WO2015147135A1 - エピタキシャル成長用基板及びそれを用いた発光素子 - Google Patents

エピタキシャル成長用基板及びそれを用いた発光素子 Download PDF

Info

Publication number
WO2015147135A1
WO2015147135A1 PCT/JP2015/059313 JP2015059313W WO2015147135A1 WO 2015147135 A1 WO2015147135 A1 WO 2015147135A1 JP 2015059313 W JP2015059313 W JP 2015059313W WO 2015147135 A1 WO2015147135 A1 WO 2015147135A1
Authority
WO
WIPO (PCT)
Prior art keywords
epitaxial growth
substrate
convex
mold
pattern
Prior art date
Application number
PCT/JP2015/059313
Other languages
English (en)
French (fr)
Inventor
隆史 關
涼 西村
鳥山 重隆
麻登香 ▲高▼橋
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2016510471A priority Critical patent/JP6280637B2/ja
Priority to KR1020167026393A priority patent/KR20160138419A/ko
Priority to EP15768215.4A priority patent/EP3125312A4/en
Priority to CN201580016104.4A priority patent/CN106133926A/zh
Publication of WO2015147135A1 publication Critical patent/WO2015147135A1/ja
Priority to US15/276,102 priority patent/US20170012169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Definitions

  • the present invention relates to a substrate for epitaxially growing a semiconductor layer and the like, and a light emitting element having a semiconductor layer formed on the substrate.
  • Semiconductor light emitting devices generally include light emitting diodes (LEDs) and laser diodes (LDs), and are widely used in various light sources used for backlights, lighting, traffic lights, large displays, and the like.
  • LEDs light emitting diodes
  • LDs laser diodes
  • a light emitting device having a semiconductor layer such as a nitride semiconductor, normally, a buffer layer, an n-type semiconductor layer, an active layer, and a p-type semiconductor layer are epitaxially grown on a light-transmitting substrate in this order, and each of the n-type and p-type semiconductors. It is configured by forming an n-side electrode and a p-side electrode that are electrically connected to the layer.
  • light generated in the active layer is emitted to the outside of the semiconductor layer from the externally exposed surface (upper surface, side surface) of the semiconductor layer, the exposed surface (back surface, side surface) of the substrate, and the like.
  • Patent Documents 1 and 2 disclose that the semiconductor layer growth surface of the substrate is etched to form a concavo-convex pattern, thereby improving the light extraction efficiency of the light-emitting element. Further, Patent Document 2 discloses that by providing such a concavo-convex pattern on the growth surface of the semiconductor layer of the substrate, the dislocation density of the semiconductor layer is reduced and deterioration of the characteristics of the light emitting element can be suppressed.
  • JP 2010-206230 A Japanese Patent Laid-Open No. 2001-210598
  • an object of the present invention is to provide a substrate for epitaxial growth capable of more efficiently producing a light emitting device such as a semiconductor light emitting device and improving the light emission efficiency of the light emitting device, and a light emitting device using the substrate. It is to provide.
  • an epitaxial growth substrate in which a concavo-convex pattern having a large number of convex portions and concave portions is formed on a base material, i) Each of the convex portions has an elongated shape extending in a wavy manner in plan view, ii) In the concavo-convex pattern, there is provided an epitaxial growth substrate characterized in that the plurality of convex portions have non-uniform extending directions, bending directions and lengths.
  • the average pitch of the irregularities can be in the range of 100 nm to 10 ⁇ m.
  • the cross-sectional shape orthogonal to the extending direction of the convex portion may become narrower from the bottom toward the top. Further, some of the plurality of convex portions may have a branched shape.
  • the standard deviation of the unevenness depth of the unevenness pattern may be in the range of 10 nm to 5 ⁇ m.
  • the extending direction of the protrusions is irregularly distributed in plan view
  • the contour line in plan view of the convex portion included in the region per unit area of the uneven pattern may include more straight sections than curved sections.
  • the width of the convex portion in a direction substantially orthogonal to the extending direction of the convex portion in a plan view may be constant.
  • the curved section forms a plurality of sections by dividing a contour line in plan view of the convex portion by a length that is ⁇ (circumferential ratio) times an average value of the width of the convex portion.
  • the ratio of the linear distance between the two end points to the length of the contour line between the two end points of the section is 0.75 or less
  • the straight section may be a section that is not the curved section among the plurality of sections.
  • the curved section forms a plurality of sections by dividing a contour line in plan view of the convex portion by a length that is ⁇ (circumferential ratio) times an average value of the width of the convex portion.
  • circumferential ratio
  • one of the two angles formed by the line segment connecting one end of the section and the midpoint of the section and the line segment connecting the other end of the section and the midpoint of the section is 180 ° or less. It is a section where the angle is 120 ° or less,
  • the straight section is a section that is not the curved section among the plurality of sections,
  • the ratio of the curve section among the plurality of sections may be 70% or more.
  • the extending direction of the protrusions is irregularly distributed in plan view,
  • the width of the convex portion in a direction substantially orthogonal to the extending direction of the convex portion in a plan view may be constant.
  • a Fourier transform image obtained by subjecting the unevenness analysis image obtained by analyzing the unevenness pattern with a scanning probe microscope to a two-dimensional fast Fourier transform process has an absolute value of the wave number of 0 ⁇ m ⁇ 1 .
  • a circular or annular pattern having a substantially origin at a certain origin is shown, and the circular or annular pattern exists in a region where the absolute value of the wave number is in the range of 10 ⁇ m ⁇ 1 or less. It may be.
  • the substrate for epitaxial growth may have a buffer layer on the surface of the base material on which the uneven pattern is formed.
  • the said convex part may be formed from the material different from the material which comprises the said base material, and the said convex part may be formed from the sol-gel material in this case.
  • the said recessed part may be formed from the same material as the material which comprises the said base material.
  • the substrate may be a sapphire substrate.
  • a light emitting device comprising a semiconductor layer including at least a first conductivity type layer, an active layer, and a second conductivity type layer on the epitaxial growth substrate.
  • the concavo-convex pattern of the substrate for epitaxial growth of the present invention has a cross-sectional shape composed of a relatively gentle inclined surface and has a convex portion extending continuously in a ridge shape. Therefore, the concavo-convex pattern is formed by an imprint method using a mold. When forming a pattern, the mold is less likely to be clogged, and efficient production is possible. Further, when a layer is epitaxially grown on the epitaxial growth substrate, the uneven surface has a relatively gentle slope, so that the epitaxial growth layer can be uniformly stacked on the uneven pattern, and an epitaxial layer with few defects can be formed.
  • the epitaxial growth substrate of the present invention has a function as a diffraction grating substrate for improving light extraction efficiency, a light emitting device manufactured using this substrate has high light emission efficiency. Therefore, the epitaxial growth substrate of the present invention is extremely effective for the production of a light emitting device having excellent luminous efficiency.
  • FIGS. 3A to 3D are schematic cross-sectional views of an epitaxial growth substrate according to an embodiment including a buffer layer.
  • 4 (a) to 4 (d) are diagrams conceptually showing each step of the method for manufacturing the substrate for epitaxial growth by the base material etching method. It is a flowchart of the manufacturing method of the board
  • 6 (a) to 6 (e) are diagrams conceptually showing each step of the method for manufacturing the epitaxial growth substrate by the recess etching method. It is a conceptual diagram which shows an example of the mode of a press process and a peeling process in the manufacturing method of the board
  • transfer method. 9 (a) to 9 (e) are diagrams conceptually showing each step of the method for manufacturing an epitaxial growth substrate by the peeling transfer method.
  • FIGS. 11A to 11E are diagrams conceptually showing each process of the method for manufacturing the substrate for epitaxial growth by the microcontact method. It is a schematic sectional drawing of the optical element of embodiment.
  • FIG. 13 is an example of a planar view analysis image (monochrome image) of a substrate such as epitaxial growth according to the embodiment.
  • FIG. 14A and FIG. 14B are diagrams for explaining an example of a method for determining a branch of a convex portion in a planar view analysis image.
  • FIG. 15A is a diagram used for explaining the first definition method of the curve section
  • FIG. 15B is a diagram used for explaining the second definition method of the curve section.
  • FIG. 16 shows an AFM image of the surface of the thin film subjected to solvent annealing in Example 1.
  • FIG. 1A A schematic cross-sectional view of the epitaxial growth substrate 100 of the embodiment is shown in FIG.
  • the substrate 100 for epitaxial growth according to the embodiment has a concavo-convex pattern 80 having a large number of convex portions 60 and concave portions 70 formed on the surface of a base material 40.
  • FIG. 2A shows an example of an AFM image of the epitaxial growth substrate of the present embodiment
  • FIG. 2B shows a cross-sectional profile of the epitaxial growth substrate along the cutting line in the AFM image of FIG.
  • substrates having various translucency can be used.
  • glass sapphire single crystal (Al 2 O 3 ; A plane, C plane, M plane, R plane), spinel single crystal (MgAl 2 O 4 ), ZnO single crystal, LiAlO 2 single crystal, LiGaO 2 single crystal
  • a substrate made of a material such as oxide single crystal such as MgO single crystal, Si single crystal, SiC single crystal, SiN single crystal, GaAs single crystal, AlN single crystal, GaN single crystal and boride single crystal such as ZrB 2 is used. be able to.
  • sapphire single crystal substrates and SiC single crystal substrates are preferred.
  • the surface orientation of a base material is not specifically limited.
  • the base material may be a just substrate having an off angle of 0 degrees or a substrate having an off angle.
  • the cross-sectional shape of the uneven pattern 80 of the substrate for epitaxial growth 100 is a relatively gentle inclined surface, and has a waveform (in this application, upward) from the substrate 40. (Referred to as a “wave structure” as appropriate). That is, the convex part 60 has a cross-sectional shape that becomes narrower from the bottom part on the base material side toward the top part.
  • the convex portion (white portion) extends in a ridge shape, and the extending direction and the direction of the undulation.
  • the extension length is irregular in plan view.
  • each convex part has an elongated shape extending while undulating, and ii) the convex part has a feature that the extending direction, the bending direction, and the length are uneven in the concavo-convex pattern. Therefore, the uneven pattern 80 is clearly different from a regularly oriented pattern such as a stripe, a wavy stripe, or a zigzag pattern or a dot-like pattern.
  • the concavo-convex pattern 80 does not include such a regularly oriented pattern, and in this respect can be distinguished from a circuit pattern including many regularities and straight lines.
  • the concave / convex pattern 80 is cut in any direction orthogonal to the surface of the substrate 40, the concave / convex cross section appears repeatedly. Further, the convex portion may be partially or entirely branched in the plan view (see FIG. 2A). In FIG. 2A, the pitch of the convex portions appears to be uniform as a whole. Further, the concave portion 70 of the concavo-convex pattern 80 is partitioned by the convex portion 60 and extends along the convex portion 60, and similarly to the convex portion 60, the extending direction, the direction of waviness and the extending length are in plan view. It is irregular.
  • the frequency distribution is such that the pitch of the unevenness becomes an annular shape in the Fourier transform image.
  • an irregular pattern that has no directivity in the direction of the projections and depressions is preferable.
  • the average pitch of the irregularities is preferably in the range of 100 nm to 10 ⁇ m, and more preferably in the range of 100 to 1500 nm. .
  • the average pitch of the unevenness is less than the lower limit, the pitch is too small with respect to the emission wavelength of the light-emitting element, so there is a tendency that light diffraction due to the unevenness does not occur, while if the upper limit is exceeded, the diffraction angle decreases, The function as a diffraction grating tends to be lost.
  • the average pitch of the irregularities is more preferably in the range of 200 to 1200 nm.
  • the average value of the uneven depth distribution is preferably in the range of 20 nm to 10 ⁇ m.
  • the average value of the depth distribution of the irregularities is more preferably in the range of 50 nm to 5 ⁇ m, and it is necessary because the average value of the depth distribution of the irregularities is less than the lower limit, the depth is too small with respect to the emission wavelength.
  • the upper limit is exceeded, the thickness of the semiconductor layer required for planarization of the surface of the semiconductor layer becomes large when a semiconductor layer is laminated on the substrate to produce a light emitting device. Therefore, the time required for manufacturing the light emitting element becomes longer.
  • the average value of the uneven depth distribution is more preferably in the range of 100 nm to 2 ⁇ m.
  • the standard deviation of the unevenness depth is preferably in the range of 10 nm to 5 ⁇ m. If the standard deviation of the depth of the unevenness is less than the lower limit, the required diffraction tends not to occur because the depth is too small with respect to the wavelength of visible light. On the other hand, if the upper limit is exceeded, the diffracted light intensity is uneven. Tend to occur.
  • the standard deviation of the unevenness depth is more preferably in the range of 25 nm to 2.5 ⁇ m.
  • the average pitch of the unevenness means the average value of the unevenness pitch when the unevenness pitch on the surface where the unevenness is formed (adjacent protrusions or adjacent recesses).
  • the average value of the pitch of such irregularities is as follows using a scanning probe microscope (for example, product name “E-sweep” manufactured by Hitachi High-Tech Science Co., Ltd.): Measuring method: Cantilever intermittent contact method
  • Cantilever material Silicon Cantilever lever width: 40 ⁇ m
  • Cantilever tip tip diameter 10 nm
  • the average value of the uneven depth distribution and the standard deviation of the uneven depth can be calculated as follows.
  • the shape of the surface unevenness is measured by using an inspection probe microscope (for example, product name “E-sweep” manufactured by Hitachi High-Tech Science Co., Ltd.) to measure the unevenness analysis image.
  • an arbitrary 3 ⁇ m square (3 ⁇ m long, 3 ⁇ m wide) or 10 ⁇ m square (10 ⁇ m long, 10 ⁇ m wide) measurement is performed under the above-described conditions to obtain the uneven analysis image.
  • region are each calculated
  • the number of such measurement points varies depending on the type and setting of the measurement device used.
  • the product name “E-sweep” manufactured by Hitachi High-Tech Science Co., Ltd. is used as the measurement device.
  • 65536 points 256 vertical points ⁇ 256 horizontal points
  • the unevenness analysis image may be subjected to flat processing including primary inclination correction.
  • the measurement region has a length of 15 times or more of the average value of the widths of the convex portions included in the measurement region. It is preferable to use a square region with a length of. And about the uneven
  • a surface including such a measurement point P and parallel to the bottom surface of the base material is defined as a reference surface (horizontal plane), and each depth value from the reference surface (a height value from the base material bottom surface at the measurement point P is measured).
  • the difference obtained by subtracting the height from the bottom surface of the substrate at the measurement point) is obtained as the data of the unevenness depth.
  • Such unevenness depth data can be obtained by automatically calculating with software or the like in the measuring device depending on the measuring device (for example, product name “E-sweep” manufactured by Hitachi High-Tech Science Co., Ltd.) A value obtained by such automatic calculation can be used as the data of the unevenness depth.
  • the values that can be calculated by obtaining the arithmetic mean and standard deviation thereof are the average value of the unevenness depth distribution and the standard deviation of the unevenness depth, respectively. adopt.
  • the average pitch of the unevenness and the average value of the depth distribution of the unevenness can be obtained through the measurement method as described above regardless of the material of the surface on which the unevenness is formed.
  • an “irregular uneven pattern” means that a Fourier transform image obtained by performing a two-dimensional fast Fourier transform process on an unevenness analysis image obtained by analyzing the surface unevenness shape has an absolute value of wave number. It includes a quasi-periodic structure that shows a circular or annular pattern having an origin substantially at the center of 0 ⁇ m ⁇ 1 , that is, has a concavo-convex pitch distribution although it has no directivity in the direction of the concavo-convex.
  • the circular or annular pattern may have an absolute value of wave number of 10 ⁇ m ⁇ 1 or less (may be in the range of 0.1 to 10 ⁇ m ⁇ 1 , and may further be in the range of 0.667 to 10 ⁇ m ⁇ 1 , preferably May be within a range of 0.833 to 5 ⁇ m ⁇ 1 ).
  • the light scattered and / or diffracted from such a concavo-convex pattern has a relatively broad wavelength band, not light of a single or narrow band wavelength, and the scattered light and / or diffracted light is directed. There is no sex and heads in all directions. Therefore, a substrate having such a quasi-periodic structure is suitable for a substrate used for a light emitting element such as an LED as long as the uneven pitch distribution diffracts visible light.
  • “Fourier transform image shows a circular pattern” means that the pattern of bright spots in the Fourier transform image looks almost circular, and part of the outer shape is convex or Includes those that appear to be concave.
  • the Fourier transform image shows an annular pattern means that the pattern in which the bright spots are gathered in the Fourier transform image looks almost an annular shape, and the shape of the outer circle or inner circle of the ring is This includes those that appear to have a substantially circular shape, and those that appear to have a convex or concave part of the outer circle of the annulus and the inner circle.
  • a circular or annular pattern may have an absolute value of a wave number of 10 ⁇ m ⁇ 1 or less (within a range of 0.1 to 10 ⁇ m ⁇ 1 , and further within a range of 0.667 to 10 ⁇ m ⁇ 1.
  • Preferably within a range of 0.833 to 5 ⁇ m ⁇ 1 ) means that 30% or more of the bright spots constituting the Fourier transform image have a wave number of 30% or more.
  • Absolute value of 10 ⁇ m ⁇ 1 or less may be in the range of 0.1 to 10 ⁇ m ⁇ 1 , more preferably in the range of 0.667 to 10 ⁇ m ⁇ 1 , preferably in the range of 0.833 to 5 ⁇ m ⁇ 1 .
  • the epitaxial growth substrate of the embodiment is used as a substrate of a light emitting device, the wavelength dependency and directivity of light emitted from the light emitting device (light emission in a certain direction strongly) Property) can be made sufficiently small.
  • the concavo-convex pattern itself has no distribution or directivity in the pitch, the Fourier transform image also appears as a random pattern (no pattern), but the concavo-convex pattern is isotropic in the XY direction as a whole, but the distribution in the pitch is In some cases, a circular or annular Fourier transform image appears. Further, when the concavo-convex pattern has a single pitch, the ring appearing in the Fourier transform image tends to be sharp.
  • the two-dimensional fast Fourier transform processing of the unevenness analysis image can be easily performed by electronic image processing using a computer equipped with two-dimensional fast Fourier transform processing software.
  • FIG. 13 is a diagram showing an example of a planar view analysis image of the measurement region in the epitaxial growth substrate 100 according to the present embodiment.
  • the width of the convex portion (white display portion) of the planar view analysis image is referred to as “the width of the convex portion”.
  • the width of the convex portion For the average value of the widths of such convex portions, arbitrary 100 or more locations are selected from the convex portions of the planar view analysis image, and the respective directions are substantially perpendicular to the extending direction of the convex portions in plan view. It can be calculated by measuring the length from the boundary of the convex part to the boundary on the opposite side and obtaining the arithmetic average thereof.
  • the value at the position randomly extracted from the convex portion of the planar analysis image is used, but the position where the convex portion is branched.
  • the value of may not be used. Whether or not a certain region is a region related to branching in the convex portion may be determined, for example, based on whether or not the region extends more than a certain amount. More specifically, the determination may be made based on whether or not the ratio of the extension length of the region to the width of the region is a certain value (for example, 1.5) or more.
  • an example of a method for determining whether or not a region protruding in a direction substantially orthogonal to the extending axis of the convex portion at a midway position of the convex portion extending in a certain direction is a branching or not.
  • the extending axis of the convex portion is a virtual axis along the extending direction of the convex portion determined from the shape of the outer edge of the convex portion when the region to be determined whether to branch is excluded from the convex portion. It is.
  • the extending axis of the convex portion is a line drawn so as to pass through the approximate center point of the width of the convex portion orthogonal to the extending direction of the convex portion.
  • FIG. 14A and FIG. 14B are schematic diagrams for explaining only a part of the convex portion in the planar view analysis image, and the region S indicates the convex portion. In FIG. 14A and FIG. 14B, it is assumed that the regions A1 and A2 projecting at the midway position of the convex portion are determined as the determination target regions as to whether or not to branch.
  • the extending axes L1 and L2 are defined as lines passing through the approximate center point of the width of the convex portion orthogonal to the extending direction of the convex portion.
  • Such an extended axis may be defined by image processing by a computer, may be defined by an operator who performs analysis work, or is defined by both image processing by a computer and manual operation by an operator. May be.
  • the region A1 protrudes in a direction perpendicular to the extending axis L1 at a midway position of the convex portion extending along the extending axis L1.
  • FIG. 14A the region A1 protrudes in a direction perpendicular to the extending axis L1 at a midway position of the convex portion extending along the extending axis L1.
  • the region A2 protrudes in a direction perpendicular to the extending axis L2 at a midway position of the convex portion extending along the extending axis L2. It should be noted that the region that inclines and protrudes with respect to the direction orthogonal to the extending axes L1 and L2 may be determined by using the same idea as that for the regions A1 and A2 described below. .
  • the region A1 is not a branching region. Determined.
  • the length d3 in the direction passing through the region A1 and orthogonal to the extending axis L1 is one of the measurement values for calculating the average value of the widths of the protrusions.
  • the ratio of the extension length d5 of the region A2 to the width d4 of the region A2 is approximately 2 (1.5 or more)
  • the region A2 is determined to be a branching region.
  • the length d6 in the direction passing through the region A2 and orthogonal to the extending axis L2 is not one of the measurement values for calculating the average value of the widths of the protrusions.
  • the width of the protrusions in a direction substantially orthogonal to the extending direction of the protrusions of the uneven pattern 80 in a plan view may be constant. Whether or not the width of the convex portion is constant can be determined based on the width of the convex portion of 100 points or more obtained by the above measurement. Specifically, an average value of the widths of the protrusions and a standard deviation of the widths of the protrusions are calculated from the widths of the protrusions of 100 points or more.
  • the value calculated by dividing the standard deviation of the width of the convex portion by the average value of the width of the convex portion is the variation coefficient of the width of the convex portion. It is defined as The variation coefficient becomes smaller as the width of the convex portion is constant (the variation in the width is smaller). Therefore, whether or not the width of the convex portion is constant can be determined depending on whether or not the variation coefficient is equal to or less than a predetermined value. For example, it can be defined that the width of the convex portion is constant when the variation coefficient is 0.25 or less.
  • the extending directions of the convex portions (white portions) included in the concave-convex pattern are irregularly distributed in plan view. That is, the convex portion has a shape extending in an irregular direction, not a regular stripe shape or a regularly arranged dot shape.
  • the contour line in the plan view of the convex portion included in the region per unit area includes more straight sections than curved sections.
  • “including more straight sections than curved sections” means that the concave / convex pattern does not occupy a lot of sections that are winding in all sections on the contour of the convex portion. Whether or not the outline of the convex portion in plan view includes more straight sections than curved sections can be determined, for example, by using one of the following two methods of defining a curved section. .
  • the curved section is divided into a plurality of sections by dividing the outline of the convex portion in plan view by a length that is ⁇ (circumferential ratio) times the average value of the width of the convex portion.
  • circumferential ratio
  • the straight section is defined as a section other than the curved section among the plurality of sections, that is, a section where the ratio is greater than 0.75.
  • FIG. 15A is a diagram showing a part of the plane-view analysis image of the concavo-convex pattern, and the concave portions are shown in white for convenience.
  • Region S1 represents a convex portion
  • region S2 represents a concave portion.
  • One convex portion is selected from the plurality of convex portions in the measurement region.
  • An arbitrary position on the contour X of the convex portion is determined as a start point.
  • the point A is set as the start point.
  • Reference points are provided at predetermined intervals on the contour line X of the convex portion from the start point.
  • the predetermined interval is a length that is ⁇ (circumferential ratio) / 2 times the average value of the widths of the convex portions.
  • point B, point C, and point D are sequentially set as an example.
  • Procedure 1-2 When the points A to D, which are reference points, are set on the contour line X of the convex portion, a determination target section is set.
  • the start point and the end point are reference points, and a section including a reference point serving as an intermediate point is set as a determination target.
  • the point C set second from the point A is the end point of the section. Since the distance from the point A is set to a length that is ⁇ / 2 times the average value of the width of the convex portion here, the point C is ⁇ of the average value of the width of the convex portion along the contour line X. It is a point away from the point A by a double length.
  • the point B is selected as the start point of the section
  • the point D set second from the point B is the end point of the section.
  • the target section is set in the set order, and point A is the point set first. That is, first, the section between section A and point C (section AC) is set as a section to be processed.
  • the length La of the outline X of the convex part which connects the point A and the point C shown by Fig.15 (a) is measured.
  • Procedure 1-3 A ratio (Lb / La) of the linear distance Lb to the length La is calculated using the length La and the linear distance Lb measured in the procedure 1-2.
  • the ratio is 0.75 or less, it is determined that the point B that is the midpoint of the section AC of the contour line X of the convex portion is a point existing in the curve section.
  • the ratio is larger than 0.75, it is determined that the point B is a point existing in the straight section.
  • the ratio (Lb / La) is 0.75 or less, the point B is determined to be a point existing in the curve section.
  • Procedure 1-4 When each point set in the procedure 1-1 is selected as the start point, the procedure 1-2 and the procedure 1-3 are executed.
  • Step 1-5 Steps 1-1 to 1-4 are executed for all the convex portions in the measurement region.
  • Step 1-6 The contour of the convex portion in plan view when the proportion of the points determined to be in the straight line segment among all the points set for all the convex portions in the measurement region is 50% or more of the whole. It is determined that the line includes more straight sections than curved sections. On the other hand, when the proportion of the points determined to be in the straight line segment among all the points set for all the convex portions in the measurement region is less than 50% of the whole, the plan view of the convex portions It is determined that the upper contour line includes more curved sections than straight sections.
  • steps 1-1 to 1-6 may be performed by a measurement function provided in the measurement apparatus, may be performed by executing analysis software or the like different from the measurement apparatus, or may be performed manually. You may go on.
  • step 1-1 ends when it is no longer possible to set points by going around the convex portion or protruding from the measurement area. do it. Further, since the ratio (Lb / La) cannot be calculated for the section outside the first set point and the last set point, it may be excluded from the above determination. Moreover, what is necessary is just to exclude the convex part in which the length of an outline is less than (pi) times the average value of the width
  • the curved section is divided into a plurality of sections by dividing an outline of the convex portion in plan view by a length that is ⁇ (circumferential ratio) times the average value of the width of the convex portion.
  • the smaller angle (the one that is 180 ° or less) is defined as a section in which the angle is 120 ° or less.
  • the straight section is defined as a section other than the curved section among the plurality of sections, that is, a section in which the angle is larger than 120 °.
  • FIG. 15B is a diagram showing a part of the planar analysis image of the same concavo-convex pattern as FIG.
  • Procedure 2-1 One convex portion is selected from the plurality of convex portions in the measurement region.
  • An arbitrary position on the contour X of the convex portion is determined as a start point.
  • the point A is set as a start point as an example.
  • Reference points are provided at predetermined intervals on the contour line X of the convex portion from the start point.
  • the predetermined interval is a length that is ⁇ (circumferential ratio) / 2 times the average value of the widths of the convex portions.
  • point B, point C, and point D are sequentially set.
  • Procedure 2-2 When the points A to D, which are reference points, are set on the contour line X of the convex portion, a determination target section is set.
  • the start point and the end point are reference points, and a section including a reference point serving as an intermediate point is set as a determination target.
  • the point C set second from the point A is the end point of the section. Since the distance from the point A is set to a length that is ⁇ / 2 times the average value of the width of the convex portion here, the point C is ⁇ of the average value of the width of the convex portion along the contour line X. It is a point away from the point A by a double length.
  • the point B is selected as the start point of the section
  • the point D set second from the point B is the end point of the section.
  • the target section is set in the set order, and point A is the point set first. That is, first, the section of point A and point C is set as a process target section. Then, the smaller angle ⁇ (the one that is 180 ° or less) of the two angles formed by the line segment AB and the line segment CB is measured.
  • Procedure 2-3 When the angle ⁇ is 120 ° or less, it is determined that the point B is a point existing in the curve section. On the other hand, when the angle ⁇ is larger than 120 °, it is determined that the point B is a point existing in the straight line section. In the example shown in FIG. 15B, since the angle ⁇ is 120 ° or less, the point B is determined as a point existing in the curve section.
  • Step 2-4 When each point set in the procedure 2-1 is selected as the start point, the procedure 2-2 and the procedure 2-3 are executed.
  • Step 2-5 Steps 2-1 to 2-4 are executed for all convex portions in the measurement region.
  • Step 2-6 The contour of the convex portion in plan view when the proportion of the points determined to be in the straight line segment among all the points set for all the convex portions in the measurement region is 70% or more of the whole. It is determined that the line includes more straight sections than curved sections. On the other hand, when the ratio of the points determined to be in the straight section among all the points set for all the convex portions in the measurement region is less than 70% of the whole, the plan view of the convex portions It is determined that the upper contour line includes more curved sections than straight sections.
  • steps 2-1 to 2-6 may be performed by a measurement function provided in the measurement device, or may be performed by executing analysis software or the like different from the measurement device. It may be done manually.
  • step 2-1 above ends when it is no longer possible to set points by going around the convex part or protruding from the measurement area. do it. Further, since the angle ⁇ cannot be calculated for the section outside the first set point and the last set point, it may be excluded from the above determination. Moreover, what is necessary is just to exclude the convex part in which the length of an outline is less than (pi) times the average value of the width
  • the contour line X in the plan view of the convex portion includes more straight sections than the curve section in the measurement region. It can be determined whether or not.
  • the determination of “whether the contour line in the plan view of the convex portion included in the region per unit area includes more straight sections than curved sections” is epitaxial growth. The determination may be made based on one measurement region that is randomly extracted from the region of the concave / convex pattern 80 of the substrate 100 for measurement, or a plurality of different measurements in the concave / convex pattern 80 of the same substrate 100 for epitaxial growth.
  • the determination may be performed by comprehensively determining the determination result for the region.
  • the determination result of the larger one among the determination results for a plurality of different measurement regions is expressed as “the contour line in the plan view of the convex portion included in the region per unit area has more straight sections than the curved sections. You may employ
  • the unevenness depth on the surface where the unevenness pattern is formed is the unevenness depth.
  • the area below the average value of the distribution is referred to as the convex part 60 of the concave / convex pattern, and the area where the concave / convex depth on the surface on which the concave / convex pattern is formed exceeds the average value of the concave / convex depth distribution is referred to as the concave part 70 of the concave / convex pattern.
  • the concave / convex pattern 80 is formed by making the surface of the base material 40 have a concave / convex shape, but the epitaxial growth substrate of the embodiment shown in FIG.
  • a concavo-convex pattern 80a is formed which includes a convex portion 60a formed so as to protrude from the surface of the base material 40 and a region (concave portion 70a) where the surface of the base material defined by the convex portion 60a is exposed.
  • the convex portion 60a formed so as to protrude from the surface of the base material 40 and the recessed region (base material 40) of the surface of the base material 40 may be used.
  • the concave portion 70b) may form the concave / convex pattern 80b in the portion of the substrate surface where the thickness is small.
  • the protrusions 60a are preferably formed of an inorganic material from the viewpoint of heat resistance.
  • the substrate for epitaxial growth according to the embodiment may include the buffer layer 20 on the surface of the concavo-convex patterns 80, 80a, 80b, as in the substrates 100c, 100d, 100e shown in FIGS. Further, as in the substrate 100f shown in FIG. 3D, the buffer layer 20 is formed on the base material 40, and the protrusions 60a are formed so as to protrude from the surface of the buffer layer 20, and between the protrusions 60a. An area where the buffer layer 20 is exposed (concave part 70f) may be partitioned to form an uneven pattern 80f.
  • the buffer layer 20 can be composed of Al X Ga 1-X N (0 ⁇ x ⁇ 1), Not only a single layer structure but also a multilayer structure of two or more layers in which two or more kinds having different compositions are laminated may be used.
  • the thickness of the buffer layer is preferably in the range of 1 nm to 100 nm.
  • the concavo-convex pattern 80 of the epitaxial growth substrate 100 of the present embodiment has a cross-sectional shape having a relatively gentle inclined surface, and has a convex portion extending continuously in a ridge shape, and therefore an imprint method using a mold. Therefore, when forming the concave / convex pattern 80, mold clogging hardly occurs and efficient production is possible.
  • the concave / convex pattern 80 of the epitaxial growth substrate 100 according to the present embodiment has a cross-sectional shape including a relatively gentle inclined surface
  • the epitaxial growth substrate 100 according to the present embodiment includes the buffer layer 20 on the concave / convex pattern 80.
  • the buffer layer 20 is uniformly formed without defects.
  • the concavo-convex inclined surface is relatively gentle, the epitaxial growth layer is uniformly laminated on the concavo-convex pattern 80, and an epitaxial layer with few defects can be formed. Furthermore, since the concavo-convex pattern has an irregular shape with no directivity in the direction of the concavo-convex, even if a defect due to the pattern occurs, a homogeneous epitaxial growth layer having no anisotropy in the defect can be formed.
  • a light emitting device is manufactured by epitaxially growing a semiconductor layer on the epitaxial growth substrate 100, there are the following advantages.
  • the substrate for epitaxial growth of this embodiment has high light extraction efficiency, a light-emitting device manufactured using this substrate has high light emission efficiency.
  • the light diffracted by the epitaxial growth substrate of this embodiment has no directivity, the light extracted from the light emitting element manufactured using this substrate goes in all directions without directivity.
  • the manufacturing time of the light emitting device can be shortened for the following reason.
  • the substrate for epitaxial growth of this embodiment has sufficient light extraction efficiency with an uneven depth of the order of several tens of nanometers, it has an uneven depth of the conventional submicron to micrometer order as described in Patent Document 1.
  • the layer thickness on which semiconductor layers are stacked can be reduced. Therefore, the growth time of the semiconductor layer can be shortened, and the manufacturing time of the light emitting element can be shortened.
  • the epitaxial growth substrate of the embodiment can be manufactured by, for example, a substrate etching method, a concave etching method, a microcontact method, a peeling transfer method, or the like, using a mold for transferring an uneven pattern described below.
  • the mold for transferring the concavo-convex pattern and the manufacturing method thereof will be described first, and then the substrate etching method, the concave etching method, the microcontact method, and the peeling transfer method will be described.
  • the mold for transferring concavo-convex pattern used for manufacturing the substrate for epitaxial growth examples include a metal mold or a film-like resin mold manufactured by the method described later.
  • the resin constituting the resin mold includes rubber such as natural rubber or synthetic rubber.
  • the mold has a concavo-convex pattern on the surface, and the cross-sectional shape of the concavo-convex pattern of the mold consists of a relatively gentle inclined surface, and has a corrugated structure.
  • the planar shape of the concave / convex pattern of the mold has convex portions extending in a ridge shape, and a branch may exist in the middle.
  • a matrix pattern for forming the concave / convex pattern of the mold is prepared.
  • the irregular pattern of the matrix is formed by a method using self-organization (microphase separation) by heating of a block copolymer described in WO 2012/096368 by the applicants (hereinafter referred to as “BCP (Block Copolymer)”.
  • Thermal annealing method a method using self-assembly of a block copolymer described in WO2013 / 161454 in a solvent atmosphere (hereinafter referred to as “BCP solvent annealing method” as appropriate), or WO2011 / It is preferable to use the method disclosed in 007878A1 for heating and cooling the deposited film on the polymer film to form irregularities due to wrinkles on the polymer surface (hereinafter referred to as “BKL (Buckling) method” as appropriate). is there.
  • any material can be used as a material for forming the pattern, but a styrenic polymer such as polystyrene, a polyalkyl methacrylate such as polymethyl methacrylate, and the like.
  • a block copolymer consisting of two combinations selected from the group consisting of polyethylene oxide, polybutadiene, polyisoprene, polyvinyl pyridine, and polylactic acid is preferred.
  • the pattern formed by self-assembly of these materials is described in a horizontal cylinder structure (structure in which the cylinder is horizontally oriented with respect to the base material) as described in WO2013 / 161454, or in Macromolecules 2014, 47, 2.
  • a vertical lamella structure a structure in which the lamella is oriented perpendicular to the base material
  • the vertical lamella structure is more preferable.
  • etching by irradiating energy rays typified by ultraviolet rays such as excimer UV light, and dry etching such as RIE (reactive ion etching) and ICP etching on the uneven pattern obtained by the solvent annealing treatment Etching by a method may be performed. Moreover, you may heat-process with respect to the uneven
  • a concavo-convex pattern having a larger concavo-convex depth based on a concavo-convex pattern formed by a BCP thermal annealing method or a BCP solvent annealing method by a method as described in 2012, 24, 5688-5694 or Science 322, 429 (2008) Can be formed. That is, a block copolymer is applied on a base layer made of SiO 2 , Si or the like, and a self-organized structure of the block copolymer is formed by a BCP thermal annealing method or a BCP solvent annealing method. Next, one segment of the block copolymer is selectively etched away.
  • the underlying layer is etched using the remaining segment as a mask to form a desired depth groove (concave) in the underlying layer.
  • the average value of the concavo-convex depth distribution of the concavo-convex pattern is in the range of 20 nm to 10 ⁇ m. It is preferable that it is within a range of 50 nm to 5 ⁇ m. If the average value of the depth distribution of the irregularities is less than the lower limit, the depth is too small with respect to the emission wavelength, so that necessary diffraction tends not to occur.
  • the thickness of the semiconductor layer necessary for planarizing the surface of the semiconductor layer increases, and the time required for manufacturing the light emitting element increases.
  • the average value of the uneven depth distribution is more preferably in the range of 100 nm to 2 ⁇ m.
  • the average value of the uneven depth distribution of the uneven pattern is preferably about 1 to 10 times the average pitch of the uneven pattern. . If the uneven depth is smaller than the lower limit, when the sol-gel material is transferred onto the substrate by the microcontact method, a coating film of the sol-gel material may be formed in addition to the intended portion on the substrate.
  • the depth of the unevenness of the mold is larger than the upper limit, the shape of the mold is deformed in the adhesion process of the microcontact method described later, and the pattern transferred onto the base material is destroyed, so that a desired pattern cannot be obtained. There is sex.
  • a concavo-convex pattern may be formed by a photolithography method.
  • a micromachining method such as a cutting method, an electron beam direct drawing method, a particle beam beam machining method, and an operation probe machining method, and a micromachining method using self-organization of fine particles, Can be produced.
  • a mold in which the pattern is further transferred can be formed by an electroforming method or the like as follows.
  • a seed layer that becomes a conductive layer for electroforming can be formed on a matrix having a pattern by electroless plating, sputtering, vapor deposition, or the like.
  • the seed layer is preferably 10 nm or more in order to make the current density uniform in the subsequent electroforming process and to make the thickness of the metal layer deposited by the subsequent electroforming process constant.
  • seed layer materials include nickel, copper, gold, silver, platinum, titanium, cobalt, tin, zinc, chromium, gold / cobalt alloy, gold / nickel alloy, boron / nickel alloy, solder, copper / nickel / chromium An alloy, a tin-nickel alloy, a nickel-palladium alloy, a nickel-cobalt-phosphorus alloy, or an alloy thereof can be used.
  • a metal layer is deposited on the seed layer by electroforming (electroplating).
  • the thickness of the metal layer can be, for example, 10 to 30000 ⁇ m in total including the thickness of the seed layer.
  • any of the above metal species that can be used as a seed layer can be used as a material for the metal layer deposited by electroforming.
  • the formed metal layer desirably has an appropriate hardness and thickness from the viewpoint of ease of processing such as pressing, peeling and cleaning of the resin layer for forming a subsequent mold.
  • the metal layer including the seed layer obtained as described above is peeled off from the matrix having the concavo-convex structure to obtain a metal substrate.
  • the peeling method may be physically peeled off, or the material forming the pattern may be removed by dissolving it using an organic solvent that dissolves them, for example, toluene, tetrahydrofuran (THF), chloroform or the like.
  • the remaining material components can be removed by washing.
  • a cleaning method wet cleaning using a surfactant or the like, or dry cleaning using ultraviolet rays or plasma can be used. Further, for example, remaining material components may be adhered and removed using an adhesive or an adhesive.
  • the metal substrate (metal mold) having the pattern transferred from the mother die thus obtained can be used as the mold for transferring the concavo-convex pattern of the present embodiment.
  • a flexible mold such as a film mold can be produced by transferring the concavo-convex structure (pattern) of the metal substrate to a film support substrate using the obtained metal substrate. For example, after the curable resin is applied to the support substrate, the resin layer is cured while pressing the uneven structure of the metal substrate against the resin layer.
  • a support substrate for example, a base material made of an inorganic material such as glass, quartz, silicon, etc .; silicone resin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), cycloolefin polymer (COP), polymethyl Examples thereof include base materials made of organic materials such as methacrylate (PMMA), polystyrene (PS), polyimide (PI), and polyarylate, and metal materials such as nickel, copper, and aluminum.
  • the thickness of the support substrate can be in the range of 1 to 500 ⁇ m.
  • the curable resin examples include epoxy, acrylic, methacrylic, vinyl ether, oxetane, urethane, melamine, urea, polyester, polyolefin, phenol, cross-linked liquid crystal, fluorine, and silicone. And various resins such as monomers, oligomers, polymers, and the like.
  • the thickness of the curable resin is preferably in the range of 0.5 to 500 ⁇ m. If the thickness is less than the lower limit, the height of the irregularities formed on the surface of the cured resin layer tends to be insufficient, and if the thickness exceeds the upper limit, the influence of the volume change of the resin that occurs during curing increases and the irregular shape is well formed. It may not be possible.
  • the method for applying the curable resin examples include spin coating, spray coating, dip coating, dropping, gravure printing, screen printing, letterpress printing, die coating, curtain coating, ink jet, and sputtering.
  • Various coating methods such as a method can be employed.
  • the conditions for curing the curable resin vary depending on the type of resin used.
  • the curing temperature is in the range of room temperature to 250 ° C.
  • the curing time is in the range of 0.5 minutes to 3 hours.
  • a method of curing by irradiating energy rays such as ultraviolet rays or electron beams may be used.
  • the irradiation amount is preferably in the range of 20 mJ / cm 2 to 5 J / cm 2 .
  • the metal substrate is removed from the cured resin layer after curing.
  • the method for removing the metal substrate is not limited to the mechanical peeling method, and a known method can be adopted.
  • the film-like resin mold having a cured resin layer having irregularities formed on a support substrate that can be obtained in this manner can be used as a mold for transferring an irregular pattern of this embodiment.
  • the concavo-convex pattern of the metal substrate can be obtained.
  • a transferred rubber mold can be produced.
  • the obtained rubber mold can be used as a mold for transferring an uneven pattern according to this embodiment.
  • the rubber-based resin material is particularly preferably silicone rubber, or a mixture or copolymer of silicone rubber and other materials.
  • silicone rubber examples include polyorganosiloxane, cross-linked polyorganosiloxane, polyorganosiloxane / polycarbonate copolymer, polyorganosiloxane / polyphenylene copolymer, polyorganosiloxane / polystyrene copolymer, polytrimethylsilylpropyne, poly 4-methylpentene or the like is used.
  • Silicone rubber is cheaper than other resin materials, has excellent heat resistance, high thermal conductivity, elasticity, and is not easily deformed even under high temperature conditions. Is suitable. Furthermore, since the silicone rubber-based material has high gas and water vapor permeability, the solvent and water vapor of the transfer material can be easily transmitted.
  • a silicone rubber-based material is suitable.
  • the surface free energy of the rubber material is preferably 25 mN / m or less.
  • the rubber mold can be, for example, 50 to 1000 mm long, 50 to 3000 mm wide, and 1 to 50 mm thick. If the thickness of the rubber mold is smaller than the lower limit, the strength of the rubber mold is reduced, and there is a risk of damage during handling of the rubber mold. When the thickness is larger than the above upper limit, it is difficult to peel off from the master mold when the rubber mold is manufactured. Moreover, you may perform a mold release process on the uneven
  • Base material etching method the substrate for epitaxial growth is manufactured using the normal nanoimprint method. That is, as shown in FIGS. 4A to 4D, a resist layer 120 is formed by first applying a nanoimprint resist having a curing action by heat or ultraviolet irradiation on the substrate 40 (FIG. 4A). )reference). The mold 140 having the above-described uneven pattern is pressed against the resist layer 120 to transfer the uneven pattern of the mold 140 to the resist layer 120 (see FIG. 4B).
  • the resist material remains as a residue in the concave portion of the resist layer 120, so that the surface of the substrate 40 is exposed by removing it by etching with O 2 gas or the like (FIG. 4C )reference).
  • the exposed part of the base material 40 is etched (see FIG. 4D).
  • the resist layer 120 and the base material 40 are simultaneously etched under conditions (etching gas composition) such that the ratio of the etching rate of the resist layer 120 and the base material 40 is 1: 1, thereby forming the resist layer 120.
  • the shape of the uneven pattern can be transferred to the substrate 40.
  • the base material 40 can be etched by RIE using a gas containing BCl 3 or the like, for example. In this way, it is possible to manufacture the substrate 100 such as epitaxial growth in which the concave / convex pattern 80 including the convex portions 60 and the concave portions 70 is formed.
  • the resist layer when the mold is peeled from the resist layer, the resist layer may be peeled while the resist layer is clogged in the mold (mold clogging occurs), and it is difficult to transfer the pattern at high speed.
  • the cross-sectional shape of the concave / convex pattern of the mold used in this embodiment is a relatively gentle inclined surface, and the planar shape of the concave / convex pattern of the mold is such that the convex portion extends in a ridge shape, Such mold clogging is unlikely to occur, and the frequency of mold cleaning or replacement can be reduced. Therefore, in this manufacturing method, continuous production at high speed for a long time is possible, and the manufacturing cost can be suppressed.
  • the manufacturing method of the substrate for epitaxial growth by the concave etching method mainly includes a solution preparation step S1 for preparing a sol-gel material, an application step S2 for applying the prepared sol-gel material to a base material, and a base material Drying step S3 for drying the applied sol-gel material coating film, pressing step S4 for pressing the mold on which the transfer pattern is formed on the coating film dried for a predetermined time, and temporary baking step for temporarily baking the coating film on which the mold is pressed S5, peeling process S6 which peels a mold from a coating film, etching process S7 which removes the recessed part of a coating film, and hardening process S8 which hardens a coating film.
  • a solution preparation step S1 for preparing a sol-gel material
  • an application step S2 for applying the prepared sol-gel material to a base material
  • a base material Drying step S3 for drying the applied sol-gel material coating film
  • pressing step S4 for pressing the mold on which the transfer pattern is formed
  • sol-gel material solution preparation process First, a solution of sol-gel material (inorganic material) is prepared.
  • sol-gel material silica, Ti-based material, ITO (indium-tin-oxide) -based material, sol-gel material such as ZnO, ZrO 2 , Al 2 O 3 can be used.
  • a metal alkoxide sica precursor
  • sol-gel material a sol-gel material.
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • tetra-i-propoxysilane tetra-n-propoxysilane
  • tetra-i-butoxysilane tetra-n-butoxysilane
  • tetra-n-butoxysilane tetra-n-butoxysilane
  • tetra- Tetraalkoxide monomers represented by tetraalkoxysilane such as sec-butoxysilane, tetra-t-butoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, isopropyltrimethoxysilane, phenyltrimethoxysilane, Methyltriethoxysilane (MTES), ethyltriethoxysilane, propyltriethoxysilane,
  • alkyltrialkoxysilanes or dialkyldialkoxysilanes in which the alkyl group has C4-C18 carbon atoms can also be used.
  • Monomers having a vinyl group such as vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxy
  • Monomers having an epoxy group such as silane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, monomers having a styryl group such as p-styryltrimethoxysilane, 3-methacryloxypropylmethyl
  • Monomers having a methacrylic group such as dimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryl
  • the metal alkoxides may be used.
  • some or all of the alkyl group and phenyl group of these compounds may be substituted with fluorine.
  • metal acetylacetonate, metal carboxylate, oxychloride, chloride, a mixture thereof and the like can be mentioned, but not limited thereto.
  • the metal species include, but are not limited to, Ti, Sn, Al, Zn, Zr, In, and a mixture thereof in addition to Si. What mixed suitably the precursor of the said metal oxide can also be used.
  • a mesoporous concavo-convex structure may be formed by adding a surfactant to these materials.
  • silane coupling agent having a hydrolyzable group having affinity and reactivity with silica and an organic functional group having water repellency can be used as a precursor of silica.
  • silane monomers such as n-octyltriethoxysilane, methyltriethoxysilane, and methyltrimethoxysilane
  • vinylsilanes such as vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, vinylmethyldimethoxysilane
  • Methacrylic silane such as 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycyl Epoxy silanes such as Sidoxypropyltriethoxysilane
  • the mixing ratio thereof can be set to 1: 1, for example, as a molar ratio.
  • This sol-gel material produces amorphous silica by performing hydrolysis and polycondensation reactions.
  • an acid such as hydrochloric acid or an alkali such as ammonia is added.
  • the pH is preferably 4 or less or 10 or more.
  • the amount of water to be added can be 1.5 times or more in molar ratio with respect to the metal alkoxide species.
  • Solvents for the sol-gel material solution include, for example, alcohols such as methanol, ethanol, isopropyl alcohol (IPA) and butanol, aliphatic hydrocarbons such as hexane, heptane, octane, decane and cyclohexane, benzene, toluene, xylene, mesitylene and the like Aromatic hydrocarbons, ethers such as diethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl ketone, isophorone and cyclohexanone, butoxyethyl ether, hexyloxyethyl alcohol, methoxy-2-propanol and benzyloxyethanol Ether alcohols, glycols such as ethylene glycol and propylene glycol, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, Glycol ethers such as
  • sol-gel material solution polyethylene glycol, polyethylene oxide, hydroxypropyl cellulose, polyvinyl alcohol for viscosity adjustment, alkanolamine such as triethanolamine which is a solution stabilizer, ⁇ diketone such as acetylacetone, ⁇ ketoester, Formamide, dimethylformamide, dioxane and the like can be used.
  • alkanolamine such as triethanolamine which is a solution stabilizer
  • ⁇ diketone such as acetylacetone, ⁇ ketoester
  • Formamide, dimethylformamide, dioxane and the like can be used.
  • a material that generates acid or alkali by irradiating light such as energy rays typified by ultraviolet rays such as excimer UV light can be used. By adding such a material, the sol-gel material solution can be cured by irradiation with light.
  • the solution of the sol-gel material (inorganic material) prepared as described above is applied onto the base material 40 to form a coating film 64 of the sol-gel material.
  • Any coating method such as a bar coating method, a spin coating method, a spray coating method, a dip coating method, a die coating method, and an ink jet method can be used as a sol-gel material coating method.
  • the bar coating method, the die coating method, and the spin coating method are preferable because the sol-gel material can be applied uniformly and the application can be completed quickly before the sol-gel material gels.
  • the film thickness of the coating film 64 is preferably 500 nm or more.
  • the substrate After application of the sol-gel material, the substrate may be held in the air or under reduced pressure in order to evaporate the solvent in the coating film 64. If the holding time is short, the viscosity of the coating film 64 becomes too low to transfer the uneven pattern to the coating film 64, and if the holding time is too long, the polymerization reaction of the precursor proceeds and the viscosity of the coating film 64 becomes high. Therefore, the uneven pattern cannot be transferred to the coating film 64. Further, after the application of the sol-gel material, the polymerization reaction of the precursor proceeds with the progress of the evaporation of the solvent, and the physical properties such as the viscosity of the sol-gel material change in a short time.
  • the drying time range in which the pattern transfer can be satisfactorily wide is sufficiently wide. It can be adjusted by the amount of solvent used at the time of material preparation (concentration of sol-gel material) or the like.
  • the mold 140 is superimposed on the coating film 64 and pressed to transfer the uneven pattern of the mold 140 to the coating film 64 of the sol-gel material.
  • the mold 140 the above-described concave / convex pattern transfer mold can be used, but it is desirable to use a film-like mold having flexibility or flexibility.
  • the mold 140 may be pressed against the coating film 64 of the sol-gel material using a pressing roll. In the roll process using a pressure roll, the time for contact between the mold and the coating film is short compared to the press type.
  • the film mold 140 and the substrate 40 are synchronously conveyed, and the surface of the coating film 64 on the substrate 40 is transferred to the film mold 140. Cover with.
  • the film-shaped mold 140 and the substrate 40 are brought into close contact with each other by rotating while pressing the pressing roll 122 against the back surface of the film-shaped mold 140 (the surface opposite to the surface on which the concavo-convex pattern is formed).
  • the coating film may be temporarily fired.
  • pre-baking gelation of the coating film 64 proceeds, the pattern is solidified, and the pattern is less likely to collapse when the mold 140 is peeled off.
  • pre-baking it is preferably heated in the atmosphere at a temperature of room temperature to 300 ° C. Note that the preliminary firing is not necessarily performed.
  • ultraviolet rays such as excimer UV light are used. You may irradiate an energy ray.
  • ⁇ Peeling process> After pressing the mold 140 or pre-baking the coating film 64 of the sol-gel material, as shown in FIG. 6C, the mold 140 is peeled from the coating film (concavo-convex structure) 62 in which the projections and depressions are formed.
  • a known peeling method can be adopted as a peeling method of the mold 140.
  • the mold 140 may be peeled off while heating, whereby the gas generated from the concavo-convex structure 62 can be released and bubbles can be prevented from being generated in the concavo-convex structure 62.
  • the peeling force may be smaller than that of the plate mold used in the press method, and the mold 140 can be easily peeled from the concavo-convex structure 62 without the sol-gel material remaining on the mold 140.
  • the concavo-convex structure 62 is pressed while being heated, the reaction easily proceeds, and the mold 140 is easily peeled off from the concavo-convex structure 62 immediately after pressing.
  • a peeling roll may be used to improve the peelability of the mold 140. As shown in FIG. 7, the peeling roll 123 is provided on the downstream side of the pressing roll 122, and the film-like mold 140 is rotated by supporting the film-like mold 140 against the coating film 64 by the peeling roll 123.
  • the film-shaped mold 140 It is possible to maintain the state of being attached to the surface only by the distance between the pressing roll 122 and the peeling roll 123 (a fixed time). Then, by changing the course of the film-shaped mold 140 so that the film-shaped mold 140 is pulled up above the peeling roll 123 on the downstream side of the peeling roll 123, the film-shaped mold 140 has a coating film (uneven structure). ) 62 is peeled off. In addition, you may perform temporary baking and the heating of the above-mentioned coating film 64 in the period when the film-form mold 140 is adhered to the coating film 64. FIG. In the case where the peeling roll 123 is used, the mold 140 can be peeled off more easily by peeling while heating at room temperature to 300 ° C., for example.
  • the etching process not only the recesses of the concavo-convex structure 62 but also the entire concavo-convex structure 62 including the bulges is etched, so that the recesses of the concavo-convex structure 62 are etched and the substrate surface is exposed to a predetermined size.
  • the etching is stopped when the convex portion 60 a is formed on the base material 40.
  • a region where the substrate surface is exposed (concave portion 70a) is defined between the convex portions 60a made of the sol-gel material.
  • the concavo-convex structure 62a after etching is formed of a plurality of convex portions 60a made of a sol-gel material. Note that, when etching is performed by dry etching such as RIE, the exposed base material surface is roughened (damaged), and thus may be post-treated with a phosphoric acid chemical solution or the like.
  • the concavo-convex structure 62a (convex portion 60a) made of a sol-gel material is cured.
  • the convex part 60a can be hardened by performing main firing. By this firing, the hydroxyl group and the like contained in the silica (amorphous silica) constituting the convex portion 60a is detached, and the coating film becomes stronger.
  • the main baking is preferably performed at a temperature of 600 to 1200 ° C. for about 5 minutes to 6 hours.
  • the convex portion 60a is cured, and the concavo-convex structure 62a (convex portion 60a) and the concave portion 70a formed on the substrate 40 can form the epitaxial growth substrate 100a in which the concavo-convex pattern 80a is formed.
  • the convex portion 60a is made of silica, it becomes amorphous or crystalline, or a mixed state of amorphous and crystalline depending on the firing temperature and firing time.
  • energy represented by ultraviolet rays such as excimer UV light, for example, instead of firing the convex portion 60a.
  • the convex portion 60a can be cured.
  • either the curing step or the etching step may be performed first.
  • the etching process is performed after the curing process, after the concavo-convex structure made of the sol-gel material is cured in the curing process, the concave portions of the concavo-convex structure cured in the etching process are removed by etching to expose the substrate surface. .
  • the surface of the convex portion 60a may be subjected to a hydrophobic treatment.
  • a known method may be used for the hydrophobizing treatment.
  • the surface is silica, it can be hydrophobized with dimethyldichlorosilane, trimethylalkoxysilane, or the like, or trimethylsilyl such as hexamethyldisilazane.
  • a method of hydrophobizing with an agent and silicone oil may be used, or a surface treatment method of metal oxide powder using supercritical carbon dioxide may be used.
  • the substrate surface exposed in the etching step may be etched to form a recess 70b in the substrate 40.
  • the epitaxial growth substrate 100b on which the concavo-convex pattern 80b including the concavo-convex structure 62a (convex portion 60a) and the concave portion 70b is formed can be formed.
  • the concave portion 70b is formed in the base material 40, the concave / convex depth of the concave / convex pattern can be increased as compared with the substrate 100a in which the base material 40 is not etched.
  • the base material 40 can be etched by RIE using a gas containing BCl 3 or the like, for example.
  • the cross-sectional shape of the concavo-convex pattern of the mold 140 used in the concave portion etching method is a relatively gentle inclined surface, and the planar shape of the concavo-convex pattern of the mold 140 is such that the convex portion extends in a ridge shape, Similar to the substrate etching method, the mold is hardly clogged and the frequency of cleaning or replacement of the mold can be reduced. Therefore, in this manufacturing method, continuous production at high speed for a long time is possible, and the manufacturing cost can be suppressed.
  • a method for manufacturing a substrate for epitaxial growth by a recess etching method shortens the manufacturing time of the substrate. be able to.
  • the recess etching method can apply the roll process as described above, the epitaxial growth substrate can be continuously produced at a high speed. Further, since photolithography is not used, the production cost of the epitaxial growth substrate can be reduced, and the burden on the environment can be reduced.
  • the manufacturing method of the substrate for epitaxial growth by the release transfer method is mainly a solution preparation step P1 for preparing a sol-gel material, and an application step for applying the prepared sol-gel material to a mold.
  • P1 for preparing a sol-gel material
  • P2 an adhesion process P3 for closely attaching the applied sol-gel material on the substrate
  • P4 for peeling the mold from the coating film
  • P5 for curing the coating film.
  • a solution of sol-gel material (inorganic material) is prepared.
  • the solution of the sol-gel material may be prepared by a method similar to the method described in the sol-gel material solution adjustment step in the concave etching method described above.
  • the solution of the sol-gel material (inorganic material) prepared as described above is applied onto the concave / convex pattern of the mold 140 to form a coating film 66 in the concave portion 140 a of the mold 140.
  • the application amount of the sol-gel material solution is an amount equal to the volume of the concave portion of the mold.
  • the above-described concave / convex pattern transfer mold can be used, but it is desirable to use a film-like mold having flexibility or flexibility.
  • the coating film 66 can be formed in the recess 140 a of the film mold 140 by feeding the film mold 140 near the tip of the die coater 30 and discharging the sol-gel material from the die coater 30. From the viewpoint of mass productivity, it is preferable to continuously apply the sol-gel material to the film mold 140 with the die coater 30 installed at a predetermined position while continuously conveying the film mold 140.
  • a coating method any coating method such as a bar coating method, a spray coating method, a die coating method, and an ink jet method can be used.
  • a sol-gel material can be uniformly applied to a mold having a relatively large width. In view of the fact that application can be completed quickly before the material gels, the die coating method is preferred.
  • the coating film 66 is brought into close contact with the base material 40 by pressing the mold 140 on which the coating film 66 of the sol-gel material is formed against the base material 40. Thereby, the coating film 66 adheres to the portion of the base material 40 facing the recess 140a of the mold 140. At this time, the mold 140 may be pressed against the substrate 40 using a pressing roll (contact roll).
  • a substrate whose surface has been subjected to a hydrophilic treatment by O 3 treatment or the like may be used. By subjecting the surface of the base material 40 to a hydrophilic treatment, the adhesion between the base material 40 and the coating 66 of the sol-gel material can be increased.
  • the coating film 66 formed in the concave portion 140a of the film mold 140 can be brought into close contact with the base material 40. That is, when the film mold 140 having the coating film 66 formed in the recess 140a is pressed against the base material 40 by the pressing roll 22, the surface of the base material 40 is conveyed while the film mold 140 and the base material 40 are conveyed synchronously. Cover with film mold 140.
  • corrugated pattern was formed) of the film mold 140 are pressed. As it progresses.
  • the coating film may be heated when the coating film is pressed against the substrate.
  • the coating film may be heated through a pressing roll, or the coating film may be heated directly or from the substrate side.
  • a heating means may be provided in the inside of a press roll (adhesion roll), and arbitrary heating means can be used.
  • a heater provided with a heater inside the pressing roll is suitable, but a heater separate from the pressing roll may be provided. In any case, any pressing roll may be used as long as pressing is possible while heating the coating film.
  • the pressing roll is preferably a roll having a coating of a resin material such as ethylene-propylene-diene rubber (EPDM), silicone rubber, nitrile rubber, fluororubber, acrylic rubber, chloroprene rubber, etc. having heat resistance on the surface.
  • a supporting roll may be provided so as to face the pressing roll so as to sandwich the base material, or a supporting base that supports the base material may be installed.
  • the heating temperature of the coating film during adhesion (pressing) can be from room temperature to 300 ° C.
  • the heating temperature of the pressing roll should be similarly from room temperature to 300 ° C. Can do.
  • the heating temperature of the coating film or the pressure roll exceeds 300 ° C., the heat resistance temperature of the mold made of the resin material may be exceeded.
  • the effect similar to the temporary baking of the sol-gel material layer mentioned later can be anticipated by pressing a coating film, heating.
  • the coating film After the coating film is brought into close contact with the substrate, the coating film may be calcined. In the case where the coating is pressed without heating, it is preferable to perform temporary baking. By pre-baking, gelation of the coating film proceeds, the pattern is solidified, and the pattern is less likely to collapse during mold peeling. When pre-baking is performed, it is preferably heated in the atmosphere at a temperature of room temperature to 300 ° C. In addition, when a material that generates acid or alkali by adding light such as ultraviolet rays to the sol-gel material solution is added, energy represented by ultraviolet rays such as excimer UV light is used instead of pre-baking the coating film. A line may be irradiated.
  • ⁇ Peeling process> The mold is peeled from the coating film and the substrate after the adhesion process. After the mold is peeled off, as shown in FIG. 9C, the coating film of the sol-gel material adheres to the portion corresponding to the concave portion 140a of the mold 140 on the base material 40 to form the convex portion 60a.
  • the surface of the base material 40 is exposed in a region other than a region corresponding to the concave portion 140a of the mold 140 (a region where the convex portion 60a of the base material 40 is formed). Thus, a region where the substrate surface is exposed (concave portion 70a) is defined between the convex portions 60a made of the sol-gel material.
  • a known peeling method can be adopted.
  • the mold may be peeled off while heating, thereby releasing the gas generated from the coating film and preventing bubbles from being generated in the film.
  • the peeling force may be smaller than that of a plate-shaped mold used in a press method, and the mold can be easily peeled off from the coating film without remaining in the mold.
  • the coating is pressed while being heated, the reaction easily proceeds, and the mold is easily peeled off from the coating immediately after pressing.
  • the peeling roll 23 is provided on the downstream side of the pressing roll 22, and the film-like mold 140 is rotated and supported by the peeling roll 23 while urging the film-like mold 140 and the coating film 66 against the substrate 40.
  • the state in which the coating film 66 is attached to the base material 40 can be maintained by the distance between the pressing roll 22 and the peeling roll 23 (a predetermined time). Then, by changing the course of the film-shaped mold 140 so that the film-shaped mold 140 is pulled up above the peeling roll 23 on the downstream side of the peeling roll 23, the film-shaped mold 140 has a convex portion 60a made of a coating film of a sol-gel material, and The substrate 40 is peeled off.
  • FIG. In the case where the peeling roll 23 is used, it is possible to further facilitate the peeling of the coating film by peeling while heating at room temperature to 300 ° C., for example. Furthermore, the heating temperature of the peeling roll 23 may be higher than the heating temperature of the pressing roll or the pre-baking temperature. In that case, gas generated from the coating film 66 can be released by peeling while heating to a high temperature, and generation of bubbles can be prevented. In FIG.
  • the coating film 66 that is not in close contact with the base material 40, that is, the coating film formed in a region facing the base material 40 of the film mold 140 and the base material 40 that is subsequently conveyed. About 66, it is conveyed with the film mold 140, with the recess 140a of the film mold 140 intact.
  • the convex portion 60a made of a sol-gel material is cured. Curing can be performed by a method similar to the method described in the curing step of the recess etching method.
  • the coating film is cured, and an epitaxial growth substrate 100a in which the convex portions 60a and the concave portions 70a formed on the base material 40 as shown in FIG. 9D form the concave / convex pattern 80a can be formed.
  • the exposed base material surface of the epitaxial growth substrate 100 a manufactured by the method of the above embodiment may be etched to form a recess 70 b in the base material 40.
  • the epitaxial growth substrate 100b on which the concave / convex pattern 80b including the convex portions 60a and the concave portions 70b is formed can be formed.
  • the concave portion 70b is formed in the base material 40, the concave / convex depth of the concave / convex pattern can be increased as compared with the substrate 100a in which the base material 40 is not etched.
  • the base material can be etched by, for example, RIE using a gas containing BCl 3 or the like.
  • the cross-sectional shape of the concavo-convex pattern of the mold 140 used in the peeling transfer method has a comparatively gentle inclined surface, and the planar shape of the concavo-convex pattern of the mold 140 extends in a ridge shape, Similar to the substrate etching method, the mold is hardly clogged and the frequency of cleaning or replacement of the mold can be reduced. Therefore, in this manufacturing method, continuous production at high speed for a long time is possible, and the manufacturing cost can be suppressed.
  • the method for manufacturing an epitaxial growth substrate by the peeling transfer method shortens the manufacturing time of the substrate. be able to.
  • the peeling transfer method in the adhesion process, the sol-gel material coating film is brought into close contact only with the region where the convex portion is finally formed on the base material, so that the portion other than the region where the convex portion is formed at the time after mold peeling. The surface of the substrate is exposed. Therefore, in the peeling transfer method, it is not necessary to perform etching in order to expose the substrate surface.
  • the manufacturing time is shortened as compared with the case where the unevenness is formed by directly etching the substrate surface by the depth of the unevenness of the uneven pattern to be formed.
  • the substrate surface exposed by etching may be rough (damaged), and chemical treatment may be required after etching. Since it is not necessary, such damage does not occur and there is no need for chemical treatment.
  • the peeling transfer method can apply the roll process as described above, the substrate for epitaxial growth can be continuously produced at a high speed. Further, since photolithography is not used, the production cost of the epitaxial growth substrate can be reduced, and the burden on the environment can be reduced.
  • microcontact method similar to the above-described peeling transfer method, mainly, a solution preparation process for preparing a sol-gel material, an application process for applying the prepared sol-gel material to a mold, and the applied sol-gel material are closely attached to a substrate It has an adhesion process, a peeling process for peeling the mold from the coating film, and a curing process for curing the coating film.
  • the convex portion 60a formed on the base material 40 is formed at a portion facing the concave portion 140a of the mold 140.
  • the convex portion 60a is formed on the base material 40.
  • the mold 140 is formed in a portion facing the convex portion 140b.
  • the prepared sol-gel material (inorganic material) solution is applied only to the convex portions 140 b of the mold 140 to form a coating film 68.
  • the sol-gel material is preferably applied only to the surface of the convex portion 140b of the mold 140 (the surface facing the substrate 40). However, depending on the application method, the sol-gel material wraps around the side of the convex portion 140b, that is, the concave portion 140a. It can happen.
  • the sol-gel material may adhere to the concave portion 140a of the mold as long as the convex portion 60a made of the sol-gel material reflecting the pattern of the convex portion 140b of the mold is formed on the substrate 40 after the peeling process.
  • a coating method any coating method such as a bar coating method, a spin coating method, a spray coating method, a dip coating method, a die coating method, and an ink jet method can be used, but the sol-gel material is uniformly applied to a relatively large area mold.
  • the bar coating method, the die coating method, and the spin coating method are preferable because the coating can be completed quickly before the sol-gel material is cured (gelled).
  • the sol-gel material may be applied to the convex portion 140b of the mold by forming the mold into a roll shape and immersing and rotating the roll-shaped mold in a sol-gel material filled in a shallow container.
  • the roll-shaped mold can be produced, for example, by winding a flexible mold around a hard roll such as metal.
  • the film thickness of the coating film 68 of the sol-gel material applied to the convex part 140b of the mold is preferably 1 to 3000 nm.
  • the film thickness of the coating film of the sol-gel material can be prepared by, for example, the viscosity of the sol-gel material.
  • the mold used in the microcontact method is preferably an elastically deformable mold such as the rubber mold described above.
  • the coating film of the sol-gel material is transferred only to the part corresponding to the convex part of the mold on the base material, so that the convex part is formed.
  • the average value is desirably about 1 to 10 times the pitch of the uneven pattern to be formed.
  • the unevenness depth of the mold is smaller than the lower limit, the coating film of the sol-gel material may be transferred in addition to the intended portion on the substrate.
  • the unevenness depth of the mold is larger than the upper limit, the shape of the mold is deformed in the adhesion process, and the pattern transferred onto the base material is destroyed, and a desired pattern may not be obtained.
  • the coating film 68 is brought into close contact with the base material 40 by pressing the mold 140 on which the coating film 68 of the sol-gel material is formed against the base material 40. Thereby, the coating film 68 adheres to the portion of the base material 40 facing the convex portion 140b of the mold 140.
  • the substrate 40 may be a substrate whose surface is subjected to a hydrophilic treatment by O 3 treatment or the like. By subjecting the surface of the substrate 40 to a hydrophilic treatment, the adhesive force between the substrate 40 and the sol-gel material can be further increased.
  • the coating film may be heated when the coating film of the sol-gel material is brought into contact with the substrate.
  • the chemical reaction of the sol-gel material and the evaporation of water and solvent generated thereby are promoted, and the curing (gelation) of the coating proceeds. Therefore, it can prevent that an uncured coating film spreads over the size of the convex portion of the mold and is transferred to the substrate.
  • it can prevent that an unhardened coating film remains on the convex part of a mold after a peeling process. If a coating film remains on the convex part of the mold, the film thickness of the coating film formed on the mold fluctuates or the remaining coating film hardens and particles when the mold is reused to produce a substrate for epitaxial growth.
  • the coating film may be heated through a mold, or the coating film may be heated from the substrate side or directly.
  • Arbitrary heating means can be used for heating.
  • a hot plate can be installed on the back surface side of the base material for heating.
  • the heating temperature of the coating film depends on the speed at which the substrate is treated, it is desirable that the temperature is high, and a temperature close to the heat resistance temperature of the mold is desirable.
  • the heating temperature of the sol-gel material coating is preferably 150 to 200 ° C.
  • ⁇ Peeling process> The mold is peeled off from the coating film and the substrate. After the mold is peeled off, as shown in FIG. 11C, a coating film of the sol-gel material adheres to a portion corresponding to the convex portion 140b of the mold 140 on the substrate 40 to form the convex portion 60a.
  • the surface of the base material 40 is exposed in a region other than the region corresponding to the convex portion 140b of the mold 140 (the region where the convex portion 60a is formed).
  • a region where the substrate surface is exposed (concave portion 70a) is defined between the convex portions 60a made of the sol-gel material.
  • a known peeling method can be adopted.
  • the roll-shaped mold coated with the sol-gel material is simply rolled on the substrate 40 to transfer the coating film 68 of the sol-gel material onto the substrate 40 to form the convex portion 60a. Meanwhile, the mold can be peeled from the base material 40.
  • the convex portion 60a made of a sol-gel material is cured. Curing can be performed by a method similar to the method described in the curing step of the release transfer method.
  • the coating film is cured, and the epitaxial growth substrate 100a in which the convex portions 60a and the concave portions 70a formed on the base material 40 as shown in FIG. 11 (d) form the concave / convex pattern 80a can be formed. .
  • the exposed base material surface of the epitaxial growth substrate 100a manufactured by the microcontact method is etched to form a recess 70b in the base material 40. May be.
  • the epitaxial growth substrate 100b on which the concave / convex pattern 80b including the convex portions 60a and the concave portions 70b is formed can be formed.
  • the cross-sectional shape of the concavo-convex pattern of the mold 140 used in the peeling transfer method is a relatively gentle inclined surface, and the planar shape of the concavo-convex pattern of the mold 140 extends in a ridge shape.
  • the mold is difficult to clog and the frequency of cleaning or replacement of the mold can be reduced. Therefore, the microcontact method enables continuous production at a high speed for a long time and can suppress the manufacturing cost.
  • the method of manufacturing an epitaxial growth substrate by the microcontact method is the substrate for epitaxial growth by the peeling transfer method. Similar to the manufacturing method, the manufacturing time of the substrate can be shortened.
  • the microcontact method in the adhesion process, the coating film of the sol-gel material is adhered only to the region where the convex portion is finally formed on the base material, so that the portion other than the region where the convex portion is formed at the time after the mold peeling. The surface of the substrate is exposed. Therefore, the microcontact method does not require etching to expose the substrate surface.
  • the manufacturing time is shortened as compared with the case where the unevenness is formed by directly etching the substrate surface by the depth of the unevenness of the uneven pattern to be formed.
  • the substrate surface exposed by etching may be rough (damaged), and chemical treatment may be required after etching. Since it is not necessary, such damage does not occur and there is no need for chemical treatment.
  • the substrate for epitaxial growth can be continuously produced at a high speed. Further, since photolithography is not used, the production cost of the epitaxial growth substrate can be reduced, and the burden on the environment can be reduced.
  • a buffer layer may be further formed on the surface of the substrate (surface on which the concavo-convex pattern is formed) produced by the base material etching method, the concave portion etching method, the peeling transfer method, and the microcontact method.
  • a substrate is also included in the epitaxial growth substrate of the embodiment.
  • Such a substrate includes a buffer layer 20 on the surface of the concavo-convex patterns 80, 80a, and 80b, as shown in FIGS.
  • the cross-sectional shape of the concavo-convex pattern is a relatively gentle inclined surface and has a corrugated structure, so that a buffer layer with few defects can be formed.
  • a buffer layer may be formed on the base material, and the resulting substrate is also the substrate for epitaxial growth of the embodiment.
  • a convex portion 60a is formed so as to protrude from the surface of the buffer layer 20, and a region (recessed portion) where the buffer layer 20 is exposed between the convex portions 60a. 70f) is partitioned, thereby forming an uneven pattern 80f.
  • the buffer layer 20 can be formed using a known method such as a low temperature MOCVD method or a sputtering method, and the layer thickness is preferably in the range of 1 to 100 nm.
  • a semiconductor layer is epitaxially grown on the surfaces of the epitaxial growth substrates 100c, 100d, 100e, and 100f having a buffer layer, a difference in lattice constant between the substrate and the semiconductor layer is reduced by the buffer layer, so that a semiconductor layer with high crystallinity can be formed.
  • the buffer layer can be composed of Al X Ga 1-X N (0 ⁇ x ⁇ 1), and is not limited to a single layer structure. Alternatively, a multilayer structure of two or more layers in which two or more kinds having different compositions are laminated may be used.
  • a solution or fine particles of a sol-gel material such as TiO 2 , ZnO, ZnS, ZrO, BaTiO 3 , SrTiO 2, etc.
  • a dispersion may be used.
  • TiO 2 is preferred from the relationship of the film forming property and refractive index.
  • TiO 2 is preferred from the relationship of the film forming property and refractive index.
  • LPD Liquid Phase Deposition
  • a polysilazane solution as an inorganic material apply
  • the convex part formed by applying and transferring this may be converted into ceramics (silica modification) in the curing step to form a convex part made of silica.
  • “Polysilazane” is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 made of Si—N, Si—H, N—H, etc., and ceramics such as both intermediate solid solutions SiO X N Y. It is a precursor inorganic polymer. More preferred is a compound which is converted to silica by being ceramicized at a relatively low temperature as represented by the following general formula (1) described in JP-A-8-112879.
  • R1, R2, and R3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • perhydropolysilazane also referred to as PHPS
  • R 1, R 2 and R 3 are hydrogen atoms, and the hydrogen part bonded to Si is partially an alkyl group or the like.
  • Substituted organopolysilazanes are particularly preferred.
  • silicon alkoxide-added polysilazane obtained by reacting polysilazane with silicon alkoxide for example, JP-A No. 5-23827
  • glycidol-added polysilazane obtained by reacting glycidol for example, JP-A-6-122852
  • an alcohol-added polysilazane obtained by reacting an alcohol for example, JP-A-6-240208
  • a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate for example, JP-A-6-299118
  • an acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex for example, JP-A-6-306329
  • metal fine particles Pressurized polysilazane (e.g., JP-A-7-196986)
  • hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers can be used.
  • an amine or metal catalyst may be added.
  • a light emitting device can be manufactured using the epitaxial growth substrate of the above embodiment. As shown in FIG. 12, the light emitting device 200 according to the embodiment is formed by stacking a first conductivity type layer 222, an active layer 224, and a second conductivity type layer 226 in this order on an epitaxial growth substrate 100. The semiconductor layer 220 is provided. Furthermore, the light emitting device 200 of the embodiment includes a first electrode 240 that is electrically connected to the first conductivity type layer 222 and a second electrode 260 that is electrically connected to the second conductivity type layer 226.
  • a known material used for a light-emitting element may be used.
  • a material used for a light emitting element for example, a GaN-based semiconductor material represented by a general formula In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1)
  • a GaN-based semiconductor represented by the general formula Al X Ga Y In ZN 1- AM A is used without any limitation in the light-emitting element of this embodiment. be able to.
  • GaN-based semiconductors can contain other group III elements in addition to Al, Ga, and In, and contain elements such as Ge, Si, Mg, Ca, Zn, Be, P, As, and B as required. You can also Furthermore, it is not limited to elements that are intentionally added, but may contain impurities that are inevitably contained depending on the growth conditions of the semiconductor layer, and trace impurities contained in the raw materials and reaction tube materials.
  • other semiconductor materials such as GaAs, GaP-based compound semiconductor, AlGaAs, InAlGaP-based compound semiconductor can also be used.
  • the n-type semiconductor layer 222 as the first conductivity type layer is stacked on the substrate 100.
  • the n-type semiconductor layer 222 may be formed of materials and structures known in the art, and may be formed of, for example, n-GaN.
  • the active layer 224 is stacked on the n-type semiconductor layer 222.
  • the active layer 224 may be formed of materials and structures known in the art, and may have, for example, a multiple quantum well (MQW) structure in which GalnN and GaN are stacked a plurality of times.
  • MQW multiple quantum well
  • the active layer 224 emits light by injection of electrons and holes.
  • a p-type semiconductor layer 226 as a second conductivity type layer is stacked on the active layer 224.
  • the p-type semiconductor layer 226 may have a structure known in the art, and may be formed of, for example, p-AlGaN and p-GaN.
  • the method for stacking the semiconductor layers is not particularly limited, and MOCVD (metal organic chemical vapor deposition), HVPE (hydride vapor deposition), MBE (molecular beam epitaxy).
  • MOCVD metal organic chemical vapor deposition
  • HVPE hydrogen vapor deposition
  • MBE molecular beam epitaxy
  • a known method that can grow a GaN-based semiconductor can be applied.
  • the MOCVD method is preferable from the viewpoint of layer thickness controllability and mass productivity.
  • a concavo-convex pattern 80 is formed on the surface of the substrate 100 for epitaxial growth, the surface is flattened by lateral growth of the semiconductor layer as described in JP-A-2001-210598 during the epitaxial growth of the n-type semiconductor layer. Progresses. Since the active layer needs to be formed on a flat surface, it is necessary to stack an n-type semiconductor layer until the surface becomes flat.
  • the substrate for epitaxial growth according to the embodiment has a relatively gentle cross-sectional shape of the concavo-convex pattern, and has a corrugated structure, so that the surface flattening progresses quickly and the thickness of the n-type semiconductor layer is reduced. Can do. The growth time of the semiconductor layer can be shortened.
  • the n-electrode 240 as the first electrode is formed on the n-type semiconductor layer 222 exposed by etching a part of the p-type semiconductor layer 226 and the active layer 224.
  • the n-electrode 222 may be formed of a material and structure known in the art, and is made of, for example, Ti / Al / Ti / Au or the like, and is formed by a vacuum deposition method, a sputtering method, a CVD method, or the like.
  • a p-electrode 260 as the second electrode is formed on the p-type semiconductor layer 226.
  • the p-electrode 226 may be formed of a material and structure known in the art, and may be formed of, for example, a translucent conductive film made of ITO or the like and an electrode pad made of a Ti / Au laminated body or the like.
  • the p-electrode 260 may be formed from a highly reflective material such as Ag or Al.
  • the n-electrode 240 and the p-electrode 260 can be formed by any film forming method such as a vacuum deposition method, a sputtering method, a CVD method, or the like.
  • the active layer when a voltage is applied to the first conductivity type layer and the second conductivity type layer, the active layer includes at least a first conductivity type layer, an active layer, and a second conductivity type layer.
  • the layer structure of the semiconductor layer is arbitrary as long as it emits light.
  • the optical element 200 of the embodiment configured as described above may be a face-up optical element that extracts light from the p-type semiconductor 226 side. In that case, a light-transmitting conductive material is used for the p-electrode 260. It is preferable.
  • the optical element 200 of the embodiment may be a flip-chip optical element that extracts light from the substrate 100 side. In that case, it is preferable to use a highly reflective material for the p-electrode 260. In any method, the light generated in the active layer 224 can be effectively extracted outside the device by the diffraction effect of the concave / convex pattern 80 of the substrate.
  • the semiconductor layer 220 having a low dislocation density is formed, and deterioration of the characteristics of the light emitting element 200 is suppressed.
  • a mixed solution in which 1 g of KBM-5103 manufactured by Shin-Etsu Silicone Co., Ltd., 1 g of ion-exchanged water, 0.1 ml of acetic acid and 19 g of isopropyl alcohol was mixed was applied onto a glass substrate by spin coating (rotation speed was 1000 rpm for 30 seconds).
  • the substrate coated with the mixed solution was treated at 130 ° C. for 15 minutes to obtain a silane coupling treated glass.
  • the obtained silane coupling treated glass was used as a base material, and the block copolymer solution was applied onto the base material by spin coating to form a 160 nm-thick block copolymer thin film.
  • the spin coating was performed at a rotation speed of 1000 rpm for 30 seconds.
  • the substrate on which the thin film was formed was allowed to stand at room temperature for 35 hours in a desiccator previously filled with a vapor of chloroform, whereby the thin film was subjected to a solvent annealing treatment.
  • a screw bottle filled with 15 g of chloroform was installed in the desiccator (capacity 5 L), and the atmosphere in the desiccator was filled with chloroform having a saturated vapor pressure. Unevenness was observed on the surface of the thin film after the solvent annealing treatment, and it was found that the block copolymer constituting the thin film was micro-layer separated.
  • Measurement mode Dynamic force mode Cantilever: SI-DF40P2 (material: Si, lever width: 40 ⁇ m, tip diameter: 10 nm) Measurement atmosphere: in the air Measurement temperature: 25 ° C.
  • a thin nickel layer having a thickness of about 50 nm was formed as a current seed layer on the surface of the thin film corrugated by the solvent annealing treatment.
  • the substrate with the thin film was placed in a nickel sulfamate bath, and electrocasting (maximum current density 0.05 A / cm 2 ) was performed at a temperature of 50 ° C. to deposit nickel until the thickness reached 250 ⁇ m.
  • the substrate with a thin film was mechanically peeled from the nickel electroformed body thus obtained.
  • the nickel electroformed body was immersed in HD-2101TH manufactured by Daikin Chemicals Sales Co., Ltd. for about 1 minute, dried, and allowed to stand overnight.
  • the nickel electroformed body was immersed in HDTH manufactured by Daikin Chemicals Sales Co., Ltd. and subjected to ultrasonic treatment for about 1 minute.
  • a nickel mold subjected to the release treatment was obtained.
  • a fluorine-based UV curable resin is applied onto a PET substrate (Toyobo Co., Ltd., Cosmo Shine A-4100), and irradiated with ultraviolet rays at 600 mJ / cm 2 while pressing a nickel mold, the fluorine-based UV curable resin.
  • a PET substrate Toyobo Co., Ltd., Cosmo Shine A-4100
  • the fluorine-based UV curable resin was cured.
  • the nickel mold was peeled off from the cured resin.
  • the film mold which consists of a PET board
  • the concavo-convex pattern formed on the surface of the film mold had a large number of convex portions with uneven extending direction, bending direction and length. It has been found that the part has an elongated shape extending while undulating.
  • the average pitch of the concavo-convex pattern was 600 nm, and the average value of the concavo-convex depth distribution was 85 nm.
  • a single crystal sapphire substrate manufactured by Kyocera having the C surface as the main surface was cleaned by a normal cleaning method.
  • Ni was deposited on the sapphire substrate by sputtering to form a Ni layer (mask layer) having a thickness of 50 nm.
  • a thermoplastic resin was applied as a resist on the mask layer by spin coating. The film thickness of the formed resist film was 120 nm.
  • the sapphire substrate on which the mask layer and the resist film were formed was heated to 150 ° C. to soften the resist film and press the film mold.
  • the sapphire substrate was cooled to room temperature while the film mold was pressed against the resist.
  • the film mold was separated from the resist film. Thereby, the surface field unevenness pattern of the film mold was transferred to the resist film. At this time, the resist film remained in the recessed portion of the transferred uneven pattern. That is, the mask layer was not exposed on the surface of the concave portion of the concave / convex pattern.
  • a sapphire substrate on which a resist film having a concavo-convex pattern was formed was subjected to plasma ashing treatment using O 2 gas. Thereby, although the resist film remained in the convex part of the concavo-convex pattern, the mask layer was exposed in the concave part.
  • a plasma etching process using Ar gas was performed. Thereby, the exposed mask layer was etched in the concave portion of the concave-convex pattern, and the sapphire substrate was exposed. Further, a plasma etching process using BCl 3 gas was performed. Thereby, the sapphire substrate exposed in the concave portion of the concave / convex pattern was etched. Thereafter, the heated nitric acid was impregnated with an etched sapphire substrate. Thereby, the mask layer and the resist film remaining on the substrate were removed.
  • the uneven pattern of the film mold was transferred to the sapphire substrate.
  • a sapphire substrate having a concavo-convex pattern transferred thereon was used as an epitaxial growth substrate.
  • the surface of the substrate for epitaxial growth was measured with the atomic force microscope, and an unevenness analysis image was obtained. From the obtained analysis image, the concavo-convex pattern on the surface of the substrate for epitaxial growth has a large number of convex portions whose extending direction, bending direction and length are non-uniform, and each convex portion extends while undulating in plan view. It has been found to have an elongated shape.
  • the cross-sectional shape of the concavo-convex pattern was a gently inclined surface and formed a corrugated structure.
  • the average pitch of the unevenness of the uneven pattern was 600 nm
  • the average value of the unevenness depth distribution was 130 nm
  • the standard deviation of the unevenness depth was 87.0 nm.
  • the Fourier transform image obtained by subjecting the unevenness analysis image to the two-dimensional fast Fourier transform processing showed an annular pattern having an approximate center at the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 .
  • AlN was deposited on the epitaxial growth substrate by sputtering.
  • a gallium nitride compound semiconductor layer was stacked on the AlN layer.
  • the gallium nitride-based compound semiconductor layer has a configuration in which an underlayer, an n-type semiconductor layer, a light emitting layer (active layer), and a p-type semiconductor layer are stacked in this order.
  • the underlayer was made of undoped GaN having a thickness of 3 ⁇ m.
  • the n-type semiconductor layer was composed of an n-type GaN layer doped with silicon having a thickness of 3 ⁇ m.
  • the light emitting layer has a multiple quantum well structure in which five periods of GaInN / GaN are formed.
  • the p-type semiconductor layer was composed of p-type GaN doped with Mg.
  • the lamination of the gallium nitride compound semiconductor layer was performed by the MOCVD method under normal conditions well known in the technical field.
  • the n-type GaN layer in the region for forming the n-electrode was exposed by ICP etching.
  • An n-electrode was formed on the n-type GaN layer, and a p-electrode was formed on the p-type GaN.
  • the exposure of the n-electrode and the formation of the p-electrode and the n-electrode were performed by a normal photolithography method, etching method, sputtering method, and vapor deposition method using a normal etching gas and electrode material.
  • the back surface of the sapphire substrate was ground and polished.
  • a ruled line was entered from the semiconductor layer side using a laser scriber, and was then cut and cut into chips of 1 mm length ⁇ 0.5 mm width. Thereby, a light emitting device was obtained.
  • Comparative Example 1 A light emitting device is manufactured in the same manner as in Example 1 except that a sapphire substrate on which a concavo-convex pattern is formed by an electron beam lithography method is used instead of a sapphire substrate to which a concavo-convex pattern of a film mold is transferred as an epitaxial growth substrate did.
  • the substrate for epitaxial growth had a concavo-convex pattern in which conical projections (convex portions) having a bottom diameter of 2.7 ⁇ m and a height of 1.6 ⁇ m were arranged in a triangular lattice with a period of 3 ⁇ m.
  • the Fourier transform image obtained by subjecting the unevenness analysis image obtained by measuring the surface of the substrate for epitaxial growth with the atomic force microscope to a two-dimensional fast Fourier transform process has an absolute value of the wave number of 0 ⁇ m ⁇ 1 .
  • a point-like image in which bright spots are gathered at the vertex of a hexagon with the origin as the center is shown.
  • Comparative Example 2 A light emitting device was produced in the same manner as in Example 1 except that a sapphire substrate on which a concavo-convex pattern was not formed was used instead of the sapphire substrate onto which the concavo-convex pattern of the film mold was transferred as the substrate for epitaxial growth.
  • Example 1 ⁇ Observation with differential interference microscope> After the underlayer (undoped GaN) was formed in Example 1 and Comparative Example 1, the surface of the underlayer was observed using a differential interference microscope. The surface of the underlayer of Example 1 was compared with Comparative Example 1. It was found to be flatter than the surface of the underlying layer.
  • Example 1 a semiconductor layer having fewer defects than that of Comparative Example 1 and having excellent crystallinity was formed.
  • the cross-sectional shape of the concavo-convex pattern of the epitaxial growth substrate is a gently inclined surface as described above, the semiconductor layer is uniformly stacked on the concavo-convex pattern, and the semiconductor layer can be epitaxially grown satisfactorily. It is thought.
  • EQE indicates external quantum efficiency
  • IQE indicates internal quantum efficiency
  • EIE indicates electron injection efficiency
  • LEE indicates light extraction efficiency.
  • the EIE is 100%.
  • IQE is H.264. Yoshida et al. , APPLIED PHYSICS LETTERS 96, 211122 (2010) It was calculated by the method described in 1.
  • the light extraction efficiency of the light emitting device of Example 1 was 17.8%.
  • the light extraction efficiency of the light emitting device of Comparative Example 2 was 10.0%. That is, the light-emitting element of Example 1 had higher light extraction efficiency than the light-emitting element of Comparative Example 2. From this, it was found that the sapphire substrate having the concavo-convex pattern used as the epitaxial growth substrate in Example 1 has a function as a diffraction grating substrate for improving the light extraction efficiency.
  • the optical element of this invention is not limited to the said embodiment, It can change suitably within the range of the technical idea described in the claim.
  • the uneven pattern of the epitaxial growth substrate of the present invention can be efficiently manufactured by imprinting.
  • an epitaxial layer with few defects can be formed on the epitaxial growth substrate.
  • the substrate for epitaxial growth of the present invention has a function as a diffraction grating substrate for improving the light extraction efficiency, a light emitting device manufactured using this substrate has high light emission efficiency. Therefore, the substrate for epitaxial growth of the present invention is extremely effective for manufacturing a light emitting device having excellent light emission efficiency, and contributes to energy saving.
  • buffer layer 40 base material, 60 convex part, 70 concave part 80 concave / convex pattern, 100 epitaxial growth substrate 120 resist layer, 140 mold 200 light emitting element, 220 semiconductor layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Drying Of Semiconductors (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 エピタキシャル成長用基板は、基材上に多数の凸部と凹部を有する凹凸パターンが形成され、前記凸部は、平面視で、各々、うねりながら延在する細長い形状を有し、前記凹凸パターンにおいて、前記多数の凸部は延在方向、屈曲方向及び長さが不均一である。効率よく製造することが可能であり、発光素子の発光効率を向上させることができるエピタキシャル成長用基板、及びその基板を用いた発光素子が提供される。

Description

エピタキシャル成長用基板及びそれを用いた発光素子
 本発明は、半導体層などをエピタキシャル成長させるための基板、及びその基板上に半導体層が形成された発光素子に関する。
 半導体発光素子は、一般に発光ダイオード(Light Emitting Diode:LED)やレーザダイオード(Laser Diode:LD)等があり、バックライト等に用いる各種光源、照明、信号機、大型ディスプレイ等に幅広く利用されている。
 窒化物半導体等の半導体層を有する発光素子は、通常、透光性基板上にバッファ層、n型半導体層、活性層、p型半導体層を順にエピタキシャル成長させ、n型、p型のそれぞれの半導体層に電気的に接続するn側電極、p側電極を形成することによって構成される。この発光素子において、活性層で発生した光は、半導体層の外部露出面(上面、側面)、基板の露出面(裏面、側面)などから素子外部に出射される。このような発光素子では、活性層で発生した光が半導体層と電極との界面または半導体層と基板との界面に対して所定の臨界角以上の角度で入射すると、全反射を繰り返しながら半導体層内を横方向に伝搬し、その間に光の一部は吸収され、光取り出し効率が低下する。
 そこで、基板の半導体層成長面をエッチングして凹凸パターンを形成し、それにより発光素子の光取り出し効率を向上させることが特許文献1、2に開示されている。さらに、このような凹凸パターンを基板の半導体層成長面に設けることにより、半導体層の転位密度が低減され、発光素子の特性の劣化を抑制できることが特許文献2に開示されている。
特開2010-206230号公報 特開2001-210598号公報
 上記のような半導体発光素子について、さらに発光効率を向上させることが望まれている。また、半導体発光素子をより高い生産効率で製造することも要望されている。そこで本発明の目的は、半導体発光素子等の発光素子を一層効率よく製造することが可能であり、発光素子の発光効率を向上させることができるエピタキシャル成長用基板、及びその基板を用いた発光素子を提供することにある。
 本発明の第1の態様に従えば、基材上に多数の凸部と凹部を有する凹凸パターンが形成されたエピタキシャル成長用基板であって、
 i)前記凸部は、各々、平面視で、うねりながら延在する細長い形状を有し、
ii)前記凹凸パターンにおいて、前記多数の凸部は延在方向、屈曲方向及び長さが不均一であることを特徴とするエピタキシャル成長用基板が提供される。
 前記エピタキシャル成長用基板において、凹凸の平均ピッチは、100nm~10μmの範囲にし得る。
 前記エピタキシャル成長用基板において、前記凸部の延在方向と直交する断面形状は、底部から頂部に向かって狭くなっていてもよい。また、前記多数の凸部の一部は、分岐している形状を有していてもよい。
 前記エピタキシャル成長用基板において、前記i)及びii)のような特徴を有するために、前記凹凸パターンを前記基板面と直交するいずれの方向で切断しても凹凸断面が繰り返し現れることになる。
 前記エピタキシャル成長用基板において、前記凹凸パターンの凹凸の深さの標準偏差が、10nm~5μmの範囲であってよい。
 前記エピタキシャル成長用基板において、前記凸部の延在方向が、平面視上不規則に分布しており、
 前記凹凸パターンの単位面積当たりの領域に含まれる前記凸部の平面視上における輪郭線が、曲線区間よりも直線区間を多く含んでよい。
 前記エピタキシャル成長用基板において、前記凸部の延在方向に対して平面視上略直交する方向における前記凸部の幅が一定であってよい。
 前記エピタキシャル成長用基板において、前記曲線区間は、前記凸部の平面視上における輪郭線を前記凸部の幅の平均値のπ(円周率)倍の長さで区切ることで複数の区間を形成する場合において、区間の両端点間の前記輪郭線の長さに対する当該両端点間の直線距離の比が0.75以下となる区間であり、
 前記直線区間は、前記複数の区間のうち前記曲線区間ではない区間であってよい。
 前記エピタキシャル成長用基板において、前記曲線区間は、前記凸部の平面視上における輪郭線を前記凸部の幅の平均値のπ(円周率)倍の長さで区切ることで複数の区間を形成する場合において、区間の一端及び当該区間の中点を結んだ線分と当該区間の他端及び当該区間の中点を結んだ線分とがなす2つの角度のうち180°以下となる方の角度が120°以下となる区間であり、
 前記直線区間は、前記複数の区間のうち前記曲線区間ではない区間であり、
 前記複数の区間のうち前記曲線区間の割合が70%以上であってよい。
 前記エピタキシャル成長用基板において、前記凸部の延在方向が、平面視上不規則に分布しており、
 前記凸部の延在方向に対して平面視上略直交する方向における前記凸部の幅が一定であってよい。
 前記エピタキシャル成長用基板において、前記凹凸パターンを走査型プローブ顕微鏡により解析して得られる凹凸解析画像に2次元高速フーリエ変換処理を施すことにより得られるフーリエ変換像が、波数の絶対値が0μm-1である原点を略中心とする円状又は円環状の模様を示しており、且つ、前記円状又は円環状の模様が、波数の絶対値が10μm-1以下の範囲内となる領域内に存在していてよい。
 前記エピタキシャル成長用基板は、前記凹凸パターンが形成された前記基材の表面上にバッファ層を有してもよい。また、前記凸部が、前記基材を構成する材料とは異なる材料から形成されていてもよく、この場合、前記凸部がゾルゲル材料から形成されていてもよい。あるいは、前記凹部が前記基材を構成する材料と同じ材料から形成されていてもよい。特に、前記基材は、サファイア基板であってもよい。
 本発明の第2の態様に従えば、前記エピタキシャル成長用基板上に、第1導電型層、活性層及び第2導電型層を少なくとも含む半導体層を備える発光素子が提供される。
 本発明のエピタキシャル成長用基板の凹凸パターンは、比較的なだらかな傾斜面からなる断面形状を有し、且つ尾根状に連なって延在する凸部を有するため、モールドを用いたインプリント法によりこの凹凸パターンを形成する場合に、モールドの型詰まりが生じにくく、効率の良い製造が可能である。また、エピタキシャル成長用基板上に層をエピタキシャル成長させる場合、凹凸形状の傾斜面が比較的なだらかであるため、エピタキシャル成長層が凹凸パターン上に均一に積層され、欠陥の少ないエピタキシャル層を形成することができる。また、本発明のエピタキシャル成長用基板は光取り出し効率を向上させる回折格子基板としての機能を有するため、この基板を用いて作製された発光素子は、発光効率が高い。それゆえ本発明のエピタキシャル成長用基板は、優れた発光効率を有する発光素子の製造に極めて有効である。
図1(a)~(c)は実施形態のエピタキシャル成長用基板の概略断面図である。 図2(a)は実施形態のエピタキシャル成長用基板の表面のAFM画像の例であり、図2(b)は図2(a)のAFM画像中の切断線上におけるエピタキシャル成長用基板の断面プロファイルを示す。 図3(a)~(d)はバッファ層を備える実施形態のエピタキシャル成長用基板の概略断面図である。 図4(a)~(d)は基材エッチング法によるエピタキシャル成長用基板の製造方法の各工程を概念的に示す図である。 凹部エッチング法によるエピタキシャル成長用基板の製造方法のフローチャートである。 図6(a)~(e)は凹部エッチング法によるエピタキシャル成長用基板の製造方法の各工程を概念的に示す図である。 凹部エッチング法によるエピタキシャル成長用基板の製造方法における、押圧工程及び剥離工程の様子の一例を示す概念図である。 剥離転写法によるエピタキシャル成長用基板の製造方法のフローチャートである。 図9(a)~(e)は剥離転写法によるエピタキシャル成長用基板の製造方法の各工程を概念的に示す図である。 剥離転写法によるエピタキシャル成長用基板の製造方法における、塗布工程、密着工程及び剥離工程の様子の一例を示す概念図である。 図11(a)~(e)はマイクロコンタクト法によるエピタキシャル成長用基板の製造方法の各工程を概念的に示す図である。 実施形態の光学素子の概略断面図である。 図13は、実施形態のエピタキシャル成長等基板の平面視解析画像(白黒画像)の一例である。 図14(a)及び図14(b)は、平面視解析画像において凸部の分岐を判定する方法の一例について説明するための図である。 図15(a)は曲線区間の第1の定義方法を説明するために用いる図であり、図15(b)は曲線区間の第2の定義方法を説明するために用いる図である。 図16は、実施例1において溶媒アニール処理を行った薄膜の表面のAFM画像を示す。
 以下、本発明のエピタキシャル成長用基板、及びそれを用いた発光素子の実施形態及びそれらの製造方法について図面を参照しながら説明する。
[エピタキシャル成長用基板]
 実施形態のエピタキシャル成長用基板100の概略断面図を図1(a)に示す。実施形態のエピタキシャル成長用基板100は、図1(a)に示すように、基材40の表面に多数の凸部60と凹部70を有する凹凸パターン80が形成されている。図2(a)に、本実施形態のエピタキシャル成長用基板のAFM画像の例を示し、図2(b)に図2(a)のAFM画像中の切断線におけるエピタキシャル成長用基板の断面プロファイルを示す。
 エピタキシャル成長用基板100の基材40としては、種々の透光性を有する基板を用いることができる。例えば、ガラス、サファイア単結晶(Al;A面、C面、M面、R面)、スピネル単結晶(MgAl)、ZnO単結晶、LiAlO単結晶、LiGaO単結晶、MgO単結晶などの酸化物単結晶、Si単結晶、SiC単結晶、SiN単結晶、GaAs単結晶、AlN単結晶、GaN単結晶およびZrBなどのホウ化物単結晶などの材料からなる基板を用いることができる。これらのうち、サファイア単結晶基板及びSiC単結晶基板が好ましい。なお、基材の面方位は特に限定されない。また、基材は、オフ角が0度のジャスト基板でもよいし、オフ角を付与した基板であっても良い。
 エピタキシャル成長用基板100の凹凸パターン80の断面形状は、図1(a)及び図2(b)に示すように、比較的なだらかな傾斜面からなり、基材40から上方に向かって波形(本願では適宜「波形構造」と称する)をなしている。すなわち、凸部60は、その基材側の底部から頂部に向かって狭くなるような断面形状を有する。凹凸パターン80の平面形状においては、図2(a)にAFM画像の例を示すように、凸部(白部分)が尾根状にうねって延在しており、その延在方向、うねりの方向及び延在長さは平面視上不規則である。すなわち、i)凸部は、各々、うねりながら延在する細長い形状を有し、ii)凸部は凹凸パターンにおいて延在方向、屈曲方向及び長さが不均一であるという特徴を有する。従って、凹凸パターン80は、ストライプ、波形ストライプ、ジグザグのような規則正しく配向したパターンやドット状のパターン等とは明らかに異なる。凹凸パターン80は、そのような規則正しく配向したパターンを含まず、この点で規則性や直線を多く含む回路パターンのようなものと区別できる。上記のような特徴を有するために、凹凸パターン80を基材40の表面と直交するいずれの方向で切断しても凹凸断面が繰り返し現れることになる。また、凸部は、平面視で、一部または全部が途中で分岐していてもよい(図2(a)参照)。なお、図2(a)では、凸部のピッチは、全体として均一のように見える。また、凹凸パターン80の凹部70は、凸部60によって区画され、凸部60に沿って延在し、凸部60と同様に、延在方向、うねりの方向及び延在長さが平面視上不規則である。
 エピタキシャル成長用基板を、例えばGaN系半導体材料から形成される発光素子の基板として用いる場合、発光素子の光取り出し効率を向上させるために、凹凸のピッチはフーリエ変換像において円環状になるような周波数分布に幅を持つものが好ましく、さらには、凹凸の向きに指向性がないような不規則な凹凸パターンが好ましい。エピタキシャル成長用基板100が発光素子の光取り出し効率を向上させる回折格子として働くために、凹凸の平均ピッチは、100nm~10μmの範囲にすることが好ましく、100~1500nmの範囲内であることがより好ましい。凹凸の平均ピッチが前記下限未満では、発光素子の発光波長に対してピッチが小さくなりすぎるため、凹凸による光の回折が生じなくなる傾向にあり、他方、上限を超えると、回折角が小さくなり、回折格子としての機能が失われてしまう傾向にある。凹凸の平均ピッチは200~1200nmの範囲内であることがさらに好ましい。
 凹凸の深さ分布の平均値は、20nm~10μmの範囲であることが好ましい。凹凸の深さ分布の平均値は、50nm~5μmの範囲内であることがより好ましく、凹凸の深さ分布の平均値が前記下限未満では、発光波長に対して深さが小さすぎるために必要な回折が生じなくなる傾向にあり、他方、上限を超えると、基板上に半導体層を積層して発光素子を製造する場合に、半導体層表面の平坦化に必要な半導体層の層厚が大きくなり、発光素子の製造に要する時間が長くなる。凹凸の深さ分布の平均値は100nm~2μmの範囲内であることがより好ましい。凹凸の深さの標準偏差は、10nm~5μmの範囲内であることが好ましい。凹凸の深さの標準偏差が前記下限未満では、可視光の波長に対して深さが小さすぎるために必要な回折が生じなくなる傾向にあり、他方、上限を超えると、回折光強度にむらが生じる傾向にある。凹凸の深さの標準偏差は、25nm~2.5μmの範囲内であることがより好ましい。
 本願において、凹凸の平均ピッチとは、凹凸が形成されている表面における凹凸のピッチ(隣り合う凸部同士又は隣り合う凹部同士の間隔)を測定した場合において、凹凸のピッチの平均値のことをいう。このような凹凸のピッチの平均値は、走査型プローブ顕微鏡(例えば、株式会社日立ハイテクサイエンス製の製品名「E-sweep」等)を用いて、下記条件:
 測定方式:カンチレバー断続的接触方式
 カンチレバーの材質:シリコン
 カンチレバーのレバー幅:40μm
 カンチレバーのチップ先端の直径:10nm
により、表面の凹凸を解析して凹凸解析画像を測定した後、かかる凹凸解析画像中における、任意の隣り合う凸部同士又は隣り合う凹部同士の間隔を100点以上測定し、その算術平均を求めることにより算出できる。
 また、本願において、凹凸の深さ分布の平均値及び凹凸深さの標準偏差は以下のようにして算出できる。表面の凹凸の形状を、査型プローブ顕微鏡(例えば、株式会社日立ハイテクサイエンス製の製品名「E-sweep」等)を用いて凹凸解析画像を測定する。凹凸解析の際、前述の条件で任意の3μm角(縦3μm、横3μm)または10μm角(縦10μm、横10μm)の測定領域を測定して凹凸解析画像を求める。その際に測定領域内の16384点(縦128点×横128点)以上の測定点における凹凸高さのデータをナノメートルスケールでそれぞれ求める。なお、このような測定点の数は、用いる測定装置の種類や設定によっても異なるものではあるが、例えば、測定装置として上述の株式会社日立ハイテクサイエンス製の製品名「E-sweep」を用いた場合には、10μm角の測定領域内において65536点(縦256点×横256点)の測定(256×256ピクセルの解像度での測定)を行うことができる。ここで、凹凸解析画像には、測定精度を高めるために、1次傾き補正を含むフラット処理が施されてもよい。また、以下に述べる凹凸形状に関する種々の解析において十分な測定精度を担保するためには、測定領域は、当該測定領域に含まれる凸部の幅の平均値の15倍以上の長さを1辺の長さとする正方形状の領域とするのがよい。そして、このようにして測定される凹凸高さ(単位:nm)に関して、先ず、全測定点のうち、基材の底面(凹凸パターンが形成された面の反対側の面)からの高さが最も高い測定点Pを求める。そして、かかる測定点Pを含み且つ基材の底面と平行な面を基準面(水平面)として、その基準面からの深さの値(測定点Pにおける基材底面からの高さの値から各測定点における基材底面からの高さを差し引いた差分)を凹凸深さのデータとして求める。なお、このような凹凸深さデータは、測定装置(例えば株式会社日立ハイテクサイエンス製の製品名「E-sweep」)によっては測定装置中のソフト等により自動的に計算して求めることができ、このような自動的に計算して求められた値を凹凸深さのデータとして利用できる。
 このようにして、各測定点における凹凸深さのデータを求めた後、その算術平均及び標準偏差を求めることにより算出できる値をそれぞれ凹凸の深さ分布の平均値及び凹凸深さの標準偏差として採用する。本明細書において、凹凸の平均ピッチ及び凹凸の深さ分布の平均値は、凹凸が形成されている表面の材料に関わらず、上記のような測定方法を通じて求めることができる。
 また、本願において「不規則な凹凸パターン」とは、表面の凹凸の形状を解析して得られる凹凸解析画像に2次元高速フーリエ変換処理を施して得られるフーリエ変換像が、波数の絶対値が0μm-1である原点を略中心とする円または円環状の模様を示すような、すなわち、上記凹凸の向きの指向性はないものの凹凸のピッチの分布は有するような疑似周期構造を含む。該円状又は円環状の模様は、波数の絶対値が10μm-1以下(0.1~10μm-1の範囲内としてもよく、更に0.667~10μm-1の範囲内としてもよく、好ましくは0.833~5μm-1の範囲内としてもよい)の範囲内となる領域内に存在してよい。このような凹凸パターンから散乱及び/または回折される光は、単一のまたは狭い帯域の波長の光ではなく、比較的広域の波長帯を有し、散乱光及び/または回折される光は指向性がなく、あらゆる方向に向かう。それゆえ、このような疑似周期構造を有する基板は、その凹凸ピッチの分布が可視光線を回折する限り、LEDのような発光素子に使用される基板に好適である。
 なお、凹凸解析画像に2次元高速フーリエ変換処理を施して得られるフーリエ変換像において、輝点が集合することにより模様が観測される。そのため、ここでの「フーリエ変換像が円状の模様を示す」とは、フーリエ変換像において輝点が集合した模様がほぼ円形の形状に見えることを意味し、外形の一部が凸状又は凹状となっているように見えるものも含む。また、「フーリエ変換像が円環状の模様を示す」とは、フーリエ変換像において輝点が集合した模様がほぼ円環状に見えることを意味し、環の外側の円や内側の円の形状がほぼ円形の形状に見えるものも含み且つかかる環の外側の円や内側の円の外形の一部が凸状又は凹状となっているように見えるものも含む。また、「円状又は円環状の模様が、波数の絶対値が10μm-1以下(0.1~10μm-1の範囲内としてもよく、更に0.667~10μm-1の範囲内としてもよく、好ましくは0.833~5μm-1の範囲内としてもよい)の範囲内となる領域内に存在する」とは、フーリエ変換像を構成する輝点のうちの30%以上の輝点が波数の絶対値が10μm-1以下(0.1~10μm-1の範囲内としてもよく、更に0.667~10μm-1の範囲内としてもよく、好ましくは0.833~5μm-1の範囲内としてもよい)の範囲内となる領域内に存在することをいう。上記条件を満たすように凹凸パターンを形成することにより、実施形態のエピタキシャル成長用基板を発光素子の基板として用いた場合に、発光素子からの発光の波長依存性及び指向性(一定の方向に強く発光する性質)を十分に小さくすることができる。
 なお、凹凸パターンとフーリエ変換像との関係について、次のことが分かっている。凹凸パターン自体にピッチに分布や指向性がない場合には、フーリエ変換像もランダムなパターン(模様がない)で現れるが、凹凸パターンがXY方向に全体として等方的であるがピッチに分布がある場合には、円又は円環状のフーリエ変換像が現れる。また、凹凸パターンが単一のピッチを有する場合には、フーリエ変換像に現れる円環がシャープになる傾向がある。
 前記凹凸解析画像の2次元高速フーリエ変換処理は、2次元高速フーリエ変換処理ソフトウエアを備えたコンピュータを用いた電子的な画像処理によって容易に行うことができる。
 なお、凸部を白、凹部を黒で表示するように凹凸解析画像が処理されることで、図13に示すような平面視解析画像(白黒画像)が得られる。図13は、本実施形態に係るエピタキシャル成長用基板100における測定領域の平面視解析画像の一例を示す図である。
 平面視解析画像の凸部(白表示部)の幅のことを「凸部の幅」という。このような凸部の幅の平均値は、平面視解析画像の凸部のうちから任意の100以上の箇所を選択し、それぞれについて凸部の延在方向に対して平面視上略直交する方向における凸部の境界から反対側の境界までの長さを測定し、その算術平均を求めることにより算出できる。
 なお、凸部の幅の平均値を算出する際には、上述の通り、平面視解析画像の凸部から無作為に抽出された位置における値を使用するが、凸部が分岐している位置の値は使用しなくてもよい。凸部において、ある領域が分岐に係る領域であるか否かは、例えば、当該領域が一定以上延在しているか否かによって判定されてもよい。より具体的には、当該領域の幅に対する当該領域の延在長さの比が一定(例えば1.5)以上であるか否かによって判定されてもよい。
 図14を用いて、ある方向に延在する凸部の中途位置において当該凸部の延在軸線に略直交する方向に突き出た領域について、当該領域が分岐か否かを判定する方法の一例を説明する。ここで、凸部の延在軸線とは、分岐か否かの判定対象領域を凸部から除外した場合において、凸部の外縁の形状から定まる凸部の延在方向に沿った仮想的な軸線である。より具体的には、凸部の延在軸線とは、凸部の延在方向に直交する凸部の幅の略中心点を通るように引かれた線である。図14(a)及び図14(b)は、いずれも平面視解析画像における凸部の一部のみを抜き出して説明する概要図であり、領域Sは、凸部を示している。図14(a)及び図14(b)では、凸部の中途位置において突出した領域A1、A2が、分岐か否かの判定対象領域として定められているものとする。この場合、凸部から領域A1、A2を除外した場合において、凸部の延在方向に直交する凸部の幅の略中心点を通る線として、延在軸線L1、L2が規定される。このような延在軸線は、コンピュータによる画像処理により規定されてもよいし、解析作業を実施する作業者によって規定されてもよいし、コンピュータによる画像処理及び作業者による手作業の両方によって規定されてもよい。図14(a)では、領域A1は、延在軸線L1に沿って延在する凸部の中途位置において、延在軸線L1に直交する方向に突出している。図14(b)では、領域A2は、延在軸線L2に沿って延在する凸部の中途位置において、延在軸線L2に直交する方向に突出している。なお、延在軸線L1、L2に直交する方向に対して傾斜して突出する領域についても、以下に述べる領域A1、A2についての考え方と同様の考え方を用いて分岐か否かを判定すればよい。
 上記判定方法によれば、領域A1の幅d1に対する領域A1の延在長さd2の比は、およそ0.5(1.5未満)であるため、領域A1は、分岐に係る領域ではないと判定される。この場合、領域A1を通り且つ延在軸線L1に直交する方向における長さd3は、凸部の幅の平均値を算出するための測定値の1つとされる。一方、領域A2の幅d4に対する領域A2の延在長さd5の比は、およそ2(1.5以上)であるため、領域A2は、分岐に係る領域であると判定される。この場合には、領域A2を通り且つ延在軸線L2に直交する方向における長さd6は、凸部の幅の平均値を算出するための測定値の1つとはされない。
 本実施形態のエピタキシャル成長用基板100において、凹凸パターン80の凸部の延在方向に対して平面視上略直交する方向における凸部の幅が一定であってよい。凸部の幅が一定であるか否かは、上述の測定によって得られた100点以上の凸部の幅に基づいて判定できる。具体的には、100点以上の凸部の幅から、凸部の幅の平均値及び凸部の幅の標準偏差を算出する。そして、凸部の幅の標準偏差を凸部の幅の平均値で割ることで算出される値(凸部の幅の標準偏差/凸部の幅の平均値)を凸部の幅の変動係数と定義する。この変動係数は、凸部の幅が一定である(幅の変動が少ない)ほど、小さい値となる。よって、変動係数が所定値以下であるか否かによって、凸部の幅が一定であるか否かを判定できる。例えば、変動係数が0.25以下である場合に凸部の幅が一定であると定義することができる。
 また、図13に示すように、本実施形態に係るエピタキシャル成長用基板100において、凹凸パターンに含まれる凸部(白部分)の延在方向は、平面視上不規則に分布している。すなわち、凸部は、規則正しく並んだストライプ状や規則正しく配置されたドット形状等ではなく、不規則な方向に延在した形状となっている。また、測定領域、すなわち凹凸パターンの所定の領域において、単位面積当たりの領域に含まれる凸部の平面視上における輪郭線は、曲線区間よりも直線区間を多く含んでいる。
 本実施形態において、「曲線区間よりも直線区間を多く含む」とは、凸部の輪郭線上の全区間において曲がりくねった区間が大勢を占めるような凹凸パターンとはなっていないことを意味する。凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むか否かについては、例えば以下に示す2つの曲線区間の定義方法のうち何れか一方を用いることで判定することができる。
<曲線区間の第1の定義方法>
 曲線区間の第1の定義方法では、曲線区間は、凸部の平面視上における輪郭線を凸部の幅の平均値のπ(円周率)倍の長さで区切ることで複数の区間を形成した場合において、区間の両端点間の輪郭線の長さに対する両端点間の直線距離の比が0.75以下となる区間として定義される。また、直線区間は、上記複数の区間のうち曲線区間以外の区間、すなわち上記比が0.75より大きい区間として定義される。以下、図15(a)を参照して、上記第1の定義方法を用いて凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むか否かを判定する手順の一例について説明する。図15(a)は、凹凸パターンの平面視解析画像の一部を示す図であり、便宜上、凹部を白塗りで示している。領域S1は凸部を示し、領域S2は凹部を示している。
 手順1-1
 測定領域内の複数の凸部から、一の凸部が選択される。当該凸部の輪郭線X上の任意の位置がスタート点として決定される。図15(a)では、一例として点Aがスタート点として設定されている。当該スタート点から、凸部の輪郭線X上に、所定の間隔で基準点が設けられる。ここでは、所定の間隔は、凸部の幅の平均値のπ(円周率)/2倍の長さである。図15(a)では、一例として点B,点C及び点Dが順次設定される。
 手順1-2
 基準点である点A~Dが凸部の輪郭線X上に設定されると、判定対象の区間が設定される。ここでは、始点及び終点が基準点であり、中間点となる基準点を含む区間が判定対象として設定される。図15(a)の例では、区間の始点として点Aが選択された場合には、点Aから数えて2番目に設定された点Cが区間の終点となる。点Aからの間隔は、ここでは凸部の幅の平均値のπ/2倍の長さに設定されているため、点Cは、輪郭線Xに沿って凸部の幅の平均値のπ倍の長さだけ点Aから離れた点である。同様に、区間の始点として点Bが選択された場合には、点Bから数えて2番目に設定された点Dが区間の終点となる。なお、ここでは、設定された順に対象となる区間が設定されるとし、点Aが最初に設定された点であるとする。すなわち、最初に、点A及び点Cの区間(区間AC)が処理対象の区間とされる。そして、図15(a)に示された、点A及び点Cを結ぶ凸部の輪郭線Xの長さLaと、点A及び点Cの間の直線距離Lbとが測定される。
 手順1-3
 手順1-2で測定された長さLa及び直線距離Lbを用いて、長さLaに対する直線距離Lbの比(Lb/La)が計算される。当該比が0.75以下となる場合に、凸部の輪郭線Xの区間ACの中点となる点Bが曲線区間に存在する点であると判定される。一方、上記比が0.75よりも大きい場合には、点Bが直線区間に存在する点であると判定される。なお、図15(a)に示した例では、上記比(Lb/La)は0.75以下となるため、点Bは曲線区間に存在する点であると判定される。
 手順1-4
 手順1-1で設定された各点がそれぞれ始点として選択された場合について、手順1-2及び手順1-3が実行される。
 手順1-5
 測定領域内の全ての凸部について、手順1-1~手順1-4が実行される。
 手順1-6
 測定領域内の全ての凸部について設定された全ての点のうち直線区間に存在する点であると判定された点の割合が全体の50%以上の場合に、凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むと判定される。一方、測定領域内の全ての凸部について設定された全ての点のうち直線区間に存在する点であると判定された点の割合が全体の50%未満の場合には、凸部の平面視上における輪郭線が直線区間よりも曲線区間を多く含むと判定される。
 上記手順1-1~手順1-6の処理は、測定装置に備わっている測定機能により行ってもよいし、上記測定装置とは異なる解析用ソフトウエア等の実行により行ってもよいし、手動で行ってもよい。
 なお、上記手順1-1において凸部の輪郭線上に点が設定される処理は、凸部を1周したり、測定領域からはみ出したりすることによって、それ以上点を設定できなくなった場合に終了すればよい。また、最初に設定された点と最後に設定された点の外側の区間については、上記比(Lb/La)を算出できないため、上記判定の対象外とすればよい。また、輪郭線の長さが凸部の幅の平均値のπ倍に満たない凸部については、上記判定の対象外とすればよい。
<曲線区間の第2の定義方法>
 曲線区間の第2の定義方法では、曲線区間は、凸部の平面視上における輪郭線を凸部の幅の平均値のπ(円周率)倍の長さで区切ることで複数の区間を形成した場合において、区間の一端(点A)及び当該区間の中点(点B)を結んだ線分(線分AB)と当該区間の他端(点C)及び当該区間の中点(点B)を結んだ線分(線分CB)とがなす2つの角度のうち小さい方(180°以下となる方)の角度が120°以下となる区間として定義される。また、直線区間は、上記複数の区間のうち曲線区間以外の区間、すなわち上記角度が120°よりも大きい区間として定義される。以下、図5(b)を参照して、上記第2の定義方法を用いて凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むか否かを判定する手順の一例について説明する。図15(b)は、図15(a)と同一の凹凸パターンの平面視解析画像の一部を示す図である。
 手順2-1
 測定領域内の複数の凸部から、一の凸部が選択される。当該凸部の輪郭線X上の任意の位置がスタート点として決定される。図15(b)では、一例として点Aがスタート点として設定されている。当該スタート点から、凸部の輪郭線X上に、所定の間隔で基準点が設けられる。ここでは、所定の間隔は、凸部の幅の平均値のπ(円周率)/2倍の長さである。図15(b)では、一例として点B,点C及び点Dが順次設定される。
 手順2-2
 基準点である点A~Dが凸部の輪郭線X上に設定されると、判定対象の区間が設定される。ここでは、始点及び終点が基準点であり、中間点となる基準点を含む区間が判定対象として設定される。図15(b)の例では、区間の始点として点Aが選択された場合には、点Aから数えて2番目に設定された点Cが区間の終点となる。点Aからの間隔は、ここでは凸部の幅の平均値のπ/2倍の長さに設定されているため、点Cは、輪郭線Xに沿って凸部の幅の平均値のπ倍の長さだけ点Aから離れた点である。同様に、区間の始点として点Bが選択された場合には、点Bから数えて2番目に設定された点Dが区間の終点となる。なお、ここでは、設定された順に対象となる区間が設定されるとし、点Aが最初に設定された点であるとする。すなわち、最初に、点A及び点Cの区間が処理対象の区間とされる。そして、線分ABと線分CBとがなす2つの角度のうち小さい方(180°以下となる方)の角度θが測定される。
 手順2-3
 角度θが120°以下となる場合には、点Bが曲線区間に存在する点であると判定される。一方、角度θが120°よりも大きい場合には、点Bが直線区間に存在する点であると判定される。なお、図15(b)に示した例では、角度θは120°以下となるため、点Bは曲線区間に存在する点と判定される。
 手順2-4
 手順2-1で設定された各点がそれぞれ始点として選択された場合について、手順2-2及び手順2-3が実行される。
 手順2-5
 測定領域内の全ての凸部について、手順2-1~手順2-4が実行される。
 手順2-6
 測定領域内の全ての凸部について設定された全ての点のうち直線区間に存在する点であると判定された点の割合が全体の70%以上の場合に、凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むと判定される。一方、測定領域内の全ての凸部について設定された全ての点のうち直線区間に存在する点であると判定された点の割合が全体の70%未満の場合には、凸部の平面視上における輪郭線が直線区間よりも曲線区間を多く含むと判定される。
 上記手順2-1~2-6の処理は、測定装置に備わっている測定機能により行ってもよいし、上記測定装置とは異なる解析用ソフトウエア等を実行することにより行ってもよいし、手動で行ってもよい。
 なお、上記手順2-1において凸部の輪郭線上に点が設定される処理は、凸部を1周したり、測定領域からはみ出したりすることによって、それ以上点を設定できなくなった場合に終了すればよい。また、最初に設定された点と最後に設定された点の外側の区間については、上記角度θを算出できないため、上記判定の対象外とすればよい。また、輪郭線の長さが凸部の幅の平均値のπ倍に満たない凸部については、上記判定の対象外とすればよい。
 以上述べたように、曲線区間の第1及び第2の定義方法の何れか一方を用いることで、測定領域について、凸部の平面視上における輪郭線Xが曲線区間よりも直線区間を多く含むか否かを判定することができる。なお、あるエピタキシャル成長用基板100の凹凸パターン80について、「単位面積当たりの領域に含まれる凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むか否か」の判定は、エピタキシャル成長用基板100の凹凸パターン80の領域から無作為に抽出して測定した一つの測定領域に基づいて判定することにより行ってもよいし、同一のエピタキシャル成長用基板100の凹凸パターン80における複数の異なる測定領域についての判定結果を総合的に判定することにより行ってもよい。この場合、例えば、複数の異なる測定領域についての判定結果のうち多い方の判定結果を、「単位面積当たりの領域に含まれる凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むか否か」の判定結果として採用してもよい。
 図1(a)に示される実施形態のエピタキシャル成長用基板100及び後述する図3(a)に示される実施形態のエピタキシャル成長用基板100cにおいて、凹凸パターンが形成された面における凹凸深さが凹凸深さ分布の平均値以下の領域を凹凸パターンの凸部60といい、凹凸パターンが形成された面における凹凸深さが凹凸深さ分布の平均値を超える領域を凹凸パターンの凹部70という。
 図1(a)に示す実施形態のエピタキシャル成長用基板100は、基材40の表面が凹凸形状をなすことにより凹凸パターン80が形成されているが、図1(b)に示す実施形態のエピタキシャル成長用基板100aのように、基材40の表面から突出するように形成された凸部60a及び凸部60aによって区画される基材表面が露出した領域(凹部70a)よりなる凹凸パターン80aを形成していてもよいし、図1(c)に示すエピタキシャル成長用基板100bのように、基材40の表面から突出するように形成された凸部60a及び基材40の表面の窪んだ領域(基材40の厚みが小さくなっている部分の基材表面、凹部70b)が凹凸パターン80bを形成していてもよい。エピタキシャル成長用基板100a、100bにおいて凸部60aは無機材料で形成されることが耐熱性の観点から好ましい。
 実施形態のエピタキシャル成長用基板は、図3(a)~(c)に示す基板100c、100d、100eのように、凹凸パターン80、80a、80bの表面にバッファ層20を備えてもよい。また、図3(d)に示す基板100fのように、基材40上にバッファ層20が形成され、バッファ層20の表面から突出するように凸部60aが形成され、凸部60aの間にバッファ層20が露出した領域(凹部70f)が区画されて、凹凸パターン80fが形成されていてもよい。本実施形態のエピタキシャル成長用基板100c、100d、100e、100fの上に半導体層をエピタキシャル成長させる場合、バッファ層20により基材40と半導体層の格子定数の違いが緩和されて、結晶性の高い半導体層が形成できる。GaN系の半導体層をエピタキシャル成長させるために実施形態のエピタキシャル成長用基板100c~100fを用いる場合は、バッファ層20は、AlGa1―XN(0≦x≦1)で構成することができ、単層構造に限らず、組成の異なる2種類以上を積層した2層以上の多層構造であってもよい。バッファ層の層厚は1nm~100nmの範囲内であることが好ましい。
 本実施形態のエピタキシャル成長用基板100の凹凸パターン80は、比較的なだらかな傾斜面からなる断面形状を有し、且つ尾根状に連なって延在する凸部を有するため、モールドを用いたインプリント法によりこの凹凸パターン80を形成する場合に、モールドの型詰まりが生じにくく、効率の良い製造が可能である。また、本実施形態のエピタキシャル成長用基板100の凹凸パターン80は、比較的なだらかな傾斜面からなる断面形状を有するため、本実施形態のエピタキシャル成長用基板100が凹凸パターン80上にバッファ層20を有する場合、バッファ層20は均一に欠陥なく形成される。
 また、エピタキシャル成長用基板100上に層をエピタキシャル成長させる場合、次のような利点がある。まず、凹凸形状の傾斜面が比較的なだらかであるため、エピタキシャル成長層が凹凸パターン80上に均一に積層され、欠陥の少ないエピタキシャル層を形成することができる。さらに、凹凸パターンは凹凸の向きに指向性がないような不規則な形状であるため、仮にパターンに起因した欠陥が生じても欠陥に異方性が無い均質なエピタキシャル成長層を形成できる。
 また、エピタキシャル成長用基板100上に半導体層をエピタキシャル成長させて発光素子を製造する場合、次のような利点がある。第1に、本実施形態のエピタキシャル成長用基板は光取り出し効率が高いため、この基板を用いて作製された発光素子は、発光効率が高い。第2に、本実施形態のエピタキシャル成長用基板によって回折される光は指向性がないため、この基板を用いて作製された発光素子から取り出される光は、指向性なくあらゆる方向に向かう。第3に、以下の理由により発光素子の製造時間を短縮することができる。凹凸パターンを有する基板を用いて発光素子を製造する場合、後述するように、凹凸形状が半導体層で埋められて表面が平坦になるまで半導体層を積層する必要がある。本実施形態のエピタキシャル成長用基板は、数10ナノメートルオーダーの凹凸深さで十分な光取り出し効率を有するため、特許文献1に記載されるような従来のサブミクロン~マイクロメートルオーダーの凹凸深さの凹凸パターンを有する基板と比べて、半導体層を積層する層厚を小さくすることができる。そのため、半導体層の成長時間を短縮することができ、発光素子の製造時間を短縮できる。
[エピタキシャル成長用基板の製造方法]
 エピタキシャル成長用基板の製造方法について説明する。実施形態のエピタキシャル成長用基板は、例えば、以下に説明する凹凸パターン転写用のモールドを用いて、基材エッチング法、凹部エッチング法、マイクロコンタクト法、剥離転写法等によって製造することができる。以下に、まず凹凸パターン転写用のモールド及びその製造方法について説明し、続いて基材エッチング法、凹部エッチング法、マイクロコンタクト法及び剥離転写法について説明する。
(0)凹凸パターン転写用モールド
 エピタキシャル成長用基板の製造に用いる凹凸パターン転写用のモールドとしては、例えば、後述する方法で製造される金属モールド又はフィルム状の樹脂モールド等が含まれる。樹脂モールドを構成する樹脂には、天然ゴム又は合成ゴムのようなゴムも含まれる。モールドは表面に凹凸パターンを有し、モールドの凹凸パターンの断面形状は、比較的なだらかな傾斜面からなり、波形構造をなしている。モールドの凹凸パターンの平面形状は、凸部が尾根状に連なって延在しており、途中に分岐が存在してもよい。
 凹凸パターン転写用のモールドの製造方法の例について説明する。最初にモールドの凹凸パターンを形成するための母型パターンの作製を行う。母型の凹凸パターンは、例えば、本出願人らによるWO2012/096368号に記載されたブロック共重合体の加熱による自己組織化(ミクロ相分離)を利用する方法(以下、適宜「BCP(Block Copolymer)熱アニール法」という)や、WO2013/161454号に記載されたブロック共重合体の溶媒雰囲気下における自己組織化を利用する方法(以下、適宜「BCP溶媒アニール法」という)、又は、WO2011/007878A1に開示されたポリマー膜上の蒸着膜を加熱・冷却することによりポリマー表面の皺による凹凸を形成する方法(以下、適宜「BKL(Buckling)法」という)を用いて形成することが好適である。BCP熱アニール法またはBCP溶媒アニール法でパターンを形成する場合、パターンを形成する材料は任意の材料を使用することができるが、ポリスチレンのようなスチレン系ポリマー、ポリメチルメタクリレートのようなポリアルキルメタクリレート、ポリエチレンオキシド、ポリブタジエン、ポリイソプレン、ポリビニルピリジン、及びポリ乳酸からなる群から選択される2種の組合せからなるブロック共重合体が好適である。これらの材料の自己組織化により形成するパターンは、WO2013/161454号に記載されるような水平シリンダ構造(シリンダが基材に対して水平に配向した構造)、またはMacromolecules 2014,47,2に記載されるような垂直ラメラ構造(ラメラが基材に対して垂直に配向した構造)であることが好ましく、より深い凹凸が形成されるため、垂直ラメラ構造がより好ましい。また、溶媒アニール処理により得られた凹凸パターンに対して、エキシマUV光などの紫外線に代表されるエネルギー線を照射することによるエッチングや、RIE(反応性イオンエッチング)、ICPエッチングのようなドライエッチング法によるエッチングを行ってもよい。またそのようなエッチングを行った凹凸パターンに対して、加熱処理を施してもよい。さらに、Adv.Mater.2012,24,5688-5694やScience322,429(2008)に記載されるような方法で、BCP熱アニール法またはBCP溶媒アニール法により形成される凹凸パターンを元に、より凹凸深さが大きい凹凸パターンを形成することができる。すなわち、SiO、Si等からなる下地層上にブロック共重合体を塗布し、BCP熱アニール法またはBCP溶媒アニール法によりブロック共重合体の自己組織化構造を形成する。次いで、ブロック共重合体の一方のセグメントを選択的にエッチングして除去する。残った他方のセグメントをマスクとして下地層をエッチングして、下地層に所望の深さ溝(凹部)を形成する。製造される凹凸パターン転写用のモールドを後述の基材エッチング法、凹部エッチング法、マイクロコンタクト法または剥離転写法で用いる場合、凹凸パターンの凹凸の深さ分布の平均値は20nm~10μmの範囲であることが好ましく、50nm~5μmの範囲内であることがより好ましい。凹凸の深さ分布の平均値が前記下限未満では、発光波長に対して深さが小さすぎるために必要な回折が生じなくなる傾向にあり、他方、上限を超えると、基板上に半導体層を積層して発光素子を製造する場合に、半導体層表面の平坦化に必要な半導体層の層厚が大きくなり、発光素子の製造に要する時間が長くなる。凹凸の深さ分布の平均値は100nm~2μmの範囲内であることがより好ましい。製造される凹凸パターン転写用のモールドを後述のマイクロコンタクト法で用いる場合、凹凸パターンの凹凸の深さ分布の平均値は、凹凸パターンの平均ピッチに対して1~10倍程度であることが望ましい。前記下限よりも凹凸深さが小さいと、マイクロコンタクト法により基材上にゾルゲル材料を転写するときに、基材上の意図した部分以外にもゾルゲル材料の塗膜が形成されてしまうことがある。一方前記上限よりもモールドの凹凸深さが大きいと、後述のマイクロコンタクト法の密着工程においてモールドの形状が変形して、基材上に転写されるパターンが崩れ、所望のパターンが得られない可能性がある。
 上記のようなBCP熱アニール法、BKL法及びBCP溶媒アニール法に代えて、フォトリソグラフィ法で凹凸パターンを形成してもよい。そのほか、例えば、切削加工法、電子線直接描画法、粒子線ビーム加工法及び操作プローブ加工法等の微細加工法、並びに微粒子の自己組織化を使用した微細加工法によっても、母型の凹凸パターンを作製することができる。
 凹凸パターンの母型をBCP熱アニール法やBKL法又はBCP溶媒アニール法等により形成した後、以下のようにして電鋳法などにより、パターンをさらに転写したモールドを形成することができる。最初に、電鋳処理のための導電層となるシード層を、無電解めっき、スパッタまたは蒸着等によりパターンを有する母型上に形成することができる。シード層は、後続の電鋳工程における電流密度を均一にして後続の電鋳工程により堆積される金属層の厚みを一定にするために10nm以上が好ましい。シード層の材料として、例えば、ニッケル、銅、金、銀、白金、チタン、コバルト、錫、亜鉛、クロム、金・コバルト合金、金・ニッケル合金、ホウ素・ニッケル合金、はんだ、銅・ニッケル・クロム合金、錫ニッケル合金、ニッケル・パラジウム合金、ニッケル・コバルト・リン合金、またはそれらの合金などを用いることができる。次に、シード層上に電鋳(電界めっき)により金属層を堆積させる。金属層の厚みは、例えば、シード層の厚みを含めて全体で10~30000μmの厚さにすることができる。電鋳により堆積させる金属層の材料として、シード層として用いることができる上記金属種のいずれかを用いることができる。形成した金属層は、後続のモールドの形成のための樹脂層の押し付け、剥離及び洗浄などの処理の容易性からすれば、適度な硬度及び厚みを有することが望ましい。
 上記のようにして得られたシード層を含む金属層を、凹凸構造を有する母型から剥離して金属基板を得る。剥離方法は物理的に剥がしても構わないし、パターンを形成する材料を、それらを溶解する有機溶媒、例えば、トルエン、テトラヒドロフラン(THF)、クロロホルムなどを用いて溶解して除去してもよい。金属基板を母型から剥離するときに、残留している材料成分を洗浄にて除去することができる。洗浄方法としては、界面活性剤などを用いた湿式洗浄や紫外線やプラズマを使用した乾式洗浄を用いることができる。また、例えば、粘着剤や接着剤を用いて残留している材料成分を付着除去するなどしてもよい。こうして得られる、母型からパターンが転写された金属基板(金属モールド)は、本実施形態の凹凸パターン転写用のモールドとして用いられ得る。
 さらに、得られた金属基板を用いて、金属基板の凹凸構造(パターン)をフィルム状の支持基板に転写することでフィルム状モールドのように可撓性のあるモールドを作製することができる。例えば、硬化性樹脂を支持基板に塗布した後、金属基板の凹凸構造を樹脂層に押し付けつつ樹脂層を硬化させる。支持基板として、例えば、ガラス、石英、シリコン等の無機材料からなる基材;シリコーン樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリイミド(PI)、ポリアリレート等の有機材料からなる基材、ニッケル、銅、アルミ等の金属材料が挙げられる。また、支持基板の厚みは、1~500μmの範囲にし得る。
 硬化性樹脂としては、例えば、エポキシ系、アクリル系、メタクリル系、ビニルエーテル系、オキセタン系、ウレタン系、メラミン系、ウレア系、ポリエステル系、ポリオレフィン系、フェノール系、架橋型液晶系、フッ素系、シリコーン系、ポリアミド系等のモノマー、オリゴマー、ポリマー等の各種樹脂が挙げられる。硬化性樹脂の厚みは0.5~500μmの範囲内であることが好ましい。厚みが前記下限未満では、硬化樹脂層の表面に形成される凹凸の高さが不十分となり易く、前記上限を超えると、硬化時に生じる樹脂の体積変化の影響が大きくなり凹凸形状が良好に形成できなくなる可能性がある。
 硬化性樹脂を塗布する方法としては、例えば、スピンコート法、スプレーコート法、ディップコート法、滴下法、グラビア印刷法、スクリーン印刷法、凸版印刷法、ダイコート法、カーテンコート法、インクジェット法、スパッタ法等の各種コート方法を採用することができる。さらに、硬化性樹脂を硬化させる条件としては、使用する樹脂の種類により異なるが、例えば、硬化温度が室温~250℃の範囲内であり、硬化時間が0.5分~3時間の範囲内であることが好ましい。また、紫外線や電子線のようなエネルギー線を照射することで硬化させる方法でもよく、その場合には、照射量は20mJ/cm~5J/cmの範囲内であることが好ましい。
 次いで、硬化後の硬化樹脂層から金属基板を取り外す。金属基板を取り外す方法としては、機械的な剥離法に限定されず、公知の方法を採用することができる。こうして得ることができる支持基板上に凹凸が形成された硬化樹脂層を有するフィルム状の樹脂モールドは、本実施形態の凹凸パターン転写用のモールドとして用いられ得る。
 また、上述の方法で得られた金属基板の凹凸構造(パターン)上にゴム系の樹脂材料を塗布し、塗布した樹脂材料を硬化させ、金属基板から剥離することにより、金属基板の凹凸パターンが転写されたゴムモールドを作製することができる。得られたゴムモールドは本実施形態の凹凸パターン転写用のモールドとして用いられ得る。ゴム系の樹脂材料は、特に、シリコーンゴム、またはシリコーンゴムと他の材料との混合物もしくは共重合体が好ましい。シリコーンゴムとしては、例えば、ポリオルガノシロキサン、架橋型ポリオルガノシロキサン、ポリオルガノシロキサン/ポリカーボネート共重合体、ポリオルガノシロキサン/ポリフェニレン共重合体、ポリオルガノシロキサン/ポリスチレン共重合体、ポリトリメチルシリルプロピン、ポリ4メチルペンテンなどが用いられる。シリコーンゴムは、他の樹脂材料と比べて安価で、耐熱性に優れ、熱伝導性が高く、弾性があり、高温条件下でも変形しにくいことから、凹凸パターン転写プロセスを高温条件下で行う場合には好適である。さらに、シリコーンゴム系の材料は、ガスや水蒸気透過性が高いため、被転写材の溶媒や水蒸気を容易に透過することができる。そのため、後述のようにゾルゲル材料に凹凸パターンを転写する目的でゴムモールドを用いる場合には、シリコーンゴム系の材料が好適である。また、ゴム系材料の表面自由エネルギーは25mN/m以下が好ましい。これによりゴムモールドの凹凸パターンを基材上の塗膜に転写するときの離形性が良好となり、転写不良を防ぐことができる。ゴムモールドは、例えば、長さ50~1000mm、幅50~3000mm、厚み1~50mmにし得る。ゴムモールドの厚みが前記下限より小さいと、ゴムモールドの強度が小さくなり、ゴムモールドのハンドリング中に破損する恐れがある。厚みが前記上限より大きいと、ゴムモールド作製時にマスターモールドから剥離することが困難となる。また、必要に応じて、ゴムモールドの凹凸パターン面上に離型処理を施してもよい。
(1)基材エッチング法
 基材エッチング法においては、通常のナノインプリント法を用いてエピタキシャル成長用基板を製造する。すなわち、図4(a)~(d)に示すように、まず、基材40上に熱や紫外線照射による硬化作用を有するナノインプリント用レジストを塗布してレジスト層120を形成する(図4(a)参照)。レジスト層120に対して上述の凹凸パターンを有するモールド140を押圧して、モールド140の凹凸パターンをレジスト層120に転写する(図4(b)参照)。モールド剥離後において、レジスト層120の凹部にはレジスト材料が残渣として残存しているため、これをOガス等でエッチングして除去することにより基材40の表面を露出させる(図4(c)参照)。次に、基材40の露出した部分をエッチングする(図4(d)参照)。このとき、レジスト層120と基材40のエッチングレートの比が1:1になるような条件(エッチングガスの組成)で、レジスト層120と基材40のエッチングを同時に行うことにより、レジスト層120の凹凸パターンの形状を基材40に転写することができる。基材40としてサファイア基板を用いる場合、基材のエッチングは例えばBCl等を含むガスを用いたRIEによって行うことができる。このようにして凸部60及び凹部70からなる凹凸パターン80が形成されたエピタキシャル成長等基板100を製造することができる。
 ナノインプリント法では、一般に、モールドをレジスト層から剥離するときに、モールドの凹部にレジスト層が詰まったまま剥離される(モールドの型詰まりが生じる)ことがあり、高速でのパターン転写が難しい。しかし、本実施形態で用いるモールドの凹凸パターンの断面形状は、比較的なだらかな傾斜面からなり、且つモールドの凹凸パターンの平面形状は、凸部が尾根状に連なって延在しているため、そのような型詰まりが生じにくく、モールドの洗浄または交換の頻度も低減できる。そのため、本製造方法では、高速で長時間の連続生産が可能であり、製造コストも抑制できる。
(2)凹部エッチング法
 上記基材エッチング法では、基材の露出した部分をエッチング処理したが、凹部エッチング法では、基材上に形成した凹凸構造体の凹部をエッチングして基板を露出させる。凹部エッチング法によるエピタキシャル成長用基板の製造方法は、図5に示すように、主に、ゾルゲル材料を調製する溶液調製工程S1、調製されたゾルゲル材料を基材に塗布する塗布工程S2、基材に塗布されたゾルゲル材料の塗膜を乾燥する乾燥工程S3、所定時間乾燥した塗膜に、転写パターンが形成されたモールドを押し付ける押圧工程S4、モールドが押し付けられた塗膜を仮焼成する仮焼成工程S5、モールドを塗膜から剥離する剥離工程S6、塗膜の凹部を除去するエッチング工程S7、及び塗膜を硬化する硬化工程S8を有する。以下、各工程について、図6(a)~(e)を参照しながら順に説明する。
<ゾルゲル材料溶液調製工程>
 最初にゾルゲル材料(無機材料)の溶液を調製する。ゾルゲル材料として、特に、シリカ、Ti系の材料やITO(インジウム・スズ・オキサイド)系の材料、ZnO、ZrO、Al等のゾルゲル材料を使用し得る。例えば、基材上にシリカからなる凸部をゾルゲル法で形成する場合は、ゾルゲル材料として金属アルコキシド(シリカ前駆体)を調製する。シリカの前駆体として、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、テトラ-i-プロポキシシラン、テトラ-n-プロポキシシラン、テトラ-i-ブトキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-t-ブトキシシラン等のテトラアルコキシシランに代表されるテトラアルコキシドモノマーや、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、イソプロピルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン(MTES)、エチルトリエトキシシラン、プロピルトリエトキシシラン、イソプロピルトリエトキシシラン、フェニルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリプロポキシシラン、プロピルトリプロポキシシラン、イソプロピルトリプロポキシシラン、フェニルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリイソプロポキシシラン、プロピルトリイソプロポキシシラン、イソプロピルトリイソプロポキシシラン、フェニルトリイソプロポキシシラン、トリルトリエトキシシラン等のトリアルコキシシランに代表されるトリアルコキシドモノマー、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジメチルジイソプロポキシシラン、ジメチルジ-n-ブトキシシラン、ジメチルジ-i-ブトキシシラン、ジメチルジ-sec-ブトキシシラン、ジメチルジ-t-ブトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジプロポキシシラン、ジエチルジイソプロポキシシラン、ジエチルジ-n-ブトキシシラン、ジエチルジ-i-ブトキシシラン、ジエチルジ-sec-ブトキシシラン、ジエチルジ-t-ブトキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジプロポキシシラン、ジプロピルジイソプロポキシシラン、ジプロピルジ-n-ブトキシシラン、ジプロピルジ-i-ブトキシシラン、ジプロピルジ-sec-ブトキシシラン、ジプロピルジ-t-ブトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジイソプロピルジプロポキシシラン、ジイソプロピルジイソプロポキシシラン、ジイソプロピルジ-n-ブトキシシラン、ジイソプロピルジ-i-ブトキシシラン、ジイソプロピルジ-sec-ブトキシシラン、ジイソプロピルジ-t-ブトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジプロポキシシラン、ジフェニルジイソプロポキシシラン、ジフェニルジ-n-ブトキシシラン、ジフェニルジ-i-ブトキシシラン、ジフェニルジ-sec-ブトキシシラン、ジフェニルジ-t-ブトキシシラン等のジアルコキシシランに代表されるジアルコキシドモノマーを用いることができる。さらに、アルキル基の炭素数がC4~C18であるアルキルトリアルコキシシランやジアルキルジアルコキシシランを用いることもできる。ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル基を有するモノマー、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基を有するモノマー、p-スチリルトリメトキシシラン等のスチリル基を有するモノマー、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等のメタクリル基を有するモノマー、3-アクリロキシプロピルトリメトキシシラン等のアクリル基を有するモノマー、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ基を有するモノマー、3-ウレイドプロピルトリエトキシシラン等のウレイド基を有するモノマー、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト基を有するモノマー、ビス(トリエトキシシリルプロピル)テトラスルフィド等のスルフィド基を有するモノマー、3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するモノマー、これらモノマーを少量重合したポリマー、前記材料の一部に官能基やポリマーを導入したことを特徴とする複合材料などの金属アルコキシドを用いてもよい。また、これらの化合物のアルキル基やフェニル基の一部、あるいは全部がフッ素で置換されていてもよい。さらに、金属アセチルアセトネート、金属カルボキシレート、オキシ塩化物、塩化物や、それらの混合物などが挙げられるが、これらに限定されない。金属種としては、Si以外にTi、Sn、Al、Zn、Zr、Inなどや、これらの混合物などが挙げられるが、これらに限定されない。上記酸化金属の前駆体を適宜混合したものを用いることもできる。また、これらの材料中に界面活性剤を加えることで、メソポーラス化された凹凸構造体を形成してもよい。さらに、シリカの前駆体として、分子中にシリカと親和性、反応性を有する加水分解基および撥水性を有する有機官能基を有するシランカップリング剤を用いることができる。例えば、n-オクチルトリエトキシラン、メチルトリエトキシシラン、メチルトリメトキシシラン等のシランモノマー、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルメチルジメトキシシラン等のビニルシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等のメタクリルシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等のメルカプトシラン、3-オクタノイルチオ-1-プロピルトリエトキシシラン等のサルファーシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン等のアミノシラン、これらモノマーを重合したポリマー等が挙げられる。
 ゾルゲル材料の溶液としてTEOSとMTESの混合物を用いる場合には、それらの混合比は、例えばモル比で1:1にすることができる。このゾルゲル材料は、加水分解及び重縮合反応を行わせることによって非晶質シリカを生成する。合成条件として溶液のpHを調整するために、塩酸等の酸またはアンモニア等のアルカリを添加する。pHは4以下もしくは10以上が好ましい。また、加水分解を行うために水を加えてもよい。加える水の量は、金属アルコキシド種に対してモル比で1.5倍以上にすることができる。
 ゾルゲル材料溶液の溶媒としては、例えばメタノール、エタノール、イソプロピルアルコール(IPA)、ブタノール等のアルコール類、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、メチルエチルケトン、イソホロン、シクロヘキサノン等のケトン類、ブトキシエチルエーテル、ヘキシルオキシエチルアルコール、メトキシ-2-プロパノール、ベンジルオキシエタノール等のエーテルアルコール類、エチレングリコール、プロピレングリコール等のグリコール類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテル類、酢酸エチル、乳酸エチル、γ-ブチロラクトン等のエステル類、フェノール、クロロフェノール等のフェノール類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、クロロホルム、塩化メチレン、テトラクロロエタン、モノクロロベンゼン、ジクロロベンゼン等のハロゲン系溶媒、二硫化炭素等の含ヘテロ元素化合物、水、およびこれらの混合溶媒が挙げられる。特に、エタノールおよびイソプロピルアルコールが好ましく、またそれらに水を混合したものも好ましい。
 ゾルゲル材料溶液の添加物としては、粘度調整のためのポリエチレングリコール、ポリエチレンオキシド、ヒドロキシプロピルセルロース、ポリビニルアルコールや、溶液安定剤であるトリエタノールアミンなどのアルカノールアミン、アセチルアセトンなどのβジケトン、βケトエステル、ホルムアミド、ジメチルホルムアミド、ジオキサンなどを用いることが出来る。また、ゾルゲル材料溶液の添加物として、エキシマUV光等紫外線に代表されるエネルギー線などの光を照射することによって酸やアルカリを発生する材料を用いることができる。このような材料を添加することにより、光を照射することよってゾルゲル材料溶液を硬化させることができるようになる。
<塗布工程>
 図6(a)に示すように、上記のように調製したゾルゲル材料(無機材料)の溶液を基材40上に塗布してゾルゲル材料の塗膜64を形成する。ゾルゲル材料の塗布方法として、バーコート法、スピンコート法、スプレーコート法、ディップコート法、ダイコート法、インクジェット法などの任意の塗布方法を使用することができるが、比較的大面積の基材にゾルゲル材料を均一に塗布可能であること、ゾルゲル材料がゲル化する前に素早く塗布を完了させることができることからすれば、バーコート法、ダイコート法及びスピンコート法が好ましい。塗膜64の膜厚は、500nm以上であることが好ましい。なお、基材40上には密着性を向上させるために、表面処理や易接着層を設けるなどをしてもよい。
<乾燥工程>
 ゾルゲル材料の塗布後、塗膜64中の溶媒を蒸発させるために基材を大気中もしくは減圧下で保持してもよい。この保持時間が短いと塗膜64の粘度が低くなりすぎて塗膜64への凹凸パターンの転写ができなくなり、保持時間が長すぎると前駆体の重合反応が進み塗膜64の粘度が高くなりすぎて塗膜64への凹凸パターンの転写ができなくなる。また、ゾルゲル材料を塗布後、溶媒の蒸発の進行とともに前駆体の重合反応も進行し、ゾルゲル材料の粘度などの物性も短時間で変化する。凹凸パターン形成の安定性の観点から、パターン転写が良好にできる乾燥時間範囲が十分広いことが望ましく、これは乾燥温度(保持温度)、乾燥圧力、ゾルゲル材料種、ゾルゲル材料種の混合比、ゾルゲル材料調製時に使用する溶媒量(ゾルゲル材料の濃度)等によって調整することができる。
<押圧工程>
 次いで、図6(b)に示すように、塗膜64にモールド140を重ねあわせて押圧し、モールド140の凹凸パターンをゾルゲル材料の塗膜64に転写する。モールド140としては、上記の凹凸パターン転写用モールドを用いることができるが、柔軟性または可撓性のあるフィルム状モールドを用いることが望ましい。この際、押圧ロールを用いてモールド140をゾルゲル材料の塗膜64に押し付けてもよい。押圧ロールを用いたロールプロセスでは、プレス式と比較して、モールドと塗膜とが接する時間が短いため、モールドや基材及び基材を設置するステージなどの熱膨張係数の差によるパターンくずれを防ぐことができること、ゾルゲル材料溶液中の溶媒の突沸によってパターン中にガスの気泡が発生したり、ガス痕が残ったりすることを防止することができること、基材(塗膜)と線接触するため、転写圧力及び剥離力を小さくでき、大面積化に対応し易いこと、押圧時に気泡をかみ込むことがないなどの利点を有する。また、モールドを押し付けながら基材を加熱してもよい。押圧ロールを用いてモールドをゾルゲル材料の塗膜に押し付ける例として、図7に示すように押圧ロール122とその直下に搬送されている基材40との間にフィルム状モールド140を送り込むことでフィルム状モールド140の凹凸パターンを基材40上の塗膜64に転写することができる。すなわち、フィルム状モールド140を押圧ロール122により塗膜64に押し付ける際に、フィルム状モールド140と基材40を同期して搬送しながら、基材40上の塗膜64の表面をフィルム状モールド140で被覆する。この際、押圧ロール122をフィルム状モールド140の裏面(凹凸パターンが形成された面と反対側の面)に押しつけながら回転させることで、フィルム状モールド140と基材40が進行しながら密着する。なお、長尺のフィルム状モールド140を押圧ロール122に向かって送り込むには、長尺のフィルム状モールド140が巻き付けられたフィルムロールからそのままフィルム状モールド140を繰り出して用いるのが便利である。
<仮焼成工程>
 ゾルゲル材料の塗膜64にモールド140を押し付けた後、塗膜を仮焼成してもよい。仮焼成することにより塗膜64のゲル化が進み、パターンが固化して、モールド140の剥離の際にパターンが崩れにくくなる。仮焼成を行う場合は、大気中で室温~300℃の温度で加熱することが好ましい。なお、仮焼成は必ずしも行う必要はない。また、ゾルゲル材料溶液に紫外線などの光を照射することによって酸やアルカリを発生する材料を添加した場合には、塗膜64を仮焼成する代わりに、例えばエキシマUV光等の紫外線に代表されるエネルギー線を照射してもよい。
<剥離工程>
 モールド140の押圧またはゾルゲル材料の塗膜64の仮焼成の後、図6(c)に示すように、凹凸が形成された塗膜(凹凸構造体)62からモールド140を剥離する。モールド140の剥離方法として公知の剥離方法を採用することができる。加熱しながらモールド140を剥離してもよく、それにより凹凸構造体62から発生するガスを逃がし、凹凸構造体62内に気泡が発生することを防ぐことができる。ロールプロセスを使用する場合、プレス式で用いるプレート状モールドに比べて剥離力は小さくてよく、ゾルゲル材料がモールド140に残留することなく容易にモールド140を凹凸構造体62から剥離することができる。特に、凹凸構造体62を加熱しながら押圧するので反応が進行し易く、押圧直後にモールド140が凹凸構造体62から剥離し易くなる。さらに、モールド140の剥離性の向上のために、剥離ロールを使用してもよい。図7に示すように剥離ロール123を押圧ロール122の下流側に設け、剥離ロール123によりフィルム状モールド140を塗膜64に付勢しながら回転支持することで、フィルム状モールド140が塗膜64に付着された状態を押圧ロール122と剥離ロール123の間の距離だけ(一定時間)維持することができる。そして、剥離ロール123の下流側でフィルム状モールド140を剥離ロール123の上方に引き上げるようにフィルム状モールド140の進路を変更することでフィルム状モールド140は凹凸が形成された塗膜(凹凸構造体)62から引き剥がされる。なお、フィルム状モールド140が塗膜64に付着されている期間に前述の塗膜64の仮焼成や加熱を行ってもよい。なお、剥離ロール123を使用する場合には、例えば室温~300℃に加熱しながら剥離することによりモールド140の剥離を一層容易にすることができる。
<エッチング工程>
 モールドの剥離後において、図6(c)に示すように、凹凸構造体62の凹部(凹凸構造体の厚みが薄い領域)にはゾルゲル材料の膜が存在しているため、凹凸構造体62の凹部のゾルゲル材料をエッチングして除去することにより、図6(d)に示すように、基材40の表面を露出させ、それにより基材40上に凸部60aを形成する。エッチングは、CHF、SFなどのフッ素系のガスを用いたRIEによって行うことができる。BHF等を用いたウェットエッチングによりエッチングしてもよい。エッチング工程においては凹凸構造体62の凹部だけでなく、凸部を含む凹凸構造体62全体がエッチングされるため、凹凸構造体62の凹部がエッチングされて基材表面が露出し、所定の大きさの凸部60aが基材40上に形成された時点でエッチングを停止する。こうしてゾルゲル材料からなる凸部60aの間に基材表面が露出した領域(凹部70a)が区画される。エッチング後の凹凸構造体62aはゾルゲル材料からなる複数の凸部60aから形成されている。なお、RIE等のドライエッチングでエッチングを行う場合、露出した基材表面が荒れる(ダメージが入る)ため、リン酸系の薬液等で後処理してもよい。
<硬化工程>
 エッチング工程後、ゾルゲル材料からなる凹凸構造体62a(凸部60a)を硬化する。凸部60aは、本焼成することにより硬化させることができる。本焼成により凸部60aを構成するシリカ(アモルファスシリカ)中に含まれている水酸基などが脱離して塗膜がより強固となる。本焼成は、600~1200℃の温度で、5分~6時間程度行うのが良い。こうして凸部60aが硬化して、基材40上に形成された凹凸構造体62a(凸部60a)及び凹部70aが凹凸パターン80aを形成しているエピタキシャル成長用基板100aを形成することができる。この時、凸部60aがシリカからなる場合、焼成温度、焼成時間に応じて非晶質または結晶質、または非晶質と結晶質の混合状態となる。また、ゾルゲル材料溶液に紫外線などの光を照射することによって酸やアルカリを発生する材料を添加した場合には、凸部60aを焼成する代わりに、例えばエキシマUV光等の紫外線に代表されるエネルギー線を照射することによって、凸部60aを硬化することができる。
 なお、硬化工程とエッチング工程はどちらを先に行ってもよい。硬化工程後にエッチング工程を行う場合は、硬化工程でゾルゲル材料からなる凹凸構造体を硬化させた後、エッチング工程にて硬化した凹凸構造体の凹部をエッチングして除去し、基材表面を露出させる。
 また、凸部60aの表面に疎水化処理を行ってもよい。疎水化処理の方法は知られている方法を用いればよく、例えば、シリカ表面であれば、ジメチルジクロルシラン、トリメチルアルコキシシラン等で疎水化処理することもできるし、ヘキサメチルジシラザンなどのトリメチルシリル化剤とシリコーンオイルで疎水化処理する方法を用いてもよいし、超臨界二酸化炭素を用いた金属酸化物粉末の表面処理方法を用いてもよい。
 さらに、図6(e)に示すように、エッチング工程において露出させた基材表面をエッチングして基材40に凹部70bを形成してもよい。それにより、凹凸構造体62a(凸部60a)及び凹部70bからなる凹凸パターン80bが形成されたエピタキシャル成長用基板100bを形成することができる。このエピタキシャル成長用基板100bは、基材40に凹部70bが形成されるため、基材40のエッチングを行わない基板100aと比べて、凹凸パターンの凹凸深さを大きくすることができる。基材40としてサファイア基板を用いる場合、基材40のエッチングは、例えばBCl等を含むガスを用いたRIEによって行うことができる。
 凹部エッチング法において用いるモールド140の凹凸パターンの断面形状は、比較的なだらかな傾斜面からなり、且つモールド140の凹凸パターンの平面形状は、凸部が尾根状に連なって延在しているため、基材エッチング法と同様に、モールドが型詰まりしにくく、モールドの洗浄または交換の頻度を低減できる。そのため、本製造方法では、高速で長時間の連続生産が可能であり、製造コストも抑制できる。
 基材エッチング法のような基材表面を凹凸にすることで凹凸パターンを形成するエピタキシャル成長用基板の製造方法と比較すると、凹部エッチング法によるエピタキシャル成長用基板の製造方法は、基板の製造時間を短縮することができる。基材表面に直接凹凸を形成する場合、形成する凹凸パターンの凹凸深さの分だけ基材をエッチングする必要があるが、凹部エッチング法では、モールド剥離後に凹凸構造体の凹部に残るゾルゲル材料をエッチングするだけでよい。
 また、凹部エッチング法は上述のようにロールプロセスを適用できるため、エピタキシャル成長用基板を高速で連続的に生産することができる。また、フォトリソグラフィを用いていないため、エピタキシャル成長用基板の生産コストを低減し、環境への負荷を軽減することができる。
(3)剥離転写法
 剥離転写法によるエピタキシャル成長用基板の製造方法は、図8に示すように、主に、ゾルゲル材料を調製する溶液調製工程P1、調製されたゾルゲル材料をモールドに塗布する塗布工程P2、塗布したゾルゲル材料を基材上に密着させる密着工程P3、モールドを塗膜から剥離する剥離工程P4、及び塗膜を硬化する硬化工程P5を有する。以下、各工程について、図9(a)~(e)を参照しながら順に説明する。
<ゾルゲル材料溶液調製工程>
 最初にゾルゲル材料(無機材料)の溶液を調製する。ゾルゲル材料の溶液の調製は、上述した凹部エッチング法におけるゾルゲル材料溶液調整工程に記載の方法と同様の方法で行ってよい。
 <塗布工程>
 図9(a)に示すように、上記のように調製したゾルゲル材料(無機材料)の溶液をモールド140の凹凸パターン上に塗布して、モールド140の凹部140aに塗膜66を形成する。この際、モールド140の凹部140aにのみゾルゲル材料の溶液を充填して、モールド140の凸部140bにはゾルゲル材料の溶液が付着しないことが好ましい。そのため、ゾルゲル材料溶液の塗布量は、モールドの凹部の体積に等しくなる量とすることが好ましい。モールド140としては、上記の凹凸パターン転写用モールドを用いることができるが、柔軟性または可撓性のあるフィルム状モールドを用いることが望ましい。例えば、図10に示すようにダイコータ30の先端付近にフィルム状モールド140を送り込み、ダイコータ30からゾルゲル材料を吐出することで、フィルム状モールド140の凹部140aに塗膜66を形成することができる。量産性の観点から、フィルム状モールド140を連続的に搬送しながら所定位置に設置したダイコータ30でフィルム状モールド140にゾルゲル材料を連続的に塗布することが好ましい。塗布方法として、バーコート法、スプレーコート法、ダイコート法、インクジェット法などの任意の塗布方法を使用することができるが、比較的大きな幅のモールドにゾルゲル材料を均一に塗布可能であること、ゾルゲル材料がゲル化する前に素早く塗布を完了させることができることからすれば、ダイコート法が好ましい。
 <密着工程>
 図9(b)に示すように、ゾルゲル材料の塗膜66を形成したモールド140を基材40に押し付けることで、塗膜66を基材40上に密着させる。これにより、基材40のモールド140の凹部140aに対向する部分に塗膜66が密着する。この際、押圧ロール(密着ロール)を用いてモールド140を基材40に押し付けてもよい。基材40は、O処理などによって表面を親水処理したものを使用してもよい。基材40の表面を親水処理することにより、基材40とゾルゲル材料の塗膜66の密着力を大きくすることができる。押圧ロールを用いてモールドを基材に押し付ける例として、例えば、図10に示すように押圧ロール22とその直下に搬送されている基材40との間に塗膜66を形成したフィルム状モールド140を送り込むことでフィルム状モールド140の凹部140aに形成した塗膜66を基材40に密着させることができる。すなわち、凹部140aに塗膜66が形成されたフィルム状モールド140を押圧ロール22により基材40に押し付ける際に、フィルム状モールド140と基材40を同期して搬送しながら基材40の表面をフィルム状モールド140で被覆する。この際、押圧ロール22をフィルム状モールド140の裏面(凹凸パターンが形成された面と反対側の面)に押しつけることで、フィルム状モールド140の凹部140aに形成された塗膜66と基材40が進行しながら密着する。なお、長尺のフィルム状モールド140を押圧ロール22に向かって送り込むには、長尺のフィルム状モールド140が巻き取られたフィルム巻き取りロールからそのままフィルム状モールド140を繰り出して用いるのが有利である。
 この密着工程において、塗膜を基材に押し付けるときに塗膜を加熱してもよい。例えば、押圧ロールを通じて塗膜を加熱してもよく、直接または基材側から塗膜を加熱してもよい。押圧ロールを通じて塗膜を加熱する場合には、押圧ロール(密着ロール)の内部に加熱手段を設けてもよく、任意の加熱手段を使用することができる。押圧ロールの内部に加熱ヒータを備えるものが好適であるが、押圧ロールとは別体のヒータを備えていてもよい。いずれにしても塗膜を加熱しながら押圧が可能であれば、どのような押圧ロールを用いてもよい。押圧ロールは、表面に耐熱性のあるエチレン-プロピレン-ジエンゴム(EPDM)やシリコーンゴム、ニトリルゴム、フッ素ゴム、アクリルゴム、クロロプレンゴムなどの樹脂材料の被膜を有するロールが好ましい。また、押圧ロールで加えられた圧力に抗するために押圧ロールに対向して基材を挟むように支持ロールを設けてもよく、あるいは基材を支持する支持台を設置してもよい。
 密着(押圧)の際の塗膜の加熱温度は、室温~300℃にすることができ、押圧ロールを用いて加熱する場合には押圧ロールの加熱温度は、同様に室温~300℃にすることができる。このように押圧ロールを加熱することにより、モールドにより押圧が行われた塗膜からモールドをすぐに剥離することができ、生産性を向上することができる。塗膜または押圧ロールの加熱温度が300℃を超えると、樹脂材料からなるモールドの耐熱温度を超える恐れがある。また、塗膜を加熱しながら押圧することにより、後述するゾルゲル材料層の仮焼成と同様の効果が期待できる。
 塗膜を基材に密着させた後、塗膜を仮焼成してもよい。塗膜を加熱しないで押圧する場合には、仮焼成を行うことが好ましい。仮焼成することにより塗膜のゲル化が進み、パターンが固化して、モールド剥離の際にパターンが崩れにくくなる。仮焼成を行う場合には、大気中で室温~300℃の温度で加熱することが好ましい。また、ゾルゲル材料溶液に紫外線などの光を照射することによって酸やアルカリを発生する材料を添加した場合には、塗膜を仮焼成する代わりに、例えばエキシマUV光等の紫外線に代表されるエネルギー線を照射してもよい。
 <剥離工程>
 密着工程後の塗膜及び基材からモールドを剥離する。モールド剥離後において、図9(c)に示すように、基材40上のモールド140の凹部140aに対応する部分にゾルゲル材料の塗膜が密着して凸部60aを形成する。基材40は、モールド140の凹部140aに対応する領域(基材40の凸部60aが形成された領域)以外の領域において、表面が露出している。こうしてゾルゲル材料からなる凸部60aの間に基材表面が露出した領域(凹部70a)が区画される。モールドの剥離方法としては公知の剥離方法を採用することができる。加熱しながらモールドを剥離してもよく、それにより塗膜から発生するガスを逃がし、膜内に気泡が発生することを防ぐことができる。ロールプロセスを使用する場合、プレス式で用いるプレート状モールドに比べて剥離力は小さくてよく、塗膜がモールドに残留することなく容易にモールドを塗膜から剥離することができる。特に、塗膜を加熱しながら押圧するので反応が進行し易く、押圧直後にモールドは塗膜から剥離し易くなる。さらに、モールドの剥離性の向上のために、剥離ロールを使用してもよい。図10に示すように剥離ロール23を押圧ロール22の下流側に設け、剥離ロール23によりフィルム状モールド140及び塗膜66を基材40に付勢しながら回転支持することで、フィルム状モールド140及び塗膜66が基材40に付着された状態を押圧ロール22と剥離ロール23の間の距離だけ(一定時間)維持することができる。そして、剥離ロール23の下流側でフィルム状モールド140を剥離ロール23の上方に引き上げるようにフィルム状モールド140の進路を変更することでフィルム状モールド140がゾルゲル材料の塗膜からなる凸部60a及び基材40から引き剥がされる。なお、フィルム状モールド140が基材40に付されている期間に前述の塗膜の仮焼成や加熱を行ってよい。なお、剥離ロール23を使用する場合には、例えば室温~300℃に加熱しながら剥離することにより塗膜の剥離を一層容易にすることができる。さらに、剥離ロール23の加熱温度を押圧ロールの加熱温度や仮焼成温度よりも高温にしてもよい。その場合、高温に加熱しながら剥離することにより塗膜66から発生するガスを逃がし、気泡の発生を防ぐことができる。なお、図10において、基材40に密着されなかった塗膜66、すなわち、フィルム状モールド140の基材40と続いて搬送される基材40との間に対向する領域に形成された塗膜66についてはそのままフィルム状モールド140の凹部140aに付いたままフィルム状モールド140とともに搬送される。
 <硬化工程>
 モールドを剥離した後、ゾルゲル材料からなる凸部60aを硬化する。硬化は、凹部エッチング法の硬化工程に記載した方法と同様の方法で行うことができる。こうして塗膜が硬化して、図9(d)に示すような基材40上に形成された凸部60a及び凹部70aが凹凸パターン80aを形成しているエピタキシャル成長用基板100aを形成することができる。また、上記凹部エッチング法と同様に、凸部60aの表面に疎水化処理を行ってもよい。
 図9(e)に示すように、上記実施形態の方法により製造されたエピタキシャル成長用基板100aの露出した基材表面をエッチングして基材40に凹部70bを形成してもよい。それにより、凸部60a及び凹部70bからなる凹凸パターン80bが形成されたエピタキシャル成長用基板100bを形成することができる。このエピタキシャル成長用基板100bは、基材40に凹部70bが形成されるため、基材40のエッチングを行わない基板100aと比べて、凹凸パターンの凹凸深さを大きくすることができる。基材としてサファイア基板を用いる場合、基材のエッチングは、例えばBCl等を含むガスを用いたRIEによって行うことができる。
 剥離転写法において用いるモールド140の凹凸パターンの断面形状は、比較的なだらかな傾斜面からなり、且つモールド140の凹凸パターンの平面形状は、凸部が尾根状に連なって延在しているため、基材エッチング法と同様に、モールドが型詰まりしにくく、モールドの洗浄または交換の頻度を低減できる。そのため、本製造方法では、高速で長時間の連続生産が可能であり、製造コストも抑制できる。
 基材エッチング法のような基材表面を凹凸にすることで凹凸パターンを形成するエピタキシャル成長用基板の製造方法と比較すると、剥離転写法によるエピタキシャル成長用基板の製造方法は、基板の製造時間を短縮することができる。剥離転写法においては、密着工程において、基材の最終的に凸部を形成する領域にのみゾルゲル材料の塗膜を密着させるため、モールド剥離後の時点で凸部が形成された領域以外の部分において基材表面が露出している。ゆえに、剥離転写法では、基材表面を露出させるためにエッチングを行う必要がない。そのため、形成する凹凸パターンの凹凸深さの分だけ基材表面を直接エッチングして凹凸を形成する場合と比べて製造時間が短くなる。また、基材表面がエッチングにさらされる場合、エッチングにより露出した基材表面が荒れる(ダメージが入る)ことがあり、エッチング後に薬液処理等が必要になることがあるが、剥離転写法ではエッチングの必要がないため、このようなダメージが生じず、薬液処理の必要もない。
 また、剥離転写法は上述のようにロールプロセスを適用できるため、エピタキシャル成長用基板を高速で連続的に生産することができる。また、フォトリソグラフィを用いていないため、エピタキシャル成長用基板の生産コストを低減し、環境への負荷を軽減することができる。
 剥離転写法の変形形態を図11(a)~(e)を参照しながら説明する。以下、剥離転写法の変形形態を適宜「マイクロコンタクト法」という。マイクロコンタクト法は、上記の剥離転写法と同様に、主に、ゾルゲル材料を調製する溶液調製工程、調製されたゾルゲル材料をモールドに塗布する塗布工程、塗布したゾルゲル材料を基材上に密着させる密着工程、モールドを塗膜から剥離する剥離工程、及び塗膜を硬化する硬化工程を有する。上記の剥離転写法においては、基材40上に形成される凸部60aは、モールド140の凹部140aに対向する部分に形成されるが、マイクロコンタクト法においては、凸部60aは、基材40のモールド140の凸部140bに対向する部分に形成される。
<ゾルゲル材料溶液調製工程>
 ゾルゲル材料溶液の調製は、上記の剥離転写法の説明に記載した方法と同様にして行う。
<塗布工程>
 マイクロコンタクト法では、図11(a)に示すように、調製したゾルゲル材料(無機材料)の溶液をモールド140の凸部140bのみに塗布して塗膜68を形成する。ゾルゲル材料は、モールド140の凸部140bの表面(基材40と対向する面)のみに塗布することが望ましいが、塗布方法によっては、ゾルゲル材料が凸部140bの側部、すなわち凹部140aに回り込むこともあり得る。この場合でも、剥離工程後にモールドの凸部140bのパターンを反映したゾルゲル材料からなる凸部60aが基材40上に形成されていれば、ゾルゲル材料がモールドの凹部140aに付着していても構わない。塗布方法として、バーコート法、スピンコート法、スプレーコート法、ディップコート法、ダイコート法、インクジェット法などの任意の塗布方法を使用することができるが、比較的大面積のモールドにゾルゲル材料を均一に塗布可能であること、ゾルゲル材料が硬化(ゲル化)する前に素早く塗布を完了させることができることからすれば、バーコート法、ダイコート法及びスピンコート法が好ましい。あるいは、モールドをロール状に成型し、ロール状のモールドを容器中に浅く充填したゾルゲル材料に浸漬して回転させることにより、モールドの凸部140bにゾルゲル材料を塗布してもよい。ロール状のモールドは、例えば、可撓なモールドを金属などの硬質なロールに巻き付けることで作製することができる。モールドの凸部140bに塗布するゾルゲル材料の塗膜68の膜厚は1~3000nmが好ましい。ゾルゲル材料の塗膜の膜厚は、例えばゾルゲル材料の粘度等によって調製することができる。
 マイクロコンタクト法において用いるモールドは、上述したゴムモールドのような弾性変形可能なモールドであることが好ましい。また、剥離工程後において、基材上にモールドの凸部に対応する部分のみにゾルゲル材料の塗膜が転写されて凸部が形成されていることが望ましいため、モールドの凹凸の深さ分布の平均値は、形成する凹凸パターンのピッチに対して1~10倍程度であることが望ましい。前記下限よりもモールドの凹凸深さが小さいと、基材上の意図した部分以外にもゾルゲル材料の塗膜が転写されてしまうことがある。一方前記上限よりもモールドの凹凸深さが大きいと、密着工程においてモールドの形状が変形して、基材上に転写されるパターンが崩れ、所望のパターンが得られない可能性がある。
 <密着工程>
 図11(b)に示すように、ゾルゲル材料の塗膜68を形成したモールド140を基材40に押し付けることで、塗膜68を基材40上に密着させる。これにより、基材40のモールド140の凸部140bに対向する部分に塗膜68が密着する。また、基材40は、O処理などによって表面を親水処理したものを使用してもよい。基板40の表面を親水処理することにより、基板40とゾルゲル材料の接着力をさらに大きくすることができる。
 密着工程において、基材にゾルゲル材料の塗膜を接触させるときに、塗膜を加熱してもよい。加熱を行うことにより、ゾルゲル材料の化学反応、並びにそれによって生じた水及び溶媒の蒸発が促進され、塗膜の硬化(ゲル化)が進行する。そのため、未硬化の塗膜がモールドの凸部の大きさ以上に濡れ広がって基材に転写されるのを防ぐことができる。また、未硬化の塗膜が、剥離工程後にモールドの凸部に残留するのを防ぐことができる。モールドの凸部に塗膜が残留すると、モールドを再使用してエピタキシャル成長用基板を製造する場合に、モールド上に形成する塗膜の膜厚が変動したり、残留した塗膜が硬化してパーティクルの原因となったりする恐れがある。塗膜を加熱する方法として、例えば、モールドを通じて加熱してもよく、または、基材側からもしくは直接、塗膜を加熱してもよい。加熱には、任意の加熱手段を使用することができ、例えば基材側から加熱する場合は、基材の裏面側にホットプレートを設置して加熱することができる。塗膜の加熱温度は、基材を処理する速度に依存するが、高温ほど望ましく、モールドの耐熱温度に近い温度が望ましい。例えば、モールドがポリジメチルシロキサン(PDMS)から形成されている場合は、ゾルゲル材料の塗膜の加熱温度は150~200℃が好ましい。ゾルゲル材料溶液に紫外線などの光を照射することによって酸やアルカリを発生する材料を添加した場合には、塗膜を加熱する代わりに、例えばエキシマUV光等の紫外線に代表されるエネルギー線を照射することによってゲル化を進めてもよい。
<剥離工程>
 塗膜及び基材からモールドを剥離する。モールド剥離後において、図11(c)に示すように、基材40上のモールド140の凸部140bに対応する部分にゾルゲル材料の塗膜が密着して凸部60aを形成する。基材40は、モールド140の凸部140bに対応する領域(凸部60aが形成された領域)以外の領域において、表面が露出している。こうしてゾルゲル材料からなる凸部60aの間に基材表面が露出した領域(凹部70a)が区画される。モールドの剥離方法としては公知の剥離方法を採用することができる。前述のロール状のモールドを用いれば、ゾルゲル材料が塗布されたロール状のモールドを基材40上で転がすだけで基材40上にゾルゲル材料の塗膜68を転写して凸部60aを形成しつつ、モールドを基材40から剥離することができる。
<硬化工程>
 モールドを剥離した後、ゾルゲル材料からなる凸部60aを硬化する。硬化は、上記の剥離転写法の硬化工程に記載した方法と同様の方法で行うことができる。こうして塗膜が硬化して、図11(d)に示すような基材40上に形成された凸部60a及び凹部70aが凹凸パターン80aを形成しているエピタキシャル成長用基板100aを形成することができる。また、上記剥離転写法と同様に、凸部60aの表面に疎水化処理を行ってもよい。
 なお、上記剥離転写法と同様に、図11(e)に示すように、マイクロコンタクト法により製造されたエピタキシャル成長用基板100aの露出した基材表面をエッチングして基材40に凹部70bを形成してもよい。それにより、凸部60a及び凹部70bからなる凹凸パターン80bが形成されたエピタキシャル成長用基板100bを形成することができる。
 上記剥離転写法において用いるモールド140の凹凸パターンの断面形状は、比較的なだらかな傾斜面からなり、且つモールド140の凹凸パターンの平面形状は、凸部が尾根状に連なって延在しているため、基材エッチング法と同様に、モールドが型詰まりしにくく、モールドの洗浄または交換の頻度を低減できる。そのため、マイクロコンタクト法では、高速で長時間の連続生産が可能であり、製造コストも抑制できる。
 基材エッチング法のような基材表面を凹凸にすることで凹凸パターンを形成するエピタキシャル成長用基板の製造方法と比較すると、マイクロコンタクト法によるエピタキシャル成長用基板の製造方法は、剥離転写法によるエピタキシャル成長用基板の製造方法と同様に、基板の製造時間を短縮することができる。マイクロコンタクト法においては、密着工程において、基材の最終的に凸部を形成する領域にのみゾルゲル材料の塗膜を密着させるため、モールド剥離後の時点で凸部が形成された領域以外の部分において基材表面が露出している。ゆえに、マイクロコンタクト法では、基材表面を露出させるためにエッチングを行う必要がない。そのため、形成する凹凸パターンの凹凸深さの分だけ基材表面を直接エッチングして凹凸を形成する場合と比べて製造時間が短くなる。また、基材表面がエッチングにさらされる場合、エッチングにより露出した基材表面が荒れる(ダメージが入る)ことがあり、エッチング後に薬液処理等が必要になることがあるが、剥離転写法ではエッチングの必要がないため、このようなダメージが生じず、薬液処理の必要もない。
 また、剥離転写法と同様に、マイクロコンタクト法においてもロールプロセスを適用できるため、エピタキシャル成長用基板を高速で連続的に生産することができる。また、フォトリソグラフィを用いていないため、エピタキシャル成長用基板の生産コストを低減し、環境への負荷を軽減することができる。
 以上のように基材エッチング法、凹部エッチング法、剥離転写法、マイクロコンタクト法で作製した基板の表面(凹凸パターンが形成された面)に、さらにバッファ層を形成してもよく、それにより得られる基板も実施形態のエピタキシャル成長用基板に含まれる。そのような基板は図3(a)~(c)に図示されるように、凹凸パターン80、80a、80bの表面にバッファ層20を備える。凹凸パターンの断面形状は、比較的なだらかな傾斜面からなり、波形構造をなしているため、欠陥の少ないバッファ層を形成することができる。
 凹部エッチング法における塗布工程の前、または、剥離転写法、マイクロコンタクト法における密着工程の前に、基材上にバッファ層を形成してもよく、それにより得られる基板も実施形態のエピタキシャル成長用基板に含まれる。そのような基板は図3(d)に図示されるように、バッファ層20の表面から突出するように凸部60aが形成されて、凸部60aの間にバッファ層20が露出した領域(凹部70f)が区画され、それにより凹凸パターン80fが形成されていている。
 バッファ層20は低温MOCVD法やスパッタ法等の公知の方法を用いて形成することができ、層厚は1~100nmの範囲内であることが好ましい。バッファ層を有するエピタキシャル成長用基板100c、100d、100e、100fの表面に半導体層をエピタキシャル成長させる場合、バッファ層により基板と半導体層の格子定数の違いが緩和されて、結晶性の高い半導体層を形成できる。GaN系の半導体層を実施形態のエピタキシャル成長用基板上にエピタキシャル成長させる場合は、バッファ層は、AlGa1―XN(0≦x≦1)で構成することができ、単層構造に限らず、組成の異なる2種類以上を積層した2層以上の多層構造であってもよい。
 なお、上記の凹部エッチング法
、マイクロコンタクト法、剥離転写法において、塗布工程において塗布する無機材料の溶液として、TiO、ZnO、ZnS、ZrO、BaTiO、SrTiO等のゾルゲル材料の溶液または微粒子分散液を用いてもよい。このうち、成膜性や屈折率の関係からTiOが好ましい。このうち、成膜性や屈折率の関係からTiOが好ましい。液相堆積法(LPD:Liquid Phase Deposition)などを用いて無機材料の塗膜を形成してもよい。
 また、塗布工程において塗布する無機材料として、ポリシラザン溶液を用いてもよい。この場合、これを塗布及び転写して形成した凸部を、硬化工程においてセラミックス化(シリカ改質)してシリカからなる凸部を形成してもよい。なお、「ポリシラザン」とは、珪素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。特開平8-112879号公報に記載されている下記の一般式(1)で表されるような比較的低温でセラミック化してシリカに変性する化合物がより好ましい。
 一般式(1):
   -Si(R1)(R2)-N(R3)-
 式中、R1、R2、R3は、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基またはアルコキシ基を表す。
 上記一般式(1)で表される化合物の中で、R1、R2及びR3のすべてが水素原子であるパーヒドロポリシラザン(PHPSともいう)や、Siと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンが特に好ましい。
 低温でセラミック化するポリシラザンの別の例としては、ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報)等を用いることもできる。
 ポリシラザン溶液の溶媒としては、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。酸化珪素化合物への改質を促進するために、アミンや金属の触媒を添加してもよい。
[発光素子]
 上記実施形態のエピタキシャル成長用基板を用いて発光素子を製造することができる。実施形態の発光素子200は、図12に示すように、エピタキシャル成長用基板100上に、第1導電型層222と、活性層224と、第2導電型層226とをこの順に積層して形成された半導体層220を備える。さらに、実施形態の発光素子200は、第1導電型層222に電気的に接続する第1電極240、及び第2導電型層226に電気的に接続する第2電極260を備える。
 半導体層220の材料として、発光素子に用いられる公知の材料を用いてよい。発光素子に用いられる材料として、例えば、一般式InAlGa1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)で表されるGaN系半導体材料が多数知られており、本実施形態の発光素子においても、それら周知のGaN系半導体を含めて一般式AlGaIn1-Aで表わされるGaN系半導体を何ら制限なく用いることができる。GaN系半導体は、Al、GaおよびIn以外に他のIII族元素を含有することができ、必要に応じてGe、Si、Mg、Ca、Zn、Be、P、AsおよびBなどの元素を含有することもできる。さらに、意識的に添加した元素に限らず、半導体層の成長条件等に依存して必然的に含まれる不純物、並びに原料、反応管材質に含まれる微量不純物を含む場合もある。上記窒化物半導体以外に、GaAs、GaP系化合物半導体、AlGaAs、InAlGaP系化合物半導体等の他の半導体材料も用いることができる。
 第1導電型層としてのn型半導体層222は、基板100上に積層される。n型半導体層222は、当該技術において公知の材料及び構造で形成されてよく、例えば、n-GaNから形成されてよい。活性層224はn型半導体層222の上に積層される。活性層224は、当該技術において公知の材料及び構造で形成されてよく、例えば、GalnN及びGaNを複数回積層した多重量子井戸(MQW)構造を有してよい。活性層224は電子及び正孔の注入により発光する。第2導電型層としてのp型半導体層226は、活性層224上に積層される。p型半導体層226は、当該技術において公知の構造を有してよく、例えば、p-AlGaN及びp-GaNから形成されてよい。半導体層(n型半導体層、活性層及びp型半導体層)の積層方法は特に限定されず、MOCVD(有機金属化学気相成長法)、HVPE(ハイドライド気相成長法)、MBE(分子線エピタキシー法)、などGaN系半導体を成長させることができる公知の方法を適用できる。層厚制御性、量産性の観点からMOCVD法が好ましい。
 エピタキシャル成長用基板100の表面には凹凸パターン80が形成されているが、n型半導体層のエピタキシャル成長中に、特開2001-210598号公報に記載されるような半導体層の横方向成長による表面の平坦化が進行する。活性層は平坦な面上に形成する必要があるため、表面が平坦になるまでn型半導体層を積層する必要がある。実施形態のエピタキシャル成長用基板は凹凸パターンの断面形状が比較的なだらかな傾斜面からなり、波形構造をなしているため、表面の平坦化の進行が速く、n型半導体層の層厚を小さくすることができる。半導体層の成長時間を短縮することができる。
 第1電極としてのn電極240は、p型半導体層226及び活性層224の一部をエッチングして露出したn型半導体層222上に形成される。n電極222は、当該技術において公知の材料及び構造で形成されてよく、例えば、Ti/Al/Ti/Au等から構成され、真空蒸着法、スパッタリング法、CVD法等により形成される。第2電極としてのp電極260は、p型半導体層226上に形成される。p電極226は、当該技術において公知の材料及び構造で形成されてよく、例えば、ITO等からなる透光性導電膜とTi/Au積層体等からなる電極パッドから形成されてよい。p電極260はAg、Al等の高反射性材料から形成されてもよい。n電極240及びp電極260は、真空蒸着法、スパッタリング法、CVD法等の任意の成膜法により形成することができる。
 なお、第1導電型層、活性層及び第2導電型層を少なくとも含み、第1導電型層及び第2導電型層に電圧が印加されると、電子及び正孔の再結合により活性層にて光が発せられるものであれば、半導体層の層構成は任意である。
 以上のように構成された実施形態の光学素子200は、p型半導体226側から光を取り出すフェイスアップ方式の光学素子であってよく、その場合はp電極260に透光性導電材料を使用することが好ましい。実施形態の光学素子200は、基板100側から光を取り出すフリップチップ方式の光学素子であってもよく、その場合はp電極260に高反射材料を使用することが好ましい。いずれの方式であっても、基板の凹凸パターン80による回折効果により、活性層224で生じた光を素子外部に有効に取り出すことができる。
 また、光学素子200において、基板100に凹凸パターン80が形成されているため、転位密度の少ない半導体層220が形成され、発光素子200の特性の劣化が抑制される。
 以下、本発明を、実施例及び比較例により、具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例1
<フィルムモールドの作製>
 まず、下記のようなポリスチレン(以下、適宜「PS」と略する)とポリメチルメタクリレート(以下、適宜「PMMA」と略する)とからなるPolymer Source社製のブロック共重合体を用意した。
PSセグメントのMn=800,000
PMMAセグメントのMn=750,000
ブロック共重合体のMn=1,550,000
分子量分布(Mw/Mn)=1.28
 このブロック共重合体150mgとポリエチレンオキシドとして45mgのAldrich製ポリエチレングリコール2050(平均Mw=2050)に、トルエンを、総量が10gになるように加えて溶解させた。この溶液を孔径0.2μmのメンブレンフィルターでろ過してブロック共重合体溶液を得た。
 信越シリコーン社製KBM-5103を1g、イオン交換水を1g、酢酸0.1ml、イソプロピルアルコールを19g混合した混合溶液をガラス基板上にスピンコートにより塗布した(回転速度1000rpmで30秒間行った)。混合溶液を塗布した基板を130℃で15分間処理することにより、シランカップリング処理ガラスを得た。得られたシランカップリング処理ガラスを基材として用い、基材上に、スピンコートにより上記ブロック共重合体溶液を塗布することにより、膜厚160nmのブロック共重合体の薄膜を形成した。スピンコートは、回転速度1000rpmで30秒間行った。
 次いで、薄膜が形成された基材を、予めクロロホルムの蒸気を充満したデシケータ中に35時間、室温にて静置することで、薄膜を溶媒アニール処理した。デシケータ(容量5L)内には、クロロホルムを15g充填したスクリュー瓶が設置されており、デシケータ内の雰囲気は飽和蒸気圧のクロロホルムで満たされていた。溶媒アニール処理後の薄膜の表面には、凹凸が観察されて、薄膜を構成するブロック共重合体がミクロ層分離していることが分かった。
 溶媒アニール処理されて波形化された薄膜の表面(電鋳前の段階)の凹凸形状を原子間力顕微鏡(SIIナノテクノロジー社製の環境制御ユニット付走査型プローブ顕微鏡「NanonaviIIステーション/E-sweep」)を用いて測定し、解析画像を得た。得られた解析画像を図16に示す。原子間力顕微鏡の解析条件以下の通りである。
 測定モード:ダイナミックフォースモード
 カンチレバー:SI-DF40P2(材質:Si、レバー幅:40μm、チップ先端の直径:10nm)
 測定雰囲気:大気中
 測定温度:25℃。
 上記溶媒アニール処理により波形化された薄膜の表面に、スパッタにより、電流シード層として50nm程度の薄いニッケル層を形成した。次いで、この薄膜付き基材をスルファミン酸ニッケル浴中に入れ、温度50℃で、電鋳(最大電流密度0.05A/cm)処理してニッケルを厚み250μmになるまで析出させた。こうして得られたニッケル電鋳体から薄膜付き基材を機械的に剥離した。
 次いで、ニッケル電鋳体をダイキン化成品販売社製HD-2101THに約1分浸し、乾燥した後、一晩静置した。翌日、ニッケル電鋳体を、ダイキン化成品販売社製HDTH中に浸漬して約1分間超音波処理洗浄を行った。こうして離型処理されたニッケルモールドを得た。
 次に、PET基板(東洋紡製、コスモシャインA-4100)上にフッ素系UV硬化性樹脂を塗布し、ニッケルモールドを押し付けながら、紫外線を600mJ/cmで照射することでフッ素系UV硬化性樹脂を硬化させた。樹脂が硬化後、ニッケルモールドを硬化した樹脂から剥離した。こうしてニッケルモールドの表面形状が転写された樹脂膜付きPET基板からなるフィルムモールドを得た。フィルムモールドの表面を上記原子間力顕微鏡で測定したところ、フィルムモールドの表面に形成された凹凸パターンは、延在方向、屈曲方向及び長さが不均一な多数の凸部を有し、各凸部がうねりながら延在する細長い形状を有していることがわかった。凹凸パターンの凹凸の平均ピッチは600nmであり、凹凸の深さ分布の平均値は85nmであった。
<エピタキシャル成長用基板の作製>
 C面を主面とする単結晶サファイア基板(京セラ製)を通常の洗浄方法で洗浄した。次いで、サファイア基板上にスパッタでNiを堆積し、膜厚50nmのNi層(マスク層)を形成した。さらに、マスク層上にスピンコートによりレジストとして熱可塑性樹脂を塗布した。形成されたレジスト膜の膜厚は120nmであった。マスク層及びレジスト膜を形成したサファイア基板を150℃に加熱し、レジスト膜を軟化させ、上記フィルムモールドを押し付けた。フィルムモールドをレジストに押し付けたまま、サファイア基板を室温まで冷却した。その後、フィルムモールドをレジスト膜から離隔した。それにより、レジスト膜にフィルムモールドの表面野凹凸パターンが転写された。このとき、転写された凹凸パターンの凹部において、レジスト膜が残っていた。つまり、凹凸パターンの凹部において、マスク層は表面に露出していなかった。
 凹凸パターンを有するレジスト膜が形成されたサファイア基板を、Oガスを用いたプラズマアッシング処理した。それにより、凹凸パターンの凸部においてはレジスト膜が残っていたが、凹部においてマスク層が露出した。
 次に、Arガスを用いたプラズマエッチング処理を行った。それにより、凹凸パターンの凹部において、露出していたマスク層がエッチングされ、サファイア基板が露出した。さらに、BClガスを用いたプラズマエッチング処理を行った。それにより、凹凸パターンの凹部において露出していたサファイア基板がエッチングされた。その後、加熱した硝酸にエッチング処理したサファイア基板を含浸した。それにより、基板上に残存しているマスク層及びレジスト膜が除去された。
 以上により、フィルムモールドの凹凸パターンがサファイア基板に転写された。本実施例では、凹凸パターンが転写されたサファイア基板をエピタキシャル成長用基板として用いた。エピタキシャル成長用基板の表面を上記原子間力顕微鏡で測定し、凹凸解析画像を得た。得られた解析画像から、エピタキシャル成長用基板の表面の凹凸パターンは、延在方向、屈曲方向及び長さが不均一な多数の凸部を有し、各凸部は、平面視で、うねりながら延在する細長い形状を有していることがわかった。また、凹凸パターンの断面形状は、なだらかな傾斜面からなり、波形構造をなしていることがわかった。凹凸パターンの凹凸の平均ピッチは600nmであり、凹凸の深さ分布の平均値は130nmであり、凹凸深さの標準偏差は87.0nmであった。また、凹凸解析画像に2次元高速フーリエ変換処理を施すことにより得られたフーリエ変換像は、波数の絶対値が0μm-1である原点を略中心とする円環状の模様を示した。
<発光素子の作製>
 スパッタ法によりエピタキシャル成長用基板上にAlNを堆積させた。次いで、AlN層上に、窒化ガリウム系化合物半導体層を積層した。窒化ガリウム系化合物半導体層は、下地層、n型半導体層、発光層(活性層)、p型半導体層がこの順に積層された構成とした。下地層は厚さ3μmのアンドープGaNから構成した。n型半導体層は厚さ3μmのシリコンをドープしたn型GaN層から構成した。発光層は、GaInN/GaNを5周期形成した多重量子井戸構造とした。p型半導体層は、Mgをドープしたp型GaNから構成した。窒化ガリウム系化合物半導体層の積層はMOCVD法により、当該技術分野においてよく知られた通常の条件で行なった。
 ICPエッチング法により、n電極を形成する領域のn型GaN層を露出させた。n型GaN層上にn電極を形成し、p型GaN上にp電極を形成した。n電極の露出、並びにp電極及びn電極の形成は、通常のフォトリソグラフィ法、エッチング法、スパッタ法及び蒸着法により、通常のエッチングガス及び電極材料を用いて行った。
 n電極及びp電極を形成した後、サファイア基板の裏面を研削・研磨した。次いで、レーザスクライバを用いて半導体層側から罫書き線を入れた後、押し割って、縦1mm×横0.5mmのチップに切断した。それにより、発光素子が得られた。
 比較例1
 エピタキシャル成長用基板として、フィルムモールドの凹凸パターンが転写されたサファイア基板の代わりに、電子線リソグラフィ法により凹凸パターンが形成されたサファイア基板を用いたこと以外は実施例1と同様にして発光素子を作製した。本比較例において、エピタキシャル成長用基板は、底面の径が2.7μm、高さが1.6μmの円錐状の突起(凸部)が周期3μmで三角格子配列した凹凸パターンを有していた。エピタキシャル成長用基板の表面を上記原子間力顕微鏡で測定して得られた凹凸解析画像に2次元高速フーリエ変換処理を施すことにより得られたフーリエ変換像は、波数の絶対値が0μm-1である原点を略中心とする六角形の頂点に輝点が集合した点状像を示した。
 比較例2
 エピタキシャル成長用基板として、フィルムモールドの凹凸パターンが転写されたサファイア基板の代わりに、凹凸パターンが形成されていないサファイア基板を用いたこと以外は実施例1と同様にして発光素子を作製した。
<ロッキングカーブ測定>
 実施例1、比較例1で下地層(アンドープGaN)を形成した後、X線回折装置を用いてGaN(0002)面のロッキングカーブ測定を行った。実施例1の下地層は、ロッキングカーブの半値幅が260arcsecであった。比較例1の下地層は、ロッキングカーブの半値幅が284arcsecであった。このことから、実施例1の下地層のほうが比較例1の下地層よりも結晶の傾きの分布が小さく、優れた結晶性を有することがわかった。
<微分干渉顕微鏡による観察>
 実施例1、比較例1で下地層(アンドープGaN)を形成した後、下地層の表面を、微分干渉顕微鏡を用いて観察したところ、実施例1の下地層の表面の方が、比較例1の下地層の表面より平坦であることがわかった。
 上記ロッキングカーブ測定及び微分干渉顕微鏡観察の結果から、実施例1において、比較例1よりも欠陥が少なく結晶性の優れた半導体層が形成されたと考えられる。実施例1においては、エピタキシャル成長用基板の凹凸パターンの断面形状が上述の様になだらかな傾斜面からなるため、半導体層が凹凸パターン上に均一に積層され、半導体層を良好にエピタキシャル成長させることができたと考えられる。
<発光素子の光取出し効率の評価>
 実施例1及び比較例2の発光素子に、印加測定器(アドバンテスト社製、型番:R6244)を用いて電圧(V)を印加し、発光素子に流れる電流(I)を測定した。また、全光束測定装置(スペクトラ・コープ社製、Solid LambdaCCD UV-NIR)を用いて、作製した発光素子に電圧(V)を印加し、全光束(L)を測定した。測定値を下記式(I):
   EQE=IQE×EIE×LEE・・・(I)
にフィッティングし、光取り出し効率を求めた。上記式(I)において、EQEは外部量子効率を示し、IQEは内部量子効率を示し、EIEは電子注入効率を示し、LEEは光取り出し効率を示す。なお、EIEは100%である。IQEはH.Yoshida et al.,APPLIED PHYSICS LETTERS 96,211122(2010)
に記載の方法により算出した。
 実施例1の発光素子の光取り出し効率は17.8%であった。比較例2の発光素子の光取り出し効率は10.0%であった。すなわち、実施例1の発光素子の方が比較例2の発光素子よりも光取り出し効率が高かった。このことから、実施例1においてエピタキシャル成長用基板として用いた凹凸パターンを有するサファイア基板が、光取り出し効率を向上させる回折格子基板としての機能を有することがわかった。
 以上、本発明を実施形態により説明してきたが、本発明の光学素子は上記実施形態に限定されず、特許請求の範囲に記載した技術的思想の範囲内で適宜改変することができる。
 本発明のエピタキシャル成長用基板の凹凸パターンはインプリント法により効率の良く製造することができる。また、エピタキシャル成長用基板上を用いて、欠陥の少ないエピタキシャル層を形成することができる。さらに、本発明のエピタキシャル成長用基板は光取り出し効率を向上させる回折格子基板としての機能を有するため、この基板を用いて作製された発光素子は、発光効率が高い。それゆえ本発明のエピタキシャル成長用基板は、優れた発光効率を有する発光素子の製造に極めて有効であり、省エネルギーにも貢献する。
 20 バッファ層、 40 基材、 60 凸部、 70 凹部
 80 凹凸パターン、100 エピタキシャル成長用基板
120 レジスト層、140 モールド
200 発光素子、220 半導体層

Claims (18)

  1.  基材上に多数の凸部と凹部を有する凹凸パターンが形成されたエピタキシャル成長用基板であって、
     i)前記凸部は、平面視で、各々、うねりながら延在する細長い形状を有し、
     ii)前記凹凸パターンにおいて、前記多数の凸部は延在方向、屈曲方向及び長さが不均一であることを特徴とするエピタキシャル成長用基板。
  2.  前記凹凸パターンの凹凸の平均ピッチは、100nm~10μmの範囲であることを特徴とする請求項1に記載のエピタキシャル成長用基板。
  3.  前記凸部の延在方向と直交する断面形状は、底部から頂部に向かって狭くなることを特徴とする請求項1または2に記載のエピタキシャル成長用基板。
  4.  前記多数の凸部の一部は、分岐している形状を有することを特徴とする請求項1~3のいずれか一項に記載のエピタキシャル成長用基板。
  5.  前記凹凸パターンを前記基材の表面と直交するいずれの方向で切断しても凹凸断面が繰り返し現れることを特徴とする請求項1~4のいずれか一項に記載のエピタキシャル成長用基板。
  6.  前記凹凸パターンの凹凸の深さの標準偏差が、10nm~5μmの範囲であることを特徴とする請求項1~5のいずれか一項に記載のエピタキシャル成長用基板。
  7.  前記凸部の延在方向が、平面視上不規則に分布しており、
     前記凹凸パターンの単位面積当たりの領域に含まれる前記凸部の平面視上における輪郭線が、曲線区間よりも直線区間を多く含む請求項1~6のいずれか一項に記載のエピタキシャル成長用基板。
  8.  前記凸部の延在方向に対して平面視上略直交する方向における前記凸部の幅が一定である請求項7に記載のエピタキシャル成長用基板。
  9.  前記曲線区間は、前記凸部の平面視上における輪郭線を前記凸部の幅の平均値のπ(円周率)倍の長さで区切ることで複数の区間を形成する場合において、区間の両端点間の前記輪郭線の長さに対する当該両端点間の直線距離の比が0.75以下となる区間であり、
     前記直線区間は、前記複数の区間のうち前記曲線区間ではない区間である請求項7又は8に記載のエピタキシャル成長用基板。
  10.  前記曲線区間は、前記凸部の平面視上における輪郭線を前記凸部の幅の平均値のπ(円周率)倍の長さで区切ることで複数の区間を形成する場合において、区間の一端及び当該区間の中点を結んだ線分と当該区間の他端及び当該区間の中点を結んだ線分とがなす2つの角度のうち180°以下となる方の角度が120°以下となる区間であり、
     前記直線区間は、前記複数の区間のうち前記曲線区間ではない区間であり、
     前記複数の区間のうち前記曲線区間の割合が70%以上である請求項7又は8に記載のエピタキシャル成長用基板。
  11.  前記凸部の延在方向が、平面視上不規則に分布しており、
     前記凸部の延在方向に対して平面視上略直交する方向における前記凸部の幅が一定である請求項1~6のいずれか一項に記載のエピタキシャル成長用基板。
  12.  前記凹凸パターンを走査型プローブ顕微鏡により解析して得られる凹凸解析画像に2次元高速フーリエ変換処理を施すことにより得られるフーリエ変換像が、波数の絶対値が0μm-1である原点を略中心とする円状又は円環状の模様を示しており、且つ、前記円状又は円環状の模様が、波数の絶対値が10μm-1以下の範囲内となる領域内に存在する請求項1~11のいずれか一項に記載のエピタキシャル成長用基板。
  13.  前記凹凸パターンが形成された前記基材の表面上にバッファ層を有する請求項1~12のいずれか一項に記載のエピタキシャル成長用基板。
  14.  前記凸部が、前記基材を構成する材料とは異なる材料から形成されていることを特徴とする請求項1~13のいずれか一項に記載のエピタキシャル成長用基板。
  15.  前記凸部が、ゾルゲル材料から形成されていることを特徴とする請求項14に記載のエピタキシャル成長用基板。
  16.  前記凹部が前記基材を構成する材料と同じ材料から形成されていることを特徴とする請求項1~13いずれか一項に記載のエピタキシャル成長用基板。
  17.  前記基材が、サファイア基板であることを特徴とする請求項1~16いずれか一項に記載のエピタキシャル成長用基板。
  18.  請求項1~17のいずれか一項に記載のエピタキシャル成長用基板上に、第1導電型層、活性層及び第2導電型層を少なくとも含む半導体層を備える発光素子。
PCT/JP2015/059313 2014-03-26 2015-03-26 エピタキシャル成長用基板及びそれを用いた発光素子 WO2015147135A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016510471A JP6280637B2 (ja) 2014-03-26 2015-03-26 エピタキシャル成長用基板及びそれを用いた発光素子
KR1020167026393A KR20160138419A (ko) 2014-03-26 2015-03-26 에피택셜 성장용 기판 및 이것을 사용한 발광 소자
EP15768215.4A EP3125312A4 (en) 2014-03-26 2015-03-26 Epitaxial growth substrate and light-emitting element using same
CN201580016104.4A CN106133926A (zh) 2014-03-26 2015-03-26 磊晶成长用基板及使用其的发光组件
US15/276,102 US20170012169A1 (en) 2014-03-26 2016-09-26 Epitaxial growth substrate and light-emitting element using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014064235 2014-03-26
JP2014-064235 2014-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/276,102 Continuation US20170012169A1 (en) 2014-03-26 2016-09-26 Epitaxial growth substrate and light-emitting element using same

Publications (1)

Publication Number Publication Date
WO2015147135A1 true WO2015147135A1 (ja) 2015-10-01

Family

ID=54195642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059313 WO2015147135A1 (ja) 2014-03-26 2015-03-26 エピタキシャル成長用基板及びそれを用いた発光素子

Country Status (7)

Country Link
US (1) US20170012169A1 (ja)
EP (1) EP3125312A4 (ja)
JP (1) JP6280637B2 (ja)
KR (1) KR20160138419A (ja)
CN (1) CN106133926A (ja)
TW (1) TW201601990A (ja)
WO (1) WO2015147135A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221593A1 (ja) * 2017-05-31 2018-12-06 Jxtgエネルギー株式会社 防曇部材
US11430106B2 (en) * 2017-08-23 2022-08-30 Hitachi High-Tech Corporation Image processing device, image processing method and charged particle microscope
KR102506441B1 (ko) * 2017-12-04 2023-03-06 삼성전자주식회사 반도체 발광 어레이의 제조 방법 및 반도체 발광 어레이
WO2021119884A1 (zh) * 2019-12-16 2021-06-24 重庆康佳光电技术研究院有限公司 一种发光二极管芯片及其制备方法
CN114325907A (zh) * 2020-09-30 2022-04-12 京东方科技集团股份有限公司 波浪形光栅、显示面板及波浪形光栅的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101566A (ja) * 2003-08-19 2005-04-14 Nichia Chem Ind Ltd 半導体素子、発光素子及びその基板の製造方法
JP2005223154A (ja) * 2004-02-05 2005-08-18 Nichia Chem Ind Ltd 基板の形成方法、半導体基板及び半導体素子
WO2011007878A1 (ja) * 2009-07-16 2011-01-20 Jx日鉱日石エネルギー株式会社 回折格子及びそれを用いた有機el素子、並びにそれらの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455512B2 (ja) 1999-11-17 2003-10-14 日本碍子株式会社 エピタキシャル成長用基板およびその製造方法
JP4055503B2 (ja) * 2001-07-24 2008-03-05 日亜化学工業株式会社 半導体発光素子
JP4396816B2 (ja) * 2003-10-17 2010-01-13 日立電線株式会社 Iii族窒化物半導体基板およびその製造方法
JP2010206230A (ja) 2010-06-22 2010-09-16 Showa Denko Kk GaN系半導体発光素子の製造方法およびランプ
TWI552848B (zh) * 2011-01-14 2016-10-11 Jx Nippon Oil & Energy Corp Method for manufacturing a mold for fine pattern transfer and a method for manufacturing a diffraction grating using the same, and a method of manufacturing an organic electroluminescent device having the diffraction grating
WO2012173416A2 (en) * 2011-06-15 2012-12-20 Seoul Opto Device Co., Ltd. Semiconductor light emitting device and method of menufacturing the same
KR20140106704A (ko) * 2012-04-26 2014-09-03 제이엑스 닛코닛세키 에네루기 가부시키가이샤 미세 패턴 전사용 몰드의 제조 방법 및 이것을 사용한 요철 구조를 가지는 기판의 제조 방법, 및 상기 요철 구조를 가지는 기판을 가지는 유기 el 소자의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101566A (ja) * 2003-08-19 2005-04-14 Nichia Chem Ind Ltd 半導体素子、発光素子及びその基板の製造方法
JP2005223154A (ja) * 2004-02-05 2005-08-18 Nichia Chem Ind Ltd 基板の形成方法、半導体基板及び半導体素子
WO2011007878A1 (ja) * 2009-07-16 2011-01-20 Jx日鉱日石エネルギー株式会社 回折格子及びそれを用いた有機el素子、並びにそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3125312A4 *

Also Published As

Publication number Publication date
KR20160138419A (ko) 2016-12-05
JP6280637B2 (ja) 2018-02-14
TW201601990A (zh) 2016-01-16
JPWO2015147135A1 (ja) 2017-04-13
EP3125312A4 (en) 2017-08-09
US20170012169A1 (en) 2017-01-12
CN106133926A (zh) 2016-11-16
EP3125312A1 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6280637B2 (ja) エピタキシャル成長用基板及びそれを用いた発光素子
TWI593139B (zh) Semiconductor light-emitting element and optical film
TWI531086B (zh) An optical substrate, a semiconductor light-emitting element, and a semiconductor light-emitting element
AU2014376585B2 (en) Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
CN108389944B (zh) 半导体发光元件用基板及半导体发光元件
JP6002427B2 (ja) Led用基板及びその製造方法
WO2006088228A1 (ja) 半導体発光素子及びその製造方法
EP2840618A1 (en) Method for fabricating nanopatterned substrate for high-efficiency nitride-based light-emitting diode
An et al. Increased light extraction from vertical GaN light-emitting diodes with ordered, cone-shaped deep-pillar nanostructures
JP2014135400A (ja) 発光装置及び波長変換素子
WO2014123193A1 (ja) 凹凸基板及び発光ダイオードの製造方法、並びに凹凸基板、発光ダイオード及び有機薄膜太陽電池
TW201316550A (zh) 發光二極體
KR101535852B1 (ko) 나노구조체 전사를 이용한 발광다이오드 제조방법과 그 발광다이오드
WO2015159844A1 (ja) エピタキシャル成長用基板の製造方法及びそれより得られるエピタキシャル成長用基板並びにその基板を用いた発光素子
WO2015147134A1 (ja) エピタキシャル成長用基板の製造方法、それより得られるエピタキシャル成長用基板及びその基板を用いた発光素子
WO2015159843A1 (ja) エピタキシャル成長用基板の製造方法、それより得られるエピタキシャル成長用基板及びその基板を用いた発光素子
Sung et al. InGaN/GaN light emitting diodes grown on nanoimprint-based hollow-patterned sapphire substrates
JP2016021428A (ja) 半導体発光素子用基板、半導体発光素子、モールド及び半導体発光素子の製造方法
WO2015163315A1 (ja) エピタキシャル成長用基板の製造方法及びそれより得られるエピタキシャル成長用基板並びにその基板を用いた発光素子
JP6206336B2 (ja) 半導体発光素子用基板、半導体発光素子、半導体発光素子用基板の製造方法、および、半導体発光素子の製造方法
KR101576471B1 (ko) 고출력 적색 발광다이오드의 제작방법
TWI501422B (zh) 發光二極體的製備方法
JP2015204376A (ja) エピタキシャル成長用基板の製造方法及びそれより得られるエピタキシャル成長用基板並びにその基板を用いた発光素子
JP2015012148A (ja) 半導体発光素子
JP2013168493A (ja) 窒化物半導体発光素子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510471

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167026393

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015768215

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768215

Country of ref document: EP