WO2015141064A1 - 窒化ガリウム結晶の製造方法 - Google Patents
窒化ガリウム結晶の製造方法 Download PDFInfo
- Publication number
- WO2015141064A1 WO2015141064A1 PCT/JP2014/081363 JP2014081363W WO2015141064A1 WO 2015141064 A1 WO2015141064 A1 WO 2015141064A1 JP 2014081363 W JP2014081363 W JP 2014081363W WO 2015141064 A1 WO2015141064 A1 WO 2015141064A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gallium
- sodium
- alloy
- nitride crystal
- gallium nitride
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
- C30B9/04—Single-crystal growth from melt solutions using molten solvents by cooling of the solution
- C30B9/08—Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
- C30B9/10—Metal solvents
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B35/00—Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
- C30B35/007—Apparatus for preparing, pre-treating the source material to be used for crystal growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
- C30B9/04—Single-crystal growth from melt solutions using molten solvents by cooling of the solution
- C30B9/08—Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
- C30B9/12—Salt solvents, e.g. flux growth
Definitions
- the present invention relates to a method for producing a gallium nitride crystal, and more particularly to a technique for recovering gallium remaining in a production method using a flux method.
- a flux method is known as a method for producing a group 13 nitride crystal such as a gallium nitride crystal.
- a mixed melt (flux) containing an alkali metal or alkaline earth metal and a group 13 element is formed in a reaction vessel, and a raw material gas such as nitrogen gas is dissolved in the mixed melt to be in a supersaturated state.
- a raw material gas such as nitrogen gas is dissolved in the mixed melt to be in a supersaturated state.
- the group 13 nitride crystal grows spontaneously in the mixed melt, or the group 13 nitride crystal grows using the seed crystal as a nucleus.
- a gallium nitride crystal, an alkali metal or alkaline earth metal, a group 13 element, and an alkali metal or alkaline earth metal and a group 13 element are included in the reaction vessel after the growth process is completed.
- An alloy consisting of remains. Therefore, in order to take out the group 13 nitride crystal from the reaction vessel, it is necessary to remove the alkali metal or alkaline earth metal, the group 13 element, and the alloy composed of the alkali metal or alkaline earth metal and the group 13 element. .
- productivity during mass production can be improved by recovering and reusing the alkali metal or alkaline earth metal and Group 13 element used as the mixed melt. Therefore, it is desired to recover the mixed melt in a reusable state.
- gallium nitride (GaN) crystal using sodium (Na) as the alkali metal and gallium (Ga) as the group 13 element, sodium, gallium, and Ga—Na remaining in the reaction vessel after the crystal growth is completed.
- Patent document 1 is disclosing the method of ensuring safety
- Patent Document 2 discloses a method in which sodium is heated to a melting point or higher in a medium that is non-reactive with sodium such as kerosene and separated and recovered in a liquid state.
- Patent Documents 3 and 4 disclose a method for removing gallium from a crystal by removing sodium from the reaction vessel and then heating gallium remaining in the reaction vessel to a melting point (29.8 ° C.) or higher. ing.
- a method for removing a Ga—Na alloy intermetallic compound
- a method of reacting the alloy with aqua regia and ionizing elements constituting the alloy is known as in Non-Patent Document 1.
- the raw material efficiency (consumption of group 13 element / amount of raw material of group 13 element ⁇ 100) is about 60 to 95%.
- the amount of gallium raw material is several g to several tens of g, the necessity for recovering unreacted gallium is low.
- the amount of gallium raw material is several hundred g to several thousand g in order to produce a large gallium nitride crystal, the production cost can be reduced by collecting and reusing unreacted gallium.
- Patent Documents 1 to 4 and Non-Patent Document 1 do not disclose a method for separating and recovering gallium from the Ga—Na alloy remaining in the reaction vessel after completion of crystal growth.
- Patent Document 5 discloses a method for extracting a group 13 nitride crystal by sucking and removing an alloy composed of an alkali metal or an alkaline earth metal and a group 13 element before the mixed melt is solidified after crystal growth. ing.
- this method cannot separate gallium and sodium from the alloy, there is a problem that the composition ratio of gallium and sodium cannot be accurately grasped when the sucked and removed alloy is reused as a mixed melt.
- Patent Document 6 discloses a method of removing the mixed melt by heating the crucible after crystal growth to the melting point or higher of the mixed melt in an inert atmosphere.
- removing the mixed melt using the vapor pressure difference between gallium and sodium separation of gallium and sodium is possible.
- the mixed melt is heated at 600 ° C., which is higher than the melting point of the gallium-sodium alloy, sodium vapor may leak and ignite / explode, which is a safety problem.
- Patent Documents 5 and 6 require large-scale facilities, and it is difficult to separate and recover gallium and sodium from the reaction vessel at the end of crystal growth.
- Patent Documents 1 to 5 and Non-Patent Document 1 do not disclose recovery of simple gallium (metal gallium) from an alloy composed of gallium and sodium. Further, in the methods disclosed in Patent Documents 5 and 6, the work of separating and recovering metallic gallium from an alloy composed of gallium and sodium cannot be performed safely with simple equipment.
- the amount of unreacted gallium remaining in the reaction vessel at the end of crystal growth is gallium. 5-40% of the amount of raw material. Therefore, productivity can be improved if single gallium can be separated and recovered from the Ga—Na alloy remaining in the reaction vessel after crystal growth is completed.
- the present invention has been made in view of the above, and enables gallium to be easily and safely recovered from an alloy composed of gallium and sodium produced when a gallium nitride crystal is produced using a flux method. For the purpose.
- the present invention provides a growth process for growing a gallium nitride crystal by dissolving nitrogen in a mixed melt containing gallium and sodium, and an alloy comprising the gallium and the sodium. And a recovery step of recovering the separated gallium by separating sodium ions and gallium from the alloy by reacting with a liquid that ionizes sodium. It is.
- gallium can be easily and safely recovered from an alloy composed of gallium and sodium produced when a gallium nitride crystal is produced using a flux method.
- FIG. 1 is a diagram illustrating a configuration of a manufacturing apparatus used in the method for manufacturing a gallium nitride crystal according to the first embodiment.
- FIG. 2 is a view showing a state in the reaction vessel at the end of crystal growth of the gallium nitride crystal.
- FIG. 3 is a Ga—Na phase diagram.
- FIG. 4 is a flowchart showing a flow from the growth of the gallium nitride crystal to the recovery of gallium in the first embodiment.
- FIG. 5 is a diagram showing a state in which residual sodium is removed from the reaction vessel.
- FIG. 6 is a diagram showing a state where sodium ions and gallium are separated from the alloy.
- FIG. 7 is a diagram showing a state where the separated gallium is recovered.
- FIG. 1 is a diagram illustrating the configuration of a manufacturing apparatus 1 used in the method for manufacturing a gallium nitride crystal according to the first embodiment.
- the manufacturing apparatus 1 is an apparatus for manufacturing a gallium nitride crystal 5 by a flux method.
- the pressure vessel 11 is made of stainless steel, for example.
- An internal container 12 is installed inside the pressure vessel 11.
- a reaction vessel 13 is further accommodated inside the internal vessel 12.
- the reaction vessel 13 is a vessel for holding the Ga—Na mixed melt (flux) 6 and the seed crystal 7 and growing the gallium nitride crystal 5.
- the material of the reaction vessel 13 is not particularly limited, and BN sintered bodies, nitrides such as P-BN, oxides such as alumina, YAG, and yttria, carbides such as SiC, and the like can be used.
- the inner wall surface of the reaction vessel 13, that is, the site where the reaction vessel 13 is in contact with the mixed melt 6 is preferably made of a material that does not easily react with the mixed melt 6.
- boron nitride BN
- P-BN pyrolytic BN
- nitrides such as aluminum nitride, alumina, yttrium aluminum garnet (YAG), oxides such as yttria, stainless steel (SUS) ) And the like.
- the mixed melt 6 is a melt containing at least gallium and sodium.
- gallium boron (B), aluminum (Al), indium (In), or thallium (Tl), which are group 13 elements, may be included.
- lithium (Li) or potassium (K) which is an alkali metal may be contained, and calcium (Ca), magnesium (Mg), strontium (Sr) or barium (alkaline earth metal) Ba) may be included.
- the mixed melt 6 may contain carbon (C) as an additive having an effect of suppressing generation of miscellaneous crystals or increasing the crystal growth rate, and germanium (Ge) as an n-type dopant. You may go out.
- the seed crystal 7 is disposed so as to be immersed in the mixed melt 6.
- the seed crystal 7 is fixed to the bottom of the reaction vessel 13.
- the seed crystal 7 is a gallium nitride crystal that becomes the nucleus of crystal growth of the gallium nitride crystal 5.
- a columnar crystal is used as the shape of the seed crystal 7, but other shapes of the seed crystal 7 include a needle shape, a pyramid shape, a plate shape, a wafer shape, and the like.
- 1 shows a state in which one seed crystal 7 (gallium nitride crystal 5) is installed in the reaction vessel 13, a plurality of seed crystals 7 are installed, and a plurality of gallium nitride crystals 5 are provided. May be manufactured at the same time.
- the stirring of the mixed melt 6 in the reaction vessel 13 can reduce the nitrogen concentration distribution in the mixed melt 6 and improve the crystal quality.
- a method of stirring the mixed melt 6 a method of stirring the pressure vessel 11 mechanically, a method of rotating and stirring the inner vessel 12, a stirring operation with a propeller or the like inside the mixed melt 6. The method of doing is mentioned.
- FIG. 1 shows a method of rotating and stirring the inner container 12 as an example. When the inner container 12 is rotated and stirred, the stirring performance can be further improved by putting the structure 14 inside the reaction container 13.
- the inner container 12 is detachably installed on the turntable 21 in the pressure resistant container 11.
- the turntable 21 is fixed to the rotating shaft 22 and can be rotated by a rotating mechanism 16 outside the pressure vessel 11.
- the rotating mechanism 16 rotates the rotating shaft 22 with a motor or the like.
- the rotation speed, rotation direction, and the like of the rotation shaft 22 are controlled by a control unit configured by a computer that operates according to a program, various logic circuits, and the like.
- the member rotated with rotation of the rotating shaft 22 is not restricted to these, For example, the heater 15 may rotate further and only the reaction container 13 may rotate.
- the seed crystal 7 and the structure 14 rotate, whereby the mixed melt 6 is stirred.
- a source gas containing nitrogen is supplied into the pressure vessel 11.
- piping for supplying nitrogen (N 2 ) gas which is a raw material of the gallium nitride crystal 5, and dilution gas for adjusting total pressure, to the internal space of the pressure vessel 11 and the internal space of the internal vessel 12, respectively.
- 31 and 32 are connected.
- a pipe 33 connected to the pipes 31 and 32 is branched into a nitrogen supply pipe 34 and a dilution gas supply pipe 35 in the upstream portion.
- the nitrogen supply pipe 34 and the dilution gas supply pipe 35 are provided with valves 36 and 37, respectively.
- As the dilution gas it is desirable to use an argon (Ar) gas that is an inert gas, but the present invention is not limited to this, and helium (He), neon (Ne), or the like may be used.
- the dilution gas flows into the dilution gas supply pipe 35 from a gas cylinder or the like. After the pressure is adjusted by the pressure control device 42, the dilution gas flows into the pipe 33 through the valve 37.
- the nitrogen gas and the dilution gas whose pressures are adjusted in this way become a mixed gas in the pipe 33.
- the mixed gas is supplied from the pipe 33 through the valve 38 and the pipe 31 to the internal space of the pressure resistant container 11, and is supplied through the valve 39 and the pipe 32 to the internal space of the internal container 12.
- the internal space of the internal vessel 12 and the internal space of the reaction vessel 13 communicate with each other in the pressure vessel 11 and have substantially the same atmosphere and substantially the same pressure.
- the inner container 12 can be removed from the manufacturing apparatus 1.
- the pipe 33 is connected to the outside through the valve 40.
- the pressure gauge 45 is provided in the pipe 33. By monitoring the pressure gauge 45, the pressures in the internal spaces of the pressure vessel 11 and the internal vessel 12 (reaction vessel 13) can be adjusted. Thus, the nitrogen partial pressure in the reaction vessel 13 can be adjusted by adjusting the pressures of the nitrogen gas and the dilution gas using the valves 36 and 37 and the pressure control devices 41 and 42. Moreover, since the total pressure of the pressure vessel 11 and the inner vessel 12 can be adjusted, the total pressure in the inner vessel 12 can be increased to suppress the evaporation of the mixed melt 6 (for example, sodium) in the reaction vessel 13. In other words, the nitrogen partial pressure that affects the crystal growth conditions of gallium nitride and the total pressure that affects the evaporation of the mixed melt 6 can be controlled separately.
- the nitrogen partial pressure that affects the crystal growth conditions of gallium nitride and the total pressure that affects the evaporation of the mixed melt 6 can be controlled separately.
- heaters 15 are installed on the outer periphery and bottom of the inner container 12 in the pressure resistant container 11.
- the heater 15 heats the inner container 12 and the reaction container 13 to adjust the temperature of the mixed melt 6.
- the operation of putting seed crystal 7, raw materials (gallium and sodium), additives such as carbon (C), dopants such as germanium (Ge), etc. into the reaction vessel 13 is performed by, for example, a glove in an inert gas atmosphere such as argon gas. It is good to carry out with the inner container 12 put in the box. Further, this operation may be performed with the reaction vessel 13 placed in the inner vessel 12.
- the molar ratio of gallium to sodium contained in the mixed melt 6 is not particularly limited, but the number of moles of gallium with respect to the total number of moles of gallium [Ga] and the number of moles of sodium [Na] [
- the heater 15 is energized and the inner vessel 12 and the reaction vessel 13 are heated to the crystal growth temperature, the raw materials gallium, sodium, other additives, etc. are melted in the reaction vessel 12.
- the mixed melt 6 is generated. Nitrogen is dissolved in the mixed melt 6 by bringing the raw material gas having a predetermined nitrogen partial pressure into contact with the mixed melt 6. The raw material dissolved in the mixed melt 6 is supplied to the surface of the seed crystal 7, and the gallium nitride crystal 5 grows.
- the reaction vessel 13 is rotated by the rotation mechanism 16 and the seed crystal 7 and the structure 14 are rotated, whereby the mixed melt 6 is stirred and the nitrogen concentration distribution in the mixed melt 6 is changed. It is kept uniform.
- the reaction vessel 13 is rotated by the rotation mechanism 16 and the seed crystal 7 and the structure 14 are rotated, whereby the mixed melt 6 is stirred and the nitrogen concentration distribution in the mixed melt 6 is changed. It is kept uniform.
- FIG. 2 is a view showing a state in the reaction vessel 13 at the end of the crystal growth of the gallium nitride crystal 5.
- a case where two gallium nitride crystals 5 are simultaneously grown in the reaction vessel 13 is shown.
- the gallium nitride crystal 5 grown from the seed crystal 7 the remaining sodium 50 (mixed melt 6), and the alloy 51 made of gallium and sodium remain.
- FIG. 3 is a Ga—Na phase diagram (Source: Bulletin Alloy Phase Diagrams Vol. 11 No. 4 1990, FIG. 1 Assessed Ga-Na Phase Diagram).
- rGa ⁇ 0.64 Ga 39 Na 22 which is sodium and an alloy (intermetallic compound) 51 composed of gallium and sodium remains in the reaction vessel 13.
- 0.64 ⁇ r Ga ⁇ 0.80 Ga 39 Na 22 and Ga 4 Na, which are alloys 51 of gallium and sodium, coexist in the reaction vessel 13 and remain.
- r Ga ⁇ 0.80, Ga 4 Na which is an alloy 51 made of gallium and gallium and sodium remains in the reaction vessel 13.
- the composition ratio (values of x and y) of the alloy 51 indicated by Ga x Na y may slightly vary, and the Ga—Na phase diagram shows the state change of the Ga—Na alloy. It's just an example.
- the composition ratio of the alloy 51 in the present embodiment is not denied due to differences from other Ga—Na phase diagrams.
- the composition ratio r Ga gallium and sodium suitable for growing gallium nitride crystal 5 is found to be in the range of 0.05 ⁇ r Ga ⁇ 0.6 Yes. Further, it is more preferable that the range is 0.1 ⁇ r Ga ⁇ 0.4. Start the crystal growth in this composition range, when finishing the crystal growth in a state evaporation less sodium, r Ga during crystal growth end becomes r Ga ⁇ 0.4. Therefore, in the reaction vessel 13, a gallium nitride crystal 5, a mixed melt 6 made of sodium 51, an additive such as carbon (C), a dopant such as germanium (Ge), an alloy 51 made of gallium and sodium, Ga. 39 Na 22 will remain.
- FIG. 4 is a flowchart showing a flow from the growth of the gallium nitride crystal 5 to the recovery of gallium in the present embodiment.
- the step (S4) of removing sodium 50 from the reaction vessel 13 after the completion of crystal growth will be described.
- the removal of the sodium 50 remaining in the reaction vessel 13 may be performed using a known method as appropriate.
- the reaction vessel 13 may be immersed in ethanol to remove the sodium 50 as sodium ethoxide.
- this method is not suitable for a mass production process because it takes several hours to several hundred hours to remove all the sodium 50 when the remaining amount of sodium 50 reaches several hundred g to several thousand g. Therefore, as in Patent Document 6, a method in which sodium 50 is heated to a melting point or higher in an inert atmosphere to melt and liquid sodium 50 is poured out is preferable.
- the reaction vessel 13 is placed on a hot plate in a glove box in an argon gas atmosphere and heated to 200 ° C. to 300 ° C. Thereby, the sodium 50 can be melted and poured out into another container. Most sodium 50 can be removed by this method. In this case, the reaction vessel 13 is heated to a temperature equal to or higher than the melting point of sodium 50, but does not exceed the melting point of the alloy 51 made of gallium and aluminum, so that the gallium nitride crystal 5 and the alloy 51 remain in the reaction vessel 13. To do.
- FIG. 5 is a view showing a state in which the sodium 50 remaining from the reaction vessel 13 is removed.
- the alloy 51 is fixed to the inner wall surface of the reaction vessel 13 or the surface of the gallium nitride crystal 5.
- the location where the alloy 51 is generated depends on the temperature distribution in the vicinity of 556 ° C. which is the melting point of the alloy 51 in the cooling process of the crystal growth process.
- the alloy 51 is generated on the inner wall surface of the reaction vessel 13. Therefore, by installing the gallium nitride crystal 5 at a position away from the inner wall surface of the reaction vessel 13, the gallium nitride crystal 5 can be taken out only by removing the sodium 50 after the crystal growth is completed.
- the size of the alloy 51 can be changed by changing the cooling rate around 556 ° C., which is the melting point of the alloy 51.
- the cooling rate around 556 ° C., which is the melting point of the alloy 51.
- the alloy 51 is rapidly cooled at a rate of 85 ° C./h or higher, nucleation occurs at various locations on the inner wall surface of the reaction vessel 13, and the alloy 51 is generated in a state where the fine alloy 51 is involved. Therefore, even if the sodium 50 is removed in such a state, the sodium 50 remaining in the reaction vessel 13 increases.
- the nucleation density is smaller than that in the case of rapid cooling, so that the alloy 51 is not in an intricate state. The amount of sodium 50 remaining in is less.
- the reaction vessel 13 is heated to the melting point or higher of sodium 50 under an inert atmosphere, only the sodium 50 is melted, and the liquid sodium 50 is poured into another vessel. Thereafter, the reaction vessel 13 is sufficiently cooled, and the sodium 50 that cannot be removed by the above-mentioned flow-out is removed by alkoxideation with ethanol. Thereby, most of the sodium 50 remaining in the reaction vessel 13 can be removed.
- FIG. 6 is a diagram showing a state in which sodium ions and gallium 55 are separated from the alloy 51.
- the reaction vessel 13 is taken out of ethanol and immersed in water 52 stored in a stainless steel vessel 54. At this time, the sodium 50 and water 52 that have remained somewhat in the reaction vessel 13 react to generate hydrogen 53. Therefore, the process should be performed in a draft.
- the container 54 is placed on the hot plate 56 and heated. Thereby, the water 52 becomes high temperature, the water 52 reacts with sodium in the alloy 51, and the alloy 51 is separated into sodium ions and gallium 55. This process should also be performed in a fume hood in order for sodium in alloy 51 and water 52 to react and generate hydrogen 53.
- FIG. 6 shows a state where the alloy 51 is fixed to the inner wall of the reaction vessel 13, the alloy 51 may be taken out from the reaction vessel 13 and reacted with water 52 outside the reaction vessel 13.
- the temperature of the water 52 is set to 50 ° C. to 90 ° C. (50 ° C. to 90 ° C.). It is preferable to make it the range of below (degreeC). For example, when the temperature of the water 52 is kept at room temperature (25 ° C.), it takes one week or more to dissolve about 300 g of the alloy 51, which is completely out of the practical range. Further, when the temperature of the water 52 is kept at 50 ° C., it takes about 20 hours to dissolve about 300 g of the alloy 51.
- the generation of hydrogen 53 is not abrupt and is excellent in safety, but it is difficult to say that the reaction rate is practical.
- the temperature of the water 52 is maintained at 90 ° C.
- the dissolution of the alloy 51 of about 300 g is completed in about 2 hours.
- the generation of hydrogen 53 may be abrupt, there is a safety measure. It is necessary separately. According to the studies by the inventors, it can be said that the temperature of the water 52 is optimally around 70 ° C. in order to ensure a practical reaction rate and safety.
- the temperature of the water 52 is maintained at 70 ° C.
- about 300 g of the alloy 51 can be dissolved in about 3 hours, and the generation of hydrogen 53 does not become so rapid that it exceeds the explosion limit.
- FIG. 7 is a diagram showing a state in which the separated gallium 55 is being collected.
- the reaction between the alloy 51 and the water 52 occurs on the surface of the alloy 51, it is preferable that the surface area of the alloy 51 or the contact area between the alloy 51 and the water 52 is wide. Further, as the dissolution proceeds, the separated gallium 55 may cover the surface of the alloy 51. Therefore, it is preferable that the progress of the dissolution reaction of the alloy 51 is not hindered by sucking out the liquid gallium 55 with a suction device such as a dropper 57. If the temperature of the water 52 is higher than the melting point of gallium 55 (about 29.8 ° C.), the gallium 55 can be recovered in a liquid state. Since the water 52 does not react with the gallium 55, the entire amount of the gallium 52 contained in the alloy 51 can be recovered. Note that solid potassium 55 may be recovered after the gallium 55 is cooled.
- the separation of gallium 55 from the alloy 51 described above is realized by the action of water 52 that ionizes sodium contained in the alloy 51.
- any liquid other than water 52 can be used as long as the liquid has an action of ionizing sodium contained in the alloy 51.
- the liquid that can replace the water 52 include an acid.
- the acid include hydrochloric acid, nitric acid, aqua regia and the like.
- the temperature of the treatment liquid is preferably in the range of 30 to 120 ° C. In order to ensure a practical reaction rate, it is preferably carried out in the range of 50 ° C. to 100 ° C., and it can be said that it is optimal to set the temperature around 80 ° C.
- the surface area of the alloy 51 or the contact area between the alloy 51 and the acid is preferably wide. Further, as dissolution proceeds, gallium 55 may cover the surface of the alloy 51. Therefore, it is preferable that the progress of the dissolution reaction of the alloy 51 is not hindered by sucking out the liquid gallium 55 with a suction device such as a dropper 57. If the liquid temperature in the container 58 is higher than the melting point of the gallium 55, the gallium 55 can be recovered in a liquid state.
- the gallium 55 and the acid react with each other, so that a part of the gallium 55 is ionized, but most of the gallium 55 contained in the alloy 51 is recovered. be able to.
- the gallium 55 in the solid state may be recovered after the gallium 55 is cooled.
- germanium (Ge) is added as an n-type dopant in the mixed melt 6, and the reaction rate of the Ga—Na—Ge alloy formed in this case with the water 52 is slower than that of the Ga—Na alloy. Therefore, it is better to heat the water 52 to 80 ° C. or higher. In addition, it is difficult to separate a Ga—Na—Ge alloy into sodium ions and simple gallium 55 with only water 52. To separate sodium ions and simple gallium 55 at a practical reaction rate, an acid is used. Is better.
- gallium 55 could be separated from Ga 4 Na of the alloy 51.
- the composition ratio of gallium and sodium at the end of crystal growth is r Ga ⁇ 0.80
- Ga 4 Na which is an alloy 51 made of gallium and gallium and sodium remains in the reaction vessel 13.
- it was difficult to separate sodium as ions because the Ga 4 Na alloy has a large Ga composition ratio.
- sodium in the alloy 51 does not react preferentially, and both sodium and gallium react with aqua regia. It was difficult.
- Example 1 an example in which the gallium nitride crystal 5 is manufactured using the manufacturing apparatus 1 according to the present embodiment, and the gallium 55 is separated and recovered from the alloy 51 remaining in the reaction vessel 13 after the crystal growth is completed will be described. .
- ⁇ Crystal growth> Two seed crystals 7 made of columnar gallium nitride (GaN) crystals having a length in the c-axis direction of 50 mm and a length in the m-axis direction of 1 mm are placed in a reaction vessel 13 made of alumina in a glove box in a high purity Ar atmosphere. The book was installed. The seed crystal 7 was held by being inserted 4 mm into a hole formed in the bottom surface of the reaction vessel 13.
- GaN columnar gallium nitride
- gallium (Ga) and carbon were added.
- the molar ratio of gallium to sodium was 0.25: 0.75.
- the amount of carbon added was 0.5% with respect to the total number of moles of gallium, sodium, and carbon. Specifically, 1000 g of gallium, 989 g of sodium, and 3.5 g of carbon were used.
- the total pressure in the inner vessel 12 was 2.2 MPa, and the reaction vessel 13 was heated to the crystal growth temperature.
- the temperature condition in the crystal growth step was 870 ° C., and the nitrogen gas pressure was 3.0 MPa. In this state, crystal growth was performed for 1200 hours.
- the reaction vessel 13 was placed on a hot plate 56 in a glove box in an argon atmosphere, heated to 200 ° C. to melt the sodium 50, and poured out into another vessel. After the temperature of the reaction vessel 13 was sufficiently lowered, the reaction vessel 13 was taken out of the glove box and accommodated in a stainless steel vessel 54. Thereafter, ethanol was introduced into the container 54 to remove the sodium 50 that could not be removed in the draft chamber.
- gallium nitride crystal 5 and the liquid gallium 55 remained in the reaction vessel 13.
- Gallium 55 was all sucked with a dropper 57 and collected in a separate container.
- the recovered gallium 55 was 218 g.
- the recovered gallium 55 could be used again as a crystal growth raw material by performing a purification process. Impurities that cannot be purified are not mixed, and the gallium nitride crystal 5 is produced without causing any problems even when crystal growth is performed using the gallium 55 subjected to the highly purified treatment as a raw material. I was able to.
- Example 2 After performing the same treatment as in ⁇ Crystal growth> and ⁇ Removal of sodium> in Example 1 above, gallium 55 was recovered using an acid.
- Nitric acid and sodium in the alloy 51 reacted to generate hydrogen 53.
- the gallium 55 separated from the alloy 51 was sucked out several times with a dropper 57. Since the liquid temperature in the container 58 rose due to the reaction heat between the alloy 51 and the acid, water was added to keep the liquid temperature at about 80 ° C.
- nitric acid and hydrochloric acid were gradually added to increase the acid concentration to maintain the reaction rate. After adding the acid, it took about 1 hour to complete the reaction. Compared with the case where all the reactions were carried out with water, the treatment time could be shortened by about 1 hour.
- the gallium nitride crystal 5 and the liquid gallium 55 remained in the reaction vessel 13.
- Gallium 55 was all sucked with a dropper 57 and collected in a separate container.
- the recovered gallium 55 was 200 g. Note that, as in this embodiment, the water 52 may not be input first, but an acid such as nitric acid may be input from the beginning.
- the recovered gallium 55 could be used again as a crystal growth raw material by performing a purification process. Impurities that cannot be highly purified are not mixed, and a gallium nitride crystal is produced without causing any problems even when crystal growth is performed using gallium 55 that has been subjected to the highly purified treatment. I was able to.
- Example 3 ⁇ Crystal growth> Four ⁇ 2 ′′ wafer-shaped gallium nitride (GaN) seed crystals 7 were placed on the bottom surface of the reaction vessel 13 in a reaction vessel 13 made of alumina in a glove box in a high purity Ar atmosphere.
- GaN gallium nitride
- gallium (Ga), carbon (C), and germanium (Ge) were added.
- the molar ratio of gallium to sodium was 0.25: 0.75.
- the amount of carbon added was 0.5% with respect to the total number of moles of gallium, sodium, and carbon.
- the amount of germanium added was 2.0% with respect to the number of moles of gallium. Specifically, 400 g of gallium, 396 g of sodium, 1.4 g of carbon, and 8.5 g of germanium were used.
- the total pressure in the inner vessel 12 was 2.2 MPa, and the reaction vessel 13 was heated to the crystal growth temperature.
- the temperature condition in the crystal growth step was 870 ° C., and the nitrogen gas pressure was 3.0 MPa. In this state, crystal growth was performed for 500 hours.
- Nitric acid and sodium in the alloy 51 reacted to generate hydrogen 53.
- the gallium 55 separated from the alloy 51 was sucked out several times with a dropper 57. Since the liquid temperature in the container 58 rose due to the reaction heat between the alloy 51 and the acid, water was added to keep the liquid temperature at about 80 ° C.
- nitric acid and hydrochloric acid were gradually added to increase the acid concentration to maintain the reaction rate. After adding the acid, it took about 2 hours to complete the reaction.
- the gallium nitride crystal 5 and the liquid gallium 55 remained in the reaction vessel 13.
- Gallium 55 was all sucked with a dropper 57 and collected in a separate container.
- the recovered gallium 55 was 85 g. Note that, as in this embodiment, the water 52 may not be input first, but an acid such as nitric acid may be input from the beginning.
- the recovered gallium 55 could be used again as a crystal growth raw material by performing a purification process. Impurities that cannot be purified are not mixed, and the gallium nitride crystal 5 is manufactured without causing problems even when crystal growth is performed using the gallium 55 that has been subjected to the purification process as a raw material. We were able to.
- gallium can be safely recovered with simple equipment from the alloy 51 made of gallium and sodium formed in the process of manufacturing the gallium nitride crystal by the flux method. It becomes.
- JP 2009-215085 A International Publication No. 2007/094126 JP 2006-131454 A JP 2009-007207 A International Publication No. 2009/041053 JP 2010-269986 A
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
以下に添付図面を参照して、窒化ガリウム結晶の製造方法の実施の形態を詳細に説明する。図1は、第1の実施の形態における窒化ガリウム結晶の製造方法において用いられる製造装置1の構成を例示する図である。当該製造装置1はフラックス法により窒化ガリウム結晶5を製造するための装置である。
以下に、本実施の形態に係る製造装置1を用いて、窒化ガリウム結晶5を製造し、結晶成長終了後に反応容器13内に残留する合金51からガリウム55を分離、回収する実施例を記載する。
高純度Ar雰囲気のグローブボックス内でアルミナからなる反応容器13に、c軸方向の長さが50mm、m軸方向の長さが1mmの柱状の窒化ガリウム(GaN)結晶からなる種結晶7を2本設置した。種結晶7は反応容器13の底面にあけた穴に4mm差し込んで保持した。
結晶成長終了後、反応容器13内には、窒化ガリウム結晶5、ナトリウム50、ナトリウムとガリウムからなる合金51が残留していた。ナトリウム50の除去は従来から知られている方法で行った。
ナトリウム50の除去が終了した時点で、反応容器13内には窒化ガリウム結晶5及び合金51が残留していた。ステンレス製の容器54内のエタノールを全て排出した後、容器54内に水52を投入した。当該容器54をホットプレート56に乗せ、容器54内の水52の温度が70℃程度になるようにホットプレート56の温度を調整した。水52と合金51中のナトリウムとが反応し、水素53が発生した。当該反応の進行中、幾度かスポイト57で合金51から分離されたガリウム55を吸い出した。全ての反応が終了するのに、約3時間を要した。水52と合金51の反応が終了した際、反応容器13内には窒化ガリウム結晶5及び液状のガリウム55が残留していた。ガリウム55をスポイト57で全て吸引し、別容器に回収した。回収したガリウム55は218gであった。
上記工程を経ることによって、c軸方向の長さ65mm、c軸と垂直方向の長さ55mmのバルク状の窒化ガリウム結晶5を2個取出すことができた。このときの収率(ガリウムの消費量/ガリウムの原料量×100)は78%であった。つまり、結晶成長終了時に反応容器13内に残留していたガリウム55は220gであった。そのうち、218gのガリウム55を回収できたので、回収効率は99%であった。
回収したガリウム55は、高純度化処理を行うことにより、再度結晶成長原料として使用することができた。高純度化処理ができないような不純物は混入しておらず、高純度化処理を行ったガリウム55を原料として、結晶成長を行った場合にも問題が発生することなく窒化ガリウム結晶5を製造することができた。
上記実施例1における<結晶成長>及び<ナトリウムの除去>と同様の処理を行った後、酸を用いてガリウム55の回収を行った。
ナトリウム50の除去が終了した時点で、反応容器13内には窒化ガリウム結晶5及び合金51が残留していた。ステンレス製の容器54内のエタノールを全て排出した後、容器54内に水52を投入した。当該容器54をホットプレート56に乗せ、容器54内の水52の温度が70℃程度になるようにホットプレート56の温度を調整した。水52と合金51中のナトリウムとが反応し、水素53が発生した。当該反応の進行中、幾度かスポイト57で合金51から分離されたガリウム55を吸い出した。水52を投入後、1時間経過したところで、反応容器13内に残留している合金51をガラス製の容器58内に移した。容器58内に水を投入し、硝酸:水=1:2となるように硝酸を投入した。硝酸と合金51中のナトリウムとが反応し、水素53が発生した。当該反応の進行中、幾度かスポイト57で合金51から分離したガリウム55を吸い出した。合金51と酸との反応熱で容器58内の液温が上昇したため、水を加えて液温を80℃程度に保った。また、徐々に硝酸や塩酸を加えて酸濃度を高めて反応速度を保った。酸を投入後、全ての反応が終了するのに、約1時間を要した。全ての反応を水で行った場合に比べて、約1時間処理時間を短縮することができた。酸と合金51の反応が終了した際、反応容器13内には窒化ガリウム結晶5及び液状のガリウム55が残留していた。ガリウム55をスポイト57で全て吸引し、別容器に回収した。回収したガリウム55は200gであった。なお、本実施例のように最初に水52を投入せず、最初から硝酸などの酸を投入しても構わない。
上記工程を経ることによって、c軸方向の長さ65mm、c軸と垂直方向の長さ55mmのバルク状の窒化ガリウム結晶5を2個取出すことができた。このときの収率(ガリウムの消費量/ガリウムの原料量×100)は78%であった。つまり、結晶成長終了時に反応容器13内に残留していたガリウム55は、220gであった。そのうち、200gのガリウム55を回収できたので、回収効率は91%であった。
回収したガリウム55は、高純度化処理を行うことにより、再度結晶成長原料として使用することができた。高純度化処理ができないような不純物は混入しておらず、高純度化処理を行ったガリウム55を原料として、結晶成長を行った場合にも問題が発生することなく、窒化ガリウム結晶を製造することができた。
<結晶成長>
高純度Ar雰囲気のグローブボックス内でアルミナからなる反応容器13に、φ2“ウェハ状の窒化ガリウム(GaN)種結晶7を4枚、反応容器13の底面に設置した。
ナトリウム50の除去が終了した時点で、反応容器13内には、窒化ガリウム結晶5及び合金51が残留していた。ステンレス容器54内のエタノールを全て排出した後、容器54内に水52を投入した。当該容器54をホットプレート56に乗せ、容器54内の水52の温度が80℃程度になるようにホットプレート56の温度を調整した。水52と合金51中のナトリウムが反応し、水素53が発生した。水52を投入後、1時間経過しても大部分の合金51はナトリウムイオンと単体のガリウム55に分離せずに残留していた。残留していた合金51をガラス製の容器58に移した。容器58内に水を投入し、硝酸:水=1:2となるように硝酸を投入した。硝酸と合金51中のナトリウムとが反応し、水素53が発生した。当該反応の進行中、幾度かスポイト57で合金51から分離したガリウム55を吸い出した。合金51と酸との反応熱で容器58内の液温が上昇したため、水を加えて液温を80℃程度に保った。また、徐々に硝酸や塩酸を加えて酸濃度を高めて反応速度を保った。酸を投入後、全ての反応が終了するのに、約2時間を要した。混合融液6中にGeを微量添加すると、合金51からナトリウムイオンを分離し難くなり、Geを添加しない場合に比べて処理時間を要する。酸と合金51との反応が終了した際、反応容器13内には窒化ガリウム結晶5及び液状のガリウム55が残留していた。ガリウム55をスポイト57で全て吸引し、別容器に回収した。回収したガリウム55は85gであった。なお、本実施例のように最初に水52を投入せず、最初から硝酸などの酸を投入しても構わない。
上記工程を経ることによって、c軸方向の長さ6mmのφ2“バルク状の窒化ガリウム結晶5を4個取出すことができた。このときの収率(ガリウムの消費量/ガリウムの原料量×100)は74%であった。つまり、結晶成長終了時に反応容器13内に残留していたガリウム55は、104gであった。そのうち、85gのガリウム55を回収できたので、回収効率は82%であった。
回収したガリウム55は、高純度化処理を行うことにより、再度結晶成長原料として使用することができた。高純度化処理ができないような不純物は混入しておらず、高純度化処理を行ったガリウム55を原料として、結晶成長を行った場合にも問題が発生することなく、窒化ガリウム結晶5を製造することができた。
5 窒化ガリウム結晶
6 混合融液
7 種結晶
11 耐圧容器
12 内部容器
13 反応容器
14 構造物
15 ヒータ
16 回転機構
21 ターンテーブル
22 回転軸
31,32,33 配管
34 窒素供給管
35 希釈ガス供給管
36,37,38,39,40 バルブ
41,42 圧力制御装置
45 圧力計
50 ナトリウム
51 合金
52 水
53 水素
54,58 容器
55 ガリウム
56 ホットプレート
57 スポイト
Claims (13)
- ガリウムとナトリウムを含む混合融液に窒素を溶解させて窒化ガリウム結晶を成長させる成長工程と、
前記ガリウムと前記ナトリウムからなる合金と、前記ナトリウムをイオン化させる液体とを反応させることにより、前記合金からナトリウムイオンとガリウムを分離し、分離された前記ガリウムを回収する回収工程と
を含むことを特徴とする窒化ガリウム結晶の製造方法。 - 前記液体はガリウムの融点よりも高温の水である
ことを特徴とする請求項1に記載の窒化ガリウム結晶の製造方法。 - 前記水の温度は50℃以上90℃以下である
ことを特徴とする請求項2に記載の窒化ガリウム結晶の製造方法。 - 前記液体は酸である
ことを特徴とする請求項1に記載の窒化ガリウム結晶の製造方法。 - 前記酸の温度は30℃以上120℃以下である
ことを特徴とする請求項4に記載の窒化ガリウム結晶の製造方法。 - 前記回収工程は、前記成長工程後における前記混合融液中の前記ガリウムと前記ナトリウムの総モル数に対する前記ガリウムのモル数が0%より大きく80%以下である場合に実行される
ことを特徴とする請求項1~5のいずれか1項に記載の窒化ガリウム結晶の製造方法。 - 前記回収工程は、前記成長工程後における前記混合融液中の前記ガリウムと前記ナトリウムの総モル数に対する前記ガリウムのモル数が0%より大きく64%以下である場合に実行される
ことを特徴とする請求項1~5のいずれか1項に記載の窒化ガリウム結晶の製造方法。 - 前記合金は前記ガリウムと前記ナトリウムから構成される金属間化合物である
ことを特徴とする請求項1~7のいずれか1項に記載の窒化ガリウム結晶の製造方法。 - 前記金属間化合物は略Ga39Na22である
ことを特徴とする請求項8に記載の窒化ガリウム結晶の製造方法。 - 前記金属間化合物にゲルマニウムが含まれている
ことを特徴とする請求項8に記載の窒化ガリウム結晶の製造方法。 - 前記回収工程を開始する前に、前記混合融液中に残留している前記ナトリウムを除去する除去工程
を更に含むことを特徴とする請求項1~10のいずれか1項に記載の窒化ガリウム結晶の製造方法。 - 前記ガリウム単体を液体状態で回収する
ことを特徴とする請求項1~11のいずれか1項に記載の窒化ガリウム結晶の製造方法。 - 前記回収工程により回収された前記ガリウムを前記成長工程において利用する
ことを特徴とする請求項1~12のいずれか1項に記載の窒化ガリウム結晶の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480077198.1A CN106103816B (zh) | 2014-03-18 | 2014-11-27 | 氮化镓晶体的制造方法 |
EP14886576.9A EP3121311A4 (en) | 2014-03-18 | 2014-11-27 | Process for producing gallium nitride crystal |
JP2016508452A JP6388024B2 (ja) | 2014-03-18 | 2014-11-27 | 窒化ガリウム結晶の製造方法 |
US15/124,794 US10100426B2 (en) | 2014-03-18 | 2014-11-27 | Method for producing gallium nitride crystal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014054470 | 2014-03-18 | ||
JP2014-054470 | 2014-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141064A1 true WO2015141064A1 (ja) | 2015-09-24 |
Family
ID=54144060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081363 WO2015141064A1 (ja) | 2014-03-18 | 2014-11-27 | 窒化ガリウム結晶の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10100426B2 (ja) |
EP (1) | EP3121311A4 (ja) |
JP (1) | JP6388024B2 (ja) |
CN (2) | CN106103816B (ja) |
WO (1) | WO2015141064A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108796611A (zh) * | 2018-07-06 | 2018-11-13 | 孟静 | 氮化镓单晶生长方法 |
JP7403118B2 (ja) * | 2019-10-17 | 2023-12-22 | 豊田合成株式会社 | 金属の回収方法及び窒化ガリウムの製造方法 |
CN115637496B (zh) * | 2022-09-21 | 2023-10-27 | 聚勒微电子科技(太仓)有限公司 | 一种双重容器材料生长装置及材料生长方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007238343A (ja) * | 2006-03-06 | 2007-09-20 | Ngk Insulators Ltd | Iii族窒化物単結晶の育成方法 |
JP2008069028A (ja) * | 2006-09-13 | 2008-03-27 | Matsushita Electric Works Ltd | 窒化ガリウム系単結晶の育成方法およびそれにより得られる窒化ガリウム系単結晶 |
JP2009001470A (ja) * | 2007-06-25 | 2009-01-08 | Sumitomo Electric Ind Ltd | Iii族窒化物結晶の製造方法、iii族窒化物結晶基板およびiii族窒化物半導体デバイス |
JP2009007207A (ja) * | 2007-06-28 | 2009-01-15 | Sharp Corp | 結晶成長方法、および結晶成長装置 |
JP2010024125A (ja) * | 2008-07-24 | 2010-02-04 | Sumitomo Electric Ind Ltd | Iii族窒化物結晶の成長方法 |
JP2010510687A (ja) * | 2006-11-22 | 2010-04-02 | エス.オー.アイ.テック シリコン オン インシュレータ テクノロジーズ | 化学気相成長チャンバ用の温度制御されたパージゲート弁 |
JP2010235330A (ja) * | 2009-03-30 | 2010-10-21 | Toyoda Gosei Co Ltd | Iii族窒化物半導体の製造方法 |
JP2010269986A (ja) * | 2009-05-25 | 2010-12-02 | Panasonic Corp | Iii族窒化物結晶の取り出し方法及びそれに用いる装置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL207400B1 (pl) * | 2001-06-06 | 2010-12-31 | Ammono Społka Z Ograniczoną Odpowiedzialnością | Sposób i urządzenie do otrzymywania objętościowego monokryształu azotku zawierającego gal |
PL232212B1 (pl) * | 2002-12-11 | 2019-05-31 | Ammono Spólka Akcyjna W Upadlosci Likwidacyjnej | Sposób otrzymywania objętościowego monokrystalicznego azotku zawierającego gal w środowisku nadkrytycznego rozpuszczalnika amoniakalnego |
EP1548160A4 (en) | 2002-07-31 | 2009-04-29 | Osaka Ind Promotion Org | METHOD FOR PRODUCING A CRYSTAL FROM A NITRIDE OF A GROUP III ELEMENT AND A TRANSPARENT CRYSTAL MADE FROM A NITRIDE OF AN ELEMENT OF GROUP III |
EP1734158B1 (en) * | 2004-03-31 | 2012-01-04 | NGK Insulators, Ltd. | Gallium nitride single crystal growing method |
JP4716711B2 (ja) | 2004-11-05 | 2011-07-06 | 日本碍子株式会社 | Iii属窒化物単結晶の育成方法 |
JP5024898B2 (ja) | 2006-02-13 | 2012-09-12 | 日本碍子株式会社 | フラックスからナトリウム金属を回収する方法 |
US20090223441A1 (en) | 2006-11-22 | 2009-09-10 | Chantal Arena | High volume delivery system for gallium trichloride |
JP5575483B2 (ja) | 2006-11-22 | 2014-08-20 | ソイテック | Iii−v族半導体材料の大量製造装置 |
US9481944B2 (en) | 2006-11-22 | 2016-11-01 | Soitec | Gas injectors including a funnel- or wedge-shaped channel for chemical vapor deposition (CVD) systems and CVD systems with the same |
US9481943B2 (en) | 2006-11-22 | 2016-11-01 | Soitec | Gallium trichloride injection scheme |
KR101330156B1 (ko) | 2006-11-22 | 2013-12-20 | 소이텍 | 삼염화 갈륨 주입 구조 |
WO2008127425A2 (en) | 2006-11-22 | 2008-10-23 | S.O.I.Tec Silicon On Insulator Technologies | Abatement of reaction gases from gallium nitride deposition |
WO2008064077A2 (en) | 2006-11-22 | 2008-05-29 | S.O.I.Tec Silicon On Insulator Technologies | Methods for high volume manufacture of group iii-v semiconductor materials |
JP4821007B2 (ja) | 2007-03-14 | 2011-11-24 | 国立大学法人大阪大学 | Iii族元素窒化物結晶の製造方法およびiii族元素窒化物結晶 |
WO2009041053A1 (ja) | 2007-09-28 | 2009-04-02 | Panasonic Corporation | Iii族元素窒化物の結晶の製造方法および製造装置 |
JP5030821B2 (ja) | 2008-03-07 | 2012-09-19 | パナソニック株式会社 | フラックス処理方法 |
CN102272358A (zh) | 2009-01-07 | 2011-12-07 | 日本碍子株式会社 | 单晶培养用反应容器以及单晶的培养方法 |
JP2012012259A (ja) | 2010-07-01 | 2012-01-19 | Ricoh Co Ltd | 窒化物結晶およびその製造方法 |
JP5656697B2 (ja) * | 2010-07-14 | 2015-01-21 | 住友金属鉱山株式会社 | 窒化アルミニウム結晶の製造方法 |
JP2012169562A (ja) * | 2011-02-16 | 2012-09-06 | Kurita Water Ind Ltd | 窒化物半導体材料の表面処理方法および表面処理システム |
-
2014
- 2014-11-27 CN CN201480077198.1A patent/CN106103816B/zh not_active Expired - Fee Related
- 2014-11-27 EP EP14886576.9A patent/EP3121311A4/en not_active Withdrawn
- 2014-11-27 US US15/124,794 patent/US10100426B2/en not_active Expired - Fee Related
- 2014-11-27 JP JP2016508452A patent/JP6388024B2/ja active Active
- 2014-11-27 CN CN201910467485.8A patent/CN110295390A/zh active Pending
- 2014-11-27 WO PCT/JP2014/081363 patent/WO2015141064A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007238343A (ja) * | 2006-03-06 | 2007-09-20 | Ngk Insulators Ltd | Iii族窒化物単結晶の育成方法 |
JP2008069028A (ja) * | 2006-09-13 | 2008-03-27 | Matsushita Electric Works Ltd | 窒化ガリウム系単結晶の育成方法およびそれにより得られる窒化ガリウム系単結晶 |
JP2010510687A (ja) * | 2006-11-22 | 2010-04-02 | エス.オー.アイ.テック シリコン オン インシュレータ テクノロジーズ | 化学気相成長チャンバ用の温度制御されたパージゲート弁 |
JP2009001470A (ja) * | 2007-06-25 | 2009-01-08 | Sumitomo Electric Ind Ltd | Iii族窒化物結晶の製造方法、iii族窒化物結晶基板およびiii族窒化物半導体デバイス |
JP2009007207A (ja) * | 2007-06-28 | 2009-01-15 | Sharp Corp | 結晶成長方法、および結晶成長装置 |
JP2010024125A (ja) * | 2008-07-24 | 2010-02-04 | Sumitomo Electric Ind Ltd | Iii族窒化物結晶の成長方法 |
JP2010235330A (ja) * | 2009-03-30 | 2010-10-21 | Toyoda Gosei Co Ltd | Iii族窒化物半導体の製造方法 |
JP2010269986A (ja) * | 2009-05-25 | 2010-12-02 | Panasonic Corp | Iii族窒化物結晶の取り出し方法及びそれに用いる装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3121311A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3121311A4 (en) | 2017-02-22 |
CN106103816A (zh) | 2016-11-09 |
EP3121311A1 (en) | 2017-01-25 |
US20170022629A1 (en) | 2017-01-26 |
US10100426B2 (en) | 2018-10-16 |
JPWO2015141064A1 (ja) | 2017-04-06 |
CN106103816B (zh) | 2021-02-09 |
CN110295390A (zh) | 2019-10-01 |
JP6388024B2 (ja) | 2018-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5903474B2 (ja) | カスケードプロセスを利用してシリコンを精製する方法 | |
JP6388024B2 (ja) | 窒化ガリウム結晶の製造方法 | |
Fujiwara et al. | Growth mechanism of Si-faceted dendrites | |
JP2001220123A (ja) | 酸化珪素粉末の連続製造方法及び連続製造装置 | |
WO2007094126A1 (ja) | フラックスからナトリウム金属を回収する方法 | |
JP4692247B2 (ja) | 高純度多結晶シリコンの製造方法 | |
JP2008297153A (ja) | Iii族窒化物半導体製造装置、およびiii族窒化物半導体の製造方法 | |
JP4115432B2 (ja) | 金属の精製方法 | |
JP2018016498A (ja) | 炭化珪素単結晶インゴットの製造方法 | |
SU et al. | Preparation, microstructure and dislocation of solar-grade multicrystalline silicon by directional solidification from metallurgical-grade silicon | |
NO20110671A1 (no) | Fremgangsmate og system for fremstilling av silisium og silisiumkarbid | |
JP2009227520A (ja) | 単結晶製造装置及びその方法 | |
WO2011114102A1 (en) | Method for synthesising diamond | |
CN101781791B (zh) | 一种单晶棒直拉过程中除去杂质的方法 | |
CN203768482U (zh) | 一种新型真空电子束熔炼炉 | |
JP2007314389A (ja) | シリコン精製方法 | |
US20110120365A1 (en) | Process for removal of contaminants from a melt of non-ferrous metals and apparatus for growing high purity silicon crystals | |
JP5644637B2 (ja) | Iii族窒化物半導体結晶の製造方法 | |
CN102040204B (zh) | 磷化镓多晶铸锭的方法 | |
JP6621615B2 (ja) | 13族窒化物単結晶の製造方法、および13族窒化物単結晶の製造装置 | |
JP7456849B2 (ja) | 13族窒化物結晶の製造方法 | |
JP7163762B2 (ja) | 鉄ガリウム合金結晶の結晶粒界の評価方法 | |
US20190071794A1 (en) | Efficient solar grade silicon production system | |
RU2378421C1 (ru) | Способ выращивания кристаллов кремния | |
JP2012126601A (ja) | シリコン原料の再利用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14886576 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016508452 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15124794 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014886576 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014886576 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |