KR20200084440A - 무선통신을 포함한 차량센서 기반의 객체선정 알고리즘 및 주변차량 주행 의도를 고려한 경로 예측 방법 및 시스템 - Google Patents

무선통신을 포함한 차량센서 기반의 객체선정 알고리즘 및 주변차량 주행 의도를 고려한 경로 예측 방법 및 시스템 Download PDF

Info

Publication number
KR20200084440A
KR20200084440A KR1020180169636A KR20180169636A KR20200084440A KR 20200084440 A KR20200084440 A KR 20200084440A KR 1020180169636 A KR1020180169636 A KR 1020180169636A KR 20180169636 A KR20180169636 A KR 20180169636A KR 20200084440 A KR20200084440 A KR 20200084440A
Authority
KR
South Korea
Prior art keywords
vehicle
lane
information
interest
path
Prior art date
Application number
KR1020180169636A
Other languages
English (en)
Other versions
KR102179835B1 (ko
Inventor
이상선
백민진
최동호
김우중
문중위
서효승
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020180169636A priority Critical patent/KR102179835B1/ko
Publication of KR20200084440A publication Critical patent/KR20200084440A/ko
Application granted granted Critical
Publication of KR102179835B1 publication Critical patent/KR102179835B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • B60W2420/408
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/42Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/52Radar, Lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18166Overtaking, changing lanes

Abstract

무선통신을 포함한 차량센서 기반의 객체선정 알고리즘 및 주변차량 주행 의도를 고려한 경로 예측 방법 및 시스템을 개시한다. 일실시예에서 경로 예측 방법은, 자차량과 연계된 복수의 센서들로부터의 정보 및 외부 통신을 통해 수신되는 정보를 이용하여 융합 데이터를 생성하는 단계, 상기 생성된 융합 데이터를 이용하여 관심 차량을 선정하는 단계, 상기 선정된 관심 차량의 차선변경 의도를 결정하는 단계 및 상기 적어도 하나의 프로세서에 의해, 상기 결정된 차선변경 의도에 따라 상기 선정된 관심 차량의 예측 경로를 생성하는 단계를 포함할 수 있다.

Description

무선통신을 포함한 차량센서 기반의 객체선정 알고리즘 및 주변차량 주행 의도를 고려한 경로 예측 방법 및 시스템{METHOD AND SYSTEM FOR PATH PREDICTION CONSIDERING VEHICLE TRAVEL INTENTION AND OBJECT SELECTION ALGORITHM BASED ON VEHICLE SENSOR INCLUDING WIRELESS COMMUNICATION}
아래의 설명은 무선통신을 포함한 차량센서 기반의 객체선정 알고리즘 및 주변차량 주행 의도를 고려한 경로 예측 방법 및 시스템에 관한 것이다.
자율주행차는 운전자가 차량을 조작하지 않아도 스스로 주행하는 자동차를 의미한다. 일례로, 한국공개특허 제10-2018-0086632호는 자율주행 차량의 행동 결정 장치 및 방법에 관한 것으로, 자율주행 차량의 전방에 정지해 있는 객체가 있거나 또는 저속으로 주행하는 객체가 있는 경우, 도로의 주행상황에 맞는 정확한 판단을 할 수 있는, 자율주행 차량의 행동 결정 장치 및 방법을 개시하고 있다.
한편, 자율주행 레벨2 수준의 ADAS(Advanced Driver Assistance System)를 포함하는 자동차들이 많이 보급되었지만, ADAS가 작동하려면 주변차량 및 주행도로환경 정보를 통하여 자차량의 주행경로에 속할 타겟 차량을 선정하는 기술이 요구된다. 최근 도로 곡률과 같은 도로환경을 반영하여 곡선도로에서도 선행 차량 추종능력을 향상시켰으나 주변차량이 자차량 주행경로로 차선변경을 할 경우, 타겟으로 선정한 차량이 갑작스럽게 바뀌게 되어 불필요한 감속이 발생하고 승차감 저하를 야기하는 문제점이 있다. 또한, 통신장비를 포함한 센서로부터 취득한 자차량 이외의 차량에 대한 데이터는 너무 많기 때문에 실시간 처리에는 하드웨어적 한계가 존재하는 문제점이 있다.
자차량이 V2X를 통해 주변 차량들로부터 얻은 정보, ADAS 센서 및 차량 내부센서 데이터 값으로 얻은 정보를 융합함으로써 신뢰도 높은 경로를 예측할 수 있는 경로 예측 방법, 상기 방법을 수행하는 컴퓨터 장치, 상기 컴퓨터 장치와 결합되어 상기 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장된 컴퓨터 프로그램과 그 기록매체를 제공한다.
경로예측 대상 객체를 한정하여 연산부하를 경감시킬 수 있는 경로 예측 방법, 상기 방법을 수행하는 컴퓨터 장치, 상기 컴퓨터 장치와 결합되어 상기 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장된 컴퓨터 프로그램과 그 기록매체를 제공한다.
적어도 하나의 프로세서를 포함하는 컴퓨터 장치의 경로 예측 방법에 있어서, 상기 적어도 하나의 프로세서에 의해, 자차량과 연계된 복수의 센서들로부터의 정보 및 외부 통신을 통해 수신되는 정보를 이용하여 융합 데이터를 생성하는 단계; 상기 적어도 하나의 프로세서에 의해, 상기 생성된 융합 데이터를 이용하여 관심 차량을 선정하는 단계; 상기 적어도 하나의 프로세서에 의해, 상기 선정된 관심 차량의 차선변경 의도를 결정하는 단계; 및 상기 적어도 하나의 프로세서에 의해, 상기 결정된 차선변경 의도에 따라 상기 선정된 관심 차량의 예측 경로를 생성하는 단계를 포함하는 경로 예측 방법을 제공한다.
일측에 따르면, 상기 융합 데이터를 생성하는 단계는, 제1 차량에 대해 상기 외부 통신을 통해 현재의 제1 정보가 수신되는 경우, 상기 제1 정보를 이용하여 융합 데이터를 생성하는 단계; 상기 제1 정보가 수신되지 않으면서 상기 제1 차량에 대해 이전에 수신된 제2 정보가 존재하는 경우, 상기 제2 정보를 이용하여 융합 데이터를 생성하는 단계; 및 상기 제1 정보가 수신되지 않으면서 상기 제2 정보가 존재하지 않는 경우, 복수의 센서들로부터의 정보를 이용하여 융합 데이터를 생성하는 단계를 포함하는 것을 특징으로 할 수 있다.
다른 측면에 따르면, 상기 복수의 센서들로부터의 정보를 이용하여 융합 데이터를 생성하는 단계는, 상기 복수의 센서들 각각의 출력값에 대한 가중평균을 이용하여 상기 융합 데이터를 생성하고, 상기 가중평균에 이용되는 가중치는 상기 복수의 센서들 각각의 출력값에 대한 오차 공분산의 역수를 이용하여 결정되는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 복수의 센서들은 레이다(radar), 라이다(lidar) 및 카메라를 포함하고, 상기 복수의 센서들로부터의 정보를 이용하여 융합 데이터를 생성하는 단계는, 상기 레이다, 상기 라이다 및 상기 카메라의 출력값을 이용하여 주변차량 정보를 검출하고, 상기 카메라를 이용하여 차선 정보를 검출하여 상기 융합 데이터를 생성하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 융합 데이터는 차량의 횡속도(Lateral Velocity) 및 차량의 차선과의 거리(Lateral Offset) 중 적어도 하나를 포함하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 관심 차량을 선정하는 단계는, 상기 자차량의 주변에 기설정된 복수의 영역들에 중심이 위치하는 차량을 상기 관심 차량으로서 선정하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 복수의 영역들은 자차량 전방 좌측 차로의 제1 영역, 자차량 전방 차로의 제2 영역, 자차량 전방 우측 차로의 제3 영역, 자차량 좌측 차로의 제4 영역, 자차량 우측 차로의 제5 영역, 자차량 후방 좌측 차로의 제6 영역, 자차량 후방 차로의 제7 영역 및 자차량 후방 우측 차로의 제8 영역을 포함하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 복수의 영역들 중 상기 제4 영역 및 상기 제5 영역 각각의 길이는 상기 자차량의 길이에 기초하여 결정되고, 나머지 영역들 각각의 길이는 상기 자차량의 속도, 상기 자차량의 가속도 및 기설정된 임계값에 의해 결정되는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 차선변경 의도를 결정하는 단계는, 실제 차량들에 대한 데이터를 통해 선학습된 기계학습모델을 이용하여 상기 선정된 관심 차량의 차선 유지, 좌측 차선 변경 및 우측 차선 변경 중 하나에 대한 의도를 결정하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 기계학습모델은 가우시안 커널 함수(Gaussian kernel function)를 이용하여 학습되는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 예측 경로를 생성하는 단계는, 상기 선정된 관심 차량 중 상기 자차량의 차선으로 차선을 변경하는 제1 차량에 대한 차선변경 예측 경로를 생성하는 단계; 및 상기 선정된 관심 차량 중 상기 자차량의 차선에서 주행하는 제2 차량에 대한 차선유지 예측 경로를 생성하는 단계를 포함하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 차선변경 예측 경로를 생성하는 단계는, 상기 제1 차량의 차선 변경에 필요한 횡방향 거리와 횡방향 속도에 기초하여 차선 변경 소요 시간을 예측하는 단계; 상기 제1 차량의 종방향 속도와 상기 제1 차량의 종방향 가속도에 기초하여 상기 제1 차량과 상기 자차량 사이의 종방향 거리를 예측하는 단계; 및 상기 제1 차량의 차선 변경에 필요한 횡방향 거리와 상기 차선 변경 소요 시간 및 사인곡선 함수를 이용하여 상기 제1 차량과 상기 자차량 사이의 횡방향 거리를 예측하는 단계를 포함하는 것을 특징으로 할 수 있다.
또 다른 측면에 따르면, 상기 차선유지 예측 경로를 생성하는 단계는, 상기 제2 차량의 차선과의 거리, 상기 제2 차량의 주향방향 기울기 오차(heading angle error), 도로 곡률(Curvature) 및 도로 곡률의 변화율(Curvature rate) 중 적어도 하나에 기초하여 상기 차선유지 예측 경로를 생성하는 것을 특징으로 할 수 있다.
상기 방법을 컴퓨터 장치에 실행시키기 위한 컴퓨터 프로그램이 기록되어 있는 컴퓨터 판독 가능한 기록매체를 제공한다.
컴퓨터 장치와 결합하여 상기 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장된 컴퓨터 프로그램을 제공한다.
컴퓨터 장치에 있어서, 상기 컴퓨터 장치에서 판독 가능한 명령을 실행하도록 구현되는 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서에 의해, 자차량과 연계된 복수의 센서들로부터의 정보 및 외부 통신을 통해 수신되는 정보를 이용하여 융합 데이터를 생성하고, 상기 생성된 융합 데이터를 이용하여 관심 차량을 선정하고, 상기 선정된 관심 차량의 차선변경 의도를 결정하고, 상기 결정된 차선변경 의도에 따라 상기 선정된 관심 차량의 예측 경로를 생성하는 것을 특징으로 하는 컴퓨터 장치를 제공한다.
자차량이 V2X를 통해 주변 차량들로부터 얻은 정보, ADAS 센서 및 차량 내부센서 데이터 값으로 얻은 정보를 융합함으로써 신뢰도 높은 경로를 예측할 수 있으며, 경로예측 대상 객체를 한정하여 연산부하를 경감시킬 수 있다.
도 1은 본 발명의 일실시예에 따른 컴퓨터 장치의 예를 도시한 블록도이다.
도 2는 본 발명의 일실시예에 따른 경로 예측 시스템의 개괄적인 모습의 예를 도시한 도면이다.
도 3은 본 발명의 일실시예에 따른 센서부(210)의 내부 구성의 예를 도시한 도면이다.
도 4는 본 발명의 일실시예에 따른 의도판단부의 내부 구성의 예를 도시한 도면이다.
도 5는 본 발명의 일실시예에 있어서, 자차량의 주행에 영향을 줄 수 있는 객체 후보군을 선정하기 위한 예를 도시한 도면이다.
도 6은 본 발명의 일실시예에 있어서, 차선변경 의도판단의 예를 도시한 도면이다.
도 7은 본 발명의 일실시예에 있어서, 경로 예측부의 내부 구성의 예를 도시한 도면이다.
도 8은 본 발명의 일실시예에 있어서, 차선변경 경로예측의 예를 도시한 도면이다.
도 9는 본 발명의 일실시예에 있어서, 차선유지 경로 예측의 예를 도시한 도면이다.
도 10은 본 발명의 일실시예에 있어서 차선유지 경로 예측을 위한 변수를 설명하기 위한 예를 도시하고 있다.
도 11 내지 도 13은 본 발명의 일실시예에 따른 경로 예측 방법의 예를 도시한 흐름도들이다.
이하, 실시예를 첨부한 도면을 참조하여 상세히 설명한다.
본 발명의 실시예들에 따른 경로 예측 방법은, 이후 설명될 컴퓨터 장치에 의해 수행될 수 있다. 예를 들어, 컴퓨터 장치에는 본 발명의 일실시예에 따른 컴퓨터 프로그램이 설치 및 구동될 수 있고, 컴퓨터 장치는 구동된 컴퓨터 프로그램의 제어에 따라 본 발명의 일실시예에 따른 경로 예측 방법을 수행할 수 있다. 상술한 컴퓨터 프로그램은 컴퓨터 장치와 결합되어 경로 예측 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장될 수 있다. 여기서 설명한 컴퓨터 프로그램은 독립된 하나의 프로그램 패키지의 형태를 가질 수도 있고, 독립된 하나의 프로그램 패키지의 형태가 컴퓨터 장치에 기 설치되어 운영체제나 다른 프로그램 패키지들과 연계되는 형태를 가질 수도 있다. 한편, 이러한 컴퓨터 장치는 자율주행 차량에 배치, 설치 또는 위치될 수 있다.
도 1은 본 발명의 일실시예에 따른 컴퓨터 장치의 예를 도시한 블록도이다. 일례로, 본 발명의 실시예들에 따른 경로 예측 방법은 도 1에 도시된 컴퓨터 장치(100)에 의해 실행될 수 있다.
이러한 컴퓨터 장치(100)는 도 1에 도시된 바와 같이, 메모리(110), 프로세서(120), 통신 인터페이스(130) 그리고 입출력 인터페이스(140)를 포함할 수 있다. 메모리(110)는 컴퓨터에서 판독 가능한 기록매체로서, RAM(random access memory), ROM(read only memory) 및 디스크 드라이브와 같은 비소멸성 대용량 기록장치(permanent mass storage device)를 포함할 수 있다. 여기서 ROM과 디스크 드라이브와 같은 비소멸성 대용량 기록장치는 메모리(110)와는 구분되는 별도의 영구 저장 장치로서 컴퓨터 장치(100)에 포함될 수도 있다. 또한, 메모리(110)에는 운영체제와 적어도 하나의 프로그램 코드가 저장될 수 있다. 이러한 소프트웨어 구성요소들은 메모리(110)와는 별도의 컴퓨터에서 판독 가능한 기록매체로부터 메모리(110)로 로딩될 수 있다. 이러한 별도의 컴퓨터에서 판독 가능한 기록매체는 플로피 드라이브, 디스크, 테이프, DVD/CD-ROM 드라이브, 메모리 카드 등의 컴퓨터에서 판독 가능한 기록매체를 포함할 수 있다. 다른 실시예에서 소프트웨어 구성요소들은 컴퓨터에서 판독 가능한 기록매체가 아닌 통신 인터페이스(130)를 통해 메모리(110)에 로딩될 수도 있다. 예를 들어, 소프트웨어 구성요소들은 네트워크(160)를 통해 수신되는 파일들에 의해 설치되는 컴퓨터 프로그램에 기반하여 컴퓨터 장치(100)의 메모리(110)에 로딩될 수 있다.
프로세서(120)는 기본적인 산술, 로직 및 입출력 연산을 수행함으로써, 컴퓨터 프로그램의 명령을 처리하도록 구성될 수 있다. 명령은 메모리(110) 또는 통신 인터페이스(130)에 의해 프로세서(120)로 제공될 수 있다. 예를 들어 프로세서(120)는 메모리(110)와 같은 기록 장치에 저장된 프로그램 코드에 따라 수신되는 명령을 실행하도록 구성될 수 있다.
통신 인터페이스(130)은 네트워크(160)를 통해 컴퓨터 장치(100)가 다른 장치(일례로, 앞서 설명한 저장 장치들)와 서로 통신하기 위한 기능을 제공할 수 있다. 일례로, 컴퓨터 장치(100)의 프로세서(120)가 메모리(110)와 같은 기록 장치에 저장된 프로그램 코드에 따라 생성한 요청이나 명령, 데이터, 파일 등이 통신 인터페이스(130)의 제어에 따라 네트워크(160)를 통해 다른 장치들로 전달될 수 있다. 역으로, 다른 장치로부터의 신호나 명령, 데이터, 파일 등이 네트워크(160)를 거쳐 컴퓨터 장치(100)의 통신 인터페이스(130)를 통해 컴퓨터 장치(100)로 수신될 수 있다. 통신 인터페이스(130)를 통해 수신된 신호나 명령, 데이터 등은 프로세서(120)나 메모리(110)로 전달될 수 있고, 파일 등은 컴퓨터 장치(100)가 더 포함할 수 있는 저장 매체(상술한 영구 저장 장치)로 저장될 수 있다.
입출력 인터페이스(140)는 입출력 장치(150)와의 인터페이스를 위한 수단일 수 있다. 예를 들어, 입력 장치는 마이크, 키보드 또는 마우스 등의 장치를, 그리고 출력 장치는 디스플레이, 스피커와 같은 장치를 포함할 수 있다. 다른 예로 입출력 인터페이스(140)는 터치스크린과 같이 입력과 출력을 위한 기능이 하나로 통합된 장치와의 인터페이스를 위한 수단일 수도 있다. 입출력 장치(150)는 컴퓨터 장치(100)와 하나의 장치로 구성될 수도 있다.
또한, 다른 실시예들에서 컴퓨터 장치(100)는 도 1의 구성요소들보다 더 적은 혹은 더 많은 구성요소들을 포함할 수도 있다. 그러나, 대부분의 종래기술적 구성요소들을 명확하게 도시할 필요성은 없다. 예를 들어, 컴퓨터 장치(100)는 상술한 입출력 장치(150) 중 적어도 일부를 포함하도록 구현되거나 또는 트랜시버(transceiver), 데이터베이스 등과 같은 다른 구성요소들을 더 포함할 수도 있다.
통신 방식은 제한되지 않으며, 네트워크(160)가 포함할 수 있는 통신망(일례로, 이동통신망, 유선 인터넷, 무선 인터넷, 방송망)을 활용하는 통신 방식뿐만 아니라 블루투스(Bluetooth)나 NFC(Near Field Communication)와 같은 근거리 무선 통신 역시 포함될 수 있다. 예를 들어, 네트워크(160)는, PAN(personal area network), LAN(local area network), CAN(campus area network), MAN(metropolitan area network), WAN(wide area network), BBN(broadband network), 인터넷 등의 네트워크 중 하나 이상의 임의의 네트워크를 포함할 수 있다. 또한, 네트워크(160)는 버스 네트워크, 스타 네트워크, 링 네트워크, 메쉬 네트워크, 스타-버스 네트워크, 트리 또는 계층적(hierarchical) 네트워크 등을 포함하는 네트워크 토폴로지 중 임의의 하나 이상을 포함할 수 있으나, 이에 제한되지 않는다.
본 발명의 실시예들에 따른 경로 예측 방법에서는 기존 종래기술들과는 달리, 자차량의 센서로부터 획득한 정보를 V2X(Vehicle to Everything)를 통해 주변 차량으로부터 BSM(Basic Safety Message)을 이용하여 획득한 다른 센서로부터의 정보와 융합하여 센서 융합 데이터를 제공할 수 있다. 또한, 본 발명의 실시예들에 따른 경로 예측 방법에서는 V2X의 단점인 통신 지연 및 느린 정보 갱신 속도를 보완하고자 다른 센서로부터 검출된 객체가 이전에도 검출된 객체인지를 확인하고 이전에도 검출된 객체라면, 해당 객체에 대한 과거 BSM 데이터 중에서 제원 정보만을 사용하여 다이나믹 모델을(dynamic model)을 칼만 필터(Kalman filter)에 이용함으로써, 센서 융합 데이터의 신뢰성을 향상시킬 수 있다. 이때 관심대상으로 삼는 주변차량은 특정 조건을 만족한 차량으로 그 수를 최대 m(m은 자연수로 일례로, 8)대로 한정하여 연산에 대한 부하를 줄일 수 있다. 또한, 본 발명의 실시예들에 따른 경로 예측 방법에서는 융합 데이터를 기반으로 기계학습을 이용하여 주변차량의 차선변경 여부를 판단하고, 자차량의 주행차선에 영향을 미치는 주변차량에 대해서 경로예측모델을 적용하여 연산에 대한 부하를 줄일 수 있다.
도 2는 본 발명의 일실시예에 따른 경로 예측 시스템의 개괄적인 모습의 예를 도시한 도면이다. 본 실시예에 따른 경로 예측 시스템(200)은 센서부(210), 의도판단부(220) 및 경로 예측부(230)를 포함할 수 있다.
센서부(210)는 V2X와 ADAS 센서를 이용하여 주변차량 및 환경에 대한 정보를 획득할 수 있으며, 획득한 정보를 이용하여 융합 데이터를 생성할 수 있다.
의도판단부(220)는 생성한 융합 데이터를 가지고 기계학습을 이용하여 주변차량의 차선변경 의도를 판단할 수 있다.
또한, 경로 예측부(230)는 의도판단 결과에 따라 달라지는 경로예측 방법을 처리할 수 있다.
일실시예에서, 경로 예측 시스템(200)은 도 1을 통해 설명한 컴퓨터 장치(100)를 포함할 수 있다. 예를 들어, 컴퓨터 장치(100)는 자율주행 차량의 경로 예측 시스템(200)에 포함될 수 있으며, 이러한 경로 예측 시스템(200)이 포함하는 센서들과 연계될 수 있다.
도 3은 본 발명의 일실시예에 따른 센서부(210)의 내부 구성의 예를 도시한 도면이다. 센서부(210)는 레이다(310), 라이다(320), 카메라(330) 및 V2X(340)를 통해 데이터를 수집할 수 있으며, 주변차량 정보 검출 모듈(350), 차선 정보 검출 모듈(360) 및 센서 정보 융합 모듈(370)을 포함할 수 있다. 실시예에 따라 센서부(210)는 레이다(310), 라이다(320), 카메라(330) 및 V2X(340)를 직접 포함할 수도 있으나, 레이다(310), 라이다(320), 카메라(330) 및 V2X(340) 중 적어도 하나가 센서부(210)와는 개별적으로 형성(일례로, 자율주행 차량에 탑재)되어 센서부(210)와 통신하는 형태로 구현될 수도 있다. 여기서, 도 3에 도시된 "ρ"는 상대거리를, "θ"는 각도를, "v"는 상대속도를, "x"는 횡방향 좌표를, "y"는 종방향 좌표를, "α"는 가속도를, "W obj "는 객체 넓이를 각각 의미할 수 있다. 또한, "W lane "은 차선의 넓이를, "ρ lane "은 도로 곡률을 각각 의미할 수 있으며, "ψ"는 요 각도를 의미할 수 있다.
주변차량 정보 검출 모듈(350)은 레이다(310), 라이다(320) 및 카메라(330)를 통해 수집되는 정보를 이용하여 주변차량의 위치, 속도, 가속도 및/또는 크기(주변차량의 길 및/또는 폭) 등의 주변차량 정보를 검출할 수 있다.
차선 정보 검출 모듈(360)은 카메라(330)를 이용하여 도로 곡률, 차선 폭 등의 차선 정보와 같은 주행 환경에 대한 정보를 획득할 수 있다.
또한, 센서부(210)는 앞서 설명한 바와 같이, V2X(340)를 통해 다른 센서들(일례로, 주변차량의 센서 및/또는 도로 상에 배치된 센서 등)로부터의 V2X 정보를 수집할 수 있다.
이때, V2X(340)는 다른 센서들(레이다(310), 라이다(320) 및 카메라(330))의 비하여 데이터(V2X 정보)의 갱신 주기가 늦다는 단점이 있다. 그렇기 때문에 V2X 정보가 새로 수신되지 않았을 경우에는 V2X 정보를 활용할 수가 없다. 하지만, 현재 검출된 객체(주변차량)가 이전에도 검출된 이력이 있는 객체이고 해당 객체로부터 V2X 정보를 수신한 적이 있다면, 센서부(210)는 해당 객체의 타이어 코너링 강성, 질량 등과 같이 시간에 따라 변하지 않는 제원 정보를 재활용할 수 있다. 예를 들어 SAE(Society of Automotive Engineers) J2735 BSM 규격에 따르면 BSM part2 DF_VehicleData는 part1 이외의 정보를 활용하는 데이터 프레임이므로, 해당 프레임에 제원 정보를 담아 활용할 수 있다. 반대로, 센서부(210)는 V2X 정보가 수집된 경우에는 V2X 정보를 신뢰하고 사용할 수 있다. 이는 ADAS 센서로 계측한 객체에 대한 정보보다 V2X 정보의 신뢰성이 상대적으로 더 높기 때문이다.
또한, 실시예에 따라 센서부(210)에서는 자차량에 내장된 차속센서, IMU(Inertial Measurement Unit) 등으로부터의 정보를 더 수집 및 활용할 수도 있다.
센서 정보 융합 모듈(370)은 수집된 데이터를 융합하여 융합 데이터를 생성할 수 있다. 예를 들어, 융합 데이터는 아래 수학식 1에서 제시된 가중평균법을 이용하여 생성될 수 있다.
Figure pat00001
여기서, "x"는 데이터를 의미할 수 있다. 일례로, "x camera "는 카메라(330)를 통해 수집된 데이터를, "x radar "는 레이다(310)를 통해 수집된 데이터를, "x lidar "는 라이다(320)를 통해 수집된 데이터를 각각 의미할 수 있다. 또한, "x avg "는 수집된 데이터들의 가중평균을 의미할 수 있다. 이때, 가중치로 산정되는 "
Figure pat00002
"는 오차 공분산의 역수(inverse of covariance matrix)를 의미할 수 있다. 이때, 수학식 1에서는 오차 공분산의 역수(
Figure pat00003
)를 가중치로 산정하기 때문에 오차 공분산이 큰 정보는 융합 데이터 형성에 낮게 반영될 수가 있고, 오차 공분산이 낮은 정보는 크게 반영될 수가 있게 된다. 추가적으로, 센서 정보 융합 모듈(370)에서는 환경 정보를 반영하여 기계학습법에 적용시키기 위한 특징값을 생성할 수도 있다.
도 4는 본 발명의 일실시예에 따른 의도판단부의 내부 구성의 예를 도시한 도면이다. 이미 설명한 바와 같이, 의도판단부(220)는 주변차량의 차선변경 의도를 판단할 수 있다. 이러한 의도판단부(220)는 관심 차량 선정 모듈(410), 선학습(pre-training) 모듈(420) 및 의도판단 모듈(430)을 포함할 수 있다.
의도판단부(220)는 센서부(210)의 최종 단계인 센서 정보 융합 모듈(370)에서 산출한 융합 데이터와 특징값을 수신하여 기계학습을 통해 차선변경에 대한 주변차량의 의도를 판단할 수 있다. 이때 의도판단은 모든 객체에 대해서 진행하지 않고, 자차량의 주행에 영향을 줄 수 있는 후보군을 선별하여 진행될 수 있다. 의도판단에 사용되는 기계학습법으로는 SVM(Support Vector Machine)이 이용될 수 있으며, 출력값으로는 일례로 0(차선유지(Lane Keeping)), 1(좌측으로 차선변경(Left Lane Change)), 2(우측으로 차선변경(Right Lane Change))가 포함될 수 있다.
도 5는 본 발명의 일실시예에 있어서, 자차량의 주행에 영향을 줄 수 있는 객체 후보군을 선정하기 위한 예를 도시한 도면이다. 자차량(510)의 주행에 영향을 줄 수 있는 영역은 도 5에 나타난 바와 같이 자차량(510) 주위의 8개 영역으로 나뉠 수 있다. 이때, 각 영역은 아래 표 1과 같이 설명될 수 있다.
구역 설명
FL 자차량 전방 좌측 차로
F 자차량 전방 차로
FR 자차량 전방 우측차로
HL 자차량 좌측 차로
HR 자차량 우측 차로
RL 자차량 후방 좌측 차로
R 자차량 후방 차로
RR 자차량 후방 우측 차로
또한, 아래 표 2는 각 영역의 크기를 설명하고 있다. 여기서, t는 일정한 임계값(threshold)으로 조절될 수 있는 값이다.
설명
a
Figure pat00004
b
Figure pat00005
c
Figure pat00006
d
Figure pat00007
(차로폭)
Figure pat00008
자차량 길이
Figure pat00009
자차량 가속도
Figure pat00010
자차량 속도
도 4를 통해 설명한 관심 차량 선정 모듈(410)은 융합데이터를 이용하여 도 5에 나타난 관심 영역에 존재하는 관심 객체를 선정할 수 있다. 이때, 관심 차량 선정 모듈은 아래 수학식 2 및 수학식 3에 제시된 바와 같이 비용함수를 적용하여 각 영역별로 최대 하나의 객체가 포함되도록 관심 객체를 선정할 수 있다.
Figure pat00011
Figure pat00012
이때, 관심 차량 선정 모듈(410)은 객체의 중심이 어떤 영역에 속해있는지를 이용하여 해당 객체가 속한 영역을 결정할 수 있다. 따라서 관심 주변차량은 최대 8개로 한정될 수 있다.
도 6은 본 발명의 일실시예에 있어서, 차선변경 의도판단의 예를 도시한 도면이다. 관심 차량이 선정되면, 융합 데이터로부터 얻어지는 객체(선정된 관심 차량의 횡속도(Lateral Velocity), 차선과의 거리(Lateral Offset) 등이 의도판단 모듈(430)의 입력값으로 사용할 수 있다. 의도판단 모듈(430)은 선학습 모듈(420)을 통해 객체의 중심이 차선을 넘어갈 때(Lane change time), 차선변경이 이루어진다고 학습될 수 있으며, 윈도우 크기(window size)를 조절하여 언제 차선변경을 할 것인가에 대한 예측을 통해 주변차량의 차선변경에 대한 의도를 파악하도록 학습될 수 있다. 선학습 모듈(420)을 이용한 의도판단 모듈(430)의 학습에는 실제 차량들에 대한 데이터가 활용될 수 있으며, 또한 아래 수학식 4와 같은 가우시안 커널 함수(Gaussian kernel function)로 커널 트릭(kernel trick)을 사용할 수 있다. 커널 트릭은 저차원에서 해결되지 않는 문제가 고차원에서 해결되는 경우가 있기 때문에 고차원에서 문제를 푸는 방식을 말한다. SVM에서 사용되는 커널 트릭에는 동차다항식(homogeneous polynomial)과 비동차다항식(inhomogeneous polynomial), 그리고 상술한 가우시안 커널 함수가 대표적으로 사용되며, 기계학습모델의 학습을 위해 가우시안 커널 함수가 사용될 수 있다.
Figure pat00013
학습된 의도판단 모듈(430)은 선정된 관심 차량에 대해 얻어지는 차량의 횡속도(Lateral Velocity), 차선과의 거리(Lateral Offset) 등의 데이터를 입력받아 앞서 설명한 바와 같이 0(차선유지(Lane Keeping)), 1(좌측으로 차선변경(Left Lane Change)) 또는 2(우측으로 차선변경(Right Lane Change))의 출력값을 출력할 수 있다.
도 7은 본 발명의 일실시예에 있어서, 경로 예측부의 내부 구성의 예를 도시한 도면이다. 경로 예측부(230)는 경로예측 객체 선정 모듈(710), 차선변경 경로 예측 모듈(720) 및 차선유지 경로 예측 모듈(730)을 포함할 수 있다.
경로예측 객체 선정 모듈(710)은 자차량에 영향을 줄 가능성이 있는 객체를 선정할 수 있다. 예를 들어, 경로예측 객체 선정 모듈(710)은 의도판단부(220)의 의도판단 결과에 따라, 자차량의 차로와 동일한 차로를 주행할 것으로 예측되는 객체를 선정할 수 있다.
한편, 경로 예측부(230)는 경로예측 객체 선정 모듈(710)에서 선정된 객체의 경로를 예측할 수 있다. 이때, 차선변경 경로 예측 모듈(720)은 주변차량의 차선변경 의도를 판단하는 의도판단부(220)의 판단에 따라 선정된 객체의 경로를 차선유지 또는 차선변경(좌측 / 우측)으로 예측할 수 있다. 예를 들어, 경로예측 객체 선정 모듈(710)에 의해 선정된 객체에 대한 의도판단부(220)의 출력값이 0인 경우에는 차선유지의 경로를, 출력값이 1인 경우에는 좌측 차선변경의 경로를, 출력값이 2인 경우에는 우측 차선변경의 경로를 각각 예측할 수 있다.
도 8은 본 발명의 일실시예에 있어서, 차선변경 경로예측의 예를 도시한 도면이다. 도 8에서는 앞서 도 7을 통해 설명한 차선변경 경로 예측 모듈(720)에 사용되는 변수와 수식에 대해 설명하고 있다. 객체(810)가 차선 변경에 필요한 횡방향 거리(W des )는 아래 수학식 5에 나타난 바와 같이, 객체(810)가 인접한 차선과 떨어진 거리(W min )와 차선 폭의 절반(
Figure pat00014
)에 해당하는 거리의 합으로 계산될 수 있다.
Figure pat00015
등속도 모델이라 가정하고 수학식 5를 통해 얻어지는 횡방향 거리(W des )를 객체(810)의 횡방향 속도(V lat,obj )로 나누어 주면 아래 수학식 6과 같이 차선 변경 소요 시간(T total )을 구할 수 있다.
Figure pat00016
객체가 등가속도 운동을 한다고 가정하면, 센서부(210)의 융합 데이터에서 종방향에 상태값을 이용하여 아래 수학식 7과 같이 종방향 이동거리(x)를 구할 수 있다.
Figure pat00017
이때, 차선 변경하는 객체에 대한 횡방향 거동모델을 아래 수학식 8과 같은 램프 사인곡선 함수(Ramp sinusoid function)라 하면, 시간에 따른 객체의 횡방향 거리(y)를 구할 수 있다.
Figure pat00018
차선유지 경로 예측 모듈(730)은 현재 차선을 유지하도록 객체가 주행하고 있는 차선의 궤적과 동일한 예측경로를 생성할 수 있다.
도 9는 본 발명의 일실시예에 있어서, 차선유지 경로 예측의 예를 도시한 도면이다. 객체(910)가 주행하고 있는 차선 정보는 센서부(210)에서 검출한 자차량이 주행하고 있는 차선 정보를 기반으로 할 수 있다. 이때, 수집되는 차선 정보는 객체(910)와 차선과의 거리(Lateral Offset), 객체(910)의 주행방향 기울기 오차(Heading angle error), 도로 곡률(Curvature) 및/또는 도로 곡률의 변화율(Curvature rate)를 포함할 수 있다. 도 9에서는 객체(910)가 기존 경로가 아닌 차선을 유지하기 위한 경로를 예측하는 예를 나타내고 있다.
도 10은 본 발명의 일실시예에 있어서 차선유지 경로 예측을 위한 변수를 설명하기 위한 예를 도시하고 있다. 도 10은 아래 수학식 9 및 수학식 10의 변수들을 설명하고 있다.
Figure pat00019
Figure pat00020
이때, 도 10에서 C 0는 객체(910)와 차선과의 거리를, C 1은 객체(910)의 주행방향 기울기 오차를, C 2는 도로 곡률을, C 3은 도로 곡률의 변화율을 각각 의미할 수 있다. 또한, 도 10에서 "R"은 도로 곡률 반경을, "e y "는 횡방향 오프셋을 각각 의미할 수 있다.
이처럼, 본 발명의 실시예들에 따르면, 자차량이 V2X를 통해 주변 차량들로부터 얻은 정보, ADAS 센서 및 차량 내부센서 데이터 값으로 얻은 정보를 융합함으로써 신뢰도 높은 경로를 예측할 수 있으며, 경로예측 대상 객체를 한정하여 연산부하를 경감시킬 수 있다.
도 11 내지 도 13은 본 발명의 일실시예에 따른 경로 예측 방법의 예를 도시한 흐름도들이다. 본 실시예에 따른 경로 예측 방법은 일례로 앞서 설명한 컴퓨터 장치(100)에 의해 수행될 수 있다. 예를 들어, 컴퓨터 장치(100)의 프로세서(120)는 메모리(110)가 포함하는 운영체제의 코드나 적어도 하나의 프로그램의 코드에 따른 제어 명령(instruction)을 실행하도록 구현될 수 있다. 여기서, 프로세서(120)는 컴퓨터 장치(100)에 저장된 코드가 제공하는 제어 명령에 따라 컴퓨터 장치(100)가 도 11 내지 도 13의 방법이 포함하는 단계들(1110 내지 1180, 1210 내지 1240 및 1310 내지 1330)을 수행하도록 컴퓨터 장치(100)를 제어할 수 있다. 일례로, 도 11의 단계들(1110 내지 1180)은 센서부(210)에 의해, 도 12의 단계들(1210 내지 1240)은 의도판단부(220)에 의해, 도 13의 단계들(1310 내지 1330)은 경로 예측부(230)에 의해 각각 수행될 수 있다.
단계(1110)에서 컴퓨터 장치(100)는 현재 V2X가 수신되는지 여부를 결정할 수 있다. 이때, 컴퓨터 장치(100)는 V2X 정보가 수신되는 경우에는 단계(1120) 및 단계(1130)을, V2X 정보가 수신되지 않는 경우에는 단계(1140)를 각각 수행할 수 있다.
단계(1120) 및 단계(1130)은 컴퓨터 장치(100)가 현재 수신된 V2X 정보를 이용하여 융합 데이터를 생성하는 과정의 예를 나타내고 있다. 앞서 설명한 바와 같이, ADAS 센서로 계측한 객체에 대한 정보보다 V2X 정보의 신뢰성이 상대적으로 더 높기 때문에 V2X 정보가 수신되는 경우, 컴퓨터 장치(100)는 레이다(310), 라이다(320) 및 카메라(330) 등과 같은 ADAS 센서를 활용하는 대신 V2X 정보를 이용하여 융합 데이터를 생성할 수 있다.
단계(1140)에서 컴퓨터 장치(100)는 현재 객체가 이전에 검출된 객체인지 여부를 결정할 수 있다. 이때, 컴퓨터 장치(100)는 현재 객체가 이전에 검출된 객체인 경우, 단계(1150), 단계(1160) 및 단계(1130)을, 현재 객체가 이전에 검출된 객체가 아닌 경우에는 단계(1170), 단계(1180) 및 단계(1130)을 각각 수행할 수 있다.
단계(1150), 단계(1160) 및 단계(1130)는 컴퓨터 장치(100)가 이전에 수신된 V2X 정보를 이용하여 동적 모델(Dynamic model)을 통해 융합 데이터를 생성하는 과정의 예일 수 있다. 앞서 설명한 바와 같이, 센서부(210)는 현재 검출된 객체(주변차량)가 이전에도 검출된 이력이 있는 객체이고 해당 객체로부터 V2X 정보를 수신한 적이 있다면, 센서부(210)는 해당 객체의 타이어 코너링 강성, 질량 등과 같이 시간에 따라 변하지 않는 제원 정보를 재활용할 수 있다. 다시 말해, 컴퓨터 장치(100)는 이전에 수신된 V2X 정보를 이용하여 융합 데이터를 생성할 수 있다.
단계(1170), 단계(1180) 및 단계(1130)는 컴퓨터 장치(100)가 새로운 객체에 대해 운동학적 모델(Kinematic model)을 이용하여 융합 데이터를 생성하는 과정의 예일 수 있다. 여기서 운동학적 모델은 레이다(310), 라이다(320), 카메라(330) 및/또는 자차량에 내장된 차속센서, IMU(Inertial Measurement Unit) 등의 ADAS 센서를 활용하여 객체에 대한 정보를 획득하는 모델일 수 있다.
이처럼, 센서부(210)에서 검출한 자차량 주변의 객체와 환경에 대한 데이터를 융합함에 있어서, ADAS 센서로만 객체를 감지했을 경우보다 무선 통신을 통하여 전달받은 객체 정보(V2X 정보)의 신뢰성이 더 크다는 점과 무선 통신을 이용할 경우 객체 정보가 갱신되는데 ADAS 센서보다 소요되는 시간이 길다는 점을 모두 반영하여 융합 데이터를 생성할 수 있다.
다시 말해, 컴퓨터 장치(100)는 자차량과 연계된 복수의 센서들로부터의 정보 및 외부 통신을 통해 수신되는 정보를 이용하여 융합 데이터를 생성할 수 있다. 이때, 컴퓨터 장치(100)는 제1 차량에 대해 외부 통신을 통해 현재의 제1 정보가 수신되는 경우, 제1 정보를 이용하여 융합 데이터를 생성할 수 있다. 또한, 컴퓨터 장치(100)는 제1 정보가 수신되지 않으면서 제1 객체에 대해 이전에 수신된 제2 정보가 존재하는 경우, 제2 정보를 이용하여 융합 데이터를 생성할 수 있다. 또한, 컴퓨터 장치(100)는 제1 정보가 수신되지 않으면서 제2 정보가 존재하지 않는 경우, 복수의 센서들로부터의 정보를 이용하여 융합 데이터를 생성할 수 있다. 이때, 컴퓨터 장치(100)는 복수의 센서들로부터의 정보를 이용하여 융합 데이터를 생성함에 있어서, 복수의 센서들 각각의 출력값에 대한 가중평균을 이용하여 융합 데이터를 생성할 수 있다. 이 경우, 가중평균에 이용되는 가중치는 복수의 센서들 각각의 출력값에 대한 오차 공분산의 역수를 이용하여 결정될 수 있다. 보다 구체적으로 복수의 센서들은 레이다(radar), 라이다(lidar) 및 카메라를 포함할 수 있으며, 컴퓨터 장치(100)는 레이다, 라이다 및 카메라의 출력값을 이용하여 주변차량 정보를 검출하고, 카메라를 이용하여 차선 정보를 검출하여 융합 데이터를 생성할 수 있다. 이때, 융합 데이터는 차량의 횡속도 및 차량의 차선과의 거리 중 적어도 하나를 포함할 수 있다.
단계(1210)에서 컴퓨터 장치(100)는 객체가 관심 영역에 존재하는지 여부를 결정할 수 있다. 이때, 컴퓨터 장치(100)는 객체가 관심 영역에 존재하는 경우에는 단계(1220)을 수행할 수 있으며, 객체가 관심 영역에 존재하지 않는 경우에는 경로를 예측할 필요가 없기 때문에 다시 단계(1110)을 수행하여 정보를 수집할 수 있다. 이 경우, 컴퓨터 장치(100)는 관심 영역에 존재하는 차량을 관심 차량으로 선정할 수 있다. 예를 들어, 컴퓨터 장치(100)는 자차량의 주변에 기설정된 복수의 영역들에 중심이 위치하는 차량을 관심 차량으로서 선정할 수 있다. 여기서, 복수의 영역들은 자차량 전방 좌측 차로의 제1 영역, 자차량 전방 차로의 제2 영역, 자차량 전방 우측 차로의 제3 영역, 자차량 좌측 차로의 제4 영역, 자차량 우측 차로의 제5 영역, 자차량 후방 좌측 차로의 제6 영역, 자차량 후방 차로의 제7 영역 및 자차량 후방 우측 차로의 제8 영역을 포함할 수 있다. 일례로, 복수의 영역들 중 제4 영역 및 제5 영역 각각의 길이는 자차량의 길이에 기초하여 결정되고, 나머지 영역들 각각의 길이는 자차량의 속도, 자차량의 가속도 및 기설정된 임계값에 의해 결정될 수 있다. 각 영역의 폭은 차선의 폭에 대응할 수 있다.
단계(1220)에서 컴퓨터 장치(100)는 객체가 차선을 변경하는지 여부를 결정할 수 있다. 일례로, 도 4에서는 선학습 모듈(420)에 의해 학습된 의도판단 모듈(430)이 관심 차량 선정 모듈(410)에 의해 관심 객체(관심 영역에 존재하는 객체)의 차선변경의 의도를 판단하는 실시예를 설명한 바 있다. 이때, 컴퓨터 장치(100)는 객체가 차선을 변경하는 경우에는 단계(1130)를, 객체가 차선을 변경하지 않는 경우에는 단계(1140)를 각각 수행할 수 있다.
단계(1130)에서 컴퓨터 장치(100)는 객체가 자차량 차선으로 차선을 변경하는지 여부를 결정할 수 있다. 다시 말해, 객체가 자차량 차선으로 변경하려는 의도가 존재하는 것으로 판단되는 경우, 컴퓨터 장치(100)는 단계(1310) 및 단계(1330)를 수행할 수 있고, 객체가 자차량 차선으로 변경하려는 의도가 존재하지 않는 것으로 판단되는 경우에는 해당 객체의 경로에 대해 관심을 가질 필요가 없기 때문에 다시 단계(1110)을 수행하여 정보를 수집할 수 있다.
단계(1310) 및 단계(1330)은 컴퓨터 장치(100)가 객체의 차선변경에 따른 예측 경로를 생성하는 과정의 예일 수 있다. 다시 말해, 컴퓨터 장치(100)는 관심 객체(관심 영역에 존재하는 객체)가 자차량 차선으로 차선을 변경하는 경우에만 예측 경로를 생성할 수 있다.
한편, 단계(1140)에서 컴퓨터 장치(100)는 객체가 자차량 차선에서 주행하고 있는지 여부를 결정할 수 있다. 이때, 컴퓨터 장치(100)는 객체가 자차량 차선(자차량의 앞 또는 뒤)에서 주행하고 있는 경우에는 단계(1320) 및 (1330)을 수행할 수 있고, 객체가 자차량 차선(자차량의 앞 또는 뒤)에서 주행하고 있지 않은 경우(일례로, 자차량 차선이 아닌 다른 차선으로 차선을 변경하고 있는 경우)에는 해당 객체의 경로에 대해 관심을 가질 필요가 없기 때문에 다시 단계(1110)을 수행하여 정보를 수집할 수 있다.
단계(1320) 및 단계(1330)은 컴퓨터 장치(100)가 객체의 차선유지에 따른 예측 경로를 생성하는 과정의 예일 수 있다. 이러한 차선유지에 따른 예측 경로를 생성하는 과정은 도 9 및 도 10을 통해 이미 설명한 바 있다.
차선변경 의도를 결정하기 위해, 컴퓨터 장치(100)는 실제 차량들에 대한 데이터를 통해 선학습된 기계학습모델을 이용하여 선정된 관심 차량의 차선 유지, 좌측 차선 변경 및 우측 차선 변경 중 하나에 대한 의도를 결정할 수 있다. 이때, 기계학습모델은 가우시안 커널 함수를 이용하여 학습될 수 있다.
한편, 컴퓨터 장치(100)는 이미 설명한 바와 같이, 예측 경로를 생성하기 위해, 선정된 관심 차량 중 자차량의 차선으로 차선을 변경하는 제1 차량에 대한 차선변경 예측 경로를 생성할 수 있으며, 선정된 관심 차량 중 자차량의 차선에서 주행하는 제2 차량에 대한 차선유지 예측 경로를 생성할 수 있다. 컴퓨터 장치(100)는 차선변경 예측 경로를 생성하기 위해, 제1 차량의 차선 변경에 필요한 횡방향 거리와 횡방향 속도에 기초하여 차선 변경 소요 시간을 예측하고, 제1 차량의 종방향 속도와 제1 차량의 종방향 가속도에 기초하여 제1 차량과 자차량 사이의 종방향 거리를 예측하고, 제1 차량의 차선 변경에 필요한 횡방향 거리와 차선 변경 소요 시간 및 사인곡선 함수를 이용하여 제1 차량과 자차량 사이의 횡방향 거리를 예측할 수 있다. 또한, 컴퓨터 장치(100)는 제2 차량의 차선과의 거리, 제2 차량의 주향방향 기울기 오차(heading angle error), 도로 곡률 및/또는 도로 곡률의 변화율 에 기초하여 차선유지 예측 경로를 생성할 수 있다.
이상에서 설명된 시스템 또는 장치는 하드웨어 구성요소, 소프트웨어 구성요소 또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 어플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치에 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 매체는 컴퓨터로 실행 가능한 프로그램을 계속 저장하거나, 실행 또는 다운로드를 위해 임시 저장하는 것일 수도 있다. 또한, 매체는 단일 또는 수개 하드웨어가 결합된 형태의 다양한 기록수단 또는 저장수단일 수 있는데, 어떤 컴퓨터 시스템에 직접 접속되는 매체에 한정되지 않고, 네트워크 상에 분산 존재하는 것일 수도 있다. 매체의 예시로는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등을 포함하여 프로그램 명령어가 저장되도록 구성된 것이 있을 수 있다. 또한, 다른 매체의 예시로, 애플리케이션을 유통하는 앱 스토어나 기타 다양한 소프트웨어를 공급 내지 유통하는 사이트, 서버 등에서 관리하는 기록매체 내지 저장매체도 들 수 있다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (15)

