すなわち、目標観測センサ1により得られた静的な他車60の位置に対して、速度情報が加わることで動的な情報となり、より正確な他車60の位置を得ることができる。以下に、目標追尾部3の処理の詳細について説明する。
 目標追尾部3では、まず、目標観測センサ1から最新の観測時刻での観測結果(観測値)を示す情報を読込む。次に、既存航跡のゲートを算出する。次に、読込んだ観測値がそのゲート内にあるかどうかを調べ、当該観測値がどの航跡と相関可能であるかを決定する。ここで、航跡は、xyの2次元空間における他車60の位置及び速度から成る下式(1)の4個の要素を持ったベクトルを推定諸元とする。
Figure JPOXMLDOC01-appb-I000001
 そして、最新観測時刻kにおける他車60の予測ベクトルXハット(-)は下式(2)で計算される。
Figure JPOXMLDOC01-appb-I000002
 ここで、自動車の運動を複数仮定する。図3に、他車60の運動として、5つの運動モデル((a)等速モデル(自車線維持)、(b)加速モデル(自車線維持)、(c)減速モデル(自車線維持)、(d)右車線移動モデル(進路変更モデル)、(e)左車線移動モデル(進路変更モデル)を仮定した場合を示す。本実施の形態では、自動車が上記5つの運動モデルのうちいずれかの運動を行うものとする。
 なお、運動モデルとして、「減速又は加速しながら右車線又は左車線へ移動するモデル」を加えてもよい。
 また、上式(2)の推移行列Φk-1は、各運動モデルに応じた行列として設定される。例えば等速モデルの場合には、推移行列Φk-1は下式(3)で表される。
Figure JPOXMLDOC01-appb-I000003
 ここで、Tはサンプリング間隔(目標観測センサ1による直前の観測時刻から現時刻までの経過時間)である。また、Xk-1ハット(+)は1観測時間前の平滑ベクトルである。
 また、予測誤差共分散行列P(-)は下式(4)で計算される。
Figure JPOXMLDOC01-appb-I000004
 ここで、Pk-1(+)は1観測時刻前の平滑誤差共分散行列である。また、Qk-1は駆動雑音共分散行列であり、下式(5)で表される。
Figure JPOXMLDOC01-appb-I000005
 ここで、qは事前に設定するパワースペクトル密度のパラメータであり、I2×2は2行2列の単位行列である。
 そして、残差共分散行列Sを下式(6)に従って算出する。
Figure JPOXMLDOC01-appb-I000006
 ここで、Hは観測行列、Rは目標観測センサ1の観測誤差共分散行列、Γ(k)は観測雑音の変換行列である。観測値のベクトルが距離及び方位角の極座標上の値で得られる場合、各々は下式(7)~(9)で表される。
Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009
 ここで、02×2は2行2列の全要素が0の行列である。また、σは目標観測センサ1の距離観測誤差標準偏差であり、σByは方位角観測誤差標準偏差である。
 そして、上記の残差共分散行列Sを用いて、目標観測センサ1からの観測値zのゲート内外判定を行う。この観測値zは、距離及び方位角で表された観測情報を直交座標上の位置に変換して得られるベクトルである。ゲート内外判定は、以下の不等式(10)の成否により決まる。
Figure JPOXMLDOC01-appb-I000010
 ここで、z(-)は予測観測値であり、下式(11)により計算できる。

Figure JPOXMLDOC01-appb-I000011
 また、dはχ平方検定における有意水準によって定まる境界値のパラメータである。
 前サンプリング時刻における運動モデルの信頼度をβk-1,b(+)(b∈{(a),(b),(c),(d),(e)})とすると、現サンプリング時刻における予測モデル信頼度βk,a(-)(a∈{(a),(b),(c),(d),(e)})は、下式(12)で計算される。
Figure JPOXMLDOC01-appb-I000012
 ここで、pk,abは運動モデルが(b)から(a)に推移する確率を示す推移確率パラメータである。この推移確率パラメータは(b)と(a)の全ての組み合わせによる推移について定める行列として表現できる。
 この推移確率パラメータpk,abは、通常では例えば下式(15)のように設定する。
Figure JPOXMLDOC01-appb-I000013
 この例では、対角成分が0.6、非対角成分が0.1となっている。これは、現在の運動モデルを維持する確率が0.6であり、異種の運動モデル間を遷移する確率が任意に移行の組み合わせについて0.1であることを示している。これにより、他車60が自車線を維持するような安定した状況では、例えば「他車60の今後の運動は、等速80%、加速10%、右車線移動10%、他0%」なる結果が得られ、等速モデルを選択して移動予測範囲を設定する。
 なお、追尾に要求される正確さの度合いに応じて、上記の運動モデルのフィルタは重み付け混合を行う。
 そして、上式(10)のゲート内外判定によってゲート内と判定された観測値を用いて航跡の最新時刻における運動諸元推定値を算出する。ただし、複数の既存航跡が存在し、特定の観測値が複数の航跡のゲート内に入った場合は、観測値と既存航跡とを1対1対応させる相関決定処理が必要となる。特に本発明を自動車に適用した場合、自車50の周囲には複数の他車60が存在する場合が多いので、この相関の問題が重要となる。この相関を複数の仮説を生成しながら決定する方式はこれまで幾つか提案されている(例えば特許文献2参照)。
 そして、相関決定により観測値が既存航跡に割り当てられると、これらの航跡の観測時刻における平滑諸元を計算し、更新航跡についてはさらに相関結果に対応する航跡の尤度を計算する。平滑ベクトルは下式(14)で計算される。
Figure JPOXMLDOC01-appb-I000014
 ここで、Kはフィルタゲインであり、下式(15)により計算できる。

