WO2015152062A1 - 改質磁性流体及びこの改質磁性流体を用いた把持機構並びに把持装置 - Google Patents

改質磁性流体及びこの改質磁性流体を用いた把持機構並びに把持装置 Download PDF

Info

Publication number
WO2015152062A1
WO2015152062A1 PCT/JP2015/059671 JP2015059671W WO2015152062A1 WO 2015152062 A1 WO2015152062 A1 WO 2015152062A1 JP 2015059671 W JP2015059671 W JP 2015059671W WO 2015152062 A1 WO2015152062 A1 WO 2015152062A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic fluid
modified
magnetic
gripping mechanism
gripping
Prior art date
Application number
PCT/JP2015/059671
Other languages
English (en)
French (fr)
Inventor
健 西田
勇希 岡谷
研一 國本
Original Assignee
国立大学法人 九州工業大学
前田機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 九州工業大学, 前田機工株式会社 filed Critical 国立大学法人 九州工業大学
Priority to DE112015001563.9T priority Critical patent/DE112015001563T5/de
Priority to JP2016511626A priority patent/JP6385014B2/ja
Priority to CN201580017568.7A priority patent/CN106165029B/zh
Publication of WO2015152062A1 publication Critical patent/WO2015152062A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0608Gripping heads and other end effectors with vacuum or magnetic holding means with magnetic holding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/445Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids the magnetic component being a compound, e.g. Fe3O4

Definitions

  • the present invention relates to a modified magnetic fluid obtained by further improving a magnetic fluid in which fine particles of a ferromagnetic material are dispersed in a liquid, a gripping mechanism and a gripping device using the same.
  • Non-Patent Document 1 there is known a magnetic fluid (MR fluid) composed of a colloidal solution in which ferromagnetic ultrafine particles having a size of 10 nm and several ⁇ m are dispersed in a liquid using a surfactant or the like. ing. And it is disclosed that this magnetic fluid is used for a damper, an actuator, a seal, and a clutch.
  • Patent Document 1 discloses a metal powder formed of an Fe-based alloy having an average particle size of 0.1 to 25 ⁇ m and a maximum particle size of 50 ⁇ m or less, which is used for a magnetic fluid.
  • Patent Document 3 discloses a configuration of such a magnetic fluid and a manufacturing method thereof, and Patent Document 4 proposes an article gripping device using the magnetic fluid.
  • the gripper 70 includes a support member 71 attached to the front portion of the robot arm, a rubber sphere 72 attached to the lower portion of the support member 71, and the rubber sphere 72. It has a fastening ring 73 that is removably attached to the lower part, coffee bean powder 74 housed in the rubber sphere 72, and a vacuum pump (not shown) connected to the exhaust ports 75, 76 of the support member 71.
  • a vacuum pump (not shown) connected to the exhaust ports 75, 76 of the support member 71.
  • the gripper 70 1) the rubber sphere 72 is pressed against the object to cause the rubber sphere 72 to follow the shape of the object, and 2) the vacuum pump is operated to extract air from the rubber sphere 72.
  • the rubber sphere 72 is solidified by a jamming phenomenon. 3)
  • the robot arm is operated to lift the object.
  • Japanese Patent No. 5660099 (Claims 5 to 9) Japanese Patent No. 522296 (claim 1) JP 2006-505957 A JP 2004-154909 A
  • Non-Patent Document 1 since the magnetic fluids described in Non-Patent Document 1, Patent Document 1, and Patent Document 2 use a metal magnetic material such as iron powder as the fine particles of the ferromagnetic material, the relative specific gravity of the magnetic fluid is large. There was a problem of becoming.
  • the conventional magnetic fluid alone has a problem that the viscosity and shear strength of the magnetic fluid when magnetized are relatively small.
  • the gripper 70 described in Non-Patent Document 2 has an advantage that it is relatively light in weight and can easily grip an object, but the gripping force is relatively small, and the jamming phenomenon that generates the gripping force is a vacuum generation. Since the low atmospheric pressure generated by the vessel is used, there is a problem that it is difficult to use in the case where the ambient atmospheric pressure fluctuates, in a place where the pressure is high such as underwater, or in an environment where the temperature easily changes.
  • the present invention has been made in view of such circumstances, and provides a modified magnetic fluid having a relative specific gravity smaller than that of a conventional magnetic fluid and having a large gripping force (shear strength) when used in a gripper, and the like. It is an object of the present invention to provide a gripping mechanism and a gripping device using a modified magnetic fluid.
  • the modified ferrofluid according to the first invention that meets the above object is a magnetic fluid having a base liquid and ferromagnetic fine particles present in a dispersed state in the base liquid, and larger than the size of the ferromagnetic fine particles.
  • a nonmagnetic powder smaller than the specific gravity of the ferromagnetic fine particles is mixed to improve the holding strength during magnetization.
  • the nonmagnetic powder is preferably made of glass, plastic, or ceramic powder. Furthermore, in the modified magnetic fluid according to the first invention, the nonmagnetic powder is preferably made of foamed plastic. Of course, the non-magnetic powder does not dissolve or react with the base fluid of the magnetic fluid.
  • the nonmagnetic powder preferably has a particle size of 2 mm or less.
  • the ratio of the magnetic fluid in the modified magnetic fluid is preferably in the range of 40 to 80%.
  • MR fluid can also be used as the magnetic fluid.
  • a gripping mechanism uses the modified magnetic fluid according to the first invention described above, and has a flexible bag body containing the modified magnetic fluid, and one side of the bag body And an electromagnet capable of applying a magnetic field to the bag.
  • the electromagnet has a central magnetic pole part, a bottomed cylindrical yoke part around the center magnetic pole part, and a coil wound around the magnetic pole part, and the open end of the yoke part It is preferable that the bag body filled with the modified magnetic fluid is attached in a sealed state.
  • a filling rate of the modified magnetic fluid into the bag body is 40 to 70%.
  • the bag body has a hemispherical shape with a flange.
  • the gripping mechanism according to the second invention described above is attached to the front side of the robot arm.
  • the gripping mechanism according to the second aspect of the present invention described above is provided in the holding portion of the robot that can control the interval, and is opposed to each other.
  • the non-magnetic powder larger than the size of the ferromagnetic fine particles and smaller than the specific gravity of the ferromagnetic fine particles is mixed in the conventional magnetic fluid. Smaller than magnetic fluid.
  • the non-magnetic powder having a large size acts as an aggregate, and the retention force and shear strength during magnetization of the modified magnetic fluid increase.
  • the non-magnetic powder when the non-magnetic powder is composed of glass, plastic or ceramic powder, the non-magnetic powder becomes lighter and the non-magnetic powder with uniform grains can be easily obtained. And the physical properties of the modified ferrofluid are made more uniform. Further, when the nonmagnetic powder is spherical, and the nonmagnetic powder is made of foamed plastic, the specific gravity of the modified magnetic fluid is further reduced and the physical properties are made uniform.
  • a gripping mechanism uses the modified magnetic fluid according to the first invention described above, and has a flexible bag body in which the modified magnetic fluid is stored, and is disposed on one side of the bag body. Since the bag body has an electromagnet capable of applying a magnetic field, a part or all of the object can be held in the bag body while maintaining its shape.
  • the gripping mechanism according to the second invention when the filling rate of the modified magnetic fluid into the bag body is 40 to 70%, the surface of the bag body is uneven, so that the object can be easily fitted and large. If the length is within a certain range, an arbitrary object can be gripped.
  • the gripping mechanism according to the second invention described above since the gripping mechanism according to the second invention described above is attached to the front side of the robot arm, the gripping mechanism can be freely moved and its posture can be changed. .
  • (A) is a perspective view of a gripping mechanism according to an embodiment of the present invention, and (B) is a main sectional view of the gripping mechanism.
  • (A) is a perspective view of the electromagnet of the gripping mechanism, and (B) is a cross-sectional view of the electromagnet of the gripping mechanism.
  • It is a perspective view of the holding device which attached the holding mechanism to the robot arm of an articulated robot.
  • (A) is a graph showing the relationship between the ratio of the magnetic fluid (MR fluid) in the modified magnetic fluid and the gripping force
  • (B) is a graph showing the relationship between the particle size of the nonmagnetic powder and the holding force.
  • (A) is operation
  • (B) is operation
  • a gripping mechanism 10 includes a flexible bag body 12 in which a modified magnetic fluid 11 is stored, and a bag body 12. And an electromagnet 13 for applying a magnetic field to the bag body 12.
  • the electromagnet 13 includes a magnetic pole portion 15 made of a magnetic material disposed in the center and a yoke portion 16 made of a bottomed cylindrical magnetic material around the magnetic pole portion 15. And a coil 17 wound around the magnetic pole part 15 and a magnetic pole plate part 15 a having a diameter larger than that of the magnetic pole part 15 provided at the open end of the magnetic pole part 15.
  • the bag body 12 is made of a rubber sheet or plastic sheet having oil resistance, non-magnetism, and flexibility such as silicon rubber, and has a hemispherical portion 18 and a flange portion 19 integrally provided at the end of the hemispherical portion 18. It has a hemispherical sheet with a flange.
  • the diameter D of the hemispherical portion 18 is preferably about 30 to 80 mm, but the present invention is not limited to this number because it varies depending on the object to be grasped.
  • the bag body 12 has a thickness of about 0.3 to 2 mm, for example.
  • the bag body 12 is provided in the lower part of the electromagnet 13 by the 1st, 2nd attachment members 22 and 23 which clamp the flange part 19. As shown in FIG. That is, the first attachment member 22 is screwed to the lower end of the yoke portion 16, and the first attachment member 22 and the second attachment member 23 are connected by the plurality of bolts 24 via the flange portion 19. As a result, the bag 12 is attached to the open end of the yoke portion 16 in a sealed state.
  • the bag body 12 contains a modified magnetic fluid 11 according to an embodiment of the present invention.
  • the amount of the modified magnetic fluid 11 is smaller than this range, the total amount of the modified magnetic fluid 11 is insufficient, and when the amount of the modified magnetic fluid 11 is larger than this range, the holding space for the bag 12 is small.
  • the amount of the modified magnetic fluid 11 may exceed this range depending on the application.
  • the modified magnetic fluid 11 is made by mixing a nonmagnetic powder with a normal magnetic fluid in which ferromagnetic fine particles exist in a dispersed state in a base liquid.
  • a normal magnetic fluid is composed of ferromagnetic fine particles such as magnetite and manganese zinc ferrite, a surfactant covering the surface, and a base liquid (for example, water, isoparaffin, alkylnaphthalene or other oil).
  • a base liquid for example, water, isoparaffin, alkylnaphthalene or other oil.
  • the diameter of the ferromagnetic fine particles is about 10 nm, 10 nm to 200 ⁇ m, more preferably about 100 to 200 ⁇ m.
  • the non-magnetic powder is larger in size and smaller in specific gravity than the ferromagnetic fine particles.
  • particles of expanded polystyrene which is an example of expanded plastic, were used.
  • FIG. 4A shows the holding force of the bag 12 when the volume ratio of the magnetic fluid (using MR fluid) and the nonmagnetic powder is changed
  • FIG. 4B shows the magnetic fluid and the nonmagnetic material.
  • the relationship between the size of the nonmagnetic powder and the gripping force of the bag body 12 when the ratio to the powder is 1: 1 is shown.
  • the volume of the nonmagnetic powder is an apparent volume.
  • FIG. 4 (A) shows that the retention force of the modified magnetic fluid is large when the proportion of the magnetic fluid in the modified magnetic fluid is in the range of 40 to 80%.
  • FIG. 4B shows that the nonmagnetic powder has a large holding force when the particle diameter is 2 mm or less. From FIG.
  • the holding force shows the maximum value when the particle diameter of the nonmagnetic powder is 0.5 mm, but it is sufficient if it is larger than the diameter of the ferromagnetic fine particles (for example, 5 times or more, that is, 50 nm or more). It is considered that the gripping force is demonstrated.
  • FIG. 5A shows a non-magnetic field state and a magnetic field state using the modified magnetic fluid 11.
  • the magnetic fluid 27 mixed liquid of the base liquid and the ferromagnetic fine particles 25
  • the nonmagnetic powder 26 acts as an aggregate, and its holding strength and shear strength are increased.
  • FIG. 5B shows the behavior of the non-magnetic field state and the magnetic field state when the conventional magnetic fluid 27 is used.
  • the ferromagnetic fine particles 25 freely move, and in the magnetic field state, the ferromagnetic fine particles 25 are connected.
  • the 5A and 5B are schematic diagrams for explanation, and the densities of the ferromagnetic fine particles 25 and the nonmagnetic powder 26 are actually denser.
  • FIG. 6 shows the gripping force when the type and size of the non-magnetic powder of the modified magnetic fluid using magnetic fluid (MR fluid) are changed.
  • Nika beads (trade name, carbon microbeads) 0.0221 mm have a strong holding force, but even foamed polystyrene 0.5 mm shows a sufficient holding force.
  • FIG. 3 shows a gripping device 30 using the gripping mechanism 10 described above, and the gripping mechanism 10 is attached to the front side of the robot arm 32 of the articulated robot 31.
  • the gripping mechanism 10 is freely moved at a specific position and angle to grip the object. That is, the bag body 12 of the gripping mechanism 10 is placed on the object, a part or all of the object is placed in the recess of the bag body 12, the electromagnet 13 is energized, and the modified magnetic fluid 11 is magnetized.
  • the electromagnet 13 is preferably a strong magnet (eg, 0.05 to 0.3 T) that does not cause magnetic saturation of the ferromagnetic fine particles, but can be applied from a weak magnetic field to a strong magnetic field depending on the application.
  • the modified magnetic fluid 11 holds the gripped state, and the object can be moved by the robot arm 32.
  • the electromagnet 13 is de-energized, the shape of the bag 12 is freed, and the object can be placed at a predetermined position.
  • FIG. 7 shows a gripping device 36 in which the gripping mechanism 10 is attached to the holding portions 34 and 35 of the robot whose distance can be changed by a motor or a hydraulic cylinder, and the gripping mechanism 10 is opposed to the gripping mechanism 10.
  • the object By sandwiching the object from both sides with the bag body 12 of the gripping mechanism 10 and energizing the electromagnet 13, the object can be held between the paired gripping mechanisms 10.
  • reference numeral 37 denotes a mounting flange for attaching the gripping device 36 to a robot arm or the like
  • 38 denotes a casing
  • 39 denotes an operation handle.
  • the present invention is not limited to the above-described embodiments, and the configuration thereof can be changed without changing the gist of the present invention.
  • foamed polystyrene is used as the nonmagnetic powder, but other foamed plastics, nonfoamed plastics, glass, ceramic powders (accurately, aggregated particles), carbon particles, and the like can be used.
  • the shape of the electromagnet and the shape of the bag can be freely changed according to the application.
  • the modified magnetic fluid according to the present invention can be used for a magnetic fluid seal (rotary shaft seal), a damper, a speaker, a sensor, a specific gravity difference separation, and the like in addition to the gripping mechanism as described above.
  • the gripping mechanism and the gripping device can be used for a transporter, an actuator, and the like in a special place such as a factory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manipulator (AREA)

Abstract

ベース液と、ベース液中に分散状態で存在する強磁性体微粒子25とを有する磁性流体27に、強磁性体微粒子25のサイズより大きく強磁性体微粒子25の比重より小さい非磁性粉体26を混入し、磁化時の保持強度を向上した改質磁性流体11と、この改質磁性流体11を用いた把持機構10及び把持装置30。

Description

改質磁性流体及びこの改質磁性流体を用いた把持機構並びに把持装置
本発明は、強磁性体の微粒子を液体中に分散させた磁性流体を更に改良した改質磁性流体及びこれを用いた把持機構並びに把持装置に関する。
非特許文献1に示すように、液体中に10nm、数μmサイズの強磁性超微粒子を界面活性剤等を用いて、極めて安定に分散させたコロイド溶液からなる磁性流体(MR流体)が知られている。そして、この磁性流体を、ダンパ、アクチュエータ、シール、クラッチに使用することが開示されている。また、特許文献1には、磁性流体に使用される平均粒径が0.1~25μm、最大粒径が50μm以下のFe基合金で形成される金属粉末が開示され、特許文献2には、アニオン、カチオンを含むイオン性流体に、平均粒径が0.1~500μmの分散した磁性粒子を含む磁性流体組成物が開示されている。
特許文献3には、このような磁性流体の構成及びその製造方法が開示され、特許文献4には、この磁性流体を用いた物品の把持装置も提案されている。
また、産業用ロボットのエンドエフェクタ(把持機構)は、多様な作業工程に合わせて様々なものが存在する。物体把持に使用するエンドエフェクタを特にグリッパと呼び、対象の形状や姿勢に応じた適切なグリッパへの自動交換は、産業用ロボットの作業工程では一般的である。しかし、適切なグリッパの選定や交換作業、選定されたグリッパによる対象の把持計画、把持開始から完了までの対象の姿勢推定などのために複雑な計算が必要であり、これら一連の作業は、ロボットによる効率的な作業のボトルネックになっている。現在までに、エンドエフェクタの形状や機構、把持計画に関する数多くの研究が行われており、近年、把持物体の姿勢認識とグリッパの交換の手順を省略し、作業効率を向上させるために非特許文献2に示すような、真空を利用して多様な形状物を自在に把持するエンドエフェクタ(ユニバーサルジャミンググリッパ、以下単に「グリッパ」と称する)の発明が報告されている。
このグリッパ70の概要を図8に示すが、グリッパ70はロボットアームの先部に取付けられる支持部材71と、支持部材71の下部に装着されるゴム球体72と、ゴム球体72を支持部材71の下部に取外し可能に取付ける締結リング73と、ゴム球体72内に収納されるコーヒー豆の粉74と、支持部材71の排気口75、76に接続される図示しない真空ポンプとを有している。このグリッパ70の使用にあっては、1)対象物にゴム球体72を押し当てゴム球体72を対象物の形状に倣わせる、2)真空ポンプを動作させてゴム球体72内の空気を抜き、ジャミング現象によりゴム球体72を固化させる、3)ロボットアームを動作させ対象物を持ち上げるという動作を行う。
特許第5660099号公報(請求項5~9) 特許第5222296号公報(請求項1) 特表2006-505957号公報 特開2004-154909号公報
藤田豊久、島田邦雄、「MR流体の特性とその応用」、日本応用磁気学会誌、Vol.27,.No3,2003、p91-100 アメンド、ブラウン、ローデンベルグ、ジェイガー、リプソン、「粉体ジャミングを基にした正圧ユニバーサルグリッパ」、トランザクションオンロボティクス2012年4月(Amend, J.R., Jr., Brown, E., Rodenberg, N., Jaeger, H., Lipson, H., "A Positive Pressure Universal Gripper Based on the Jamming of Granular Material," IEEE Transactions on Robotics, vol. 28, pp.341-350, Apr. 2012.)
しかしながら、非特許文献1、特許文献1、特許文献2に記載された磁性流体は、強磁性体の微粒子として、鉄粉等の金属磁性体を使用しているので、磁性流体の相対比重が大きくなるという問題があった。また、従来の磁性流体のみでは、磁化した場合の磁性流体の粘性及び剪断強度が比較的小さいという問題があった。
非特許文献2に記載されているグリッパ70は、比較的重量も軽く、対象物を簡単に把持できるという利点はあるが、把持力は比較的小さく、更に把持力を発生させるジャミング現象は真空発生器によって発生する低気圧を利用するため、周囲の気圧が変動する場合や、水中などの圧力の高い場所、気温が変化しやすい環境などでは、利用が困難であるという問題が存在する。
本発明はかかる事情に鑑みてなされたもので、従来の磁性流体より相対比重が小さく、グリッパ等に用いた場合は、把持力(剪断強度)が大きい改質磁性流体を提供すること、及びこの改質磁性流体を用いた把持機構並びに把持装置を提供することを目的とする。
前記目的に沿う第1の発明に係る改質磁性流体は、ベース液と、該ベース液中に分散状態で存在する強磁性体微粒子とを有する磁性流体に、前記強磁性体微粒子のサイズより大きく該強磁性体微粒子の比重より小さい非磁性粉体を混入し、磁化時の保持強度を向上している。
第1の発明に係る改質磁性流体において、前記非磁性粉体は、ガラス、プラスチック又はセラミックのパウダーからなるのが好ましい。更に、第1の発明に係る改質磁性流体において、前記非磁性粉体は発泡プラスチックからなるのが好ましい。なお、前記非磁性粉体は磁性流体のベース液に溶けないこと及び反応もしないことは当然である。また、非磁性粉体は、ベース液の比重より小さく(例えば、γ=0.3~0.8)、球状であることが好ましい。
そして、第1の発明に係る改質磁性流体において、前記非磁性粉体の粒径は2mm以下であるのが好ましい。
また、第1の発明に係る改質磁性流体において、該改質磁性流体中の前記磁性流体の割合は、40~80%の範囲にあるのが好ましい。更に前記磁性流体として、MR流体を使用することもできる。
第2の発明に係る把持機構は、以上に記載した第1の発明に係る改質磁性流体を用い、前記改質磁性流体が収納された柔軟性を有する袋体と、該袋体の一側に配置され前記袋体に磁場をかけることが可能な電磁石とを有する。
第2の発明に係る把持機構において、前記電磁石は中央の磁極部とその周囲にある有底円筒状のヨーク部と前記磁極部に巻回されたコイルとを有し、前記ヨーク部の開放端に前記改質磁性流体が充填された前記袋体が密封状態で取付けられているのが好ましい。
第2の発明に係る把持機構において、前記袋体への前記改質磁性流体の充填率は40~70%であるのが好ましい。
また、第2の発明に係る把持機構において、前記袋体はフランジ付きの半球状となっているのが好ましい。
第3の発明に係る把持装置は、以上に説明した第2の発明に係る把持機構をロボットアームの先側に取付けている。また、第4の発明に係る把持装置は、以上に説明した第2の発明に係る把持機構を間隔を制御できるロボットの挟持部にそれぞれ設けて、対向させている。
第1の発明に係る改質磁性流体は、従来の磁性流体に強磁性体微粒子のサイズより大きく強磁性体微粒子の比重より小さい非磁性粉体を混入しているので、全体の比重が従来の磁性流体より小さくなる。そして、この改質磁性流体に磁場をかけると、サイズの大きい非磁性粉体が骨材として作用し、改質磁性流体の磁化時の保持力、剪断強度が大きくなる。
第1の発明に係る改質磁性流体において、非磁性粉体を、ガラス、プラスチック又はセラミックのパウダーから構成した場合は、非磁性粉体が軽くなると共に、粒の揃った非磁性粉体を容易に得ることができ、改質磁性流体の物理的性質がより均一化する。
また、非磁性粉体を球状とした場合、非磁性粉体を発泡プラスチックから構成した場合は、より改質磁性流体の比重が軽減し、物理的性質も均一化する。
第2の発明に係る把持機構は、以上に記載した第1の発明に係る改質磁性流体を用い、改質磁性流体が収納された柔軟性を有する袋体と、袋体の一側に配置され袋体に磁場をかけることが可能な電磁石とを有するので、袋体に対象物の一部又は全部を、その形状を保って把持することができる。
特に、第2の発明に係る把持機構において、袋体への改質磁性流体の充填率を40~70%とした場合は、袋体の表面に凹凸ができるので、対象物を嵌め込み易く、大きさが一定の範囲内であれば、任意の対象物を把持できる。
更に、第3の発明に係る把持装置は、以上に説明した第2の発明に係る把持機構をロボットアームの先側に取付けているので、把持機構を自由に動かせると共にその姿勢を変えることができる。
(A)は本発明の一実施例に係る把持機構の斜視図、(B)は同把持機構の主要断面図である。 (A)は同把持機構の電磁石の斜視図、(B)は同把持機構の電磁石の断面図である。 同把持機構を多関節ロボットのロボットアームに取付けた把持装置の斜視図である。 (A)は改質磁性流体中の磁性流体(MR流体)の割合と把持力の関係を示すグラフ、(B)は非磁性粉体の粒子サイズと保持力との関係を示すグラフである。 (A)は改質磁性流体の動作説明図、(B)は従来例に係る磁性流体の動作説明図である。 非磁性粉体の種類及びサイズと保持力との関係を示すグラフである。 同把持機構を対向して配置した別の把持装置の斜視図である。 従来例に係る把持機構(グリッパ)の断面図である。
続いて、添付した図面を参照しながら、本発明を具体化した実施例について説明する。図1(A)、(B)に示すように、本発明の一実施例に係る把持機構10は、改質磁性流体11が収納された柔軟性を有する袋体12と、袋体12の一側(この実施例では上側)に配置され袋体12に磁場をかける電磁石13とを有する。
電磁石13は、図2(A)、(B)に示すように、中央に配置された磁性材料からなる磁極部15と磁極部15の周囲にある有底円筒状の磁性材料からなるヨーク部16と、磁極部15に巻回されたコイル17と、磁極部15の開放端に設けられた磁極部15より大径の磁極板部15aとを有している。
袋体12は、シリコンゴム等の耐油性、非磁性、かつ柔軟性を有するゴムシート又はプラスチックシートからなって、半球部18と半球部18の端部に一体的に設けられたフランジ部19を有して、フランジ付きの半球状シートとなっている。半球部18の直径Dは30~80mm程度が好ましいが、把持する対象物によって異なるので、本発明はこの数字には限定されない。なお、袋体12の厚みは例えば0.3~2mm程度である。
そして、袋体12はフランジ部19を挟持する第1、第2の取付け部材22、23によって、電磁石13の下部に設けられている。即ち、第1の取付け部材22が、ヨーク部16の下端にねじ止めされ、第1の取付け部材22と第2の取付け部材23がフランジ部19を介して複数のボルト24で連結されている。これによってヨーク部16の開放端に袋体12が密封状態で取付けられることになる。
袋体12には、本発明の一実施例に係る改質磁性流体11が収納されている。改質磁性流体11の収納量(充填率)は、袋体12の半径Rの半球部18を一杯に膨らませた状態(体積V=2πR3/3)の40~70%の範囲となっている。改質磁性流体11の量がこの範囲より少ない場合は、改質磁性流体11の全体量が不足し、改質磁性流体11の量がこの範囲より多い場合は、袋体12の把持空間が少なくなるが、改質磁性流体11の量は用途に応じてこの範囲を超えることもできる。
改質磁性流体11は、ベース液に強磁性体微粒子が分散状態で存在する通常の磁性流体に非磁性粉体を混合して造る。通常の磁性流体は前述の通り、マグネタイト、マンガン亜鉛フエライト等の強磁性体微粒子と、その表面を覆う界面活性剤、ベース液(例えば、水、イソパラフィン、アルキルナフタレン又はその他の油)で構成された磁性コロイド液である。強磁性体微粒子の直径は10nm程度、10nm~200μm、より好ましくは、100~200μm程度である。
非磁性粉体は、強磁性体微粒子よりサイズが大きくて比重の小さい、この実施例では、発泡プラスチックの一例である発泡ポリスチレンの粒子を用いた。
図4(A)に、磁性流体(MR流体を使用した)と非磁性粉体との容積割合を変えた場合の袋体12の保持力を、図4(B)には磁性流体と非磁性粉体との割合を1対1にした場合で、非磁性粉体のサイズと袋体12の把持力との関係を示す。ここで、非磁性粉体の容積は見かけ容積である。図4(A)より改質磁性流体中の磁性流体の割合が40~80%の範囲にあるときに、改質磁気流体の保持力が大きいのが判る。また、図4(B)により、非磁性粉体の粒径が2mm以下で大きな保持力を有することが判る。
図4(B)から非磁性粉体の粒子径が0.5mmのとき保持力が最大値を示すが、強磁性体微粒子の径より大きければ(例えば、5倍以上、即ち50nm以上)、十分な把持力を発揮するものと考えられる。
図5(A)には改質磁性流体11を用いた非磁場状態と磁場状態を示す。磁場をかけない状態では、磁性流体27(ベース液と強磁性体微粒子25の混合液)と非磁性粉体26とが自由に混ざり合っているが、磁場をかけると、強磁性体微粒子25が接合され、非磁性粉体26が骨材として働き、その保持強度及び剪断強度が大きくなると考えられる。
図5(B)に比較のため、従来の磁性流体27を用いた場合の、非磁場状態と磁場状態の挙動を示す。非磁場状態では強磁性体微粒子25が自由に動き、磁場状態では強磁性体微粒子25が繋がるが、骨材として働くものがないので、磁性流体27の把持強度や剪断力は大きくないと推定される。
なお、図5(A)、(B)は説明のための模式図であって、実際は強磁性体微粒子25、非磁性粉体26の密度はより密である。
図6には、磁性流体(MR流体)を用いた改質磁性流体の非磁性粉体の種類とサイズを変えた場合の、把持力を示す。ニカビーズ(商標名、カーボンマイクロビーズ)0.0221mmが強い保持力を有するが、発泡ポリスチレン0.5mmであっても十分な把持力を示す。
図3は、以上に説明した把持機構10を用いた把持装置30を示すが、多関節ロボット31のロボットアーム32の先側に把持機構10が取付けられている。これによって、把持機構10を自由に特定の位置、角度を変えて移動させて対象物を把持する。即ち、把持機構10の袋体12を対象物の上に被せ、対象物の一部又は全部を袋体12の窪みに入れて、電磁石13に通電し、改質磁性流体11を磁化する。なお、電磁石13は、強磁性体微粒子が磁気飽和をしない程度の強い磁石(例えば、0.05~0.3T)であることが好ましいが、用途によって弱い磁場から強い磁場まで適用可能である。
これによって、改質磁性流体11は把持状態を保持するので、ロボットアーム32で対象物を移動させることができる。所定の場所に対象物を移動させた後、電磁石13の通電を解き、袋体12の形状を自由にして、対象物を所定の位置に置くことができる。
図7には、間隔をモータ又は油圧シリンダ等で変えることができるロボットの挟持部34、35にそれぞれ把持機構10を取付けて、把持機構10を対向させた把持装置36を示す。対象物を把持機構10の袋体12で両側から挟み、電磁石13に通電することによって、対象物を対となる把持機構10の間に保持できる。図7において、37はロボットのアーム等に把持装置36を取付ける取付けフランジを、38はケーシングを、39は操作ハンドルを示す。
本発明は前記した実施例に限定されるものではなく、本発明の要旨を変更しない範囲でその構成を変更することもできる。例えば、前記実施例では、非磁性粉体として発泡ポリスチレンを使用したが、他の発泡プラスチック、非発泡のプラスチック、ガラス、セラミックのパウダー(正確には集合粒子)、カーボン粒子等を使用できる。
また、電磁石の形状、袋体の形状も用途に応じて自由に変えることができる。
本発明に係る改質磁性流体は、前述のような把持機構の他、磁性流体シール(回転軸のシール)、ダンパ、スピーカ、センサ、比重差分離等に利用できる。また、把持機構及び把持装置は、工場のような特殊な場所で搬送機、アクチュエータ等に利用できる。
10:把持機構、11:改質磁性流体、12:袋体、13:電磁石、15:磁極部、15a:磁極板部、16:ヨーク部、17:コイル、18:半球部、19:フランジ部、22:第1の取付け部材、23:第2の取付け部材、24:ボルト、25:強磁性体微粒子、26:非磁性粉体、27:磁性流体、30:把持装置、31:多関節ロボット、32:ロボットアーム、34、35:挟持部、36:把持装置、37:取付けフランジ、38:ケーシング、39:操作ハンドル

Claims (12)

  1. ベース液と、該ベース液中に分散状態で存在する強磁性体微粒子とを有する磁性流体に、前記強磁性体微粒子のサイズより大きく該強磁性体微粒子の比重より小さい非磁性粉体を混入し、磁化時の保持強度を向上したことを特徴とする改質磁性流体。
  2. 請求項1記載の改質磁性流体において、前記非磁性粉体は、ガラス、プラスチック又はセラミックのパウダーからなることを特徴とする改質磁性流体。
  3. 請求項1記載の改質磁性流体において、前記非磁性粉体は発泡プラスチックからなることを特徴とする改質磁性流体。
  4. 請求項1~3のいずれか1記載の改質磁性流体において、前記非磁性粉体の粒径は2mm以下であることを特徴とする改質磁性流体。
  5. 請求項1~4のいずれか1記載の改質磁性流体において、該改質磁性流体中の前記磁性流体の割合は、40~80%の範囲にあることを特徴とする改質磁性流体。
  6. 請求項1~5のいずれか1記載の改質磁気流体において,前記磁性流体はMR流体であることを特徴とする改質磁気流体。
  7. 請求項1~6のいずれか1記載の改質磁性流体を用いる把持機構であって、前記改質磁性流体が収納された柔軟性を有する袋体と、該袋体の一側に配置され前記袋体に磁場をかけることが可能な電磁石とを有する把持機構。
  8. 請求項7記載の把持機構において、前記電磁石は中央の磁極部とその周囲にある有底円筒状のヨーク部と前記磁極部に巻回されたコイルとを有し、前記ヨーク部の開放端に前記改質磁性流体が充填された前記袋体が密封状態で取付けられていることを特徴とする把持機構。
  9. 請求項8記載の把持機構において、前記袋体への前記改質磁性流体の充填率は40~70%であることを特徴とする把持機構。
  10. 請求項7~9のいずれか1記載の把持機構において、前記袋体はフランジ付きの半球状となっていることを特徴とする把持機構。
  11. 請求項7~10のいずれか1記載の把持機構を、ロボットアームの先側に取付けたことを特徴とする把持装置。
  12. 請求項7~10のいずれか1記載の把持機構を、間隔を制御できるロボットの挟持部にそれぞれ設けて、対向させたことを特徴とする把持装置。
PCT/JP2015/059671 2014-03-31 2015-03-27 改質磁性流体及びこの改質磁性流体を用いた把持機構並びに把持装置 WO2015152062A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015001563.9T DE112015001563T5 (de) 2014-03-31 2015-03-27 Modifiziertes magnetisches Fluid und Greifmechanismus und Greifvorrichtung unter Verwendung dieses modifizierten magnetischen Fluids
JP2016511626A JP6385014B2 (ja) 2014-03-31 2015-03-27 改質磁性流体及びこの改質磁性流体を用いた把持機構並びに把持装置
CN201580017568.7A CN106165029B (zh) 2014-03-31 2015-03-27 改性磁性流体、使用了该改性磁性流体的把持机构以及把持装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014072632 2014-03-31
JP2014-072632 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152062A1 true WO2015152062A1 (ja) 2015-10-08

Family

ID=54240387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059671 WO2015152062A1 (ja) 2014-03-31 2015-03-27 改質磁性流体及びこの改質磁性流体を用いた把持機構並びに把持装置

Country Status (4)

Country Link
JP (1) JP6385014B2 (ja)
CN (1) CN106165029B (ja)
DE (1) DE112015001563T5 (ja)
WO (1) WO2015152062A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116266A (ja) * 2015-12-21 2017-06-29 三菱電機株式会社 測定装置、測定方法
JP2018202575A (ja) * 2017-06-08 2018-12-27 国立大学法人東北大学 変形装置
CN109230524A (zh) * 2018-07-19 2019-01-18 中国科学院长春光学精密机械与物理研究所 一种柔性抓捕机构
WO2020032158A1 (ja) * 2018-08-08 2020-02-13 ユニプレス株式会社 把持装置、及びロボット装置
FR3092513A1 (fr) * 2019-02-13 2020-08-14 Psa Automobiles Sa Dispositif de préhension à membrane et électroaimants
FR3103724A1 (fr) * 2019-11-28 2021-06-04 Psa Automobiles Sa Outil de prehension electromagnetique polyvalent et deformable
CN113172600A (zh) * 2021-04-28 2021-07-27 苏州大学 一种磁性液态金属制备方法、微夹持器及夹持方法
US20220195883A1 (en) * 2020-12-18 2022-06-23 General Electric Company Turbomachine clearance control using magnetically responsive particles
JP7142897B2 (ja) 2018-06-01 2022-09-28 国立大学法人東北大学 ジャミンググリッパ
US11571779B2 (en) 2018-06-21 2023-02-07 University Of Florida Research Foundation, Incorporated Magnetic-field-guidance system
JP7403763B2 (ja) 2019-12-09 2023-12-25 国立大学法人東京工業大学 吸着装置及びその制御プログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018207096A1 (de) * 2018-05-08 2019-11-14 Robert Bosch Gmbh Greifvorrichtung zum Halten wenigstens eines Bauteils sowie Verfahren zum Halten
KR102093979B1 (ko) * 2018-06-22 2020-03-27 주식회사 다우에프에이 형상적응형 그리퍼
DE102018211728A1 (de) * 2018-07-13 2020-01-16 Robert Bosch Gmbh Kontaktelement zum Halten wenigstens eines Bauteils und Greifvorrichtung mit einem Kontaktelement
FR3085612B1 (fr) * 2018-09-11 2021-06-11 Psa Automobiles Sa Outil de prehension electromagnetique polyvalent et deformable
FR3085878B1 (fr) * 2018-09-13 2020-12-04 Psa Automobiles Sa Outil de prehension electromagnetique polyvalent et deformable a double membrane
DE102019211269A1 (de) * 2019-07-30 2021-02-04 Robert Bosch Gmbh Haltevorrichtung mit magnetorheologischer Flüssigkeit, Roboter, Maschine, Flaschenverschlussvorrichtung und Halteverfahren
KR102055130B1 (ko) * 2019-09-24 2019-12-12 아이엔지글로벌 (주) 그리퍼 장치
JP7393761B2 (ja) 2019-10-24 2023-12-07 国立大学法人東北大学 吸着グリッパ
CN112388658B (zh) * 2020-11-16 2022-05-13 中国科学技术大学 一种基于液态金属的柔性抓手
CN114310983B (zh) * 2021-12-29 2023-05-09 南京信息工程大学 一种基于磁流变液的表面粘附力可控的抓取装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114688A (en) * 1980-02-07 1981-09-09 Sintokogio Ltd Method of holding body
US4294424A (en) * 1978-07-20 1981-10-13 Jacques Teissier Suction gripping device
JPH02218580A (ja) * 1989-02-17 1990-08-31 Nissan Motor Co Ltd ロボット
JP2003120728A (ja) * 2001-10-17 2003-04-23 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 結合媒体及び結合装置
US20100054903A1 (en) * 2008-09-03 2010-03-04 Christopher Vernon Jones Method and Device for Manipulating an Object

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453276C (zh) * 2005-01-21 2009-01-21 日本电产三协株式会社 工业用机械手装置
CN2912932Y (zh) * 2006-03-17 2007-06-20 北京中科信电子装备有限公司 晶片传输机械手装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294424A (en) * 1978-07-20 1981-10-13 Jacques Teissier Suction gripping device
JPS56114688A (en) * 1980-02-07 1981-09-09 Sintokogio Ltd Method of holding body
JPH02218580A (ja) * 1989-02-17 1990-08-31 Nissan Motor Co Ltd ロボット
JP2003120728A (ja) * 2001-10-17 2003-04-23 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 結合媒体及び結合装置
US20100054903A1 (en) * 2008-09-03 2010-03-04 Christopher Vernon Jones Method and Device for Manipulating an Object

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116266A (ja) * 2015-12-21 2017-06-29 三菱電機株式会社 測定装置、測定方法
JP2018202575A (ja) * 2017-06-08 2018-12-27 国立大学法人東北大学 変形装置
JP7142897B2 (ja) 2018-06-01 2022-09-28 国立大学法人東北大学 ジャミンググリッパ
US11571779B2 (en) 2018-06-21 2023-02-07 University Of Florida Research Foundation, Incorporated Magnetic-field-guidance system
CN109230524A (zh) * 2018-07-19 2019-01-18 中国科学院长春光学精密机械与物理研究所 一种柔性抓捕机构
WO2020032158A1 (ja) * 2018-08-08 2020-02-13 ユニプレス株式会社 把持装置、及びロボット装置
JP7403130B2 (ja) 2018-08-08 2023-12-22 ユニプレス株式会社 把持装置、及びロボット装置
FR3092513A1 (fr) * 2019-02-13 2020-08-14 Psa Automobiles Sa Dispositif de préhension à membrane et électroaimants
FR3103724A1 (fr) * 2019-11-28 2021-06-04 Psa Automobiles Sa Outil de prehension electromagnetique polyvalent et deformable
JP7403763B2 (ja) 2019-12-09 2023-12-25 国立大学法人東京工業大学 吸着装置及びその制御プログラム
US20220195883A1 (en) * 2020-12-18 2022-06-23 General Electric Company Turbomachine clearance control using magnetically responsive particles
US11434777B2 (en) * 2020-12-18 2022-09-06 General Electric Company Turbomachine clearance control using magnetically responsive particles
CN113172600A (zh) * 2021-04-28 2021-07-27 苏州大学 一种磁性液态金属制备方法、微夹持器及夹持方法

Also Published As

Publication number Publication date
JP6385014B2 (ja) 2018-09-05
JPWO2015152062A1 (ja) 2017-04-13
CN106165029B (zh) 2018-06-15
DE112015001563T5 (de) 2017-02-23
CN106165029A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
JP6385014B2 (ja) 改質磁性流体及びこの改質磁性流体を用いた把持機構並びに把持装置
JP2016162981A (ja) 改質mr流体及びこの改質mr流体を用いた把持機構並びに把持装置
Nishida et al. Development of universal robot gripper using MR α fluid
Diller et al. Three‐dimensional programmable assembly by untethered magnetic robotic micro‐grippers
KR102313077B1 (ko) 전자석 전환 가능 영구 자석 디바이스
JP6110763B2 (ja) 粘弾性可変装置
JP2020085227A (ja) 吸着装置及び吸盤
Tsugami et al. Development of universal parallel gripper using reformed magnetorheological fluid
Okatani et al. Development of universal robot gripper using MRα fluid
Hartzell et al. Performance of a magnetorheological fluid-based robotic end effector
Balak et al. Bistable valves for MR fluid-based soft robotic actuation systems
JP2019098461A (ja) 把持機構及び把持装置
JP2020525740A5 (ja)
US20160276085A1 (en) Variable hardness actuator
Cramer et al. Exploring the potential of magnetorheology in robotic grippers
JP2018027578A (ja) 物体把持装置及び物体把持方法
Zhang et al. Development of a vacuum suction cup by applying magnetorheological elastomers for objects with flat surfaces
JP5667422B2 (ja) 透磁率可変素子および磁力制御装置
EP1681687B1 (en) Magnetic devices usin composite magnetic components
Tsugami et al. Simple structured gripper using electromagnet and permanent magnet
JP7387749B2 (ja) 電磁把持装置およびその動作方法
CN114654489B (zh) 一种基于混合磁场的抓取机器人驱动装置及方法
Xu et al. Rotating soft-tail millimeter-scaled swimmers with superhydrophilic or superhydrophobic surfaces
Li et al. Design and optimization of the magnetic field-driven spherical gripper with adjustable stiffness
JP2003120728A (ja) 結合媒体及び結合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511626

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015001563

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15774140

Country of ref document: EP

Kind code of ref document: A1