WO2015149335A1 - 一种锌离子可充电电池及其制造方法 - Google Patents
一种锌离子可充电电池及其制造方法 Download PDFInfo
- Publication number
- WO2015149335A1 WO2015149335A1 PCT/CN2014/074751 CN2014074751W WO2015149335A1 WO 2015149335 A1 WO2015149335 A1 WO 2015149335A1 CN 2014074751 W CN2014074751 W CN 2014074751W WO 2015149335 A1 WO2015149335 A1 WO 2015149335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon
- positive electrode
- manganese dioxide
- battery
- rechargeable battery
- Prior art date
Links
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims abstract description 110
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000011149 active material Substances 0.000 claims abstract description 18
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 16
- 239000002131 composite material Substances 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 229910001437 manganese ion Inorganic materials 0.000 claims abstract description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000011701 zinc Substances 0.000 claims abstract description 6
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 5
- 239000003792 electrolyte Substances 0.000 claims description 17
- 239000006258 conductive agent Substances 0.000 claims description 12
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 11
- 239000002041 carbon nanotube Substances 0.000 claims description 11
- 229910021389 graphene Inorganic materials 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 claims 3
- 230000007797 corrosion Effects 0.000 claims 3
- 239000003112 inhibitor Substances 0.000 claims 3
- 239000007774 positive electrode material Substances 0.000 abstract description 11
- 239000008151 electrolyte solution Substances 0.000 abstract 2
- 239000007864 aqueous solution Substances 0.000 description 12
- 229940071125 manganese acetate Drugs 0.000 description 5
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000011572 manganese Substances 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000012286 potassium permanganate Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000003340 retarding agent Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/38—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/663—Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0002—Aqueous electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to the field of secondary bubbles, and in particular to a zinc ion rechargeable bubble and a manufacturing method thereof. ⁇ background technology]
- the rechargeable zinc ion battery is a rechargeable battery using manganese oxide material as a positive electrode active material, zinc as a negative electrode active material, and an aqueous solution containing zinc ions as an electrolyte, which has the characteristics of being inexpensive, but Its capacity is too low, only 200 ⁇ 300 mAh g. It is well known that for batteries, high capacity is a prerequisite for its wide application.
- Manganese dioxide is an electrode material with low electrical conductivity and low utilization rate of active materials.
- Manganese dioxide (abbreviated as Mn() 2 ) has a large open structure, and the cations in the tunnel can be exchanged with the cations in the aqueous solution, that is, have ion exchange capacity, and these tunnel structures can be kept stable during ion exchange.
- the prior patent discloses a rechargeable zinc ion battery using manganese dioxide as a positive electrode, zinc as a negative electrode, and an aqueous solution containing zinc ions as an electrolyte.
- the reason for the uneven battery capacity is because the conductivity of manganese dioxide is poor, and after mixing with the added high-conductivity material, the dispersion of manganese dioxide and conductive agent is prone to be uneven, which leads to different manufacturing.
- the batteries have different capacities.
- a zinc ion rechargeable battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the active material of the negative electrode comprises zinc, wherein the active material of the positive electrode comprises a carbon-supported manganese dioxide composite material, wherein the carbon
- the manganese dioxide composite material refers to a material in which manganese dioxide is applied to the surface of the carbon material carrier.
- the manganese dioxide is attached to the surface of the highly conductive carbon material, which has the following advantages - one is to improve the manganese dioxide electrode Conductivity, improve the high current characteristics of the battery; Second, it can improve the utilization of manganese dioxide electrode materials, increase the positive battery capacity, and thus increase the capacity and energy density of the entire battery. Third, the conductivity of the carbon-supported manganese dioxide composite material and the conductive agent are relatively close. When mixed with the conductive agent, the problem that different batteries have different capacities due to uneven mixing is less likely to occur.
- the electrolyte contains zinc ions and divalent manganese ions.
- the carbon material with a large specific surface area and the additional manganese ions added to the electrolyte have a very special synergistic effect, and the capacity of the battery can be greatly increased when both of them are present.
- This synergistic effect is manifested by the reversible electrochemical reaction of divalent manganese ions (Mn 2+ ) on the surface of large specific surface area carbon materials: Mrr ⁇ Mn' i ⁇ + 2e ⁇ (3)
- Manganese dioxide with the positive electrode material provides an additional source of tetra-manganese.
- the carbon material support may be carbon nanotubes, graphite, porous carbon or activated carbon.
- the positive electrode is made of a mixture of an active material of the positive electrode, a conductive agent, and a binder.
- the step of preparing the positive electrode comprises: mixing the active material of the positive electrode, a conductive agent, and a binder, and coating the positive electrode carrier.
- the active material of the negative electrode further includes a retarding agent, and the content of the retarding agent is 1% or less of the mass of the negative electrode, and the retarding agent is an oxide of indium or a hydroxide of indium.
- the invention also provides a method for manufacturing a zinc ion rechargeable battery, comprising the following steps:
- a positive electrode comprising a carbon-supported manganese dioxide composite active material, wherein the carbon-supported manganese dioxide composite material refers to a material on which a manganese dioxide is adhered on a surface of a carbon material carrier;
- the negative electrode, the electrolyte, and the positive electrode are packaged to obtain a zinc ion rechargeable battery.
- the electrolyte contains zinc ions and divalent manganese ions.
- the carbon material support is carbon nanotubes, graphene, porous carbon or activated carbon.
- the step of preparing the positive electrode comprises: mixing the active material of the positive electrode, a conductive agent, and a binder, and coating the positive electrode carrier.
- the carbon-supported manganese dioxide composite material is added to the positive electrode material of the zinc ion battery, thereby improving the high current characteristic of the battery, thereby improving the cycle life of the battery; the added divalent manganese ions in the electrolyte are combined with the carbon-supported manganese dioxide.
- the material reacts synergistically, increasing the capacity of the battery.
- the capacity of the battery of this embodiment is higher than 1000 mAh g-.
- the rechargeable battery has the characteristics of high capacity, safety, environmental protection and low cost. It is foreseeable that such batteries can be widely used in the fields of consumer electronics, electric vehicles, communications, aerospace and military.
- FIG. 1 is a charge and discharge curve of a battery Celi 1 prepared in Example 1 at a constant current of 100 mA g- 1
- FIG. 2 is a charge and discharge of a battery CeU 2 obtained in Example 2 at a constant current of 100 mA g- 1.
- curve; 3 is a charge and discharge curve of the battery Celi 3 prepared in Example 2 at a constant current of 100 mA g- 1
- FIG. 4 is a charge and discharge curve of the battery CeU 4 obtained in Example 3 at a constant current of 500 mA g 1 . ; ⁇ specific implementation method]
- the preparation method of graphene-supported manganese dioxide is as follows: 0,4 g of graphene is added to 300 ml (mL) of 0,1 mol per liter (mol l.: 1 ) of an aqueous solution of manganese acetate, and the graphene is uniformly dispersed. After adding 200 111 : ().1 1 ⁇ 1 potassium permanganate aqueous solution to the manganese acetate solution, stirring for 10 hours, so that the manganese dioxide is fully deposited and adhered to the surface of the graphene, and then the precipitate is filtered and used. Ionized water is washed and dried to obtain graphene-supported manganese dioxide.
- the graphene-supported manganese dioxide powder, the conductive agent carbon black and the binder polyvinylidene fluoride are mixed at a mass ratio of 8:1:1, coated on a stainless steel foil, and cut into a certain size in a vacuum.
- the baking is a graphene-loaded manganese dioxide electrode sheet.
- the obtained graphene-loaded manganese dioxide electrode sheet is used as a positive electrode, and a 0.1 mm thick zinc foil is used as a negative electrode, and the electrolyte is 1 mol L" 1 ZnS0 4 plus 0.5 mol I:; 1 MnS0 4 aqueous solution is assembled into a battery, It is the first battery Cell 1.
- the first battery Ceil is at 100 mA g 1 (calculated as the mass of the positive active material, in the present embodiment, the mass of the graphene-supported manganese dioxide). 1 shows ffi Figure 1. It can be seen that the first battery Cell 1 battery can be repeatedly charged and discharged as a secondary battery. The capacity of the first battery Cell 1 is ISOO mAh g- calculated based on the mass of the positive active material.
- the present invention is equipped with two other batteries to compare the synergistic effect on the battery capacity increase.
- the present invention prepares manganese dioxide powder according to the following method, and 200 mL of 0.1 ML" 1 potassium permanganate aqueous solution is added to 300 ml (mL) of 0.1 mol per liter (md L) of an aqueous solution of manganese acetate, and stirred thoroughly. 10 small B inches, then the precipitate is filtered and washed with deionized water to obtain a manganese dioxide powder.
- the manganese dioxide powder, the conductive agent carbon black and the binder polyvinylidene fluoride are mass ratio 7:
- the ratio of 2: ⁇ is mixed and coated on a stainless steel foil, cut into a certain size, and dried in a vacuum to form a manganese dioxide electrode sheet.
- the obtained manganese dioxide electrode sheet is a positive electrode, and a 0.1 mm thick zinc foil is used.
- the electrolyte is 1 mol L. 1 ZnS0 4 plus 0.5 mol L. 1 MnS0 4 aqueous solution assembled into a battery, which is recorded as the second battery Cell 2.
- the graphene-supported manganese dioxide electrode is used as the positive electrode, and the OJmni is thick.
- the zinc foil is a negative electrode
- the electrolyte is a mixture of ⁇ mol ⁇ ⁇ ⁇ 80 4 aqueous solution, and is referred to as a third battery Cell 3.
- the second battery Cell 2 and the third battery Cell 3 are at 100 mA g 1 (based on the positive active material mass if, that is, the positive active material of the second battery Cell 2 is manganese dioxide, and the positive active material of the third battery Cell 3
- the graph of charge and discharge at constant current for graphene-supported manganese dioxide is shown in Fig. 2 and Fig. 3. It can be seen from the figure that the capacities of the second battery Cell 2 and the third battery Cell 3 are 200 and 260 mAh, respectively.
- the second battery Cell 2 does not contain the graphene carbon material in the positive electrode, and the third battery Cdi 3 is electrolyzed.
- the liquid does not contain divalent manganese ions, and in the battery disclosed in Example 1, the positive electrode contains a graphene carbon material, the cerium electrolyte contains divalent manganese ions, and the carbon material having a large specific surface area causes the reaction equation (3) to occur, thus The battery disclosed in the present invention has a high capacity.
- Example 3 Example 3:
- the preparation method of carbon nanotube-supported manganese dioxide is as follows: 0.6 g of carbon nanotubes are added to 300 ml of imL) 0.1 mol per liter (111 0 1 1; manganese acetate aqueous solution is thoroughly stirred to uniformly disperse the carbon nanotubes, and then 200 mL 0.1 ML potassium permanganate aqueous solution is added to the manganese acetate solution, stirred for 10 hours, so that manganese dioxide is fully deposited on the surface of the carbon nanotubes, and then the precipitate is filtered and washed with deionized water. The carbon nanotubes are loaded with manganese dioxide.
- the carbon nanotube-supported manganese dioxide powder, the conductive agent carbon black and the binder polyvinylidene fluoride are mixed at a mass ratio of 8:1:1 and coated on a stainless steel foil. Cut into a certain size, and dry it into a carbon nanotube-loaded manganese dioxide electrode sheet in a vacuum. The obtained carbon nanotube-loaded manganese dioxide electrode sheet is used as a positive electrode, and a 0.1 mm thick zinc foil is used as a negative electrode.
- a battery was assembled into a battery of 1 mol of U 1 ZnS0 4 plus 1 mol of L. 1 MnS0 4 , which was recorded as the first cell Cell 4.
- the fourth cell Cell 4 was at 500 mA (calculated as the mass of the positive active material, in this example Manganese dioxide supported on carbon nanotubes The charge and discharge curve under constant current is shown in Fig. 4. It can be seen from Fig. 4 that the produced Cell 4 battery can be repeatedly charged and discharged as a secondary battery. The capacity of the first battery Cdi 4 is calculated based on the mass of the positive active material. 1935.7 mAh g- 1 .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种锌离子可充电电池及其制造方法,该电池包括正极、负极和电解液,所述负极的活性材料包含锌,其特征是,所述正极的活性材料包含碳载二氧化锰复合材料,其中,所述碳载二氧化锰复合材料是指,在碳材料载体的表面上附着二氧化锰的材料。在锌离子电池的正极材料中增加碳载二氧化锰复合材料,从而提高了电池的大电流特性,进而提高了电池的循环寿命;电解液中增加的二价锰离子与碳载二氧化锰复合材料协同反应,增加了电池的容量。
Description
本发明涉及二次电泡领域, 具体涉及一种锌离子可充电电泡及其制造方法。 ί背景技术】
高容量和长寿命可充电电池是我们现代社会生活的基石, 无论从可移动电子器件 到电动汽车, 都需要高容量和长寿命的电池来提供电源, 因此开发高容量的可充电电 池具有十分重要的意义。 可充电锌离子电池是一种以锰的氧化物材料为正极活性材料, 以锌为负极活性材 料, 以含锌离子的水溶液为电解液的可充电电池, 这种电泡具有廉价的特点, 但其容 量过低, 仅 200〜300 mAh g 众所周知的是, 对亍电池而言, 具有高的容量是其广 泛应用的先决条件。 二氧化锰^为电极材料具有电导率低和活性物质利用率低等缺 点, 目前的锌离子可充电电池中, 在正极中添加高导电材料来改善二氧化锰的导电 性, 容易导致大电流衰减的问题, 以及不同的电池容量不均匀的 题。 二氧化锰(简写为 Mn()2 )具有大尺寸的开放式结构, 隧道中的阳离子可以和水溶 液中的阳离子进行交换, 即具有离子交换能力, 在离子交换过程中, 这些隧道结构可 保持稳定。 前期专利公开以二氧化锰为正极、 锌为负极, 含锌离子水溶液为电解液的 可充电锌离子电池。
这种锌离子电池储存电子的机理如下: 正极: ZnyMnO.:, <=> χΖιτ ' + 2xe ' + MnO, ( 1 )
负极: ? <^> ΖηΔ— + 2Θ— ( 2 ) 这种电池具有廉价的特点, 但其容量过低, 仅 200 mAh g !左右。
【发明内容】
进一步研究发现, 不同电池容量不均匀的原因, 是因为二氧化锰的导电性较差, 而与添加的高导电材料混合后, 容易出现二氧化锰和导电剂分散不均匀, 进而导致制 造的不同电池具有不同的容量。
一种锌离子可充电电池, 包括正极、 负极和电解液, 所述负极的活性材料包含锌, 其特征是, 所述正极的活性材料包含碳载二氧化锰复合材料, 其中, 所述碳载二氧化 锰复合材料是指, 在碳材料载体的表面上 着二氧化锰的材料。 通过引入高导电性和大比表靣积的碳材料作为二氧化锰活性材料的载体, 把二氧 化锰附着在高导电性的碳材料表面, 这样有以下好处- 一是改善二氧化锰电极的导电性, 提高电池的大电流特性; 二是可以提高二氧化锰电极材料的利用率, 提高电池正极容量, 从而提高整个电 池的容量和能量密度。 三是得碳载二氧化锰复合材料和导电剂的导电性较为接近, 与导电剂混合后, 不 容易出现因为混合不均匀而导致不同的电池具有不同的容量的问题。
所述电解液包含有锌离子和二价锰离子。
大比表面积的碳材料和电解液中额外添加的锰离子具有非常特殊的协同效应, 在 其二者同时存在时可大幅提高电池的容量。 这种协同效应表现为二价锰离子 (Mn2+)在 大比表面积碳材料表面进行的可逆的电化学反应:
Mrr÷ Mn'i÷ + 2e~ ( 3 ) 同 ^正极材料的二氧化锰提供了额外的四 ^锰源。 在一个实施例中, 所述碳材料载体可以是碳纳米管、 石墨婦、 多孔碳或活性碳。 在一个实施例中, 所述正极由所述正极的活性材料、 导电剂和粘结剂混合制成。 在一个实施例中, 所述正极制作的歩骤包括: 将所述正极的活性材料、 导电剂和 粘结剂混合后涂覆于正极载体上。 在一个实施例中, 所述负极的活性材料中还包括缓腐剂, 缓腐剂的含量为负极质 量的 1 %以下, 所述缓腐剂为铟的氧化物、 或铟的氢氧化物。
本发明还提供了一种锌离子可充电电池的制造方法, 包括如下步骤:
制造含有碳载二氧化锰复合材料活性材料的正极, 其中, 所述碳载二氧化锰复合 材料是指, 在碳材料载体的表面上附着二氧化锰的材料;
将负极、 电解液和所述正极封装得到锌离子可充电电池。
在一个实施例中, 所述电解液包含有锌离子和二价锰离子。
在一个实施例中, 所述碳材料载体是碳纳米管、 石墨烯、 多孔碳或活性碳。 在一个实施倒中, 所述正极制作的歩骤包括: 将所述正极的活性材料、 导电剂和 粘结剂混合后涂覆于正极载体上。
在锌离子电池的正极材料中增加碳载二氧化锰复合材料, 从而提高了电池的大电 流特性, 进而提高了电池的循环寿命; 电解液中增加的二价锰离子与碳载二氧化锰复 合材料协同反应, 增加了电池的容量。
经实验证明,本实施例电池的容量高于 1000 mAh g—。同时这种可充电电池还具有 容量高、 安全、 环保、 成本低廉等特点。 可以预见这种电池可广泛应用于消费电子、 电动车、 通讯、 航空航天和军事等领域。
【i衬图说明】
图 1为实施例 1制得的电池 Celi 1在 100 mA g—1恒电流下的充放电曲线; 图 2为实施例 2制得的电池 CeU 2在 100 mA g—1恒电流下的充放电曲线;
图 3为实施例 2制得的电池 Celi 3在 100 mA g—1恒电流下的充放电曲线; 图 4为实施例 3制得的电池 CeU 4在 500 mA g 1恒电流下的充放电曲线; ί具体实施方式】
以下对发明的较佳实施例作进一步详细说明。 实施倒 1:
石墨烯载二氧化锰制备方法如下: 把 0,4克石墨烯加入 300 毫升 (mL) 0,1摩尔每升 (mol l.:1 )的醋酸锰水溶液里充分搅拌, 让石墨烯分散均匀, 后把200 111 : ().1 1^ 1 的 高锰酸钾水溶液加入醋酸锰溶液中, 搅拌 10小时, 使得二氧化锰充分沉积而附着在石 墨烯的表面上, 然后过滤沉淀物, 并用去离子水洗涤, 烘干即得石墨烯载二氧化锰。 将石墨烯载二氧化锰粉末、 导电剂碳黑和粘结剂聚偏四氟乙烯按质量比为 8: 1 : 1 的比例混合后涂覆亍不锈钢箔上, 剪裁成一定大小, 于真空中烘千为石墨烯载二氧 化锰电极片。 以制得的石墨烯载二氧化锰电极片为正极, 以 0.1mm厚的锌箔为负极, 电解液为 1 mol L"1 ZnS04加 0.5 mol I:;1 MnS04水溶液组装成电池, 记为第一电池 Cell 1。 第一电池 Ceil〗在 100 mA g 1 (以正极活性物质质量计算, 在本实施例中郎为石墨 烯载二氧化锰的质量) 恒电流下的充放曲线如图 1所示。 ffi图 1可见制得的第一电池 Cell 1电池可重复充放电, 为二次电池。 以正极活性物质质量计算, 第一电池 Cell 1的 容量为 ISOO mAh g-
实施倒 2: 为了说明碳载二氧化锰复合材料和电解液中锰离子的协同效应, 本发明装配了另 外两种电池来对比协同效应对电池容量提升的作用。 首先本发明按照如下方法制备了 二氧化锰粉体, 把 200 mL 0.1 M L"1的高锰酸钾水溶液加入 300 毫升 (mL) 0.1摩尔每升 (md L ) 的醋酸锰水溶液里充分搅拌搅 # 10小 B寸, 然后过滤沉淀物, 并用去离子水 洗涤, 烘千即得二氧化锰粉末。 将二氧化锰粉末、 导电剂碳黑和粘结剂聚偏四氟乙烯 按质量比为 7: 2: 〗 的比例混合后涂覆于不锈钢箔上, 剪裁成一定大小, 于真空中烘 干为二氧化锰电极片。 以制得的二氧化锰电极片为正极, 以 0.1mm厚的锌箔为负极, 电解液为 1 mol L.1 ZnS04加 0.5 mol L.1 MnS04水溶液组装成电池, 记为第二电池 Cell 2。 以石墨烯载二氧化锰电极片为正极, 以 OJmni 厚的锌箔为负极, 电解液为 〗 mol Ι^ Ζη804水溶液组装成电池, 记为第三电池 Cell 3。
第二电池 Cell 2和第三.电池 Cell 3在 100 mA g 1 (以正极活性物质质量 if算, 即第 二电池 Cell2的正极活性物质为二氧化锰, 而第:三电池 Cell3的正极活性物质为石墨烯 载二氧化锰)恒电流下的充放电曲线见图 2和图 3。 从图中可以看出第二电池 Cell 2和 第三电池 Cell 3的容量分别为 200 和 260 mAh g 第二电池 Cell 2的正极中不含有石 墨烯碳材料, 而第 _三电池 Cdi 3的电解液中不含有二价锰离子, 而实施例 1公开的电 池中正极含有石墨烯碳材料, ϋ电解液中含有二价锰离子, 大比表面积的碳材料引发 了反应方程 (3 ) 发生, 因此本发明公开的电池具有高容量的特点。 实施例 3 :
碳纳米管载二氧化锰制备方法如下: 把 0.6克碳纳米管加入 300 毫升 imL) 0.1摩尔 每升(11101 1; 的醋酸锰水溶液里充分搅拌, 让碳纳米管分散均匀, 后把 200 mL 0.1 M L 的高锰酸钾水溶液加入醋酸锰溶液中, 搅拌 10 小时, 使得二氧化锰充分沉积而 着在碳纳米管的表面上, 然后过滤沉淀物, 并用去离子水洗涤, 烘千即得碳纳米管载 二氧化锰。 将碳纳米管载二氧化锰粉末、导电剂碳黑和粘结剂聚偏四氟乙烯按质量比为 8: 1 : 1的比例混合后涂覆于不锈钢箔上,剪裁成一定大小, 于真空中烘干为碳纳米管载二氧 化锰电极片。以制得的碳纳米管载二氧化锰电极片为正极, 以 0.1mm厚的锌箔为负极, 电解液为 1 mol U1 ZnS04加 1 mol L.1 MnS04水溶液组装成电池,记为第一电池 Cell 4。 第四电池 Cell 4在 500 mA (以正极活性物质质量计算, 在本实施例中即为碳纳米管 载二氧化锰的质量) 恒电流下的充放曲线如图 4所示。 由图 4可见制得的 Cell 4电池 可重复充放电,为二次电池。以正极活性物质质量计算,第一电池 Cdi 4的容量为 1935.7 mAh g— 1。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定 本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本 发明由所提交的权利要求书确定的专利保护范围。
Claims
1、 一种锌离子可充电电池, 包括正极、 负极和电解液, 所述负极的活性材料包含 锌, 其特征是, 所述正极的活性材料包含碳载二氧化锰复合材料, 其中, 所述碳载二 氧化锰复合材料是指, 在碳材料载体的表面上 着二氧化锰的材料。
2、 如权利要求 ί所述的锌离子可充电电池, 其特征是: 所述电解液包含有锌离子 和二价锰离子。
3、 如权利要求 1或 2所述的锌离子可充电电池, 其特征是: 所述碳材料载体是碳 纳米管、 石墨烯、 多孔碳或活性碳。
4、 如权利要求 1或 2所述的锌离子可充电电池, 其特征是: 所述正极由所述正极 的活性材料、 导电剂和粘结剂混合制成。
5、 如权利要求 4所述的锌离子可充电电池, 其特征在于: 所述正极制作的步骤包 括- 将所述正极的活性材料、 导电剂和粘结剂混合后涂覆于正极载体上。
6、 如权利要求 1所述的锌离子可充电电池, 其特征在于; 所述负极的活性材料中 还包括缓腐剂, 缓腐剂的含量为负极质量的 1 %以下, 所述缓腐剂为铟的氧化物、 或铟 的氢氧化物。
7 种锌离子可充电电池的制造方法, 其特征是, 包括如下步骤- 制造含有碳载二氧化锰复合材料活性材料的正极, 其中, 所述碳载二氧化锰复合 材料是指, 在碳材料载体的表面上附着二氧化锰的材料;
将负极、 电解液和所述正极封装得到锌离子可充电电池。
8、 如权利要求 7所述的锌离子可充电电池, 其特征是: 所述电解液包含有锌离子 和二价锰离子。
9、 如权利要求 7所述的锌离子可充电电池, 其特征是: 所述碳材料载体是碳纳米 管、 石墨烯、 多孔碳或活性碳。
10、 如权利要求 7所述的锌离子可充电电池, 其特 是: 所述正极制作的步骤包 括- 将所述正极的活性材料、 导电剂和粘结剂混合后涂覆于正极载体上。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480000469.3A CN104272523B (zh) | 2014-04-03 | 2014-04-03 | 一种锌离子可充电电池及其制造方法 |
PCT/CN2014/074751 WO2015149335A1 (zh) | 2014-04-03 | 2014-04-03 | 一种锌离子可充电电池及其制造方法 |
JP2016510921A JP6143945B2 (ja) | 2014-04-03 | 2014-04-03 | 亜鉛イオン二次電池及びその製造方法 |
US14/322,519 US20150287988A1 (en) | 2014-04-03 | 2014-07-02 | Rechargeable battery based on reversible manganese oxidation and reduction reaction on carbon/manganese dioxide composites |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/074751 WO2015149335A1 (zh) | 2014-04-03 | 2014-04-03 | 一种锌离子可充电电池及其制造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/322,519 Continuation US20150287988A1 (en) | 2014-04-03 | 2014-07-02 | Rechargeable battery based on reversible manganese oxidation and reduction reaction on carbon/manganese dioxide composites |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015149335A1 true WO2015149335A1 (zh) | 2015-10-08 |
Family
ID=52162407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/074751 WO2015149335A1 (zh) | 2014-04-03 | 2014-04-03 | 一种锌离子可充电电池及其制造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150287988A1 (zh) |
JP (1) | JP6143945B2 (zh) |
CN (1) | CN104272523B (zh) |
WO (1) | WO2015149335A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114031125A (zh) * | 2021-11-05 | 2022-02-11 | 上海纳米技术及应用国家工程研究中心有限公司 | 三元纳米片@碳纳米管正极材料的制备方法及其产品和应用 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104868178A (zh) * | 2015-03-30 | 2015-08-26 | 清华大学深圳研究生院 | 一种镍基可充电电池及其制造方法 |
US20180114987A1 (en) * | 2015-03-31 | 2018-04-26 | Shenzhen Cubic-Science Co., Ltd. | Rechargeable zinc ion battery with graphene oxide as positive electrode |
US10826113B2 (en) * | 2015-04-13 | 2020-11-03 | Global Graphene Group, Inc. | Zinc ion-exchanging energy storage device |
CN106207100A (zh) * | 2015-05-04 | 2016-12-07 | 深圳市寒暑科技新能源有限公司 | 一种碳纤维织物电极及基于其的高容量电池 |
CN105390697B (zh) * | 2015-12-18 | 2018-03-09 | 张家港智电芳华蓄电研究所有限公司 | 一种多孔碳/二氧化锰复合材料电极、其制备方法及可充式锌锰离子电池 |
JP2020017550A (ja) * | 2016-11-09 | 2020-01-30 | 石川 敏 | 蓄発電装置 |
US11316203B2 (en) | 2017-05-29 | 2022-04-26 | Namics Corporation | Secondary battery and device including secondary battery |
CA3063724A1 (en) | 2017-05-31 | 2018-12-06 | The Board Of Trustees Of The Leland Stanford Junior University | Ultrastable rechargeable manganese battery with solid-liquid-gas reactions |
CN109686925A (zh) * | 2017-10-19 | 2019-04-26 | 深圳市寒暑科技新能源有限公司 | 一种锌离子电池及其MnO2/C正极材料的制备方法 |
CN109037794B (zh) * | 2017-10-20 | 2020-11-24 | 刘小林 | 一种可充电电池 |
CN108011099A (zh) * | 2017-12-11 | 2018-05-08 | 齐鲁工业大学 | 一种硫化锰/碳纳米管复合材料的制备方法 |
CN108400392B (zh) * | 2018-01-29 | 2020-08-14 | 东华理工大学 | 一种可充电的柔性锌离子电池及其制备方法 |
CN108807910A (zh) * | 2018-06-13 | 2018-11-13 | 深圳市寒暑科技新能源有限公司 | 一种水系锌离子电池 |
CN108807820B (zh) * | 2018-06-16 | 2021-05-04 | 深圳市凤凰锂能科技有限公司 | 可充电金属氢化物锰电池 |
CN110718719B (zh) * | 2018-07-13 | 2020-10-30 | 常熟理工学院 | 一种可充电的锌离子电池 |
CN109273759A (zh) * | 2018-09-27 | 2019-01-25 | 中山大学 | 一种二次电池用的电解液及含有其的二次电池 |
CN109950500A (zh) * | 2019-03-29 | 2019-06-28 | 北京航空航天大学 | 一种用于可充锌离子电池的二氧化锰正极材料及其制备方法和电池 |
CN110165161A (zh) * | 2019-04-25 | 2019-08-23 | 浙江大学 | 一种碳化钛-碳/二氧化锰复合材料及其制备方法和应用 |
CN112234195A (zh) * | 2019-07-15 | 2021-01-15 | 浙江大学 | 一种可充放电水系锌离子全电池 |
SE544163C2 (en) * | 2019-10-07 | 2022-02-15 | Enerpoly Ab | Cathode material for secondary manganese dioxide aqueous batteries |
CN111115688B (zh) * | 2019-12-06 | 2022-02-15 | 瑞海泊(青岛)能源科技有限公司 | 锌离子电池正极材料及其制备方法和应用 |
US11121402B2 (en) | 2020-01-31 | 2021-09-14 | Uchicago Argonne, Llc | Aqueous manganese ion battery |
CN111646514B (zh) * | 2020-06-17 | 2024-02-06 | 郑州轻工业大学 | 一种三明治结构的MnO2@rGO@MnO2复合纳米片材料及其制备方法 |
CN112624199B (zh) * | 2020-12-16 | 2023-05-16 | 扬州大学 | 碳量子点/二氧化锰纳米复合材料、制备方法及其应用 |
CN112803028A (zh) * | 2020-12-17 | 2021-05-14 | 华中师范大学 | 一种超快充电的锰锌电池 |
CN113540396A (zh) * | 2021-03-12 | 2021-10-22 | 陈璞 | 锰离子电池 |
CN113707868B (zh) * | 2021-08-31 | 2022-10-21 | 中国地质大学(北京) | 一种三元复合电极材料及其制备方法和锌离子电池 |
CN114094210A (zh) * | 2021-10-19 | 2022-02-25 | 陈璞 | 三维结构正极和水系锌锰电池 |
CN114171730B (zh) * | 2021-12-08 | 2022-09-23 | 中原工学院 | 一种多层管状锰基多元复合电极材料及其制备方法与应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09223504A (ja) * | 1996-02-14 | 1997-08-26 | Sony Corp | 筒型アルカリ電池とその製造方法 |
CN1238569A (zh) * | 1998-06-10 | 1999-12-15 | 株式会社华仁电池 | 添上锰盐(ⅱ)和碳粉的硫酸锌(ⅱ)水溶液可充电电池 |
CN101540417A (zh) * | 2009-04-15 | 2009-09-23 | 清华大学深圳研究生院 | 可充电的锌离子电池 |
CN103165918A (zh) * | 2013-02-06 | 2013-06-19 | 安徽省霖丰源机械制造有限公司 | 锌锰贮备电池及其制备方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1126064B (it) * | 1979-06-11 | 1986-05-14 | Cities Service Co | Nerofumo per batterie a secco |
JP2683245B2 (ja) * | 1988-06-06 | 1997-11-26 | 東芝電池株式会社 | マンガン乾電池 |
JPH02192666A (ja) * | 1988-10-18 | 1990-07-30 | Tosoh Corp | 二次電池 |
JPH0384868A (ja) * | 1989-08-28 | 1991-04-10 | Tosoh Corp | 二次電池 |
CA2010142C (en) * | 1990-02-15 | 1997-02-04 | Klaus Tomantschger | Manganese dioxide cathode for a rechargeable alkaline cell, and cell containing the same |
JP3530544B2 (ja) * | 1992-09-14 | 2004-05-24 | キヤノン株式会社 | 二次電池 |
JP3286346B2 (ja) * | 1992-07-15 | 2002-05-27 | 三洋電機株式会社 | 亜鉛アルカリ電池 |
JP3553104B2 (ja) * | 1992-08-04 | 2004-08-11 | 株式会社エスアイアイ・マイクロパーツ | アルカリ電池 |
CN1035706C (zh) * | 1992-09-08 | 1997-08-20 | 内蒙古乌海市企业家俱乐部 | 可充电的锌锰电池 |
JP3173594B2 (ja) * | 1998-08-31 | 2001-06-04 | 株式会社ファインセル | マンガン塩(ii)とカ−ボン粉末を添加した硫酸亜鉛(ii)水溶液二次電池 |
CN1278439C (zh) * | 2001-10-08 | 2006-10-04 | 蒂米卡尔股份公司 | 电化学电池 |
JP2007048534A (ja) * | 2005-08-09 | 2007-02-22 | Matsushita Electric Ind Co Ltd | マンガン乾電池 |
GB2458667A (en) * | 2008-03-25 | 2009-09-30 | Nanotecture Ltd | Mesoporous alpha-manganese dioxide |
CN101923960B (zh) * | 2010-08-18 | 2012-05-23 | 东华大学 | 一种瓣状二氧化锰纳米晶包覆碳纳米管复合电极材料的制备方法 |
CN102059082B (zh) * | 2010-11-30 | 2012-06-27 | 重庆大学 | 纳米二氧化锰/碳复合微球的制备方法 |
-
2014
- 2014-04-03 JP JP2016510921A patent/JP6143945B2/ja active Active
- 2014-04-03 CN CN201480000469.3A patent/CN104272523B/zh active Active
- 2014-04-03 WO PCT/CN2014/074751 patent/WO2015149335A1/zh active Application Filing
- 2014-07-02 US US14/322,519 patent/US20150287988A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09223504A (ja) * | 1996-02-14 | 1997-08-26 | Sony Corp | 筒型アルカリ電池とその製造方法 |
CN1238569A (zh) * | 1998-06-10 | 1999-12-15 | 株式会社华仁电池 | 添上锰盐(ⅱ)和碳粉的硫酸锌(ⅱ)水溶液可充电电池 |
CN101540417A (zh) * | 2009-04-15 | 2009-09-23 | 清华大学深圳研究生院 | 可充电的锌离子电池 |
CN103165918A (zh) * | 2013-02-06 | 2013-06-19 | 安徽省霖丰源机械制造有限公司 | 锌锰贮备电池及其制备方法 |
Non-Patent Citations (1)
Title |
---|
LV , YANG.: "Facile synthesis and electrochemical properties of MnOx/Carbon nanomaterials", UNIV LIAONING NORMAL MASTER PAPER, 31 December 2013 (2013-12-31) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114031125A (zh) * | 2021-11-05 | 2022-02-11 | 上海纳米技术及应用国家工程研究中心有限公司 | 三元纳米片@碳纳米管正极材料的制备方法及其产品和应用 |
CN114031125B (zh) * | 2021-11-05 | 2023-11-28 | 上海纳米技术及应用国家工程研究中心有限公司 | 三元纳米片@碳纳米管正极材料的制备方法及其产品和应用 |
Also Published As
Publication number | Publication date |
---|---|
JP6143945B2 (ja) | 2017-06-07 |
JP2016520969A (ja) | 2016-07-14 |
CN104272523B (zh) | 2017-09-08 |
US20150287988A1 (en) | 2015-10-08 |
CN104272523A (zh) | 2015-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015149335A1 (zh) | 一种锌离子可充电电池及其制造方法 | |
CN102881861B (zh) | 一种高温型锂离子电池正极极片 | |
CN105552344A (zh) | 一种锂离子电池正极片、锂离子电池及其制备方法 | |
CN102005615B (zh) | 可充电的镍离子电池 | |
CN109920974B (zh) | 一种用明胶包覆的电极材料的制备方法及其应用 | |
WO2017020860A1 (zh) | 电池、电池组以及不间断电源 | |
CN105609754A (zh) | 一种双正极材料及水系二次电池 | |
WO2011079482A1 (zh) | 一种电池 | |
CN102969473A (zh) | 有机/无机复合多孔薄膜及使用此薄膜的电化学储能装置 | |
US11211635B2 (en) | Battery, battery pack, and uninterruptible power supply | |
CN108110311A (zh) | 一种锂离子电池 | |
CN103682304A (zh) | 一种富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池 | |
CN103928681B (zh) | 一种对称式水溶液锂离子电池 | |
JPWO2012035648A1 (ja) | 非水電解液二次電池用活物質および非水電解液二次電池 | |
CN104882637B (zh) | 电解液和电化学储能装置 | |
CN105336993A (zh) | 电解液和电池 | |
WO2024125486A1 (zh) | 钠离子电池和储能设备 | |
CN103762335A (zh) | 钛酸锂电极片及锂离子电池 | |
JP2007234350A (ja) | 非水電解質二次電池 | |
CN104752681A (zh) | 电池 | |
CN115872384A (zh) | 一种改性磷酸锰铁锂正极材料及其制备方法和应用 | |
KR102042098B1 (ko) | 해수 전지 | |
KR20100056257A (ko) | 코팅용 겔 전해액을 사용하여 표면 개질된 음극 및 분리막을 포함하는 알칼리 아연 이차전지 | |
JPH1131508A (ja) | 非水電解液二次電池 | |
CN110718719B (zh) | 一种可充电的锌离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016510921 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14888473 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 14888473 Country of ref document: EP Kind code of ref document: A1 |