WO2015137484A1 - 超微細気泡含有液体を用いる超微細気泡洗浄方法、その装置及び加圧浮上装置 - Google Patents

超微細気泡含有液体を用いる超微細気泡洗浄方法、その装置及び加圧浮上装置 Download PDF

Info

Publication number
WO2015137484A1
WO2015137484A1 PCT/JP2015/057469 JP2015057469W WO2015137484A1 WO 2015137484 A1 WO2015137484 A1 WO 2015137484A1 JP 2015057469 W JP2015057469 W JP 2015057469W WO 2015137484 A1 WO2015137484 A1 WO 2015137484A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
ultrafine
bubbles
liquid storage
bubble
Prior art date
Application number
PCT/JP2015/057469
Other languages
English (en)
French (fr)
Inventor
敏勝 鈴木
Original Assignee
株式会社ピーシーエス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ピーシーエス filed Critical 株式会社ピーシーエス
Priority to JP2016507844A priority Critical patent/JP6120427B2/ja
Priority to US15/125,337 priority patent/US20170072408A1/en
Publication of WO2015137484A1 publication Critical patent/WO2015137484A1/ja
Priority to US16/047,920 priority patent/US20190060913A1/en
Priority to US16/998,410 priority patent/US11311921B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/02Extraction using liquids, e.g. washing, leaching, flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0084Enhancing liquid-particle separation using the flotation principle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/267Separation of sediment aided by centrifugal force or centripetal force by using a cyclone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/14Diatomaceous earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1418Flotation machines using centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1431Dissolved air flotation machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1443Feed or discharge mechanisms for flotation tanks
    • B03D1/1456Feed mechanisms for the slurry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1443Feed or discharge mechanisms for flotation tanks
    • B03D1/1462Discharge mechanisms for the froth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1443Feed or discharge mechanisms for flotation tanks
    • B03D1/1475Flotation tanks having means for discharging the pulp, e.g. as a bleed stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/10Processing by flocculation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/49Materials comprising an indicator, e.g. colour indicator, pH-indicator
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • the present invention relates to an ultrafine bubble cleaning method using ultrafine bubbles, an apparatus for the same, and a pressurized levitation apparatus.
  • the pressurized levitation device is a device that performs solid-liquid separation by adding fine bubbles to a substance suspended in water to reduce the apparent specific gravity.
  • this device for example, when air is added to water and dissolved under pressure, and then released again under atmospheric pressure, the generated fine bubbles adhere to suspended matter in the water and float on the liquid surface together with the suspended matter. The water remaining after the floating substance is collected by a skimmer or the like becomes treated water.
  • Patent Document 1 Many such pressure levitation devices have been proposed as disclosed in, for example, Patent Document 1, but there is a limit to the size of suspended matter that floats on the liquid surface due to the size of the fine bubbles.
  • Patent Document 1 although air is added to water, it is described that bubbles having a diameter of several hundred nm or less called nanobubbles are used, but it is estimated that 100 nm is actually the minimum value.
  • the fine bubbles are said to adhere to suspended matter smaller than its diameter and cannot float to the liquid surface.
  • cesium which is a radioactive waste
  • fine bubble-containing water so-called nano-bubble water
  • the size of fine bubbles that can be produced is 30 nm in the laboratory. Proposed to a degree. However, the range that can be stably manufactured in large quantities is up to several hundred nm. Further, it is considered difficult to measure bubbles having a size of 30 nm or less.
  • water after injecting water into an oil field, pumping water together with crude oil, and separating the oil from water has a problem that fine oil droplets are dispersed and cannot be reused. Even when trying to capture and float and separate the fine bubbles of 100 nm or more, sufficient contact with fine oil droplets could not be obtained.
  • the present invention has been made in view of the above-described conventional problems, and a method for cleaning an ultrafine bubble using an ultrafine bubble-containing liquid including an ultrafine bubble having a size of less than 30 nm, an apparatus therefor, and a pressurized levitation device It is an issue to provide.
  • the present inventor has developed an ultrafine bubble cleaning method using an ultrafine bubble-containing liquid containing ultrafine bubbles having a size of less than 30 nm and a size of 3 mm or more, an apparatus thereof, and a pressure levitation device. completed.
  • the fine particles to which the ultrafine bubbles are attached float on the liquid surface as a floating separation, and the soil or sand that has not adhered is deposited as a precipitation separation on the bottom of the liquid storage part.
  • the fine particles to which bubbles larger than the ultrafine bubbles are attached try to settle while the bubbles are ruptured, but the ultrafine bubbles are attached and floated. Since there is almost no cesium or the like in the precipitate separation, it can be returned to the ground if the supernatant liquid containing the floating separation is discharged. Note that the cleaning may be repeated a plurality of times until cesium or the like is separated.
  • Ultrafine bubble-containing water containing ultrafine bubbles having a size of less than 30 nm and 3 mm or more is mixed and stirred in raw water in which fine droplets of organic substances such as crude oil and insulating oil are dispersed, An oil-contaminated water cleaning method, wherein ultrafine bubbles are attached to microdroplets, and the microdroplets are floated and separated by buoyancy.
  • a superfine bubble-containing liquid containing ultrafine bubbles having a size of less than 30 nm and a size of 3 mm or more is stored, and objects to be cleaned such as soil, sand, fallen leaves, and rubble are stored in the stored liquid.
  • a liquid storage part such as a water tank or a pond that can accommodate the liquid, a stirring device that is installed in the liquid storage part and stirs the liquid stored in the liquid storage part, and ultrafine bubbles in the ultrafine bubble-containing liquid by the stirring
  • a supernatant discharge device that discharges the supernatant containing the floating separation after the precipitate separated from the floating separated adsorbed on the interface and the precipitate separated not adsorbed, and the precipitated precipitate
  • An ultrafine bubble cleaning device comprising: a sediment extraction device that extracts a separated product.
  • a water tank that can store raw water in which fine organic droplets such as oil and insulating oil are dispersed, a liquid storage part such as a pond, and the raw water in the liquid storage part are less than 30 nm in size.
  • the ultrafine bubble-containing water supply device that supplies the ultrafine bubble-containing water containing the ultrafine bubbles
  • the stirring device that is installed in the liquid storage unit and stirs the raw water stored inside, and the stirring
  • An ultrafine bubble cleaning apparatus comprising: a floated liquid discharge device that discharges fine droplets adsorbed and floated on an interface between the ultrafine bubbles in the ultrafine bubble-containing liquid.
  • a levitation device for discharging the remaining raw liquid as a processed liquid, wherein the circulating device circulates a mixed liquid of the raw liquid and the ultrafine bubble-containing liquid in the pressurized levitation tank;
  • a pressurization characterized in that it has a separator take-out device for taking out the floated separated matter floated on the liquid surface by the ultrafine bubbles contained in the liquid containing ultrafine bubbles in a pressure levitation tank Levitation device.
  • the liquid is not limited to water, and may be alcohols, seawater, oils, and the gas is not limited to air, and may be oxygen, hydrogen, nitrogen, carbon dioxide gas, rare gas, methane gas, or the like. .
  • the above-mentioned earth and sand can be obtained by using an ultrafine bubble-containing liquid containing bubbles that adhere to even small particles that could not be floated by bubbles having a size of 30 nm or more. , Debris and the like can be washed.
  • Sectional drawing which shows typically the ultrafine bubble cleaning apparatus which concerns on Example 1 of this invention.
  • Sectional drawing which shows typically the modification of the same ultrafine bubble cleaning apparatus
  • Plan view schematically showing a modification of the ultrafine bubble cleaning device
  • Pipeline diagram schematically showing a pressurized levitation apparatus according to Embodiment 2 of the present invention.
  • FIG. 1 Front view with a partial cross section showing the same pressure levitation device Plan view Side view Block diagram schematically showing the flocculant reaction device in the pressurized flotation device
  • the front view which made the gas-liquid mixing part in the manufacturing apparatus enlarged and showed the partial cross section Sectional drawing which expands and schematically shows the nozzle in the same gas-liquid mixing part Side view showing a swirl flow forming device comprising fixed blades attached to the nozzle
  • Front view in partial cross section showing a bubble-containing liquid separation device constituting a part of the same ultrafine bubble-containing liquid production device Sectional view along line XV-XV in FIG.
  • An ultrafine bubble cleaning device 80 is disposed in a water tank-shaped liquid storage part 82 and a central position of the liquid storage part 82 to agitate the liquid in the liquid storage part 82.
  • a device 86 is disposed in a water tank-shaped liquid storage part 82 and a central position of the liquid storage part 82 to agitate the liquid in the liquid storage part 82.
  • a to-be-washed object throwing device 87 made of, for example, a power shovel is arranged at a position opposite to the sediment take-out device 86, and to-be-washed objects such as soil, sand, fallen leaves, debris, plate material, and sheets Is put into the liquid storage part 82.
  • the supernatant liquid discharge device 85 is floated and separated from the supernatant liquid including the pump 85A for sucking the supernatant water in the liquid in the liquid storage section 82 and the floating separated matter sucked up by the pump 85A. And a floating separated material recovery device 85B for removing objects.
  • the supernatant liquid after removing the floating separation in the floating separation collecting apparatus 85B is configured to be returned to the liquid storage unit 82. Further, the washed product taken out from the sediment take-out device 86 is put into a hopper 88, drained here, and then discharged to the outside by, for example, a dump truck or a power shovel, or returned to its original place. It is supposed to be.
  • the ultrafine bubble-containing liquid supplied to the liquid storage unit 82 is manufactured by, for example, an ultrafine bubble-containing liquid manufacturing apparatus 10 (see FIG. 10) described later, stored in a tank 89A, and stored in the liquid storage unit 82 by a pump 89B. It comes to be supplied.
  • an object to be cleaned such as soil or sand is introduced into the liquid containing ultrafine bubbles stored in the liquid storage unit 82 by the object input device 87 and stirred.
  • the apparatus 84 repeatedly brings the ultrafine bubble-containing liquid into contact with the surface of the object to be cleaned.
  • Fine particles adhering to the surface, cracks, dents, etc. of the object to be cleaned for example, organic particles such as metal particles (including metal ions), solvents, drugs, oil, etc.
  • the bubbles are separated by entering, and the ultrafine bubbles are attached and floated. Large bubbles may attach to the object to be cleaned and fine particles and float, but the bubbles burst during the ascent and lose buoyancy.
  • the fine particles that have floated up are floating separations, and the remainder is a precipitate separation, and accumulates at the bottom of the liquid storage part 82.
  • the levitation separated material recovery device 85B is constituted by, for example, a pressure levitation device according to Example 2 described later.
  • the floating separation with ultrafine bubbles attached is taken into the flocculant, or the ultrafine bubbles adhere to the flocculant with fine particles and floated and separated, and the rest becomes treated water.
  • 82 is returned as a cleaning liquid.
  • the precipitate separation is deposited on the bottom of the liquid storage portion 82 as described above, and is taken out by the precipitate take-out device 86 made of, for example, a power shovel and put into an external hopper 88.
  • the precipitate separation is drained by a hopper 88 after being drained by the hopper 88, but since the ultrafine bubble-containing liquid adhering to the precipitate separation is lost when draining by the hopper 88, the tank
  • the stored ultrafine bubble-containing liquid is supplied from 89A to the liquid storage unit 82 by the pump 89B.
  • the sample 2 soil of 3000 bq / kg is 240 bq / kg after washing
  • the soil of sample 3 is 2500 bq / kg to 210 bq / kg
  • the soil of sample 4 is 2200 bq / kg to 980 bq / kg.
  • 8700 bq / kg was reduced to 5400 bq / kg, respectively.
  • the soils of Samples 1 to 4 were further washed for 10 minutes, and were each 100 bq / kg or less.
  • the ultrafine bubble cleaning device 80 batch-processes objects to be cleaned
  • the present invention is not limited to this, and may be continuously processed.
  • FIG. 2 and FIG. 3 show an ultrafine bubble cleaning device 90 as a modified example capable of continuous processing.
  • the liquid storage part is composed of elongated first small liquid storage part 92A and second small liquid storage part 92B arranged in parallel, and the object to be cleaned is 1 in the first small liquid storage part 92A.
  • the liquid is sent to the second small liquid storage part 92B for secondary cleaning (rinse cleaning), and the ultrafine bubble-containing liquid for cleaning is secondarily cleaned in the second small liquid storage part 92B. Then, it is made to flow into the first small liquid storage portion 92A and used for primary cleaning.
  • the ultrafine bubble cleaning device 90 the first small liquid storage unit 92A performs the primary cleaning, the second small liquid storage unit 92B performs the secondary cleaning, and the ultrafine bubbles during the secondary cleaning.
  • the contained liquid is supplied from the tank 89A to the second small liquid storage unit 92B via the pump 89B.
  • the fine bubble-containing liquid is supplied to the first small liquid storage unit 92A as overflow water.
  • the object to be cleaned input by the object to be cleaned input device 87 is subjected to primary cleaning, and the supernatant discharge device 85 It is configured to be discharged.
  • the ultrafine bubble-containing liquid and the object to be cleaned are efficiently cleaned because of a so-called countercurrent cleaning system.
  • the same components as those of the ultrafine bubble cleaning device 80 shown in FIG. 1 are denoted by the same reference numerals as those in FIG.
  • the first and second small liquid storage portions 92A and 92B are ponds dug in the ground, and a dump truck is used as the washing object charging device 87, and a sediment takeout device.
  • a power shovel is used as an apparatus for taking out the first washed precipitate in the first small liquid storage unit 92A and putting it into the adjacent second small liquid storage unit 92B. Yes.
  • the excavator is used not only for moving the object to be cleaned in the pond but also for stirring.
  • the action range of the above-mentioned power shovel and dump truck is a permeable crushed stone roadbed to return the drip from the scattered water of the work and the drainage of the temporarily placed soil after washing to the liquid storage part. 95 is arranged.
  • Reference numeral 97 in FIG. 2 indicates an overflow path through which the cleaning liquid flows out to the first small liquid storage portion 92A when the liquid level of the second small liquid storage portion 92B becomes constant.
  • Reference numeral 98 in FIG. 3 denotes a baffle plate for preventing the inflow of a large amount of air bubbles and a wave shield disposed in the first small liquid storage portion 92A so as to surround the object to be cleaned input side of the pump 85A.
  • a flocculating reaction tank 85C for adding a flocculating agent for capturing fine particles contained in the supernatant water from the first small liquid storage unit 92A is provided in the front stage of the floating separated material recovery apparatus 85B.
  • an ultrafine bubble-containing liquid (hereinafter referred to as a cleaning liquid) is injected into the second small liquid storage part 92B.
  • this cleaning liquid is injected into the first small liquid storage unit 92A through the overflow path 97 (see step 101).
  • step 202 the overflow liquid (overflow cleaning liquid) is injected into the first small liquid storage portion 92A via the overflow path 97 while injecting the cleaning liquid.
  • Step 102 the object to be cleaned is charged into the first small liquid storage unit 92A by the object charging device 87 while stirring the cleaning liquid.
  • the first cleaning apparatus 94A is used to stir the primary cleaning liquid. It is discharged by the discharge device 85.
  • the cleaning liquid may be stirred not only by the first stirring device 94A but also by the cleaning object charging device 87 when the cleaning object is charged.
  • step 104 while the object to be cleaned is being charged, the cleaned object that has been subjected to the primary cleaning is taken out from the end opposite to the charging side of the first small liquid storage part 92A by a power shovel, It travels on the roadbed 95 and is put into one end of the second small liquid storage portion 92B as an object to be cleaned for secondary cleaning (see step 203).
  • step 203 the object to be cleaned that has been rinsed is taken out with a power shovel.
  • the ultrafine bubble cleaning device 80 in FIG. Then, raw water is poured into the liquid storage part 82 from the article input device 89 to be cleaned, and the sediment take-out device 86 is not used.
  • the ultrafine bubble-containing water is injected into the raw water in the liquid storage part 82, stirred by the stirring device 84, and attached to the microdroplets, and the microdroplets are floated and separated by the buoyancy.
  • the soil and sand containing radioactive cesium is washed.
  • the present invention is not limited to this, and the objects to be washed are fallen leaves, rubble, and plate-like bodies in addition to soil, sand, and stone. It may be a sheet or the like.
  • the object to be washed and recovered is not only the fine particles as waste, but also, for example, when washing ores and debris to which ultrafine metal has adhered and washing and collecting ultrafine metal that could not be collected in the past etc. Is also applicable.
  • the pressurized levitation apparatus 100 includes a pressurized levitation tank 102 having an inlet 101 ⁇ / b> A at one end, and is a raw liquid (for example, radioactive material, contaminated water) to be purified. ) Is mixed with the ultrafine bubble-containing liquid and injected into the pressurized levitation tank 102 from the inflow port 101A, and the suspended matter and dissolved components in the original liquid are adsorbed to the interface of the ultrafine bubbles and floated. The raw liquid is separated and taken out, and the remaining raw liquid is discharged as a processed liquid.
  • a raw liquid for example, radioactive material, contaminated water
  • the pressurized levitation apparatus 100 is configured to circulate a mixed liquid of the original liquid and the ultrafine bubble-containing liquid in the pressurized levitation tank 102, and to convert the ultrafine bubble-containing liquid into the pressurized levitation tank 102. And a separated product taking-out device 104 for taking out the floating scum floated on the liquid surface.
  • the circulation device 103 includes a swirl discharge pipe 103A, a swirl flow guide 103B, and a gap 103C.
  • the swivel discharge pipe 103A is provided to protrude from an end portion (left end portion in the drawing) in the pressurized levitation tank 102, and as shown in an enlarged view in FIG. 14, the tip is bent obliquely upward, and the tip opening is
  • the inflow port 101A has a curved pipe shape in which a mixed liquid of the raw liquid and the ultrafine bubble-containing liquid is ejected obliquely upward, and is further ejected as a swirl flow into the pressurized levitation tank 102 by a fixed fin. It is configured.
  • the swirl flow guide 103B is a cylindrical body that surrounds the swirl discharge pipe 103A and guides a swirl flow discharged from the swirl discharge pipe in an obliquely upward direction. It arrange
  • the gap 103C is provided between the lower end opening of the swirling discharge pipe 103A and the bottom of the pressurized levitation tank 102 so that the swirling flow circulating in the pressurized levitation tank 102 flows into the swirling discharge pipe 103A from the lower end opening. Has been.
  • the pressurized levitation device 100 has a separated material extraction device 104 for taking out the floating scum that has floated on the liquid surface in the pressurized levitation tank 102, and the remaining liquid from which the levitation scum has been taken out is treated liquid. It is made to discharge from the discharge port 101B.
  • the discharge port 101B is connected to the pressurizing pump 56 through the inflow pipe 52 in the ultrafine bubble-containing liquid manufacturing apparatus 10.
  • Ultrafine bubbles are added to the processed liquid from the pressurized levitation device 100 by the ultrafine bubble-containing liquid manufacturing apparatus 10, and a liquid containing large bubbles and ultrafine bubbles are added by the bubble-containing liquid separation device 60.
  • the liquid containing ultrafine bubbles is pressurized and passed through the pressurized liquid tube 106 and added to the flocculant-added raw water discharged from the flocculant reaction tank device 105 to flow. It is made to flow as a swirling flow into the pressurized floating tank 102 from the inlet 101A.
  • a gap 103C is formed between the swirl flow guide 103B and the bottom surface of the pressurized levitation tank 102 so that the liquid in the pressurized levitation tank 102 can flow from the lower end opening of the swirl flow guide 103B. ing.
  • a precipitate separation is deposited on the bottom surface of the pressure flotation tank 102. This precipitate separation is also sucked into the swirl flow guide 103B from the gap 103C and swirled and discharged. It circulates in the pressurized levitation tank 102 together with the swirling flow from the tube 103A.
  • a plurality (four in this case) of suction pipes 107 for collecting the liquid in the pressurized floating tank 102 are collected at the end of the pressurized floating tank 102 on the opposite side of the circulation device 103.
  • a horizontal collecting pipe 108 connected to the discharge side of the suction pipe 107, and a vertical connection to the collecting pipe 108 outside the side wall of the pressurized levitation tank 102, and collected through the collecting pipe 108.
  • a riser pipe 109 that guides the liquid to the upper side, a sub tank 110 that surrounds the upper end of the riser pipe 109 and is formed on the outer surface of the pressurized levitation tank 102, and is provided in the sub tank 110.
  • a discharge adjusting device 112 is provided which includes a level adjusting pipe 111 whose suction port 111A is movable up and down within a certain range and whose lower end is a discharge port 101B.
  • the separated product take-out device 104 includes an endless chain 104A and a plurality of skimmers 104B attached to the endless chain 104A at regular intervals, and the floating scum in which the skimmer 104B has floated on the liquid surface in the pressurized floating tank 102 is shown in FIG. In FIG. 3, the gas is swept from the left side to the right direction and collected to the outside position of the pressurized floating tank 102.
  • the separated product extracting device 104 includes a feed screw 104 ⁇ / b> C for sending the floating scum collected by the skimmer 104 ⁇ / b> B upward and discharging it in FIG. 7.
  • the flocculant reaction tank device 105 is a flocculant reaction tank to which the flocculant dissolved by the radioactive substance adsorbent automatic dissolving device 105A, the organic flocculant automatic dissolving device 105B, and the inorganic flocculant automatic dissolving device 105C is supplied. 105D for dissolving the flocculant and mixing with raw water.
  • symbol 105E of FIG. 5 shows the stirring apparatus for mixing a flocculant and raw
  • the liquid containing large bubbles from the bubble-containing liquid separation device 60 shown in FIG. 5 is sent to the outlet side of the flocculant reaction tank 105D, where it is mixed with the raw water mixed with the flocculant. It has become.
  • radioactive material adsorbents include zeolite slurry and Prussian blue
  • organic flocculants include anionic, nonionic, cationic or amphoteric organic polymer flocculants
  • inorganic flocculants include , Iron chloride, aluminum sulfate, polyaluminum chloride and the like.
  • the spiral flow is generated.
  • the flow guide 103B forms an upward spiral flow from the left end to the right side in FIG.
  • a gap 103C is formed between the lower end of the swirling flow guide 103B and the bottom of the pressurized levitation tank 102, from which the liquid in the pressurized levitation tank 102 is entrained by the swirling flow.
  • a large circulation flow is formed in the pressure levitation tank 102.
  • the flocculant In this circulating flow, the flocculant can take in trace amounts of particles such as cesium that happen to come into contact, but in the absence of ultrafine bubbles, it can hardly take up.
  • the levitation scum is collected at the right end in FIG. 5 by the skimmer 104B driven by the endless chain 104A in the separated product taking-out device 104, and further collected upward by the feed screw 104C in FIG.
  • the discharged floating scum is dehydrated and solidified by the dehydrating and solidifying device 113 and stored in the container.
  • the liquid generated by the dehydration is returned to the pressurized floating tank 102.
  • the coagulant reaction tank device 105 is added to the pressure levitation device 100.
