WO2015149335A1 - 一种锌离子可充电电池及其制造方法 - Google Patents

一种锌离子可充电电池及其制造方法 Download PDF

Info

Publication number
WO2015149335A1
WO2015149335A1 PCT/CN2014/074751 CN2014074751W WO2015149335A1 WO 2015149335 A1 WO2015149335 A1 WO 2015149335A1 CN 2014074751 W CN2014074751 W CN 2014074751W WO 2015149335 A1 WO2015149335 A1 WO 2015149335A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
positive electrode
manganese dioxide
battery
rechargeable battery
Prior art date
Application number
PCT/CN2014/074751
Other languages
English (en)
French (fr)
Inventor
徐成俊
陈彦伊
史珊
康飞宇
Original Assignee
清华大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院 filed Critical 清华大学深圳研究生院
Priority to CN201480000469.3A priority Critical patent/CN104272523B/zh
Priority to PCT/CN2014/074751 priority patent/WO2015149335A1/zh
Priority to JP2016510921A priority patent/JP6143945B2/ja
Priority to US14/322,519 priority patent/US20150287988A1/en
Publication of WO2015149335A1 publication Critical patent/WO2015149335A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of secondary bubbles, and in particular to a zinc ion rechargeable bubble and a manufacturing method thereof. ⁇ background technology]
  • the rechargeable zinc ion battery is a rechargeable battery using manganese oxide material as a positive electrode active material, zinc as a negative electrode active material, and an aqueous solution containing zinc ions as an electrolyte, which has the characteristics of being inexpensive, but Its capacity is too low, only 200 ⁇ 300 mAh g. It is well known that for batteries, high capacity is a prerequisite for its wide application.
  • Manganese dioxide is an electrode material with low electrical conductivity and low utilization rate of active materials.
  • Manganese dioxide (abbreviated as Mn() 2 ) has a large open structure, and the cations in the tunnel can be exchanged with the cations in the aqueous solution, that is, have ion exchange capacity, and these tunnel structures can be kept stable during ion exchange.
  • the prior patent discloses a rechargeable zinc ion battery using manganese dioxide as a positive electrode, zinc as a negative electrode, and an aqueous solution containing zinc ions as an electrolyte.
  • the reason for the uneven battery capacity is because the conductivity of manganese dioxide is poor, and after mixing with the added high-conductivity material, the dispersion of manganese dioxide and conductive agent is prone to be uneven, which leads to different manufacturing.
  • the batteries have different capacities.
  • a zinc ion rechargeable battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the active material of the negative electrode comprises zinc, wherein the active material of the positive electrode comprises a carbon-supported manganese dioxide composite material, wherein the carbon
  • the manganese dioxide composite material refers to a material in which manganese dioxide is applied to the surface of the carbon material carrier.
  • the manganese dioxide is attached to the surface of the highly conductive carbon material, which has the following advantages - one is to improve the manganese dioxide electrode Conductivity, improve the high current characteristics of the battery; Second, it can improve the utilization of manganese dioxide electrode materials, increase the positive battery capacity, and thus increase the capacity and energy density of the entire battery. Third, the conductivity of the carbon-supported manganese dioxide composite material and the conductive agent are relatively close. When mixed with the conductive agent, the problem that different batteries have different capacities due to uneven mixing is less likely to occur.
  • the electrolyte contains zinc ions and divalent manganese ions.
  • the carbon material with a large specific surface area and the additional manganese ions added to the electrolyte have a very special synergistic effect, and the capacity of the battery can be greatly increased when both of them are present.
  • This synergistic effect is manifested by the reversible electrochemical reaction of divalent manganese ions (Mn 2+ ) on the surface of large specific surface area carbon materials: Mrr ⁇ Mn' i ⁇ + 2e ⁇ (3)
  • Manganese dioxide with the positive electrode material provides an additional source of tetra-manganese.
  • the carbon material support may be carbon nanotubes, graphite, porous carbon or activated carbon.
  • the positive electrode is made of a mixture of an active material of the positive electrode, a conductive agent, and a binder.
  • the step of preparing the positive electrode comprises: mixing the active material of the positive electrode, a conductive agent, and a binder, and coating the positive electrode carrier.
  • the active material of the negative electrode further includes a retarding agent, and the content of the retarding agent is 1% or less of the mass of the negative electrode, and the retarding agent is an oxide of indium or a hydroxide of indium.
  • the invention also provides a method for manufacturing a zinc ion rechargeable battery, comprising the following steps:
  • a positive electrode comprising a carbon-supported manganese dioxide composite active material, wherein the carbon-supported manganese dioxide composite material refers to a material on which a manganese dioxide is adhered on a surface of a carbon material carrier;
  • the negative electrode, the electrolyte, and the positive electrode are packaged to obtain a zinc ion rechargeable battery.
  • the electrolyte contains zinc ions and divalent manganese ions.
  • the carbon material support is carbon nanotubes, graphene, porous carbon or activated carbon.
  • the step of preparing the positive electrode comprises: mixing the active material of the positive electrode, a conductive agent, and a binder, and coating the positive electrode carrier.
  • the carbon-supported manganese dioxide composite material is added to the positive electrode material of the zinc ion battery, thereby improving the high current characteristic of the battery, thereby improving the cycle life of the battery; the added divalent manganese ions in the electrolyte are combined with the carbon-supported manganese dioxide.
  • the material reacts synergistically, increasing the capacity of the battery.
  • the capacity of the battery of this embodiment is higher than 1000 mAh g-.
  • the rechargeable battery has the characteristics of high capacity, safety, environmental protection and low cost. It is foreseeable that such batteries can be widely used in the fields of consumer electronics, electric vehicles, communications, aerospace and military.
  • FIG. 1 is a charge and discharge curve of a battery Celi 1 prepared in Example 1 at a constant current of 100 mA g- 1
  • FIG. 2 is a charge and discharge of a battery CeU 2 obtained in Example 2 at a constant current of 100 mA g- 1.
  • curve; 3 is a charge and discharge curve of the battery Celi 3 prepared in Example 2 at a constant current of 100 mA g- 1
  • FIG. 4 is a charge and discharge curve of the battery CeU 4 obtained in Example 3 at a constant current of 500 mA g 1 . ; ⁇ specific implementation method]
  • the preparation method of graphene-supported manganese dioxide is as follows: 0,4 g of graphene is added to 300 ml (mL) of 0,1 mol per liter (mol l.: 1 ) of an aqueous solution of manganese acetate, and the graphene is uniformly dispersed. After adding 200 111 : ().1 1 ⁇ 1 potassium permanganate aqueous solution to the manganese acetate solution, stirring for 10 hours, so that the manganese dioxide is fully deposited and adhered to the surface of the graphene, and then the precipitate is filtered and used. Ionized water is washed and dried to obtain graphene-supported manganese dioxide.
  • the graphene-supported manganese dioxide powder, the conductive agent carbon black and the binder polyvinylidene fluoride are mixed at a mass ratio of 8:1:1, coated on a stainless steel foil, and cut into a certain size in a vacuum.
  • the baking is a graphene-loaded manganese dioxide electrode sheet.
  • the obtained graphene-loaded manganese dioxide electrode sheet is used as a positive electrode, and a 0.1 mm thick zinc foil is used as a negative electrode, and the electrolyte is 1 mol L" 1 ZnS0 4 plus 0.5 mol I:; 1 MnS0 4 aqueous solution is assembled into a battery, It is the first battery Cell 1.
  • the first battery Ceil is at 100 mA g 1 (calculated as the mass of the positive active material, in the present embodiment, the mass of the graphene-supported manganese dioxide). 1 shows ffi Figure 1. It can be seen that the first battery Cell 1 battery can be repeatedly charged and discharged as a secondary battery. The capacity of the first battery Cell 1 is ISOO mAh g- calculated based on the mass of the positive active material.
  • the present invention is equipped with two other batteries to compare the synergistic effect on the battery capacity increase.
  • the present invention prepares manganese dioxide powder according to the following method, and 200 mL of 0.1 ML" 1 potassium permanganate aqueous solution is added to 300 ml (mL) of 0.1 mol per liter (md L) of an aqueous solution of manganese acetate, and stirred thoroughly. 10 small B inches, then the precipitate is filtered and washed with deionized water to obtain a manganese dioxide powder.
  • the manganese dioxide powder, the conductive agent carbon black and the binder polyvinylidene fluoride are mass ratio 7:
  • the ratio of 2: ⁇ is mixed and coated on a stainless steel foil, cut into a certain size, and dried in a vacuum to form a manganese dioxide electrode sheet.
  • the obtained manganese dioxide electrode sheet is a positive electrode, and a 0.1 mm thick zinc foil is used.
  • the electrolyte is 1 mol L. 1 ZnS0 4 plus 0.5 mol L. 1 MnS0 4 aqueous solution assembled into a battery, which is recorded as the second battery Cell 2.
  • the graphene-supported manganese dioxide electrode is used as the positive electrode, and the OJmni is thick.
  • the zinc foil is a negative electrode
  • the electrolyte is a mixture of ⁇ mol ⁇ ⁇ ⁇ 80 4 aqueous solution, and is referred to as a third battery Cell 3.
  • the second battery Cell 2 and the third battery Cell 3 are at 100 mA g 1 (based on the positive active material mass if, that is, the positive active material of the second battery Cell 2 is manganese dioxide, and the positive active material of the third battery Cell 3
  • the graph of charge and discharge at constant current for graphene-supported manganese dioxide is shown in Fig. 2 and Fig. 3. It can be seen from the figure that the capacities of the second battery Cell 2 and the third battery Cell 3 are 200 and 260 mAh, respectively.
  • the second battery Cell 2 does not contain the graphene carbon material in the positive electrode, and the third battery Cdi 3 is electrolyzed.
  • the liquid does not contain divalent manganese ions, and in the battery disclosed in Example 1, the positive electrode contains a graphene carbon material, the cerium electrolyte contains divalent manganese ions, and the carbon material having a large specific surface area causes the reaction equation (3) to occur, thus The battery disclosed in the present invention has a high capacity.
  • Example 3 Example 3:
  • the preparation method of carbon nanotube-supported manganese dioxide is as follows: 0.6 g of carbon nanotubes are added to 300 ml of imL) 0.1 mol per liter (111 0 1 1; manganese acetate aqueous solution is thoroughly stirred to uniformly disperse the carbon nanotubes, and then 200 mL 0.1 ML potassium permanganate aqueous solution is added to the manganese acetate solution, stirred for 10 hours, so that manganese dioxide is fully deposited on the surface of the carbon nanotubes, and then the precipitate is filtered and washed with deionized water. The carbon nanotubes are loaded with manganese dioxide.
  • the carbon nanotube-supported manganese dioxide powder, the conductive agent carbon black and the binder polyvinylidene fluoride are mixed at a mass ratio of 8:1:1 and coated on a stainless steel foil. Cut into a certain size, and dry it into a carbon nanotube-loaded manganese dioxide electrode sheet in a vacuum. The obtained carbon nanotube-loaded manganese dioxide electrode sheet is used as a positive electrode, and a 0.1 mm thick zinc foil is used as a negative electrode.
  • a battery was assembled into a battery of 1 mol of U 1 ZnS0 4 plus 1 mol of L. 1 MnS0 4 , which was recorded as the first cell Cell 4.
  • the fourth cell Cell 4 was at 500 mA (calculated as the mass of the positive active material, in this example Manganese dioxide supported on carbon nanotubes The charge and discharge curve under constant current is shown in Fig. 4. It can be seen from Fig. 4 that the produced Cell 4 battery can be repeatedly charged and discharged as a secondary battery. The capacity of the first battery Cdi 4 is calculated based on the mass of the positive active material. 1935.7 mAh g- 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种锌离子可充电电池及其制造方法,该电池包括正极、负极和电解液,所述负极的活性材料包含锌,其特征是,所述正极的活性材料包含碳载二氧化锰复合材料,其中,所述碳载二氧化锰复合材料是指,在碳材料载体的表面上附着二氧化锰的材料。在锌离子电池的正极材料中增加碳载二氧化锰复合材料,从而提高了电池的大电流特性,进而提高了电池的循环寿命;电解液中增加的二价锰离子与碳载二氧化锰复合材料协同反应,增加了电池的容量。

