WO2015146477A1 - 積層体、透明導電性積層体およびタッチパネル - Google Patents

積層体、透明導電性積層体およびタッチパネル Download PDF

Info

Publication number
WO2015146477A1
WO2015146477A1 PCT/JP2015/055793 JP2015055793W WO2015146477A1 WO 2015146477 A1 WO2015146477 A1 WO 2015146477A1 JP 2015055793 W JP2015055793 W JP 2015055793W WO 2015146477 A1 WO2015146477 A1 WO 2015146477A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminate
transparent conductive
refractive index
particles
Prior art date
Application number
PCT/JP2015/055793
Other languages
English (en)
French (fr)
Inventor
岩谷忠彦
石田康之
高田育
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201580011378.4A priority Critical patent/CN106132686B/zh
Priority to KR1020167023480A priority patent/KR20160137976A/ko
Priority to JP2015511856A priority patent/JP6512094B2/ja
Publication of WO2015146477A1 publication Critical patent/WO2015146477A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens

Definitions

  • the present invention relates to a touch panel used for various electronic devices, a transparent conductive laminate used for a transparent electrode of the touch panel, and a laminate used for adjusting the refractive index of the transparent conductive laminate.
  • capacitive touch panels are mounted on various mobile devices such as mobile phones and portable music terminals.
  • Such a capacitive touch panel has a configuration in which a dielectric layer is laminated on a patterned conductor, and is touched with a finger or the like to be grounded via the capacitance of the human body. At this time, a change occurs in the resistance value between the patterning electrode and the ground point, and the position input is recognized.
  • a conventional transparent conductive film is used, the difference in optical properties between the portion having the conductive layer and the removed portion is large, so that the patterning is emphasized, and when placed on the front surface of a display body such as a liquid crystal display There was a problem that visibility was lowered.
  • a method of using light interference by laminating layers having different refractive indexes used in antireflection films and the like has been proposed.
  • a layer having a different refractive index also referred to as an index matching layer, a refractive index adjustment layer, an optical function layer, an optical adjustment layer, or an antireflection layer
  • a method has been proposed.
  • Patent Document 1 states that “a high refractive index layer, a low refractive index layer, and a transparent conductive thin film layer are laminated in this order on a substrate made of a transparent plastic film, and the refractive index of the high refractive index layer is 1. .70 to 2.50, the film thickness is in the range of 4 to 20 nm, the refractive index of the low refractive index layer is 1.30 to 1.60, and the film thickness is in the range of 20 to 50 nm.
  • Conductive laminated film is described.
  • Patent Document 2 as an example of forming two layers having different refractive indexes among the refractive index adjusting layers by one wet coating, “30 mN / m focusing on the surface energy of a base material, a resin, and a particle material” is disclosed.
  • the first inorganic fine particles are unevenly distributed under the cured layer to form an upper layer and a lower layer having different refractive indexes.
  • Patent Document 3 focuses on the relative drying speed of the solvent and separates the particles and the resin component “a base material and a method for producing a laminate having a multilayer structure thereon, on the base material or the base material.
  • A metal oxide particles obtained by bonding an organic compound (Ab) having a polymerizable unsaturated group on the formed layer, (B) an ethylenically unsaturated group-containing fluoropolymer, (C) Applying an ultraviolet curable resin composition containing a fast volatile solvent and (D) a slow volatile solvent to form a coating film, and evaporating the solvent from this one coating film to form two or more layers.
  • the manufacturing method of the characteristic laminated body is described respectively.
  • Patent Document 4 as an example focusing on the interface shape of two layers having different refractive indexes, “having a second layer and a first layer having different refractive indexes in this order on at least one surface of the support base material.
  • the first layer contains particles X (the particles X are particles containing at least inorganic particles as a constituent material), and the second layer is particles Y (the particles Y are particles containing at least inorganic particles as a constituent material).
  • a laminate containing a number-average particle size of the inorganic particles of the particles X (hereinafter, referred to as D X) is a is 5nm or more 25nm or less, and satisfy the equations 1 and 2 "Laminated bodies to be" are described.
  • a method of suppressing the emphasis of the transmittance, color, and pattern of the conductive layer of the transparent conductive film using the optical interference that is, making the pattern of the conductive layer difficult to see and suppressing the visibility of the conductive layer pattern
  • the optical path design in the normal direction of the transparent conductive film is used, and it is known that the effect of suppressing the visibility of the conductive layer pattern may not be obtained when viewed from an oblique direction. ing.
  • Patent Document 5 as an example of the refractive index adjustment layer focusing on the transmitted light amount of P wave and S wave at Brewster angle as an optical design value in an oblique direction, “in-plane retardation (Re) at a wavelength of 590 nm is 500 nm.
  • a polarizing plate protective film having the above-described polymer film and an antireflection layer on at least one surface of the polymer film, wherein the antireflection layer has a visible light transmitting region that passes through the inside of the polymer film.
  • the polarizing plate protective film characterized by having a reflectance at a Brewster angle with respect to light of 5% or less, and a polarizing plate having the protective film.
  • Patent Document 1 a high refractive index layer, a low refractive index layer, and a transparent conductive layer are laminated on a substrate, but according to the specification, a method for laminating a low refractive index layer is described in sputtering and examples.
  • the refractive index is about 1.46, and the present inventors have confirmed that this refractive index is insufficient in the effect of reducing the coloration of transmitted light and the effect of making the pattern of the transparent conductive layer difficult to see. If the refractive index is simply lowered, the in-plane uniformity of the effect of reducing the coloring and the effect of making the pattern of the transparent conductive layer difficult to see is impaired, that is, there is a problem that the in-plane variation becomes large.
  • Patent Documents 2 and 3 are techniques for obtaining two layers by a single coating, but are techniques that focus on the formation of two smooth layers.
  • the optical path Since the length deviates from the design, the present inventors have confirmed that the effect of making the pattern of the transparent conductive layer difficult to see when viewed from an oblique direction (that is, the optical design in the oblique direction) is insufficient.
  • Patent Document 4 is a technique that focuses on the structure of the interface by the technique of simultaneously forming two layers, but the present inventors have confirmed that Patent Document 4 does not provide a sufficient surface roughness reduction effect, Therefore, a sufficient haze value cannot be obtained, and the transparency which is the subject of the present invention has not been obtained.
  • the Brewster angle is described as a parameter corresponding to the optical design in the oblique direction.
  • the Brewster angle is described as a parameter determined by the refractive index of the material, and the Brewster angle is determined depending on the layer thickness and the interface shape. The idea that the corners are adjustable has not been reached.
  • the problem to be solved by the present invention is excellent in smoothness and transparency, less colored, and in either the front direction or the oblique direction.
  • Another object of the present invention is to provide a laminate having an excellent effect of suppressing visibility of the conductive layer pattern, that is, an effect of making the pattern of the transparent conductive layer difficult to see, and reduced in-plane variation in optical characteristics.
  • the present invention is as follows.
  • Tt Film thickness of laminated film (3) A transparent conductive laminate obtained by laminating a transparent conductive layer on the laminate described in (1) or (2) above. (4) A touch panel using the transparent conductive laminate according to (3) above.
  • the laminate of the present invention has excellent smoothness and transparency, is less colored, and forms a transparent conductive layer on the outermost surface of the laminate of the present invention, or further etches the transparent conductive layer.
  • the conductive layer pattern visibility suppressing effect and the in-plane variation reducing effect of the optical characteristics are excellent for the visual recognition from the front direction and the oblique direction.
  • the laminate of the present invention is a laminate having a laminate film laminated on at least one side of the support substrate from the support substrate side in the order of the second layer and the first layer, the first layer and the second layer. Have different refractive indices.
  • laminated body refers to a member having a laminated film composed of at least two layers on at least one side of a supporting substrate.
  • the support substrate is a plastic film, it is called a refractive index adjustment film, an index matching film, or an antireflection film.
  • the laminated film formed on the support base material is also called an index matching layer, a reflectance adjustment layer, an optical function layer, an optical adjustment layer, or an antireflection layer because of its function.
  • FIG. 1 shows a preferred embodiment of the laminate of the present invention.
  • the laminate film (3) is laminated on at least one side of the support substrate (2).
  • the laminated film (3) includes a first layer (4) and a second layer (5) having different refractive indexes.
  • the first layer and the second layer have different refractive indexes
  • the first layer (4) has a lower refractive index than the second layer (5).
  • the first layer having a relatively low refractive index is referred to as a low refractive index layer
  • the second layer having a relatively high refractive index is referred to as a high refractive index layer.
  • the laminated body of this aspect has a 2nd layer (5) and a 1st layer (4) in this order from the support base material side in the at least one side of a support base material (2), and the 1st layer (4) is
  • the particle component a (6) is contained, and the second layer (5) contains the particle component b (7).
  • the particle component a is a particle containing at least inorganic particles as a constituent material, and further satisfies a specific condition described later.
  • the particle component b is a particle containing at least inorganic particles as a constituent material.
  • the support substrate, particle component a, and particle component b used in this embodiment will be described later.
  • a method of simultaneously forming the first layer and the second layer by applying a coating composition containing the following components once to at least one side of a supporting substrate can be mentioned.
  • Binder raw material C The particles A, the fluorine compound A, the particles B, and the binder raw material C will be described later.
  • the laminate of the present invention is a laminate satisfying all of the following (A) to (D).
  • ⁇ i1 Refractive index n1 of the first layer and refraction of air
  • the laminate of the present invention preferably satisfies all of the following (E) to (G).
  • Tt Film thickness of laminated film
  • film thickness of first layer and second layer As a factor for controlling the specific physical characteristics represented by (A) to (D) and (E) to (G), “film thickness of first layer and second layer” , “The refractive index n1 of the first layer” and “the refractive index n2 of the second layer”, and “the form of the interface between the first layer and the second layer” due to the change in the refractive index in the thickness direction. The effect can be further enhanced by adjusting.
  • the laminate of the present invention satisfies the above (A). That is, when the refractive index of the first layer of the laminate of the present invention is n1, and the refractive index of the second layer is n2, n2> n1.
  • the laminate of the present invention satisfies the requirement (E). That is, there is a preferable range for the difference in refractive index between the first layer and the second layer.
  • (n2 ⁇ n1) is preferably 0.2 or more, and more preferably 0.25 or more. More preferred.
  • (n2-n1) is less than 0.2, the amount of reflected light at each layer of the laminate is reduced, making it difficult to obtain a sufficient optical interference effect. In some cases, it is difficult to sufficiently obtain an effect of making the layer pattern invisible. A method for measuring the refractive index of each layer will be described later.
  • the upper limit of (n2-n1) is not particularly limited, but is estimated to be approximately 0.7 or less in the optical design of the laminate of the present invention.
  • the laminate of the present invention satisfies the requirement (B). That is, Ra1 ⁇ 5 nm, where Ra1 is the arithmetic mean roughness of the first layer-air layer interface.
  • the laminate of the present invention desirably has high transparency, and factors relating to transparency include the shape of the first layer-air layer interface and the shape of the first layer-second layer interface described later.
  • the shape of the interface between the first layer and the air layer is preferably flat.
  • the arithmetic average roughness Ra1 based on JIS R 1683 (2007) is 5 nm or less.
  • the arithmetic average roughness Ra1 is more preferably 2 nm or less.
  • Ra1 value exceeds 5 nm, the transparency is impaired, and when the Ra1 value exceeds 30 nm, when forming the transparent conductive layer on the outermost surface of the laminated body of the laminate of the present invention, the adhesiveness decreases and the resistance value. Increase may occur.
  • the lower limit of Ra1 is not particularly limited, but it is difficult to obtain a completely smooth surface, and about 0.1 nm is a practical lower limit. A method for measuring the arithmetic average roughness Ra1 will be described later.
  • the laminate of the present invention satisfies the above (C). That is, if the haze of the laminate is Hz, Hz ⁇ 0.6%. High transparency is desirable for exhibiting good properties as a laminate. If the transparency is low, when used as an image display device, image quality may be degraded due to a decrease in image saturation. Haze and total light transmittance can be used for evaluating the transparency of the laminate of the present invention. Examples of factors affecting the haze and the total light transmittance include “the form of the interface between the first layer and the air layer” and “the form of the interface between the first layer and the second layer”.
  • Haze is an index of turbidity of a transparent material specified in JIS-K 7136 (2000).
  • the haze (Hz) of the laminate of the present invention is 0.6% or less, preferably 0.5% or less, more preferably 0.4% or less.
  • the haze is larger than 0.6%, there is a high possibility that the image visibility is lowered, and an interface shape that gives an ideal refractive index change like the laminate of the present invention cannot be obtained, and the oblique direction is not obtained. As a result, it is impossible to obtain an excellent effect of reducing the coloration of transmitted light and making the pattern of the transparent conductive layer difficult to see.
  • the total light transmittance is an index of light transmittance of a transparent material defined in JIS-K 7361-1 (1997), and the higher the value, the higher the transparency.
  • the total light transmittance of the laminate is preferably 85% or more, more preferably 89% or more, and still more preferably 91% or more.
  • the realistic upper limit is expected to be around 94%. If the total light transmittance is less than 85%, the image may become dark.
  • the laminate of the present invention satisfies the above (D). That is, assuming that the theoretical Brewster angle is ⁇ i1 and the measured Brewster angle is ⁇ r1, ⁇ r1 ⁇ i1> 1.0 °.
  • the Brewster angle is a value corresponding to the polarization angle described in JIS Z 8120 (2001). Of reflected light generated at the interface between two substances having a difference in refractive index, the Brewster angle is parallel to the incident surface (that is, reflected). An incident angle at which the reflectivity of an electromagnetic wave having an electric field component and P-polarized light is 0 in the direction perpendicular to the surface of the laminate of the present invention which is a plane. When non-polarized light is incident at this angle, all the P-polarized light component is transmitted without being reflected at the interface, while the reflected light is completely polarized including only S-polarized light.
  • the present inventors conducted an analysis on the emphasis on the etching pattern of the transparent conductive layer with respect to visual recognition from an oblique direction, which is the subject of the present invention
  • the above-mentioned refractive index adjusting layer is formed by etching with the above-described transparent conductive layer portion. It has been found that the effect of pattern emphasis appears remarkably at an angle close to the theoretical Brewster angle of the exposed portion. That is, it is considered that the reflection intensity of the p-polarized light at one portion is weakened at the Brewster angle, so that the reflection at the other portion is relatively emphasized, which leads to enhancement of the pattern for visual recognition from an oblique direction.
  • the inventors of the present invention have a thickness in the direction perpendicular to the surface of the substance constituting the interface having a difference in refractive index (that is, the layer thickness of the laminate of the present invention) sufficiently larger than the wavelength of the electromagnetic wave. It was found that a deviation occurs between the theoretical Brewster angle value and the actual measurement result.
  • the actual Brewster angle value having such a deviation from the theoretical Brewster angle is described as an actually measured Brewster angle ⁇ r, and in particular, the actually measured Brewster angle at the interface between the air and the first layer is described as ⁇ r1. To do. A method for measuring the measured Brewster angle ⁇ r1 will be described later.
  • the feature of the laminate of the present invention is that the measured Brewster angle is adjusted. Further, there is a preferable relationship between the theoretical Brewster angle and the measured Brewster angle. Specifically, the measured Brewster angle is higher than the theoretical Brewster angle. That is, ⁇ r1> ⁇ i1.
  • the value of ( ⁇ r1 ⁇ i1) is larger than 1.0 °.
  • the value of ( ⁇ r1- ⁇ i1) is more preferably 1.5 ° or more, and particularly preferably 3.0 ° or more.
  • the difference between the measured Brewster angle value and the theoretical Brewster angle value is 1.0 ° or less, when forming a transparent conductive layer on the outermost surface of the laminate of the present invention, or further When the transparent conductive layer is etched and patterned, the effect of making the pattern of the transparent conductive layer difficult to see with respect to the visual recognition from an oblique direction cannot be obtained sufficiently.
  • the upper limit of the difference between the measured Brewster angle and the theoretical Brewster angle is not particularly limited, but is approximately 10 ° or less in the optical design of the laminate of the present invention.
  • the laminate of the present invention satisfies the requirement (G). That is, there is a preferable range for the measured Brewster angle value, specifically, it is preferably 55 ° or more and 60 ° or less. When the angle is less than 50 ° or exceeds 60 °, a deviation from the target optical design occurs, and as a result, a transparent conductive layer is formed on the outermost surface on the laminated film side of the laminate of the present invention, or Furthermore, when the transparent conductive layer is etched and patterned, it may be difficult to obtain an effect of making the pattern of the transparent conductive layer difficult to see from the front direction or the oblique direction.
  • the laminate of the present invention preferably satisfies the above (F). That is, there is a preferable range for the film thickness of the laminated film (Tt, the sum of the film thicknesses of the first layer and the second layer), specifically 150 nm or less, more preferably 100 nm or less. When the sum of the film thicknesses of the first layer and the second layer exceeds 150 nm, the first layer becomes dominant as a factor for determining the value of the measured Brewster angle described above.
  • the lower limit of the film thickness of the laminated film is not particularly limited from the viewpoint of adjusting the measured Brewster angle. In optical design, it is estimated to be approximately 30 nm or more.
  • the method for forming the laminate having the refractive index gradient as described above is not particularly limited, but from the viewpoint of productivity, the coating composition is applied once to form the first layer and the second layer at the same time. Preferably it is formed.
  • the refractive index gradient in the laminate produced by the above method means the ratio of the area occupied by the first layer and the second layer that have entered each other at the interface of the laminate cut out by a plane parallel to the surface of the base substrate. It is estimated as a change in the “in-plane composition ratio”. Details of the method of calculating the “in-plane composition ratio” will be described later.
  • the thickness (Tm) of the region where the first layer and the second layer penetrated each other is preferably 10 nm or more, more preferably 30 nm or more, and particularly preferably 40 nm or more.
  • Tm thickness of the region where the first layer and the second layer penetrate each other
  • the thickness of the region where the first layer and the second layer penetrate each other is less than 10 nm, there is not a sufficient difference between the measured Brewster angle and the theoretical Brewster angle, and viewing from an oblique direction is possible. In some cases, it is difficult to sufficiently obtain the effect of making the pattern of the transparent conductive layer difficult to see.
  • the upper limit of the thickness of the region where the first layer and the second layer penetrated each other has a correlation with the film thickness of the laminated film (that is, the sum of the film thicknesses of the first layer and the second layer). Deviates from the value of Equation 9 below, that is, when the film thickness exceeds 90% of the film thickness of the laminated film, the optical design shifts and the effect of reducing the coloration of transmitted light and the transparency from the front view The effect of making the pattern of the conductive layer difficult to see may be reduced.
