WO2015147202A1 - 脂環骨格を有するポリエステルポリオール - Google Patents

脂環骨格を有するポリエステルポリオール Download PDF

Info

Publication number
WO2015147202A1
WO2015147202A1 PCT/JP2015/059455 JP2015059455W WO2015147202A1 WO 2015147202 A1 WO2015147202 A1 WO 2015147202A1 JP 2015059455 W JP2015059455 W JP 2015059455W WO 2015147202 A1 WO2015147202 A1 WO 2015147202A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester polyol
acid
alicyclic skeleton
side chain
propanediol
Prior art date
Application number
PCT/JP2015/059455
Other languages
English (en)
French (fr)
Inventor
拓大 ▲鶴▼田
岡野 茂
貴裕 細野
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2016510499A priority Critical patent/JPWO2015147202A1/ja
Priority to CN201580016805.8A priority patent/CN106164129A/zh
Priority to US15/300,104 priority patent/US20170183442A1/en
Priority to EP15768224.6A priority patent/EP3124520A4/en
Publication of WO2015147202A1 publication Critical patent/WO2015147202A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/423Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings

Definitions

  • the present invention relates to a polyester polyol used as a raw material for polyurethane, a method for producing the same, a method for producing polyurethane using the polyester polyol obtained thereby, and a polyurethane obtained thereby. More specifically, the polyester polyol and the method for producing the same according to the present invention relate to a technique capable of suppressing gelation in a urethanization reaction.
  • Polyurethane is a useful resin with a wide range of applications, being used in fields such as paints, adhesives, coatings, elastomers, artificial and synthetic leather, foams, and active energy ray curable resins.
  • polyurethane has various characteristics depending on the structure of the polyol that constitutes it.
  • Polyester polyols containing an alcohol having an alicyclic skeleton in the side chain as a diol component are highly useful because a polyurethane having excellent vibration damping properties and hydrolysis resistance can be obtained (Patent Documents 1 and 2).
  • Patent Document 3 a method of synthesizing from an aldehyde having an alicyclic skeleton and formaldehyde has been proposed (Patent Document 3).
  • the present inventors use a polyester polyol containing a diol having an alicyclic skeleton in the side chain and a dibasic acid component as components as a polyester polyol having a alicyclic skeleton in the side chain, which is useful as a raw material for polyurethane.
  • a polyester polyol containing a diol having an alicyclic skeleton in the side chain and a dibasic acid component as components as a polyester polyol having a alicyclic skeleton in the side chain, which is useful as a raw material for polyurethane.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a polyester polyol capable of producing a stable quality polyurethane by suppressing gelation in a urethanization reaction in the production of polyurethane. .
  • the inventors have found that gelation in the urethanization reaction is caused by an alkali metal contained in a small amount in the polyester polyol, and further, the alkali metal has 1,3-3-alicyclic skeleton in the side chain. It discovered that it originated in propanediol, solved the said subject by using the polyester polyol which reduced alkali metal content, and came to complete this invention. That is, the present invention provides the following [1] to [6].
  • the polyester polyol of the present invention can suppress gelation in the urethanization reaction in the production of polyurethane, and can produce a polyurethane of stable quality.
  • a method for producing polyurethane, polyurethane, and 1,3-propanediol having an alicyclic skeleton in the side chain are provided.
  • a dibasic acid component used in a general polyester polyol can be used without particular limitation, for example, succinic acid, glutaric acid, adipic acid, pimelic acid, Aliphatic dibasic acids such as suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, brassic acid, dimer acid; alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid; phthalic acid, isophthalic acid, terephthalic acid, And aromatic dibasic acids such as naphthalenedicarboxylic acid.
  • adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid are preferably used in consideration of availability.
  • These dibasic acids may be used individually by 1 type, or may use 2 or more types together.
  • the alicyclic skeleton of 1,3-propanediol having an alicyclic skeleton in the side chain constituting the polyester polyol of the present invention is not particularly limited, but those having 3 to 10 carbon atoms are preferable. There may be one alicyclic skeleton in the molecule or two or more. Specific examples of the compound include cyclopropane-1,1-dimethanol, cyclobutane-1,1-dimethanol, cyclopentane-1,1-dimethanol, cyclohexane-1,1-dimethanol, and 2-methyl.
  • cyclohexane-1,1-dimethanol is preferred. These may be used individually by 1 type, or may use 2 or more types together.
  • the 1,3-propanediol having an alicyclic skeleton in the side chain of the present invention has an alkali metal content of 40 mass ppm or less, preferably an alkali metal content of 20 mass ppm or less, preferably 8 mass ppm or less. Is more preferably 4 ppm by mass or less, and particularly preferably 2 ppm by mass or less.
  • the 1,3-propanediol having an alicyclic skeleton in the side chain of the present invention is preferably cyclohexane-1,1-dimethanol.
  • the polyester polyol of the present invention may contain a polyhydric alcohol component (preferably a diol) other than 1,3-propanediol having an alicyclic skeleton in the side chain as a constituent component.
  • a polyhydric alcohol component preferably diol
  • a polyhydric alcohol component used in general polyester polyols can also be used.
  • the amount of the other polyhydric alcohol component (preferably diol) is usually preferably 50 mol% or less and 30 mol% or less with respect to 1,3-propanediol having an alicyclic skeleton in the side chain. Is more preferable.
  • the amount ratio of 1,3-propanediol having an alicyclic skeleton in the side chain as a constituent component and the dibasic acid component is the same as that of the other polyhydric alcohol component (preferably diol) described above.
  • the number of structural units) is preferably in the range of 1.4: 1 to 1.01: 1, more preferably in the range of 1.2: 1 to 1.04: 1, and 1.1: 1 to 1.05: 1. Is more preferable.
  • the average molecular weight of the polyester polyol of the present invention is not particularly limited, but is preferably 300 to 4000, more preferably 350 to 3500, and particularly preferably 450 to 3000.
  • the average molecular weight of the polyester polyol is 300 or more, the hydroxyl group concentration is sufficiently diluted, and gelation hardly occurs during urethanization.
  • the average molecular weight of the polyester polyol is 4000 or less, the viscosity in the dissolved state is low, and handling during urethanization becomes easy.
  • an average molecular weight is a number average molecular weight computed from the hydroxyl value of the produced
  • polyester polyol of the present invention preferably has a melting point of 25 ° C. or lower.
  • Polyester polyol can be in the form of solid, wax, liquid, etc. depending on its structure and molecular weight, but the liquid form is excellent in handling from the viewpoint of saving labor and energy required for dissolution.
  • the polyester polyol of the present invention has an alkali metal content of 20 mass ppm or less, preferably 10 mass ppm or less, more preferably 4 mass ppm or less, further preferably 2 mass ppm or less, and 1.5 mass ppm or less. Particularly preferred is 1 ppm by mass or less.
  • the production method of the polyester polyol of the present invention is not particularly limited as long as the alkali metal content is 20 ppm by mass or less.
  • the method for producing a polyester polyol by performing a transesterification reaction with 1,3-propanediol having an alicyclic skeleton in the side chain of the present invention using a dibasic acid component as a raw material A small amount of polyester polyol can be easily produced.
  • Dialkyl esters of dibasic acid components used in this reaction include aliphatic dibasic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, brassic acid, and dimer acid.
  • aliphatic dibasic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, brassic acid, and dimer acid.
  • Dialkyl esters such as dimethyl ester, diethyl ester, dipropyl ester and dibutyl ester; dimethyl ester of alicyclic dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid, dialkyl ester such as diethyl ester, dipropyl ester and dibutyl ester Dimethyl esters of aromatic dibasic acids such as phthalic acid, isophthalic acid, terephthalic acid and naphthalenedicarboxylic acid, dialkyl esters such as diethyl ester, dipropyl ester and dibutyl ester.
  • dialkyl esters of adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid in view of availability.
  • the alkali metal content in the dialkyl ester of the dibasic acid component is preferably 2 mass ppm or less, more preferably 1.5 mass ppm or less, and even more preferably 1 mass ppm or less.
  • 1,3-propanediol having an alicyclic skeleton in the side chain 1,3-propanediol having an alicyclic skeleton in the side chain described above can be used.
  • the polyester polyol of the present invention is an esterification reaction or transesterification of the dibasic acid component or dialkyl ester of the dibasic acid component described above as a raw material and 1,3-propanediol having an alicyclic skeleton in the side chain. It is obtained by reacting.
  • As the esterification reaction or transesterification reaction a method generally used as an esterification reaction or transesterification reaction in an organic synthesis reaction can be applied.
  • the desired polyester polyol can be obtained by heat condensation of propanediol.
  • the temperature of the esterification reaction or transesterification reaction is usually 140 to 240 ° C, preferably 180 to 220 ° C.
  • an inert gas such as nitrogen or argon
  • the esterification reaction or transesterification reaction may be carried out in the presence of a solvent that does not affect the reaction, but is usually preferably carried out without a solvent.
  • the esterification reaction or transesterification reaction is preferably performed in the presence of a catalyst.
  • catalysts include titanium compounds such as tetrabutyl titanate, tetraisopropyl titanate, tetra-2-ethylhexyl titanate, titanium acetylacetonate; tin compounds such as dibutyltin oxide, methylphenyltin oxide, hexaethyltin oxide; magnesium carbonate, oxidation
  • Magnesium compounds such as magnesium and magnesium alkoxide are preferable, and titanium compounds such as tetrabutyl titanate, tetraisopropyl titanate, tetra-2-ethylhexyl titanate, and titanium acetylacetonate are more preferable.
  • the amount of the catalyst used is not particularly limited, but it is usually preferably in the range of 0.5 to 500 ppm by mass with respect to the polyhydric alcohol in terms of metal atom, and preferably in the range of 1 to 100 ppm by mass. More preferred is 2 to 50 ppm by mass. If the amount of the catalyst used is 0.5 mass ppm or more, the polyester polyol can be formed quickly, which is economically advantageous due to a reduction in time. On the other hand, if the amount of the catalyst used is 500 ppm by mass or less, removal and deactivation of the catalyst after the reaction are easy.
  • the catalyst used when producing the polyester polyol acts as a catalyst in the later urethanization reaction. Desirably, it is desirable to completely deactivate the catalyst.
  • a catalyst deactivation method a catalyst deactivation method used in the production of general polyester polyols can be applied. For example, when a titanium compound is used as a catalyst, there are a method of adding water or a phosphorus compound to deactivate the catalyst, a method of adding a phosphorus compound after adding water, etc. In terms of reduction, a method of further adding a phosphorus compound after adding water is preferable.
  • Heating with addition of water in deactivating the catalyst is not particularly limited, but generally a temperature of 70 to 120 ° C is preferable, and a temperature of 90 to 120 ° C is particularly preferable.
  • the heat treatment time is not particularly limited, but is usually about 1 to 3 hours.
  • Phosphorous compounds to be added include phosphorous acid, phosphoric acid, dimethyl phosphite, diisopropyl phosphite, di-n-butyl phosphite, isobutyl phosphite, di-n-ethylhexyl phosphite, phosphorous acid Dilauryl, dioleyl phosphite, distearyl phosphite, diphenyl phosphite, monomethyl phosphite, monoethyl phosphite, dimethyl phosphate, diethyl phosphate, diisopropyl phosphate, di-n-butyl phosphate, phosphoric acid Examples thereof include isobutyl, di-n-ethylhexyl phosphate, dilauryl phosphate, dioleyl phosphate, distearyl phosphate, diphenyl phosphate, monomethyl phosphate and monoe
  • phosphorous acid diphenyl phosphite, distearyl phosphite, and diphenyl phosphate are preferable.
  • the polyester polyol manufactured above when using the polyester polyol manufactured above as a raw material of a polyurethane, it is good to remove and use water from the polyester polyol manufactured above.
  • the removal of water is preferably performed after the addition of the phosphorus compound, but is not limited thereto, and may be performed after the heat treatment by adding water and before the addition of the phosphorus compound. Water can be removed by any method such as heat drying under reduced pressure. As described above, the polyester polyol of the present invention can be obtained.
  • the manufacturing method of the polyurethane in this invention includes the process of making polyester polyol and polyisocyanate react.
  • the polyurethane of the present invention can be obtained by the production method.
  • a method used as a general urethanization reaction of a polyester polyol can be applied.
  • isocyanate examples include diphenylmethane-4,4′-diisocyanate (hereinafter abbreviated as MDI), tolylene diisocyanate, 1,5-naphthalene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, hydrogenated MDI and the like.
  • MDI diphenylmethane-4,4′-diisocyanate
  • tolylene diisocyanate 1,5-naphthalene diisocyanate
  • xylylene diisocyanate xylylene diisocyanate
  • isophorone diisocyanate hexamethylene diisocyanate
  • hydrogenated MDI hydrogenated MDI and the like.
  • chain extenders such as a low molecular polyol and polyamine, etc. can be used together as needed.
  • the chain extender is not particularly limited, but is a low molecular compound having at least two active hydrogen atoms mainly composed of an aliphatic diol having 2 to 20 carbon atoms (hereinafter simply referred to as “low molecular compound having an active hydrogen atom”). Is preferred).
  • the low molecular compound having an active hydrogen atom include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 3-methyl-1,5.
  • the reactivity of the polyester polyol of the present invention can be evaluated by, for example, reacting the polyester polyol and MDI at 50 ° C. and measuring the apparent reaction rate constant.
  • a large apparent reaction rate constant means that the reaction rate between the polyester polyol and the isocyanate is high.
  • the urethanization reaction is an exothermic reaction, if the reaction rate is too high, the system is locally localized. Abnormal overheating, side reactions may occur, and in some cases, undesirable results such as gelation may occur. Therefore, in order to obtain a stable quality polyurethane, usually is the apparent reaction rate constant at 50 ° C. with MDI 0.01kg ⁇ mol -1 ⁇ min -1 or more, 0.1kg ⁇ mol -1 ⁇ min -1 or less is preferable.
  • the polyurethane obtained by the method of the present invention has excellent mechanical strength and hydrolysis resistance under acidic and basic conditions, and is a sheet, film, foam, roll, gear, solid tire, belt, hose, tube. , Packing materials, anti-vibration materials, shoe soles, sports shoes, machine parts, building materials, automobile parts, furniture, lining, sealing materials, waterproofing materials, sports equipment, elastic fibers, artificial leather, textile treatment agents, adhesives, It can be suitably used for applications such as coating agents, various binders and paints.
  • Example 1 Charge 133.4 g of adipic acid and 179.4 g of 1,1-cyclohexanedimethanol having a sodium atom content of 7.6 ppm by mass to the reactor, and heat to 200 ° C. under a nitrogen atmosphere at normal pressure. The esterification reaction was carried out while distilling out. When the amount of produced water was reduced, 5 mg of tetraisopropyl titanate was added, and the reaction was continued under reduced pressure. Next, 5 g of water (corresponding to 2% by weight with respect to the theoretical yield) was added and stirred at 100 ° C. for 2 hours.
  • polyester polyol having a number average molecular weight of 2120.
  • the sodium atom content in the obtained polyester polyol was 3.7 mass ppm.
  • reaction rate constant of the obtained polyester polyol was examined by the above-described measuring method, it was 0.08 kg ⁇ mol ⁇ 1 ⁇ min ⁇ 1 .
  • Example 1 A polyester polyol was obtained in the same manner as in Example 1 except that 1,1-cyclohexanedimethanol having a sodium atom content of 213.6 mass ppm was used.
  • the obtained polyester polyol had a sodium atom content of 103.2 ppm by mass, and when examined by the reaction rate constant measurement method described above, there was a significant increase in internal temperature immediately after the start of the reaction, which caused gelation and could not be measured. there were. From this comparative example, it can be seen that the polyester polyol using 1,1-cyclohexanedimethanol containing an alkali metal as a raw material has a remarkably high reaction rate with isocyanate and is likely to cause gelation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 ウレタン化反応を行なう場合において、ゲル化の抑制が可能であり、安定した品質のポリウレタンを製造し得るポリエステルポリオールの提供。 側鎖に脂環骨格を有する1,3-プロパンジオールと、二塩基酸成分とを構成成分として含む、アルカリ金属含有量が20質量ppm以下である、ポリエステルポリオール。

Description

脂環骨格を有するポリエステルポリオール
 本発明は、ポリウレタンの原料となるポリエステルポリオール、およびその製造方法、並びにこれにより得られたポリエステルポリオールを用いたポリウレタンの製造方法及びこれにより得られたポリウレタンに関する。さらに詳しくは、本発明のポリエステルポリオールおよびその製造方法は、ウレタン化の反応においてゲル化を抑制しうる技術に関する。
 ポリウレタンは、塗料、接着剤、コーティング、エラストマー、人工皮革・合成皮革、発泡体、活性エネルギー線硬化樹脂などの分野で利用されており、用途の広い有用な樹脂である。
 一般的に、ポリウレタンは、構成するポリオールの構造により様々な特性を持つことが知られている。側鎖に脂環骨格を有するアルコールをジオール成分として含むポリエステルポリオールは、制振性や耐加水分解性に優れたポリウレタンが得られることから有用性が高い(特許文献1、特許文献2)。一方、側鎖に脂環骨格を有するジオールの製造方法としては、脂環骨格を有するアルデヒドとホルムアルデヒドから合成する方法が提案されている(特許文献3)。
日本国特開2002-338650号公報 日本国特開平11-189637号公報 国際公開第01/085657号パンフレット
 本発明者らは、ポリウレタンの原料として有用な、側鎖に脂環骨格を有するポリエステルポリオールとして、側鎖に脂環骨格を有するジオールと、二塩基酸成分とを構成成分として含むポリエステルポリオールを用いたポリウレタンの製造を検討したところ、反応時にゲル化を起こし、安定した品質のポリウレタンを製造できず、製品化が困難であった。
 本発明の目的は、上記の問題点を解決するものであり、ポリウレタンの製造の際のウレタン化反応におけるゲル化を抑制し、安定した品質のポリウレタンを製造し得るポリエステルポリオールを提供することにある。
 本発明者らは詳細に検討した結果、ウレタン化反応におけるゲル化はポリエステルポリオール中に微量含有されるアルカリ金属に起因すること、更に、アルカリ金属は側鎖に脂環骨格を有する1,3-プロパンジオールに由来することを見出し、アルカリ金属含有量を低減したポリエステルポリオールを用いることで上記課題を解決し、本発明を完成するに至った。
 すなわち、本発明は、下記[1]~[6]を提供する。
[1] 側鎖に脂環骨格を有する1,3-プロパンジオールと、二塩基酸成分とを構成成分として含む、アルカリ金属含有量が20質量ppm以下である、ポリエステルポリオール;
[2] 前記側鎖に脂環骨格を有する1,3-プロパンジオールが、シクロヘキサン-1,1-ジメタノールである、[1]に記載のポリエステルポリオール;
[3] [1]又は[2]に記載のポリエステルポリオールと、ポリイソシアネートとを反応させるポリウレタンの製造方法;
[4] [3]に記載の製造方法で得られるポリウレタン;
[5] アルカリ金属含有量が40質量ppm以下の、側鎖に脂環骨格を有する1,3-プロパンジオール;および
[6] シクロヘキサン-1,1-ジメタノールである、[5]に記載の側鎖に脂環骨格を有する1,3-プロパンジオール。
 本発明のポリエステルポリオールは、ポリウレタンの製造の際のウレタン化反応において、ゲル化の抑制が可能であり、安定した品質のポリウレタンを製造できる。
 以下、本発明について詳細に説明する。
 本発明によれば、二塩基酸成分と、側鎖に脂環骨格を有する1,3-プロパンジオールとを構成成分として含む、アルカリ金属含有量が20質量ppm以下である、ポリエステルポリオールが提供される。さらに、ポリウレタンの製造方法、及びポリウレタン、並びに側鎖に脂環骨格を有する1,3-プロパンジオールが提供される。
〔ポリエステルポリオール〕
 本発明のポリエステルポリオールを構成する二塩基酸成分としては、一般的なポリエステルポリオールにおいて使用される二塩基酸成分を特に制限なく用いることができ、例えばコハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、ブラシル酸、ダイマー酸などの脂肪族二塩基酸;1,4-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸;フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などの芳香族二塩基酸などが挙げられる。中でも、入手性などを加味すると、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸を用いるのが好ましい。これらの二塩基酸は一種を単独で使用しても、二種以上を併用してもよい。
 本発明のポリエステルポリオールを構成する、側鎖に脂環骨格を有する1,3-プロパンジオールの脂環骨格としては特に制限はないが、炭素数が3~10のものが好ましい。分子中の脂環骨格は1つでもよく、2つ以上でもよい。具体的な化合物としては、例えば、シクロプロパン-1,1-ジメタノール、シクロブタン-1,1-ジメタノール、シクロペンタン-1,1-ジメタノール、シクロヘキサン-1,1-ジメタノール、2-メチルシクロヘキサン-1,1-ジメタノール、1-シクロヘキセン-4,4-ジメタノール、シクロヘプタン-1,1-ジメタノール、シクロオクタン-1,1-ジメタノール、ジメチルシクロオクタン-1,1-ジメタノールなどが挙げられる。中でも入手性などを加味すると、シクロペンタン-1,1-ジメタノール、シクロヘキサン-1,1-ジメタノール、2-メチルシクロヘキサン-1,1-ジメタノール、1-シクロヘキセン-4,4-ジメタノールなどが好ましく、特にシクロヘキサン-1,1-ジメタノールが好ましい。これらは一種を単独で使用しても、二種以上を併用してもよい。
 本発明の側鎖に脂環骨格を有する1,3-プロパンジオールは、アルカリ金属含有量が40質量ppm以下であり、アルカリ金属含有量が20質量ppm以下であることが好ましく、8質量ppm以下であることがより好ましく、4質量ppm以下であることがさらに好ましく、2質量ppm以下であることが特に好ましい。本発明の側鎖に脂環骨格を有する1,3-プロパンジオールはシクロヘキサン-1,1-ジメタノールであることが好ましい。
 本発明のポリエステルポリオールは、構成成分として側鎖に脂環骨格を有する1,3-プロパンジオール以外の他の多価アルコール成分(好適にはジオール)を含有することも可能である。かかる他の多価アルコール成分(好適にはジオール)として、一般的なポリエステルポリオールにおいて使用される多価アルコール成分(好適にはジオール)を用いることもできる。他の多価アルコール成分(好適にはジオール)の量は、側鎖に脂環骨格を有する1,3-プロパンジオールに対して、通常、好ましくは50mol%以下であり、30mol%以下であるのがより好ましい。
 本発明のポリエステルポリオールにおいて、構成成分である側鎖に脂環骨格を有する1,3-プロパンジオールと二塩基酸成分の量比は、前記した他の多価アルコール成分(好適にはジオール)を有する場合も考慮すると、[(側鎖に脂環骨格を有する1,3-プロパンジオール由来の構成単位数)+(他の多価アルコール成分由来の構成単位数)]:(二塩基酸成分由来の構成単位数)として1.4:1~1.01:1の範囲が好ましく、1.2:1~1.04:1の範囲がより好ましく、1.1:1~1.05:1がさらに好ましい。
 本発明のポリエステルポリオールの平均分子量については特に制限されないが、300~4000が好ましく、350~3500がさらに好ましく、450~3000が特に好ましい。ポリエステルポリオールの平均分子量が300以上の場合、水酸基濃度が十分に希釈されており、ウレタン化の際にゲル化を起こしにくい。一方、ポリエステルポリオールの平均分子量が4000以下であれば、溶解させた状態の粘度が低く、ウレタン化の際の取り扱いが容易になる。なお、本発明において、平均分子量とは生成したポリエステルポリオールの水酸基価から算出される数平均分子量のことである。
 本発明のポリエステルポリオールは、融点が25℃以下であるのが好ましい。ポリエステルポリオールは、その構造や分子量により、固体状、ワックス状、液状などの形態になりうるが、溶解する手間や溶解に要するエネルギーを節約できる点から、液体の形態が取り扱いに優れている。
 本発明のポリエステルポリオールは、アルカリ金属の含有量が20質量ppm以下であり、10質量ppm以下が好ましく、4質量ppm以下がより好ましく、2質量ppm以下がさらに好ましく、1.5質量ppm以下が特に好ましく、1質量ppm以下が最も好ましい。
 本発明のポリエステルポリオールは、アルカリ金属含有量を20質量ppm以下とすれば、その製造方法については特に制限はない。ただし、二塩基酸成分を原料として用いて、本発明の側鎖に脂環骨格を有する1,3-プロパンジオールとのエステル交換反応を行うことによるポリエステルポリオールの製造方法によれば、アルカリ金属含有量の少ないポリエステルポリオールを容易に製造できる。
 以下に、二塩基酸成分のジアルキルエステルと側鎖に脂環骨格を有する1,3-プロパンジオールとのエステル交換反応で用いる原料について説明する。
 本反応で用いる二塩基酸成分のジアルキルエステルとしては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、ブラシル酸、ダイマー酸などの脂肪族二塩基酸のジメチルエステル、ジエチルエステル、ジプロピルエステル、ジブチルエステルなどのジアルキルエステル;1,4-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸のジメチルエステル、ジエチルエステル、ジプロピルエステル、ジブチルエステルなどのジアルキルエステル;フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などの芳香族二塩基酸のジメチルエステル、ジエチルエステル、ジプロピルエステル、ジブチルエステルなどのジアルキルエステルなどが挙げられる。中でも、入手性などを加味すると、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸のジアルキルエステルを用いるのが好ましい。このとき、二塩基酸成分のジアルキルエステル中のアルカリ金属含有量は、好ましくは2質量ppm以下であり、より好ましくは1.5質量ppm以下であり、さらに好ましくは1質量ppm以下である。
 側鎖に脂環骨格を有する1,3-プロパンジオールとしては、前述した側鎖に脂環骨格を有する1,3-プロパンジオールを用いることができる。
 本発明のポリエステルポリオールは、上記で原料として述べた、二塩基酸成分または二塩基酸成分のジアルキルエステルと、側鎖に脂環骨格を有する1,3-プロパンジオールとをエステル化反応またはエステル交換反応させることで得られる。エステル化反応またはエステル交換反応としては、有機合成反応で一般的にエステル化反応またはエステル交換反応として用いられる方法を適用でき、例えば、二塩基酸成分と側鎖に脂環骨格を有する1,3-プロパンジオールを加熱縮合することで所望のポリエステルポリオールを得ることができる。エステル化反応またはエステル交換反応の温度は、通常140~240℃、好ましくは180~220℃である。反応中は窒素やアルゴン等の不活性ガスを液中に通じておくことによって、ポリエステルポリオールの色相を良好に保つことができる。エステル化反応またはエステル交換反応は、反応に影響を与えない溶媒の存在下に行ってもよいが、通常、好ましくは無溶媒で行う。
 エステル化反応またはエステル交換反応は触媒の存在下で行うことが好ましい。かかる触媒としては、テトラブチルチタネート、テトライソプロピルチタネート、テトラ-2-エチルヘキシルチタネート、チタンアセチルアセトネートなどのチタン化合物;ジブチルスズオキサイド、メチルフェニルスズオキサイド、ヘキサエチルスズオキサイドなどのスズ化合物;炭酸マグネシウム、酸化マグネシウム、マグネシウムアルコキサイドなどのマグネシウム化合物が好ましく、テトラブチルチタネート、テトライソプロピルチタネート、テトラ-2-エチルヘキシルチタネート、チタンアセチルアセトネートなどのチタン化合物がより好ましい。触媒の使用量に特に制限はないが、金属原子換算で多価アルコールに対して、通常、0.5~500質量ppmの範囲であるのが好ましく、1~100質量ppmの範囲であるのがより好ましく、2~50質量ppmが特に好ましい。触媒の使用量が0.5質量ppm以上であれば、ポリエステルポリオールを速やかに形成することができ、時間の短縮により経済的に有利である。一方、触媒の使用量が500ppm質量以下であれば、反応後の触媒の除去や失活が容易である。
 ポリエステルポリオールを製造する際に用いられる触媒は後のウレタン化反応でも触媒として作用することから、後のウレタン化反応の反応性を制御するために、ポリエステルポリオールを製造した後に触媒の失活処理を行うのが望ましく、触媒を完全に失活させることが望ましい。触媒の失活方法としては、一般的なポリエステルポリオールの製造に用いられる触媒の失活方法を適用できる。例えばチタン化合物を触媒として用いた場合、水またはリン化合物を添加して触媒を失活させる方法や、水を添加した後にリン化合物をさらに添加する方法などが挙げられ、チタン化合物の影響を十分に低減できる点で、水を添加した後にリン化合物をさらに添加する方法が好ましい。
 以下に、触媒としてチタン化合物を用いた場合の失活の方法を説明する。
 触媒を失活させる際の、水を加えての加熱は、特に制限されないが、一般に70~120℃の温度が好ましく、90~120℃の温度が特に好ましい。この加熱処理時間は、特に限定されないが、通常約1~3時間程度行うとよい。
 添加するリン化合物としては、亜リン酸、リン酸、亜リン酸ジメチル、亜リン酸ジイソプロピル、亜リン酸ジ-n-ブチル、亜リン酸イソブチル、亜リン酸ジ-n-エチルヘキシル、亜リン酸ジラウリル、亜リン酸ジオレイル、亜リン酸ジステアリル、亜リン酸ジフェニル、亜リン酸モノメチル、亜リン酸モノエチル、リン酸ジメチル、リン酸ジエチル、リン酸ジイソプロピル、リン酸ジ-n-ブチル、リン酸イソブチル、リン酸ジ-n-エチルヘキシル、リン酸ジラウリル、リン酸ジオレイル、リン酸ジステアリル、リン酸ジフェニル、リン酸モノメチル、リン酸モノエチル等を挙げることができる。中でも、亜リン酸、亜リン酸ジフェニル、亜リン酸ジステアリル、リン酸ジフェニルが好ましい。リン化合物の添加量は、ポリエステルポリオール中に含まれるチタン化合物の量に対して、チタン化合物中のチタン原子:リン化合物中のリン原子=1:0.01~2のモル比であるのが好ましい。
 また、上記で製造したポリエステルポリオールを、ポリウレタンの原料として使用する場合は、上記で製造したポリエステルポリオールから水を除去して使用するのがよい。水の除去は、リン化合物の添加後に行うのが好ましいが、それに限定されず、水を加えて加熱処理した後にリン化合物を添加する前に行ってもよい。水の除去は、減圧下での加熱乾燥等の任意の方法により行うことができる。
 以上のようにして、本発明のポリエステルポリオールを得ることができる。
〔ポリウレタンの製造方法〕
 本発明におけるポリウレタンの製造方法は、ポリエステルポリオールと、ポリイソシアネートとを反応させる工程を含む。本発明のポリウレタンは、該製造方法により得られる。
 本発明のポリエステルポリオールを用いてポリウレタンを製造する場合、一般的なポリエステルポリオールのウレタン化反応として用いられている方法を適用できる。イソシアネートとしては、例えばジフェニルメタン-4,4’-ジイソシアネート(以下、MDIと略称する。)、トリレンジイソシアネート、1,5-ナフタレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、水添MDIなどの慣用のイソシアネートを使用できる。また、必要に応じて低分子ポリオールやポリアミン等の鎖伸長剤等を共に使用できる。鎖伸長剤としては特に限定されないが、炭素数2~20の脂肪族ジオールを主体とする活性水素原子を少なくとも2個有する低分子化合物(以下、単に「活性水素原子を有する低分子化合物」ということがある)を用いることが好ましい。活性水素原子を有する低分子化合物としては、例えばエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、キシリレングリコール、ビスヒドロキシベンゼン、ネオペンチルグリコール、トリメチロールプロパン、グリセリン、3,3-ジクロロ-4,4’-ジアミノジフェニルメタン、イソホロンジアミン、4,4’-ジアミノジフェニルメタン等が挙げられる。
 本発明のポリエステルポリオールの反応性は、例えばポリエステルポリオールとMDIを50℃にて反応させ、その見かけの反応速度定数を測定することで評価できる。見かけの反応速度定数が大きいことはすなわち、ポリエステルポリオールとイソシアネートとの反応速度が速いことを意味するが、ウレタン化の反応は発熱反応であるため、反応速度が速すぎると系中が局所的に異常過熱され、副反応を併発し、場合によってはゲル化など望ましくない結果を生じることがある。したがって、安定的な品質のポリウレタンを得るためには、通常はMDIとの50℃における見かけの反応速度定数が0.01kg・mol-1・min-1以上、0.1kg・mol-1・min-1以下のものであることが好ましい。
 本発明の方法で得られるポリウレタンは、機械的強度や、酸性および塩基性条件下での耐加水分解性に優れており、シート、フィルム、フォーム、ロール、ギア、ソリッドタイヤ、ベルト、ホース、チューブ、パッキング材、防振材、靴底、スポーツ靴、機械部品、建築用資材、自動車部品、家具、ライニング、シーリング材、防水材、スポーツ用品、弾性繊維、人工皮革、繊維処理剤、接着剤、コーティング剤、各種バインダー、塗料などの用途に好適に使用できる。
 以下、実施例により本発明を更に詳しく説明するが、本発明はかかる実施例により何ら限定されるものではない。なお、以下の実施例および比較例における物性値の測定は、下記の方法により行なった。
[反応速度定数の測定方法]
 後述の実施例および比較例で得られたポリエステルポリオール15mmolとMDI(ジフェニルメタン-4,4’-ジイソシアネート)15mmolを、50℃のオイルバスにつけた三口フラスコ中、窒素下で30分間反応させ、系内のイソシアネート基の減少量を追跡して反応速度定数(kg・mol-1・min-1)を求めた。反応速度定数が高くなるにつれ、反応制御が困難になることを表す。
<実施例1>
 アジピン酸133.4g、ナトリウム原子含量が7.6質量ppmの1,1-シクロヘキサンジメタノール179.4gを反応器に仕込み、窒素雰囲気下、常圧で200℃に加熱し、生成する水を系外に留去しながらエステル化反応を行なった。生成する水の留出が少なくなった段階で、テトライソプロピルチタネート5mgを添加し、減圧しながら反応を続けた。次に、水5g(理論収量に対して2重量%相当)を添加し、100℃で2時間攪拌した。その後、リン酸ジフェニルを0.02g添加して、減圧下で水を留去し、数平均分子量2120のポリエステルポリオールを得た。得られたポリエステルポリオール中のナトリウム原子含量は、3.7質量ppmであった。
 得られたポリエステルポリオールの反応速度定数を上記した測定方法により調べたところ、0.08kg・mol-1・min-1であった。
<比較例1>
 ナトリウム原子含量が213.6質量ppmの1,1-シクロヘキサンジメタノールを用いた以外は実施例1と同様にしてポリエステルポリオールを得た。得られたポリエステルポリオール中のナトリウム原子含量は、103.2質量ppmであり、上記した反応速度定数測定方法により調べたところ、反応開始直後から著しい内温上昇があり、ゲル化してしまい測定不能であった。この比較例から、アルカリ金属を含有する1,1-シクロヘキサンジメタノールを原料として用いたポリエステルポリオールでは、イソシアネートとの反応速度が著しく高く、ゲル化を引き起こしやすいことが分かる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2014年3月28日出願の日本特許出願(特願2014-70036)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (6)

  1.  側鎖に脂環骨格を有する1,3-プロパンジオールと、二塩基酸成分とを構成成分として含む、アルカリ金属含有量が20質量ppm以下である、ポリエステルポリオール。
  2.  前記側鎖に脂環骨格を有する1,3-プロパンジオールが、シクロヘキサン-1,1-ジメタノールである、請求項1に記載のポリエステルポリオール。
  3.  請求項1又は2に記載のポリエステルポリオールと、ポリイソシアネートとを反応させるポリウレタンの製造方法。
  4.  請求項3に記載の製造方法で得られるポリウレタン。
  5.  アルカリ金属含有量が40質量ppm以下の、側鎖に脂環骨格を有する1,3-プロパンジオール。
  6.  シクロヘキサン-1,1-ジメタノールである、請求項5に記載の側鎖に脂環骨格を有する1,3-プロパンジオール。
     
PCT/JP2015/059455 2014-03-28 2015-03-26 脂環骨格を有するポリエステルポリオール WO2015147202A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016510499A JPWO2015147202A1 (ja) 2014-03-28 2015-03-26 脂環骨格を有するポリエステルポリオール
CN201580016805.8A CN106164129A (zh) 2014-03-28 2015-03-26 具有脂环骨架的聚酯多元醇
US15/300,104 US20170183442A1 (en) 2014-03-28 2015-03-26 Polyester polyol having alicyclic skeleton
EP15768224.6A EP3124520A4 (en) 2014-03-28 2015-03-26 Polyester polyol having alicyclic skeleton

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014070036 2014-03-28
JP2014-070036 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147202A1 true WO2015147202A1 (ja) 2015-10-01

Family

ID=54195706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059455 WO2015147202A1 (ja) 2014-03-28 2015-03-26 脂環骨格を有するポリエステルポリオール

Country Status (5)

Country Link
US (1) US20170183442A1 (ja)
EP (1) EP3124520A4 (ja)
JP (1) JPWO2015147202A1 (ja)
CN (1) CN106164129A (ja)
WO (1) WO2015147202A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6892020B1 (ja) * 2019-06-07 2021-06-18 Dic株式会社 反応性接着剤、積層フィルム、及び包装体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945046A (zh) * 2017-07-05 2020-03-31 巴斯夫欧洲公司 Tpu管
MX2023000117A (es) * 2020-06-25 2023-02-09 Dow Global Technologies Llc Poliol y espuma elaborada a partir de este.
CN116082610B (zh) * 2022-12-13 2024-09-24 江苏达美瑞新材料有限公司 一种含环己基侧环结构聚酯树脂和粉末涂料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828598A (ja) * 1971-08-16 1973-04-16
JPS5027892A (ja) * 1973-07-12 1975-03-22
JPH107777A (ja) * 1996-06-26 1998-01-13 Showa Denko Kk 不飽和ポリエステル及びそれを用いた不飽和ポリエステル樹脂組成物
JPH1180305A (ja) * 1997-09-11 1999-03-26 Showa Denko Kk 新規なポリウレタン
JPH11189637A (ja) * 1997-10-23 1999-07-13 Showa Denko Kk 新規なポリウレタン
JP2000143762A (ja) * 1998-11-05 2000-05-26 Asahi Denka Kogyo Kk ポリウレタン用ポリエステルポリオール組成物及びそれを用いたポリウレタン樹脂組成物
WO2001005736A1 (fr) * 1999-07-14 2001-01-25 Showa Denko K. K. Procedes de preparation de cyclohexanedimethanols et de leurs produits intermediaires
JP2002069163A (ja) * 2000-08-31 2002-03-08 Daicel Chem Ind Ltd ラクトンポリエステルジオール、それから得られるポリウレタン及びそのスパンデックスフィラメント
JP2002338650A (ja) * 2001-05-16 2002-11-27 Showa Denko Kk 制振材用ポリウレタン、該ポリウレタンの製造法、および該ポリウレタンを用いた制振材
JP2010235811A (ja) * 2009-03-31 2010-10-21 Kuraray Co Ltd 脂環式ポリエステルポリオールおよびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069222A (en) * 1997-07-24 2000-05-30 Showa Denko K.K. Polyester and polyurethane derived from specific alicyclic diols
CN106133023A (zh) * 2014-03-31 2016-11-16 株式会社可乐丽 耐久性优异的聚酯多元醇

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828598A (ja) * 1971-08-16 1973-04-16
JPS5027892A (ja) * 1973-07-12 1975-03-22
JPH107777A (ja) * 1996-06-26 1998-01-13 Showa Denko Kk 不飽和ポリエステル及びそれを用いた不飽和ポリエステル樹脂組成物
JPH1180305A (ja) * 1997-09-11 1999-03-26 Showa Denko Kk 新規なポリウレタン
JPH11189637A (ja) * 1997-10-23 1999-07-13 Showa Denko Kk 新規なポリウレタン
JP2000143762A (ja) * 1998-11-05 2000-05-26 Asahi Denka Kogyo Kk ポリウレタン用ポリエステルポリオール組成物及びそれを用いたポリウレタン樹脂組成物
WO2001005736A1 (fr) * 1999-07-14 2001-01-25 Showa Denko K. K. Procedes de preparation de cyclohexanedimethanols et de leurs produits intermediaires
JP2002069163A (ja) * 2000-08-31 2002-03-08 Daicel Chem Ind Ltd ラクトンポリエステルジオール、それから得られるポリウレタン及びそのスパンデックスフィラメント
JP2002338650A (ja) * 2001-05-16 2002-11-27 Showa Denko Kk 制振材用ポリウレタン、該ポリウレタンの製造法、および該ポリウレタンを用いた制振材
JP2010235811A (ja) * 2009-03-31 2010-10-21 Kuraray Co Ltd 脂環式ポリエステルポリオールおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124520A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6892020B1 (ja) * 2019-06-07 2021-06-18 Dic株式会社 反応性接着剤、積層フィルム、及び包装体

Also Published As

Publication number Publication date
JPWO2015147202A1 (ja) 2017-04-13
CN106164129A (zh) 2016-11-23
EP3124520A1 (en) 2017-02-01
EP3124520A4 (en) 2017-11-29
US20170183442A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6568844B2 (ja) 耐久性に優れたポリエステルポリオール
EP3087118B1 (en) A polyol based on dimer fatty acid residues and the corresponding polyurethanes
WO2015147202A1 (ja) 脂環骨格を有するポリエステルポリオール
EP3105270B1 (en) Polyurethane elastomers
CN104220476B (zh) 生产聚酯-共聚-碳酸酯多元醇的一锅法
US10351655B2 (en) Polyurethane dispersions
JP5341594B2 (ja) 脂環式ポリエステルポリオールおよびその製造方法
JPH10259295A (ja) エステル系高分子ポリオール組成物およびその製造方法
JP6563528B2 (ja) セシウム塩が添加された高分子カルボジイミドの合成方法、高分子カルボジイミド、それらの使用
JP2002537456A (ja) 不均一系触媒によって製造可能な、縮合重合樹脂および重付加樹脂
JP3113725B2 (ja) ポリエステルポリオール組成物の調製方法
JP5462269B2 (ja) イソシアネート及びアルコール間の反応のための新規な触媒
JP2003160630A (ja) 高官能性自己乳化型ポリイソシアネート及びその製造方法
JP3422079B2 (ja) 多分岐脂肪族−芳香族ポリエステルポリオールの製造法
JP4529676B2 (ja) 反応性安定化ポリカーボネートポリオールの製造方法及び反応性安定化ポリカーボネートポリオールを用いたポリウレタン樹脂
JP2000128948A (ja) 熱硬化性ポリウレタン樹脂の製造方法
KR101720255B1 (ko) 동물성 유지로부터 거대 곁사슬을 가진 폴리에스터 폴리올의 제조방법
JP3449873B2 (ja) エステル系高分子ポリオール組成物およびその製造方法
JPH11322885A (ja) ポリウレタンの製造方法
JPH06199998A (ja) ポリエステルおよびポリウレタン樹脂
JPH07330853A (ja) 多分岐脂肪族−芳香族ポリウレタン組成物
JP2005105240A (ja) 熱硬化性ポリウレタンエラストマー組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510499

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015768224

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15300104

Country of ref document: US

Ref document number: 2015768224

Country of ref document: EP