Figure JPOXMLDOC01-appb-I000015
 また、平滑誤差共分散行列は下式(16)で計算される。
Figure JPOXMLDOC01-appb-I000016
 また、航跡の尤度(尤もらしさ)は、観測値の確率分布が予測位置(2次元の位置)を中心としたガウス分布となることを仮定して下式(17)から計算する。
Figure JPOXMLDOC01-appb-I000017
 観測値を反映したモデル信頼度は下式(18)の通りである。
Figure JPOXMLDOC01-appb-I000018
 ここで、νk,aは観測値を基に算出した運動モデル(a)に対する尤度であり、下式(19)で表される。
Figure JPOXMLDOC01-appb-I000019
 以上により、追尾航跡毎に、他車60の位置及び速度の選択した運動モデルの推定値、及び上記の推定誤差共分散行列が推定される。これらの情報(目標追尾データ)は目標追尾データ記憶部4に出力されて記憶され、目標運動予測部5で操舵の可否を判定するために用いられる。
 次いで、目標運動予測部5は、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、他車60の移動予測範囲を算出する(ステップST203、目標運動予測ステップ)。ここで、目標運動予測部5は、他車60の位置及び速度の推定値、及びそれらの推定誤差共分散行列より、未来での移動予測範囲を算出する。予測時刻は、現時刻から右折完了までの一定のサンプリング間隔に従って設定する離散的な複数の時刻である。これらのサンプリング時刻は、後述する自機運動予測ステップにおいて設定するサンプリング時刻と完全に一致させる。
 この目標運動予測部5により算出された他車60の移動予測範囲を示す情報は目標間衝突可能性推定部6に出力される。
 次いで、目標間衝突可能性推定部6は、他車60が複数存在する場合に、目標運動予測部5により算出された他車60の移動予測範囲の重なりから、他車60同士の衝突可能性を推定する(ステップST204、目標間衝突可能性推定ステップ)。この際、自車50が観測する周囲の他車60の全ての組み合わせについて衝突可能性を推定する。例えば、自車50の周囲環境が図4に示す状況の場合(3台の他車60a~60cが存在する場合)、他車60aと他車60bの組み合わせ、他車60bと他車60cの組み合わせ、他車60aと他車60cの組み合わせの計3通りの組み合わせについて衝突可能性を推定する。
 衝突可能性の推定は、下式(20)の成否により行う。そして、この式(20)が成立する場合には、その組み合わせにおいて衝突の可能性があると推定する。
Figure JPOXMLDOC01-appb-I000020
 ここで、右辺のthresholdは事前に設定する閾値パラメータである。左辺は、組み合わせにおける2つの他車60が同一位置となる確率であり、下式(21)に示すように自車50と他車60の特定の位置における同時存在確率密度の位置空間全体に渡る積分である。
 また、式(20)に対して下式(21)のような数値計算を行うことで、近似することができる。
Figure JPOXMLDOC01-appb-I000021
 なお、xp,1,k(-)とPp,1,k(-)は一方の他車60の予測の中心とその共分散行列であり、xp,2,k(-)とPp,2,k(-)は他方の他車60の予測の中心とその共分散行列である。
 これは、従来技術における自車50と他車60との間での予測楕円の重なりによる衝突可能性推定を、他車60同士の衝突可能性推定にそのまま適用することで、その目的を実現している。図4の例では自車50の隣接車線で他車60a,60bがあり、後方の他車60bの方が現在速く走行しているとする。ここで、図中の楕円の中心は移動予測位置であり、その広がりは予測の誤差共分散行列の標準偏差分である。この場合、予測楕円の重なりにより、他車60bは他車60aに衝突すると推定される。
 この目標間衝突可能性推定部6による他車60同士の衝突可能性を示す情報は目標運動再予測部7に出力される。
 次いで、目標運動再予測部7は、目標間衝突可能性推定部6により他車60同士の衝突可能性があると推定された場合に、その衝突を回避するような他車60の移動予測範囲を再算出する(ステップST205、目標運動再予測ステップ)。以下では、衝突を回避する行動は運転者の目視を含めて相手をより把握し易い後方の車両(図4の例では他車60b)が取るものとし、その移動予測範囲を修正する場合について示す。
 この移動予測範囲の修正では、衝突が起きないような運動モデルの選択により再予測を行う。この再予測は、他車60との衝突可能性の有無によって運動モデル間の推移確率を調整し、衝突が発生する運動モデルを排除することにより実現する。
 図4の例に対して、衝突を回避するための行動を反映して、図5に示すように、他車60bの運動モデル選択方針を以下の通りとする。すなわち、(a)等速モデル(自車線維持)は他車60aと衝突するので不選択とする。また、(b)加速モデル(自車線維持)は他車60aと衝突するので不選択とする。また、(c)減速モデル(自車線維持)は候補として選択する。(d)右車線移動モデルは候補として選択する。(e)左車線移動モデルは道路がないので不選択とする。
 結果として、他車60bに対して選択可能な運動モデルは、図5のように減速モデルと右車線移動モデルのいずれかとなる。
 上記のような運動モデル選択を計算するための手段の一つとして、推移確率パラメータpk,abの制御がある。通常の運動モデル信頼度計算では、「等速80%、加速10%、右車線移動10%、他0%」なる運動モデルの選択結果が得られるところを「減速40%、右車線移動60%、他は0%」としたい。そこで、モデル推移確率パラメータを通常から下式(22)のように変更する。
Figure JPOXMLDOC01-appb-I000022
 右辺の第1項が(c)減速モデルと(d)右車線移動モデルのいずれかに推移するように配分するための行列である。ここでは(c)減速モデルと(d)右車線移動モデルの配分をα:β=0.3:0.6としている。
 この(c)減速モデルと(d)右車線移動モデルの配分パラメータ(上式のαとβ)の決定方法を述べる。各車線において、他車60bの前方の最も近い車両(左車線:他車60a、右車線:他車60c)との距離が「相対速度に対してどれだけ余裕があるか」を目安とする。一例としては下式(23)のように相対距離と相対速度の比率で決める。
Figure JPOXMLDOC01-appb-I000023
 ここで、Vは他車60aの速度、Vは他車60bの速度、Vは他車60cの速度、R12は他車60aと他車60bとの間の距離、R23は他車60cと他車60bとの間の距離である(図6参照)。
 なお上記では、各車線における自動車とその前方車との相対距離及び相対速度により配分パラメータを算出したが、各車線における自動車の前方車、後方車との相対距離及び相対速度により算出するという方法も有り得る。また、相対距離と相対速度の比でなく、単純に相対距離の比を配分パラメータとしてもよい。
 また上記では、他車60が衝突を回避するように行う運動の選択において、その他車60の周囲の空間の空き状況に応じて運動に対する重み付け(配分パラメータの算出)を行う場合を示した。しかしながら、これに限るものではなく、例えば、他車60が自車線に留まり直進運動を優先するように運動に対する重み付けを行うようにしてもよい。この際、他車60が自車線に留まる確率測度をある事前に固定されたパラメータの値γ以上として、下式(24)から配分パラメータを算出する。
Figure JPOXMLDOC01-appb-I000024
 以上の処理による他車60の移動予測範囲の再算出結果例を図7に示す。この目標運動再予測部7により再算出された他車60の移動予測範囲を示す情報は自機衝突可能性推定部11に出力される。なお、目標間衝突可能性推定部6により他車60同士の衝突可能性がないと推定された場合、又は他車60が複数存在しない場合には、目標運動予測部5により算出された他車60の移動予測範囲を示す情報がそのまま自機衝突可能性推定部11に出力される。
 一方、自機運動センサ8は、自車50の位置及び速度を含む運動諸元を観測する(ステップST206、自機運動観測ステップ)。この自機運動センサ8による観測結果を示す情報(自機運動データ)は自機運動データ記憶部9に出力されて記憶される。
 次いで、自機運動予測部10は、自機運動データ記憶部9に記憶された自機運動データに基づいて、自車50の未来での位置及び速度を予測し、その予測誤差共分散行列より自車50の移動予測範囲を算出する(ステップST207、自機運動予測ステップ)。なお、予測時刻は、現時刻から一定のサンプリング間隔に従って設定する離散的な複数の時刻である。以下では、未来予測時刻のサンプリング時刻の番号をkとする。
 ここで、各サンプリング時刻における自車50の運動は、xy平面の2次元空間における自車50の位置及び速度から成る下式(25)の4個の要素を持ったベクトルとする。
Figure JPOXMLDOC01-appb-I000025
 また、現時刻における自車50の運動推定値は、位置については自車センサあるいはGPS等のセンサから得た自己運動情報とする。自車50の未来予測位置は下式(26)で算出する。
Figure JPOXMLDOC01-appb-I000026
 ここで、Φuf,kは自車50の等速度運動を前提として下式(27)で表される。
Figure JPOXMLDOC01-appb-I000027

 ここで、Tは未来予測処理におけるサンプリング間隔である
 また、未来予測の誤差共分散行列Puf,k(-)を下式(28)で算出する。
Figure JPOXMLDOC01-appb-I000028
 ここで、Puf,k(+)は現時刻の自車50の運動諸元の推定誤差共分散行列であり、最新の平滑誤差共分散行列を外挿して算出する。また、Quf,kは駆動雑音共分散行列であり、下式(29)で表される。
Figure JPOXMLDOC01-appb-I000029
 以上の処理による自車50の移動予測範囲の算出結果例を図7に示す。この自機運動予測部10により算出された自車50の移動予測範囲を示す情報は自機衝突可能性推定部11に出力される。
 次いで、自機衝突可能性推定部11は、目標運動予測部5又は目標運動再予測部7により算出された他車60同士の衝突可能性のない他車60の移動予測範囲と、自機運動予測部10により算出された自車50の移動予測範囲との重なりから、自車50と他車60との衝突可能性を推定する(ステップST208、自機衝突可能性推定ステップ)。
 具体的には、上記衝突可能性の推定は下式(30)の成否により行う。そして、下式(30)が成立する場合は自車50と他車60が衝突する可能性があると推定する。
Figure JPOXMLDOC01-appb-I000030
 ここで、右辺のthresholdは事前に設定する閾値パラメータである。左辺は自車50と他車60が同一位置となる確率であり、下式(31)に示すように自車50と他車60の特定の位置における同時存在確率密度の位置空間全体に渡る積分である。これを数値計算により近似することもできる。
Figure JPOXMLDOC01-appb-I000031
 この自機衝突可能性推定部11により推定された自車50と他車60との衝突可能性を示す情報は制動判断部12に出力される。
 次いで、制動判断部12は、自機衝突可能性推定部11による推定結果に基づいて、自車50の制動の要否を判断する(ステップST209、制動判断ステップ)。そして、自機衝突可能性推定部11が自車50と他車60との衝突可能性があると推定して制動判断部12が自車50の制動を要する判断した場合には、自動ブレーキ部13を通じて自動制動による自車50の減速機能を動作させるたり、警告発生部14を通じて自車50の運転者に現時点でブレーキ操作が必要である旨のメッセージの提示や音声の出力を行う。
 以上の処理を定期的に繰り返すことにより、自車50の衝突防止対策が常時可能となる。
 以上のように、この実施の形態1によれば、自車50の周囲に存在する他車60を観測して、他車60同士の衝突可能性を推定し、衝突可能性がある場合には当該衝突を回避するような他車60の運動を再予測するように構成したので、複数の他車60の運動を検出して運動予測の精度を向上することができる。その結果、複数の他車60の相対運動によって他車60による自車50の車線への割込みが生じる可能性をより早く検出し、対策を早期に取らせるための衝突防止装置を得ることができる。
 実施の形態2.
 実施の形態1では、他車60の車線移動モデル(進路変更モデル)を一定数とする場合を示した。それに対し、実施の形態2では、他車60間の位置及び速度に応じて、車線変更の開始時刻を1つ以上設定し、車線移動モデルの数を可変とした場合について示す。
 図8はこの発明の実施の形態2に係る衝突防止装置の構成を示す図である。この図8に示す実施の形態2に係る衝突防止装置は、図1に示す実施の形態1に係る衝突防止装置から目標運動予測部5、目標間衝突可能性推定部6及び目標運動再予測部7を取除いて、目標運動予測部15を追加したものである。その他の構成は同様であり、同一の符号を付して異なる部分についてのみ説明を行う。
 なお、実施の形態1における目標追尾部3では、他車60に対して複数の運動モデルを仮定して他車60の追尾を行うものとした。それに対し、実施の形態2における目標追尾部3では、運動モデルとして等速モデル(自車線維持)を仮定するものとする。
 目標運動予測部15は、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、他車60同士の位置及び速度から運動モデルを設定して当該他車60の移動予測範囲及び当該移動予測範囲の信頼度を算出するものである。ここで、信頼度とは、他車60による移動予測範囲への移動が起こり得る可能性を示す指標である。また以下では、目標運動予測部15は、算出した信頼度から、各移動予測範囲での相対的な信頼度を示す指標である相対信頼度を算出し、移動予測範囲と相対信頼度をリスト化する。また、目標運動予測部15は、目標観測値データ記憶部2に記憶された目標観測値データに基づいて、不要な移動予測範囲を示す情報の削除も行う。この目標運動予測部15は、等速予測部151、減速予測部152、進路変更開始時刻設定部153、複数の進路変更予測部154(154-1~154-N)、進路変更予測記憶部155及び信頼度比較部156を有している。
 等速予測部151は、他車60の運動モデルとして等速モデル(自車線維持)を仮定し、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、他車60の移動予測範囲(等速移動予測範囲)を算出するものである。この等速予測部151により算出された他車60の移動予測範囲を示す情報は信頼度比較部156に出力される。
 減速予測部152は、他車60の運動モデルとして減速モデル(自車線維持)を仮定し、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、他車60の移動予測範囲(減速移動予測範囲)を算出するものである。この減速予測部152により算出された他車60の移動予測範囲を示す情報は信頼度比較部156に出力される。
 進路変更開始時刻設定部153は、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、他車60間の位置及び速度に応じて、他車60の車線移動モデルでの車線変更開始時刻(進路変更開始時刻)を1つ以上設定するものである。この進路変更開始時刻設定部153により設定された車線変更開始時刻を示す情報はそれぞれ対応する進路変更予測部154に出力される。
 進路変更予測部154は、他車60の運動モデルとして車線移動モデルを仮定し、進路変更開始時刻設定部153により設定された対応する車線変更開始時刻に従い、他車60の移動予測範囲(車線移動予測範囲)を算出するものである。この進路変更予測部154により算出された他車60の移動予測範囲を示す情報は進路変更予測記憶部155に出力される。
 進路変更予測記憶部155は、各進路変更予測部154により算出された他車60の移動予測範囲を示す情報を記憶するものである。この進路変更予測記憶部155は、HDD、DVD、メモリ等によって構成される。
 信頼度比較部156は、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、各予測部151,152,154により算出された他車60の各移動予測範囲に対して信頼度を算出し、相対信頼度を算出してリスト化するものである。また、信頼度比較部156は、目標観測値データ記憶部2に記憶された目標観測値データに基づいて、進路変更予測記憶部155内の不要な移動予測範囲を示す情報の削除も行う。この信頼度比較部156により得られた他車60の各移動予測範囲とその相対信頼度を示すリストは自機衝突可能性推定部11bに出力される。
 自機衝突可能性推定部11bは、目標運動予測部15により得られたリストに示された他車60の移動予測範囲と、自機運動予測部10により算出された自車50の移動予測範囲との重なり、及び当該リストに示された他車60の移動予測範囲の信頼度(相対信頼度)から、自車50と他車60との衝突可能性を推定する。この自機衝突可能性推定部11bにより推定された自車50と他車60との衝突可能性を示す情報は制動判断部12に出力される。
 次に、上記のように構成された衝突防止装置の処理の流れについて、図9~13を参照しながら説明する。
 実施の形態2に係る衝突防止装置の処理では、図9に示すように、まず、目標観測センサ1は、自車50の周囲に存在する他車60の観測を定期的に実施し、その観測結果から他車60の位置を算出する(ステップST901、目標観測ステップ)。この目標観測センサ1による観測結果を示す情報(目標観測値データ)は目標観測値データ記憶部2に出力されて記憶される。
 次いで、目標追尾部3は、目標観測値データ記憶部2に記憶された目標観測値データに基づいて、他車60の位置を時系列処理(追尾処理)することで、より正確な他車60の位置、及び速度を推定する(ステップST902、目標追尾ステップ)。すなわち、目標観測センサ1により得られた静的な他車60の位置に対して、速度情報が加わることで動的な情報となり、より正確な他車60の位置を得ることができる。以下に、目標追尾部3の処理の詳細について説明する。
 目標追尾部3では、まず、目標観測センサ1から最新の観測時刻での観測結果(観測値)を示す情報を読込む。次に、既存航跡のゲートを算出する。次に、読込んだ観測値がそのゲート内にあるかどうかを調べ、当該観測値がどの航跡と相関可能であるかを決定する。ここで、航跡は、xyの2次元空間における他車60の位置及び速度から成る上式(1)の4個の要素を持ったベクトルを推定諸元とする。
 そして、最新観測時刻kにおける他車60の予測ベクトルX(-)ハットは上式(2)で計算される。
 また、上式(2)の推移行列Φk-1は、実施の形態2では他車60の運動モデルとして等速モデルを仮定するため、上式(3)で表される。
 また、予測誤差共分散行列P(-)は上式(4)で計算され、駆動雑音共分散行列Qk-1は上式(5)で表される。
 そして、残差共分散行列Sを上式(6)に従って算出する。なお、観測値のベクトルが距離及び方位角の極座標上の値で得られる場合、式(6)における観測行列H,観測雑音の変換行列Γ(k)及び目標観測センサ1の観測誤差共分散行列Rはそれぞれ上式(7)~(9)で表される。
 そして、上記の残差共分散行列Sを用いて、目標観測センサ1からの観測値zのゲート内外判定を行う。この観測値zは、距離及び方位角で表された観測情報を直交座標上の位置に変換して得られるベクトルである。ゲート内外判定は、上記の不等式(10)の成否により決まる。なお、不等式(10)における予測観測値z(-)は上式(11)により計算できる。
 そして、不等式(10)のゲート内外判定によってゲート内と判定された観測値を用いて航跡の最新時刻における運動諸元推定値を算出する。ただし、複数の既存航跡が存在し、特定の観測値が複数の航跡のゲート内に入った場合は、観測値と既存航跡とを1対1対応させる相関決定処理が必要となる。特に本発明を自動車に適用した場合、自車50の周囲には複数の他車60が存在する場合が多いので、この相関の問題が重要となる。この相関を複数の仮説を生成しながら決定する方式はこれまで幾つか提案されている(例えば特許文献2参照)。
 そして、相関決定により観測値が既存航跡に割り当てられると、これらの航跡を観測値によって更新し、平滑ベクトルを計算する。平滑ベクトルは上式(14)で計算される。なお、式(14)におけるフィルタゲインKは上式(15)により計算できる。
 また、平滑誤差共分散行列は上式(16)で計算される。
 以上により、追尾航跡毎に、他車60の位置及び速度の推定値、及び上記の推定誤差共分散行列が推定される。これらの情報(目標追尾データ)は目標追尾データ記憶部4に出力されて記憶され、目標運動予測部15にて用いられる。
 次いで、等速予測部151は、他車60の運動モデルとして等速モデル(自車線維持)を仮定し、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、他車60の移動予測範囲(等速移動予測範囲)を算出する(ステップST903、等速予測ステップ)。すなわち、等速予測部151は、他車60が現時刻における推定速度を維持するとの仮定の下、現時刻から最大予測時間S秒後までの各サンプリング時刻における位置を推定する。以下に、等速予測部151の処理の詳細について説明する。
 等速予測部151では、まず、下式(32)より、現時刻kからm秒後の他車60の等速移動予測範囲の予測ベクトルx(ConstVel) k,m(―)を計算する。
Figure JPOXMLDOC01-appb-I000032
 ここで、Φ(ConstVel) k,m-1は下式(33)で表される。
Figure JPOXMLDOC01-appb-I000033
 ここで、Tは現時刻から未来におけるサンプリング間隔である。
 なお、等速移動予測範囲の予測ベクトルの初期値は下式(34)で表される。
Figure JPOXMLDOC01-appb-I000034
 また、等速移動予測範囲の予測誤差共分散行列は下式(35)で計算される。
Figure JPOXMLDOC01-appb-I000035
 ここで、Qk,m-1は駆動雑音共分散行列であり、下式(36)で表される。
Figure JPOXMLDOC01-appb-I000036
 ここで、qは事前に設定するパワースペクトル密度のパラメータであり、I2×2は2行2列の単位行列である。
 なお、等速移動予測範囲の予測誤差共分散行列の初期値は下式(37)で表される。
Figure JPOXMLDOC01-appb-I000037
 以上により、追尾航跡毎に、他車60が等速直進運動した場合のS秒後までの移動予測範囲、及び予測誤差共分散行列が算出される。これらの情報は信頼度比較部156に出力され、他車60が等速直進運動する可能性の算出に用いられる。
 次いで、減速予測部152は、他車60の運動モデルとして減速モデル(自車線維持)を仮定し、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、他車60の移動予測範囲(減速移動予測範囲)を算出する(ステップST904、減速予測ステップ)。すなわち、減速予測部152は、他車60が現時刻より減速して移動するとの仮定の下に、現時刻から最大予測時間S秒後までの各サンプリング時刻における位置を推定する。以下に、減速予測部152の処理の詳細について説明する。
 減速予測部152では、まず、下式(38)より、現時刻kからm秒後の他車60の減速移動予測範囲の予測ベクトルx(Brake) k,m(―)を計算する。
Figure JPOXMLDOC01-appb-I000038
 ここで、Φ(Brake) k,m-1及びa(Brake) k,m-1は下式(39),(40)で表される。
Figure JPOXMLDOC01-appb-I000039