  • the interface between the first layer and the second layer is preferably in a rough state in which the components penetrate each other, but the structure that has entered each other does not cause light scattering. It is preferable that a fine mixed state is formed so as not to cause an increase in haze.
  • the shapes of the interface between the first layer and the air layer and the interface between the first layer and the second layer satisfy the above-mentioned arithmetic average roughness Ra of the surface and the values of the measured Brewster angle and the theoretical Brewster angle at the same time. It is. Usually, when the interface shape becomes too rough, the arithmetic average roughness Ra of the surface described above becomes large and sufficient transparency may not be obtained. At this time, by forming the first layer and the second layer at the same time by applying the coating composition once on the support substrate, the roughness of the surface shape is suppressed to be lower than the roughness of the interface shape. Can do. That is, as shown in FIG.
  • the surface shape of the second layer (12) is reflected.
  • the roughness of the surface shape of the first layer (4) is the second layer. It is low with respect to the roughness of the interface shape of (5).
  • the “type” of the inorganic particles is determined by the type of elements constituting the inorganic particles. For example, since titanium oxide (TiO 2 ) and nitrogen-doped titanium oxide (TiO 2 ⁇ x N x ) in which part of oxygen of titanium oxide is substituted with nitrogen as an anion, the elements constituting the inorganic particles are different, Different types of inorganic particles. In addition, if inorganic particles (ZnO) consisting only of the same element, for example, Zn or O, even if there are a plurality of particles having different particle diameters or the composition ratio of Zn and O is different, these Are inorganic particles of the same type. Even if there are a plurality of Zn particles having different oxidation numbers, as long as the elements constituting the particles are the same (in this example, all elements other than Zn are the same), these are the same kind of particles. .
  • the particle component a contained in the first layer is a component resulting from the particles A in the coating composition. That is, the particle A in the coating composition becomes a particle component a by reacting with the binder raw material, the fluoropolymer a, and the particles A in the coating / drying process to change the form.
  • the particle A and the particle component a are completely the same.
  • grains A have a part resulting from the fluoropolymer a, when drying on a support base material, it is normal to react with a binder raw material.
  • the particle A is a particle having inorganic particles and a portion resulting from the fluoropolymer a.
  • oxides, nitrides, borides, fluorides, carbonates, sulfates of metalloid elements or metal elements selected from Si, Na, K, Ca, Mg and Al are preferable.
  • Silica particles (SiO 2 ), alkali metal fluorides (NaF, KF, NaAlF 6 etc.), and alkaline earth metal fluorides (CaF 2 , MgF 2 etc.) are more preferable, durability, refractive index, cost, etc. From this point, silica particles are particularly preferable.
  • the silica particles refer to particles containing a composition composed of either a silicon compound or a polymerized (condensed) inorganic or organic silicon compound, and as a general example, particles derived from silicon oxides such as SiO 2 . It is a generic name.
  • the surface of the silica particles may be partially subjected to a surface treatment separately from the above-described portion caused by the fluoropolymer a from the viewpoint of dispersion stability in water or an organic solvent.
  • the partial surface treatment is not particularly limited, but the surface state of the silica particles preferably includes a hydrophilic portion that can be stably dispersed in a polar solvent such as water or alcohol.
  • the shape suitable for the inorganic particles constituting the particles A is not particularly limited, but since the filling state in the first layer affects the surface shape of the laminate, the shape of the present invention is a shape close to a sphere. It is more preferable to form the surface shape of the body.
  • the particles A and the fluoropolymer a in the coating composition used in the preferred method for producing the laminate of the present invention will be described. It is preferable that the particle A has not only inorganic particles but also a portion resulting from the fluoropolymer a. Therefore, the particle A can be obtained by introducing a component derived from the fluoropolymer a by reacting the fluoropolymer a with the above-described inorganic particles, particularly inorganic particles such as silica.
  • the introduction means that the part derived from the fluoropolymer a is chemically bonded (including covalent bond, hydrogen bond, ionic bond, van der Waals bond, hydrophobic bond, etc.) or adsorption (physical adsorption, chemical adsorption) to inorganic particles. Including), particularly preferably covalently bonded.
  • the fluoropolymer a is a polymer including at least a portion derived from the fluorine compound A and a portion derived from the compound D as described above. That is, the fluoropolymer a is a polymer obtained by reacting the fluorine compound A and the compound D.
  • the fluorine compound A is a compound represented by the following general formula (1).
  • R f1 represents a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group, or a fluorooxyalkanediyl group.
  • a fluoroalkyl group, a fluorooxyalkyl group, a fluoroalkenyl group, a fluoroalkanediyl group, and a fluorooxyalkanediyl group are a part of hydrogen of an alkyl group, an oxyalkyl group, an alkenyl group, an alkanediyl group, and an oxyalkanediyl group.
  • a substituent in which all are replaced with fluorine both of which are mainly composed of fluorine atoms and carbon atoms, and there may be branches in the structure, and a dimer in which a plurality of these parts are connected,
  • a trimer, oligomer, or polymer structure may be formed.
  • R 1 represents a reactive moiety.
  • the reactive part refers to a part that reacts with other components by external energy such as heat or light.
  • a reactive moiety from the viewpoint of reactivity, an alkoxysilyl group, a silanol group obtained by hydrolyzing an alkoxysilyl group, a carboxyl group, a hydroxyl group, an epoxy group, a vinyl group, an allyl group, an acryloyl group, a methacryloyl group, an acryloxy group From the viewpoint of reactivity and handling properties, an alkoxysilyl group, a silyl ether group, or a silanol group, an epoxy group, an acryloyl group, a methacryloyl group, an acryloxy group, and a methacryloxy group are preferable.
  • R 2 is substituted with a single bond, or one or more hydroxyl groups or one or more RC ( ⁇ O) O— groups (R is a hydrocarbon group having 1 to 6 carbon atoms). Or a divalent or trivalent hydrocarbon group having 1 to 8 carbon atoms other than the RC ( ⁇ O) O— group, which may be branched.
  • R f1 is a fluoroalkyl group, fluorooxyalkyl group, or fluoroalkenyl group
  • R 2 is divalent
  • R f1 is a fluoroalkanediyl group or fluorooxyalkanediyl group
  • R 2 is trivalent. is there.
  • fluorine compound A examples include 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 3,3,3-trifluoropropyltriisopropoxysilane, 3 , 3,3-trifluoropropyltrichlorosilane, 3,3,3-trifluoropropyltriisocyanate silane, 2-perfluorooctylethyltrimethoxysilane, 2-perfluorooctylethyltriethoxysilane, 2-perfluorooctylethyl Triisopropoxysilane, 2-perfluorooctylethyltrichlorosilane, 2-perfluorooctylisocyanatesilane, 2,2,2-trifluoroethyl acrylate, 2,2,3,3,3-pentafluoropropyl acrylate, 2- Full Robutylethyl acryl
  • the fluorine compound A is preferably a compound represented by the general formula (1) from the viewpoint of environmental influences such as the possibility that PFOA described later may not be decomposed or metabolized in the environment, and It is preferable that it is a compound represented by General formula (2).
  • R f2 -X-OCOCH CH 2 ...
  • R f2 means a linear perfluoroalkyl group having 4 to 6 carbon atoms.
  • X represents an alkylene group having 4 to 8 carbon atoms.
  • R f2 is preferably a linear perfluoroalkyl group having 6 carbon atoms, and X is preferably a linear alkylene group having 6 carbon atoms.
  • telomers having PerFluoroOcanoic moieties may be degraded or metabolized to form PFOA, and therefore “telomers having PerFluorOcanoic moieties”. "Is not required in the use of fluorine compounds.
  • fluorine compound A satisfying both the general formulas (1) and (2) include 4-perfluorobutyl-butyl acrylate, 4-perfluorohexyl-butyl acrylate, 6-perfluorobutyl-hexyl acrylate, 6 -Perfluorohexyl-hexyl acrylate, 8-perfluorobutyl-octyl acrylate, 8-perfluorohexyl-octyl acrylate and the like.
  • Compound D is a compound represented by the general formula (3).
  • R 3 means a reactive moiety, and its definition is the same as R 1 .
  • R 4 means an alkylene group having 1 to 6 carbon atoms or an alkylene ether group having 1 to 6 carbon atoms.
  • R 5 and R 6 represent hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • n1 represents an integer of 0 to 2
  • this compound D include acryloxyethyltrimethoxysilane, acryloxypropyltrimethoxysilane, acryloxybutyltrimethoxysilane, acryloxypentyltrimethoxysilane, acryloxyhexyltri Methoxysilane, acryloxyheptyltrimethoxysilane, methacryloxyethyltrimethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxybutyltrimethoxysilane, methacryloxyhexyltrimethoxysilane, methacryloxyheptyltrimethoxysilane, methacryloxypropylmethyldimethoxy Silane, methacryloxypropylmethyldimethoxysilane and compounds in which the methoxy group in these compounds is substituted with other alkoxyl groups and hydroxyl groups Including.
  • the method for producing the fluoropolymer a and the method for producing the particles A are not particularly limited, and may be any of the following methods 1) or 2) or a combination of both.
  • Fluorine compound A and compound D are polymerized to produce fluoropolymer a, and this fluoropolymer a is reacted with inorganic particles to obtain particles A.
  • the reactive part of the fluorine compound A and the reactive part of the compound D are polymerized by a method in accordance with the structure of the reactive part.
  • radical addition polymerization is performed using a radical polymerization initiator
  • the reactive part of fluorine compound A and the compound are alkoxysilyl groups
  • a silanol condensation reaction is performed using an acid or alkali catalyst.
  • the fluoropolymer a is introduced into the inorganic particles. Specifically, a portion capable of reacting with the particles possessed by the portion derived from the compound D in the fluoropolymer a (that means “Si—OR 6 ” in the general formula (3)) is used as necessary. Depending on the conditions, a catalyst is added, and if necessary, a process such as mechanical dispersion is used to introduce the catalyst onto the particle surface.
  • the particle component b contained in the second layer in the laminate of the present invention is a component resulting from the particle B in the coating composition. That is, the particle B in the coating composition becomes a particle component b by reacting with the binder raw material or the particles B in the coating / drying process to change the form. Moreover, when the particle
  • the inorganic particles constituting the particles B are preferably different types of inorganic particles from the inorganic particles constituting the particles A. Further, the inorganic particles constituting the particle B are preferably inorganic particles having a higher refractive index than the inorganic particles constituting the particle A.
  • the inorganic particles constituting the particles B are not particularly limited, but are preferably metal elements, metalloid oxides, nitrides, borides, carbonates, sulfates, Ga, Zr, Ti, Al, In, More preferably, the oxide particles are at least one element selected from the group consisting of Zn, Sb, Sn, and Ce.
  • the inorganic particles constituting the particles B are zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), indium oxide (In 2 O 3 ), and zinc oxide (ZnO). , Tin oxide (SnO 2 ), antimony oxide (Sb 2 O 3 ), and indium tin oxide, or a solid solution therebetween, and some elements are substituted, or some elements are interstitial A solid solution in which a part of the element is lost or an inorganic particle in which different types of inorganic particles are joined.
  • the particle B is particularly preferably phosphorus-containing tin oxide (PTO), antimony-containing tin oxide (ATO), gallium-containing zinc oxide (GZO), titanium oxide (TiO 2 ), or zirconium oxide (ZrO 2 ).
  • PTO phosphorus-containing tin oxide
  • ATO antimony-containing tin oxide
  • GZO gallium-containing zinc oxide
  • TiO 2 titanium oxide
  • ZrO 2 zirconium oxide
  • the refractive index of the inorganic particles constituting the particle B is preferably 1.55 to 2.80, more preferably 1.58 to 2.50.
  • the refractive index of the inorganic particles constituting the particle B is smaller than 1.55, the refractive index of the second layer containing the particle component b of the obtained laminate is lowered, and the refraction with the first layer containing the particle component a is reduced. Since the difference in rate is small, the effect of suppressing the coloration of transmitted light and the effect of making the pattern of the transparent conductive layer difficult to see may be insufficient.
  • the refractive index of the inorganic particles constituting the particle B is more than 2.80. If it becomes larger, the difference in refractive index between the transparent conductive layer formed on the first layer and the difference in refractive index between the second layer and the supporting substrate will increase. The effect of making the layer pattern difficult to see may be insufficient.
  • the inorganic particles constituting the particles B may be inorganic particles having a higher refractive index than the silica particles.
  • Particularly preferred as such inorganic particles having a high refractive index are inorganic compounds having a number average particle diameter of 50 nm or less and a refractive index of 1.55 to 2.80.
  • Specific examples of such inorganic compounds include antimony oxide, antimony-containing zinc oxide, antimony-containing tin oxide (ATO), phosphorus-containing tin oxide (PTO), gallium-containing zinc oxide (GZO), and zirconium oxide (ZrO 2 ).
  • / or titanium oxide (TiO 2 ) titanium oxide and zirconium oxide having a particularly high refractive index are more preferable.
  • the laminated film in the preferable manufacturing method of the laminated body of this invention contains the binder component c.
  • the coating composition used for the preferable manufacturing method of the laminated body of this invention contains the binder raw material C.
  • FIG. Here, in a preferable production method of the laminate of the present invention, the binder contained in the coating composition is represented as “binder raw material C”, and the binder contained in the laminated film of the laminate is represented as “binder component c”. In some cases, C may be present as it is as the binder component c (that is, including a mode in which the binder raw material C of the coating composition is present as it is as the binder component c in the laminated film).
  • binder raw material C Although it does not specifically limit as binder raw material C, from a viewpoint of manufacturability, it is preferred that it is curable binder raw material C by heat and / or active energy rays, and binder raw material C is one kind. Alternatively, two or more kinds may be mixed and used.
  • the above-mentioned reactive sites that is, silanol groups in which alkoxysilyl groups and alkoxysilyl groups are hydrolyzed in the molecules, carboxyl groups, hydroxyl groups, epoxy groups, vinyl groups, allyl groups
  • the binder raw material C having an acryloyl group, a methacryloyl group, an acryloxy group, or a methacryloxy group is preferable.
  • a preferable range exists in the above-mentioned reactive part of the binder raw material C.
  • the unit structure preferably has an average of 2 to 15 reactive sites, more preferably an average of 6 to 15 reactive sites.
  • parts exists in said range, and a reactive site
  • the average value of the number of reactive sites per unit constitution of the binder raw material C is less than 2 or more than 15, an ideal surface and interface structure cannot be obtained, and sufficient transparency and visibility from an oblique direction are not obtained. The effect of making the pattern of the transparent conductive layer difficult to see may not be obtained. Although this factor is not clear, it is presumed that the reactive site has a polarized site and thus functions to adjust the compatibility of each particle component in the coating.
  • polyfunctional (meth) acrylate As such a binder raw material C, it is preferable to use polyfunctional (meth) acrylate in the component, and typical ones are exemplified below.
  • a polyfunctional acrylate having two or more (meth) acryloxy groups in one molecule and a modified polymer or oligomer thereof and specific examples include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, di Pentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol triacrylate hexanemethylene Diisocyanate urethane polymer
  • polyfunctional acrylic compositions include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol” series, etc.), Shin-Nakamura Co., Ltd. (product) Name “NK Ester” series, etc.), DIC Corporation; (Product name “UNIDIC”, etc.), Toagosei Chemical Industries Co., Ltd. (“Aronix” series, etc.), NOF Corporation; (“Blemmer” series, etc.), Nippon Kayaku Co., Ltd .; (trade name “KAYARAD” series, etc.), Kyoeisha Chemical Co., Ltd. (trade name “light ester” series, etc.), and the like can be used.
  • the coating composition used in the preferred production method of the laminate of the present invention preferably contains an organic solvent in addition to the aforementioned fluoropolymer a, particle A, particle B, and binder raw material C.
  • an organic solvent By including an organic solvent, the film thickness of the coating film can be made uniform by giving appropriate fluidity at the time of coating, and the mobility of the particles can be ensured because the mobility of the particles can be improved, and good characteristics can be obtained. It is preferable because it can be expressed.
  • the organic solvent is not particularly limited as long as the fluoropolymer a, the particles A, the particles B, and the binder raw material C are uniformly dissolved or dispersed, but usually an organic solvent having a boiling point of 250 ° C. or less at normal pressure.
  • a solvent is preferred. Specifically, alcohols, ketones, ethers, esters, hydrocarbons, amides, fluorine-containing compounds and the like are used. These can be used alone or in combination of two or more.
  • Examples of alcohols include methanol, ethanol, isopropyl alcohol, isobutanol, n-butanol, tert-butanol, ethoxyethanol, butoxyethanol, diethylene glycol monoethyl ether, benzyl alcohol, phenethyl alcohol, and the like.
  • Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Examples of ethers include ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and propylene glycol monoethyl ether acetate.
  • esters examples include ethyl acetate, butyl acetate, ethyl lactate, methyl acetoacetate, and ethyl acetoacetate.
  • aromatics examples include toluene and xylene.
  • amides include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like.
  • the coating composition used for the preferable manufacturing method of the laminated body of this invention contains a polymerization initiator and a hardening
  • the polymerization initiator and the curing agent are used for promoting the reaction between the particles and the binder raw material or for promoting the reaction between the binder raw materials.
  • polymerization initiator and curing agent various ones can be used depending on the reactive site of the binder raw material contained in the coating composition. Moreover, several polymerization initiators may be used simultaneously and may be used independently. Furthermore, you may use together an acidic catalyst, a thermal-polymerization initiator, and a photoinitiator.
  • acidic catalysts include aqueous hydrochloric acid, formic acid, acetic acid and the like.
  • thermal polymerization initiator include peroxides and azo compounds.
  • the photopolymerization initiator include alkylphenone compounds, sulfur-containing compounds, acylphosphine oxide compounds, and amine compounds, but are not limited thereto, but from the viewpoint of curability.
  • Alkylphenone compounds are preferred, and specific examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1 -One, 2-benzyl-2-dimethylamino-1- (4-phenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- (4-phenyl) -1-butane, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl Nyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butane, 1-cyclohexyl-phenylketone, 2-methyl-1-phenylpropan-1-one, 1- [4- (2- Ethoxy) -phenyl] -2-hydroxy
  • the content of the polymerization initiator, curing agent and catalyst is preferably 0.001 to 30 parts by mass, more preferably 0.05 to 20 parts by mass with respect to 100 parts by mass of the binder raw material in the coating composition. More preferably, it is 0.1 to 10 parts by mass.
  • the coating composition used in the preferred production method of the laminate of the present invention further includes a surfactant, a thickener, a leveling agent, an ultraviolet absorber, an antioxidant, a polymerization inhibitor, a pH adjuster, a stability
  • a surfactant such as an agent, as needed.
  • the coating composition used in the preferred production method of the laminate of the present invention has a refractive index by applying “coating composition once, then drying and curing” described later in the section “Production method of laminate”.
  • the particle A / particle B mass ratio
  • the ratio of the thickness of the first layer to the thickness of the second layer of the obtained laminate can be made constant. For this reason, since it is easy to make the thickness of a 1st layer and a 2nd layer into required thickness simultaneously by one application
  • the particle A / particle B (mass ratio) is more preferably 1/18 to 3/1, and particularly preferably 1/15 to 2/1.
  • the content of particles A is 0.03 to 26.3% by mass
  • the content of particles B is 0.06 to 57.5% by mass
  • the content of fluoropolymer a The amount is 0.003 to 27.2% by mass
  • the content of the binder raw material is 0.02 to 43.2% by mass
  • the content of the organic solvent is 40 to 98% by mass
  • the initiator, the curing agent, and the catalyst In this embodiment, the content of other components is 0.1 to 20% by mass.
  • the laminate of the present invention and the transparent conductive laminate of the present invention have a support substrate.
  • a plastic film is more preferable than a glass plate.
  • plastic film materials include cellulose esters (eg, triacetyl cellulose, diacetyl cellulose, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, nitrocellulose), polyamides, polycarbonates, polyesters (eg, polyethylene terephthalate, polyethylene naphthalate).
  • polystyrene eg, syndiotactic polystyrene
  • polyolefin eg, Polypropylene, polyethylene, polymethylpentene
  • the light transmittance of the support substrate is preferably 80 to 100%, more preferably 86 to 100%.
  • the light transmittance is a ratio of light transmitted through a sample when irradiated with light, and is an index of transparency of a transparent material that can be measured according to JIS K 7361-1 (1997). The larger the value is, the better the transparent conductive laminate is. When the value is small, the haze value is increased and image degradation may occur. Haze is an index of turbidity of a transparent material specified in JIS K 7136 (2000). The smaller the haze, the higher the transparency.
  • the haze of the supporting substrate is preferably 0.01 to 2.0%, more preferably 0.01 to 1.0%.
  • the refractive index of the supporting substrate is preferably 1.4 to 1.7. Moreover, it is more preferable that the refractive index of the supporting substrate approaches the refractive index of the second layer. When the refractive index of the supporting substrate is close to the refractive index of the second layer, the occurrence of fluctuation (ripple) in the reflectance spectrum can be suppressed.
  • the refractive index is a rate at which the angle of the traveling direction is changed at the interface when light travels from the air to a certain substance, according to the method defined in JIS K 7142 (1996). Can be measured.
  • the support substrate may contain an infrared absorber or an ultraviolet absorber.
  • the content of the infrared absorber is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, based on 100% by mass of all the components of the support substrate.
  • particles of an inert inorganic compound may be contained in the transparent support. Examples of the inert inorganic compound SiO 2, TiO 2, BaSO 4 , CaCO 3, talc and kaolin. Further, the support substrate may be subjected to a surface treatment.
  • the surface of the support substrate can be subjected to various surface treatments.
  • the surface treatment include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency treatment, glow discharge treatment, active plasma treatment, laser treatment, mixed acid treatment and ozone oxidation treatment.
  • glow discharge treatment, ultraviolet irradiation treatment, corona discharge treatment and flame treatment are preferred, and glow discharge treatment, corona discharge treatment and ultraviolet treatment are more preferred.
  • the support substrate may have layers (these are referred to as functional layers) such as an easy-adhesion layer, a hard coat layer, an antiblocking layer, an antistatic layer, an ultraviolet absorption layer, and an oligomer block layer.
  • layers such as an easy-adhesion layer, a hard coat layer, an antiblocking layer, an antistatic layer, an ultraviolet absorption layer, and an oligomer block layer.
  • the arithmetic average roughness Ra based on JIS R 1683 (2007) of the surface of the support base on which the coating composition is applied is preferably 40 nm or less.
  • the arithmetic average roughness is more preferably 35 nm or less, and further preferably 30 nm or less. If the arithmetic average roughness Ra is larger than 40 nm, the surface migration of the particles a becomes insufficient, the particles agglomerate in the film, or the second layer is excessively penetrated into the first layer. In some cases, the effect of reducing the coloration of transmitted light and the effect of making the pattern of the transparent conductive layer less visible with respect to visual recognition from the front direction may not be obtained. In addition, the transparent conductive layer cannot be uniformly formed in the plane on the laminated film, and the surface resistance value may increase or the transparency of the coating film may decrease.
  • the method for producing a laminate of the present invention is preferably a method for forming each layer of the laminate film by applying the above-mentioned coating composition to at least one side of the above-mentioned support substrate, and then drying and curing.
  • Particularly preferred is a method of forming a laminated film composed of two layers having different refractive indexes by applying the coating composition described above once, followed by drying and curing.
  • the coating composition is prepared by dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating or die coating (US Pat. No. 2,681,294). And the like on the supporting substrate.
  • the liquid film applied on the support substrate is dried.
  • the drying process also heats the liquid film from the viewpoint of promoting the movement of particles in the liquid film and improving surface migration. Is preferably accompanied. If a drying rate in the range of 0.1 g / (m 2 ⁇ s) or more and 1.4 g / (m 2 ⁇ s) or less can be obtained in the initial stage of drying, it is not particularly limited to a specific wind speed and temperature.
  • This curing step refers to a step of accelerating the reaction between reactive sites such as the binder raw material in the aforementioned coating composition.
  • the temperature is preferably from room temperature to 200 ° C. From the viewpoint, it is more preferably 100 to 200 ° C., further preferably 130 to 200 ° C.
  • EB rays electron beams
  • UV rays ultraviolet rays
  • the oxygen partial pressure is preferably as low as possible because oxygen inhibition can be prevented, and curing in a nitrogen atmosphere (nitrogen purge) is more preferable.
  • fever you may perform a drying process and a hardening process simultaneously.
  • the transparent conductive laminate of the present invention By forming a transparent conductive layer on the first layer of the laminate, the transparent conductive laminate of the present invention can be obtained.
  • the transparent conductive laminate has a configuration in which at least the second layer, the first layer, and the transparent conductive layer are laminated in this order from the support substrate side, that is, the transparent conductive layer is formed on the first layer of the laminate. It is a laminated structure.
  • the transparent conductive layer can be a layer containing a transparent conductive oxide.
  • the transparent conductive oxide in the present invention is mainly composed of indium oxide or zinc oxide, and the one composed mainly of indium oxide can be used alone, but imparts conductivity.
  • doping can also be performed. Examples of doping include tin, zinc, niobium, tungsten, titanium, zirconium, and molybdenum. Among them, one doped with tin (ITO) is widely used. Those containing zinc oxide as a main component can use zinc oxide alone, but can also be doped for the purpose of imparting conductivity. Examples of doping include indium, tin, aluminum, boron, gallium, and silicon.
  • These transparent conductive oxide layers are formed by known methods such as sputtering, metal organic chemical vapor deposition (MOCVD), thermal CVD, plasma CVD, molecular beam epitaxy (MBE), or pulsed laser deposition.
  • MOCVD metal organic chemical vapor deposition
  • thermal CVD thermal CVD
  • plasma CVD plasma CVD
  • molecular beam epitaxy MBE
  • pulsed laser deposition pulsed laser deposition.
  • the sputtering method is preferable from the viewpoint that a film can be uniformly formed over a large area.
  • the transparent conductive laminate on which the transparent conductive layer is formed is preferably subjected to an annealing treatment in order to increase conductivity and light transmittance.
  • the annealing atmosphere is preferably performed in a vacuum or an inert gas atmosphere.
  • the transparent conductive oxide may be thermally oxidized, and the electrical conductivity may decrease (the surface resistance value increases).
  • the annealing temperature is preferably equal to or higher than the temperature at which the crystallinity is improved.
  • the lower temperature is more suitable for heat shrinkage, wrinkles, curls, oligomer precipitation, lower adhesion, coloring, etc. Since it is so preferable that it is low from a viewpoint, it is preferable to carry out at the lowest possible temperature in the range which can obtain electroconductivity and light transmittance.
  • the surface resistance value of the transparent conductive laminate varies depending on the application used, it is preferably 50 to 500 ⁇ / ⁇ , more preferably 100 to 300 ⁇ / ⁇ , particularly for a capacitive touch panel that requires patterning. It can be used by doing. When the surface resistance value is less than 50 ⁇ / ⁇ or exceeds 500 ⁇ / ⁇ , the recognition accuracy of the touch panel may be lowered.
  • the film thickness of the transparent conductive layer of the transparent conductive laminate is preferably in the range of 4 to 50 nm, more preferably 10 to 40 nm.
  • the film thickness of the transparent conductive layer is less than 4 nm, it may be difficult to form a continuous thin film, and it may be difficult to obtain good conductivity.
  • the film thickness of the transparent conductive layer is greater than 50 nm, when the transparent conductive thin film layer is patterned, it may be difficult to bring the optical characteristics of the portion having the transparent conductive layer close to that of the portion having no transparent conductive layer.
  • the transparent conductive laminate of the present invention can be applied to the first layer of the laminate of the present invention by vacuum deposition, sputtering, CVD, ion plating, spraying, etc., depending on the required film thickness. Can be obtained as appropriate.
  • a normal sputtering method using an oxide target, a reactive sputtering method using a metal target, or the like is used.
  • oxygen, nitrogen, or the like may be introduced as a reactive gas, or means such as ozone addition, plasma irradiation, or ion assist may be used in combination.
  • a bias such as direct current, alternating current, and high frequency may be applied to the substrate as long as the object of the present invention is not impaired.
  • the touch panel used for various electronic devices and the transparent electrode used for the touch panel transparent electrode can be used. It can use suitably as a laminated body used for the refractive index adjustment of a conductive laminated body and a transparent conductive laminated body.
  • a transparent conductive laminate formed by laminating a transparent conductive layer on the laminate of the present invention can be particularly preferably used as a transparent electrode of a touch panel by forming a pattern on the transparent conductive layer.
  • a mixture liquid (A-1) containing particles A and fluoropolymer a was prepared in the same manner as in the formulation shown in Table 1, except that the inorganic particle material and the addition amount were used.
  • Particle B (1) Zirconium oxide particle dispersion (manufactured by Nissan Chemical Industries, Ltd .: solid content 30% by mass, number average particle size 10 nm).
  • Particle B (2) Titanium dioxide particle dispersion (ELCOM JGC Catalysts & Chemicals, Inc .: solid content 30% by mass, number average particle size 8 nm).
  • Preparation of coating composition 2 It was prepared by the same method as the preparation of the coating composition 1 except that (dipentaerythritol hexaacrylate: DPHA) was used as the binder raw material C1.
  • A-2) containing particle A and fluoropolymer a 53.0 parts by mass Particle B (1) 7.8 parts by mass Binder raw material C1 (Osaka Organic Chemical Industry Tripentaerythritol acrylate: Biscote # 802) 55 parts by mass Photopolymerization initiator (Irgacure 127: Irg127 manufactured by Ciba Specialty Chemicals) 0.25 parts by mass Organic solvent Methyl isobutyl ketone (MIBK) 26.4 parts by mass Ethylene glycol monobutyl ether acetate (EGMBA) 11.0 parts by mass.
  • Binder raw material C1 (Osaka Organic Chemical Industry Tripentaerythritol acrylate: Biscote # 802) 55 parts by mass Photopolymerization initiator (Irgacure 127: Irg127 manufactured by Ciba Specialty Chemicals) 0.25 parts by mass Organic solvent Methyl isobutyl ketone (MIBK) 26.4 parts by mass E
  • A-2) containing particle A and fluoropolymer a 53.0 parts by mass Particle B (1) 6.5 parts by mass Binder raw material C1 (Osaka Organic Chemical Industry Tripentaerythritol acrylate: Biscote # 802) 95 parts by mass Photopolymerization initiator (Irgacure 127: Irg127 manufactured by Ciba Specialty Chemicals) 0.25 parts by mass Organic solvent Methyl isobutyl ketone (MIBK) 27.3 parts by mass Ethylene glycol monobutyl ether acetate (EGMBA) 11.0 parts by mass.
  • Binder raw material C1 (Osaka Organic Chemical Industry Tripentaerythritol acrylate: Biscote # 802) 95 parts by mass Photopolymerization initiator (Irgacure 127: Irg127 manufactured by Ciba Specialty Chemicals) 0.25 parts by mass Organic solvent Methyl isobutyl ketone (MIBK) 27.3 parts by mass E
  • A-4) containing particles A and fluoropolymer a 53.8 parts by mass Binder raw material (pentaerythritol triacrylate: PETA) 0.31 parts by mass Photopolymerization initiator (Irgacure 127: Irg127, manufactured by Ciba Specialty Chemicals) ) 0.05 parts by mass Organic solvent Methyl isobutyl ketone (MEK) 34.84 parts by mass Ethylene glycol monobutyl ether acetate (EGMBA) 11.0 parts by mass.
  • Binder raw material penentaerythritol triacrylate: PETA
  • Photopolymerization initiator Irgacure 127: Irg127, manufactured by Ciba Specialty Chemicals
  • MEK Methyl isobutyl ketone
  • Particle B (2) 7.7 parts by mass Binder raw material (pentaerythritol triacrylate: PETA) 1.23 parts by mass Photopolymerization initiator (Irgacure 127: Irg 127 manufactured by Ciba Specialty Chemicals) 0.20 parts by mass Organic solvent Methyl isobutyl ketone (MEK) 79.87 parts by mass Ethylene glycol monobutyl ether acetate (EGMBA) 11.0 parts by mass.
  • Binder raw material penentaerythritol triacrylate: PETA
  • Photopolymerization initiator Irgacure 127: Irg 127 manufactured by Ciba Specialty Chemicals
  • MEK Methyl isobutyl ketone
  • binder raw material C1 urethane acrylate manufactured by Daicel Ornex Co., Ltd .: KRM4858, pentaerythritol triacrylate: PETA, Osaka Organic Chemical Industry tripentaerythritol acrylate: Biscote # 802, Osaka Organic Chemical Industries phenol modified acrylate: HQMA Except that Daicel Ornex Co., Ltd. urethane acrylate: KRM 8655, Osaka Organic Chemical Industries multi-branched dendrimer type acrylate: STAR-501, Daicel Ornex Co., Ltd. urethane acrylate: KRM7804 are used as the binder raw material C2. It was prepared in the same manner as the preparation of composition 1.
  • Pentaerythritol triacrylate PETA 30.0 parts by mass Irgacure 907 (manufactured by Ciba Specialty Chemicals) 1.5 parts by mass Methyl isobutyl ketone (MIBK) 73.5 parts by mass.
  • the above-mentioned coating composition was applied by a bar coater (# 3), followed by the first stage drying described below, followed by the second stage drying.
  • First stage Hot air temperature 50 °C Hot air wind speed 1.5m / s Wind direction Parallel to the coating surface Drying time 0.5 minutes
  • Second stage Hot air temperature 100 ° C Hot air wind speed 5m / s Wind direction Vertical to coating surface Drying time 1 minute
  • the wind speed of the hot air is a value converted from the measured dynamic pressure of the blowing part to the wind speed.
  • UV light with an illuminance of 600 W / cm 2 and an integrated light amount of 800 mJ / cm 2 was applied under an oxygen concentration of 0.1% by volume. Irradiated to cure.
  • Example 4 The laminates of Examples 1 to 6 and Comparative Examples 1 to 6 were prepared with combinations shown in Table 4.
  • the coating composition (1) was applied and dried in the same manner as in the above method except that the bar coater (# 5) was used for Example 6 and the bar coater (# 7) was used for Comparative Example 6. did.
  • the above-described coating compositions 11 and 10 were applied in this order under the above conditions to prepare a laminate.
  • optical constants (C 1 , C 2 , C 3 ) are calculated by the least square method (curve fitting method) using Cauchy's dispersion formula (Formula 1) as an approximate expression of the wavelength dispersion of the refractive index, and the refractive index at 550 nm is calculated.
  • the refractive index of the first layer is n1
  • the refractive index of the second layer is n2.
  • the transparency of the laminate was determined by measuring haze.
  • the haze measurement is based on JIS-K7136 (2000), using a haze meter manufactured by Nippon Denshoku Industries Co., Ltd. so that light can be transmitted from the side opposite to the support substrate (laminate film side) of the laminate sample. Measurements were made on the apparatus. In addition, it measured in three different places of the same sample, and made the average value the haze (Hz) of the laminated body.
  • the measured Brewster angle at the interface between the first layer and the air layer of the laminate was measured using a micro-angle variable absolute reflection accessory for U-4100 spectrophotometer (manufactured by Hitachi High-Technologies Corporation).
  • a reflectance spectrum is measured every 0.5 ° at an incident angle of 50 ° to 60 °, and each reflectance spectrum is measured every 0.5 ° in the range of 380 nm to 780 nm.
  • the average reflectance was calculated as the average value of the reflectance values.
  • the average reflectance described above was plotted against the incident angle, and the angle at which the average reflectance was minimized was read.
  • the in-plane composition ratio in the cross-sectional observation image is an arbitrary straight line (23) parallel to the interface (22) between the base material and the second layer, and the boundary line between the first layer and the second layer obtained by image processing ( It is a value estimated from 24).
  • the arbitrary straight line (23) is divided by the boundary line (24) into a line segment (25) belonging to the first layer and a line segment (26) belonging to the second layer.
  • the ratio of the length of the line segment to the total length of the line segment is used as a value representing the area ratio of each component in the plane.
  • the ratio of the area occupied by the first layer and the second layer that penetrated each other in an arbitrary plane is determined by the following method. Calculated. Images of ultra-thin sections of the cross section of the laminated film were taken with a TEM at a magnification of 200,000 times. Next, with image processing software EasyAccess Ver 6.7.1.23, after rotating and trimming so that the interface (22) between the base material and the second layer is horizontal, the image is converted to gray scale. The white balance was adjusted so that the brightest part and the darkest part fit within an 8-bit tone curve, and the contrast was adjusted so that the boundary line (24) between the first layer and the second layer could be clearly distinguished.
  • TEM transmission electron microscope
  • the binarization of pixels is performed at the boundary between the first layer and the second layer described above, and Analyzes Particles (
  • the coordinate information of the boundary line (24) between the first layer and the second layer was extracted by the particle analysis function.
  • the arbitrary straight line (23) for calculating the in-plane composition ratio and the coordinate information of the boundary line (24) between the first layer and the second layer described above are collated, and “the in-plane composition ratio is determined by the coordinates of the intersection point”.
  • the “segment to be calculated” was divided into “line segment belonging to the first layer (25)” and “line segment belonging to the second layer (26)”.
  • the total length of the “line segment belonging to the first layer (25)” is L1
  • the total length of the “line segment belonging to the second layer (26)” is L2
  • the total is calculated.
  • the ratio of the “line segment for calculating the in-plane composition ratio” to the length L was defined as “in-plane composition ratio” and calculated.
  • a region in which the in-plane composition ratio calculated by the above method is less than 90% in both the first layer and the second layer is defined as “a region where the first layer and the second layer penetrate each other”.
  • the thickness of this region was calculated according to the following procedure. According to the above-described method for calculating the in-plane composition ratio, the in-plane composition ratio of the second layer on each line segment parallel to the interface between the base material and the second layer is calculated. A plot of the distance from the interface between the base substrate and the second layer was created. From this plot, the distance of the portion where the in-plane composition ratio of the second layer was larger than 10% and smaller than 90% was read, and the thickness was determined as the thickness of the region where the first layer and the second layer penetrated each other.
  • the measurement lower limit of the length calculated by the series of image processing is determined from “magnification during cross-sectional observation” and “number of pixels included in image”.
  • the number of pixels of the cross-sectional image at the time of the above analysis is 1,280 ⁇ 1,024, and the length of the short side of the obtained cross-sectional image is about 500 nm.
  • a transparent conductive layer made of indium-tin composite oxide was formed on the first layer of the laminate.
  • the pressure before sputtering was 1 ⁇ 10 ⁇ 5 Pa
  • the target was 2 W / indium oxide containing 36% by mass of tin oxide (manufactured by Sumitomo Metal Mining Co., Ltd., density 6.9 g / cm 3 ).
  • a DC power of cm 2 was applied.
  • Ar gas was flowed at 130 sccm and O 2 gas was flowed at a flow velocity at which the surface resistance value was minimized, and a film was formed by DC magnetron sputtering in an atmosphere of 0.67 Pa.
  • a pulse with a width of 5 ⁇ s was applied at a 50 kHz period using an RPG-100 manufactured by Nippon NAI.
  • the center roll temperature was 10 ° C. and sputtering was performed.
  • oxygen gas is used so that the degree of oxidation in the transparent conductive layer made of indium-tin composite oxide becomes constant. Footback to a DC flow meter and DC power source.
  • annealing is performed for 10 minutes under conditions of a vacuum of 0.01 Pa or less and a temperature of 160 ° C., and a transparent conductive layer made of an indium-tin composite oxide having a thickness of 30 nm and a refractive index of 1.96 is deposited.
  • a laminate was created.
  • a pattern of a 1 cm ⁇ 3 cm transparent conductive layer was formed by immersion in 1N hydrochloric acid and then by alkaline immersion (hereinafter referred to as “the pattern of the transparent conductive layer”). This is referred to as a patterned transparent conductive laminate.
  • the area of 1 cm ⁇ 1 cm on the surface having the transparent conductive layer is equally 10 squares ⁇ 10 squares under normal conditions (23 ° C., relative humidity 65%).
  • 100 pieces of 1 mm 2 crosscuts to be divided into two pieces, cellophane tape (model number: CT405AP-12) manufactured by Nichiban Co., Ltd. was applied on it, and it was reciprocated three times with a load of 19.6 N using a rubber roller.
  • Table 1 shows the formulation of the mixed solution containing particles A and fluoropolymer a
  • Table 2 shows the composition of the coating composition
  • Table 3 shows the composition and evaluation results of the laminate
  • Table 4 shows the Brewster angle of the laminate. The evaluation results of the transparent conductive laminate were summarized.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、平滑性、透明性に優れ、かつ正面方向及び斜め方向のいずれにおいても優れた導電層パターン視認性抑制効果を有する積層体を提供する。 本発明は、支持基材の少なくとも片側に支持基材側から第2層、第1層の順に積層された積層膜を有する積層体であって、該第1層と該第2層の屈折率が異なり、かつ以下の(A)~(D)をすべて満たす積層体に関する。 (A)n2>n1 ・・・(式1)(B)Ra1≦5nm ・・・(式2)(C)Hz≦0.6% ・・・(式3)(D)θr1-θi1>1.0° ・・・(式4)n1:第1層の屈折率、n2:第2層の屈折率、Ra1:第1層-空気層界面の算術平均粗さ、Hz:積層体のヘイズθi1:第1層-空気層界面の理論ブリュースター角θr1:第1層-空気層界面の実測ブリュースター角

Description

積層体、透明導電性積層体およびタッチパネル
 本発明は、各種電子機器に使用されるタッチパネル、タッチパネルの透明電極に使用される透明導電性積層体、透明導電性積層体の屈折率調整に用いる積層体に関する。
 近年、静電容量式のタッチパネルが携帯電話、携帯音楽端末などの各種モバイル機器に搭載されるケースが増えている。このような静電容量式のタッチパネルではパターニングされた導体上に誘電体層を積層した構成を有し、指などでタッチすることにより、人体の静電容量を介して接地される。この際、パターニング電極と接地点との間の抵抗値に変化が生じ、位置入力を認識する。しかしながら従来の透明導電性フィルムを用いた場合、導電層を有する部分と除去された部分での光学特性の差が大きいため、パターニングが強調され、液晶ディスプレイ等の表示体の前面に配置した際に視認性が低下するという問題があった。
 透明導電性フィルムの透過率、色目、さらに導電層のパターンが強調されないようにするため、反射防止膜等で用いられている屈折率の異なる層を積層させ光の干渉を利用する方法が提案されている。すなわち、透明導電性薄膜層と基材フィルムの間に屈折率の異なる層(インデックスマッチング層、屈折率調整層、光学機能層、光学調整層、反射防止層ともいう)を設けて光学干渉を利用する方法が提案されている。
 特許文献1には「透明プラスチックフィルムからなる基材上に、高屈折率層、低屈折率層及び透明導電性薄膜層をこの順に積層した構成を有し、高屈折率層の屈折率が1.70~2.50、膜厚が4~20nmの範囲にあり、低屈折率層の屈折率が1.30~1.60、膜厚が20~50nmの範囲であることを特徴とする透明導電性積層フィルム。」が記載されている。
 特許文献2には、前記屈折率調整層のうち屈折率が異なる2つの層を1回のウェットコーティングにて形成する例として、基材や樹脂、粒子材料の表面エネルギーに着目した「30mN/m以下の表面自由エネルギーをもつ硬化層を形成可能な第一の樹脂成分、該第一の樹脂成分と硬化可能な第二の樹脂成分、平均粒径2nm以上100nm以下の第一の無機微粒子、及び少なくとも一種の有機溶剤を含有する塗布組成物であって、第一の樹脂成分および/または第二の樹脂成分は電離放射線硬化性官能基を有し、該塗布組成物は、硬化させることにより硬化層を形成可能なものであり、該塗布組成物は、該硬化層において、該第一の無機微粒子が該硬化層の下部に偏在して、屈折率の異なる上層と下層とを形成する、塗布組成物。」が記載されている。
 特許文献3には溶媒の相対乾燥速度に着目し、粒子と樹脂成分を分離する「基材と、その上に多層構造を有する積層体の製造方法であって、基材上又は基材上に形成された層の上に、(A)重合性不飽和基を有する有機化合物(Ab)を結合させてなる金属酸化物粒子、(B)エチレン性不飽和基含有含フッ素重合体、(C)速揮発溶剤及び(D)遅揮発溶剤を含む紫外線硬化性樹脂組成物を塗布して塗膜を形成し、この1の塗膜から溶媒を蒸発させることにより、2以上の層を形成することを特徴とする積層体の製造方法。」がそれぞれ記載されている。
 また、特許文献4には、前記屈折率が異なる2つの層の界面形状に着目した例として、「支持基材の少なくとも片面に、屈折率の異なる第2層及び第1層をこの順に有し、第1層が粒子X(粒子Xは、構成材料として少なくとも無機粒子を含む粒子である)を含有し、第2層が粒子Y(粒子Yは、構成材料として少なくとも無機粒子を含む粒子である)を含有する積層体であって、前記粒子Xの無機粒子の数平均粒子径(以下、Dとする)が、5nm以上25nm以下であって、式1及び式2を満たすことを特徴とする積層体。」がそれぞれ記載されている。
 一方で、前記光学干渉を利用した透明導電性フィルムの透過率、色目、および導電層のパターンの強調抑制(すなわち、導電層のパターンを見えにくくし、導電層パターンの視認性を抑制する)方法は透明導電性フィルムの法線方向における光路設計を用いるのが一般的であり、斜め方向から覗き込んだ場合には十分な導電層パターン視認性抑制効果が得られない場合があることが知られている。
 特許文献5には、斜め方向の光学設計値としてブリュースター角度におけるP波とS波の透過光量に着目した前記屈折率調整層に関する例として、「波長590nmにおける面内レターデーション(Re)が500nm以上のポリマーフィルムと、該ポリマーフィルムの少なくとも一方の表面上に反射防止層とを有する偏光板保護フィルムであって、前記反射防止層の、前記ポリマーフィルムの内部を透過してくる可視光全域の光に対するブリュースター角での反射率が、5%以下であることを特徴とする偏光板保護フィルム、及び該保護フィルムを有する偏光板。」が記載されている。
特開2010-15861号公報 特開2007-293313号公報 特開2007-038199号公報 国際公開第2013/183487号パンフレット 特開2009-014886号公報
 以上の従来技術には、下記の課題がある。
 特許文献1では、基材上に高屈折率層、低屈折率層及び透明導電層を積層しているが、明細書によると低屈折率層の積層方法はスパッタリング、実施例で記載されている屈折率は1.46程度であり、本発明者らが確認したところ、この屈折率では、透過光の着色低減効果や透明導電層のパターンを見えにくくする効果が不十分であり、同構成にて単純に屈折率を下げると、着色低減効果や透明導電層のパターンを見えにくくする効果の面内均一性が損なわれる、すなわち、面内ばらつきが大きくなる問題がある。
 特許文献2、3は、1回の塗工により2つの層を得る技術であるが、2つの平滑な層を構成することに着目した技術であり、斜め方向から光が入射した際には光路長が設計からずれるため、本発明者らが確認したところ、斜め方向からの視認に対する透明導電層のパターンを見えにくくする効果(すなわち、斜め方向の光学設計)が不十分であった。
 特許文献4は、2つの層を同時に形成する技術による界面の構造に着目した技術であるが、本発明者らが確認したところ特許文献4では表面の粗さ低減効果が十分に得られず、従って十分なヘイズ値が得られず、本発明が課題とする透明性を得られていなかった。
 また、特許文献5では斜め方向の光学設計に対応するパラメータとしてブリュースター角の記載があるが、ブリュースター角を材質の屈折率が決めるパラメータとして記載しており、層厚みや界面形状によりブリュースター角が調整可能であるという着想に至っていない。
 先行技術文献には、以上のようにいくつかの問題があることから、本発明が解決しようとする課題は、平滑性、透明性に優れ、色付きが少なく、かつ正面方向および斜め方向のいずれにおいても優れた導電層パターン視認性抑制効果、すなわち、透明導電層のパターンを見えにくくする効果を有し、かつ光学特性の面内ばらつきが低減された積層体を提供することである。
 上記課題を解決するために本発明者らは鋭意研究を重ねた結果、以下の発明を完成させた。すなわち、本発明は以下の通りである。
(1)支持基材の少なくとも片側に支持基材側から第2層、第1層の順に積層された積層膜を有する積層体であって、該第1層と該第2層の屈折率が異なり、かつ以下の(A)~(D)を満たす積層体。
(A)n2>n1        ・・・(式1)
(B)Ra1≦5nm      ・・・(式2)
(C)Hz≦0.6%      ・・・(式3)
(D)θr1-θi1>1.0° ・・・(式4)
n1:第1層の屈折率、n2:第2層の屈折率
Ra1:第1層-空気層界面の算術平均粗さ
Hz:積層体のヘイズ
θi1:第1層の屈折率n1と空気の屈折率n0から以下の式によって算出される第1層-空気層界面の理論ブリュースター角
tanθi1=n1/n0
θr1:第1層-空気層界面にてp波反射率が極小となる実測ブリュースター角
(2)前記積層膜が以下の(E)~(G)を満たす上記(1)に記載の積層体。
(E)0.2≦n2-n1   ・・・(式5)
(F)Tt≦150nm    ・・・(式6)
(G)55°≦θr1≦60° ・・・(式7)
Tt:積層膜の膜厚
(3)上記(1)または(2)に記載の積層体に透明導電層を積層してなる透明導電性積層体。
(4)上記(3)に記載の透明導電性積層体を用いたタッチパネル。
 本発明の積層体は、平滑性、透明性に優れ、色付きが少なく、かつ、本発明の積層体の積層膜側の最表面に透明導電層を形成するとき、またはさらに透明導電層をエッチングしてパターニングした際、正面方向および斜め方向からの視認に対して、優れた導電層パターン視認性抑制効果、および光学特性の面内ばらつき低減効果を与える。
本発明の積層体の好ましい1つの態様の概略断面図である。 従来技術の積層体の1つの態様の概略断面図である。 従来技術の積層体の1つの態様の概略断面図である。 断面図から算出される面内構成比率の概略図である。
 本発明の積層体は、支持基材の少なくとも片側に支持基材側から第2層、第1層の順に積層された積層膜を有する積層体であって、前記第1層と前記第2層の屈折率が異なる。なお、本明細書において、「積層体」とは、支持基材の少なくとも片側に少なくとも2層以上からなる積層膜を有する部材を指す。
 支持基材がプラスチックフィルムの場合には、屈折率調整フィルム、インデックスマッチングフィルム、反射防止フィルムと呼ばれる。また、支持基材上に形成された積層膜はその機能からインデックスマッチング層、反射率調整層、光学機能層、光学調整層、または反射防止層とも呼ばれる。
 図1に本発明の積層体の好ましい1つの態様を示す。本態様の積層体(1)は、支持基材(2)の少なくとも片側に積層膜(3)が積層されている。積層膜(3)は、屈折率の異なる第1層(4)と第2層(5)とからなる。ここで、積層膜(3)は、第1層と第2層との屈折率が異なり、第1層(4)が第2層(5)よりも低い屈折率である。なお、相対的に低い屈折率を有する第1層を低屈折率層といい、相対的に高い屈折率を有する第2層を高屈折率層という。
 そして、本態様の積層体は、支持基材(2)の少なくとも片側に支持基材側から第2層(5)、第1層(4)をこの順に有し、第1層(4)は粒子成分a(6)を含有し、第2層(5)は粒子成分b(7)を含有する。ここで、粒子成分aは、構成材料として少なくとも無機粒子を含む粒子であり、さらに、後述する特定の条件を満たす粒子である。また、粒子成分bは、構成材料として少なくとも無機粒子を含む粒子である。本態様において用いられる支持基材、粒子成分a、および粒子成分bについては後述する。
 また、本発明の積層体の好ましい製造方法としては、支持基材の少なくとも片側に、下記成分を含む塗料組成物を1回塗布することで前記第1層および第2層を同時に形成する方法が挙げられる。
A)前記第1層を構成する成分であって、その表面をフッ素化合物Aによって修飾されている粒子A
B)前記第2層を構成する成分であって、粒子Aよりも屈折率が高い粒子B
C)バインダー原料C
 なお粒子A、フッ素化合物A、粒子Bおよびバインダー原料Cについては後述する。
 次に本発明の積層体が有する好ましい物理特性について詳細を説明する。
 本発明の積層体は、以下の(A)~(D)をすべて満たす積層体である。
  (A)n2>n1        ・・・(式1)
  (B)Ra1≦5nm      ・・・(式2)
  (C)Hz≦0.6%      ・・・(式3)
  (D)θr1-θi1>1.0° ・・・(式4)
   n1:第1層の屈折率、n2:第2層の屈折率
   Ra1:第1層-空気層界面の算術平均粗さ
   Hz:積層体のヘイズ
   θi1:第1層の屈折率n1と空気の屈折率n0から以下の式によって算出される第1層-空気層界面の理論ブリュースター角
   tanθi1=n1/n0
   θr1:第1層-空気層界面にてp波反射率が極小となる実測ブリュースター角
 また、本発明の積層体は、以下の(E)~(G)をすべて満たすことが好ましい。
  (E)0.2≦n2-n1   ・・・(式5)
  (F)Tt≦150nm    ・・・(式6)
  (G)55°≦θr1≦60° ・・・(式7)
   Tt:積層膜の膜厚
 前記(A)~(D)および前記(E)~(G)で表される特定の物理特性を制御する因子としては「第1層と第2層の膜厚」、「第1層の屈折率n1」および「第2層の屈折率n2」、および厚み方向の屈折率変化に起因する「第1層と第2層の界面の形態」が挙げられ、これらを調整することによりその効果を一層高めることができる。
 本発明の積層体は前記(A)を満たす。すなわち、本発明の積層体の第1層の屈折率をn1、第2層の屈折率をn2とすると、n2>n1である。
 また、本発明の積層体は前記(E)の要件を満たすことが好ましい。すなわち、第1層および第2層の屈折率の差には好ましい範囲が存在し、具体的には(n2-n1)が0.2以上であることが好ましく、0.25以上であることがより好ましい。(n2-n1)が0.2未満の場合には積層体の各層での反射光量が減少して、十分な光学干渉効果が得られにくくなり、結果として前述の正面方向からの視認に対する透明導電層のパターンを見えにくくする効果が十分に得られにくい場合がある。各層の屈折率の測定方法については後述する。一方で(n2-n1)の上限については特に限定されないが、本発明の積層体の光学設計においては概ね0.7以下になると推定される。
 [表面粗さ]
 本発明の積層体は前記要件(B)を満たす。すなわち、第1層-空気層界面の算術平均粗さをRa1とすると、Ra1≦5nmである。本発明の積層体は後述のとおり、透明性が高いことが望ましく、透明性に関わる因子として第1層-空気層の界面および後述の第1層-第2層界面の形状が挙げられる。第1層-空気層の界面の形状については平坦であることが好ましく、具体的にはJIS R 1683(2007)に基づく算術平均粗さRa1が5nm以下である。前記算術平均粗さRa1は2nm以下がより好ましい。Ra1の値が5nmを超えると透明性が損なわれ、さらに30nmを超えると、本発明の積層体の積層膜側の最表面に透明導電層を形成する際に、その密着性の低下や抵抗値の増加が起こる場合がある。またRa1の値の下限には特に限定はないが、完全に平滑な面を得ることは困難であり、0.1nm程度が現実的な下限となる。算術平均粗さRa1の測定方法については後述する。
 [透明性]
 本発明の積層体は、前記(C)を満たす。すなわち、積層体のヘイズをHzとすると、Hz≦0.6%である。積層体として良好な性質を示すには透明性が高いことが望ましい。透明性が低いと画像表示装置として用いた場合、画像彩度の低下などによる画質低下が生じる場合がある。本発明の積層体の透明性の評価にはヘイズ、および全光線透過率を用いることができる。なお、ヘイズ、および全光線透過率に影響を及ぼす因子としては、「第1層と空気層の界面の形態」および「第1層と第2層の界面の形態」が挙げられる。
 ヘイズはJIS-K 7136(2000)に規定された透明性材料の濁りの指標である。ヘイズは小さいほど透明性が高いことを示す。一方でヘイズが大きいということは積層体の表面、もしくは界面の形状が粗く、光を散乱しやすい形状が形成されていることを示唆している。本発明の積層体のヘイズ(Hz)は、0.6%以下であり、好ましくは0.5%以下、より好ましくは0.4%以下である。ヘイズの値が小さいほど透明性の点で良好であるものの、0%とすることは困難であり、現実的な下限値は0.01%程度となる。ヘイズが0.6%より大きいと、画像視認性の低下が生じる可能性が高くなる他、本発明の積層体のように理想的な屈折率変化を与える界面形状が得られず、斜め方向からの視認に対して、優れた透過光の着色低減効果や透明導電層のパターンを見えにくくする効果が得られなくなる。
 全光線透過率は、JIS-K 7361-1(1997)に規定された透明性材料の光透過性の指標であり、高いほど透明性が高いことを示す。積層体の全光線透過率としては、好ましくは85%以上であり、より好ましくは89%以上、更に好ましくは91%以上である。現実的な上限値は94%程度と思われる。全光線透過率が85%より小さいと、画像が暗くなる場合がある。
 [ブリュースター角]
 本発明の積層体は前記(D)を満たす。すなわち、理論ブリュースター角をθi1、実測ブリュースター角をθr1とすると、θr1-θi1>1.0°である。
 ブリュースター角とはJIS Z 8120(2001)に記載の偏光角に相当する値であり、屈折率に差のある二つの物質の界面において生じる反射光のうち、入射面に平行方向(すなわち、反射面である本発明の積層体の表面とは垂直方向)に電界成分を有する電磁波、P偏光の反射率が0になる入射角のことをいう。この角度において非偏光が入射した場合、P偏光成分は界面で反射することなく全て透過し、一方で反射光にはS偏光のみを含む完全偏光が生じる。このような反射率の依存性はフレネルの式によって記述され、ブリュースター角は界面を形成する二つの物質の屈折率差を用いて、以下の式で記述される。
tanθi=nk/nl
nk:透過光が通過する物質の屈折率
nl:入射光および反射光が通過する物質の屈折率
特に入射光が、空気中から積層体の最表面、すなわち第1層に入射する場合のブリュースター角は以下の式を満たす。
tanθi1=n1/n0
θi1:第1層の屈折率n1と空気の屈折率n0から上記の式によって算出される第1層-空気層界面の理論ブリュースター角
 本発明においてはこれらフレネルの式を基に算出される理論的なブリュースター角を理論ブリュースター角θiと記載し、特に第1層-空気層の界面における理論ブリュースター角をθi1と記載する。
 一方、本発明者らが本発明の課題である斜め方向からの視認に対する透明導電層のエッチングパターンの強調について分析を実施したところ、前述の透明導電層部分とエッチングにより前述の屈折率調整層が剥き出しになった部分の前記理論ブリュースター角に近い角度において、パターンの強調の効果が顕著に表れることを見出した。すなわち、ブリュースター角において一方の部分のp偏光の反射強度が弱まることで、他方の部分の反射が相対的に強調され、これが斜め方向から視認に対するパターンの強調につながるっていると考えられる。
 更に本発明者らは本発明の積層体のように、屈折率差のある界面を構成する物質の面直方向の厚み(すなわち、本発明の積層体の層厚み)が電磁波の波長よりも十分に小さい場合には、前述の理論ブリュースター角の値と実際の測定結果の間にズレが生じることを見出した。本発明において、このような理論ブリュースター角とのズレをもつ現実のブリュースター角の値を実測ブリュースター角θrと記載し、特に空気-第1層の界面における実測ブリュースター角をθr1と記載する。なお、実測ブリュースター角θr1の測定方法については後述する。
 本発明の積層体の特徴は実測ブリュースター角を調整することにある。また、理論ブリュースター角と実測ブリュースター角の間には好ましい関係が存在し、具体的には実測ブリュースター角が理論ブリュースター角よりも高い角度となる。すなわち、θr1>θi1である。また、(θr1-θi1)の値は1.0°より大きい。前記(θr1-θi1)の値は1.5°以上となることがより好ましく、3.0°以上となることが特に好ましい。実測ブリュースター角の値と理論ブリュースター角の値の差が1.0°以下となる場合には、本発明の積層体の積層膜側の最表面に透明導電層を形成するとき、またはさらに透明導電層をエッチングしてパターニングした際に、斜め方向からの視認に対する、透明導電層のパターンを見えにくくする効果が十分に得られない。一方で、実測ブリュースター角と理論ブリュースター角の差の値の上限については特に限定されないが、本発明の積層体の光学設計においては概ね10°以下となる。
 さらに、本発明の積層体は前記(G)の要件を満たすことが好ましい。すなわち、実測ブリュースター角の値にも好ましい範囲が存在し、具体的には55°以上60°以下が好ましい。50°に満たない場合、もしくは60°を超える場合には、目標の光学設計からの乖離が生じ、結果として本発明の積層体の積層膜側の最表面に透明導電層を形成するとき、またはさらに透明導電層をエッチングしてパターニングした際に、正面方向もしくは斜め方向から視認に対する、透明導電層のパターンを見えにくくする効果が十分に得られにくい場合がある。
 一方で、本発明の積層体は前記(F)を満たすことが好ましい。すなわち、積層膜の膜厚(Tt、第1層と第2層の膜厚の和)には好ましい範囲が存在し、具体的には150nm以下が好ましく、100nm以下がより好ましい。第1層と第2層の膜厚の和が150nmを超える場合には、上述の実測ブリュースター角の値を決定する因子として、第1層が支配的となるため、本発明の積層体の積層膜側の最表面に透明導電層を形成するとき、またはさらに透明導電層をエッチングしてパターニングした際に、斜め方向からの視認に対する、透明導電層のパターンを見えにくくする効果を抑制する効果が十分に得られにくい場合がある。一方で、積層膜の膜厚(すなわち、第1層と第2層の膜厚の和)の下限については、実測ブリュースター角の調整の観点からは特に限定されないが、本発明の積層体の光学設計においては概ね30nm以上となると推定される。
 [界面粗さ]
 本発明の積層体の第1層-第2層界面の形状については平滑であるよりも、互いの成分が相互に浸入した粗い状態のほうが、前述の実測ブリュースター角と理論ブリュースター角の値の差を大きくすることができる。これは、第1層および第2層の成分が相互に浸入することにより、積層体の界面近傍で屈折率勾配が形成されることに起因しており、具体的には第1層中に、第2層成分が侵入した部分が存在することにより局所的な屈折率増加が起こり、実測ブリュースター角の値に変化が生じると考えられる。
 前述のような屈折率勾配を有する積層体の形成方法は、特に限定されないが、生産性の観点から塗料組成物を1回塗布することで前記第1層および第2層を同時に形成する方法により形成されることが好ましい。上記の方法で作成された積層体における屈折率勾配は、下地基材の表面に平行な面により切り出した積層体界面の、相互に浸入した第1層と第2層が占める領域の比率を意味する「面内構成比率」の変化として見積られる。「面内構成比率」の算出方法の詳細については後述する。
 また、この時、第1層もしくは第2層の面内構成比率がいずれも90%に満たない「第1層と第2層が相互に侵入した領域」には好ましい厚み範囲が存在する。具体的には、第1層と第2層が相互に侵入した領域の厚み(Tm)が10nm以上であることが好ましく、30nm以上であることがより好ましく、40nm以上であることが特に好ましい。前述の第1層と第2層が相互に侵入した領域の厚みが10nm未満であると、前述の実測ブリュースター角と理論ブリュースター角の値に十分な差が生じず、斜め方向からの視認に対する、透明導電層のパターンを見えにくくする効果が十分に得られにくい場合がある。また、第1層と第2層が相互に侵入した領域の厚みの上限については積層膜の膜厚(すなわち、第1層と第2層の膜厚の和)と相関があり、具体的には、以下の式9の値を外れる、すなわち積層膜の膜厚の90%よりも大きくなる場合には、光学設計のズレから、正面方向からの視認に対して透過光の着色低減効果や透明導電層のパターンを見えにくくする効果が低減する場合がある。
10nm≦Tm   ・・・(式8) 第1層と第2層が相互に侵入した領域の厚み下限
Tm≦0.9×Tt ・・・(式9) 第1層と第2層が相互に侵入した領域の厚み上限。
 また、界面の粗さについては、前述したとおり、その形状を規定するパラメータとしてヘイズに好ましい範囲が存在する。ヘイズの上昇は、屈折率差のある表面および界面において光が散乱されることに起因して生じる。具体的には、その凹凸形状が光の波長、すなわち、数100nmオーダーの間隔で揺らいでいることが原因となる。本発明において、第1層と第2層の界面は、前述の通り、互いの成分が相互に浸入した粗い状態の方が好ましいが、この相互に侵入した構造が光散乱を起こさない、すなわち、ヘイズの増加を起こさない程度に、微細な混合状態を形成していることが好ましい。
 さらに、第1層-空気層の界面および第1層-第2層界面の形状については、前述の表面の算術平均粗さRaや実測ブリュースター角と理論ブリュースター角の値を、同時に満たす構造である。通常、界面形状が粗くなりすぎると、前述の表面の算術平均粗さRaが大きくなり十分な透明性を得られない場合がある。このとき、支持基材上に塗料組成物を1回塗布することにより前記第1層および第2層を同時に形成することで、界面形状の粗さに対して表面形状の粗さを低く抑えることができる。すなわち、図2に示されるように、第2層(12)と第1層(11)とをこの順に塗布し積層膜を作成した場合、第2層(12)の表面形状を反映する形で第1層(11)の表面にも同程度の荒れが発生するが、図1の、本発明の積層体の好ましい構成では、第1層(4)の表面形状の粗さが、第2層(5)の界面形状の粗さに対して低くなっている。
 一方で、図3に示されるように、第1層(18)と第2層(19)の間の界面形状が平滑であると、前述の実測ブリュースター角と理論ブリュースター角の値に十分な差が生じず、斜め方向からの視認に対する、透明導電層のパターンを見えにくくする効果が十分に得られにくい場合がある。なお、第1層-第2層界面の形状の測定方法については後述する。
 次に、本発明の積層体の好ましい構成材料について説明する。
 [粒子]
 前記無機粒子の「種類」とは、無機粒子を構成する元素の種類によって決まる。例えば、酸化チタン(TiO)と酸化チタンの酸素の一部をアニオンである窒素で置換した窒素ドープ酸化チタン(TiO2-x)とでは、無機粒子を構成する元素が異なるために、異なる種類の無機粒子である。また、同一の元素、例えばZn、Oのみからなる無機粒子(ZnO)であれば、その粒径が異なる粒子が複数存在しても、またZnとOとの組成比が異なっていても、これらは同一種類の無機粒子である。また酸化数の異なるZn粒子が複数存在しても、粒子を構成する元素が同一である限りは(この例ではZn以外の元素が全て同一である限りは)、これらは同一種類の粒子である。
 [粒子A、粒子成分a]
 本発明の積層体の好ましい製造方法において、第1層に含有される粒子成分aは、塗料組成物中の粒子Aに起因する成分である。すなわち、塗料組成物中の粒子Aが、塗布・乾燥過程において、バインダー原料や、フッ素ポリマーa、および粒子A同士で反応して形態が変わるなどして、粒子成分aとなる。一方、粒子Aとして、バインダー原料やフッ素ポリマーaと反応する部分を有さない粒子を用いた場合や、粒子Aが塗布・乾燥課程においてバインダー原料やフッ素ポリマーaと反応しなかった場合には、粒子Aと粒子成分aとは完全に同一となる。なお粒子Aはフッ素ポリマーaに起因する部分を有するため、支持基材上で乾燥する際に、バインダー原料と反応することが通常である。
 粒子Aは、無機粒子とフッ素ポリマーaに起因する部分とを有する粒子である。そして粒子Aの無機粒子としては、Si,Na,K,Ca,MgおよびAlから選択される半金属元素または金属元素の酸化物、窒化物、ホウ素化物、フッ素化物、炭酸塩、硫酸塩が好ましく、シリカ粒子(SiO)、アルカリ金属フッ化物類(NaF,KF,NaAlFなど)、およびアルカリ土類金属フッ化物(CaF、MgFなど)がより好ましく、耐久性、屈折率、コストなどの点からシリカ粒子が特に好ましい。
 このシリカ粒子とは、ケイ素化合物、又は無機、有機ケイ素化合物の重合(縮合)体のいずれかからなる組成物を含む粒子を指し、一般例としてSiOなどのケイ素酸化物から導出される粒子の総称である。このシリカ粒子の表面は、水や有機溶媒への分散安定性の観点から、前述のフッ素ポリマーaに起因する部分とは別に、部分的に表面処理が施されていてもよい。この部分的な表面処理については特に限定されないが、シリカ粒子の表面の状態としては、水もしくはアルコールといった極性溶媒中に、安定的に分散できる程度の親水部位を含むことがより好ましい。また、粒子Aを構成する無機粒子に好適な形状は、特に限定されないが、第1層での充填状態が積層体の表面形状に影響するため、球に近い形状であることが本発明の積層体の表面形状を形成するにはより好ましい。
 次に、本発明の積層体の好ましい製造方法において用いられる塗料組成物中の粒子Aとフッ素ポリマーaについて説明する。粒子Aは、無機粒子だけでなく、フッ素ポリマーaに起因する部分を有することが好ましい。そのため粒子Aは、前述の無機粒子、特にシリカなどの無機粒子に、フッ素ポリマーaを反応させる等して、フッ素ポリマーaに起因する成分を導入することで、得ることができる。
 ここで、導入とは、フッ素ポリマーaに起因する部分が無機粒子に化学結合(共有結合、水素結合、イオン結合、ファンデルワールス結合、疎水結合等を含む)や吸着(物理吸着、化学吸着を含む)している状態を指し、特に共有結合していることが好ましい。
 なお、フッ素ポリマーaは、先に述べたように少なくとも後述するフッ素化合物Aに起因する部分と化合物Dに起因する部分とを含む重合体である。つまり、フッ素ポリマーaは、フッ素化合物Aと化合物Dとを反応させることで得られる重合体である。
 次に、フッ素化合物Aについて説明する。フッ素化合物Aは、次の一般式(1)で表される化合物である。
 フッ素化合物A: R-R-Rf1             ・・・一般式(1)
 一般式(1)において、Rf1はフルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基、フルオロオキシアルカンジイル基を表す。フルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基、フルオロアルカンジイル基、フルオロオキシアルカンジイル基とは、アルキル基、オキシアルキル基、アルケニル基、アルカンジイル基、オキシアルカンジイル基が持つ水素の一部、あるいは全てがフッ素に置き換わった置換基であり、いずれも主にフッ素原子と炭素原子から構成される置換基であり、構造中に分岐があってもよく、これらの部分が複数連結したダイマー、トリマー、オリゴマー、ポリマー構造を形成していてもよい。
 一般式(1)において、Rは反応性部分を表す。反応性部分とは、熱または光などの外部エネルギーにより他の成分と反応する部分をさす。反応性部分として、反応性の観点から、アルコキシシリル基、及びアルコキシシリル基が加水分解されたシラノール基や、カルボキシル基、水酸基、エポキシ基、ビニル基、アリル基、アクリロイル基、メタクリロイル基、アクリロキシ基、メタクリロキシ基などが挙げられる、反応性、ハンドリング性の観点から、アルコキシシリル基、シリルエーテル基あるいはシラノール基や、エポキシ基、アクリロイル基、メタクリロイル基、アクリロキシ基、メタクリロキシ基が好ましい。
 一般式(1)において、Rは単結合、または1つ以上の水酸基もしくは1つ以上のRC(=O)O-基(Rは炭素数1~6の炭化水素基)で置換されていてもよく、分岐していてもよい、前記RC(=O)O-基以外の炭素数が1~8の2価または3価の炭化水素基を表す。ただし、Rf1がフルオロアルキル基、フルオロオキシアルキル基、フルオロアルケニル基の場合、Rは2価であり、Rf1がフルオロアルカンジイル基、フルオロオキシアルカンジイル基の場合、Rは3価である。
 フッ素化合物Aの具体例としては、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、3,3,3-トリフルオロプロピルトリイソプロポキシシラン、3,3,3-トリフルオロプロピルトリクロロシラン、3,3,3-トリフルオロプロピルトリイソシアネートシラン、2-パーフルオロオクチルエチルトリメトキシシラン、2-パーフルオロオクチルエチルトリエトキシシラン、2-パーフルオロオクチルエチルトリイソプロポキシシラン、2-パーフルオロオクチルエチルトリクロロシラン、2-パーフルオロオクチルイソシアネートシラン、2,2,2-トリフルオロエチルアクリレート、2,2,3,3,3-ペンタフルオロプロピルアクリレート、2-パーフルオロブチルエチルアクリレート、3-パーフルオロブチル-2-ヒドロキシプロピルアクリレート、2-パーフルオロヘキシルエチルアクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピルアクリレート、2-パーフルオロオクチルエチルアクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピルアクリレート、2-パーフルオロデシルエチルアクリレート、2-パーフルオロ-3-メチルブチルエチルアクリレート、3-パーフルオロ-3-メトキシブチル-2-ヒドロキシプロピルアクリレート、2-パーフルオロ-5-メチルヘキシルエチルアクリレート、3-パーフルオロ-5-メチルヘキシル-2-ヒドロキシプロピルアクリレート、2-パーフルオロ-7-メチルオクチル-2-ヒドロキシプロピルアクリレート、テトラフルオロプロピルアクリレート、オクタフルオロペンチルアクリレート、ドデカフルオロヘプチルアクリレート、ヘキサデカフルオロノニルアクリレート、ヘキサフルオロブチルアクリレート、2,2,2-トリフルオロエチルメタクリレート、2,2,3,3,3-ペンタフルオロプロピルメタクリレート、2-パーフルオロブチルエチルメタクリレート、3-パーフルオロブチル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロオクチルエチルメタクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロデシルエチルメタクリレート、2-パーフルオロ-3-メチルブチルエチルメタクリレート、3-パーフルオロ-3-メチルブチル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロ-5-メチルヘキシルエチルメタクリレート、3-パーフルオロ-5-メチルヘキシル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロ-7-メチルオクチルエチルメタクリレート、3-パーフルオロ-7-メチルオクチルエチルメタクリレート、テトラフルオロプロピルメタクリレート、オクタフルオロペンチルメタクリレート、オクタフルオロペンチルメタクリレート、ドデカフルオロヘプチルメタクリレート、ヘキサデカフルオロノニルメタクリレート、1-トリフルオロメチルトリフルオロエチルメタクリレート、ヘキサフルオロブチルメタクリレート、トリアクリロイル-ヘプタデカフルオロノネニル-ペンタエリスリトールなどが挙げられる。
 さらに、フッ素化合物Aは、好ましくは後述のPFOAを環境中での分解、または代謝により生じうる可能性がないなどの環境影響の面から、一般式(1)で表される化合物であり、かつ一般式(2)で表される化合物であることが好ましい。
f2-X-OCOCH=CH  ・・・一般式(2)
 ここで、Rf2は、炭素数4~6のいずれかの直鎖状のパーフルオロアルキル基を意味する。Xは、炭素数4~8のいずれかのアルキレン基を意味する。一般式(2)で表されるフッ素化合物Aは、より好ましくはRf2が炭素数6の直鎖状のパーフルオロアルキル基、Xが炭素数6の直鎖状のアルキレン基であることが好ましい。
 この、PFOAとは、PerFluoroOctanoic Acidの略で、この物質は、最近の研究結果最近の研究結果(EPAレポート“PRELIMINARY RISK ASSESSMENT OF THE DEVELOPMENTAL TOXICITY ASSOCIATED WITH EXPOSURE TO PERFLUOROOCTANOIC ACID AND ITS SALTS” (http://www.epa.gov/opptintr/pfoa/pfoara.pdf))などから、環境への負荷の懸念が明らかとなってきており、2003年4月14日EPA(米国環境保護庁)が科学的調査を強化すると発表している。
 一方、Federal Register(FR Vol.68,No.73/April 16,2003[FRL-2303-8])(http://www.epa.gov/opptintr/pfoa/pfoafr.pdf)やEPA Environmental News FOR RELEASE: MONDAY APRIL 14, 2003 EPA INTENSIFIES SCIENTIFIC INVESTIGATION OF A CHEMICAL PROCESSING AID(http://www.epa.gov/opptintr/pfoa/pfoaprs.pdf)やEPA OPPT FACT SHEET April 14, 2003(http://www.epa.gov/opptintr/pfoa/pfoafacts.pdf)は、PerFluoroOctanoic部分を有する「テロマー」が分解または代謝することにより、PFOAを形成する可能性があると公表していることからも、PerFluoroOctanoic部分を有する「テロマー」を含まないことが、フッ素化合物の使用において求められているものである。
 一般式(1)と一般式(2)を両方満たすフッ素化合物Aの具体例は、4-パーフルオロブチル-ブチルアクリレート、4-パーフルオロヘキシル-ブチルアクリレート、6-パーフルオロブチル-ヘキシルアクリレート、6-パーフルオロヘキシル-ヘキシルアクリレート、8-パーフルオロブチル-オクチルアクリレート、8-パーフルオロヘキシル-オクチルアクリレートなどがある。
 次に、化合物Dについて説明する。化合物Dは前述の一般式(3)で表される化合物である。
-R-SiR n1(OR3-n1  ・・・一般式(3)
 ここでRは、反応性部分を意味し、その定義はRと同様である。Rは、炭素数1から6のいずれかのアルキレン基、または、炭素数1から6のいずれかのアルキレンエーテル基を意味する。R、Rは、水素、又は、炭素数1から4のいずれかのアルキル基を示す。n1は0から2の整数を意味する
 この化合物Dの具体例は、アクリロキシエチルトリメトキシシラン、アクリロキシプロピルトリメトキシシラン、アクリロキシブチルトリメトキシシラン、アクリロキシペンチルトリメトキシシラン、アクリロキシヘキシルトリメトキシシラン、アクリロキシヘプチルトリメトキシシラン、メタクリロキシエチルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシブチルトリメトキシシラン、メタクリロキシヘキシルトリメトキシシラン、メタクリロキシヘプチルトリメトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、メタクリロキシプロピルメチルジメトキシシラン及びこれら化合物中のメトキシ基が他のアルコキシル基及び水酸基に置換された化合物を含むものなどが挙げられる。
 次に、フッ素ポリマーaの製造方法、およびフッ素ポリマーaを無機粒子と反応させることによる粒子Aの製造方法について説明する。
 フッ素ポリマーaの製造方法、および粒子Aの製造方法は、特に限定されないが、次の1)又は2)の方法、または、両者の組み合わせのいずれでもよい。
 1)フッ素化合物Aと化合物Dを重合してフッ素ポリマーaを作り、このフッ素ポリマーaを無機粒子と反応させる操作を行い、粒子Aを得る。
 2)無機粒子の存在下でフッ素化合物Aと化合物Dを重合してフッ素ポリマーaを得ることで、フッ素ポリマーaを重合しながら、同時にフッ素ポリマーaの一部を無機粒子と反応させることで粒子Aも得る。
 1)の場合、フッ素化合物Aの反応性部分と化合物Dの反応性部分を、反応性部分の構造に合わせた方法により重合する。例えば、フッ素化合物Aの反応性部分と化合物Dの反応性部分が共に(メタ)アクリレートである場合には、ラジカル重合開始剤を用いてラジカル付加重合を行い、フッ素化合物Aの反応性部分と化合物Dの反応性部分が共にアルコキシシリル基である場合には、酸またはアルカリ触媒を用いてシラノール縮合反応を行う。
 次いで、フッ素ポリマーaを無機粒子に導入する。具体的にはフッ素ポリマーa中の化合物Dに起因する部分が有する、粒子と反応可能な部分(すなわち、一般式(3)中の「Si-OR」を意味する。)を用い、適宜必要に応じて触媒を添加したり、必要に応じて機械的な分散などのプロセスを用いたりして粒子の表面に導入する。
 2)の場合、無機粒子の存在下でフッ素化合物Aと化合物Dを重合する必要があるが、それぞれの添加順序については特に限定されない。つまり、無機粒子と化合物Dを反応させてから、フッ素化合物Aを添加して反応させてもよいし、フッ素化合物Aと化合物Dを反応させながら、同時に無機粒子と反応させてもよい。
 [粒子B、粒子成分b]
 本発明の積層体中の第2層に含有される粒子成分bは、塗料組成物中の粒子Bに起因する成分である。すなわち、塗料組成物中の粒子Bが、塗布・乾燥過程において、バインダー原料や粒子B同士で反応して形態が変わるなどして、粒子成分bとなる。また、粒子Bとして、その表面に反応性部分を有さない粒子を用いた場合や、粒子Bがバインダー原料と反応しなかった場合には、粒子Bと粒子成分bとは完全に同一となる。
 粒子Bを構成する無機粒子は、粒子Aを構成する無機粒子とは異なる種類の無機粒子であることが好ましい。また、粒子Bを構成する無機粒子は、粒子Aを構成する無機粒子よりも屈折率が高い無機粒子であることが好ましい。粒子Bを構成する無機粒子は特に限定されないが、金属元素、半金属元素の酸化物、窒化物、ホウ素化物、炭酸塩、硫酸塩であることが好ましく、Ga、Zr、Ti、Al、In、Zn、Sb、Sn、およびCeよりなる群から選ばれる少なくとも一つの元素の酸化物粒子であることがさらに好ましい。
 粒子Bを構成する無機粒子は、具体的には酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化アルミニウム(Al)、酸化インジウム(In)、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化アンチモン(Sb)、およびインジウムスズ酸化物から選ばれる少なくとも一つ、あるいはこれらの間の固溶体、および一部元素を置換、または一部元素が格子間に侵入、一部元素が欠損した固溶体、または種類の異なる無機粒子が接合した無機粒子である。粒子Bは、特に好ましくはリン含有酸化スズ(PTO)、アンチモン含有酸化スズ(ATO)、ガリウム含有酸化亜鉛(GZO)や酸化チタン(TiO)、酸化ジルコニウム(ZrO)である。
 粒子Bを構成する無機粒子の屈折率は、好ましくは1.55~2.80、より好ましくは1.58~2.50である。粒子Bを構成する無機粒子の屈折率が1.55よりも小さくなると、得られる積層体の粒子成分bを含む第2層の屈折率が低下し、粒子成分aを含む第1層との屈折率差が小さくなるため、透過光の着色抑制効果や、透明導電層のパターンを見えにくくする効果が不十分になる場合があり、粒子Bを構成する無機粒子の屈折率が2.80よりも大きくなると、第1層上に形成される透明導電層との屈折率差、及び第2層と支持基材との屈折率差が上昇するため、同様に透過光の着色抑制効果や、透明導電層のパターンを見えにくくする効果が不十分になる場合がある。
 さらに、本発明の積層体の好ましい製造方法において、粒子Aを構成する無機粒子がシリカ粒子の場合は、粒子Bを構成する無機粒子は該シリカ粒子よりも屈折率が高い無機粒子であることが特に好ましく、このような屈折率が高い無機粒子としては、数平均粒子径が50nm以下で、かつ屈折率が1.55~2.80の無機化合物が好ましく用いられる。そのような無機化合物の具体例としては、アンチモン酸化物、アンチモン含有酸化亜鉛、アンチモン含有酸化スズ(ATO)、リン含有酸化スズ(PTO)、ガリウム含有酸化亜鉛(GZO)、酸化ジルコニウム(ZrO)、及び/または酸化チタン(TiO)が挙げられ、特に屈折率が高い酸化チタン、酸化ジルコニウムがより好ましい。
 [バインダー原料C、バインダー成分c]
 本発明の積層体の好ましい製造方法における積層膜は、バインダー成分cを含むことが好ましい。また、本発明の積層体の好ましい製造方法に用いられる塗料組成物は、バインダー原料Cを含むことが好ましい。ここで本発明の積層体の好ましい製造方法において、塗料組成物中に含まれるバインダーを「バインダー原料C」、積層体の積層膜中に含まれるバインダーを「バインダー成分c」と表すが、バインダー原料Cがそのままバインダー成分cとして存在する場合もある(つまり、塗料組成物のバインダー原料Cが、そのままの形で積層膜中のバインダー成分cとして存在する態様も含む)。
 バインダー原料Cとしては特に限定するものではないが、製造性の観点より、熱及び/または活性エネルギー線などにより、硬化可能なバインダー原料Cであることが好ましく、バインダー原料Cは一種類であってもよいし、二種類以上を混合して用いてもよい。また粒子を膜中に保持する観点より、前述の反応性部位、つまり分子中にアルコキシシリル基及びアルコキシシリル基が加水分解されたシラノール基や、カルボキシル基、水酸基、エポキシ基、ビニル基、アリル基、アクリロイル基、メタクリロイル基、アクリロキシ基、メタクリロキシ基を有しているバインダー原料Cであることが好ましい。さらにバインダー原料Cの前述の反応性部位には好ましい範囲が存在する。具体的には単位構成あたり平均2以上15以下の反応性部位を有することが好ましく、平均6以上15以下の反応性部位を有することがより好ましい。また複数種のバインダー原料Cを混合する場合には、その反応性部位数の質量換算平均値が上記の範囲にあることが好ましく、特に好ましい形態として単位構成あたり平均2以上8以下の反応性部位を有するバインダー原料C1と単位構成あたり平均9以上15以下の反応性部位を有するバインダー原料C2の混合が挙げられる。バインダー原料Cの単位構成あたりの反応性部位数の平均値が2未満もしくは15を超える場合には、理想的な表面、界面の構造が得られず、十分な透明性や斜め方向からの視認に対する、透明導電層のパターンを見えにくくする効果が得られない場合がある。この要因は明らかではないが、反応性部位が分極した部位を有するため、塗剤中で各粒子成分の相溶性を調整する働きをしていると推測される。
 このようなバインダー原料Cとして、成分中に多官能(メタ)アクリレートを用いるのが好ましく、代表的なものを以下に例示する。1分子中に、2個以上の(メタ)アクリロキシ基を有する多官能アクリレートおよびその変性ポリマー、オリゴマー、具体的な例としては、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリアクリレートヘキサンメチレンジイソシアネートウレタンポリマーなどを用いることができる。これらの単量体は、1種または2種以上を混合して使用することができる。市販されている多官能アクリル系組成物としては三菱レイヨン株式会社;(商品名“ダイヤビーム”シリーズなど)、長瀬産業株式会社;(商品名“デナコール”シリーズなど)、新中村株式会社;(商品名“NKエステル”シリーズなど)、DIC株式会社;(商品名“UNIDIC”など)、東亞合成化学工業株式会社;(“アロニックス”シリーズなど)、日油株式会社;(“ブレンマー”シリーズなど)、日本化薬株式会社;(商品名“KAYARAD”シリーズなど)、共栄社化学株式会社;(商品名“ライトエステル”シリーズなど)などを挙げることができ、これらの製品を利用することができる。
 [有機溶媒]
 本発明の積層体の好ましい製造方法に用いられる塗料組成物は、前述のフッ素ポリマーa、粒子A、粒子B、バインダー原料Cに加えて、有機溶媒を含むことが好ましい。有機溶媒を含むことにより、塗布時に適度な流動性を与えることで塗膜の膜厚を均一にすることができ、また粒子の運動性を確保できるため表面移行性が良化し、良好な特性を発現できるため好ましい。
 有機溶媒は、フッ素ポリマーa、粒子A、粒子B、バインダー原料Cが均一に溶解、もしくは分散していれば特に限定されるものではないが、通常、常圧での沸点が250℃以下の有機溶媒が好ましい。具体的には、アルコール類、ケトン類、エーテル類、エステル類、炭化水素類、アミド類、含フッ素化合物類等が用いられる。これらは、1種または2種以上を組み合わせて用いることができる。
 アルコール類としては、例えば、メタノール、エタノール、イソプロピルアルコール、イソブタノール、n-ブタノール、tert-ブタノール、エトキシエタノール、ブトキシエタノール、ジエチレングリコールモノエチルエーテル、ベンジルアルコール、フェニチルアルコール等を挙げることができる。ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等を挙げることができる。エーテル類としては、例えば、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテルアセテートなどを挙げることができる。エステル類としては、例えば、酢酸エチル、酢酸ブチル、乳酸エチル、アセト酢酸メチル、アセト酢酸エチル等を挙げることができる。芳香族類としては、例えば、トルエン、キシレン等を挙げることができる。アミド類としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等を挙げることができる。
 [塗料組成物中のその他成分]
 本発明の積層体の好ましい製造方法に用いられる塗料組成物は、更に重合開始剤や硬化剤を含むことが好ましい。重合開始剤及び硬化剤は、粒子とバインダー原料との反応を促進したり、バインダー原料間の反応を促進したりするために用いられる。
 該重合開始剤及び硬化剤は、塗料組成物に含まれるバインダー原料の反応性部位に応じて種々のものを使用できる。また、複数の重合開始剤を同時に用いてもよいし、単独で用いてもよい。さらに、酸性触媒や、熱重合開始剤や光重合開始剤を併用してもよい。酸性触媒の例としては、塩酸水溶液、蟻酸、酢酸などが挙げられる。熱重合開始剤の例としては、過酸化物、アゾ化合物が挙げられる。また、光重合開始剤の例としては、アルキルフェノン系化合物、含硫黄系化合物、アシルホスフィンオキシド系化合物、アミン系化合物などが挙げられるがこれらに限定されるものではないが、硬化性の点から、アルキルフェノン系化合物が好ましく、具体例としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-フェニル)-1-ブタン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-(4-フェニル)-1-ブタン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタン、1-シクロヒキシル-フェニルケトン、2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-エトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、などが挙げられる。
 なお、該重合開始剤、硬化剤、触媒の含有割合は、塗料組成物中のバインダー原料100質量部に対して0.001~30質量部が好ましく、より好ましくは0.05~20質量部であり更に好ましくは0.1~10質量部である。
 その他として、本発明の積層体の好ましい製造方法に用いられる塗料組成物には更に、界面活性剤、増粘剤、レベリング剤、紫外線吸収剤、酸化防止剤、重合禁止剤、pH調整剤、安定化剤などの添加剤を必要に応じて適宜含有させてもよい。
 [塗料組成物中の各成分の含有量]
 本発明の積層体の好ましい製造方法に用いられる塗料組成物は、[積層体の製造方法]の項で後述する「塗料組成物を1回塗布して、次いで乾燥、硬化することにより、屈折率の異なる2層からなる積層膜を形成する方法」を用いる場合には、粒子A/粒子B(質量比率)が、1/20~5/1であることが好ましい。粒子A/粒子B=1/20~5/1とすることで、得られる積層体の第1層の厚みと第2層の厚みの比を一定にすることができる。このため1回の塗布で第1層と第2層の厚みを同時に必要な厚みとすることが容易であるため好ましい。
 粒子A/粒子B(質量比率)として、さらに好ましくは1/18~3/1、特に好ましくは1/15~2/1である。
 また、好ましくは、塗料組成物100質量%において、粒子Aの含有量が0.03~26.3質量%、粒子Bの含有量が0.06~57.5質量%、フッ素ポリマーaの含有量が0.003~27.2質量%、バインダー原料の含有量が0.02~43.2質量%、有機溶媒の含有量が40~98質量%、開始剤、硬化剤、及び触媒などのその他の成分の含有量が0.1~20質量%含む態様である。
 [支持基材]
 本発明の積層体、および本発明の透明導電性積層体は支持基材を有する。支持基材としてはガラス板よりもプラスチックフィルムの方が好ましい。プラスチックフィルムの材料の例には、セルロースエステル(例、トリアセチルセルロース、ジアセチルセルロース、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ニトロセルロース)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ-1,4-シクロヘキサンジメチレンテレフタレート、ポリエチレン-1,2-ジフェノキシエタン-4,4’-ジカルボキシレート、ポリブチレンテレフタレート)、ポリスチレン(例、シンジオタクチックポリスチレン)、ポリオレフィン(例、ポリプロピレン、ポリエチレン、ポリメチルペンテン)、ポリスルホン、ポリエーテルスルホン、ポリアリレート、ポリエーテルイミド、ポリメチルメタクリレート及びポリエーテルケトンなどが含まれるが、これらの中でも特にトリアセチルセルロース、ポリカーボネート、ポリエチレンテレフタレートおよびポリエチレンナフタレートが好ましい。
 支持基材の光透過率は、80~100%であることが好ましく、86~100%であることがさらに好ましい。ここで光透過率とは、光を照射した際に試料を透過する光の割合のことであり、JIS K 7361-1(1997)に従い測定することができる透明材料の透明性の指標である。透明導電性積層体としては値が大きいほど良好であり、値が小さいとヘイズ値が上昇して、画像劣化が生じる場合がある。ヘイズはJIS K 7136(2000)に規定された透明材料の濁りの指標である。ヘイズは小さいほど透明性が高いことを示す。
 支持基材のヘイズは0.01~2.0%であることが好ましく、0.01~1.0%であることがより好ましい。
 支持基材の屈折率は1.4~1.7であることが好ましい。また、支持基材の屈折率は前記第2層の屈折率に近づくことがより好ましい。支持基材の屈折率と前記第2層の屈折率が近い場合には反射率スペクトルの揺らぎ(リップル)の発生を抑制することが出来る。なお、ここでいう屈折率とは、光が空気中からある物質中に進む時、その界面で進行方向の角度を変える割合のことであり、JIS K 7142(1996)に規定されている方法により測定することができる。
 支持基材は、赤外線吸収剤あるいは紫外線吸収剤を含有してもよい。赤外線吸収剤の含有量は、支持基材の全成分100質量%において0.01~20質量%であることが好ましく、0.05~10質量%であることがより好ましい。滑り剤として、不活性無機化合物の粒子を透明支持体に含有してもよい。不活性無機化合物の例にはSiO、TiO、BaSO、CaCO、タルクおよびカオリンが含まれる。更に、支持基材に表面処理を実施してもよい。
 支持基材の表面には、各種の表面処理を施すことも可能である。表面処理の例には、薬品処理、機械的処理、コロナ放電処理、火焔処理、紫外線照射処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理、混酸処理およびオゾン酸化処理が含まれる。これらの中でもグロー放電処理、紫外線照射処理、コロナ放電処理および火焔処理が好ましく、グロー放電処理、コロナ放電処理と紫外線処理がさらに好ましい。
 支持基材は、易接着層、ハードコート層、アンチブロッキング層、帯電防止層、紫外線吸収層、オリゴマーブロック層などの層(これらを機能性層と称する)を有してもよい。
 さらに、本発明の積層体の好ましい製造方法では、支持基材の塗料組成物を塗布する側の面のJIS R 1683(2007)に基づく算術平均粗さRaは40nm以下であることが好ましい。算術平均粗さは35nm以下がより好ましく、30nm以下がさらに好ましい。算術平均粗さRaが40nmよりも大きくなったりすると、粒子aの表面移行性が不十分になって、膜中で凝集したり、第2層が第1層に浸入が過剰になるなどして、正面方向からの視認に対する、透過光の着色低減効果や透明導電層のパターンを見えにくくする効果が得られなくなったりする場合がある。また、積層膜上に透明導電層を面内均一に形成できなくなって表面抵抗値が上昇したり、塗膜の透明性が低下したりする場合がある。
 [積層体の製造方法]
 本発明の積層体の製造方法は、前述の支持基材の少なくとも片側に、前述の塗料組成物を塗布し、次いで乾燥、硬化することにより、積層膜の各層を形成する方法であることが好ましく、前述の塗料組成物を1回塗布して、次いで乾燥、硬化することにより、屈折率の異なる2層からなる積層膜を形成する方法であることが特に好ましい。
 まず、本発明の積層体の好ましい製造方法では、塗料組成物を、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やダイコート法(米国特許2681294号明細書参照)などにより支持基材上に塗布する。
 次いで、支持基材上に塗布された液膜を乾燥する。得られる積層体の積層膜中から完全に有機溶媒を除去することに加え、液膜中での粒子の運動を促進して表面移行性を向上させるという観点からも、乾燥工程では液膜の加熱を伴うことが好ましい。乾燥初期においては0.1g/(m.s)以上1.4g/(m.s)以下の範囲の乾燥速度が得られるならば、特に特定の風速、温度に限定されない。
 さらに、乾燥工程後に形成された支持基材上の積層膜に対して、熱またはエネルギー線を照射することによるさらなる硬化操作(硬化工程)を行ってもよい。この硬化工程は、前述の塗料組成物中のバインダー原料等の有する反応性部位間の反応を促進する工程を指す。硬化工程において、熱で硬化する場合には、支持基材の種類にもよるが、支持基材がプラスチックフィルムである場合には室温から200℃であることが好ましく、硬化反応の活性化エネルギーの観点から、より好ましくは100~200℃、さらに好ましくは130~200℃である。
 また、エネルギー線により硬化する場合には汎用性の点から電子線(EB線)及び/又は紫外線(UV線)であることが好ましい。また紫外線により硬化する場合は、酸素阻害を防ぐことができることから酸素分圧ができるだけ低い方が好ましく、窒素雰囲気下(窒素パージ)で硬化する方がより好ましい。また硬化を熱により行う場合、乾燥工程と硬化工程とを同時に行ってもよい。
 [透明導電性積層体]
 積層体の第1層上に透明導電層を形成することにより、本発明の透明導電性積層体を得ることができる。この透明導電性積層体とは、少なくとも支持基材側から第2層、第1層、及び透明導電層をこの順に積層した構成、すなわち、前記積層体の第1層の上に透明導電層を積層した構成である。
 この透明導電層は、透明導電性酸化物を含む層とすることができる。本発明における透明導電性酸化物は、酸化インジウムまたは酸化亜鉛を主成分とするものであって、酸化インジウムを主成分とするものは、酸化インジウム単独でも使用することができるが、導電性を付与する目的でドーピングをすることもできる。ドーピングには例えば、錫、亜鉛、ニオブ、タングステン、チタン、ジルコニウム、モリブデンなどがあるが、中でも錫がドーピングされたもの(ITO)は、広く用いられている。酸化亜鉛を主成分とするものは、酸化亜鉛を単独で使用することもできるが、導電性を付与する目的でドーピングすることもできる。ドーピングには例えばインジウム、錫、アルミニウム、ホウ素、ガリウム、ケイ素などがある。これらの透明導電性酸化物層は公知の手法、例えば、スパッタリング法、有機金属化学気相堆積法(MOCVD)、熱CVD法、プラズマCVD法、分子線ビームエピタキシー法(MBE)、またはパルスレーザー堆積法(PLD)などが挙げられるが、大面積に均一に製膜できるという観点からスパッタリング法が好ましい。
 透明導電層が形成された透明導電性積層体は、導電性と光線透過率を上げるためにアニール処理をすることが好ましい。アニール雰囲気は真空または不活性ガス雰囲気下で行うことが好ましく、酸素雰囲気でアニールすると透明導電性酸化物が熱酸化され、導電率が低下(表面抵抗値の上昇)することがある。アニール温度は結晶性が向上する温度以上が好ましいが、一方で支持基材の観点からすれば低い温度である方が、熱収縮、シワ、カール、オリゴマーの析出、密着性の低下、着色などの観点から低いほど好ましいため、導電性、光線透過率が得られる範囲でできるだけ低い温度で行うことが好ましい。
 透明導電性積層体の表面抵抗値は用いられる用途により異なるが、特にパターニングを必要とする静電容量型タッチパネル用であれば、好ましくは50~500Ω/□、より好ましくは100~300Ω/□とすることによって使用できる。表面抵抗値が50Ω/□未満であったり、500Ω/□を超えたりする場合、タッチパネルの認識精度が低下する場合がある。
 透明導電性積層体の透明導電層の膜厚は、4~50nmの範囲が好ましく、より好ましくは10~40nmである。透明導電層の膜厚が4nm未満の場合、連続した薄膜になりにくく、良好な導電性が得られにくくなる場合がある。一方、透明導電層の膜厚が50nmよりも厚い場合、透明導電性薄膜層をパターニングした際、透明導電層を有する部分と有しない部分の光学特性を近づけることが困難となる場合がある。
 [透明導電性積層体の製造方法]
 本発明の透明導電性積層体は、本発明の積層体の第1層上に、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法などを、必要とする膜厚に応じて、適宜用いて得ることができる。例えば、スパッタリング法の場合、酸化物ターゲットを用いた通常のスパッタリング法、あるいは、金属ターゲットを用いた反応性スパッタリング法等が用いられる。この時、反応性ガスとして、酸素、窒素、等を導入したり、オゾン添加、プラズマ照射、イオンアシスト等の手段を併用したりしてもよい。また、本発明の目的を損なわない範囲で、基板に直流、交流、高周波などのバイアスを印加してもよい。さらに、導電性、光透過性の向上のためアニール処理を行うことが好ましい。
 [用途]
 本発明の積層体や透明導電性積層体は光散乱を低減したり、パターン見えを抑制したりすることができるため、各種電子機器に使用されるタッチパネル、およびタッチパネルの透明電極に使用される透明導電性積層体、透明導電性積層体の屈折率調整に用いる積層体として好適に用いることができる。本発明の積層体に透明導電層を積層してなる透明導電性積層体は、透明導電層にパターンを形成することにより、タッチパネルの透明電極として特に好ましく用いることができる。
 次に、実施例に基づいて本発明を説明するが、本発明は必ずしもこれらに限定されるものではない。
 [粒子Aおよびフッ素ポリマーaを含有する混合液の調製]
 [粒子Aおよびフッ素ポリマーaを含有する混合液(A-1)の調製]
 イソプロパノール分散コロイダルシリカ(日産化学工業株式会社製コロイダルシリカゾル:固形分を20質量%に希釈、数平均粒子径12nm)10gに、メタクリロキシプロピルトリメトキシシラン2.8gと10質量%蟻酸水溶液0.26g、水0.46gを混合し、70℃にて1時間撹拌した。ついで、C13-(CH-OCO-CH=CH2 2.5g及び2,2-アゾビス(2,4-ジメチルバレロニトリル)0.17gを加えた後、60分間80℃にて加熱撹拌した。その後、メチルエチルケトンを加え希釈し、固形分3.5質量%の「粒子Aおよびフッ素ポリマーaを含有する混合液(A-1)」とした。
 [粒子Aおよびフッ素ポリマーaを含有する混合液(A-2)~(A-7)の調製]
表1に記載の処方で無機粒子材料および添加量とすること以外は、粒子Aおよびフッ素ポリマーaを含有する混合液(A-1)と同様の方法で調製した。
 [粒子Bの選定]
 下記材料をそれぞれ粒子Bとした。
 [粒子B(1)]
 酸化ジルコニウム粒子分散物(日産化学工業株式会社製:固形分30質量%、数平均粒子径 10nm)。
 [粒子B(2)]
 二酸化チタン粒子分散物(ELCOM 日揮触媒化成株式会社製:固形分30質量%、数平均粒子径 8nm)。
 [塗料組成物の調製]
 [塗料組成物1の調製]
 下記材料を混合し、塗料組成物1を得た。
 粒子Aおよびフッ素ポリマーaを含有する混合液(A-1)  53.0 質量部
 粒子B(1)  7.8 質量部
 バインダー原料C1(ペンタエリスリトールトリアクリレート:PETA) 0.46 質量部
 バインダー原料C2(ダイセル・オルネクス株式会社製ウレタンアクリレート:KRM8452)  1.09 質量部
 光重合開始剤 (イルガキュア127:Irg127 チバスペシャリティケミカルズ社製)  0.26質量部
 有機溶媒
 メチルイソブチルケトン(MIBK)  26.4 質量部
 エチレングリコールモノブチルエーテルアセテート(EGMBA)  11.0 質量部。
 [塗料組成物2の調製]
 バインダー原料C1として(ジペンタエリスリトールヘキサアクリレート:DPHA)を用いること以外は塗料組成物1の調製と同様の方法で調製した。
 [塗料組成物3の調製]
 下記材料を混合し、塗料組成物3を得た。
 粒子Aおよびフッ素ポリマーaを含有する混合液(A-2)  53.0 質量部
 粒子B(1)  7.8 質量部
 バインダー原料C1(大阪有機化学工業トリペンタエリスリトールアクリレート:ビスコート#802)  1.55 質量部
 光重合開始剤 (イルガキュア127:Irg127 チバスペシャリティケミカルズ社製)  0.25質量部
 有機溶媒
 メチルイソブチルケトン(MIBK)  26.4 質量部
 エチレングリコールモノブチルエーテルアセテート(EGMBA)  11.0 質量部。
 [塗料組成物4~7および11の調製]
 表2に記載の粒子Aおよびフッ素ポリマーaを含有する混合液、粒子B、バインダー原料C1および有機溶媒を組み合わせて使用すること以外は塗料組成物3の調製と同様の方法で調製した。
 [塗料組成物8の調製]
 下記材料を混合し、塗料組成物8を得た。
 粒子Aおよびフッ素ポリマーaを含有する混合液(A-2)  53.0 質量部
 粒子B(1)  6.5 質量部
 バインダー原料C1(大阪有機化学工業トリペンタエリスリトールアクリレート:ビスコート#802)  1.95 質量部
 光重合開始剤 (イルガキュア127:Irg127 チバスペシャリティケミカルズ社製)  0.25質量部
 有機溶媒
 メチルイソブチルケトン(MIBK)  27.3 質量部
 エチレングリコールモノブチルエーテルアセテート(EGMBA)  11.0 質量部。
 [塗料組成物9の調製]
 下記材料を混合し塗料組成物9を得た。
 粒子Aおよびフッ素ポリマーaを含有する混合液(A-4)  53.8 質量部
 バインダー原料(ペンタエリスリトールトリアクリレート:PETA)  0.31質量部
 光重合開始剤 (イルガキュア127:Irg127 チバスペシャリティケミカルズ社製)  0.05質量部
 有機溶媒
 メチルイソブチルケトン(MEK)  34.84 質量部
 エチレングリコールモノブチルエーテルアセテート(EGMBA)  11.0 質量部。
 [塗料組成物10の調製]
 下記材料を混合し塗料組成物10を得た。
 粒子B(2)  7.7 質量部
 バインダー原料(ペンタエリスリトールトリアクリレート:PETA)  1.23質量部
 光重合開始剤 (イルガキュア127:Irg127 チバスペシャリティケミカルズ社製)   0.20質量部
 有機溶媒
 メチルイソブチルケトン(MEK)  79.87 質量部
 エチレングリコールモノブチルエーテルアセテート(EGMBA)  11.0 質量部。
 [塗料組成物12、13および18の調整]
 表2に記載に従って、粒子Aおよびフッ素ポリマーaを含有する混合液として(A-5)、(A-6)、(A-7)を、バインダー原料C2としてダイセル・オルネクス株式会社製ウレタンアクリレート:KRM7804を、それぞれ使用した以外は、塗料組成物3の調製と同様の方法で調製した。
 [塗料組成物14~17および19、20の調整]
 表2に記載に従って、バインダー原料C1としてダイセル・オルネクス株式会社製ウレタンアクリレート:KRM4858、ペンタエリスリトールトリアクリレート:PETA、大阪有機化学工業トリペンタエリスリトールアクリレート:ビスコート#802、大阪有機化学工業フェノール変性アクリレート:HQMAを、バインダー原料C2としてダイセル・オルネクス株式会社製ウレタンアクリレート:KRM8655、大阪有機化学工業多分岐デンドリマー型アクリレート:STAR-501、ダイセル・オルネクス株式会社製ウレタンアクリレート:KRM7804を、それぞれ使用した以外は、塗料組成物1の調製と同様の方法で調製した。
 [ハードコート層の作成]
 下記材料を混合しハードコート塗料組成物を得た。
 ペンタエリスリトールトリアクリレート(PETA)  30.0質量部
 イルガキュア907(チバスペシャリティケミカルズ社製)  1.5質量部
 メチルイソブチルケトン(MIBK)  73.5質量部。
 次いで、前述のハードコート塗料組成物を、バーコーターを用いて、固形分塗工膜厚が2μmになるようにバーコーターの番手を調整して塗工した。支持基材としてPET樹脂フィルム上に易接着性塗料が塗工されている“ルミラー”(登録商標)U48(東レ(株)製)を用いた。
 [積層体の製造方法]
 以下、積層体の作成方法を示す。各積層体の構成を表3に示す。
 ハードコート層上に、前述の塗料組成物をバーコーター(#3)で塗布後、下記に示す第一段階の乾燥を行い、次いで第二段階の乾燥を行った。
第一段階
 熱風温度 50℃
 熱風風速 1.5m/s
 風向 塗布面に対して平行
 乾燥時間 0.5分間
第二段階
 熱風温度 100℃
 熱風風速 5m/s
 風向 塗布面に対して垂直
 乾燥時間 1分間
なお、熱風の風速は吹き出し部の動圧測定値から風速に換算した値である。
 乾燥後、160W/cmの高圧水銀灯ランプ(アイグラフィックス(株)製)を用いて、照度600W/cm、積算光量800mJ/cmの紫外線を、酸素濃度0.1体積%の下で照射して硬化させた。
 表4に示す組み合わせで、実施例1~6、比較例1~6の積層体を作成した。なお実施例6についてはバーコーター(#5)を、比較例6についてはバーコーター(#7)を用いる以外は上記の方法と同様に、塗料組成物(1)を塗布、乾燥させることで作成した。また比較例4については前述の塗料組成物11、および10をこの順番に上記の条件にて塗布し、積層体を作成した。
 [第1層および第2層の屈折率]
 第1層、第2層の個々の屈折率は、積層体の積層膜に対して反射分光膜厚計(大塚電子製、商品名[FE-3000])により、300~800nmの範囲での反射率を測定し、該装置付属のソフトウェア[FE-Analysis]を用い、大塚電子株式会社製[膜厚測定装置 総合カタログP6(非線形最小二乗法)]に記載の方法に従い、各層の550nmにおける屈折率を求めた。
 屈折率の波長分散の近似式としてCauchyの分散式(数式1)を用い最小二乗法(カーブフィッティング法)により、光学定数(C、C、C)を計算し、550nmにおける屈折率を算出、第1層の屈折率をn1、第2層の屈折率をn2とした。
Figure JPOXMLDOC01-appb-M000001
 [算術平均粗さRa]
 下記の装置と条件にて、表面構造の測定を行い、JIS B0601(2001)で規定する中心線平均粗さRaを求めた。
装置:Nanoscope IIIa (Degital Instruments社製)
測定モード:タッピングモード
走査範囲:5μm×5μm
分解能:512×512 pixel。
 [積層体の透明性]
 積層体の透明性はヘイズを測定することにより判定した。ヘイズの測定はJIS-K7136(2000)に基づき、日本電色工業(株)製ヘイズメーターを用いて、積層体サンプルの支持基材とは反対側(積層膜側)から光を透過するように装置に置いて測定を行った。なお、同一サンプルの異なる3箇所で測定し、その平均値を積層体のヘイズ(Hz)とした。
 [実測ブリュースター角]
 積層体の第1層-空気層の界面の実測ブリュースター角は、U-4100形分光光度計((株)日立ハイテクノロジーズ製)用、微小角度可変絶対反射付属装置を用いて測定した。まず、下記の測定条件の下、入射角50°から60°の0.5°毎の反射率スペクトルを測定し、各々の反射率スペクトルについて、380nm~780nmの範囲での0.5°毎の反射率値の平均値として平均反射率を算出した。次いで、前述の平均反射率を入射角に対してプロットし、平均反射率が最小となる角度を読み取った。同様の測定を積層体の第1層の表面より無作為に選定した5か所にて実施し、その平均値を実測ブリュースター角θr1とした。
<測定条件>
測定範囲     : 340nm~800nm
スリット幅    : 2nm
スキャンスピード : 600nm/min
偏光素子     : P偏光
測定入射角度   : 50°~60°。
 [第1層および第2層の断面形状および膜厚]
 透過型電子顕微鏡(TEM)を用いて断面を観察することにより、支持基材上の第1層と第2層の断面形状と層厚みを測定した。各層の厚みは、以下の方法に従い測定した。積層膜の断面の超薄切片をTEMにより20万倍の倍率で撮影した画像から、ソフトウェア(画像処理ソフトImageJ/開発元:アメリカ国立衛生研究所(NIH))にて、各層の厚みを読み取った。合計で30点の層厚みを測定して求めた平均値を膜厚とした。
 [面内構成比率]
 まず、面内構成比率の算出方法の概要を、図4を用いて説明する。面内構成比率は、断面観察像において、下地基材-第2層の界面(22)に平行な任意の直線(23)と、画像処理によって得られる第1層と第2層の境界線(24)から見積もられる値である。任意の直線(23)は、境界線(24)によって、第1層に属する線分(25)と第2層に属する線分(26)に分割される。この線分の長さが線分の全長に占める割合を、面内において各成分が占める面積比率を代表する値として使用する。
 具体的には、透過型電子顕微鏡(TEM)を用いて断面を観察することにより、任意の面内において相互に浸入した第1層と第2層が占める領域の比率を、下記の方法にて算出した。積層膜の断面の超薄切片をTEMにより20万倍の倍率で画像を撮影した。次いで、画像処理ソフトEasyAccess Ver6.7.1.23 にて、下地基材-第2層の界面(22)が水平となるように回転・トリミング加工を施したのち、画像をグレースケールに変換し、ホワイトバランスを最明部と最暗部が8bitのトーンカーブに収まるように調整、さらに、第1層と第2層の境界線(24)が明確に見分けられるようにコントラストを調節した。次いで、ソフトウェア(画像処理ソフトImageJ/開発元:アメリカ国立衛生研究所(NIH))を用いて、前述の第1層と第2層の境界を境に画素の2値化を行い、Analize Particles(粒子解析)機能により前述の第1層と第2層の境界線(24)の座標情報を抽出した。続いて、面内構成比率を算出する任意の直線(23)と、前述の第1層と第2層の境界線(24)の座標情報を照合し、交点の座標により「面内構成比率を算出する線分」を「第1層に属する線分(25)」と「第2層に属する線分(26)」に分割した。この時、「第1層に属する線分(25)」の長さの合計をL1、「第2層に属する線分(26)」の長さの合計をL2とし、その合計で算出される「面内構成比率を算出する線分」の長さLに対する割合を「面内構成比率」と定義し、算出した。
 [第1層と第2層が相互に侵入した領域の厚み]
 上記の方法で算出した面内構成比率が第1層、第2層共に90%に満たない領域を「第1層と第2層が相互に侵入した領域」と定義する。この領域の厚みを下記の手順にて算出した。上記の面内構成比率の算出方法に従って、下地基材-第2層の界面に平行な各線分上における第2層の面内構成比率を算出し、縦軸を面内構成比率、横軸を下地基材-第2層の界面からの距離としたプロットを作成した。このプロットから第2層の面内構成比率が10%より大きく90%より小さい部分の距離を読み取り、第1層と第2層が相互に侵入した領域の厚みとした。
 なお、一連の画像処理により算出される長さの測定下限は、「断面観察時の倍率」と「画像に含まれる画素数」から決定される。上述の解析時の断面像の画素数は1,280×1,024であり、得られた断面像の短辺の長さがおよそ500nmであったことから、ここでは概ね0.5nm前後が測定下限となる。すなわち、概ね0.5nm前後の間隔で厚み方向に直線(23)を引き、上述したプロットを作成することになる。
 [透明導電層の形成]
 前記積層体の第1層上にインジウム-スズ複合酸化物からなる透明導電層を成膜した。このとき、スパッタリング前の圧力を1×10-5Paとし、ターゲットとして酸化スズを36質量%含有した酸化インジウム(住友金属鉱山株式会社製、密度6.9g/cm)に用いて、2W/cmのDC電力を印加した。また、Arガスを130sccm、Oガスを表面抵抗値が最小となる流速で流し、0.67Paの雰囲気下でDCマグネトロンスパッタリング法を用いて成膜した。
 ただし、通常のDCではなく、アーク放電を防止するために、日本イーエヌアイ製RPG-100を用いて5μs幅のパルスを50kHz周期で印加した。また、センターロール温度は10℃とし、スパッタリングを行った。
 このとき、雰囲気の酸素分圧をスパッタプロセスモニター(LEYBOLD INFICON社製、XPR2)にて常時観測しながら、インジウム-スズ複合酸化物からなる透明導電層中の酸化度が一定になるように酸素ガスの流量計及びDC電源にフィートバックした。
 スパッタリング後、真空度0.01Pa以下、温度160℃の条件下で10分間アニールを行い厚さ30nm、屈折率1.96のインジウム-スズ複合酸化物からなる透明導電層を堆積させて透明導電性積層体を作成した。
 [透明導電性積層体の透明導電層のパターニング]
 前記透明導電層の形成により作成した透明導電性積層体に、エッチングレジストを印刷した後、1N塩酸中に浸漬、次いで、アルカリ浸漬により、1cm×3cmの透明導電層のパターンを形成した(以下、これをパターン形成済み透明導電性積層体とする)。
 [透明導電層の密着性]
 透明導電層の形成で形成した透明導電性積層体に対して、常態下(23℃、相対湿度65%)で、透明導電層を有する面の1cm×1cmの領域を10マス×10マスに均等に分割する1mmのクロスカットを100個入れ、ニチバン株式会社製セロハンテープ(型番:CT405AP-12)をその上に貼り付け、ゴムローラーを用いて、荷重19.6Nで3往復させ、押し付けた後、テープ端部を持ち、90度方向に瞬時に剥離し、透明導電層の残存した個数により5段階評価(5:91個~100個、4:81個~90個、3:71個~80個、2:61個~70個、1:0個~60個)を行った。
 [透明導電層のパターン視認性(正面方向)]
 パターン形成済み透明導電性積層体の透明導電層とは反対側に黒色のテープを貼り付け、サンプルに対して正面から観察したときの透明導電層パターンの見え方を5段階で評価した。
5: パターンが全く見えない
4: パターンがかすかに見える。
3: パターンがやや見えるが、気にならない。
2: パターンがやや見え、気になる。
1: パターンが明確に見える。
 [透明導電層のパターン視認性(斜め方向)]
 パターン形成済み透明導電性積層体の透明導電層とは反対側に黒色のテープを貼り付け、サンプルに対して40~60°方向から蛍光灯光を入射させ、積層体表面における反射光のうちP偏光のみを偏光素子を用いて選択的に観察したときの透明導電層のパターンの見え方を5段階で評価した。
5: パターンが全く見えない
4: パターンがかすかに見える。
3: パターンがやや見えるが、気にならない。
2: パターンがやや見え、気になる。
1: パターンが明確に見える。
 [面内ばらつき]
 パターン形成済み透明導電性積層体を20cm×30cmの大きさのシート状に切り出し、透明導電層とは反対側に黒色のテープを貼り付け、サンプルシートの中央に対して正面から観察した時の、シート内での積層体の色味の均一性および透明導電層のパターンの見え方を5段階で評価した。
5: 色味に偏りがなく、透明導電層のパターンはシート全域で正面方向同等に見える。
4: 色味にかすかなムラがあるが、透明導電層のパターンの見え方には影響しない。
3: 色味にややムラがあるが、透明導電層のパターンの見え方には影響しない。
2: 色味にムラがあり、シート内で部分的に透明導電層のパターンがやや目立つ。
1: 色味に明確なムラがあり、シート内で部分的に透明導電層のパターンが目立つ。
 表1に粒子Aおよびフッ素ポリマーaを含有する混合液の処方を、表2に塗料組成物の組成を、表3に積層体の構成と評価結果を、表4に積層体のブリュースター角と透明導電性積層体の評価結果をまとめた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
1、8、15  ・・・積層体
2、9、16  ・・・支持基材
3、10、17 ・・・積層膜
4、11、18 ・・・第1層
5、12、19 ・・・第2層
6、13、20 ・・・粒子成分aを構成する無機粒子
7、14、21 ・・・粒子成分bを構成する無機粒子
22 ・・・下地基材-第2層の界面
23 ・・・面内構成比率を算出する任意の直線
24 ・・・第1層と第2層の境界線
25 ・・・第1層に属する線分
26 ・・・第2層に属する線分

Claims (4)

  1.  支持基材の少なくとも片側に支持基材側から第2層、第1層の順に積層された積層膜を有する積層体であって、該第1層と該第2層の屈折率が異なり、かつ以下の(A)~(D)をすべて満たす積層体。
    (A)n2>n1        ・・・(式1)
    (B)Ra1≦5nm      ・・・(式2)
    (C)Hz≦0.6%      ・・・(式3)
    (D)θr1-θi1>1.0° ・・・(式4)
    n1:第1層の屈折率、n2:第2層の屈折率
    Ra1:第1層-空気層界面の算術平均粗さ
    Hz:積層体のヘイズ
    θi1:第1層の屈折率n1と空気の屈折率n0から以下の式によって算出される第1層-空気層界面の理論ブリュースター角
    tanθi1=n1/n0
    θr1:第1層-空気層界面にてp波反射率が極小となる実測ブリュースター角
  2.  前記積層膜が以下の(E)~(G)をすべて満たす請求項1に記載の積層体。
    (E)0.2≦n2-n1   ・・・(式5)
    (F)Tt≦150nm    ・・・(式6)
    (G)55°≦θr1≦60° ・・・(式7)
    Tt:積層膜の膜厚
  3.  請求項1または2に記載の積層体に透明導電層を積層してなる透明導電性積層体。
  4.  請求項3に記載の透明導電性積層体を用いたタッチパネル。
PCT/JP2015/055793 2014-03-25 2015-02-27 積層体、透明導電性積層体およびタッチパネル WO2015146477A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580011378.4A CN106132686B (zh) 2014-03-25 2015-02-27 叠层体、透明导电性叠层体及触摸面板
KR1020167023480A KR20160137976A (ko) 2014-03-25 2015-02-27 적층체, 투명 도전성 적층체 및 터치 패널
JP2015511856A JP6512094B2 (ja) 2014-03-25 2015-02-27 積層体、透明導電性積層体およびタッチパネル

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-061360 2014-03-25
JP2014061360 2014-03-25
JP2014191074 2014-09-19
JP2014-191074 2014-09-19

Publications (1)

Publication Number Publication Date
WO2015146477A1 true WO2015146477A1 (ja) 2015-10-01

Family

ID=54195008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055793 WO2015146477A1 (ja) 2014-03-25 2015-02-27 積層体、透明導電性積層体およびタッチパネル

Country Status (5)

Country Link
JP (1) JP6512094B2 (ja)
KR (1) KR20160137976A (ja)
CN (1) CN106132686B (ja)
TW (1) TWI657929B (ja)
WO (1) WO2015146477A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095641A (ja) * 2015-11-27 2017-06-01 リケンテクノス株式会社 活性エネルギー線硬化性樹脂組成物、及びこれを用いたハードコート積層フィルム
WO2019012733A1 (ja) * 2017-07-10 2019-01-17 東山フイルム株式会社 透明導電性フィルム用の光学調整層付きハードコートフィルム、および透明導電性フィルム
JP2019101298A (ja) * 2017-12-05 2019-06-24 大日本印刷株式会社 光学部材、表示装置及び光学部材の選別方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6603595B2 (ja) * 2016-02-12 2019-11-06 株式会社トッパンTomoegawaオプティカルフィルム 透明導電性フィルム及びタッチパネル、並びに、透明導電性フィルムの製造方法
CN107272250B (zh) * 2017-07-07 2019-11-05 上海天马微电子有限公司 一种显示面板及显示装置
JP7334624B2 (ja) * 2018-10-18 2023-08-29 東レ株式会社 積層体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051835A1 (ja) * 2004-11-15 2006-05-18 Jsr Corporation 硬化性樹脂組成物、それからなる硬化膜及び積層体
JP2010204630A (ja) * 2009-02-06 2010-09-16 Dainippon Printing Co Ltd 偏光板保護フィルム、偏光板、および液晶表示装置
WO2013183487A1 (ja) * 2012-06-06 2013-12-12 東レ株式会社 積層体、導電性積層体およびタッチパネル、ならびに、塗料組成物および当該塗料組成物を用いる積層体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742825B2 (ja) 2004-11-15 2011-08-10 Jsr株式会社 積層体の製造方法
JP5049628B2 (ja) 2006-03-30 2012-10-17 富士フイルム株式会社 塗布組成物、光学フィルム、偏光板、画像表示装置、及び光学フィルムの製造方法
JP4878582B2 (ja) 2007-07-03 2012-02-15 富士フイルム株式会社 偏光板保護フィルム、並びにそれを用いた偏光板及び液晶表示装置
JP2010015861A (ja) 2008-07-04 2010-01-21 Toyobo Co Ltd 透明導電性積層フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051835A1 (ja) * 2004-11-15 2006-05-18 Jsr Corporation 硬化性樹脂組成物、それからなる硬化膜及び積層体
JP2010204630A (ja) * 2009-02-06 2010-09-16 Dainippon Printing Co Ltd 偏光板保護フィルム、偏光板、および液晶表示装置
WO2013183487A1 (ja) * 2012-06-06 2013-12-12 東レ株式会社 積層体、導電性積層体およびタッチパネル、ならびに、塗料組成物および当該塗料組成物を用いる積層体の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095641A (ja) * 2015-11-27 2017-06-01 リケンテクノス株式会社 活性エネルギー線硬化性樹脂組成物、及びこれを用いたハードコート積層フィルム
WO2019012733A1 (ja) * 2017-07-10 2019-01-17 東山フイルム株式会社 透明導電性フィルム用の光学調整層付きハードコートフィルム、および透明導電性フィルム
JPWO2019012733A1 (ja) * 2017-07-10 2019-07-11 東山フイルム株式会社 透明導電性フィルム用の光学調整層付きハードコートフィルム、および透明導電性フィルム
KR20190139125A (ko) * 2017-07-10 2019-12-17 히가시야마 필름 가부시키가이샤 투명 도전성 필름용의 광학 조정층 부착 하드 코트 필름 및 투명 도전성 필름
KR102361847B1 (ko) 2017-07-10 2022-02-14 히가시야마 필름 가부시키가이샤 투명 도전성 필름용의 광학 조정층 부착 하드 코트 필름 및 투명 도전성 필름
JP2019101298A (ja) * 2017-12-05 2019-06-24 大日本印刷株式会社 光学部材、表示装置及び光学部材の選別方法

Also Published As

Publication number Publication date
JP6512094B2 (ja) 2019-05-15
JPWO2015146477A1 (ja) 2017-04-13
TWI657929B (zh) 2019-05-01
CN106132686A (zh) 2016-11-16
TW201542384A (zh) 2015-11-16
KR20160137976A (ko) 2016-12-02
CN106132686B (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
WO2015146477A1 (ja) 積層体、透明導電性積層体およびタッチパネル
TWI460742B (zh) 透明導電膜
KR102402877B1 (ko) 광학 적층체
JP6206182B2 (ja) 積層体、導電性積層体およびタッチパネル、ならびに、塗料組成物および当該塗料組成物を用いる積層体の製造方法
CN111183374B (zh) 硬涂薄膜、光学层叠体及图像显示装置
JP6020172B2 (ja) 積層体、透明導電性積層体、タッチパネル、および積層体の製造方法
JP5521535B2 (ja) 透明導電性フィルム
JP6689564B2 (ja) 反射防止フィルム、偏光板、および画像表示装置
JP5000933B2 (ja) 反射防止フィルム
US20050227090A1 (en) Reduced-reflection film having low-refractive-index layer
JP5123507B2 (ja) 反射防止フィルム
JP2004287392A (ja) 光学フィルム
JP6460471B2 (ja) 積層体、偏光板、および画像表示装置
CN113075760B (zh) 光学层叠体、偏光板及显示装置
JP6365942B2 (ja) タッチパネル付き表示装置
JP6337600B2 (ja) 色調補正フィルム及びこれを用いた透明導電性フィルム
JP2014151472A (ja) 色調補正フィルム及びこれを用いた透明導電性フィルム
JP5659601B2 (ja) 透明導電性フィルム
JP2018075783A (ja) 積層体
KR20240036055A (ko) 적층체, 옥외용 적층체 및 하드 코팅층 형성 재료
JP2019148805A (ja) 反射防止フィルム、偏光板、および画像表示装置
JP2016090962A (ja) 色調補正フィルム及びこれを用いた透明導電性フィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015511856

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167023480

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769866

Country of ref document: EP

Kind code of ref document: A1