Description

本发明涉及二次电泡领域, 具体涉及一种锌离子可充电电泡及其制造方法。 ί背景技术】
高容量和长寿命可充电电池是我们现代社会生活的基石, 无论从可移动电子器件 到电动汽车, 都需要高容量和长寿命的电池来提供电源, 因此开发高容量的可充电电 池具有十分重要的意义。 可充电锌离子电池是一种以锰的氧化物材料为正极活性材料, 以锌为负极活性材 料, 以含锌离子的水溶液为电解液的可充电电池, 这种电泡具有廉价的特点, 但其容 量过低, 仅 200〜300 mAh g 众所周知的是, 对亍电池而言, 具有高的容量是其广 泛应用的先决条件。 二氧化锰^为电极材料具有电导率低和活性物质利用率低等缺 点, 目前的锌离子可充电电池中, 在正极中添加高导电材料来改善二氧化锰的导电 性, 容易导致大电流衰减的问题, 以及不同的电池容量不均匀的 题。 二氧化锰(简写为 Mn()2 )具有大尺寸的开放式结构, 隧道中的阳离子可以和水溶 液中的阳离子进行交换, 即具有离子交换能力, 在离子交换过程中, 这些隧道结构可 保持稳定。 前期专利公开以二氧化锰为正极、 锌为负极, 含锌离子水溶液为电解液的 可充电锌离子电池。
这种锌离子电池储存电子的机理如下: 正极: ZnyMnO.:, <=> χΖιτ ' + 2xe ' + MnO, ( 1 ) 负极: ? <^> ΖηΔ— + 2Θ— ( 2 ) 这种电池具有廉价的特点, 但其容量过低, 仅 200 mAh g !左右。
【发明内容】
进一步研究发现, 不同电池容量不均匀的原因, 是因为二氧化锰的导电性较差, 而与添加的高导电材料混合后, 容易出现二氧化锰和导电剂分散不均匀, 进而导致制 造的不同电池具有不同的容量。
一种锌离子可充电电池, 包括正极、 负极和电解液, 所述负极的活性材料包含锌, 其特征是, 所述正极的活性材料包含碳载二氧化锰复合材料, 其中, 所述碳载二氧化 锰复合材料是指, 在碳材料载体的表面上 着二氧化锰的材料。 通过引入高导电性和大比表靣积的碳材料作为二氧化锰活性材料的载体, 把二氧 化锰附着在高导电性的碳材料表面, 这样有以下好处- 一是改善二氧化锰电极的导电性, 提高电池的大电流特性; 二是可以提高二氧化锰电极材料的利用率, 提高电池正极容量, 从而提高整个电 池的容量和能量密度。 三是得碳载二氧化锰复合材料和导电剂的导电性较为接近, 与导电剂混合后, 不 容易出现因为混合不均匀而导致不同的电池具有不同的容量的问题。
所述电解液包含有锌离子和二价锰离子。
大比表面积的碳材料和电解液中额外添加的锰离子具有非常特殊的协同效应, 在 其二者同时存在时可大幅提高电池的容量。 这种协同效应表现为二价锰离子 (Mn2+)在 大比表面积碳材料表面进行的可逆的电化学反应: Mrr÷ Mn' + 2e~ ( 3 ) 同 ^正极材料的二氧化锰提供了额外的四 ^锰源。 在一个实施例中, 所述碳材料载体可以是碳纳米管、 石墨婦、 多孔碳或活性碳。 在一个实施例中, 所述正极由所述正极的活性材料、 导电剂和粘结剂混合制成。 在一个实施例中, 所述正极制作的歩骤包括: 将所述正极的活性材料、 导电剂和 粘结剂混合后涂覆于正极载体上。 在一个实施例中, 所述负极的活性材料中还包括缓腐剂, 缓腐剂的含量为负极质 量的 1 %以下, 所述缓腐剂为铟的氧化物、 或铟的氢氧化物。
本发明还提供了一种锌离子可充电电池的制造方法, 包括如下步骤:
制造含有碳载二氧化锰复合材料活性材料的正极, 其中, 所述碳载二氧化锰复合 材料是指, 在碳材料载体的表面上附着二氧化锰的材料;
将负极、 电解液和所述正极封装得到锌离子可充电电池。
在一个实施例中, 所述电解液包含有锌离子和二价锰离子。
在一个实施例中, 所述碳材料载体是碳纳米管、 石墨烯、 多孔碳或活性碳。 在一个实施倒中, 所述正极制作的歩骤包括: 将所述正极的活性材料、 导电剂和 粘结剂混合后涂覆于正极载体上。
在锌离子电池的正极材料中增加碳载二氧化锰复合材料, 从而提高了电池的大电 流特性, 进而提高了电池的循环寿命; 电解液中增加的二价锰离子与碳载二氧化锰复 合材料协同反应, 增加了电池的容量。
经实验证明,本实施例电池的容量高于 1000 mAh g—。同时这种可充电电池还具有 容量高、 安全、 环保、 成本低廉等特点。 可以预见这种电池可广泛应用于消费电子、 电动车、 通讯、 航空航天和军事等领域。
【i衬图说明】
图 1为实施例 1制得的电池 Celi 1在 100 mA g—1恒电流下的充放电曲线; 图 2为实施例 2制得的电池 CeU 2在 100 mA g—1恒电流下的充放电曲线; 图 3为实施例 2制得的电池 Celi 3在 100 mA g—1恒电流下的充放电曲线; 图 4为实施例 3制得的电池 CeU 4在 500 mA g 1恒电流下的充放电曲线; ί具体实施方式】
以下对发明的较佳实施例作进一步详细说明。 实施倒 1:
石墨烯载二氧化锰制备方法如下: 把 0,4克石墨烯加入 300 毫升 (mL) 0,1摩尔每升 (mol l.:1 )的醋酸锰水溶液里充分搅拌, 让石墨烯分散均匀, 后把200 111 : ().1 1^ 1 的 高锰酸钾水溶液加入醋酸锰溶液中, 搅拌 10小时, 使得二氧化锰充分沉积而附着在石 墨烯的表面上, 然后过滤沉淀物, 并用去离子水洗涤, 烘干即得石墨烯载二氧化锰。 将石墨烯载二氧化锰粉末、 导电剂碳黑和粘结剂聚偏四氟乙烯按质量比为 8: 1 : 1 的比例混合后涂覆亍不锈钢箔上, 剪裁成一定大小, 于真空中烘千为石墨烯载二氧 化锰电极片。 以制得的石墨烯载二氧化锰电极片为正极, 以 0.1mm厚的锌箔为负极, 电解液为 1 mol L"1 ZnS04加 0.5 mol I:;1 MnS04水溶液组装成电池, 记为第一电池 Cell 1。 第一电池 Ceil〗在 100 mA g 1 (以正极活性物质质量计算, 在本实施例中郎为石墨 烯载二氧化锰的质量) 恒电流下的充放曲线如图 1所示。 ffi图 1可见制得的第一电池 Cell 1电池可重复充放电, 为二次电池。 以正极活性物质质量计算, 第一电池 Cell 1的 容量为 ISOO mAh g-
实施倒 2: 为了说明碳载二氧化锰复合材料和电解液中锰离子的协同效应, 本发明装配了另 外两种电池来对比协同效应对电池容量提升的作用。 首先本发明按照如下方法制备了 二氧化锰粉体, 把 200 mL 0.1 M L"1的高锰酸钾水溶液加入 300 毫升 (mL) 0.1摩尔每升 (md L ) 的醋酸锰水溶液里充分搅拌搅 # 10小 B寸, 然后过滤沉淀物, 并用去离子水 洗涤, 烘千即得二氧化锰粉末。 将二氧化锰粉末、 导电剂碳黑和粘结剂聚偏四氟乙烯 按质量比为 7: 2: 〗 的比例混合后涂覆于不锈钢箔上, 剪裁成一定大小, 于真空中烘 干为二氧化锰电极片。 以制得的二氧化锰电极片为正极, 以 0.1mm厚的锌箔为负极, 电解液为 1 mol L.1 ZnS04加 0.5 mol L.1 MnS04水溶液组装成电池, 记为第二电池 Cell 2。 以石墨烯载二氧化锰电极片为正极, 以 OJmni 厚的锌箔为负极, 电解液为 〗 mol Ι^ Ζη804水溶液组装成电池, 记为第三电池 Cell 3。 第二电池 Cell 2和第三.电池 Cell 3在 100 mA g 1 (以正极活性物质质量 if算, 即第 二电池 Cell2的正极活性物质为二氧化锰, 而第:三电池 Cell3的正极活性物质为石墨烯 载二氧化锰)恒电流下的充放电曲线见图 2和图 3。 从图中可以看出第二电池 Cell 2和 第三电池 Cell 3的容量分别为 200 和 260 mAh g 第二电池 Cell 2的正极中不含有石 墨烯碳材料, 而第 _三电池 Cdi 3的电解液中不含有二价锰离子, 而实施例 1公开的电 池中正极含有石墨烯碳材料, ϋ电解液中含有二价锰离子, 大比表面积的碳材料引发 了反应方程 (3 ) 发生, 因此本发明公开的电池具有高容量的特点。 实施例 3 :
碳纳米管载二氧化锰制备方法如下: 把 0.6克碳纳米管加入 300 毫升 imL) 0.1摩尔 每升(11101 1; 的醋酸锰水溶液里充分搅拌, 让碳纳米管分散均匀, 后把 200 mL 0.1 M L 的高锰酸钾水溶液加入醋酸锰溶液中, 搅拌 10 小时, 使得二氧化锰充分沉积而 着在碳纳米管的表面上, 然后过滤沉淀物, 并用去离子水洗涤, 烘千即得碳纳米管载 二氧化锰。 将碳纳米管载二氧化锰粉末、导电剂碳黑和粘结剂聚偏四氟乙烯按质量比为 8: 1 : 1的比例混合后涂覆于不锈钢箔上,剪裁成一定大小, 于真空中烘干为碳纳米管载二氧 化锰电极片。以制得的碳纳米管载二氧化锰电极片为正极, 以 0.1mm厚的锌箔为负极, 电解液为 1 mol U1 ZnS04加 1 mol L.1 MnS04水溶液组装成电池,记为第一电池 Cell 4。 第四电池 Cell 4在 500 mA (以正极活性物质质量计算, 在本实施例中即为碳纳米管 载二氧化锰的质量) 恒电流下的充放曲线如图 4所示。 由图 4可见制得的 Cell 4电池 可重复充放电,为二次电池。以正极活性物质质量计算,第一电池 Cdi 4的容量为 1935.7 mAh g— 1
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定 本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本 发明由所提交的权利要求书确定的专利保护范围。

Claims

1、 一种锌离子可充电电池, 包括正极、 负极和电解液, 所述负极的活性材料包含 锌, 其特征是, 所述正极的活性材料包含碳载二氧化锰复合材料, 其中, 所述碳载二 氧化锰复合材料是指, 在碳材料载体的表面上 着二氧化锰的材料。
2、 如权利要求 ί所述的锌离子可充电电池, 其特征是: 所述电解液包含有锌离子 和二价锰离子。
3、 如权利要求 1或 2所述的锌离子可充电电池, 其特征是: 所述碳材料载体是碳 纳米管、 石墨烯、 多孔碳或活性碳。
4、 如权利要求 1或 2所述的锌离子可充电电池, 其特征是: 所述正极由所述正极 的活性材料、 导电剂和粘结剂混合制成。
5、 如权利要求 4所述的锌离子可充电电池, 其特征在于: 所述正极制作的步骤包 括- 将所述正极的活性材料、 导电剂和粘结剂混合后涂覆于正极载体上。
6、 如权利要求 1所述的锌离子可充电电池, 其特征在于; 所述负极的活性材料中 还包括缓腐剂, 缓腐剂的含量为负极质量的 1 %以下, 所述缓腐剂为铟的氧化物、 或铟 的氢氧化物。
7 种锌离子可充电电池的制造方法, 其特征是, 包括如下步骤- 制造含有碳载二氧化锰复合材料活性材料的正极, 其中, 所述碳载二氧化锰复合 材料是指, 在碳材料载体的表面上附着二氧化锰的材料;
将负极、 电解液和所述正极封装得到锌离子可充电电池。
8、 如权利要求 7所述的锌离子可充电电池, 其特征是: 所述电解液包含有锌离子 和二价锰离子。
9、 如权利要求 7所述的锌离子可充电电池, 其特征是: 所述碳材料载体是碳纳米 管、 石墨烯、 多孔碳或活性碳。
10、 如权利要求 7所述的锌离子可充电电池, 其特 是: 所述正极制作的步骤包 括- 将所述正极的活性材料、 导电剂和粘结剂混合后涂覆于正极载体上。
PCT/CN2014/074751 2014-04-03 2014-04-03 一种锌离子可充电电池及其制造方法 WO2015149335A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480000469.3A CN104272523B (zh) 2014-04-03 2014-04-03 一种锌离子可充电电池及其制造方法
PCT/CN2014/074751 WO2015149335A1 (zh) 2014-04-03 2014-04-03 一种锌离子可充电电池及其制造方法
JP2016510921A JP6143945B2 (ja) 2014-04-03 2014-04-03 亜鉛イオン二次電池及びその製造方法
US14/322,519 US20150287988A1 (en) 2014-04-03 2014-07-02 Rechargeable battery based on reversible manganese oxidation and reduction reaction on carbon/manganese dioxide composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074751 WO2015149335A1 (zh) 2014-04-03 2014-04-03 一种锌离子可充电电池及其制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/322,519 Continuation US20150287988A1 (en) 2014-04-03 2014-07-02 Rechargeable battery based on reversible manganese oxidation and reduction reaction on carbon/manganese dioxide composites

Publications (1)

Publication Number Publication Date
WO2015149335A1 true WO2015149335A1 (zh) 2015-10-08

Family

ID=52162407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074751 WO2015149335A1 (zh) 2014-04-03 2014-04-03 一种锌离子可充电电池及其制造方法

Country Status (4)

Country Link
US (1) US20150287988A1 (zh)
JP (1) JP6143945B2 (zh)
CN (1) CN104272523B (zh)
WO (1) WO2015149335A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031125A (zh) * 2021-11-05 2022-02-11 上海纳米技术及应用国家工程研究中心有限公司 三元纳米片@碳纳米管正极材料的制备方法及其产品和应用

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868178A (zh) * 2015-03-30 2015-08-26 清华大学深圳研究生院 一种镍基可充电电池及其制造方法
US20180114987A1 (en) * 2015-03-31 2018-04-26 Shenzhen Cubic-Science Co., Ltd. Rechargeable zinc ion battery with graphene oxide as positive electrode
US10826113B2 (en) * 2015-04-13 2020-11-03 Global Graphene Group, Inc. Zinc ion-exchanging energy storage device
CN106207100A (zh) * 2015-05-04 2016-12-07 深圳市寒暑科技新能源有限公司 一种碳纤维织物电极及基于其的高容量电池
CN105390697B (zh) * 2015-12-18 2018-03-09 张家港智电芳华蓄电研究所有限公司 一种多孔碳/二氧化锰复合材料电极、其制备方法及可充式锌锰离子电池
JP2020017550A (ja) * 2016-11-09 2020-01-30 石川 敏 蓄発電装置
US11316203B2 (en) 2017-05-29 2022-04-26 Namics Corporation Secondary battery and device including secondary battery
CA3063724A1 (en) 2017-05-31 2018-12-06 The Board Of Trustees Of The Leland Stanford Junior University Ultrastable rechargeable manganese battery with solid-liquid-gas reactions
CN109686925A (zh) * 2017-10-19 2019-04-26 深圳市寒暑科技新能源有限公司 一种锌离子电池及其MnO2/C正极材料的制备方法
CN109037794B (zh) * 2017-10-20 2020-11-24 刘小林 一种可充电电池
CN108011099A (zh) * 2017-12-11 2018-05-08 齐鲁工业大学 一种硫化锰/碳纳米管复合材料的制备方法
CN108400392B (zh) * 2018-01-29 2020-08-14 东华理工大学 一种可充电的柔性锌离子电池及其制备方法
CN108807910A (zh) * 2018-06-13 2018-11-13 深圳市寒暑科技新能源有限公司 一种水系锌离子电池
CN108807820B (zh) * 2018-06-16 2021-05-04 深圳市凤凰锂能科技有限公司 可充电金属氢化物锰电池
CN110718719B (zh) * 2018-07-13 2020-10-30 常熟理工学院 一种可充电的锌离子电池
CN109273759A (zh) * 2018-09-27 2019-01-25 中山大学 一种二次电池用的电解液及含有其的二次电池
CN109950500A (zh) * 2019-03-29 2019-06-28 北京航空航天大学 一种用于可充锌离子电池的二氧化锰正极材料及其制备方法和电池
CN110165161A (zh) * 2019-04-25 2019-08-23 浙江大学 一种碳化钛-碳/二氧化锰复合材料及其制备方法和应用
CN112234195A (zh) * 2019-07-15 2021-01-15 浙江大学 一种可充放电水系锌离子全电池
SE544163C2 (en) * 2019-10-07 2022-02-15 Enerpoly Ab Cathode material for secondary manganese dioxide aqueous batteries
CN111115688B (zh) * 2019-12-06 2022-02-15 瑞海泊(青岛)能源科技有限公司 锌离子电池正极材料及其制备方法和应用
US11121402B2 (en) 2020-01-31 2021-09-14 Uchicago Argonne, Llc Aqueous manganese ion battery
CN111646514B (zh) * 2020-06-17 2024-02-06 郑州轻工业大学 一种三明治结构的MnO2@rGO@MnO2复合纳米片材料及其制备方法
CN112624199B (zh) * 2020-12-16 2023-05-16 扬州大学 碳量子点/二氧化锰纳米复合材料、制备方法及其应用
CN112803028A (zh) * 2020-12-17 2021-05-14 华中师范大学 一种超快充电的锰锌电池
CN113540396A (zh) * 2021-03-12 2021-10-22 陈璞 锰离子电池
CN113707868B (zh) * 2021-08-31 2022-10-21 中国地质大学(北京) 一种三元复合电极材料及其制备方法和锌离子电池
CN114094210A (zh) * 2021-10-19 2022-02-25 陈璞 三维结构正极和水系锌锰电池
CN114171730B (zh) * 2021-12-08 2022-09-23 中原工学院 一种多层管状锰基多元复合电极材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223504A (ja) * 1996-02-14 1997-08-26 Sony Corp 筒型アルカリ電池とその製造方法
CN1238569A (zh) * 1998-06-10 1999-12-15 株式会社华仁电池 添上锰盐(ⅱ)和碳粉的硫酸锌(ⅱ)水溶液可充电电池
CN101540417A (zh) * 2009-04-15 2009-09-23 清华大学深圳研究生院 可充电的锌离子电池
CN103165918A (zh) * 2013-02-06 2013-06-19 安徽省霖丰源机械制造有限公司 锌锰贮备电池及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1126064B (it) * 1979-06-11 1986-05-14 Cities Service Co Nerofumo per batterie a secco
JP2683245B2 (ja) * 1988-06-06 1997-11-26 東芝電池株式会社 マンガン乾電池
JPH02192666A (ja) * 1988-10-18 1990-07-30 Tosoh Corp 二次電池
JPH0384868A (ja) * 1989-08-28 1991-04-10 Tosoh Corp 二次電池
CA2010142C (en) * 1990-02-15 1997-02-04 Klaus Tomantschger Manganese dioxide cathode for a rechargeable alkaline cell, and cell containing the same
JP3530544B2 (ja) * 1992-09-14 2004-05-24 キヤノン株式会社 二次電池
JP3286346B2 (ja) * 1992-07-15 2002-05-27 三洋電機株式会社 亜鉛アルカリ電池
JP3553104B2 (ja) * 1992-08-04 2004-08-11 株式会社エスアイアイ・マイクロパーツ アルカリ電池
CN1035706C (zh) * 1992-09-08 1997-08-20 内蒙古乌海市企业家俱乐部 可充电的锌锰电池
JP3173594B2 (ja) * 1998-08-31 2001-06-04 株式会社ファインセル マンガン塩(ii)とカ−ボン粉末を添加した硫酸亜鉛(ii)水溶液二次電池
CN1278439C (zh) * 2001-10-08 2006-10-04 蒂米卡尔股份公司 电化学电池
JP2007048534A (ja) * 2005-08-09 2007-02-22 Matsushita Electric Ind Co Ltd マンガン乾電池
GB2458667A (en) * 2008-03-25 2009-09-30 Nanotecture Ltd Mesoporous alpha-manganese dioxide
CN101923960B (zh) * 2010-08-18 2012-05-23 东华大学 一种瓣状二氧化锰纳米晶包覆碳纳米管复合电极材料的制备方法
CN102059082B (zh) * 2010-11-30 2012-06-27 重庆大学 纳米二氧化锰/碳复合微球的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223504A (ja) * 1996-02-14 1997-08-26 Sony Corp 筒型アルカリ電池とその製造方法
CN1238569A (zh) * 1998-06-10 1999-12-15 株式会社华仁电池 添上锰盐(ⅱ)和碳粉的硫酸锌(ⅱ)水溶液可充电电池
CN101540417A (zh) * 2009-04-15 2009-09-23 清华大学深圳研究生院 可充电的锌离子电池
CN103165918A (zh) * 2013-02-06 2013-06-19 安徽省霖丰源机械制造有限公司 锌锰贮备电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LV , YANG.: "Facile synthesis and electrochemical properties of MnOx/Carbon nanomaterials", UNIV LIAONING NORMAL MASTER PAPER, 31 December 2013 (2013-12-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031125A (zh) * 2021-11-05 2022-02-11 上海纳米技术及应用国家工程研究中心有限公司 三元纳米片@碳纳米管正极材料的制备方法及其产品和应用
CN114031125B (zh) * 2021-11-05 2023-11-28 上海纳米技术及应用国家工程研究中心有限公司 三元纳米片@碳纳米管正极材料的制备方法及其产品和应用

Also Published As

Publication number Publication date
JP6143945B2 (ja) 2017-06-07
JP2016520969A (ja) 2016-07-14
CN104272523B (zh) 2017-09-08
US20150287988A1 (en) 2015-10-08
CN104272523A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
WO2015149335A1 (zh) 一种锌离子可充电电池及其制造方法
CN102881861B (zh) 一种高温型锂离子电池正极极片
CN105552344A (zh) 一种锂离子电池正极片、锂离子电池及其制备方法
CN102005615B (zh) 可充电的镍离子电池
CN109920974B (zh) 一种用明胶包覆的电极材料的制备方法及其应用
WO2017020860A1 (zh) 电池、电池组以及不间断电源
CN105609754A (zh) 一种双正极材料及水系二次电池
WO2011079482A1 (zh) 一种电池
CN102969473A (zh) 有机/无机复合多孔薄膜及使用此薄膜的电化学储能装置
US11211635B2 (en) Battery, battery pack, and uninterruptible power supply
CN108110311A (zh) 一种锂离子电池
CN103682304A (zh) 一种富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池
CN103928681B (zh) 一种对称式水溶液锂离子电池
JPWO2012035648A1 (ja) 非水電解液二次電池用活物質および非水電解液二次電池
CN104882637B (zh) 电解液和电化学储能装置
CN105336993A (zh) 电解液和电池
WO2024125486A1 (zh) 钠离子电池和储能设备
CN103762335A (zh) 钛酸锂电极片及锂离子电池
JP2007234350A (ja) 非水電解質二次電池
CN104752681A (zh) 电池
CN115872384A (zh) 一种改性磷酸锰铁锂正极材料及其制备方法和应用
KR102042098B1 (ko) 해수 전지
KR20100056257A (ko) 코팅용 겔 전해액을 사용하여 표면 개질된 음극 및 분리막을 포함하는 알칼리 아연 이차전지
JPH1131508A (ja) 非水電解液二次電池
CN110718719B (zh) 一种可充电的锌离子电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016510921

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14888473

Country of ref document: EP

Kind code of ref document: A1