Figure JPOXMLDOC01-appb-I000040
 ここで、Tは現時刻から未来におけるサンプリング間隔であり、αは事前に設定する減速の加速度を表す負のスカラーである。
 また、減速移動予測範囲の予測ベクトルの初期値は下式(41)で表される。
Figure JPOXMLDOC01-appb-I000041
 また、減速移動予測範囲の予測誤差共分散行列は下式(42)で計算される。
Figure JPOXMLDOC01-appb-I000042
 ここで、Qk,m-1は駆動雑音共分散行列であり、下式(43)で表される。
Figure JPOXMLDOC01-appb-I000043
 ここで、qは事前に設定するパワースペクトル密度のパラメータであり、I2×2は2行2列の単位行列である。
 また、減速移動予測範囲の予測誤差共分散行列の初期値は下式(44)で表される。
Figure JPOXMLDOC01-appb-I000044
 以上により、追尾航跡毎に、他車60が減速した場合のS秒後までの移動予測範囲、及び予測誤差共分散行列が算出される。これらの情報は信頼度比較部156に出力され、他車60が減速する可能性の算出に用いられる。
 次いで、進路変更開始時刻設定部153は、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、他車60間の位置及び速度に応じて、他車60の車線移動モデルでの車線変更開始時刻を1つ以上設定する(ステップST905、進路変更開始時刻設定ステップ)。以下に、進路変更開始時刻設定部153の処理の詳細について説明する。ここでは、図10を例に、他車60bの車線変更開始時刻を、前方に位置する他車60aとの位置関係及び相対速度により設定する場合について示す。なお図10(a)では、他車60bが右車線の状況を見計らった上で右車線移動を行う場合を示し、図10(b)では、他車60bが他車60aとの衝突回避を優先し、急に右車線移動を行う場合を示している。
 他車60bが車線移動する際に選択可能な車線変更開始時刻を設定する手段の一つとして、ここでは他車60bと他車60aとの衝突予測時間(TTC:Time To Collision)を用いる方法を記述する。他車60bと他車60aとのTTCは下式(45)で表される。
Figure JPOXMLDOC01-appb-I000045
 ここで、R12は他車60bと他車60aとの車間であり、Vは他車60bの速度であり、Vは他車60aの速度である(図6参照)。
 そして、上式(45)で定義したTTCを基に、例えば以下のように、他車60bの車線変更開始時刻を設定する。まず、0秒<TTC<1秒であった場合には、車線変更開始時刻を0秒後に設定する(第1の条件)。また、1秒≦TTC<2秒であった場合には、車線変更開始時刻を0秒後、0.5秒後に設定する(第2の条件)。また、2秒≦TTC<3秒であった場合には、車線変更開始時刻を0秒後、0.5秒後、1秒後、1.5秒後に設定する(第3の条件)。また、3秒≦TTCであった場合には、車線変更開始時刻を0秒後、0.5秒後、1秒後、1.5秒後、2秒後、2.5秒後に設定する(第4の条件)。また、TTC≦0秒であった場合には、車線変更開始時刻を0秒後、0.5秒後、1秒後、1.5秒後、2秒後、2.5秒後に設定する(第5の条件)。
 この条件による車線変更開始時刻の設定の一例を図11に示す。この図11では、TTCが2秒以上3秒未満の場合であり、車線変更開始時刻が0秒~1.5秒の4通り設定され、それによって4通りの車線移動予測範囲が生成されることを表している。
 上記設定の特徴は、他車60bが他車60aと衝突するまでの時間に余裕があるほど、車線変更開始時刻の個数を増やしていることにある。例えば第1の条件のように、現時刻の速度を維持した場合に1秒以内に他車60bと他車60aが衝突する状況では、他車60bは車線移動を開始するまでの時間の余裕がほぼ無いとして、即座に車線変更を開始する運動モデルの予測のみで十分と考えられる。一方、第4,5の条件のように他車60bと他車60aの車間に余裕がある場合は、他車60bは様々な時間に車線移動を開始し得るため、車線変更開始時刻を多数設定する。
 なお上記では、車線変更開始時刻を現時刻からの経過秒数で定義したが、これを他車60bと他車60aの相対距離の比によって定義する方法も有り得る。例えば、車線変更開始時刻T (Steer)を、ある一定距離R12n/Nだけ走行するまでの時間として下式(46)のように表す。
Figure JPOXMLDOC01-appb-I000046
 ここで、nは1以上N以下の整数とし、Nは下式(47)で計算する。
Figure JPOXMLDOC01-appb-I000047
 また上記では、車線変更開始時刻の個数をTTCに基づいて決定したが、これを他車60bと他車60aとの相対距離R12の大きさによって算出する方法も有り得る。
 以上により、他車60bが選択可能な車線変更開始時刻が1つ以上設定される。この進路変更開始時刻設定部153により設定されたN個の車線変更開始時刻を示す情報はそれぞれ対応する進路変更予測部154に出力される。なお以下では、この処理により設定された車線変更開始時刻の個数をNと記述する。
 次いで、進路変更予測部154は、他車60の運動モデルとして車線移動モデルを仮定し、進路変更開始時刻設定部153により設定された対応する車線変更開始時刻に従い、他車60の移動予測範囲(車線移動予測範囲)を算出する(ステップST906、車線移動予測ステップ)。すなわち、進路変更予測部154は、現時刻からの経過時間T (Steer)で他車60bが車線移動を開始する場合の、現時刻から最大予測時間S秒後までの各サンプリング時刻における位置を推定する。なお、nは1以上N以下の整数とする。以下に、進路変更予測部154の処理の詳細について説明する。ここでは、現時刻からの経過時間T (Steer)から車線変更を開始する軌道の例として、T (Steer)までは等速直進運動し、その後は一定速度で車線変更する場合を説明する。
 進路変更予測部154は、まず、下式(48)より、現時刻kからm秒後の他車60bの車線移動予測範囲の予測ベクトルx(Steer,n) k,m(―)を計算する。
Figure JPOXMLDOC01-appb-I000048
 ここで、Φ(Steer,n) k,m-1は下式(49)で表される。
Figure JPOXMLDOC01-appb-I000049
 ここでΦ(ConstVel) k,m-1は等速モデルを表す行列であり、Φ(Steer) k,m-1は時刻k+mより車線移動を開始する車線移動モデルに応じて設定される行列である。
 また、車線移動予測範囲上の予測ベクトルの初期値は下式(50)で表される。
Figure JPOXMLDOC01-appb-I000050
 また、車線移動予測範囲の予測誤差共分散行列は下式(51)で計算される。
Figure JPOXMLDOC01-appb-I000051
 ここで、Qk,m-1は駆動雑音共分散行列であり、下式(52)で表される。
Figure JPOXMLDOC01-appb-I000052
 ここで、qは事前に設定するパワースペクトル密度のパラメータであり、I2×2は2行2列の単位行列である。
 また、車線移動予測範囲の予測誤差共分散行列の初期値は下式(53)で表される。
Figure JPOXMLDOC01-appb-I000053
 上記では、車線変更開始時刻まで他車60bが等速直進運動することを前提として移動予測範囲を算出した。しかしながら、これに限るものではなく、予め設定した等加速度で運動した後に車線変更を開始する運動モデルも有り得る。また、車線変更するまでの速度及び加速度を、他車60(図10における他車60b)とその周辺車両(図10における他車60a、他車60c、自車50)との相対距離及び相対速度に応じて変える方法も有り得る。
 以上により、追尾航跡毎に、他車60bが時刻T (Steer)で車線変更した場合のS秒後までの移動予測範囲及び予測誤差共分散行列が算出される。これらの情報は進路変更予測記憶部155に出力されて記憶される。車線移動予測範囲を示す情報は全部でN個保存される。
 次いで、信頼度比較部156は、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、各予測部151,152,154により算出された他車60の各移動予測範囲に対して信頼度を算出し、相対信頼度を算出してリスト化する。また、目標観測値データ記憶部2に記憶された目標観測値データに基づいて、進路変更予測記憶部155内の不要な移動予測範囲を示す情報を削除する(ステップST907、信頼度比較ステップ)。以下に、図12を参照しながら、信頼度比較部156の処理の詳細について説明する。
 信頼度比較部156の処理では、図12に示すように、まず、等速予測部151により算出された等速移動予測範囲(現時刻からS秒後までのサンプリング時刻毎の等速移動予測範囲、及び予測誤差共分散行列)に対し、信頼度を算出する(ステップST1201)。
 ここで、移動予測範囲の信頼度は、他車60bが移動予測範囲に沿って運動する可能性を表す指標である。また、移動予測範囲及び予測誤差共分散行列から信頼度を算出する処理は、等速移動予測範囲の場合(ステップST1201)と、減速移動予測範囲の場合(ステップST1202)と、車線移動予測範囲の場合(ステップST1206)において同一でなければならない。
 等速移動予測範囲の信頼度は例えば下式(54)で表される。
Figure JPOXMLDOC01-appb-I000054
 ここで、Mは2つの移動予測範囲が同一位置となる確率であり、下式(55)より表される。
Figure JPOXMLDOC01-appb-I000055
 また、x(l) k,mは他車60の周辺車両lの現時刻kからm秒後の移動予測範囲であり、下式(56),(57)より計算する。
Figure JPOXMLDOC01-appb-I000056

Figure JPOXMLDOC01-appb-I000057
 ここで、x(l) (+)は現時刻における他車60の周辺車両lの平滑ベクトルとする。
 また、P(l) k,mは他車60の周辺車両lの現時刻kからm秒後の予測誤差共分散行列であり、下式(58),(59)より計算する。
Figure JPOXMLDOC01-appb-I000058

Figure JPOXMLDOC01-appb-I000059
 ここで、P(l) (+)は現時刻における他車60の周辺車両lの平滑誤差共分散行列である。
 上式(54)の信頼度は、等速で移動する周辺車両の移動予測範囲と、他車60の移動予測範囲が最も接近したときの間隔を表す。したがって、この信頼度の定義は、他車60が周辺車両から離れた移動予測範囲を選択する可能性が高いとの考え方を前提とする。例えば図13では、自車50に近い第1の移動予測範囲1301及び他車60aに近い第3の移動予測範囲1303は選ばれにくいとして信頼度が低くなり、それらの中間の時刻で車線変更を開始する第2の移動予測範囲1302の信頼度が高くなる。
 次いで、減速予測部152により算出された減速移動予測範囲(現時刻からS秒後までのサンプリング時刻毎の減速移動予測範囲、及び予測誤差共分散行列)に対し、信頼度を算出する(ステップST1202)。
 ここで、等速移動予測範囲の信頼度を上式(54)とした場合、減速移動予測範囲の信頼度も同様に下式(60)で表される。
Figure JPOXMLDOC01-appb-I000060
 次いで、進路変更予測記憶部155から、現時刻において未選択の車線移動予測範囲を1つ選択する(ステップST1203)。ここでは、選択された車線移動予測範囲Aの予測ベクトルをX(Steer,A) k’,m、車線移動予測範囲Aの予測誤差共分散行列をP(Steer,A) k’,mとする。なお、進路変更予測記憶部155に記憶された車線移動予測範囲は過去に生成されたものも含まれるため、k’は現時刻又は過去の時刻を表す。
 次いで、選択した車線移動予測範囲Aの現時刻での予測位置と現時刻の他車60の観測値から、車線移動予測範囲Aの尤もらしさを表す指標(尤度)を、観測値の確率分布が予測位置を中心としたガウス分布となると仮定した下式(61)から算出する(ステップST1204)。
Figure JPOXMLDOC01-appb-I000061
 次いで、算出した尤度が以下の不等式(62)を満たすか否かを判断する(ステップST1205)。
Figure JPOXMLDOC01-appb-I000062
 ここで、Thrsholdは事前に設定する閾値パラメータである。
 このステップST1205において、尤度が不等式(62)を満たすと判断した場合には、車線移動予測範囲Aは他車60bがとり得る運動であるとして、当該車線移動予測範囲Aの信頼度を算出する(ステップST1206)。
 ここで、等速移動予測範囲の信頼度を上式(54)とした場合、車線移動予測範囲Aの信頼度も同様に下式(63)で表される。
Figure JPOXMLDOC01-appb-I000063
 一方、ステップST1205において、尤度が不等式(62)を満たさないと判断した場合には、車線移動予測範囲Aは現在の他車60の位置と大きく異なるとして、当該車線移動予測範囲Aを示す情報を進路変更予測記憶部155から削除する(ステップST1207)。
 次いで、進路変更予測記憶部155に記憶された全ての車線移動予測範囲を選択したかを判断する(ステップST1208)。このステップST1208において、進路変更予測記憶部155内に未選択の車線移動予測範囲を示す情報がある場合には、シーケンスはステップST1203に戻り、上記処理を繰り返す。
 一方、ステップST1208において、進路変更予測記憶部155に記憶された全ての車線移動予測範囲を選択したと判断した場合には、各移動予測範囲の信頼度を相対信頼度に変換する(ステップST1209)。なお、相対信頼度は、ステップST1201,1202,1206で算出された各移動予測範囲の信頼度を比較した結果を表す指標であり、例えば下式(64)より算出する。
Figure JPOXMLDOC01-appb-I000064
 ここで、bp,kは他車60bのいずれかの移動予測範囲の信頼度であり、BはステップST1201,1202,1206で算出された信頼度の総和とする。
 例えば、ある車線移動予測範囲Aの相対信頼度が0.6であった場合、「他車60bは60%の可能性で車線移動予測範囲Aの運動をする」と予測する。
 また、「他車60bは車線を維持する運動を優先して選択する」との考えに基づき、車線移動予測範囲の相対信頼度のみを低く設定してもよい。
 以上のステップST1201~ST1209により、現時刻kにおいて他車60bがとり得る移動予測範囲と、それらが相対的にどの程度の可能性で実現するかを表した相対信頼度とを一覧表示したリストが得られる。このリストは自機衝突可能性推定部11bに出力され、自車50との衝突可能性の判定に用いられる。
 また、上記では信頼度を他車60bと周辺車両との相対距離に基づいて算出したが、これを「他車60bは、衝突したときに被害が大きくなると思われる車両に接近する軌道は避ける」との考えに基づき、他車60bと周辺車両との相対速度から信頼度を算出してもよい。また、「他車60bは緩やかな車線変更ほど選択しやすい」との考えに基づき、他車60bの車線変更する際の角度が緩やかな移動予測範囲ほど信頼度が高くなるようにしてもよい。
 再び図9に示す衝突防止装置の全体動作に戻り、自機運動センサ8は、自車50の位置及び速度を含む運動諸元を観測する(ステップST908、自機運動ステップ)。この処理は実施の形態1と同様である。この自機運動センサ8による観測結果を示す情報(自機運動データ)は自機運動データ記憶部9に出力されて記憶される。
 次いで、自機運動予測部10は、自機運動データ記憶部9に記憶された自機運動データに基づいて、自車50の未来での位置及び速度を予測し、その予測誤差共分散行列より自車50の移動予測範囲を算出する(ステップST909、自機運動予測ステップ)。この処理は実施の形態1と同様である。この自機運動予測部10により算出された自車50の移動予測範囲を示す情報は自機衝突可能性推定部11bに出力される。
 次いで、自機衝突可能性推定部11bは、目標運動予測部15により得られたリストに示された他車60の移動予測範囲と、自機運動予測部10により算出された自車50の移動予測範囲との重なり、及び当該リストに示された他車60の移動予測範囲の信頼度(相対信頼度)から、自車50と他車60との衝突可能性を推定する(ステップST910、自機衝突可能性推定ステップ)。
 具体的には、上記衝突可能性の推定は下式(65)の成否により行う。そして、下式(65)が成立する場合は自車50と他車60が衝突する可能性があると推定する。
Figure JPOXMLDOC01-appb-I000065
 ここで、xp,k及びPp,kは相対信頼度βp,kに対応する他車60bの移動予測範囲及び予測誤差共分散行列である。また、thresholdは事前に設定する閾値パラメータである。
 この自機衝突可能性推定部11bにより推定された自車50と他車60との衝突可能性を示す情報は制動判断部12に出力される。
 次いで、制動判断部12は、自機衝突可能性推定部11bによる推定結果に基づいて、自車50の制動の要否を判断する(ステップST911、制御判断ステップ)。そして、自機衝突可能性推定部11bが自車50と他車60との衝突可能性があると推定して制動判断部12が自車50の制動を要する判断した場合には、自動ブレーキ部13を通じて自動制動による自車50の減速機能を動作させたり、警告発生部14を通じて自車50の運転者に現時点でブレーキ操作が必要である旨のメッセージの提示や音声の出力を行う。
 以上の処理を定期的に繰り返すことにより、自車50の衝突防止対策が常時可能となる。
 以上のように、この実施の形態2によれば、他車60間の位置及び速度から、車線移動モデルの数を可変とするように構成したので、例えば図10に示すような並走車の車線変更の開始が遅れる場合を考慮した予測が可能となり、実施の形態1に対し、自車50との衝突可能性の判断精度がさらに向上する。また、実施の形態2では、他車60間の位置及び速度に応じて、車線移動モデルの数を可変としたので、実現可能性が低い移動予測範囲の算出処理が省略され、他車60の算出処理における演算負荷を削減することができる。
実施の形態3.
 実施の形態2では、他車60の周囲の空間の空き状況に応じて、車線変更の開始時刻を1つ以上設定し、車線移動モデル(進路変更モデル)の数を可変とする場合について示した。それに対し、実施の形態3では、他車60の周囲の空間の空き状況に応じて、減速モデルのパラメータ及び車線移動モデルのパラメータをそれぞれ1つ以上設定する場合について示す。
 図14はこの発明の実施の形態3に係る衝突防止装置の構成を示す図である。この図14に示す実施の形態3に係る衝突防止装置は、図8に示す実施の形態2に係る衝突防止装置に減速パラメータ設定部157を追加し、減速予測部152を複数設け、進路変更開始時刻設定部153を進路変更パラメータ設定部158に変更したものである。その他の構成は同様であり、同一の符号を付して異なる部分についてのみ説明を行う。
 減速パラメータ設定部157は、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、他車60同士の位置及び速度から、減速モデルのパラメータを1つ以上設定するものである。この減速パラメータ設定部157により設定されたパラメータを示す情報はそれぞれ対応する減速予測部152に出力される。
 また、減速予測部152は、減速パラメータ設定部157により設定された対応するパラメータを用いて減速モデルを仮定し、他車60の移動予測範囲(減速移動予測範囲)を算出する。
 進路変更パラメータ設定部158は、目標追尾データ記憶部4に記憶された目標追尾データに基づいて、他車60同士の位置及び速度から、車線移動モデルのパラメータを1つ以上設定するものである。この進路変更パラメータ設定部158により設定されたパラメータを示す情報はそれぞれ対応する進路変更予測部154に出力される。
 また、進路変更予測部154は、進路変更パラメータ設定部158により設定された対応するパラメータを用いて車線移動モデルを仮定し、他車60の移動予測範囲(車線移動予測範囲)を算出する。
 ここで、減速パラメータ設定部157により設定される減速モデルのパラメータは、例えば他車60の加速度である。
 また、進路変更パラメータ設定部158により設定される車線移動モデルのパラメータは、例えば、現時刻から何秒後に車線変更を開始するかを示す車線変更開始時刻、車線に対してどの程度の角度で車線変更するかを示す車線変更角度(進路変更角度)、車線変更を開始する前にどの程度加速又は減速するかを示す車線変更前加速度、車線変更中にどの程度加速又は減速するかを示す車線変更中加速度、車線変更を終えた後にどの程度加速又は減速するかを示す車線変更後加速度が挙げられる。
 以上のように、この実施の形態3によれば、他車60間の位置及び速度から、他車60の周囲の空間の空き状況に応じて、減速モデルのパラメータ及び車線移動モデルのパラメータを1つ以上設定するように構成したので、例えば他車60が前方車の速度に応じて減速する運動を予測することができ、実施の形態1に対して、自車50との衝突可能性の判断精度がさらに向上する。また、他車60が車線変更先の車間に応じて車線変更角度、車線変更前後の加速度を調整する運動を予測することができ、さらに自車50との衝突可能性の判断精度が向上する。
 なお上記では、本発明に係る衝突防止装置を自動車に適用し、自車50とその周囲に存在する他車60との衝突を回避する場合を例に説明を行った。しかしながら、これに限るものではなく、本発明に係る衝突防止装置をその他の移動体(艦船、航空機等)に適用し、その周囲に存在する目標(艦船、航空機等)との衝突を回避するようにしてもよく、同様の効果を得ることができる。
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る衝突防止装置は、複数の目標の運動を検出して運動予測の精度を向上することができ、自機が搭載された移動体の周囲に存在する目標の運動を予測して、当該移動体との衝突を回避する衝突防止装置等に用いるのに適している。
 1 目標観測センサ、2 目標観測値データ記憶部、3 目標追尾部、4 目標追尾データ記憶部、5 目標運動予測部、6 目標間衝突可能性推定部、7 目標運動再予測部、8 自機運動センサ、9 自機運動データ記憶部、10 自機運動予測部、11,11b 自機衝突可能性推定部、12 制動判断部、13 自動ブレーキ部、14 警告発生部、15 目標運動予測部、50 自車、60,60a~60c 他車、151 等速予測部、152 減速予測部、153 進路変更開始時刻設定部、154 進路変更予測部、155 進路変更予測記憶部、156 信頼度比較部、157 減速パラメータ設定部、158 進路変更パラメータ設定部。

Claims (7)

  1.  自機が搭載された移動体の周囲に存在する目標を観測する目標観測センサと、
     前記目標観測センサによる観測結果に基づいて、前記目標を追尾する目標追尾部と、
     前記目標追尾部による追尾結果に基づいて、前記目標の移動予測範囲を算出する目標運動予測部と、
     前記目標が複数存在する場合に、前記目標運動予測部により算出された前記目標の移動予測範囲の重なりから、当該目標同士の衝突可能性を推定する目標間衝突可能性推定部と、
     前記目標間衝突可能性推定部により前記目標同士の衝突可能性があると推定された場合に、衝突を回避するような当該目標の移動予測範囲を再算出する目標運動再予測部と、
     前記移動体の運動を観測する自機運動センサと、
     前記自機運動センサによる観測結果に基づいて、前記移動体の移動予測範囲を算出する自機運動予測部と、
     前記目標運動予測部又は前記目標運動再予測部により算出された前記目標同士の衝突可能性のない当該目標の移動予測範囲と、前記自機運動予測部により算出された前記移動体の移動予測範囲との重なりから、当該移動体と当該目標との衝突可能性を推定する自機衝突可能性推定部と
     を備えた衝突防止装置。
  2.  前記目標運動再予測部は、前記目標が衝突を回避するように行う運動の選択において、当該目標の周囲の空間の空き状況に応じて当該運動に対する重み付けを行う
     ことを特徴とする請求項1記載の衝突防止装置。
  3.  前記目標運動再予測部は、前記目標が衝突を回避するように行う運動の選択において、当該目標が直進運動を優先するように当該運動に対する重み付けを行う
     ことを特徴とする請求項1記載の衝突防止装置。
  4.  自機が搭載された移動体の周囲に存在する目標を観測する目標観測センサと、
     前記目標観測センサによる観測結果に基づいて、前記目標を追尾する目標追尾部と、
     前記目標追尾部による追尾結果に基づいて、前記目標同士の位置及び速度から運動モデルを設定して当該目標の移動予測範囲及び当該移動予測範囲の信頼度を算出する目標運動予測部と、
     前記移動体の運動を観測する自機運動センサと、
     前記自機運動センサによる観測結果に基づいて、前記移動体の移動予測範囲を算出する自機運動予測部と、
     前記目標運動予測部により算出された前記目標の移動予測範囲と、前記自機運動予測部により算出された前記移動体の移動予測範囲との重なり、及び当該目標の移動予測範囲の信頼度から、当該移動体と当該目標との衝突可能性を推定する自機衝突可能性推定部と
     を備えた衝突防止装置。
  5.  前記目標運動予測部は、前記目標の周囲の空間の空き状況に応じて、前記目標の運動モデルである進路変更モデルでの進路変更の開始時刻を1つ以上設定する
     ことを特徴とする請求項4記載の衝突防止装置。
  6.  前記目標運動予測部は、前記目標の周囲の空間の空き状況に応じて、前記目標の運動モデルである減速モデルでの加速度を1つ以上設定する
     ことを特徴とする請求項4記載の衝突防止装置。
  7.  前記目標運動予測部は、前記目標の周囲の空間の空き状況に応じて、前記目標の運動モデルである進路変更モデルでの加速度及び進路変更角度を1つ以上設定する
     ことを特徴とする請求項4記載の衝突防止装置。
PCT/JP2015/058283 2014-04-08 2015-03-19 衝突防止装置 WO2015156097A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580015922.2A CN106164999B (zh) 2014-04-08 2015-03-19 碰撞防止装置
JP2016512646A JP6207723B2 (ja) 2014-04-08 2015-03-19 衝突防止装置
US15/126,731 US10011276B2 (en) 2014-04-08 2015-03-19 Collision avoidance device
DE112015001754.2T DE112015001754B4 (de) 2014-04-08 2015-03-19 Kollisionsvermeidungseinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2014/060192 2014-04-08
PCT/JP2014/060192 WO2015155833A1 (ja) 2014-04-08 2014-04-08 衝突防止装置

Publications (1)

Publication Number Publication Date
WO2015156097A1 true WO2015156097A1 (ja) 2015-10-15

Family

ID=54287436

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/060192 WO2015155833A1 (ja) 2014-04-08 2014-04-08 衝突防止装置
PCT/JP2015/058283 WO2015156097A1 (ja) 2014-04-08 2015-03-19 衝突防止装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060192 WO2015155833A1 (ja) 2014-04-08 2014-04-08 衝突防止装置

Country Status (5)

Country Link
US (1) US10011276B2 (ja)
JP (1) JP6207723B2 (ja)
CN (1) CN106164999B (ja)
DE (1) DE112015001754B4 (ja)
WO (2) WO2015155833A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017141765A1 (ja) * 2016-02-16 2018-09-27 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
JP2021518822A (ja) * 2018-12-26 2021-08-05 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッドBaidu.com Times Technology (Beijing) Co., Ltd. 自律走行車中の非回避計画システムにおける障害物フィルタリングの方法
WO2023008022A1 (ja) * 2021-07-28 2023-02-02 株式会社デンソー イベント記録システム、イベント記録装置、イベント記録方法、イベント記録プログラム
DE102022210626A1 (de) 2021-10-18 2023-04-20 Mitsubishi Electric Corporation Kursvorhersagevorrichtung
JP7390977B2 (ja) 2020-05-26 2023-12-04 清水建設株式会社 安全管理システム、及び、安全管理方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879008B2 (ja) * 2013-05-24 2016-03-08 楽天株式会社 情報処理装置、情報処理方法及び情報処理プログラム
WO2015155833A1 (ja) 2014-04-08 2015-10-15 三菱電機株式会社 衝突防止装置
US10269126B2 (en) * 2014-06-30 2019-04-23 Nec Corporation Image processing apparatus, monitoring system, image processing method, and program
EP2990290B1 (en) * 2014-09-01 2019-11-06 Honda Research Institute Europe GmbH Method and system for post-collision manoeuvre planning and vehicle equipped with such system
EP3141926B1 (en) * 2015-09-10 2018-04-04 Continental Automotive GmbH Automated detection of hazardous drifting vehicles by vehicle sensors
JP6504078B2 (ja) * 2016-02-24 2019-04-24 株式会社デンソー 衝突予測装置
KR101866014B1 (ko) * 2016-03-22 2018-06-08 현대자동차주식회사 차량의 측면충돌 회피 시스템 및 그 방법
US10640111B1 (en) * 2016-09-07 2020-05-05 Waymo Llc Speed planning for autonomous vehicles
CN108202740B (zh) * 2016-12-16 2021-06-22 奥迪股份公司 防碰撞辅助系统和方法
MX2019008618A (es) * 2017-01-20 2019-09-09 Nissan Motor Metodo de prediccion de comportamiento de vehiculo y aparato de prediccion de comportamiento de vehiculo.
US10421452B2 (en) * 2017-03-06 2019-09-24 GM Global Technology Operations LLC Soft track maintenance
WO2018220418A1 (en) * 2017-06-02 2018-12-06 Toyota Motor Europe Driving assistance method and system
KR101956689B1 (ko) * 2017-10-16 2019-07-04 주식회사 만도 긴급차량 운행경로 생성기능을 갖는 자동 순항 제어장치 및 제어방법
JP6937218B2 (ja) * 2017-10-19 2021-09-22 株式会社東芝 情報処理装置、情報処理方法、およびプログラム
CN108032858B (zh) * 2017-11-30 2020-06-12 广州小鹏汽车科技有限公司 基于旁车行驶路径预测的自适应巡航控制方法及系统
US11273836B2 (en) * 2017-12-18 2022-03-15 Plusai, Inc. Method and system for human-like driving lane planning in autonomous driving vehicles
JP6586685B2 (ja) * 2017-12-27 2019-10-09 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN110264741B (zh) * 2018-03-12 2021-09-17 深圳鼎然信息科技有限公司 基于运动传感器的路况检测方法、装置、设备及介质
JP6985207B2 (ja) * 2018-05-09 2021-12-22 トヨタ自動車株式会社 自動運転システム
JP7080320B2 (ja) * 2018-06-27 2022-06-03 古野電気株式会社 衝突警報装置及び衝突警報方法
JP2020030600A (ja) * 2018-08-22 2020-02-27 アイシン・エィ・ダブリュ株式会社 車両運転補助システム、車両運転補助方法、及び車両運転補助プログラム
US11256964B2 (en) * 2018-10-11 2022-02-22 Qualcomm Incorporated Recursive multi-fidelity behavior prediction
FR3089926B1 (fr) * 2018-12-13 2021-05-28 Psa Automobiles Sa Consolidation d’un indicateur de présence d’un objet cible pour une conduite autonome
FR3089925B1 (fr) * 2018-12-13 2020-11-20 Psa Automobiles Sa Conduite autonome sécurisée dans le cas d’une détection d’un objet cible
US10901375B2 (en) * 2019-01-31 2021-01-26 Morgan Stanley Services Group Inc. Chaotic system anomaly response by artificial intelligence
FR3092548B1 (fr) * 2019-02-11 2024-07-05 Psa Automobiles Sa Procédé et système pour gérer le fonctionnement d’un appareillage de régulation de vitesse adaptatif d’un système d’aide à la conduite d’un véhicule terrestre à moteur
CN109583151B (zh) * 2019-02-20 2023-07-21 阿波罗智能技术(北京)有限公司 车辆的行驶轨迹预测方法及装置
CN112061119A (zh) * 2019-05-24 2020-12-11 奥迪股份公司 二次碰撞预防系统、包括其的车辆及相应的方法和介质
DE102020206659A1 (de) 2019-05-30 2020-12-03 Robert Bosch Gesellschaft mit beschränkter Haftung Multi-hypothesen-objektverfologung für automatisierte fahrsysteme
US11663913B2 (en) * 2019-07-01 2023-05-30 Baidu Usa Llc Neural network with lane aggregation for lane selection prediction of moving objects during autonomous driving
DE102019213222B4 (de) * 2019-09-02 2022-09-29 Volkswagen Aktiengesellschaft Verfahren zum Vorhersagen einer zukünftigen Fahr-Situation eines am Straßenverkehr teilnehmenden Fremd-Objektes, Vorrichtung, Fahrzeug
DE102019129879A1 (de) * 2019-11-06 2021-05-06 Zf Friedrichshafen Ag Verfahren sowie Steuergerät zum Steuern eines Kraftfahrzeugs
JP2023502598A (ja) 2019-11-13 2023-01-25 ズークス インコーポレイテッド 統計モデルを用いる衝突モニタリング
US11697412B2 (en) * 2019-11-13 2023-07-11 Zoox, Inc. Collision monitoring using statistic models
US11648939B2 (en) * 2019-11-13 2023-05-16 Zoox, Inc. Collision monitoring using system data
JP2020053069A (ja) * 2019-11-21 2020-04-02 日立オートモティブシステムズ株式会社 車載用電子制御装置
EP3866074B1 (en) * 2020-02-14 2022-11-30 Robert Bosch GmbH Method and device for controlling a robot
US20210339741A1 (en) * 2020-04-30 2021-11-04 Zoox, Inc. Constraining vehicle operation based on uncertainty in perception and/or prediction
CN114056347A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 车辆运动状态识别方法及装置
US11738772B1 (en) * 2020-12-18 2023-08-29 Zoox, Inc. Object avoidance with perceived safety subgoal
US11711690B2 (en) * 2021-09-22 2023-07-25 Capital One Services, Llc Methods and systems for facilitating variable authentication of users on mobile devices
CN114464015B (zh) * 2022-02-08 2023-05-02 北京百度网讯科技有限公司 数据处理方法、装置、电子设备以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043090A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 走行制御計画評価装置
JP2011220727A (ja) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp 予測装置及び予測システム及びコンピュータプログラム及び予測方法
JP2013180606A (ja) * 2012-02-29 2013-09-12 Nippon Soken Inc 車両走行制御装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699924B1 (en) * 1994-08-24 1999-10-06 Delco Electronics Corporation Vehicle obstruction discrimination system
JP3145893B2 (ja) 1995-03-30 2001-03-12 三菱電機株式会社 目標追尾装置
JP3487054B2 (ja) * 1995-12-26 2004-01-13 株式会社デンソー 車両用障害物警報装置
US6445308B1 (en) 1999-01-12 2002-09-03 Toyota Jidosha Kabushiki Kaisha Positional data utilizing inter-vehicle communication method and traveling control apparatus
JP3501009B2 (ja) 1999-03-26 2004-02-23 トヨタ自動車株式会社 車両衝突回避制御装置
JP2006031443A (ja) 2004-07-16 2006-02-02 Denso Corp 衝突回避通知システム
US7991550B2 (en) * 2006-02-03 2011-08-02 GM Global Technology Operations LLC Method and apparatus for on-vehicle calibration and orientation of object-tracking systems
WO2007102367A1 (ja) 2006-02-28 2007-09-13 Toyota Jidosha Kabushiki Kaisha 物体進路予測方法、装置、プログラム、および自動運転システム
JP4884806B2 (ja) * 2006-03-14 2012-02-29 本田技研工業株式会社 車両周辺監視システム
US8396595B2 (en) * 2007-11-01 2013-03-12 Honda Motor Co., Ltd. Real-time self collision and obstacle avoidance using weighting matrix
JP5098584B2 (ja) * 2007-11-09 2012-12-12 日産自動車株式会社 車両用運転支援装置
JP4978494B2 (ja) * 2008-02-07 2012-07-18 トヨタ自動車株式会社 自律移動体、及びその制御方法
JP5336800B2 (ja) 2008-09-24 2013-11-06 富士重工業株式会社 車両の運転支援装置
US8260498B2 (en) * 2009-10-27 2012-09-04 GM Global Technology Operations LLC Function decomposition and control architecture for complex vehicle control system
JP5607409B2 (ja) 2010-04-06 2014-10-15 トヨタ自動車株式会社 対象物リスク予測装置
EP2508956B1 (en) * 2011-04-06 2013-10-30 Kollmorgen Särö AB A collision avoiding method and system
US20120286974A1 (en) * 2011-05-11 2012-11-15 Siemens Corporation Hit and Run Prevention and Documentation System for Vehicles
US20130158809A1 (en) * 2011-12-15 2013-06-20 Ford Global Technologies, Llc Method and system for estimating real-time vehicle crash parameters
US8706393B2 (en) * 2012-01-10 2014-04-22 Ford Global Technologies, Llc Intersection collision avoidance with adaptable vehicle dimensions
DE102012011994A1 (de) 2012-06-16 2013-12-19 Volkswagen Aktiengesellschaft Verfahren zur Unterstützung von Fahrerassistenz- und/oder Sicherheitsfunktionen von Kraftfahrzeugen
WO2014010066A1 (ja) * 2012-07-12 2014-01-16 トヨタ自動車 株式会社 車両の警報装置
WO2014024284A1 (ja) * 2012-08-08 2014-02-13 トヨタ自動車株式会社 衝突予測装置
DE102013005404A1 (de) 2013-03-28 2013-09-19 Daimler Ag Verfahren zur Unterstützung eines Fahrers eines Fahrzeuges
EP2865576B1 (en) * 2013-10-22 2018-07-04 Honda Research Institute Europe GmbH Composite confidence estimation for predictive driver assistant systems
WO2015155833A1 (ja) 2014-04-08 2015-10-15 三菱電機株式会社 衝突防止装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043090A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 走行制御計画評価装置
JP2011220727A (ja) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp 予測装置及び予測システム及びコンピュータプログラム及び予測方法
JP2013180606A (ja) * 2012-02-29 2013-09-12 Nippon Soken Inc 車両走行制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017141765A1 (ja) * 2016-02-16 2018-09-27 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
JP2021518822A (ja) * 2018-12-26 2021-08-05 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッドBaidu.com Times Technology (Beijing) Co., Ltd. 自律走行車中の非回避計画システムにおける障害物フィルタリングの方法
JP7309613B2 (ja) 2018-12-26 2023-07-18 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッド 自律走行車中の非回避計画システムにおける障害物フィルタリングの方法
JP7390977B2 (ja) 2020-05-26 2023-12-04 清水建設株式会社 安全管理システム、及び、安全管理方法
WO2023008022A1 (ja) * 2021-07-28 2023-02-02 株式会社デンソー イベント記録システム、イベント記録装置、イベント記録方法、イベント記録プログラム
JP2023018961A (ja) * 2021-07-28 2023-02-09 株式会社デンソー イベント記録システム、イベント記録装置、イベント記録方法、イベント記録プログラム
JP7380656B2 (ja) 2021-07-28 2023-11-15 株式会社デンソー イベント記録システム、イベント記録装置、イベント記録方法、イベント記録プログラム
DE102022210626A1 (de) 2021-10-18 2023-04-20 Mitsubishi Electric Corporation Kursvorhersagevorrichtung

Also Published As

Publication number Publication date
JP6207723B2 (ja) 2017-10-04
CN106164999B (zh) 2018-10-30
CN106164999A (zh) 2016-11-23
DE112015001754T5 (de) 2016-12-22
JPWO2015156097A1 (ja) 2017-04-13
US10011276B2 (en) 2018-07-03
US20170210379A1 (en) 2017-07-27
DE112015001754B4 (de) 2023-02-09
WO2015155833A1 (ja) 2015-10-15

Similar Documents

Publication Publication Date Title
JP6207723B2 (ja) 衝突防止装置
JP6831420B2 (ja) 自動運転車の軌跡候補を評価するための方法
CN112242069B (zh) 一种确定车速的方法和装置
JP6578331B2 (ja) 自律走行車のコマンド遅延を決定するための方法
JP6494715B2 (ja) 自律走行車の速度制御率の動的調整方法
US10232849B2 (en) Collision mitigation and avoidance
US11898855B2 (en) Assistance control system that prioritizes route candidates based on unsuitable sections thereof
KR102569900B1 (ko) 전방위 센서퓨전 장치 및 그의 센서퓨전 방법과 그를 포함하는 차량
JP6558214B2 (ja) 自動運転装置
JP6571904B1 (ja) 車載装置、情報処理方法及び情報処理プログラム
JP2018158719A (ja) 自動運転車両に用いられる制御型の計画と制御システム
US20200385017A1 (en) Vehicle control device and vehicle control method
CN111103587A (zh) 用于预测同时并线车辆的方法和设备及包括其的车辆
CN116872921A (zh) 一种车辆规避风险方法、系统、车辆及存储介质
JP6350149B2 (ja) 合流支援システム
JP7137151B2 (ja) 運行制御装置及び車両
CN113525358A (zh) 车辆控制装置以及车辆控制方法
CN112686421A (zh) 将来行动推定装置、将来行动推定方法及存储介质
CN117002528A (zh) 轨迹规划方法、设备和存储介质
CN110497906A (zh) 车辆控制方法、装置、设备和介质
WO2022065045A1 (ja) 自動運転装置
KR20200084440A (ko) 무선통신을 포함한 차량센서 기반의 객체선정 알고리즘 및 주변차량 주행 의도를 고려한 경로 예측 방법 및 시스템
CN115123297A (zh) 车辆控制方法、装置、设备、车辆和存储介质
JP6594565B1 (ja) 車載装置、情報処理方法及び情報処理プログラム
JPWO2020158020A1 (ja) 計測装置、計測方法及び計測プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512646

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15126731

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015001754

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15777207

Country of ref document: EP

Kind code of ref document: A1