  1. 적어도 하나의 프로세서를 포함하는 컴퓨터 장치의 경로 예측 방법에 있어서,
    상기 적어도 하나의 프로세서에 의해, 자차량과 연계된 복수의 센서들로부터의 정보 및 외부 통신을 통해 수신되는 정보를 이용하여 융합 데이터를 생성하는 단계;
    상기 적어도 하나의 프로세서에 의해, 상기 생성된 융합 데이터를 이용하여 관심 차량을 선정하는 단계;
    상기 적어도 하나의 프로세서에 의해, 상기 선정된 관심 차량의 차선변경 의도를 결정하는 단계; 및
    상기 적어도 하나의 프로세서에 의해, 상기 결정된 차선변경 의도에 따라 상기 선정된 관심 차량의 예측 경로를 생성하는 단계
    를 포함하는 경로 예측 방법.
  2. 제1항에 있어서,
    상기 융합 데이터를 생성하는 단계는,
    제1 차량에 대해 상기 외부 통신을 통해 현재의 제1 정보가 수신되는 경우, 상기 제1 정보를 이용하여 융합 데이터를 생성하는 단계;
    상기 제1 정보가 수신되지 않으면서 상기 제1 차량에 대해 이전에 수신된 제2 정보가 존재하는 경우, 상기 제2 정보를 이용하여 융합 데이터를 생성하는 단계; 및
    상기 제1 정보가 수신되지 않으면서 상기 제2 정보가 존재하지 않는 경우, 복수의 센서들로부터의 정보를 이용하여 융합 데이터를 생성하는 단계
    를 포함하는 것을 특징으로 하는 경로 예측 방법.
  3. 제2항에 있어서,
    상기 복수의 센서들로부터의 정보를 이용하여 융합 데이터를 생성하는 단계는,
    상기 복수의 센서들 각각의 출력값에 대한 가중평균을 이용하여 상기 융합 데이터를 생성하고,
    상기 가중평균에 이용되는 가중치는 상기 복수의 센서들 각각의 출력값에 대한 오차 공분산의 역수를 이용하여 결정되는 것을 특징으로 하는 경로 예측 방법.
  4. 제2항에 있어서,
    상기 복수의 센서들은 레이다(radar), 라이다(lidar) 및 카메라를 포함하고,
    상기 복수의 센서들로부터의 정보를 이용하여 융합 데이터를 생성하는 단계는,
    상기 레이다, 상기 라이다 및 상기 카메라의 출력값을 이용하여 주변차량 정보를 검출하고, 상기 카메라를 이용하여 차선 정보를 검출하여 상기 융합 데이터를 생성하는 것을 특징으로 하는 경로 예측 방법.
  5. 제1항에 있어서,
    상기 융합 데이터는 차량의 횡속도(Lateral Velocity) 및 차량의 차선과의 거리(Lateral Offset) 중 적어도 하나를 포함하는 것을 특징으로 하는 경로 예측 방법.
  6. 제1항에 있어서,
    상기 관심 차량을 선정하는 단계는,
    상기 자차량의 주변에 기설정된 복수의 영역들에 중심이 위치하는 차량을 상기 관심 차량으로서 선정하는 것을 특징으로 하는 경로 예측 방법.
  7. 제6항에 있어서,
    상기 복수의 영역들은 자차량 전방 좌측 차로의 제1 영역, 자차량 전방 차로의 제2 영역, 자차량 전방 우측 차로의 제3 영역, 자차량 좌측 차로의 제4 영역, 자차량 우측 차로의 제5 영역, 자차량 후방 좌측 차로의 제6 영역, 자차량 후방 차로의 제7 영역 및 자차량 후방 우측 차로의 제8 영역을 포함하는 것을 특징으로 하는 경로 예측 방법.
  8. 제7항에 있어서,
    상기 복수의 영역들 중 상기 제4 영역 및 상기 제5 영역 각각의 길이는 상기 자차량의 길이에 기초하여 결정되고, 나머지 영역들 각각의 길이는 상기 자차량의 속도, 상기 자차량의 가속도 및 기설정된 임계값에 의해 결정되는 것을 특징으로 하는 경로 예측 방법.
  9. 제1항에 있어서,
    상기 차선변경 의도를 결정하는 단계는,
    실제 차량들에 대한 데이터를 통해 선학습된 기계학습모델을 이용하여 상기 선정된 관심 차량의 차선 유지, 좌측 차선 변경 및 우측 차선 변경 중 하나에 대한 의도를 결정하는 것을 특징으로 하는 경로 예측 방법.
  10. 제9항에 있어서,
    상기 기계학습모델은 가우시안 커널 함수(Gaussian kernel function)를 이용하여 학습되는 것을 특징으로 하는 경로 예측 방법.
  11. 제9항에 있어서,
    상기 예측 경로를 생성하는 단계는,
    상기 선정된 관심 차량 중 상기 자차량의 차선으로 차선을 변경하는 제1 차량에 대한 차선변경 예측 경로를 생성하는 단계; 및
    상기 선정된 관심 차량 중 상기 자차량의 차선에서 주행하는 제2 차량에 대한 차선유지 예측 경로를 생성하는 단계
    를 포함하는 것을 특징으로 하는 경로 예측 방법.
  12. 제11항에 있어서,
    상기 차선변경 예측 경로를 생성하는 단계는,
    상기 제1 차량의 차선 변경에 필요한 횡방향 거리와 횡방향 속도에 기초하여 차선 변경 소요 시간을 예측하는 단계;
    상기 제1 차량의 종방향 속도와 상기 제1 차량의 종방향 가속도에 기초하여 상기 제1 차량과 상기 자차량 사이의 종방향 거리를 예측하는 단계; 및
    상기 제1 차량의 차선 변경에 필요한 횡방향 거리와 상기 차선 변경 소요 시간 및 사인곡선 함수를 이용하여 상기 제1 차량과 상기 자차량 사이의 횡방향 거리를 예측하는 단계
    를 포함하는 것을 특징으로 하는 경로 예측 방법.
  13. 제11항에 있어서,
    상기 차선유지 예측 경로를 생성하는 단계는,
    상기 제2 차량의 차선과의 거리, 상기 제2 차량의 주향방향 기울기 오차(heading angle error), 도로 곡률(Curvature) 및 도로 곡률의 변화율(Curvature rate) 중 적어도 하나에 기초하여 상기 차선유지 예측 경로를 생성하는 것을 특징으로 하는 경로 예측 방법.
  14. 컴퓨터 장치와 결합되어 경로 예측 방법을 컴퓨터 장치에 실행시키기 위해 컴퓨터 판독 가능한 기록매체에 저장된 컴퓨터 프로그램에 있어서,
    상기 경로 예측 방법은,
    자차량과 연계된 복수의 센서들로부터의 정보 및 외부 통신을 통해 수신되는 정보를 이용하여 융합 데이터를 생성하는 단계;
    상기 생성된 융합 데이터를 이용하여 관심 차량을 선정하는 단계;
    상기 선정된 관심 차량의 차선변경 의도를 결정하는 단계; 및
    상기 결정된 차선변경 의도에 따라 상기 선정된 관심 차량의 예측 경로를 생성하는 단계
    를 포함하는 것을 특징으로 하는 컴퓨터 프로그램.
  15. 컴퓨터 장치에 있어서,
    상기 컴퓨터 장치에서 판독 가능한 명령을 실행하도록 구현되는 적어도 하나의 프로세서
    를 포함하고,
    상기 적어도 하나의 프로세서에 의해,
    자차량과 연계된 복수의 센서들로부터의 정보 및 외부 통신을 통해 수신되는 정보를 이용하여 융합 데이터를 생성하고,
    상기 생성된 융합 데이터를 이용하여 관심 차량을 선정하고,
    상기 선정된 관심 차량의 차선변경 의도를 결정하고,
    상기 결정된 차선변경 의도에 따라 상기 선정된 관심 차량의 예측 경로를 생성하는 것
    을 특징으로 하는 컴퓨터 장치.
KR1020180169636A 2018-12-26 2018-12-26 무선통신을 포함한 차량센서 기반의 객체선정 알고리즘 및 주변차량 주행 의도를 고려한 경로 예측 방법 및 시스템 KR102179835B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180169636A KR102179835B1 (ko) 2018-12-26 2018-12-26 무선통신을 포함한 차량센서 기반의 객체선정 알고리즘 및 주변차량 주행 의도를 고려한 경로 예측 방법 및 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180169636A KR102179835B1 (ko) 2018-12-26 2018-12-26 무선통신을 포함한 차량센서 기반의 객체선정 알고리즘 및 주변차량 주행 의도를 고려한 경로 예측 방법 및 시스템

Publications (2)

Publication Number Publication Date
KR20200084440A true KR20200084440A (ko) 2020-07-13
KR102179835B1 KR102179835B1 (ko) 2020-11-17

Family

ID=71570771

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180169636A KR102179835B1 (ko) 2018-12-26 2018-12-26 무선통신을 포함한 차량센서 기반의 객체선정 알고리즘 및 주변차량 주행 의도를 고려한 경로 예측 방법 및 시스템

Country Status (1)

Country Link
KR (1) KR102179835B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210086765A1 (en) * 2019-09-23 2021-03-25 Robert Bosch Gmbh Method for driving a motor vehicle safely in at least partially automated fashion
KR102444675B1 (ko) * 2021-06-24 2022-09-20 (주)뷰런테크놀로지 주변 객체의 차로 변경 예측 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307972A (ja) * 2001-04-11 2002-10-23 Nissan Motor Co Ltd 車間距離制御装置
KR20140057583A (ko) * 2011-09-05 2014-05-13 로베르트 보쉬 게엠베하 자동차용 안전 장치
KR20180023982A (ko) * 2015-07-28 2018-03-07 닛산 지도우샤 가부시키가이샤 주행 제어 방법 및 주행 제어 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307972A (ja) * 2001-04-11 2002-10-23 Nissan Motor Co Ltd 車間距離制御装置
KR20140057583A (ko) * 2011-09-05 2014-05-13 로베르트 보쉬 게엠베하 자동차용 안전 장치
KR20180023982A (ko) * 2015-07-28 2018-03-07 닛산 지도우샤 가부시키가이샤 주행 제어 방법 및 주행 제어 장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210086765A1 (en) * 2019-09-23 2021-03-25 Robert Bosch Gmbh Method for driving a motor vehicle safely in at least partially automated fashion
KR102444675B1 (ko) * 2021-06-24 2022-09-20 (주)뷰런테크놀로지 주변 객체의 차로 변경 예측 장치 및 방법
US20220410942A1 (en) * 2021-06-24 2022-12-29 Vueron Technology Co., Ltd Apparatus and method for determining lane change of surrounding objects
US11884303B2 (en) 2021-06-24 2024-01-30 Vueron Technology Co., Ltd Apparatus and method for determining lane change of surrounding objects

Also Published As

Publication number Publication date
KR102179835B1 (ko) 2020-11-17

Similar Documents

Publication Publication Date Title
US10996679B2 (en) Method to evaluate trajectory candidates for autonomous driving vehicles (ADVs)
JP6832421B2 (ja) シミュレーションに基づく自動運転車の感知要求の評価方法
KR102223270B1 (ko) 여분의 초음파 radar를 구비한 자율 주행 차량
JP6975512B2 (ja) 自動運転車両の周辺車両の挙動に基づくリアルタイム感知調整と運転調整
US11493926B2 (en) Offline agent using reinforcement learning to speedup trajectory planning for autonomous vehicles
US10809726B2 (en) Sideslip compensated control method for autonomous vehicles
US10824153B2 (en) Cost design for path selection in autonomous driving technology
JP7072581B2 (ja) 自動運転車両の経路計画のための運転シナリオに基づく車線ガイドライン
US11545033B2 (en) Evaluation framework for predicted trajectories in autonomous driving vehicle traffic prediction
EP3356900B1 (en) Method and system to predict one or more trajectories of a vehicle based on context surrounding the vehicle
US11467591B2 (en) Online agent using reinforcement learning to plan an open space trajectory for autonomous vehicles
JP6799592B2 (ja) 自律走行車を完全に停止させるための速度制御
US10353393B2 (en) Method and system for improving stability of autonomous driving vehicles
US11409284B2 (en) Relaxation optimization model to plan an open space trajectory for autonomous vehicles
US10272778B2 (en) Method and system for determining unit gain of speed control for autonomous driving vehicles
US11260880B2 (en) Map-less and localization-less lane following method for autonomous driving of autonomous driving vehicles on highway
US20180201182A1 (en) Method for keeping distance between an autonomous driving vehicle and a following vehicle using a braking light
JP2018158721A (ja) 自動運転車両に用いられる衝突予測及びエアバッグ事前展開システム
US20190278276A1 (en) Emergency stop speed profile for autonomous vehicles
US11180160B2 (en) Spiral curve based vertical parking planner system for autonomous driving vehicles
US11485353B2 (en) Segmenting a parking trajectory to control an autonomous driving vehicle to park
US11353878B2 (en) Soft-boundary based path optimization for complex scenes for autonomous driving vehicles
US10438074B2 (en) Method and system for controlling door locks of autonomous driving vehicles based on lane information
KR102179835B1 (ko) 무선통신을 포함한 차량센서 기반의 객체선정 알고리즘 및 주변차량 주행 의도를 고려한 경로 예측 방법 및 시스템
WO2024049925A1 (en) Trajectory prediction based on a decision tree

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant