WO2015146197A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2015146197A1
WO2015146197A1 PCT/JP2015/001800 JP2015001800W WO2015146197A1 WO 2015146197 A1 WO2015146197 A1 WO 2015146197A1 JP 2015001800 W JP2015001800 W JP 2015001800W WO 2015146197 A1 WO2015146197 A1 WO 2015146197A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
value
deviation
unit
power
Prior art date
Application number
PCT/JP2015/001800
Other languages
English (en)
French (fr)
Inventor
谷口 智勇
関本 守満
卓郎 小川
瑛司 遠山
伸夫 林
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2015237427A priority Critical patent/AU2015237427B2/en
Priority to BR112016021650-4A priority patent/BR112016021650B1/pt
Priority to ES15767771T priority patent/ES2946178T3/es
Priority to EP15767771.7A priority patent/EP3125420B1/en
Priority to CN201580006787.5A priority patent/CN105940600B/zh
Priority to US15/123,564 priority patent/US9853559B2/en
Publication of WO2015146197A1 publication Critical patent/WO2015146197A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/26Power factor control [PFC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4826Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode operating from a resonant DC source, i.e. the DC input voltage varies periodically, e.g. resonant DC-link inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device.
  • a power converter having a converter circuit and an inverter circuit is used to supply power to the motor of the compressor.
  • a capacitor having a small capacity of about 1/100 that of a normal smoothing capacitor is used as a capacitor (called a DC link capacitor) provided between the converter circuit and the inverter circuit.
  • a reactor is often provided on the input side (AC side) and the output side (DC side) of the converter circuit.
  • This reactor forms an LC resonance circuit together with the DC link capacitor, and the resonance can cause distortion of the output current waveform and output voltage waveform of the converter circuit, that is, increase of harmonic components.
  • an LC resonance circuit may be constituted by the inductance of the power supply system and the capacitor in the power converter, and the LC resonance circuit may cause distortion of the current waveform. . That is, the deviation between the current and its command value becomes large.
  • the present invention has been made paying attention to the above problem, and aims to reduce the deviation between the current and its command value in the power converter.
  • the first aspect is: By turning on / off the multiple switching elements (Su, Sv, Sw, Sx, Sy, Sz), the alternating current output from the alternating current power supply (30) or the direct current converted from the alternating current is an alternating current having a predetermined frequency and voltage.
  • a power converter (13) for converting to A capacitor (12a) for smoothing the ripple voltage generated by the on / off operation,
  • a storage unit that stores a plurality of values correlated with disturbances that distort the current (Iin) to the power conversion unit (13) in association with the phase angle ( ⁇ in) of the voltage (Vin) of the AC power supply (30) ( 62) and The value stored in the storage unit (62) is related to the phase angle ( ⁇ in) of the voltage (Vin) of the AC power supply (30), and the control operation amount (iT *) in the power conversion unit (13)
  • a power conversion control unit (50, 60) for controlling the on / off operation using the compensation of It is provided with.
  • the power conversion unit (13) is turned on and off based on the value stored in the storage unit (62).
  • the second aspect is the first aspect,
  • the value correlating to the above disturbance is Current to the power converter (13), Output current value (
  • the power conversion control unit (50, 60) controls the power of the power conversion unit (13) according to a value stored in the storage unit (62).
  • the power in the power conversion unit (13) is controlled based on the stored value.
  • the fourth aspect is the first or second aspect
  • the power conversion control unit (50, 60) controls a current in the power conversion unit (13) according to a value stored in the storage unit (62).
  • the current in the power conversion unit (13) is controlled based on the stored value.
  • the fifth aspect is any one of the first to fourth aspects.
  • the power conversion control unit (50, 60) compensates for the manipulated variable (iT *) using a plurality of types of values correlated with the disturbance.
  • the power or current in the power conversion unit (13) is controlled based on the stored multiple types of values.
  • a sixth aspect is any one of the first to fifth aspects,
  • the power conversion control unit (50, 60) interpolates the discontinuous portion using the data in the storage unit (62). It is characterized by that.
  • the deviation between the current and its command value can be reduced in the power conversion device.
  • FIG. 1 shows a configuration of a power conversion apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 illustrates waveforms of the AC power supply current, the AC power supply voltage, and the DC link voltage.
  • FIG. 3 shows a control system of the inverter circuit according to the first embodiment.
  • FIG. 4 shows the configuration of the compensation unit.
  • FIG. 5 is a diagram for explaining the compensation operation by the compensation unit.
  • FIG. 6 illustrates waveforms of power supply voltage, phase angle, current command, output current value, deviation, second current command value, and drive current command value.
  • FIG. 7 shows a configuration of a compensation unit according to a modification of the first embodiment.
  • FIG. 8 is a diagram illustrating the update of the deviation storage unit when the storage cycle is shorter than the carrier cycle.
  • FIG. 9 shows a control system of the inverter circuit according to the second embodiment.
  • FIG. 10 shows a control system of the inverter circuit according to the third embodiment.
  • FIG. 11 shows a configuration example of the feedback control unit.
  • FIG. 12 shows a control system of the inverter circuit according to the fourth embodiment.
  • FIG. 13 shows a control system of the inverter circuit according to the fifth embodiment.
  • FIG. 14 is a flowchart illustrating the update of the deviation storage unit according to the sixth embodiment.
  • FIG. 1 shows a configuration of a power conversion device (10) according to Embodiment 1 of the present invention.
  • This power converter (10) is used, for example, to supply power to a motor or the like that drives a compressor of an air conditioner (not shown).
  • the power conversion device (10) includes a converter circuit (11), a DC unit (12), an inverter circuit (13), a control unit (50), and a compensation unit (60).
  • AC power supplied from the AC power source (30) is converted into AC power having a predetermined frequency and voltage and supplied to the motor (20).
  • the motor (20) drives the compressor, and for example, a so-called IPM (Interior / Permanent / Magnet) motor can be adopted.
  • IPM Interior / Permanent / Magnet
  • the converter circuit (11) is connected to the AC power supply (30) via the reactor (L1), and rectifies the AC from the AC power supply (30) into a DC.
  • the converter circuit (11) is a diode bridge circuit in which four diodes (D1 to D4) are connected in a bridge shape. By these diodes (D1 to D4), the AC voltage of the AC power supply (30) is full-wave rectified and converted to a DC voltage.
  • the direct current section (12) includes a capacitor (12a).
  • the capacitor (12a) is connected between the positive and negative output nodes of the converter circuit (11).
  • a DC voltage hereinafter referred to as DC link voltage (vdc)
  • vdc DC link voltage
  • the capacitor (12a) is a reactor (reactor (L2)) at the output node on the positive electrode side of the converter circuit (11).
  • the reactor (L1) and the capacitor (12a) constitute an LC resonance circuit
  • the reactor (L2) and the capacitor (12a) constitute an LC resonance circuit.
  • the LC resonance circuit is constituted by the inductance and the capacitor (12a) of the power supply system.
  • the LC resonance occurring in the LC resonance circuit can cause distortion of the output current waveform of the converter circuit (11). Therefore, in this embodiment, the compensation unit (60) described in detail later takes measures against distortion of the output current waveform. I do.
  • This capacitor (12a) has a capacitance capable of smoothing only a ripple voltage (voltage fluctuation) generated when a switching element (described later) of the inverter circuit (13) performs a switching operation. That is, the capacitor (12a) is a small-capacitance capacitor that does not have a capacitance that smoothes the voltage rectified by the converter circuit (11) (a voltage that varies according to the power supply voltage). For example, a film capacitor is employed as the capacitor (12a).
  • the DC link voltage (vdc) pulsates at twice the frequency of the power supply voltage.
  • FIG. 2 illustrates waveforms of the current of the AC power supply (30), the voltage (Vin) of the AC power supply (30), and the DC link voltage (vdc).
  • the DC link voltage (vdc) has a large pulsation such that the maximum value (Vmax) is twice or more the minimum value (Vmin).
  • the inverter circuit (13) has an input node connected to the capacitor (12a) and is supplied with a pulsating DC voltage (DC link voltage (vdc)).
  • the inverter circuit (13) converts the output of the direct current section (12) into three-phase alternating current (U, V, W) by an on / off operation of a plurality of switching elements (described later), and supplies it to the motor (20). That is, the motor (20) is a load of the inverter circuit (13).
  • the inverter circuit (13) of the present embodiment is configured by a plurality of switching elements being bridge-connected.
  • the inverter circuit (13) includes six switching elements (Su, Sv, Sw, Sx, Sy, Sz) in order to output a three-phase alternating current to the motor (20).
  • the inverter circuit (13) includes three switching legs in which two switching elements are connected in series with each other, and the switching element (Su, Sv, Sw) of the upper arm and the switching element (Sx of the lower arm) in each switching leg. , Sy, Sz) are connected to the coils of the respective phases of the motor (20).
  • a free-wheeling diode Du, Dv, Dw, Dx, Dy, Dz
  • the inverter circuit (13) switches the DC link voltage (vdc) input from the DC unit (12) by the on / off operation of these switching elements (Su, Sv, Sw, Sx, Sy, Sz), and performs a predetermined operation. Is converted into a three-phase AC voltage having a frequency and a voltage of 2 and supplied to the motor (20).
  • the control unit (50) controls this on / off operation. That is, the inverter circuit (13) converts the direct current converted from the alternating current output from the alternating current power supply (30) into alternating current having a predetermined frequency and voltage, and is an example of the power conversion unit of the present invention. .
  • FIG. 3 shows a control system of the inverter circuit (13) according to the first embodiment.
  • the control unit (50) includes a microcomputer (not shown) and a program for operating the microcomputer, and an inverter circuit (13) according to the on / off operation control of the switching elements (Su, Sv, Sw, Sx, Sy, Sz). ) Current control. That is, the output of the inverter circuit (13) is controlled by the control unit (50), and the drive of the motor (20) is controlled.
  • dq axis vector control is used for controlling the drive of the motor (20).
  • the control unit (50) of the present embodiment includes a speed control unit (51), a multiplier (52), an adder (53), a dq current command value generation unit (54), a coordinate conversion unit (55), and a dq axis current.
  • a control unit (56) and a PWM calculation unit (57) are provided.
  • the speed control unit (51) obtains a deviation between the rotation angle frequency ( ⁇ ) of the mechanical angle of the motor (20) and the command value ( ⁇ *) of the mechanical angle. Then, the speed control unit (51) performs a proportional / integral calculation (PI calculation) on the deviation and outputs the calculation result to the multiplier (52) as a first current command value (im *).
  • PI calculation proportional / integral calculation
  • the multiplier (52) includes the absolute value (
  • This second current command value (iT *) is a command value of the motor current amplitude, and is an example of an operation amount of control in the power conversion unit in the present invention.
  • the adder (53) adds the second current command value (iT *) and the compensation current command value (icomp *) (described later) generated by the compensation unit (60), and adds the result (hereinafter referred to as drive).
  • Current command value (referred to as idq *)) is output to the dq current command value generation unit (54).
  • the dq current command value generation unit (54) calculates the d-axis current command value (id) from the drive current command value (idq *) and the command value ( ⁇ *) of the phase ( ⁇ ) of the current flowing to the motor (20). *) And q-axis current command value (iq *) are obtained and output to the dq-axis current control unit (56). Specifically, the dq current command value generation unit (54) multiplies the sine value (-sin ⁇ *) of the command value ( ⁇ *) by the drive current command value (idq *) to obtain the d-axis current command value (id *). The q-axis current command value (iq *) is generated by multiplying the cosine value (cos ⁇ *) of the command value ( ⁇ *) by the drive current command value (idq *).
  • the coordinate conversion unit (55) is obtained from the rotation angle (electrical angle ( ⁇ e)) of the rotor (not shown) of the motor (20) and the phase current (iu, iv, iw) of the inverter circuit (13).
  • a d-axis current value (id) and a q-axis current value (iq) are calculated.
  • the dq-axis current control unit (56) calculates the deviation between the d-axis current command value (id *) and the d-axis current value (id), and the q-axis current command value (iq *) and the q-axis current value (iq).
  • D-axis voltage command value (Vd *) and q-axis voltage command value (Vq *) are generated and output to the PWM calculation unit (57).
  • the PWM calculation unit (57) receives the d-axis and q-axis voltage command values (Vd *, Vq *), the DC link voltage (vdc), and the electrical angle ( ⁇ e). Based on these values, the PWM calculation unit (57) controls the on / off operation of each switching element (Su, Sv, Sw, Sx, Sy, Sz) of the inverter circuit (13) (hereinafter referred to as “control signal (G)”). Then, it is also referred to as PWM output) and is output to the inverter circuit (13).
  • the PWM output (G) is updated at a predetermined cycle (hereinafter referred to as carrier cycle (Tc) or update cycle (Tc)).
  • the compensation unit (60) generates a compensation current command value (icomp *) for compensating (described later) the second current command value (iT *).
  • the compensation unit (60) includes a microcomputer (not shown) and a program for operating the microcomputer.
  • FIG. 4 shows a configuration example of the compensation unit (60).
  • the compensation unit (60) includes a subtracter (61), a deviation storage unit (62), a first index generation unit (63), a power supply phase calculation unit (64), a second index generation unit ( 65) and a compensation amount calculation unit (66).
  • the subtractor (61) obtains a deviation between the output current value (
  • This deviation correlates with a disturbance that distorts the current to the inverter circuit (13) (that is, the output current value (
  • ) is a measured value.
  • ) is generated by, for example, multiplying the amplitude of the fundamental component of the input current value (Iin) of the converter circuit (11) by
  • the deviation storage unit (62) includes a plurality of storage areas (arrays) and stores the deviation obtained by the subtracter (61).
  • storage part (62) is an example of the memory
  • the number of storage areas (K) in the deviation storage unit (62) is a period corresponding to ⁇ / K [rad] of the voltage cycle (hereinafter referred to as power supply cycle) of the AC power supply (30) (hereinafter referred to as storage cycle ( Tm) is set to be a time equal to or shorter than the carrier period (Tc).
  • the deviation storage unit (62) can store K deviations in a half cycle of the power supply cycle (hereinafter, power supply half cycle).
  • the storage period (Tm) and the carrier period (Tc) are the same.
  • idx ⁇ in1 / ( ⁇ / K). Therefore, the range of the index (idx) is 0 to K-1.
  • the deviation storage unit (62) stores the deviation in the phase angle ( ⁇ in1) in a storage area corresponding to the calculated index (idx). That is, the deviation storage unit (62) correlates the deviation between the current command (
  • the power supply phase calculation unit (64) obtains the phase angle ( ⁇ in2) at the timing when the second current command value (iT *) is compensated.
  • the power supply phase calculation unit (64) uses the phase angle ( ⁇ in1) at the start of the control process (current control, etc.) at the end point of the update cycle (Tc) where the output of the control process is applied as the PWM signal. Outputs the phase angle ( ⁇ in2).
  • FIG. 5 is a diagram for explaining the compensation operation by the compensation unit (60).
  • FIG. 5 shows the carrier cycle (Tc) from the mth to the (m + 2) th (where m is an integer greater than or equal to zero).
  • FIG. 6 shows the power supply voltage (Vin), phase angle ( ⁇ in), current command (
  • FIG. 6 shows waveforms in three power supply half cycles (the (n ⁇ 1) th to (n + 1) th power supply half cycles).
  • the control unit (50) starts the control process when the carrier cycle (Tc) starts. For example, when the control process in the m-th carrier period (Tc) starts, the control unit (50) measures the output current value (
  • the second index generation unit (65) calculates the index (idx) based on the detected phase angle ( ⁇ in1).
  • the compensation amount calculation unit (66) calculates a compensation current command value (icomp *) using the read deviation Iin_err (j2).
  • This compensation current command value (icomp *) is added (compensated) with the second current command value (iT *) in the adder (53).
  • the second current command value is reduced so that distortion of the output current (Iin) due to a deviation (a value correlated with disturbance) between the current command (
  • (IT *) is compensated.
  • the corrected second current command value (iT *) is output to the dq current command value generation unit (54) as the drive current command value (idq *).
  • the second current command value (iT *) in the corresponding phase is compensated (see FIG. 6).
  • the dq current command value generation unit (54) uses the d-axis of the compensated second current command value (iT *) as the drive current command value (idq *). A current command value (id *) and a q-axis current command value (iq *) are generated.
  • the dq-axis current control unit (56) generates a d-axis voltage command value (Vd *) and a q-axis voltage command value (Vq *).
  • the PWM calculation unit (57) outputs a control signal (G) to the inverter circuit (13).
  • the inverter circuit (13) operates so as to reduce distortion of the output current waveform of the converter circuit (11).
  • the reason why the LC resonance caused by the capacitor (12a) and the reactors (L1, L2) can be reduced by the stored deviation (value correlating to the disturbance) is that the LC resonance is a steady and repetitive waveform.
  • the compensation unit (60) based on the disturbance detected for each carrier cycle (Tc) in the deviation storage unit (62), the storage area in which the disturbance is stored is updated. For example, in the m-th carrier cycle (Tc), when the compensator (60) finishes outputting the compensation current command value (icomp *), the output current detected at the start of the m-th carrier cycle (Tc) The contents of the deviation storage unit (62) are updated based on the value (
  • ) and the phase angle ( ⁇ in1). Specifically, the first index generation unit (63) calculates an index from the phase angle ( ⁇ in1). In this example, idx j1. As a result, the compensation unit (60) updates the j1st deviation Iin_err (j1).
  • the index (idx) is obtained from the phase angle ( ⁇ in) at the start of control processing in each carrier cycle (Tc). Further, the output current value (
  • the carrier period (Tc) is equal to the storage period (Tm)
  • the timing at which the index (idx) is updated is synchronized with the timing at which the control process starts, and the index is one for each control period. To increase. Therefore, all the data in the deviation storage unit (62) is updated without omission every half cycle of the power supply.
  • a deviation (a value correlated with a disturbance) is stored, and an operation amount (iT *) of the current control of the inverter circuit (13) is compensated based on a value stored half a cycle before the power source. . Therefore, in this embodiment, the deviation between the current and its command value can be reduced. More specifically, the distortion of the output current of the converter circuit (11) (that is, the distortion of the input current to the inverter circuit (13)) caused by the disturbance of the repetitive waveform such as LC resonance can be easily reduced. This method is more useful as the capacitance of the capacitor forming the LC resonance circuit is smaller. When the capacitor forming the LC resonance circuit has a small capacity, the frequency of the LC resonance increases, and a faster compensation operation is required. In the present embodiment, the compensation value is obtained using the stored deviation, so that high-speed compensation becomes possible.
  • FIG. 7 shows a configuration of a compensation unit (60) according to a modification of the first embodiment.
  • the compensation unit (60) of the present modification is obtained by adding a data interpolation unit (68) to the compensation unit (60) of the first embodiment.
  • FIG. 8 is a diagram illustrating the update of the deviation storage unit (62) when the storage cycle (Tm) is shorter than the carrier cycle (Tc).
  • FIG. 8 shows the carrier cycle (Tc) from the mth to the (m + 1) th (where m is an integer greater than or equal to zero).
  • the timing at which the index (idx) is updated and the control processing start timing are asynchronous.
  • the index (idx) increases by two in a continuous carrier cycle (Tc).
  • the index (idx) at the start of the m-th carrier cycle (Tc) is j1
  • the data interpolation unit (68) detects that the index has increased by two or more, and the data in the storage area that has not been updated is interpolated by the previously obtained deviation and the currently obtained deviation. I made it.
  • this modification it is possible to prevent a storage area that is not updated for a long time from occurring in the deviation storage unit (62). That is, according to the present modification, even when the storage cycle (Tm) and the carrier cycle (Tc) are asynchronous, the distortion of the output current of the converter circuit (11) can be more reliably reduced. That is, also in this modification, the deviation between the current and its command value can be reduced.
  • FIG. 9 shows a control system of the inverter circuit (13) according to the second embodiment.
  • another compensation unit (60) and a subtracter (67) are further added to the control system of the first embodiment.
  • the added compensation unit (60) has the same configuration as the compensation unit (60) of the first embodiment, but the input signal is different from that of the compensation unit (60) of the first embodiment.
  • branch numbers ( ⁇ 1, ⁇ 2) are added to the reference numerals in order to identify the two compensators (60).
  • the compensation unit (60-1) is originally provided, and the compensation unit (60-2) is added.
  • the subtracter (61) obtains the deviation between the capacitor energy (Ce) and the command value (Ce *) of the capacitor energy (Ce). Specifically, the subtractor (61) outputs a value obtained by subtracting the capacitor energy (Ce) from the command value (Ce *) as a deviation.
  • the capacitor energy (Ce) is energy stored in the capacitor (12a) of the direct current section (12). This value can be calculated from the DC link voltage (vdc).
  • the command value (Ce *) is the command value, and is calculated from the target value of the DC link voltage (vdc).
  • the target value of the DC link voltage (vdc) is determined so that the waveform of the DC link voltage (vdc) is approximately a sine wave.
  • the deviation storage unit (62) of the added compensation unit (60-2) has a deviation between the capacitor energy (Ce) and the command value (Ce *) indicating the phase angle of the voltage (Vin) of the AC power supply (30) ( is stored in association with ⁇ in).
  • This deviation is also an example of a value correlated with a disturbance that distorts the current (Iin) to the power converter in the present invention.
  • a current command compensation unit is configured by two compensation units (60-1, 2) and an adder (53).
  • the capacitor energy (Ce) of the DC unit (12) is larger than the capacitor energy command value (Ce *)
  • the output power of the inverter circuit (13) is further increased.
  • the second current command value (iT *) is compensated.
  • the capacitor energy (Ce) is smaller than the command value (Ce *)
  • the second current command value (iT *) is compensated so that the output power of the inverter circuit (13) is further reduced.
  • FIG. 10 shows a control system of the inverter circuit (13) according to the third embodiment.
  • a feedback control unit (80) is added to the control system of the first embodiment.
  • the feedback control unit (80) compensates the current command (
  • FIG. 11 shows a configuration example of the feedback control unit (80).
  • the feedback control unit (80) includes a subtracter (81) and a PI calculator (82).
  • the subtracter (81) obtains a deviation between the output current value (
  • the PI calculator (82) performs proportional / integral calculation (PI calculation) on the output of the subtractor (81) and outputs the result as a compensation current command value (icomp ***).
  • the compensation current command value (icomp ***) is added to the output of the compensation unit (60) and input to the adder (53) of the control unit (50).
  • the distortion of the output current of the converter circuit (11) caused by the non-stationary disturbance in addition to the steady disturbance such as the LC resonance is reduced. it can.
  • the control by the feedback control unit (80) is changed to the control by the compensation unit (60) by appropriately adjusting the balance between the gain (Gp) in the compensation unit (60) and the gain in the feedback control unit (80). It is possible to prevent excessive influence.
  • FIG. 12 shows a control system of the inverter circuit (13) according to the fourth embodiment.
  • the control unit (50) of the present embodiment includes a speed control unit (51), a multiplier (52), an adder (53), a coordinate conversion unit (55), a power control unit (58), a dq axis current control unit ( 56) and a PWM calculation unit (57).
  • the speed control unit (51) obtains a deviation between the rotation angle frequency ( ⁇ ) of the mechanical angle of the motor (20) and the command value ( ⁇ *) of the mechanical angle. Then, the speed control unit (51) performs a proportional / integral calculation (PI calculation) on the deviation, and outputs the calculation result to the multiplier (52) as a first power command value (p *).
  • PI calculation proportional / integral calculation
  • the multiplier (52) includes the square of the sine value (sin 2 ( ⁇ in)) of the phase angle ( ⁇ in) of the voltage (Vin) in the AC power supply (30) and the first power command value (p *). And the multiplication result is output as the second power command value (p **).
  • the second power command value (p **) is a command value of power output from the inverter circuit (13) (power conversion unit), and is an example of an operation amount of control in the power conversion unit in the present invention. .
  • the adder (53) adds the second power command value (p **) and the compensation power command value (pcomp *) (described later) generated by the compensation unit (60), and adds the results (hereinafter, The drive power command value (referred to as p ***) is output to the power control unit (58).
  • the power control unit (58) obtains a motor torque command value from the drive power command value (p ***) and the motor rotation speed ( ⁇ ), and determines the d-axis current command value and q according to the motor torque command value.
  • Current command values are generated and output to the dq axis current control unit (56).
  • a d-axis current command value and a q-current command value corresponding to the motor torque command are generated from motor constants such as d-axis inductance, q-axis inductance, the number of flux linkages, winding resistance, and the number of pole pairs.
  • the coordinate conversion unit (55) is obtained from the rotation angle (electrical angle ( ⁇ e)) of the rotor (not shown) of the motor (20) and the phase current (iu, iv, iw) of the inverter circuit (13).
  • a d-axis current value (id) and a q-axis current value (iq) are calculated.
  • the dq-axis current control unit (56) calculates the deviation between the d-axis current command value (id *) and the d-axis current value (id), and the q-axis current command value (iq *) and the q-axis current value (iq).
  • D-axis voltage command value (Vd *) and q-axis voltage command value (Vq *) are generated and output to the PWM calculation unit (57).
  • the PWM calculation unit (57) receives the d-axis and q-axis voltage command values (Vd *, Vq *), the DC link voltage (vdc), and the electrical angle ( ⁇ e). Based on these values, the PWM calculation unit (57) controls the on / off operation of each switching element (Su, Sv, Sw, Sx, Sy, Sz) of the inverter circuit (13) (hereinafter referred to as “control signal (G)”). Then, it is also referred to as PWM output) and is output to the inverter circuit (13).
  • the PWM output (G) is updated at a predetermined cycle (hereinafter referred to as carrier cycle (Tc) or update cycle (Tc)).
  • the compensation unit (60) generates a compensation power command value (pcomp *) for compensating (described later) the second power command value (p **).
  • the compensation unit (60) includes a microcomputer (not shown) and a program for operating the microcomputer. Similarly to the example shown in FIG. 4, the compensation unit (60) of the present embodiment also includes a subtracter (61), a deviation storage unit (62), a first index generation unit (63), a power supply phase calculation unit (64), A second index generation unit (65) and a compensation amount calculation unit (66) are provided.
  • the subtractor (61) obtains a deviation between the output current value (
  • This deviation is an example of a value correlated with a disturbance that distorts the current (Iin) to the power converter in the present invention.
  • ) is a measured value.
  • ) is generated by, for example, multiplying the amplitude of the fundamental component of the input current value (Iin) of the converter circuit (11) by
  • the deviation storage unit (62) includes a plurality of storage areas (arrays) and stores the deviation obtained by the subtracter (61).
  • storage part (62) is an example of the memory
  • the number of storage areas (K) in the deviation storage unit (62) is a period corresponding to ⁇ / K [rad] of the voltage cycle (hereinafter referred to as power supply cycle) of the AC power supply (30) (hereinafter referred to as storage cycle ( Tm) is set to be a time equal to or shorter than the carrier period (Tc).
  • the deviation storage unit (62) can store K deviations in a half cycle of the power supply cycle (hereinafter, power supply half cycle).
  • the storage period (Tm) and the carrier period (Tc) are the same.
  • idx ⁇ in1 / ( ⁇ / K). Therefore, the range of the index (idx) is 0 to K-1.
  • the deviation storage unit (62) stores the deviation in the phase angle ( ⁇ in1) in a storage area corresponding to the calculated index (idx). That is, the deviation storage unit (62) correlates the deviation between the current command (
  • the power supply phase calculation unit (64) obtains the phase angle ( ⁇ in2) at the timing when the second current command value (iT *) is compensated.
  • the power supply phase calculation unit (64) uses the phase angle ( ⁇ in1) at the start of the control process (current control, etc.) at the end point of the update cycle (Tc) where the output of the control process is applied as the PWM signal. Outputs the phase angle ( ⁇ in2).
  • the second index generation unit (65) calculates an index (idx) that identifies the storage area of the deviation storage unit (62) based on the phase angle ( ⁇ in2) obtained by the power supply phase calculation unit (64).
  • FIG. 5 shows the carrier cycle (Tc) from the mth to the (m + 2) th (where m is an integer greater than or equal to zero).
  • the control unit (50) starts the control process when the carrier cycle (Tc) starts. For example, when the control process in the m-th carrier period (Tc) starts, the control unit (50) measures the output current value (
  • the first power command value (p *) is generated in the speed control unit (51) based on the deviation between the rotation angular frequency ( ⁇ ) and the command value ( ⁇ *).
  • the first power command value (p *) is modulated by being multiplied by sin 2 ( ⁇ in) in the multiplier (52), and is output as the second power command value (p **).
  • the second index generation unit (65) calculates the index (idx) based on the detected phase angle ( ⁇ in1).
  • the compensation amount calculation unit (66) calculates a compensation power command value (pcomp *) using the read deviation Iin_err (j2).
  • This compensation power command value (pcomp *) is added (compensated) with the second power command value (p **) in the adder (53).
  • the second power command value is reduced so that distortion of the output current (Iin) due to a deviation (a value correlating to disturbance) between the current command (
  • P ** is compensated.
  • the corrected second power command value (p **) is output to the power control unit (58) as the drive power command value (p ***).
  • the control unit (50) uses the d-axis current command value (id *) by using the drive power command value (p ***) that is the compensated second power command value (p **). And q-axis current command value (iq *).
  • the dq-axis current control unit (56) generates a d-axis voltage command value (Vd *) and a q-axis voltage command value (Vq *).
  • the PWM calculation unit (57) outputs a control signal (G) to the inverter circuit (13).
  • the inverter circuit (13) operates so as to reduce distortion of the output current waveform of the converter circuit (11).
  • the reason why the LC resonance caused by the capacitor (12a) and the reactors (L1, L2) can be reduced by the stored deviation (value correlating to the disturbance) is that the LC resonance is a steady and repetitive waveform.
  • the compensation unit (60) based on the disturbance detected for each carrier cycle (Tc) in the deviation storage unit (62), the storage area in which the disturbance is stored is updated. For example, in the m-th carrier cycle (Tc), when the compensator (60) finishes outputting the compensation power command value (pcomp *), the output current detected at the start of the m-th carrier cycle (Tc) The contents of the deviation storage unit (62) are updated based on the value (
  • ) and the phase angle ( ⁇ in1). Specifically, the first index generation unit (63) calculates an index from the phase angle ( ⁇ in1). In this example, idx j1. As a result, the compensation unit (60) updates the j1st deviation Iin_err (j1).
  • the index (idx) is obtained from the phase angle ( ⁇ in) at the start of control processing in each carrier cycle (Tc). Further, the output current value (
  • the carrier period (Tc) is equal to the storage period (Tm)
  • the timing at which the index (idx) is updated is synchronized with the timing at which the control process starts, and the index is one for each control period. To increase. Therefore, all the data in the deviation storage unit (62) is updated without omission every half cycle of the power supply.
  • FIG. 13 shows a control system of the inverter circuit (13) according to the fifth embodiment.
  • another compensation unit (60) and a subtracter (67) are added to the control system of the first embodiment.
  • the added compensation unit (60) has the same configuration as the compensation unit (60) of the first embodiment, but the input signal is different from that of the compensation unit (60) of the first embodiment.
  • branch numbers ( ⁇ 1, ⁇ 2) are added to the reference numerals in order to identify the two compensators (60).
  • the compensation unit (60-1) is originally provided, and the compensation unit (60-2) is added.
  • the subtracter (61) obtains the deviation between the DC link voltage (vdc) and the command value (vdc *) of the DC link voltage (vdc). Specifically, the subtractor (61) outputs a value obtained by subtracting the DC link voltage from the command value (vdc *) as a deviation.
  • the deviation storage unit (62) of the added compensation unit (60-2) shows the deviation between the DC link voltage (vdc) and the command value (vdc *) as the phase angle of the voltage (Vin) of the AC power supply (30). It is stored in association with ( ⁇ in).
  • This deviation is also an example of a value correlated with a disturbance that distorts the current (Iin) to the power converter in the present invention.
  • the compensation current command value (icomp **) obtained by the added compensation unit (60-2) is subtracted by the subtracter (67) from the output of the original compensation unit (60-1). .
  • the output of the subtracter (67) is output to the adder (53) as a compensation value for the second current command value (iT *).
  • compensation based on the DC link voltage (vdc) is performed in addition to compensation based on the output current value (
  • ) of the converter circuit (11) Can be made closer to the current command (
  • the voltage of the DC section (12) that is, the input side voltage of the inverter circuit (13)
  • the second current command value (iT *) is compensated so as to further increase the output power of the inverter circuit (13).
  • the DC link voltage (vdc) is smaller than the command value (vdc *)
  • the second current command value (iT *) is compensated so that the output power of the inverter circuit (13) is further reduced.
  • FIG. 14 is a flowchart illustrating the update of the deviation storage unit (62) according to the sixth embodiment of the present invention.
  • the flow shown in FIG. 14 is realized by changing the compensation unit (60) of the first embodiment. Note that the series of flows shown in FIG. 14 is executed after the current command (
  • the first index generation unit (63) In the compensation unit (60), the first index generation unit (63) generates an index (idx) indicating the storage location of the deviation storage unit (62) that stores the current deviation (step S11).
  • the compensation unit (60) obtains a deviation between the current command (
  • the compensation unit (60) stores the current deviation (deviation obtained in step S12) in the area of the deviation storage unit (62) corresponding to the index (idx) (step S13).
  • the moving average with the current deviation is obtained using the past value stored in the deviation storage unit (62), and the result is stored. You may make it do.
  • step S11 to step S13 The flow from step S11 to step S13 is repeated for each carrier period (Tc) until the deviation storage unit (62) acquires the number of values (K in this example) to be stored. That is, in the present embodiment, a value (in this case, a current command (
  • the value correlated with the disturbance is stored in the deviation storage unit (62), and the compensation current command for compensating the second current command value (iT *) using them is used.
  • a value (icomp *) can be generated. Therefore, also in this embodiment, the distortion of the output current of the converter circuit (11) (that is, the distortion of the input current to the inverter circuit (13)) caused by the disturbance of the repetitive waveform such as LC resonance can be easily and quickly performed. Can be reduced. That is, even in this embodiment, the deviation between the current and its command value can be reduced.
  • the memory period (Tm) is made smaller than the disturbance fluctuation period and interpolation is performed. It is considered that the deviation acquisition method of Embodiment 6 (see FIG. 14) that does not perform is preferable. In this case, data in all the deviation storage units (62) is not updated in the power supply half cycle, but the data in the deviation storage unit (62) is updated by sampling over a plurality of power supply half cycles. Therefore, if the disturbance repeats in synchronization with the half cycle of the power supply, the configuration according to the sixth embodiment can accurately store a value correlated with the disturbance.
  • the compensation amount by the compensation unit (60) may be set to zero at the start of operation.
  • the compensation amount by the compensation unit (60) Should be zero.
  • ) average the output current value (
  • ) for example, it is conceivable to obtain a moving average of the output current value (
  • the compensation based on the capacitor energy (Ce) (see the second embodiment) is not necessarily used together with the compensation based on the output current value (
  • the power conversion device (10) is not limited to the one having the converter circuit (11) and the inverter circuit (13).
  • the power conversion device (10) may be configured as a so-called matrix converter that directly converts alternating current into alternating current having a predetermined frequency and voltage.
  • the values correlated with the disturbance are not limited to those exemplified in the above-described embodiments and modifications.
  • the deviation between the current to the power conversion unit (for example, the inverter circuit (13) or the matrix converter) and the command value of the current to the power conversion unit can be mentioned.
  • the current to the power converter for example, the inverter circuit (13) or matrix converter
  • the energy (Ce) of the capacitor (12a) may be used.
  • controller (50) may compensate for the q-axis current command value (iq *) instead of compensating for the second current command value (iT *).
  • the present invention is useful as a power conversion device.

Abstract

電力変換部(13)への電流(Iin)を歪ませる外乱に相関する値を、交流電源(30)の電圧(Vin)の位相角(θin)に関連づけて複数個記憶する記憶部(62)を設ける。記憶部(62)に記憶された値を、交流電源(30)の電圧(Vin)の位相角(θin)に関連づけて、電力変換部(13)における制御の操作量(iT*)の補償に用いてオンオフ動作の制御を行う電力変換制御部(50,60)を設ける。

Description

電力変換装置
 本発明は、電力変換装置に関するものである。
 例えば、空気調和装置などでは、圧縮機のモータに電力を供給するために、コンバータ回路とインバータ回路とを有した電力変換装置が用いられる。このような電力変換装置の中には、コンバータ回路とインバータ回路との間に設けられるコンデンサ(直流リンクコンデンサと呼ぶ)として、通常の平滑コンデンサの1/100程度の小容量のコンデンサを採用することで、力率の改善などを図った例がある(例えば特許文献1を参照)。
特開2002-51589号公報
 ところで、上記電力変換装置では、コンバータ回路の入力側(AC側)や、出力側(DC側)にリアクトルが設けられることが多い。このリアクトルは、直流リンクコンデンサとともにLC共振回路を構成し、その共振は、コンバータ回路の出力電流波形や出力電圧波形の歪みの原因、すなわち高調波成分の増加の原因となり得る。また、リアクトルが存在しない場合であっても、電源系統が持つインダクタンスと、電力変換装置内のコンデンサとによってLC共振回路が構成され、そのLC共振回路が電流波形の歪みの原因となる場合がある。すなわち、電流とその指令値との偏差が大きくなってしまう。
 しかしながら、そのような、高調波成分は抑制する必要があるが対策は容易ではない。特に、上記LC共振回路を構成するコンデンサの容量が小さければ小さいほど、LC共振周波数が高くなり対策は更に難しくなる。
 本発明は上記の問題に着目してなされたものであり、電力変換装置において、電流とその指令値との偏差を低減できるようにすることを目的としている。
 上記の課題を解決するため、第1の態様は、
 複数のスイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)のオンオフ動作によって、交流電源(30)が出力した交流又は該交流から変換された直流を、所定の周波数及び電圧を有した交流に変換する電力変換部(13)と、
 上記オンオフ動作にともなって発生したリプル電圧を平滑化するコンデンサ(12a)と、
 上記電力変換部(13)への電流(Iin)を歪ませる外乱に相関する値を、上記交流電源(30)の電圧(Vin)の位相角(θin)に関連づけて複数個記憶する記憶部(62)と、
 上記記憶部(62)に記憶された値を、上記交流電源(30)の電圧(Vin)の位相角(θin)に関連づけて、上記電力変換部(13)における制御の操作量(iT*)の補償に用いて上記オンオフ動作の制御を行う電力変換制御部(50,60)と、
 を備えたことを特徴とする。
 この構成では、記憶部(62)が記憶した値に基づいて、電力変換部(13)のオンオフ動作が行われる。
 また、第2の態様は、第1の態様において、
 上記外乱に相関する値は、
 上記電力変換部(13)への電流、
 上記交流電源(30)の出力を直流に変換するコンバータ回路(11)の出力電流値(|Iin|)、
 上記コンデンサ(12a)の電圧(vdc)、
 上記コンデンサ(12a)のエネルギー(Ce)、
 上記電力変換部(13)への電流と該電力変換部(13)への電流の指令値との偏差、
 上記交流電源(30)の出力を直流に変換するコンバータ回路(11)の出力電流値(|Iin|)と、該出力電流値(|Iin|)を指示する電流指令(|Iin*|)との偏差、
 上記コンデンサ(12a)の電圧(vdc)と、該コンデンサ(12a)の電圧(vdc)の指令値(vdc*)との偏差、
 及び上記コンデンサ(12a)のエネルギー(Ce)と、該エネルギー(Ce)の指令値(Ce*)との偏差
 の何れかであることを特徴とする。
 また、第3の態様は、第1又は第2の態様において、
 上記電力変換制御部(50,60)は、上記記憶部(62)に記憶された値によって、上記電力変換部(13)の電力を制御することを特徴とする。
 この構成では、記憶した値に基づいて、電力変換部(13)における電力が制御される。
 また、第4の態様は、第1又は第2の態様において、
 上記電力変換制御部(50,60)は、上記記憶部(62)に記憶された値によって上記電力変換部(13)における電流を制御することを特徴とする。
 この構成では、記憶した値に基づいて、電力変換部(13)における電流が制御される。
 また、第5の態様は、第1から第4の態様の何れかにおいて、
 上記電力変換制御部(50,60)は、上記外乱に相関する値を複数種類用いて、上記操作量(iT*)の補償を行うことを特徴とする。
 この構成では、記憶した複数種類の値に基づいて、電力変換部(13)における電力又は電流が制御される。
 また、第6の態様は、第1から第5の態様の何れかにおいて、
 上記電力変換制御部(50,60)は、上記記憶部(62)に記憶されている値が不連続の場合には、上記記憶部(62)内のデータを用いて不連続箇所を補間することを特徴とする。
 上記の各態様によれば、電力変換装置において、電流とその指令値との偏差を低減できる。
図1は、本発明の実施形態1に係る電力変換装置の構成を示す。 図2は、交流電源の電流、交流電源の電圧、及び直流リンク電圧の波形を例示する。 図3は、実施形態1に係るインバータ回路の制御系を示す。 図4は、補償部の構成を示す。 図5は、補償部による補償動作を説明する図である。 図6は、電源電圧、位相角、電流指令、出力電流値、偏差、第2の電流指令値、及び駆動電流指令値の波形を例示する。 図7は、実施形態1の変形例に係る補償部の構成を示す。 図8は、記憶周期がキャリア周期よりも短い場合における偏差記憶部の更新を説明する図である。 図9は、実施形態2に係るインバータ回路の制御系を示す。 図10は、実施形態3に係るインバータ回路の制御系を示す。 図11は、フィードバック制御部の構成例を示す。 図12は、実施形態4に係るインバータ回路の制御系を示す。 図13は、実施形態5に係るインバータ回路の制御系を示す。 図14は、実施形態6に係る偏差記憶部の更新を説明するフローチャートである。
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《発明の実施形態1》
 図1は、本発明の実施形態1に係る電力変換装置(10)の構成を示す。この電力変換装置(10)は、例えば、空気調和装置(図示は省略)の圧縮機を駆動するモータ等に電力を供給するために用いる。
 電力変換装置(10)は、図1に示すように、コンバータ回路(11)、直流部(12)、インバータ回路(13)、制御部(50)、及び補償部(60)を備え、単相の交流電源(30)から供給された交流電力を所定の周波数及び電圧の交流電力に変換して、モータ(20)に供給する。モータ(20)は、上記圧縮機を駆動するものであり、例えば、いわゆるIPM(Interior Permanent Magnet)モータを採用できる。
 〈コンバータ回路〉
 コンバータ回路(11)は、リアクトル(L1)を介して交流電源(30)に接続され、交流電源(30)からの交流を直流に整流する。この例では、コンバータ回路(11)は、4つのダイオード(D1~D4)がブリッジ状に結線されたダイオードブリッジ回路である。これらのダイオード(D1~D4)によって、交流電源(30)の交流電圧を全波整流して、直流電圧に変換する。
 〈直流部〉
 直流部(12)は、コンデンサ(12a)を備えている。コンデンサ(12a)は、コンバータ回路(11)の正及び負の出力ノードの間に接続されている。それにより、該コンデンサ(12a)の両端に生じた直流電圧(以下、直流リンク電圧(vdc))がインバータ回路(13)の入力ノードに印可される。なお、コンバータ回路(11)において交流電源側にリアクトル(L1)を設けない場合には、コンデンサ(12a)は、コンバータ回路(11)の正極側の出力ノードに、リアクトル(リアクトル(L2)とする)を介して接続される。リアクトル(L1)は、コンデンサ(12a)とともにLC共振回路を構成し、リアクトル(L2)も、コンデンサ(12a)とともにLC共振回路を構成する。仮にリアクトル(L1,L2)を設けない場合であっても、電源系統が持つインダクタンスとコンデンサ(12a)によりLC共振回路が構成される。このLC共振回路で起こるLC共振は、コンバータ回路(11)の出力電流波形の歪みの原因となりうるので、本実施形態では、後に詳述する補償部(60)によって、出力電流波形の歪みの対策を行う。
 このコンデンサ(12a)は、インバータ回路(13)のスイッチング素子(後述)がスイッチング動作する際に生じるリプル電圧(電圧変動)のみを平滑化可能な静電容量を有している。すなわち、コンデンサ(12a)は、コンバータ回路(11)によって整流された電圧(電源電圧に応じて変動する電圧)を平滑化するような静電容量を有さない小容量のコンデンサである。コンデンサ(12a)には、例えばフィルムコンデンサを採用する。
 コンデンサ(12a)に小容量コンデンサを採用したことによって、直流リンク電圧(vdc)は、電源電圧の2倍の周波数で脈動している。図2は、交流電源(30)の電流、交流電源(30)の電圧(Vin)、及び直流リンク電圧(vdc)の波形を例示する。この例では、直流リンク電圧(vdc)は、その最大値(Vmax)がその最小値(Vmin)の2倍以上となるような大きな脈動を有している。
 〈インバータ回路〉
 インバータ回路(13)は、入力ノードがコンデンサ(12a)に接続され、脈動する直流電圧(直流リンク電圧(vdc))が供給されている。インバータ回路(13)は、複数のスイッチング素子(後述)のオンオフ動作によって直流部(12)の出力を三相交流(U,V,W)に変換し、モータ(20)に供給する。すなわち、モータ(20)は、インバータ回路(13)の負荷である。
 本実施形態のインバータ回路(13)は、複数のスイッチング素子がブリッジ結線されて構成されている。このインバータ回路(13)は、三相交流をモータ(20)に出力するために、6個のスイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)を備えている。詳しくは、インバータ回路(13)は、2つのスイッチング素子を互いに直列接続した3つのスイッチングレグを備え、各スイッチングレグにおける上アームのスイッチング素子(Su,Sv,Sw)と下アームのスイッチング素子(Sx,Sy,Sz)との中点が、それぞれモータ(20)の各相のコイルに接続されている。また、各スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)には、還流ダイオード(Du,Dv,Dw,Dx,Dy,Dz)が逆並列接続されている。
 インバータ回路(13)は、これらのスイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)のオンオフ動作によって、直流部(12)から入力された直流リンク電圧(vdc)をスイッチングして、所定の周波数及び電圧を有した三相交流電圧に変換し、モータ(20)へ供給する。このオンオフ動作の制御は制御部(50)が行う。すなわち、インバータ回路(13)は、交流電源(30)が出力した交流から変換され直流を、所定の周波数及び電圧を有した交流に変換するものであり、本発明の電力変換部の一例である。
 〈制御部〉
 図3は、実施形態1に係るインバータ回路(13)の制御系を示す。制御部(50)は、マイクロコンピュータ(図示は省略)とそれを動作させるプログラムを含み、スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)のオンオフ動作の制御にともなってインバータ回路(13)の電流制御を行う。すなわち、制御部(50)によってインバータ回路(13)の出力が制御されて、モータ(20)の駆動が制御される。モータ(20)の駆動の制御には、例えばd-q軸ベクトル制御が用いられる。本実施形態の制御部(50)は、速度制御部(51)、乗算器(52)、加算器(53)、dq電流指令値生成部(54)、座標変換部(55)、dq軸電流制御部(56)、及びPWM演算部(57)を備えている。
 速度制御部(51)は、モータ(20)の機械角の回転角周波数(ω)と、機械角の指令値(ω*)との偏差を求める。そして、速度制御部(51)は、その偏差を比例・積分演算(PI演算)し、その演算結果を第1の電流指令値(im*)として乗算器(52)に出力する。
 乗算器(52)は、交流電源(30)における電圧(Vin)の位相角(θin)の正弦値の絶対値(|sin(θin)|)と、第1の電流指令値(im*)とを乗算し、乗算結果を第2の電流指令値(iT*)として出力する。この第2の電流指令値(iT*)は、モータ電流振幅の指令値であり、本発明における、電力変換部における制御の操作量の一例である。
 加算器(53)は、第2の電流指令値(iT*)と、補償部(60)で生成された補償電流指令値(icomp*)(後述)とを加算し、加算結果(以下、駆動電流指令値(idq*)と呼ぶ)をdq電流指令値生成部(54)に出力する。
 dq電流指令値生成部(54)は、駆動電流指令値(idq*)と、モータ(20)に流す電流の位相(β)の指令値(β*)とから、d軸電流指令値(id*)及びq軸電流指令値(iq*)を求め、それらをdq軸電流制御部(56)に出力する。具体的にdq電流指令値生成部(54)は、指令値(β*)の正弦値(-sinβ*)に駆動電流指令値(idq*)を乗じてd軸電流指令値(id*)を生成し、指令値(β*)の余弦値(cosβ*)に駆動電流指令値(idq*)を乗じてq軸電流指令値(iq*)を生成する。
 座標変換部(55)は、モータ(20)の回転子(図示は省略)の回転角(電気角(θe))と、インバータ回路(13)の相電流(iu,iv,iw)とから、d軸電流値(id)とq軸電流値(iq)を算出する。
 dq軸電流制御部(56)は、d軸電流指令値(id*)とd軸電流値(id)との偏差、及び、q軸電流指令値(iq*)とq軸電流値(iq)との偏差がそれぞれ小さくなるように、d軸の電圧指令値(Vd*)とq軸の電圧指令値(Vq*)を生成し、PWM演算部(57)に出力する。
 PWM演算部(57)には、d軸及びq軸の電圧指令値(Vd*,Vq*)と、直流リンク電圧(vdc)と、電気角(θe)とが入力される。PWM演算部(57)は、これらの値に基づいて、インバータ回路(13)の各スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)のオンオフ動作を制御する制御信号(G)(以下ではPWM出力とも呼ぶ)を生成してインバータ回路(13)に出力する。PWM出力(G)の更新は、所定の周期(以下、キャリア周期(Tc)、或いは更新周期(Tc)と呼ぶ)で行われる。
 〈補償部〉
 補償部(60)は、第2の電流指令値(iT*)を補償(後述)するための補償電流指令値(icomp*)を生成する。この例では、制御部(50)と補償部(60)とによって、本発明の電力変換制御部の一例を構成している。補償部(60)は、マイクロコンピュータ(図示は省略)とそれを動作させるプログラムを含んでいる。図4は、補償部(60)の構成例を示す。図4に示すように、補償部(60)は、減算器(61)、偏差記憶部(62)、第1インデックス生成部(63)、電源位相演算部(64)、第2インデックス生成部(65)、及び補償量演算部(66)を備えている。
 -減算器(61)-
 減算器(61)は、コンバータ回路(11)の出力電流値(|Iin|)と、該出力電流値(|Iin|)を指示する電流指令(|Iin*|)との偏差を求める。この偏差は、インバータ回路(13)への電流(つまり出力電流値(|Iin|))を歪ませる外乱に相関している。すなわち、この偏差は、本発明における、電力変換部への電流(Iin)を歪ませる外乱に相関する値の一例である。なお、電流値(|Iin|)は測定値である。また、電流指令(|Iin*|)は、例えば、コンバータ回路(11)の入力電流値(Iin)の基本波成分の振幅に|sin(θin)|を乗じて生成する。
 -偏差記憶部(62)-
 偏差記憶部(62)は、複数の記憶領域(配列)を備え、減算器(61)で求めた偏差を記憶する。この偏差記憶部(62)は、本発明の記憶部の一例である。偏差記憶部(62)の記憶領域の数(Kとする)は、交流電源(30)の電圧の周期(以下、電源周期)のπ/K[rad]に相当する期間(以下、記憶周期(Tm)と呼ぶ)が、キャリア周期(Tc)以下の時間となるように設定する。Kを上記のように設定することにより、偏差記憶部(62)は、電源周期の半分の周期(以下、電源半周期)において、K個の偏差を記憶することができる。なお、本実施形態では、記憶周期(Tm)とキャリア周期(Tc)とは一致している。
 -第1インデックス生成部(63)-
 第1インデックス生成部(63)は、制御処理(電流制御など)の開始時における位相角(θin)=θin1に基づいて、偏差記憶部(62)の記憶領域を特定するインデックス(idx)を算出する。この例では、idx=θin1/(π/K)としている。したがって、インデックス(idx)の範囲は、0~K-1となる。
 偏差記憶部(62)には、位相角(θin1)における上記偏差を、算出したインデックス(idx)に対応した記憶領域に記憶させる。すなわち、偏差記憶部(62)は、電流指令(|Iin*|)と出力電流値(|Iin|)との偏差を、交流電源(30)の電圧(Vin)の位相角(θin)に関連づけて複数個記憶するのである。なお、上記のようにインデックス(idx)と位相角(θin)とを対応づけたことにより、偏差記憶部(62)には、記憶周期(Tm)間隔の外乱に相関する値(偏差)が並ぶように格納される。
 -電源位相演算部(64)-
 電源位相演算部(64)は、第2の電流指令値(iT*)の補償を行うタイミングにおける位相角(θin2)を求める。この例では、電源位相演算部(64)は、制御処理(電流制御など)の開始時における位相角(θin1)により、制御処理の出力がPWM信号として適用される更新周期(Tc)の終点における位相角(θin2)を出力する。
 -第2インデックス生成部(65)-
 第2インデックス生成部(65)は、電源位相演算部(64)が求めた位相角(θin)=θin2に基づいて、偏差記憶部(62)の記憶領域を特定するインデックス(idx)を算出する。インデックス(idx)の算出方法は、第1インデックス生成部(63)における算出と同様であり、idx=θin2/(π/K)としている。
 -補償量演算部(66)-
 補償量演算部(66)は、補償電流指令値(icomp*)を算出する。具体的に、補償量演算部(66)は、まず、第2インデックス生成部(65)で算出したインデックス(idx)を用いて、偏差記憶部(62)の記憶領域から偏差を読み出す。以下では、読み出した偏差をIin_errとする。そして、補償量演算部(66)は、補償電流指令値(icomp*)を、icomp*=Gp×Iin_errと算出する。このGpはゲインであり、例えば実験等を行って適宜定めればよい。算出した補償電流指令値(icomp*)は、制御部(50)の加算器(53)に出力される。本実施形態では、補償量演算部(66)と加算器(53)とで、電流指令補償部を構成している。
 〈電力変換装置における動作〉
 図5は、補償部(60)による補償動作を説明する図である。図5では、第m番目から第m+2番目までのキャリア周期(Tc)を示してある(ただしmはゼロ以上の整数)。また、図6は、電源電圧(Vin)、位相角(θin)、電流指令(|Iin*|)、出力電流値(|Iin|)、偏差(Iin_err)、第2の電流指令値(iT*)、及び駆動電流指令値(idq*)の波形を例示する。図6では、3つの電源半周期(第n-1番目から第n+1番目までの電源半周期)における波形を示した。
 制御部(50)では、キャリア周期(Tc)が開始すると制御処理を開始する。例えば、第m番目のキャリア周期(Tc)における制御処理が開始すると、制御部(50)は、出力電流値(|Iin|)、及び位相角(θin)を測定する。そして、制御部(50)では、速度制御部(51)において、回転角周波数(ω)と指令値(ω*)との偏差に基づいて、第1の電流指令値(im*)が生成される。第1の電流指令値(im*)は、乗算器(52)において変調され、第2の電流指令値(iT*)として出力される。
 一方、補償部(60)では、検出された位相角(θin1)に基づいて、第2インデックス生成部(65)がインデックス(idx)を算出する。ここでは、算出された値は、idx=j2とする。補償量演算部(66)は、算出されたインデックス(idx)=j2に対応した偏差(Iin_err(j2)とする)を偏差記憶部(62)から読み出す。補償量演算部(66)では、読み出された偏差Iin_err(j2)を用いて補償電流指令値(icomp*)を算出する。
 この補償電流指令値(icomp*)は、加算器(53)において、第2の電流指令値(iT*)と加算(補償)される。これにより、電流指令(|Iin*|)と出力電流値(|Iin|)との偏差(外乱に相関する値)による出力電流(Iin)の歪みが低減するように、第2の電流指令値(iT*)が補償される。補正された第2の電流指令値(iT*)は、駆動電流指令値(idq*)としてdq電流指令値生成部(54)に出力される。
 ここで、補償電流指令値(icomp*)の算出に使用された偏差(Iin_err)は、現在の電源半周期(n)よりも、前の電源半周期(n-1)のものである。つまり、第n-1番目の電源半周期のインデックス(idx)=j2に相当する位相において記憶された偏差Iin_err(j2)を用いて、第n番目の電源半周期のインデックス(idx)=j2に相当する位相における、第2の電流指令値(iT*)を補償することになる(図6参照)。図6では、ゲイン(Gp)=1の場合を例示した。
 このように、制御部(50)では、補償された第2の電流指令値(iT*)である駆動電流指令値(idq*)を用いて、dq電流指令値生成部(54)がd軸電流指令値(id*)とq軸電流指令値(iq*)を生成する。そして、dq軸電流制御部(56)は、d軸の電圧指令値(Vd*)とq軸の電圧指令値(Vq*)を生成する。d軸の電圧指令値(Vd*)とq軸の電圧指令値(Vq*)が生成されると、PWM演算部(57)によって制御信号(G)がインバータ回路(13)に出力される。これにより、インバータ回路(13)は、コンバータ回路(11)の出力電流波形の歪みが低減するように動作する。このように記憶した偏差(外乱に相関する値)によってコンデンサ(12a)とリアクトル(L1,L2)とによるLC共振を低減できるのは、該LC共振が定常的な繰り返しの波形だからである。
 一方、補償部(60)では、偏差記憶部(62)において、キャリア周期(Tc)毎に検出された外乱に基づいて、当該外乱を記憶すべき記憶領域が更新される。例えば第m番目のキャリア周期(Tc)では、補償部(60)は、補償電流指令値(icomp*)の出力を終えると、第m番目のキャリア周期(Tc)の開始時に検出された出力電流値(|Iin|)、及び位相角(θin1)に基づいて偏差記憶部(62)の内容を更新する。具体的には、第1インデックス生成部(63)が、当該位相角(θin1)からインデックスを計算する。この例では、idx=j1となる。これにより、補償部(60)では、j1番目の偏差Iin_err(j1)が更新される。
 第m+1番目のキャリア周期(Tc)でも同様の動作が行われる。第m+1番目のキャリア周期(Tc)では、idx=j1+1となる。これは、記憶周期(Tm)とキャリア周期(Tc)は一致しているからである。第m+1番目のキャリア周期(Tc)では、現在が第n番目の電源半周期であるとすれば、第n-1番目の電源半周期のインデックス(idx)=j2+1に相当する位相において記憶された偏差Iin_err(j2+1)を用いて、第n番目の電源半周期のインデックス(idx)=j2+1に相当する位相における、第2の電流指令値(iT*)を補償する。また、第m+1番目のキャリア周期(Tc)では、j2+1番目の偏差Iin_err(j2+1)が更新される。
 なお、本実施形態では、インデックス(idx)を各キャリア周期(Tc)における制御処理開始時点の位相角(θin)から求めている。また、出力電流値(|Iin|)も制御処理開始時点のタイミングで検出している。本実施形態のように、キャリア周期(Tc)が記憶周期(Tm)と等しい場合は、インデックス(idx)が更新されるタイミングと制御処理開始のタイミングは同期し、インデックスは制御周期毎に1ずつ増加する。そのため、電源半周期毎に偏差記憶部(62)のデータは全て漏れなく更新される。
 〈本実施形態における効果〉
 本実施形態では、偏差(外乱に相関する値)を記憶し、電源半周期前に記憶した値に基づいて、インバータ回路(13)の電流制御の操作量(iT*)を補償するようにした。そのため、本実施形態では、電流とその指令値との偏差を低減できる。より具体的には、LC共振のような繰り返し波形の外乱によって生じた、コンバータ回路(11)の出力電流の歪み(すなわち、インバータ回路(13)への入力電流の歪み)を容易に低減できる。そして、この方式は、LC共振回路を形成するコンデンサの容量が小さいほど有用である。LC共振回路を形成するコンデンサが小容量となると、上記LC共振の周波数が高くなり、より高速な補償動作が求められる。本実施形態では、記憶した偏差を用いて補償値を求めるので、高速な補償が可能になるのである。
 《実施形態1の変形例》
 実施形態1の変形例では、記憶周期(Tm)が、キャリア周期(Tc)がよりも短く設定された例を説明する。図7は、実施形態1の変形例に係る補償部(60)の構成を示す。図7に示すように、本変形例の補償部(60)は、実施形態1の補償部(60)にデータ補間部(68)が追加されている。
 図8は、記憶周期(Tm)がキャリア周期(Tc)よりも短い場合における偏差記憶部(62)の更新を説明する図である。図8では、第m番目から第m+1番目までのキャリア周期(Tc)を示してある(ただしmはゼロ以上の整数)。図8に示すように、記憶周期(Tm)がキャリア周期(Tc)よりも短い場合は、インデックス(idx)が更新されるタイミングと制御処理開始タイミングとが非同期となる。
 そのため、連続するキャリア周期(Tc)においてインデックス(idx)が2つ増加する場合が起こりうる。図8の例では、第m番目のキャリア周期(Tc)開始時のインデックス(idx)は、j1であり、第m+1番目のキャリア周期(Tc)開始時のインデックス(idx)は、j1+2である。記憶領域の更新にキャリア周期(Tc)毎に検出した外乱を用いるとすれば、このようにインデックス(idx)が2つ増加した場合は、インデックス(idx)=j1+1に対応する記憶領域のデータが更新されないことになる。つまり、偏差記憶部(62)は、記憶領域が先頭から順に連続的に更新されない場合、すなわち、更新漏れの記憶領域ができる場合がある。そこで、本変形例では、データ補間部(68)によってインデックスが2つ以上増加したことを検知し、更新されなかった記憶領域のデータを、前回求めた偏差と今回求めた偏差とによって補間するようにした。
 図8の例では、第m番目のキャリア周期(Tc)では、このキャリア周期(Tc)において検出した外乱を記憶すべき記憶領域(idx=j1)が更新される。次に、第m+1番目のキャリア周期(Tc)における制御処理が開始されると、第1インデックス生成部(63)がインデックス(idx)=j1+2を算出する。そうすると、そのインデックス(idx)=j1+2に対応する記憶領域に偏差Iin_err(j1+2)が格納される(図8参照)。
 そして、データ補間部(68)は、現在のインデックス(idx)=j1+2と、1つ前のキャリア周期(Tc)、すなわち第m番目のキャリア周期(Tc)において算出したインデックス(idx)=j1とを比較する。この例では、インデックス(idx)が、前のキャリア周期(Tc)よりも2つ増加したので、インデックス(idx)=j1+1のデータが更新されていないことが分かる。そこで、データ補間部(68)は、インデックス(idx)=j1+1のデータをインデックス(idx)=j1のデータとインデックス(idx)=j1+2のデータとによって補間して生成し、偏差記憶部(62)に格納する。このように、本変形例では、記憶部(62)に記憶されている値が不連続の場合(データが更新されていない記憶領域が存在する場合)には、記憶部(62)内のデータを用いて不連続箇所(データが更新されていない記憶領域)を補間するのである。
 上記の補間処理により、本変形例では、長期に渡って更新がされない記憶領域が偏差記憶部(62)において発生するのを防ぐことができる。すなわち、本変形例によれば、記憶周期(Tm)とキャリア周期(Tc)とが非同期であっても、コンバータ回路(11)の出力電流の歪みをより確実に低減できる。すなわち、本変形例でも電流とその指令値との偏差を低減できる。
 なお、連続するキャリア周期(Tc)においてインデックス(idx)が3つ以上増加するような場合にも、上記と同様にして、更新されなかった記憶領域のデータを更新済みの記憶領域のデータを用いて更新すればよい。
 《発明の実施形態2》
 図9は、実施形態2に係るインバータ回路(13)の制御系を示す。本実施形態では、図9に示すように、実施形態1の制御系に更に別の補償部(60)、及び減算器(67)が追加されている。追加された補償部(60)も実施形態1の補償部(60)と同様の構成であるが、入力される信号が実施形態1の補償部(60)とは異なる。なお、図9では、2つの補償部(60)を識別するため、参照符号に枝番(-1,-2)を付した。この例では、補償部(60-1)が元々からあるものであり、補償部(60-2)が追加されたものである。
 追加された補償部(60-2)では、減算器(61)によって、コンデンサエネルギー(Ce)と、該コンデンサエネルギー(Ce)の指令値(Ce*)の偏差を求めている。詳しくは、減算器(61)は、指令値(Ce*)からコンデンサエネルギー(Ce)を減じたものを偏差として出力する。ここで、コンデンサエネルギー(Ce)は、直流部(12)のコンデンサ(12a)に蓄積されたエネルギーである。この値は、直流リンク電圧(vdc)から算出できる。また、指令値(Ce*)はその指令値であり、直流リンク電圧(vdc)の目標値から算出する。直流リンク電圧(vdc)の目標値は、該直流リンク電圧(vdc)の波形がおおよそ正弦波となるように定める。
 追加された補償部(60-2)の偏差記憶部(62)には、コンデンサエネルギー(Ce)と指令値(Ce*)の偏差が、交流電源(30)の電圧(Vin)の位相角(θin)に関連づけて記憶されることになる。この偏差も、本発明における、電力変換部への電流(Iin)を歪ませる外乱に相関する値の一例である。
 そして、元々ある補償部(60-1)の出力からは、追加された補償部(60-2)によって求められた補償電流指令値(icomp**)が、減算器(67)によって減ぜられる。減算器(67)の出力は、第2の電流指令値(iT*)の補償値として加算器(53)に出力される。この例では、2つの補償部(60-1,2)と加算器(53)によって、電流指令補償部を構成している。
 上記構成により、本実施形態では、コンバータ回路(11)の出力電流値(|Iin|)に基づく補償に加えて、直流部(12)のコンデンサ(12a)に蓄えられているコンデンサエネルギー(Ce)による補償を行う。コンデンサエネルギー(Ce)による補償を加えることで、直流部のコンデンサ(12a)に出入りする電流による外乱を低減し、コンバータ回路(11)の出力電流値(|Iin|)を電流指令(|Iin*|)により近づけることができる。
 具体的には、本実施形態では、直流部(12)のコンデンサエネルギー(Ce)が、コンデンサエネルギーの指令値(Ce*)よりも多い場合は、インバータ回路(13)の出力電力をより増加させるように、第2の電流指令値(iT*)を補償する。また、コンデンサエネルギー(Ce)が指令値(Ce*)より少ない場合は、インバータ回路(13)の出力電力がより減少するように第2の電流指令値(iT*)を補償する。
 このように、本実施形態でも、記憶した偏差(外乱に相関する値)を用いて補償値を求めるので、高速な補償が可能になる。
 《発明の実施形態3》
 図10は、実施形態3に係るインバータ回路(13)の制御系を示す。この例は、実施形態1の制御系にフィードバック制御部(80)を追加したものである。フィードバック制御部(80)は、出力電流値(|Iin|)と電流指令(|Iin*|)との偏差が低減するように、フィードバック制御によって電流指令(|Iin*|)を補償する。
 図11は、フィードバック制御部(80)の構成例を示す。図11に示すように、フィードバック制御部(80)は、減算器(81)とPI演算器(82)とを備えている。減算器(81)は、出力電流値(|Iin|)とその電流指令(|Iin*|)との偏差求める。PI演算器(82)は、減算器(81)の出力に対して比例・積分演算(PI演算)を行って補償電流指令値(icomp***)として出力する。補償電流指令値(icomp***)は、補償部(60)の出力と加算されて、制御部(50)の加算器(53)に入力される。
 このようにフィードバック制御部(80)を設けたことにより、上記LC共振のような定常的な外乱に加え、非定常的な外乱を原因とする、コンバータ回路(11)の出力電流の歪みを低減できる。なお、補償部(60)におけるゲイン(Gp)と、フィードバック制御部(80)におけるゲインとのバランスを適宜調整することで、フィードバック制御部(80)による制御が、補償部(60)による制御に過多な影響を与えないようにすることができる。
 《発明の実施形態4》
 図12は、実施形態4に係るインバータ回路(13)の制御系を示す。本実施形態の制御部(50)は、速度制御部(51)、乗算器(52)、加算器(53)、座標変換部(55)、電力制御部(58)、dq軸電流制御部(56)、及びPWM演算部(57)を備えている。
 速度制御部(51)は、モータ(20)の機械角の回転角周波数(ω)と、機械角の指令値(ω*)との偏差を求める。そして、速度制御部(51)は、その偏差を比例・積分演算(PI演算)し、その演算結果を第1の電力指令値(p*)として乗算器(52)に出力する。
 乗算器(52)は、例えば、交流電源(30)における電圧(Vin)の位相角(θin)の正弦値の二乗(sin(θin))と、第1の電力指令値(p*)とを乗算し、乗算結果を第2の電力指令値(p**)として出力する。この第2の電力指令値(p**)は、インバータ回路(13)(電力変換部)が出力する電力の指令値であり、本発明における、電力変換部における制御の操作量の一例である。
 加算器(53)は、第2の電力指令値(p**)と、補償部(60)で生成された補償電力指令値(pcomp*)(後述)とを加算し、加算結果(以下、駆動電力指令値(p***)と呼ぶ)を電力制御部(58)に出力する。
 電力制御部(58)は、駆動電力指令値(p***)とモータ回転数(ω)とから、モータトルク指令値を求め、当該モータトルク指令値に応じたd軸電流指令値とq電流指令値を生成し、それらをdq軸電流制御部(56)に出力する。具体的に、d軸インダクタンス、q軸インダクタンス、鎖交磁束数、巻線抵抗、極対数といったモータ定数より、モータトルク指令に応じたd軸電流指令値とq電流指令値を生成する。
 座標変換部(55)は、モータ(20)の回転子(図示は省略)の回転角(電気角(θe))と、インバータ回路(13)の相電流(iu,iv,iw)とから、d軸電流値(id)とq軸電流値(iq)を算出する。
 dq軸電流制御部(56)は、d軸電流指令値(id*)とd軸電流値(id)との偏差、及び、q軸電流指令値(iq*)とq軸電流値(iq)との偏差がそれぞれ小さくなるように、d軸の電圧指令値(Vd*)とq軸の電圧指令値(Vq*)を生成し、PWM演算部(57)に出力する。
 PWM演算部(57)には、d軸及びq軸の電圧指令値(Vd*,Vq*)と、直流リンク電圧(vdc)と、電気角(θe)とが入力される。PWM演算部(57)は、これらの値に基づいて、インバータ回路(13)の各スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)のオンオフ動作を制御する制御信号(G)(以下ではPWM出力とも呼ぶ)を生成してインバータ回路(13)に出力する。PWM出力(G)の更新は、所定の周期(以下、キャリア周期(Tc)、或いは更新周期(Tc)と呼ぶ)で行われる。
 〈補償部〉
 補償部(60)は、第2の電力指令値(p**)を補償(後述)するための補償電力指令値(pcomp*)を生成する。補償部(60)は、マイクロコンピュータ(図示は省略)とそれを動作させるプログラムを含んでいる。本実施形態の補償部(60)も図4に示した例と同様に、減算器(61)、偏差記憶部(62)、第1インデックス生成部(63)、電源位相演算部(64)、第2インデックス生成部(65)、及び補償量演算部(66)を備えている。
 -減算器(61)-
 減算器(61)は、コンバータ回路(11)の出力電流値(|Iin|)と、該出力電流値(|Iin|)を指示する電流指令(|Iin*|)との偏差を求める。この偏差は、本発明における、電力変換部への電流(Iin)を歪ませる外乱に相関する値の一例である。なお、電流値(|Iin|)は測定値である。また、電流指令(|Iin*|)は、例えば、コンバータ回路(11)の入力電流値(Iin)の基本波成分の振幅に|sin(θin)|を乗じて生成する。
 -偏差記憶部(62)-
 偏差記憶部(62)は、複数の記憶領域(配列)を備え、減算器(61)で求めた偏差を記憶する。この偏差記憶部(62)は、本発明の記憶部の一例である。偏差記憶部(62)の記憶領域の数(Kとする)は、交流電源(30)の電圧の周期(以下、電源周期)のπ/K[rad]に相当する期間(以下、記憶周期(Tm)と呼ぶ)が、キャリア周期(Tc)以下の時間となるように設定する。Kを上記のように設定することにより、偏差記憶部(62)は、電源周期の半分の周期(以下、電源半周期)において、K個の偏差を記憶することができる。なお、本実施形態では、記憶周期(Tm)とキャリア周期(Tc)とは一致している。
 -第1インデックス生成部(63)-
 第1インデックス生成部(63)は、制御処理(電流制御など)の開始時における位相角(θin)=θin1に基づいて、偏差記憶部(62)の記憶領域を特定するインデックス(idx)を算出する。この例では、idx=θin1/(π/K)としている。したがって、インデックス(idx)の範囲は、0~K-1となる。
 偏差記憶部(62)には、位相角(θin1)における上記偏差を、算出したインデックス(idx)に対応した記憶領域に記憶させる。すなわち、偏差記憶部(62)は、電流指令(|Iin*|)と出力電流値(|Iin|)との偏差を、交流電源(30)の電圧(Vin)の位相角(θin)に関連づけて複数個記憶するのである。なお、上記のようにインデックス(idx)と位相角(θin)とを対応づけたことにより、偏差記憶部(62)には、記憶周期(Tm)間隔の外乱に相関する値(偏差)が並ぶように格納される。
 -電源位相演算部(64)-
 電源位相演算部(64)は、第2の電流指令値(iT*)の補償を行うタイミングにおける位相角(θin2)を求める。この例では、電源位相演算部(64)は、制御処理(電流制御など)の開始時における位相角(θin1)により、制御処理の出力がPWM信号として適用される更新周期(Tc)の終点における位相角(θin2)を出力する。
 -第2インデックス生成部(65)-
 第2インデックス生成部(65)は、電源位相演算部(64)が求めた位相角(θin2)に基づいて、偏差記憶部(62)の記憶領域を特定するインデックス(idx)を算出する。インデックス(idx)の算出方法は、第1インデックス生成部(63)における算出と同様であり、idx=θin1/(π/K)としている。
 -補償量演算部(66)-
 補償量演算部(66)は、補償電力指令値(pcomp*)を算出する。具体的に、補償量演算部(66)は、まず、第2インデックス生成部(65)で算出したインデックス(idx)を用いて、偏差記憶部(62)の記憶領域から偏差を読み出す。以下では、読み出した偏差をIin_errとする。そして、補償量演算部(66)は、補償電力指令値(pcomp*)を、pcomp*=-|Vin・sin(θin2)|×Iin_errと算出する。算出した補償電力指令値(pcomp*)は、制御部(50)の加算器(53)に出力される。
 〈電力変換装置における動作〉
 本実施形態における電力変換装置の動作を図5を援用して説明する。図5では、第m番目から第m+2番目までのキャリア周期(Tc)を示してある(ただしmはゼロ以上の整数)。
 制御部(50)では、キャリア周期(Tc)が開始すると制御処理を開始する。例えば、第m番目のキャリア周期(Tc)における制御処理が開始すると、制御部(50)は、出力電流値(|Iin|)、及び位相角(θin1)を測定する。そして、制御部(50)では、速度制御部(51)において、回転角周波数(ω)と指令値(ω*)との偏差に基づいて、第1の電力指令値(p*)が生成される。第1の電力指令値(p*)は、乗算器(52)において、sin(θin)と乗算されることによって変調され、第2の電力指令値(p**)として出力される。
 一方、補償部(60)では、検出された位相角(θin1)に基づいて、第2インデックス生成部(65)がインデックス(idx)を算出する。ここでは、算出された値は、idx=j2とする。補償量演算部(66)は、算出されたインデックス(idx)=j2に対応した偏差(Iin_err(j2)とする)を偏差記憶部(62)から読み出す。補償量演算部(66)では、読み出された偏差Iin_err(j2)を用いて補償電力指令値(pcomp*)を算出する。
 この補償電力指令値(pcomp*)は、加算器(53)において、第2の電力指令値(p**)と加算(補償)される。これにより、電流指令(|Iin*|)と出力電流値(|Iin|)との偏差(外乱に相関する値)による出力電流(Iin)の歪みが低減するように、第2の電力指令値(p**)が補償される。補正された第2の電力指令値(p**)は、駆動電力指令値(p***)として電力制御部(58)に出力される。
 ここで、補償電力指令値(pcomp*)の算出に使用された偏差(Iin_err)は、現在の電源半周期(n)よりも、前の電源半周期(n-1)のものである。つまり、第n-1番目の電源半周期のインデックス(idx)=j2に相当する位相において記憶された偏差Iin_err(j2)を用いて、第n番目の電源半周期のインデックス(idx)=j2に相当する位相における、第2の電力指令値(p**)を補償することになる。
 このように、制御部(50)では、補償された第2の電力指令値(p**)である駆動電力指令値(p***)を用いて、d軸電流指令値(id*)とq軸電流指令値(iq*)を生成する。そして、dq軸電流制御部(56)は、d軸の電圧指令値(Vd*)とq軸の電圧指令値(Vq*)を生成する。d軸の電圧指令値(Vd*)とq軸の電圧指令値(Vq*)が生成されると、PWM演算部(57)によって制御信号(G)がインバータ回路(13)に出力される。これにより、インバータ回路(13)は、コンバータ回路(11)の出力電流波形の歪みが低減するように動作する。このように記憶した偏差(外乱に相関する値)によってコンデンサ(12a)とリアクトル(L1,L2)とによるLC共振を低減できるのは、該LC共振が定常的な繰り返しの波形だからである。
 一方、補償部(60)では、偏差記憶部(62)において、キャリア周期(Tc)毎に検出された外乱に基づいて、当該外乱を記憶すべき記憶領域が更新される。例えば第m番目のキャリア周期(Tc)では、補償部(60)は、補償電力指令値(pcomp*)の出力を終えると、第m番目のキャリア周期(Tc)の開始時に検出された出力電流値(|Iin|)、及び位相角(θin1)に基づいて偏差記憶部(62)の内容を更新する。具体的には、第1インデックス生成部(63)が、当該位相角(θin1)からインデックスを計算する。この例では、idx=j1となる。これにより、補償部(60)では、j1番目の偏差Iin_err(j1)が更新される。
 第m+1番目のキャリア周期(Tc)でも同様の動作が行われる。第m+1番目のキャリア周期(Tc)では、idx=j1+1となる。これは、記憶周期(Tm)とキャリア周期(Tc)は一致しているからである。第m+1番目のキャリア周期(Tc)では、現在が第n番目の電源半周期であるとすれば、第n-1番目の電源半周期のインデックス(idx)=j2+1に相当する位相において記憶された偏差Iin_err(j2+1)を用いて、第n番目の電源半周期のインデックス(idx)=j2+1に相当する位相における、第2の電流指令値(iT*)を補償する。また、第m+1番目のキャリア周期(Tc)では、j2+1番目の偏差Iin_err(j2+1)が更新される。
 なお、本実施形態では、インデックス(idx)を各キャリア周期(Tc)における制御処理開始時点の位相角(θin)から求めている。また、出力電流値(|Iin|)も制御処理開始時点のタイミングで検出している。本実施形態のように、キャリア周期(Tc)が記憶周期(Tm)と等しい場合は、インデックス(idx)が更新されるタイミングと制御処理開始のタイミングは同期し、インデックスは制御周期毎に1ずつ増加する。そのため、電源半周期毎に偏差記憶部(62)のデータは全て漏れなく更新される。
 〈本実施形態における効果〉
 本実施形態では、インバータ回路(13)の電力制御の操作量を補償するようにした。この場合でも、実施形態1と同等の効果を得ることができる。
 《発明の実施形態5》
 図13は、実施形態5に係るインバータ回路(13)の制御系を示す。本実施形態では、実施形態1の制御系に更に別の補償部(60)、及び減算器(67)が追加されている。追加された補償部(60)も実施形態1の補償部(60)と同様の構成であるが、入力される信号が実施形態1の補償部(60)とは異なる。なお、図13では、2つの補償部(60)を識別するため、参照符号に枝番(-1,-2)を付した。この例では、補償部(60-1)が元々からあるものであり、補償部(60-2)が追加されたものである。
 追加された補償部(60-2)では、減算器(61)によって、直流リンク電圧(vdc)と、該直流リンク電圧(vdc)の指令値(vdc*)の偏差を求めている。詳しくは、減算器(61)は、指令値(vdc*)から直流リンク電圧を減じたものを偏差として出力する。
 追加された補償部(60-2)の偏差記憶部(62)には、直流リンク電圧(vdc)と指令値(vdc*)の偏差が、交流電源(30)の電圧(Vin)の位相角(θin)に関連づけて記憶されることになる。この偏差も、本発明における、電力変換部への電流(Iin)を歪ませる外乱に相関する値の一例である。
 そして、元々ある補償部(60-1)の出力からは、追加された補償部(60-2)によって求められた補償電流指令値(icomp**)が、減算器(67)によって減ぜられる。減算器(67)の出力は、第2の電流指令値(iT*)の補償値として加算器(53)に出力される。
 上記構成により、本実施形態では、コンバータ回路(11)の出力電流値(|Iin|)に基づく補償に加えて、直流リンク電圧(vdc)に基づく補償を行う。直流リンク電圧(vdc)による補償を加えることで、電源電圧(Vin)と直流リンク電圧(vdc)との間に発生する外乱を低減し、コンバータ回路(11)の出力電流値(|Iin|)を電流指令(|Iin*|)により近づけることができる。
 具体的には、本実施形態では、直流部(12)の電圧(すなわちインバータ回路(13)の入力側電圧)が、直流リンク電圧(vdc)の指令値(vdc*)よりも大きい場合は、インバータ回路(13)の出力電力をより増加させるように、第2の電流指令値(iT*)を補償する。また、直流リンク電圧(vdc)が指令値(vdc*)より小さい場合は、インバータ回路(13)の出力電力がより減少するように第2の電流指令値(iT*)を補償する。
 このように、本実施形態でも、記憶した偏差(外乱に相関する値)を用いて補償値を求めるので、高速な補償が可能になる。
 《発明の実施形態6》
 本発明の実施形態6では、偏差記憶部(62)の更新方法について、上記実施形態とは別の例を説明する。図14は、本発明の実施形態6に係る偏差記憶部(62)の更新を説明するフローチャートである。本実施形態では、実施形態1の補償部(60)に変更を加えることによって図14に示したフローを実現している。なお、図14に示した一連のフローは、キャリア周期(Tc)内において、電流指令(|Iin*|)と出力電流値(|Iin|)が求まった後に実行され、キャリア周期(Tc)毎に繰り返される。
 まず、補償部(60)では、第1インデックス生成部(63)が、今回の偏差を記憶する偏差記憶部(62)の格納場所を示すインデックス(idx)を生成する(ステップS11)。第1インデックス生成部(63)は、このインデックス(idx)を位相角(θin1)に基づいて算出する。この例では、idx=θin1/(π/K)としており、位相角(θin1)は、π毎(すなわち、電源半周期毎)にクリアしている。よって、第1インデックス生成部(63)が生成するインデックス(idx)は、位相角(θin1)の単調増加に応じて1つずつ増加し、0~K-1の範囲で循環することになる。
 次に、補償部(60)は、減算器(61)によって、電流指令(|Iin*|)と出力電流値(|Iin|)との偏差を求める(ステップS12)。
 そして、補償部(60)は、今回の偏差(ステップS12で求めた偏差)を、インデックス(idx)に応じた偏差記憶部(62)の領域に格納する(ステップS13)。なお、偏差を格納する際には、今回の偏差を格納する代わりに、偏差記憶部(62)に格納されている過去の値を用いて今回の偏差との移動平均を求め、その結果を格納するようにしてもよい。
 ステップS11~ステップS13のフローは、偏差記憶部(62)が記憶すべき数(この例ではK個)の値を取得するまで、キャリア周期(Tc)毎に繰り返される。すなわち本実施形態では、交流電源(30)の電圧(Vin)の複数周期に亘って、外乱に相関する値を求めるための値(ここでは、電流指令(|Iin*|)と出力電流値(|Iin|))をサンプリングすることによって、偏差記憶部(62)が記憶すべき数(K個)の値を取得するのである。
 以上のようにして、本実施形態においても、外乱に相関する値が偏差記憶部(62)に格納され、それらを用いて第2の電流指令値(iT*)を補償するための補償電流指令値(icomp*)を生成することができる。したがって、本実施形態でも、LC共振のような繰り返し波形の外乱によって生じた、コンバータ回路(11)の出力電流の歪み(すなわち、インバータ回路(13)への入力電流の歪み)を容易且つ高速に低減できる。すなわち、本実施形態でも電流とその指令値との偏差を低減できるのである。
 とりわけ、外乱の変動周期が小さい場合(キャリア周期(Tc)毎のサンプリングでは外乱の変動を正しく表せない程度に小さい場合)は、記憶周期(Tm)を外乱の変動周期よりも小さくし、あえて補間を行わない実施形態6の偏差取得方法(図14参照)が好ましいと考えられる。この場合は、電源半周期では全ての偏差記憶部(62)のデータ更新は行われないが、複数の電源半周期に亘るサンプリングによって偏差記憶部(62)のデータは更新される。そのため、外乱が電源半周期に同期して繰り返すものであれば、実施形態6の構成によって、外乱に相関する値の正確な記憶が可能となる。
 《その他の実施形態》
 なお、一般的に、電力変換装置の制御系には速度制御系が存在するので、その場合には補償部(60)による補償量は、運転開始時にはゼロとしておけばよい。
 また、モータ(20)の加減速、モータ回転周期に同期したトルク制御等といった、電源周期とは非同期である大きな負荷変動の発生が予め分かっている場合には、補償部(60)による補償量をゼロとしておくとよい。
 また、出力電流値(|Iin|)と電流指令(|Iin*|)との偏差を求める場合には、インデックス(idx)毎に複数の電源半周期にわたって出力電流値(|Iin|)を平均化し、平均化した値と電流指令(|Iin*|)との偏差を求めるようにしてもよい。出力電流値(|Iin|)の平均化の方法としては、例えば、インデックス(idx)毎に出力電流値(|Iin|)の移動平均を求めることが考えられる。なお、実施形態1の変形例のように偏差記憶部(62)の補間を行う場合は、補間用のデータには、平均化されていないデータを用いるのがよい。
 また、コンデンサエネルギー(Ce)に基づく補償(実施形態2参照)は、必ずしも、出力電流値(|Iin|)に基づく補償(実施形態1,2参照)と併用する必要はない。すなわち、実施形態2において、出力電流値(|Iin|)に基づく補償を省略してもよい。
 また、電力変換装置(10)は、コンバータ回路(11)とインバータ回路(13)とを有したものには限定されない。電力変換装置(10)は、交流を直接的に所定の周波数及び電圧を有した交流に変換する、いわゆるマトリックスコンバータとして構成してもよい。
 また、外乱に相関する値としては、上記実施形態や変形例で例示したものには限定されない。例えば、電力変換部(例えばインバータ回路(13)やマトリックスコンバータ)への電流と該電力変換部への電流の指令値との偏差が挙げられる。更には、偏差に限らず、電力変換部(例えばインバータ回路(13)やマトリックスコンバータ)への電流、コンバータ回路(11)の出力電流値(|Iin|)、コンデンサ(12a)の電圧(vdc)、コンデンサ(12a)のエネルギー(Ce)などでもよい。
 また、制御部(50)では、第2の電流指令値(iT*)を補償する代わりに、q軸電流指令値(iq*)を補償するようにしてもよい。
 本発明は、電力変換装置として有用である。
 10   電力変換装置
 12a  コンデンサ
 13   インバータ回路(電力変換部)
 30   交流電源
 50   制御部(電力変換制御部)
 60   補償部(電力変換制御部)
 62   偏差記憶部(記憶部)

Claims (6)

  1.  複数のスイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)のオンオフ動作によって、交流電源(30)が出力した交流又は該交流から変換された直流を、所定の周波数及び電圧を有した交流に変換する電力変換部(13)と、
     上記オンオフ動作にともなって発生したリプル電圧を平滑化するコンデンサ(12a)と、
     上記電力変換部(13)への電流(Iin)を歪ませる外乱に相関する値を、上記交流電源(30)の電圧(Vin)の位相角(θin)に関連づけて複数個記憶する記憶部(62)と、
     上記記憶部(62)に記憶された値を、上記交流電源(30)の電圧(Vin)の位相角(θin)に関連づけて、上記電力変換部(13)における制御の操作量(iT*)の補償に用いて上記オンオフ動作の制御を行う電力変換制御部(50,60)と、
     を備えたことを特徴とする電力変換装置。
  2.  請求項1において、
     上記外乱に相関する値は、
     上記電力変換部(13)への電流、
     上記交流電源(30)の出力を直流に変換するコンバータ回路(11)の出力電流値(|Iin|)、
     上記コンデンサ(12a)の電圧(vdc)、
     上記コンデンサ(12a)のエネルギー(Ce)、
     上記電力変換部(13)への電流と該電力変換部(13)への電流の指令値との偏差、
     上記交流電源(30)の出力を直流に変換するコンバータ回路(11)の出力電流値(|Iin|)と、該出力電流値(|Iin|)を指示する電流指令(|Iin*|)との偏差、
     上記コンデンサ(12a)の電圧(vdc)と、該コンデンサ(12a)の電圧(vdc)の指令値(vdc*)との偏差、
     及び上記コンデンサ(12a)のエネルギー(Ce)と、該エネルギー(Ce)の指令値(Ce*)との偏差
     の何れかであることを特徴とする電力変換装置。
  3.  請求項1又は請求項2において、
     上記電力変換制御部(50,60)は、上記記憶部(62)に記憶された値によって、上記電力変換部(13)の電力を制御することを特徴とする電力変換装置。
  4.  請求項1又は請求項2において、
     上記電力変換制御部(50,60)は、上記記憶部(62)に記憶された値によって上記電力変換部(13)における電流を制御することを特徴とする電力変換装置。
  5.  請求項1から請求項4の何れかにおいて、
     上記電力変換制御部(50,60)は、上記外乱に相関する値を複数種類用いて、上記操作量(iT*)の補償を行うことを特徴とする電力変換装置。
  6.  請求項1から請求項5の何れかにおいて、
     上記電力変換制御部(50,60)は、上記記憶部(62)に記憶されている値が不連続の場合には、上記記憶部(62)内のデータを用いて不連続箇所を補間することを特徴とする電力変換装置。
PCT/JP2015/001800 2014-03-27 2015-03-27 電力変換装置 WO2015146197A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2015237427A AU2015237427B2 (en) 2014-03-27 2015-03-27 Power conversion device
BR112016021650-4A BR112016021650B1 (pt) 2014-03-27 2015-03-27 Dispositivo de conversão de energia
ES15767771T ES2946178T3 (es) 2014-03-27 2015-03-27 Dispositivo de conversión de potencia
EP15767771.7A EP3125420B1 (en) 2014-03-27 2015-03-27 Power conversion device
CN201580006787.5A CN105940600B (zh) 2014-03-27 2015-03-27 功率转换装置
US15/123,564 US9853559B2 (en) 2014-03-27 2015-03-27 Power conversion device with reduced current deviation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-065520 2014-03-27
JP2014065520 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146197A1 true WO2015146197A1 (ja) 2015-10-01

Family

ID=54194741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001800 WO2015146197A1 (ja) 2014-03-27 2015-03-27 電力変換装置

Country Status (8)

Country Link
US (1) US9853559B2 (ja)
EP (1) EP3125420B1 (ja)
JP (1) JP5907294B2 (ja)
CN (1) CN105940600B (ja)
AU (1) AU2015237427B2 (ja)
BR (1) BR112016021650B1 (ja)
ES (1) ES2946178T3 (ja)
WO (1) WO2015146197A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5817947B1 (ja) * 2014-06-19 2015-11-18 ダイキン工業株式会社 電力変換制御装置
EP3358732B1 (en) * 2015-10-01 2020-02-12 Mitsubishi Electric Corporation Power conversion device and air-conditioning device using same
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US10770966B2 (en) 2016-04-15 2020-09-08 Emerson Climate Technologies, Inc. Power factor correction circuit and method including dual bridge rectifiers
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
US10284132B2 (en) 2016-04-15 2019-05-07 Emerson Climate Technologies, Inc. Driver for high-frequency switching voltage converters
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
WO2019065859A1 (ja) * 2017-09-29 2019-04-04 ダイキン工業株式会社 電力変換装置
WO2019088131A1 (ja) * 2017-10-30 2019-05-09 ダイキン工業株式会社 電力変換装置
WO2020196472A1 (ja) * 2019-03-27 2020-10-01 ダイキン工業株式会社 モータ駆動装置および冷却装置
CN109995305B (zh) * 2019-04-26 2020-11-10 深圳和而泰智能控制股份有限公司 压缩机的力矩输入控制方法、装置、设备和冰箱
KR102597788B1 (ko) 2019-09-05 2023-11-02 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전력 변환 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223599A (ja) * 2000-11-22 2002-08-09 Isao Takahashi インバータ制御方法およびその装置
JP2005124298A (ja) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd インダクションモータ駆動用インバータ制御装置および空気調和機
JP2005130675A (ja) * 2003-10-27 2005-05-19 Daikin Ind Ltd インバータ制御方法及び多相電流供給回路
WO2008026270A1 (fr) * 2006-08-31 2008-03-06 Mitsubishi Electric Corporation Dispositif de commande de moteur électrique, et dispositif de commande de compresseur
JP2009225631A (ja) * 2008-03-18 2009-10-01 Toyota Motor Corp インバータの駆動装置
JP2011217512A (ja) * 2010-03-31 2011-10-27 Fujitsu General Ltd Dcブラシレスモータ制御装置
WO2012098873A1 (ja) * 2011-01-18 2012-07-26 ダイキン工業株式会社 電力変換装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245979A (ja) * 1994-03-08 1995-09-19 Toshiba Corp 交流電動機の速度制御装置
US6091205A (en) * 1997-10-02 2000-07-18 Lutron Electronics Co., Inc. Phase controlled dimming system with active filter for preventing flickering and undesired intensity changes
US6629064B1 (en) 1999-03-09 2003-09-30 Capstone Turbine Corporation Apparatus and method for distortion compensation
JP3681941B2 (ja) * 1999-12-27 2005-08-10 三菱電機株式会社 電源高調波抑制装置
JP2002051589A (ja) 2000-07-31 2002-02-15 Isao Takahashi モータ駆動用インバータの制御装置
JP2003339169A (ja) * 2002-05-21 2003-11-28 Sanken Electric Co Ltd 電源装置
JP5002343B2 (ja) * 2007-06-18 2012-08-15 株式会社豊田中央研究所 交流電動機の駆動制御装置
JP5409034B2 (ja) * 2009-02-13 2014-02-05 トヨタ自動車株式会社 回転電機制御装置
JP5692569B2 (ja) * 2010-08-23 2015-04-01 株式会社ジェイテクト 車両用操舵装置
WO2013125034A1 (ja) * 2012-02-24 2013-08-29 株式会社安川電機 モータ制御装置
US8981686B2 (en) * 2013-01-24 2015-03-17 Regal Beloit America, Inc. Methods and systems for controlling an electric motor
JP5772843B2 (ja) * 2013-02-08 2015-09-02 株式会社デンソー 交流電動機の制御装置
US9331614B2 (en) * 2013-02-08 2016-05-03 Regal Beloit America, Inc. Systems and methods for controlling electric machines
JP5682644B2 (ja) * 2013-03-11 2015-03-11 株式会社安川電機 マトリクスコンバータ
US9641115B2 (en) * 2013-12-23 2017-05-02 Regal Beloit America, Inc. Methods and systems for envelope and efficiency control in an electric motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223599A (ja) * 2000-11-22 2002-08-09 Isao Takahashi インバータ制御方法およびその装置
JP2005124298A (ja) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd インダクションモータ駆動用インバータ制御装置および空気調和機
JP2005130675A (ja) * 2003-10-27 2005-05-19 Daikin Ind Ltd インバータ制御方法及び多相電流供給回路
WO2008026270A1 (fr) * 2006-08-31 2008-03-06 Mitsubishi Electric Corporation Dispositif de commande de moteur électrique, et dispositif de commande de compresseur
JP2009225631A (ja) * 2008-03-18 2009-10-01 Toyota Motor Corp インバータの駆動装置
JP2011217512A (ja) * 2010-03-31 2011-10-27 Fujitsu General Ltd Dcブラシレスモータ制御装置
WO2012098873A1 (ja) * 2011-01-18 2012-07-26 ダイキン工業株式会社 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3125420A4 *

Also Published As

Publication number Publication date
AU2015237427B2 (en) 2017-09-07
EP3125420A4 (en) 2017-11-15
AU2015237427A1 (en) 2016-09-15
CN105940600A (zh) 2016-09-14
EP3125420B1 (en) 2023-04-19
CN105940600B (zh) 2019-08-16
US9853559B2 (en) 2017-12-26
JP2015195714A (ja) 2015-11-05
BR112016021650B1 (pt) 2022-07-05
BR112016021650A2 (pt) 2021-08-17
EP3125420A1 (en) 2017-02-01
ES2946178T3 (es) 2023-07-13
US20170077829A1 (en) 2017-03-16
JP5907294B2 (ja) 2016-04-26

Similar Documents

Publication Publication Date Title
JP5907294B2 (ja) 電力変換装置
US9401656B2 (en) Method of controlling power conversion apparatus
US9257931B2 (en) Power conversion apparatus
JP5212491B2 (ja) 電力変換装置
CN111149287B (zh) 功率转换装置
JP5658224B2 (ja) 回生型高圧インバータの制御装置
JP2012085500A (ja) 無効電力補償装置
EP2763301B1 (en) Power converter control method
WO2019039168A1 (ja) 電力変換装置
JP2012044830A (ja) 電力変換装置
JP5888074B2 (ja) 電力変換装置
JP6982448B2 (ja) 電力変換装置
CN109196773B (zh) 电机的控制装置以及控制方法
JP6515532B2 (ja) 電力変換装置
JP6578657B2 (ja) 電力変換装置
JP5838554B2 (ja) 電力変換装置
JP2021069187A (ja) 電力変換装置
JP6471827B1 (ja) 電力変換装置
JP2012085405A (ja) 電力変換装置,電力変換方法及び電動機駆動システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767771

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015767771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015767771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15123564

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015237427

Country of ref document: AU

Date of ref document: 20150327

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016021650

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016021650

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160921

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112016021650

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2432 DE 15/08/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112016021650

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2014-065520 DE 27/03/2014 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DA CITADA PRIORIDADE, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME.

ENP Entry into the national phase

Ref document number: 112016021650

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160921