  • the present invention is not limited to this, and the coagulant reaction tank device 105 is not provided. It also applies to.
  • the pressurized flotation tank was able to separate the oil from the contaminated water containing a small amount of oil, for example, as a floating separation, and used as agricultural water or drinking water.
  • an organic flocculant and an inorganic flocculant are used as the flocculant.
  • the nozzle 30 for ejecting the liquid is provided which protrudes into the liquid flow path 22 and has a tip 30 ⁇ / b> A opened at the position of the ejection port 28.
  • the swirl flow forming device 40 including four fixed blades 42 in the circumferential direction is provided from the base end 30 ⁇ / b> B of the nozzle 30 to the nozzle 30. It is inserted and fixed inside.
  • the liquid swirled by the swirl flow forming device 40 when flowing through the nozzle 30 is ejected from the tip 30A in a swirl flow, but the position of the tip 30A of the nozzle 30 is from the tip 30A.
  • the discharge flow of the gas sucked out from the ejection port 28 by the negative pressure formed by the previous swirl flow is determined so as to flow into the swirl flow.
  • the nozzle 30 includes a gas guide device 44 configured by a cylindrical guide that surrounds the tip 30A at an interval.
  • the gas guide device 44 is configured to guide the discharge flow of the gas sucked into the liquid flow path 22 from the ejection port 28 so as to flow into the swirling flow of the liquid ejected from the tip 30 ⁇ / b> A of the nozzle 30.
  • the nozzle 30 has a tapered shape
  • the gas guide device 44 has a tapered inner peripheral surface 44A tapered in the liquid ejection direction, and an axially intermediate portion of the tapered inner peripheral surface 44A is provided.
  • the nozzle 30 is attached to the nozzle 30 by screws (not shown) so as to be positioned at the tip 30A of the nozzle 30.
  • the pressurized liquid supply system 50 is connected to the inflow pipe 52 and the discharge pipe 54, a pressurized pump 56 capable of supplying pressurized liquid containing fine bubbles to the inflow pipe 52, and the suction side of the pressurized pump 56.
  • a stock solution supply pipe 57 that supplies a liquid to be mixed with gas, and a pressure feed pipe 58 that is connected to the discharge side of the pressure pump 56 and sends out the pressurized liquid.
  • An inflow pipe 52 is connected in the middle of the pumping pipe 58, and a discharge pipe 54 is connected to the stock solution supply pipe 57. A part of the ultrafine bubble-containing liquid formed in the gas-liquid mixing unit 20 is discharged from the discharge pipe 54. In addition, it is configured to return to the inflow port 24 of the gas-liquid mixing unit 20 through the stock solution supply pipe 57, the pressurizing pump 56, the pressure feed pipe 58, and the inflow pipe 52.
  • Reference numeral 56 ⁇ / b> A in FIG. 1 denotes a motor for driving the pressurizing pump 56.
  • a pressure feed pipe 58 of the pressurized liquid supply system 50 is connected to the bubble-containing liquid separation device 60 shown in FIGS. 14 and 15 so as to supply an ultrafine bubble-containing liquid in a pressurized state. .
  • the bubble-containing liquid separation device 60 is composed of a storage-type pressurized liquid tank having a circular cross section, and is provided on the upper side surface of the tank, and a pressurized liquid inflow port 61 into which the ultrafine bubble-containing liquid pumped through the pressure feed pipe 58 flows.
  • a pressurized liquid discharge port 62 provided on the lower side surface of the tank, a central liquid discharge port 63 provided at the upper end of the tank, and an inside of the pressurized liquid inflow port 61.
  • a swirl flow forming pipe 64 that is a downward swirl flow along the inner circumferential surface.
  • the swirl flow forming pipe 64 allows the pressurized ultrafine bubble-containing liquid flowing in the radial direction from the pressurized liquid inflow port 61 to flow in the circular tank cross section.
  • the pressurized liquid is guided so as to be a spiral flow that is counterclockwise along the circumferential surface and is slightly inclined downward.
  • the liquid flowing in from the pressurized liquid inflow port 61 is discharged out of the tank from the pressurized liquid discharge port 62 and the central liquid discharge port 63 provided on the lower side surface of the tank. It is controlled by a discharge amount control valve 65 provided in the vicinity of the port 63.
  • the pressurized liquid flowing into the tank is swirled by the swirl flow forming pipe 64, but the center liquid discharge port 63 is provided at the center position of the upper end surface of the tank. Part of the liquid is discharged from the central liquid discharge port 63, and the liquid in the outer part of the swirl flow is discharged from the pressurized liquid discharge port 62.
  • the liquid in the tank contains ultrafine bubbles and a portion with a relatively high specific gravity is outside the swirl, and the liquid containing bubbles larger than this has a relatively low specific gravity and collects at the center of the swirl flow.
  • the portion of the liquid flowing into the tank that contains relatively large bubbles is discharged from the central liquid discharge port 63, and the remaining liquid is discharged from the pressurized liquid discharge port 62 in a state that contains more ultrafine bubbles. become. This reduces the chance that the fine bubbles come into contact with the large bubbles and makes them difficult to break.
  • the stock solution to be mixed with gas is sucked from the stock solution supply pipe 57 by the pressurizing pump 56, and is pressurized and sent out from the pressure feed pipe 58.
  • Part of the liquid in the pressure feeding pipe 58 reaches the gas-liquid mixing section 20 via the inflow pipe 52 and the inflow port 24. The remainder reaches the pressurized liquid inlet port 61 of the bubble-containing liquid separator 60.
  • the liquid that has flowed in from the inflow port 24 of the gas-liquid mixing unit 20 is turned into the swirl flow by the swirl flow forming device 40 provided at the base end 30B of the nozzle 30, and enters the liquid flow path 22 from the tip 30 ⁇ / b> A of the nozzle 30. Is erupted.
  • the pressure in the gas-liquid mixing unit 20 is set higher than the external pressure, for example, 2.5 to 6.0 kg / cm 2 .
  • the negative pressure applied to the ejection port 28 causes the liquid to flow in a normal linear shape. Compared to two or three times the size, the gas can be reliably discharged from the ejection port 28 even when the pressure in the gas-liquid mixing unit 20 is higher than the external pressure.
  • the spiral flow of liquid ejected from the tip 30A of the nozzle 30 entrains the liquid in the liquid flow path 22 and the gas from the ejection port 28 to form a spiral flow.
  • the gas sucked out from the ejection port 28 is entrained as a spiral flow between the tapered outer peripheral surface 31 of the nozzle 30 and the tapered inner peripheral surface 44 ⁇ / b> A of the gas guide device 44. Strongly mixed into the spiral flow of liquid.
  • cavitation is repeatedly generated and destroyed in the spiral flow mixed with gas, and each time the bubbles formed by the gas are broken into small pieces, the size of which is almost 100 nm or less, 30 nm or less, and further 10 to 3 mm. It becomes a super fine bubble.
  • the liquid containing ultrafine bubbles passes through the discharge port 26 and the discharge pipe 54 of the gas-liquid mixing unit 20, reaches the stock solution supply pipe 57, and is sucked and pressurized by the pressurizing pump 56 from here, and the pressure feeding pipe 58.
  • a part of the pressurized liquid sent out is supplied to the gas-liquid mixing unit 20 to repeatedly generate and destroy bubbles by cavitation, and the remaining large bubbles are also smaller ultrafine bubbles. Is done.
  • the size of bubbles contained in the ultrafine bubble-containing liquid is almost 100 nm or less, but the ratio of 30 nm or less increases by passing the gas-liquid mixing unit 20 a plurality of times. Moreover, although not all of the bubbles, bubbles of less than 10 mm and 3 mm or more could be confirmed.
  • the measurement can be performed as follows using an artificial zeolite whose void size is previously designed to be 3 mm or more.
  • the present inventor was able to confirm that there were bubbles having a size of less than 10 to 3 mm in the produced ultrafine bubble-containing water.
  • the ultrafine bubbles were mixed with water when the size was less than 10 mm, and when the size was less than 10 mm, the wavelength of the visible light was not exceeded, and transparent ultrafine bubbles could not be visually confirmed.
  • the above phenomenon was caused when the fine pores and the pore diameter of the artificial zeolite were 10 mm or less, and this was considered to be less than 10 mm.
  • the ultrafine bubbles are assumed to have a size of 30 nm or less, which has been considered impossible to measure in the past.
  • the ultrafine bubble-containing water 600 t discharged from the outlet of the pressure feed pipe 58 is removed from the ultrafine bubbles including bubbles with a size of less than 10 mm, which cannot be visually confirmed.
  • / 1 to 1250 t / day of water amount could be dissolved at a rate of 15 to 20 liters / minute.
  • the gas-liquid mixing unit 20 is used in which the swirl flow of the liquid is applied to the ejector to suck out the gas.
  • the general ejector having a structure in which the flow of the straight liquid is simply applied to the port. Even so, ultra-fine bubbles are generated slightly, so use the bubble-containing liquid separation device as described above to sort the ultra-fine bubbles over time, or provide the bubble-containing liquid separation device in multiple stages. Then, a liquid with a large content of ultrafine bubbles can be produced.
  • the ultrafine bubble-containing liquid is supplied to the pressurized liquid inflow port 61 of the bubble-containing liquid separator 60 via the pressure feed pipe 58.
  • the pressurized liquid supplied from the pressurized liquid inflow port 61 is always filled in the tank-shaped bubble-containing liquid separation device 60, and the central liquid discharge port 63 and the pressurized liquid are only in proportion to the inflow amount of the pressurized liquid.
  • the liquid is discharged from the discharge port 62 to the outside.
  • the pressurized liquid supplied from the pressure feed pipe 58 via the pressurized liquid inflow port 61 into the pressurized liquid filled in the bubble-containing liquid separation device 60 is supplied by the swirl flow forming pipe 64 to the bubble-containing liquid separation device 60. And flows into the tank as an obliquely downward swirling flow along the inner peripheral surface of the tank.
  • the relatively large bubbles that were separated were about 5% of the total amount of bubbles added with ultrafine bubbles, but almost all of them could be separated and removed.
  • the abundance of microbubbles of 100 nm or less or 30 nm or less, 10 cm or more becomes small, and the content ratio of ultrafine bubbles having a size of 10 cm or less is included. Becomes larger.
  • the ultrafine bubbles are not lost together with the relatively large microbubbles having a size of 10 mm or more, and the unique function of the ultrafine bubbles can be exhibited in the subsequent stage. become able to.
  • Fig. 7 shows a flowchart of the above confirmation procedure.
  • the gas-liquid mixing unit 20 is configured to repeatedly circulate the ultrafine bubble-containing liquid.
  • the present invention is not limited to this, and the gas-liquid mixing unit 20 is finally super
  • the configuration may be such that, before the formation of the fine bubbles, the gas-liquid mixing unit 20 is supplied in the state of a fine bubble-containing liquid containing bubbles that are slightly larger than the ultrafine bubbles.
  • a first gas-liquid mixing unit 70 corresponding to the gas-liquid mixing unit 20 and a fine bubble in the first gas-liquid mixing unit 70. It is necessary to provide a second gas-liquid mixing unit 72 corresponding to the gas-liquid mixing unit 20 for supplying the contained liquid in a two-stage configuration and to circulate the ultrafine bubble-containing liquid from the first gas-liquid mixing unit 70. Try not to have it.
  • the first pressurizing pump 74 that supplies the liquid containing fine bubbles to the first gas-liquid mixing unit 70, and the second pressurization that supplies the original liquid to the second gas-liquid mixing unit 72 by pressurizing it.
  • a pump 76 is installed.
  • Pressurized liquid discharge port 63 ... Center part liquid discharge port 64 ... Swirling flow forming pipe 65 ... Discharge control valve 70 ... First Gas-liquid mixing unit 72 ... second gas-liquid mixing unit 74 ... first pressurizing pump 76 ... second pressurizing pump 80, 90 ... ultrafine bubble cleaning device 82 ... liquid storage unit 84 ... stirring device 85 ... Supernatant discharge device 85A ... Pump 85B ... Floating separated substance recovery device 85C ... Agglomeration reaction tank 86 ... Sediment take-out device 87 ... Substance to be cleaned input device 88 ... Hopper 89A ... Tank 89B ... Pump 92A ... First small storage Liquid part 92B ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Soil Sciences (AREA)
  • Physical Water Treatments (AREA)
  • Measurement Of Radiation (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Floating Material (AREA)

Abstract

 超微細気泡洗浄装置(80)は、大きさが30nm未満の超微細気泡を含有する液体により、土や砂などに付着した微粒子を洗い流して分離回収するものであり、水槽形状の貯液部(82)と、この貯液部(82)の中央位置に配置され、貯液部(82)内の液体を攪拌するための攪拌装置(84)と、貯液部(82)内の液体の上澄液を排出するポンプを含む上澄液排出装置(85)と、貯液部(82)の底部に沈殿した沈殿分離物を取出すための沈殿物取出装置(86)と、を備えて構成されていて、貯液部(82)内に蓄えられた超微細気泡含有液体中に土や砂などの被洗浄物を投入し、攪拌装置(84)によって超微細気泡含有液体を被洗浄物表面に繰り返し接触させ、被洗浄物の表面や亀裂、へこみなどに付着している金属微粒子(金属イオンを含む)や溶剤、薬物、油等の有機物微粒子を、これらと被洗浄物との間に超微細気泡が入り込むことによって分離して浮上させる。

Description

超微細気泡含有液体を用いる超微細気泡洗浄方法、その装置及び加圧浮上装置
 本発明は、超微細気泡を用いる超微細気泡洗浄方法、その装置及び加圧浮上装置に関する。
 加圧浮上装置は、水中に懸濁している物質に微細気泡を付けて見掛け比重を小さくし、固液分離を行なう装置とされている。この装置において、例えば水に空気を加えて加圧溶解し、再び大気圧下に解放すると、発生する微細な気泡が水中の浮遊物質に付着して、浮遊物と共に液面に浮上する。この浮上物質をスキマー等で回収して残った水が処理済み水となる。
 このような加圧浮上装置は、例えば特許文献1に開示されるように数多く提案されているが、微細気泡の大きさにより、液面へ浮上させる浮遊物の大きさに限界がある。特許文献1では、水に空気を加える場合であるが、ナノバブルと称される直径が数100nm以下の気泡を用いると記載されているが、実際には100nmが最小値ではないかと推定される。
 微細気泡は、その直径よりも小さい浮遊物に付着してこれを液面へ浮上させることはできないとされている。例えば、放射性廃棄物であるセシウムがイオン状態で水中に存在する場合、これを100nmサイズの微細気泡によっては水から分離することができないという問題点がある。
 又、加圧浮上装置に用いる微細な気泡を製造するための微細気泡含有水(いわゆるナノバブル水)の製造装置も種々提案があるが、製造できる微細気泡の大きさは、実験室的には30nm程度まで提案されている。しかし、安定して大量に製造できる範囲は、数百nmまでである。又、30nm以下の大きさの気泡は測定が困難とされている。
  更に、例えば油田に水を注入して、原油とともに水を汲み上げ、油水分離した後の水は、微細な油滴が分散していて、再利用できないという問題点があるが、これを微細気泡によって捕捉して浮上分離させようとしても、100nm以上の微細気泡では、微細な油滴との十分な接触機会が得られなかった。
特開2010-162518号公報
 この発明は、上記従来の問題点に鑑みてなされたものであって、大きさが30nm未満の超微細気泡を含む超微細気泡含有液体を用いる超微細気泡洗浄方法、その装置及び加圧浮上装置を提供することを課題とする。
 本発明者は、鋭意研究の結果、大きさが30nm未満、3Å以上の大きさの超微細気泡を含有する超微細気泡含有液体を用いた超微細気泡洗浄方法、その装置及び加圧浮上装置を完成した。
 即ち、以下の実施例により上記課題を解決することができる。
(1)水槽、池等の貯液部に貯められた大きさが30nm未満、3Å以上の超微細気泡を含む超微細気泡含有液体中に、土、砂、石、落葉、ガレキ、板材、シート等の被洗浄物を入れた状態で、前記超微細気泡含有液体を攪拌して、前記被洗浄物に付着した微粒子を洗い落とすとともに、超微細気泡の界面に微粒子を吸着させて、浮上分離物として浮上させ、且つ、超微粒子が洗い流された前記被洗浄物を沈殿分離物として沈殿させ、前記浮上分離物を含む上澄液を排出することにより、前記被洗浄物を洗浄する超微細気泡洗浄方法。
 超微細気泡含有液体が攪拌されると、被洗浄物、例えば放射性物質が付着した土、砂等の内部やその付着物との間に、超微細気泡が入り込んで、土や砂の中に入り込んだり付着しているセシウム等の超微粒子に付着して、外部に排出し、結果として、被洗浄物に付着した微粒子が洗い落とされる。
 超微細気泡が付着した微粒子は、浮上分離物となって液面に浮上し、付着しなかった土や砂は、沈殿分離物として貯液部の底に沈殿される。また、超微細気泡より大きい気泡が付着した微小粒子は、浮上途中で気泡が破裂して沈殿しようとするが、超微細気泡が付着して浮上される。沈殿分離物には、セシウム等がほとんど存在しないので、浮上分離物を含む上澄液を排出すれば、大地に戻すことができる。なお、セシウム等が分離されるまでに複数回洗浄を繰返すこともある。
(2)原油、絶縁油等の有機物の微小液滴が分散している原水中に、大きさが30nm未満、3Å以上の超微細気泡を含有する超微細気泡含有水を混合、攪拌して前記微小液滴に超微細気泡を付着し、その浮力により前記微小液滴を浮上分離させることを特徴とする油汚染水洗浄方法。
  有機物は気泡に吸着されるので、この気泡が超微小であれば、原水中に分散している微小液滴との接触機会が非常に大きくなり、ほとんどの微小液滴に超微小気泡を付着させて、その浮力により、原水から浮上分離させることができる。
(3)大きさが30nm未満、3Å以上の大きさの超微細気泡を含有する超微細気泡含有液体を貯溜するとともに、貯溜された液体中に、土、砂、落葉、ガレキ等の被洗浄物を収容可能な水槽、池等の貯液部と、前記貯液部内に設置され、内部に貯溜された液体を攪拌する攪拌装置と、前記攪拌により、前記超微細気泡含有液体中の超微細気泡の界面に吸着された浮上分離物及び吸着されなかった沈殿分離物のうち、沈殿分離物が沈殿した後の浮上分離物を含む上澄液を排出する上澄液排出装置と、前記沈殿した沈殿分離物を取出す沈殿物取出装置と、を有してなる超微細気泡洗浄装置。
(4)油、絶縁油等の有機物の微小液滴が分散している原水を収容可能な水槽、池等の貯液部と、前記貯液部の原水中に、大きさが30nm未満、3Å以上の超微細気泡を含有する超微細気泡含有水を供給する超微細気泡含有水供給装置と、前記貯液部内に設置され、内部に貯溜された原水を攪拌する攪拌装置と、前記攪拌により、前記超微細気泡含有液中の超微細気泡の界面に吸着浮上された微小液滴を排出する浮上物液排出装置とを有してなる超微細気泡洗浄装置。
(5)一端に流入口を備えた加圧浮上槽を含み、原液体に、大きさが30nm未満、3Å以上の超微細気泡を含有する超微細気泡含有液体を混合して、前記加圧浮上槽内に前記流入口から注入し、前記加圧浮上槽内に、原液体中の浮遊物や溶解している成分を超微細気泡の界面に吸着させて浮上させ、原液体から分離して取出すとともに、残りの原液体を処理済液として排出する加圧浮上装置であって、前記加圧浮上槽内で、原液体と超微細気泡含有液体との混合液体を循環させる循環装置と、前記加圧浮上槽内で、前記超微細気泡含有液体に含有される超微細気泡によりを液面に浮上された浮上分離物を取出す分離物取出装置と、を有してなることを特徴とする加圧浮上装置。
 なお、液体は水に限定されず、アルコール類、海水、油類であってもよく、気体は空気に限定されず、酸素、水素、窒素、炭酸ガス、希ガス、メタンガス等であってもよい。
 本発明によれば、従来は大きさが30nm以上の気泡によっては浮上させることができなかった小さな粒子にも付着して、これを浮上させる気泡を含む超微細気泡含有液体を用いて、上記土砂、がれき等を洗浄することができるという効果を有する。
本発明の実施例1に係る超微細気泡洗浄装置を模式的に示す断面図 同超微細気泡洗浄装置の変形例を模式的に示す断面図 同超微細気泡洗浄装置の変形例を模式的に示す平面図 同変形例による被洗浄物の洗浄過程を示すフローチャート 本発明の実施例2に係る加圧浮上装置を模式的に示す管路図 同加圧浮上装置を示す一部断面とした正面図 同平面図 同側面図 同加圧浮上装置における凝集剤反応装置を模式的に示すブロック図 本発明の実施例1及び2に用いる超微細気泡含有液体の製造装置を示す正面図 同製造装置における気液混合部を拡大して示す一部断面とした正面図 同気液混合部におけるノズルを拡大して模式的に示す断面図 同ノズルに取付けた固定翼からなる旋回流形成装置を示す側面図 同超微細気泡含有液体製造装置の一部を構成する気泡含有液体分離装置を示す一部断面とした正面図 図14のXV-XV線に沿う断面図 超微細気泡存在確認方法の他の例を示すフローチャート 超微細気泡含有液体製造装置の変形例を示す管路図
 以下、本発明の実施例を図面を参照して説明する。
 実施例1に係る超微細気泡含有液体を用いる超微細気泡洗浄方法及び装置について説明する。
 図1に示される実施例1に係る超微細気泡洗浄装置80は、水槽形状の貯液部82と、この貯液部82の中央位置に配置され、貯液部82内の液体を攪拌するための攪拌装置84と、貯液部82内の液体の上澄液を排出するポンプを含む上澄液排出装置85と、貯液部82の底部に沈殿した沈殿分離物を取出すための沈殿物取出装置86と、を備えて構成されている。
 貯液部82には、沈殿物取出装置86と反対側の位置に、例えばパワーショベルからなる被洗浄物投入装置87が配置され、土、砂、落葉、ガレキ、板材、シートなどの被洗浄物を貯液部82内に投入するようにされている。
 実施例1において、上澄液排出装置85は、貯液部82内の液中の上澄水を吸い上げるためのポンプ85Aと、このポンプ85Aによって吸い上げられた浮上分離物を含む上澄液から浮上分離物を除去する浮上分離物回収装置85Bと、を備えている。
 この浮上分離物回収装置85Bにおける浮上分離物を除去した後の上澄液は、貯液部82内に戻されるように構成されている。また、沈殿物取出装置86より取出された洗浄済みの洗浄物は、ホッパー88に投入されて、ここで水切りをした後に、例えばダンプトラックやパワーショベルによって外部に排出され、あるいは元の場所に戻されるようになっている。
 貯液部82に供給される超微細気泡含有液体は、例えば、後述の超微細気泡含有液体製造装置10(図10参照)によって製造され、タンク89Aにより貯留され、ポンプ89Bによって貯液部82に供給されるようになっている。
 実施例1に係る超微細気泡洗浄装置80においては、貯液部82内に蓄えられた超微細気泡含有液体中に被洗浄物投入装置87により土や砂などの被洗浄物を投入し、攪拌装置84によって超微細気泡含有液体を被洗浄物表面に繰り返し接触させる。
 被洗浄物の表面や亀裂、へこみなどに付着している微小粒子、例えば金属粒子(金属イオンを含む)、溶剤、薬物、油等の有機物微粒子は、これと被洗浄物との間に超微細気泡が入り込むことによって分離され、かつ超微細気泡が付着して浮上される。被洗浄物や微粒子に大きい気泡が付着して浮上することがあるが、浮上の途中で気泡が破裂して浮力を失う。
  これらには再度超微細気泡が付着するが、被洗浄物を浮上させる浮力はなく、微粒子のみが浮上される。
 浮上された微小粒子は浮上分離物であり、これに対して残りが沈殿分離物となり、貯液部82の底部に堆積する。
 浮上分離物回収装置85Bは、例えば、後述の実施例2に係る加圧浮上装置から構成されている。ここでは、超微細気泡が付着した浮上分離物が凝集剤に取り込まれ、あるいは、微小粒子を取り込んだ凝集剤に超微細気泡が付着して浮上分離し、残りが処理済水となり、貯液部82に洗浄液として戻される。
 沈殿分離物は、上記のように貯液部82の底部に堆積され、これを例えばパワーショベルからなる沈殿物取出装置86によって取出され、外部のホッパー88に投入される。
 沈殿分離物は、ホッパー88において水切りされた後に、はダンプトラック等によって搬出されるが、ホッパー88による水切りの際に、沈殿分離物に付着していた超微細気泡含有液体が失われるので、タンク89Aからポンプ89Bにより、貯留された超微細気泡含有液体が貯液部82に供給される。
 実験によれば、放射性セシウムによって汚染された、乾燥状態での放射線量が2200bq/kgのサンプル1の土を超微細気泡含有水を用いて、超微細気泡洗浄装置80によって10分間洗浄したところ、洗浄後の被洗浄物の放射性セシウムは、120bq/kgとなった。
 同様の、3000bq/kgのサンプル2の土は、洗浄後に240bq/kg、サンプル3の土は、2500bq/kgが210bq/kgに、また、サンプル4の土は、2200bq/kgが980bq/kgに、更には、枯葉のサンプルの場合は、8700bq/kgが5400bq/kgに、それぞれ低減された。
 サンプル1~4の土は、更に10分間の追加洗浄をしたところ、それぞれ、100bq/kg以下となった。
 上記実施例1に係る超微細気泡洗浄装置80は、被洗浄物をバッチ処理するものであるが、本発明はこれに限定されるものでなく、連続処理をするようにしてもよい。
 図2、図3に連続処理可能な変形例としての超微細気泡洗浄装置90を示す。この超微細気泡洗浄装置90は、貯液部が、平行に並んだ細長い第1小貯液部92A及び第2小貯液部92Bから成り、被洗浄物は第1小貯液部92Aで1次洗浄されてから第2小貯液部92Bに送られて2次洗浄(すすぎ洗浄)され、また、洗浄のための超微細気泡含有液体は、第2小貯液部92Bにおいて2次洗浄してから第1小貯液部92Aに流されて、1次洗浄に用いられる構成としたものである。
 詳細には、超微細気泡洗浄装置90においては、第1小貯液部92Aでは1次洗浄をし、第2小貯液部92Bでは2次洗浄をし、2次洗浄の際の超微細気泡含有液体は、タンク89Aからポンプ89Bを介して第2小貯液部92Bに供給され、ここで、1次洗浄物のすすぎ洗い(2次洗浄)をした超微細気泡洗浄装置90においては、超微細気泡含有液体がオーバーフロー水として第1小貯液部92Aに供給され、ここで、被洗浄物投入装置87によって投入された被洗浄物の1次洗浄をして、上澄液排出装置85により排出されるように構成されている。超微細気泡含有液体と被洗浄物はいわゆる向流洗浄方式になるため効率良く洗浄される。
 なお、超微細気泡洗浄装置90において、図1に示される、超微細気泡洗浄装置80の構成要素と同一部分には、図1におけると同一の符号をつけることにより説明を省略するものとする。
 図2に示されるように、第1、第2小貯液部92A、92Bは、地面に掘られた池であり、被洗浄物投入装置87としては、ダンプトラックが用いられ、沈殿物取出装置86として、あるいは、第1小貯液部92Aにおいて、1次洗浄済の沈殿物を取出して、隣接する第2小貯液部92Bに投入するための装置として、いずれもパワーショベルが用いられている。パワーショベルは池の中の被洗浄物を移動するだけでなく攪拌にも使われる。
 また、図2に示されるように、上記のパワーショベルやダンプトラックの行動範囲は、作業の散乱水と洗浄後の仮置き土壌の水切りでのドリップを貯液部に戻すために透水性砕石路盤95が配設されている。図2の符号97は、第2小貯液部92Bの液面が一定になったとき、洗浄液を第1小貯液部92Aに流出させるオーバーフロー路を示す。図3の符号98は、第1小貯液部92A内に、ポンプ85Aの被洗浄物投入側を囲んで配置された波よけ、及び多量の気泡の流入を防ぐためのバッフル板を示す。
 浮上分離物回収装置85Bの前段には、第1小貯液部92Aからの上澄水に含有される微細粒子を捕捉するための凝集剤を添加する凝集反応槽85Cが設けられている。
 次に、上記超微細気泡洗浄装置90により、超微細気泡含水を用いて土砂を洗浄する過程について、図4を参照して説明する。
 まず、ステップ201において、第2小貯液部92Bに、超微細気泡含有液体(以下、洗浄液)を注入する。
  この洗浄液は、第2小貯液部92B内での液面が一定レベルとなると、オーバーフロー路97を通って、第1小貯液部92A内に注入される(ステップ101参照)。
 ステップ202では、洗浄液を注入しながら、溢流液(オーバーフロー洗浄液)をオーバーフロー路97を介して第1小貯液部92Aに注入する。
 ステップ102において、洗浄液を攪拌しながら被洗浄物投入装置87により、第1小貯液部92Aに被洗浄物を投入する。
 次のステップ103においては、第1小貯液部92Aに第2小貯液部92Bからのオーバーフロー洗浄液を注入しながら、第1攪拌装置94Aにより攪拌し、1次洗浄済の洗浄液を上澄液排出装置85により排出する。
 なお、ステップ102において、洗浄液は、第1攪拌装置94Aによってのみならず、被洗浄物投入装置87によって、被洗浄物投入時にも攪拌するとよい。
 ステップ104においては、被洗浄物を投入しつつ、1次洗浄済の洗浄物を第1小貯液部92Aの投入側と反対側の端部からパワーショベルによって取出して、これを、透水性砕石路盤95上を走行させ、2次洗浄の被洗浄物として、第2小貯液部92Bの一端に投入する(ステップ203参照)。
 ステップ203において、すすぎ洗浄済の被洗浄物をパワーショベルにより取出す。
 上記のステップ102~103、104、202、及び203の作業を繰返すが、作業を中止するか、または、被洗浄物の洗浄が終了した時点で、全作業を終了する(ステップ105、204参照)。
 なお、図4には、上澄液排出装置85を構成している凝集反応槽85C、浮上分離物回収装置85Bの詳細については、説明を省略している。
  本発明による洗浄対象が、固体でない場合、例えば、原油、絶縁油等の有機物の微小液滴が分散している原水から微小液滴を分離する場合は、図1の超微細気泡洗浄装置80において、被洗浄物投入装置89から、原水を貯液部82に注入し、沈殿物取出装置86は用いないようにする。
  貯液部82内の原水に、超微細気泡含有水を注入して、攪拌装置84により攪拌して前記微小液滴に超微細気泡付着し、その浮力により前記微小液滴を浮上分離させる。
  このようにすると、有機物は気泡に付着するので、この気泡が超微細であれば、原水中に分酸している微小液滴との接触機会が非常に大きくなり、ほとんどの微小液滴に超微細気泡を付着させて、その浮力により、原水から浮上分離させることができる。
  上記実施例では放射性セシウムを含む土や砂の洗浄についてのものであるが、本発明はこれに限定されず、洗浄の対象は、土、砂、石の他に、落葉、ガレキ、板状体、シート等であってもよい。
  また、洗浄回収する対象は、廃棄物としての微小粒子のみならず、例えば超微粒子状金属が付着した鉱石や破片を洗浄して、従来回収できなかった超微粒子金属を洗い落として回収する場合等にも適用されるものである。
 次に、超微細気泡含有液体を用いた実施例2に係る加圧浮上装置100について、図5~9を参照して詳細に説明する。
 図5に示されるように、実施例2に係る加圧浮上装置100は、一端に流入口101Aを備えた加圧浮上槽102を含み、浄化対象となる原液体(例えば、放射性物質、汚染水)に超微細気泡含有液体を混合して、加圧浮上槽102内に流入口101Aから注入し、原液体中の浮遊物や溶解している成分を超微細気泡の界面に吸着させて浮上させ、原液体から分離して取出すとともに、残りの原液体を処理済液として排出するものである。
 加圧浮上装置100は、前記加圧浮上槽102内で、原液体と超微細気泡含有液体との混合液体を循環させる循環装置103と、加圧浮上槽102内で、超微細気泡含有液体に液面に浮上された浮上スカムを取出す分離物取出装置104とを有している。
 循環装置103は、旋回吐出管103Aと、旋回流ガイド103Bと、隙間103Cから構成されている。旋回吐出管103Aは、加圧浮上槽102内の端部(図において左端部)に突出して設けられ、図14に拡大して示されるように、先端が斜め上向きに湾曲され、その先端開口が流入口101Aとされていて、原液体と超微細気泡含有液体との混合液体を斜め上向きに噴出させる湾曲パイプ形状であって、更に、固定フィンにより加圧浮上槽102内に旋回流として噴出させる構成とされている。
 また、旋回流ガイド103Bは、旋回吐出管103Aを囲んでいて、ここから吐出される旋回流を、斜め上向きに案内する、上下が開口している筒状体であって、流入口101Aから噴出された旋回流を斜め前方にガイドするように配置されている。隙間103Cは、旋回吐出管103Aの下端開口と加圧浮上槽102の底部との間に設けられ、加圧浮上槽102内を循環した旋回流が下端開口から旋回吐出管103A内に流入するようにされている。
 更に、加圧浮上装置100は、加圧浮上槽102内の液面に浮上した浮上スカムを取出すための分離物取出装置104を有し、浮上スカムを取出した残りの液体を処理済液として、排出口101Bから排出するようにされている。排出口101Bは、超微細気泡含有液体製造装置10における流入管52を介して、加圧ポンプ56に接続されている。
 上記加圧浮上装置100からの処理済液には、超微細気泡含有液体製造装置10によって超微細気泡が添加されて、気泡含有液体分離装置60により、大きな気泡を含有する液体と、超微細気泡を含有する液体とに分離され、超微細気泡含有液体は、加圧されて加圧液体管106を経て、凝集剤反応槽装置105から吐出された凝集剤添加済の原水に加えられて、流入口101Aから加圧浮上槽102内に旋回流として流入するようにされている。
 又、旋回流ガイド103Bと加圧浮上槽102の底面との間には、隙間103Cが形成されていて、旋回流ガイド103Bの下端開口から加圧浮上槽102内の液体が流入できるようにされている。加圧浮上装置100を一定時間以上運転すると、加圧浮上槽102の底面には沈殿分離物が沈殿されるが、この沈殿分離物も、前記隙間103Cから旋回流ガイド103Bに吸引されて旋回吐出管103Aからの旋回流と共に加圧浮上槽102内を循環するようにされている。
 図6~図8に示されるように、加圧浮上槽102の循環装置103と反対側の端部には、加圧浮上槽102内の液体を集める複数(ここでは4本)の吸入管107と、この吸入管107の吐出側に接続された1本の水平な集合管108と、加圧浮上槽102の側壁の外側で、集合管108に垂直に接続され、集合管108を通って集められた液体を上方に導く上昇管109と、この上昇管109の上端を囲んで、且つ、加圧浮上槽102の外側面に形成されたサブタンク110と、このサブタンク110内に設けられ、上端の吸入口111Aが一定範囲で上下動自在とされ、且つ、下端が排出口101Bとされたレベル調整管111とからなる排出調整装置112が設けられている。
 分離物取出装置104は、エンドレスチェーン104Aと、これに一定間隔で取付けられた複数のスキマー104Bとを備えていて、スキマー104Bが加圧浮上槽102内の液面に浮上した浮上スカムを図6において左側から右方向に掃引して、加圧浮上槽102の外側位置にまで集めるように構成されている。
 又、分離物取出装置104は、図7に示されるように、スキマー104Bによって集められた浮上スカムを図7において上方に送って排出させるためのフィードスクリュー104Cを備えている。
 次に、図5及び図9を参照して、凝集剤反応槽装置105について説明する。
 凝集剤反応槽装置105は、放射性物質吸着剤自動溶解装置105A、有機系凝集剤自動溶解装置105B、及び、無機系凝集剤自動溶解装置105Cによって溶解された凝集剤が供給される凝集剤反応槽105Dを有し、凝集剤を溶解し、且つ、原水に混合するようにされている。図5の符号105Eは凝集剤と原水とを良好に混合するための攪拌装置を示す。
 なお、図5に示される気泡含有液体分離装置60からの大きな気泡を含有する液体は、凝集剤反応槽105Dの出側に送られて、ここで凝集剤が混合された原水に混合されるようになっている。放射性物質吸着材としては、例えばゼオライトスラリー、プルシアンブルー等があり、有機系凝集剤としては、アニオン系、ノニオン系、カチオン系あるいは両性系の有機高分子凝集剤があり、無機系凝集剤としては、塩化鉄、硫酸アルミニウム、ポリ塩化アルミニウム等がある。
 この実施例2に係る加圧浮上装置100においては、凝集剤が溶解、添加された原水(例えば、放射能汚染水)に超微細気泡含有液体が注入された後、螺旋流となって、旋回流ガイド103Bにより、図5において左端から右側に上向きの螺旋流が形成される。
 他方、旋回流ガイド103Bの下端と加圧浮上槽102の底部との間には、隙間103Cが形成されていて、ここから上記旋回流によって加圧浮上槽102内の液体が巻き込まれて、加圧浮上槽102内に大きな循環流が形成される。
 この循環流の中で、凝集剤はたまたま接触したセシウム等の微量粒子を取込むことはできるが、超微細気泡が存在しない場合は、ほとんど取込むことができない。
 超微細気泡によって、浮上分離された浮上分離物は、超微細気泡の界面の広さにより一部で必ず凝集剤と接触し電気的に中和した凝集フロックとして取り込まれる結果、ほとんどのセシウムイオンが安定した浮上物を形成する。浮上スカムとして液面に浮上する。
 浮上スカムは、分離物取出装置104におけるエンドレスチェーン104Aによって駆動されるスキマー104Bによって、図5において、右端に集められ、更に、フィードスクリュー104Cによって図7における上方に集められて外部に排出される。
 排出された浮上スカムは、脱水固形化装置113によって脱水、且つ、固形化されて、容器に収納される。なお、脱水によって生じた液体は、加圧浮上槽102に戻される。
 上記実施例2では、加圧浮上装置100には、凝集剤反応槽装置105が加えられているが、本発明は、これに限定されるものではなく、凝集剤反応槽装置105を設けない場合にも適用されるものである。
 また、加圧浮上槽は、上記の他に、例えば、わずかな油分を含む汚染水から油分を浮上分離物として分離し、農業用水や飲料水とすることができた。この場合、凝集剤は有機系凝集剤及び無機系凝集剤を用いる。
 実施例1、2において超微細気泡洗浄に用いられる超微細気泡含有液体は、超微細気泡含有液体製造装置10により製造される。この超微細気泡含有液体製造装置10は、図10~図15に示されるように、気液混合部20と、この気液混合部20内に設けられたノズル30(図11参照)と、旋回流形成装置40(図12、13参照)と、加圧液体供給系統50と、及び、気泡含有液体分離装置60(図14、15参照)と、を有して構成されている。
 気液混合部20は、図11に示されるように、液体が流通可能な液体流路22と、この液体流路22の一端(図11において右端)に設けられた液体の流入ポート24と、他端(図11において左端)に設けられた気泡含有液体の吐出ポート26と、流入ポート24と吐出ポート26との間の位置で、側方(図11において上方)から液体流路22に気体が流入可能に形成されたエジェクションポート28とを備えて構成されている。
 流入ポート24からは、液体流路22内に突出して、先端30Aがエジェクションポート28の位置に開口される液体噴出のための前記ノズル30が設けられている。
 このノズル30の内側には、図12、図13に拡大して示されるように、円周方向に4枚の固定翼42からなる前記旋回流形成装置40がノズル30の基端30Bからノズル30内に挿入して固定されている。
 ここでは、ノズル30内を流れる時に旋回流形成装置40によって旋回流とされた液体は旋回流のまま先端30Aから噴出される構成であるが、ノズル30の先端30Aの位置は、該先端30Aから先の旋回流により形成される負圧によってエジェクションポート28から吸い出される気体の吐出流が、旋回流に流入されるように決定されている。
 ノズル30は、その先端30Aを間隔を空けて囲む円筒形状ガイドにより構成された気体ガイド装置44を備えている。
 気体ガイド装置44は、エジェクションポート28から液体流路22内に吸い出される気体の吐出流を、ノズル30の先端30Aから噴出される液体の旋回流に流入すべく導くようにされている。
 更に詳細には、ノズル30は先細りのテーパ形状とされ、気体ガイド装置44は、液体の噴出方向に先細りのテーパ内周面44Aを有し、且つ、テーパ内周面44Aの軸方向中間部分が、ノズル30の先端30Aの位置となるようにノズル30にねじ(図示省略)により、取り付けられている。
 気液混合部20の、流入ポート24には、図11に示されるように、流入管52がねじ込みにより接続されている。又、吐出ポート26には、吐出管54が流入管52と同様にねじ込みにより接続されている。更に、エジェクションポート28にも、気体導入管28Aがねじ込みにより接続されている。この気体導入管28Aの途中には、気体導入量制御弁28Bが設けられている。
 加圧液体供給系統50は、前記流入管52及び吐出管54と、流入管52に微細気泡を含む加圧液体を供給可能の加圧ポンプ56と、加圧ポンプ56の吸入側に接続され、気体が混合されるべき液体を供給する原液供給管57と、加圧ポンプ56の吐出側に接続され、加圧された液体を送り出す圧送管58とを備えている。
 圧送管58の途中には、流入管52が接続され、原液供給管57には吐出管54が接続され、気液混合部20で形成された超微細気泡含有液体の一部を、吐出管54、原液供給管57、加圧ポンプ56、圧送管58、流入管52を経て気液混合部20の流入ポート24に還流するように構成されている。図1の符号56Aは加圧ポンプ56を駆動するためのモータを示す。
 加圧液体供給系統50の圧送管58は、図14、15に示される前記気泡含有液体分離装置60に接続されて、ここに超微細気泡含有液体を加圧状態で供給するようにされている。
 気泡含有液体分離装置60は、断面円形の蓄積型加圧液体タンクからなり、タンク上部側面に設けられ、圧送管58を経て圧送されてくる超微細気泡含有液体が流入する加圧液体流入ポート61と、タンク下部側面に設けられた加圧液体吐出ポート62と、タンク上端に設けられた中心部液体排出ポート63と、加圧液体流入ポート61の内側に設けられ、流入する加圧液体をタンク内円周面に沿う下向きの旋回流とする旋回流形成パイプ64とを備えて構成されている。
 旋回流形成パイプ64は、図15に示されるように、加圧液体流入ポート61から、円形のタンク断面において半径方向に流入する加圧された超微細気泡含有液体を、円形断面のタンクの内周面に沿って反時計廻りで、且つ、やや斜め下向きの螺旋流となるように、加圧液体を導くように構成されている。
 加圧液体流入ポート61から流入した液体は、タンク下部側面に設けられた加圧液体吐出ポート62と中心部液体排出ポート63とからタンク外に吐出され、それぞれの排出量は、中心部液体排出ポート63近傍に設けられた排出量制御弁65によって制御されるようになっている。
 タンクに流入する加圧液体は、旋回流形成パイプ64により旋回流とされるが、中心部液体排出ポート63は、タンク上端面中心部位置に設けられているので、タンク内の旋回流における中心部分の液体が該中心部液体排出ポート63から排出され、又、旋回流の外側部分の液体は、加圧液体吐出ポート62から排出される。
 タンク内液体は旋回流によって、超微細気泡を含んで比較的比重の大きい部分が旋回の外側に、又これより大きい気泡を含む液体は比較的比重が小さく、旋回流の中心部分に集まるので、タンク内に流入した液体の、比較的大きな気泡を含む部分が中心部液体排出ポート63から排出され、残りの液体は超微細気泡をより多く含む状態で加圧液体吐出ポート62から排出されることになる。これにより微細気泡が大きな気泡に接触して包含される機会が少なくなり、微細気泡が壊れにくくなる。
 次に、上記超微細気泡含有液体製造装置10により、超微細気泡含有液体を製造する過程について説明する。
 まず、加圧ポンプ56により、気体が混合されるべき原液を、原液供給管57から吸入して、圧送管58から加圧して送り出す。
 圧送管58内の液体は一部が流入管52、流入ポート24を経て気液混合部20に至る。又、残りは、気泡含有液体分離装置60の加圧液体流入ポート61に至る。
 気液混合部20の流入ポート24から流入された液体は、ノズル30の基端30Bに設けられた旋回流形成装置40によって旋回流とされたまま、ノズル30の先端30Aから液体流路22内に噴出される。噴出から一定時間経過後の定常状態では、気液混合部20内の圧力が外部の圧力よりも高くされ、例えば2.5~6.0kg/cm2となるようにする。
 噴出された液体は、液体流路22内での流れの方向の速度に加えて、旋回流の速度成分が大きいので、エジェクションポート28にかかる負圧は通常の直線状に液体を流す場合と比較して2~3倍以上の大きさとなり、気液混合部20内の圧力が外部の圧力より高くても、エジェクションポート28から確実に気体を吐出させることができる。
 ノズル30の先端30Aから噴出される液体の螺旋流は液体流路22内の液体やエジェクションポート28からの気体を巻き込んで螺旋流を成型する。
 エジェクションポート28から吸い出された気体は、ノズル30のテーパ外周面31に沿って、気体ガイド装置44のテーパ内周面44Aとの間に螺旋流として巻き込まれ、ここで、ノズル30から噴出された液体の螺旋流に強く混合される。
 その過程で、気体が混合された螺旋流内ではキャビテーションの発生、破壊が繰り返され、その都度、気体が形成する気泡は小さく分裂され、大きさがほとんど100nm以下、30nm以下、更には10Å~3Åの超微細気泡となる。
 超微細気泡を含む液体は気液混合部20の吐出ポート26、吐出管54を経て、原液供給管57に至り、ここから、加圧ポンプ56によって吸引され、且つ、加圧されて、圧送管58から送り出される。送り出された加圧液体の一部には、前述と同様に、気液混合部20に供給されて、キャビテーションによる気泡の発生、破壊を繰り返し、残っていた大きい気泡も、更に小さい超微細気泡とされる。
 超微細気泡含有液体における、含有される気泡のサイズはほとんど100nm以下であるが、気液混合部20を複数回通過させることによって30nm以下の割合が増加する。又、気泡の全部ではないが10Å未満、3Å以上の気泡を確認することができた。例えば、予め空隙の大きさが3Å以上に設計された人工ゼオライトを利用して、次のように測定することができる。
 空隙の大きさが各々3Å、4Å、5Å、7Å、10Åの人工ゼオライトにマグネシウム、セシウム陽イオンを吸着させてから、これを繰り返し純水で洗浄し、ろ過液の溶出する陽イオン量が一定となった段階で、超微細気泡を含む水と混合攪拌したとき、マグネシウム、セシウム陽イオンが顕著に溶出したことを確認した。
 また、空隙にマグネシウム、セシウム陽イオンが入り込んでいるゼオライトは、そのままでは水中に沈むが、超微細気泡含有水に接触させると、人工ゼオライトは比重が小さくなって浮き上がることが確認できた。これは、上記のマグネシウム、セシウム陽イオンが顕著に溶出したことと合わせると、超微細気泡が人工ゼオライトの空隙内のマグネシウム、セシウム陽イオンを排出して入り込んだためと推定できる。なお、ゼオライトの空隙の大きさよりも大きい気泡は空隙に入ることができない。
 上記と同様の方法の繰り返しによって、本発明者は、製造された超微細気泡含有水中に、大きさが10Å未満~3Å以上の気泡があることを確認できた。
 ここで、10Å未満と確認したのは、超微細気泡を水に混合した場合、大きさが10Å未満となると、可視光の波長以下となり、透明な超微細気泡は目視では確認できなくなるが、この微細気泡と人工ゼオライトの細孔径10Å以下で上記の現象が惹起したので、これをもって、10Å未満であるとした。なお、超微細気泡は、その大きさが、従来測定不能であるとされた30nm以下の大きさの場合を言うものとする。
 液体を水、気体を空気とした実験によれば、目視により確認できなかった、大きさが10Å未満の気泡を含む超微細気泡を、圧送管58の出口から吐出された超微細気泡含有水600t/日から1250t/日の水量について、15から20リットル/分の速度で溶解させることができた。
 上記実施例では、液体の旋回流をエジェクターに作用させて、気体を吸い出すようにした気液混合部20を用いているが、直進する液体の流れを単にポートに作用させる構造の一般的なエジェクターであっても、わずかに超微細気泡が発生するので、上記のような気泡含有液体分離装置を用いて時間をかけて超微細気泡を選別するか、気泡含有液体分離装置を多段に設けて選別すれば、超微細気泡の含有量の多い液体を製造できる。
 超微細気泡含有液体は、圧送管58を経て、気泡含有液体分離装置60の加圧液体流入ポート61に供給される。
 加圧液体流入ポート61から供給された加圧液体は、タンク形状の気泡含有液体分離装置60内に常時充満され、加圧液体の流入量に見合うだけ、中心部液体排出ポート63と加圧液体吐出ポート62から外部に排出される。
 気泡含有液体分離装置60内に充満された加圧液体中に、圧送管58から加圧液体流入ポート61を経て供給された加圧液体は、旋回流形成パイプ64によって、気泡含有液体分離装置60を構成するタンクの内周面に沿う斜め下向きの旋回流となってタンク内に流れ込む。
 これによって、タンク内では下向きで反時計回りの大きな旋回流が形成され、その中心部には、比較的大きい気泡を含む比重の小さい液体が集まり、タンク内周面に沿う部分には、比較的小さな超微細気泡を含んで比重が大きい超微細気泡含有液体が集まり、前者は、中心部液体排出ポート63から排出され、後者は加圧液体吐出ポート62から排出される。
 微細気泡は大きさが小さくなるほど、上昇速度が遅くなることが物性として判っており、この旋回流を利用した機構により、大きな気泡と小さな微細気泡の分離が進む結果として旋回流中に超微細気泡の割合が増えた液体が加圧液体吐出ポート62から流出する。比較的大きな気泡は旋回中に遠心力により超微細気泡群から分離され上昇し、タンク上部の中心部付近に集まり、効率的に排出される。
 分離された比較的大きい気泡は、超微細気泡を加えた全気泡量の約5%であったが、これをぼぼ全量分離除去できた。
 従って、加圧液体吐出ポート62から排出される超微細気泡含有液体には、100nm以下あるいは30nm以下、10Å以上の微細気泡の存在量がわずかになり、10Å以下のサイズの超微細気泡の含有割合が大きくなる。
 上記作用機序により、超微細気泡が、わずかに存在する大きさが10Å以上の比較的大きな微細気泡に合一して失われることが無くなり、超微細気泡独特の機能を後段で発揮させることができるようになる。
 また、次のようにしても、超微細気泡の存在を確認することができた。
I 材料・装置
1.材料;
(1)試験用水・・・煮沸後除冷した純水(溶存空気のない水)
(2)人工ゼオライト・・・1nm未満サイズの細孔を有するもの1.5g
(3)1000mg/lのCS水溶液を600ml
2.装置;
(1)攪拌装置(4基)
(2)超微細気泡加圧水製造装置
(3)観賞魚水槽用エアバブル発生装置
(4)溶存酸素(DO)測定装置(溶存酸素計)
(5)Csイオン検出用原子吸光度計
II 手順
1.人工ゼオライト1.5gを、1000mg/l濃度のCs水溶液600mlに投入して攪拌装置(1基)により攪拌し、ゼオライトにCs微粒子を吸着させる。
2.Cs微粒子を吸着したゼオライトを試験用水により、よく洗浄する。
(Csイオンの原子吸光度分析により、洗浄水からCsイオンが検出されなくなるまで攪拌装置により洗浄する。)
3.洗浄後、ゼオライトを濾過して取り出し、水切りする。水切り後に3等分する。
4.次の3種類のサンプル水を作製する。
(1)超微細気泡加圧水製造装置により、試験用水に超微細気泡を加えて超微細気泡含有水を作製する。そのうちの100mlを1号サンプル水として採取する。
(2)観賞魚水槽用エアバブル発生装置により、試験用水にエアバブルを加えたバブル含有水を作製する。そのうちの100mlを2号サンプル水として採取する。
(3)試験用水にエアバブルを加えないでそのまま100mlを採取して3号サンプル水とする。
(注)(1)(2)は、それぞれ充分な時間、バブルを加える。
5.1~3号サンプル水のDOを溶存酸素計により測定する。
6.4.(1)(2)の水中に、目視によりバブルを確認できなくなるまで一定時間静置する。
7.再度1~3号サンプル水のDOを溶存酸素計により測定する。
これにより1号サンプル水により多くの酸素が溶存していることが解る。
8.1~3号サンプル水を別個の攪拌装置に注入し、各々に、3.で水切りされたゼオライトを等量投入して、各々のDOを溶存酸素計により測定し、Csイオン濃度を原子吸光度計で測定する。
9.一定時間攪拌後に、ゼオライトを濾過した各サンプル水のDOを溶存酸素計により測定し、Csイオン濃度を原子吸光度計で測定する。
 1号サンプル水では、より多くの酸素がゼオライトに移行し、また、ゼオライトからCsイオンが流出したことが解る。
 図7に上記確認手順のフローチャートを示す。
 上記において、気液混合部20には、繰り返し超微細気泡含有液体が循環される構成となっているが、本発明はこれに限定されるものでなく、気液混合部20において最終的に超微細気泡が形成される前段階で、少なくとも超微細気泡よりもやや大きい気泡を含む微細気泡含有液体の状態で気液混合部20に供給される構成であっても良い。
 例えば、図17に示される超微細気泡含有液体製造装置11のように、前記気液混合部20に相当する第1の気液混合部70と、この第1の気液混合部70に微細気泡含有液体を供給する前記気液混合部20に相当する第2の気液混合部72とを2段構成として設け、第1の気液混合部70からの超微細気泡含有液体を循環させる必要が無いようにする。
 この場合、第1の気液混合部70に微細気泡含有液体を供給する第1の加圧ポンプ74と、第2の気液混合部72に原液体を加圧して供給する第2の加圧ポンプ76とを設る。
  汚染土壌汚染水の浄化事業、石油等が分散した海水、水から石油等の微小粒子を分離回収する事業、従来回収が困難だった超微粒子金属を回収する事業に利用可能性がある。
 10…超微細気泡含有液体製造装置
 20…気液混合部
 22…液体流路
 24…流入ポート
 26…吐出ポート
 28…エジェクションポート
 28A…気体導入管
 28B…気体導入量制御弁
 30…ノズル
 30A…先端
 30B…基端
 40…旋回流形成装置
 42…固定翼
 44…気体ガイド装置
 44A…テーパ内周面
 50…加圧液体供給系統
 52…流入管
 54…吐出管
 56…加圧ポンプ
 57…原液供給管
 58…圧送管
 60…気泡含有液体分離装置
 61…加圧液体流入ポート
 62…加圧液体吐出ポート
 63…中心部液体排出ポート
 64…旋回流形成パイプ
 65…排出量制御弁
 70…第1の気液混合部
 72…第2の気液混合部
 74…第1の加圧ポンプ
 76…第2の加圧ポンプ
 80、90…超微細気泡洗浄装置
 82…貯液部
 84…攪拌装置
 85…上澄液排出装置
 85A…ポンプ
 85B…浮上分離物回収装置
 85C…凝集反応槽
 86…沈殿物取出装置
 87…被洗浄物投入装置
 88…ホッパー
 89A…タンク
 89B…ポンプ
 92A…第1小貯液部
 92B…第2小貯液部
 94A…第1攪拌装置
 94B…第2攪拌装置
 95…透水性砕石路盤
 100…加圧浮上装置
 101A…流入口
 101B…排出口
 102…加圧浮上槽
 103…循環装置
 103A…旋回吐出管
 103B…旋回流ガイド
 103C…隙間
  104…分離物取出装置
 104A…エンドレスチェーン
 104B…スキマー
 104C…フィードスクリュー
 105…凝集剤反応槽装置
 105A…放射性物質吸着剤自動溶解装置
 105B…有機系凝集剤自動溶解装置
 105C…無機系凝集剤自動溶解装置
 105D…凝集剤反応槽
 105E…攪拌装置
 106…加圧液体管
 107…吸入管
 108…集合管
 109…上昇管
 110…サブタンク
 111…レベル調整管
 111A…吸入口
 112…排出調整装置
 113…脱水固形化装置

Claims (13)

  1.  水槽、池等の貯液部に貯められた大きさが30nm未満、3Å以上の超微細気泡を含む超微細気泡含有液体中に、土、砂、石、落葉、ガレキ、板材、シート等の被洗浄物を入れた状態で、前記超微細気泡含有液体を攪拌して、前記被洗浄物に付着した微粒子を洗い落とすとともに、超微細気泡の界面に微粒子を吸着させて、浮上分離物として浮上させ、且つ、超微粒子が洗い流された前記被洗浄物を沈殿分離物として沈殿させ、前記浮上分離物を含む上澄液を排出することにより、前記被洗浄物を洗浄する超微細気泡洗浄方法。
  2.  請求項1において、
     前記貯液部は、複数の水槽、池、沼あるいは1つの池又は沼を仕切った第1及び第2小貯液部からなり、
     前記第1小貯液部に被洗浄物を連続的に投入しつつ、底部の沈殿物を搬出して、前記第2小貯液部に投入する工程と、前記第2小貯液部に超微細気泡含有液体を注入しつつ、この第2小貯液部の上澄液を前記第1小貯液部に送る工程を繰返して、第1小貯液部で洗浄済の被洗浄物を第2小貯液部においてすすぎ洗浄することを特徴とする超微細気泡洗浄方法。
  3.   請求項1又は2において、
      前記超微細気泡含有液体は、大きさが10Å未満、3Å以上の超微細気泡を含んでいることを特徴とする超微細気泡洗浄方法。
  4.   原油、絶縁油等の有機物の微小液滴が分散している原水中に、大きさが30nm未満、3Å以上の超微細気泡を含有する超微細気泡含有水を混合、攪拌して前記微小液滴に超微細気泡を付着し、その浮力により前記微小液滴を浮上分離させることを特徴とする超微細気泡洗浄方法。
  5.  大きさが30nm未満、3Å以上の超微細気泡を含む超微細気泡含有液体を貯溜するとともに、貯溜された液体中に、土、砂、石、落葉、ガレキ、板材、シート等の被洗浄物を収容可能な水槽、池等の貯液部と、
     前記貯液部内に設置され、内部に貯溜された液体を攪拌する攪拌装置と、
     前記攪拌により、前記超微細気泡含有液体中の超微細気泡の界面に吸着された浮上分離物及び吸着されなかった沈殿分離物のうち、沈殿分離物が沈殿した後の浮上分離物を含む上澄液を排出する上澄液排出装置と、
     前記沈殿した沈殿分離物を取出す沈殿物取出装置と、
     を有してなる超微細気泡洗浄装置。
  6.  請求項5において、
     前記貯液部は、第1小貯液部及び第2小貯液部からなり、
     前記第1小貯液部には、第1攪拌装置、第1上澄液排出装置、第1沈殿物取出装置が設けられ、
     前記第2小貯液部には、第2攪拌装置、第2上澄液排出装置、第2沈殿物取出装置が設けられ、
     前記第1沈殿物取出装置は、前記第1小貯液部から連続的に取出した洗浄済の沈殿物を、前記第2小貯液部に連続的に投入するように構成され、
     前記第2上澄液排出装置は、前記第2小貯液部における上澄液を連続的に、前記第1小貯液部に洗浄水として供給するように構成され、
     前記第1上澄液排出装置は、前記第1小貯液部の上澄液を洗浄後廃液として排出するように構成され、
     前記第2沈殿物取出装置は、前記第2小貯液部における沈殿物をすすぎ洗浄済被洗浄物として排出するように構成されたことを特徴とする超微細気泡洗浄装置。
  7.  請求項5又は6において、
     前記攪拌装置は、前記貯液部内に大きさが30nm未満、3Å以上の超微細気泡を含む超微細気泡含有液体を新たに噴出させることにより、前記貯液部内の液体を攪拌するように構成されたことを特徴とする超微細気泡洗浄装置。
  8.   油、絶縁油等の有機物の微小液滴が分散している原水を収容可能な水槽、池等の貯液部と、前記貯液部の原水中に、大きさが30nm未満、3Å以上の超微細気泡を含有する超微細気泡含有水を供給する超微細気泡含有水供給装置と、前記貯液部内に設置され、内部に貯溜された原水を攪拌する攪拌装置と、前記攪拌により、前記超微細気泡含有液中の超微細気泡の界面に吸着浮上された微小液滴を排出する浮上物液排出装置とを有してなる超微細気泡洗浄装置。
  9.   請求項5乃至8のいずれかにおいて、
     前記超微細気泡含有液体は、大きさが10Å未満、3Å以上の超微細気泡を含んでいることを特徴とする超微細気泡洗浄装置。
  10.  一端に流入口を備えた加圧浮上槽を含み、原液体加圧された微細気泡含有液体を混合して、前記加圧浮上槽内に前記流入口から注入し、前記加圧浮上槽内に、原液体中の浮遊物や溶解している成分を微細気泡の界面に吸着させて浮上させ、原液体から浮遊分離物として取出すとともに、残りの原液体を処理済液として排出する加圧浮上装置であって、
     前記加圧浮上槽内で、原液体と、大きさが30nm未満、3Å以上の超微細気泡を含む超微細気泡含有液体との混合液体を循環させる循環装置と、
      前記加圧浮上槽内で、前記超微細気泡含有液体に含有される超微細気泡によりを液面に浮上された浮上分離物を取出す浮上分離物回収装置と、
     を有してなる加圧浮上装置。
  11.  請求項10において、
     前記循環装置は、
      前記加圧浮上槽内の下部に突出して設けられ、前記原液体と前記超微細気泡含有液体との混合液体を、前記加圧浮上槽内に旋回吐出流として噴出させる旋回吐出管と、
     上下端が開口した筒状体であって、前記旋回吐出流を斜め上向きの旋回流とする旋回流ガイドと、
      前記旋回流ガイドの下端開口と前記加圧浮上槽の底部との間の隙間とを含むことを特徴とする加圧浮上装置。
  12.  請求項10又は11において、
     前記加圧浮上槽への原液体の入側に設けられた、原液体と超微細気泡含有液体を混合する前に、前記原液体に、有機系凝集剤、無機系凝集剤、放射性物質吸着剤の少なくとも1つを、凝集剤として混合とするようにされた凝集剤反応槽装置、
     を有してなる加圧浮上装置。
  13.   請求項10乃至12のいずれかにおいて、
     前記超微細気泡含有液体は、大きさが10Å未満、3Å以上の超微細気泡を含んでいることを特徴とする加圧浮上装置。

     
     
     
PCT/JP2015/057469 2014-03-14 2015-03-13 超微細気泡含有液体を用いる超微細気泡洗浄方法、その装置及び加圧浮上装置 WO2015137484A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016507844A JP6120427B2 (ja) 2014-03-14 2015-03-13 超微細気泡含有液体を用いる超微細気泡洗浄方法、その装置及び加圧浮上装置
US15/125,337 US20170072408A1 (en) 2014-03-14 2015-03-13 Ultrafine bubble cleaning method using ultrafine bubble-containing liquid, apparatus therefor, and dissolved air floatation apparatus
US16/047,920 US20190060913A1 (en) 2014-03-14 2018-07-27 Ultrafine bubble cleaning method using ultrafine bubble-containing liquid, apparatus therefor, and dissolved air floatation apparatus
US16/998,410 US11311921B2 (en) 2014-03-14 2020-08-20 Ultrafine bubble cleaning method using ultrafine bubble-containing liquid, apparatus therefor, and dissolved air floatation apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-052788 2014-03-14
JP2014052788 2014-03-14
JP2014-206019 2014-10-06
JP2014206019 2014-10-06
JP2014258025 2014-12-19
JP2014-258025 2014-12-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/125,337 A-371-Of-International US20170072408A1 (en) 2014-03-14 2015-03-13 Ultrafine bubble cleaning method using ultrafine bubble-containing liquid, apparatus therefor, and dissolved air floatation apparatus
US16/047,920 Continuation US20190060913A1 (en) 2014-03-14 2018-07-27 Ultrafine bubble cleaning method using ultrafine bubble-containing liquid, apparatus therefor, and dissolved air floatation apparatus

Publications (1)

Publication Number Publication Date
WO2015137484A1 true WO2015137484A1 (ja) 2015-09-17

Family

ID=54071920

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/057469 WO2015137484A1 (ja) 2014-03-14 2015-03-13 超微細気泡含有液体を用いる超微細気泡洗浄方法、その装置及び加圧浮上装置
PCT/JP2015/057468 WO2015137483A1 (ja) 2014-03-14 2015-03-13 放射性物質汚染水の除染方法及びシステム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057468 WO2015137483A1 (ja) 2014-03-14 2015-03-13 放射性物質汚染水の除染方法及びシステム

Country Status (3)

Country Link
US (3) US20170072408A1 (ja)
JP (2) JP6120427B2 (ja)
WO (2) WO2015137484A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047796A1 (ja) * 2015-09-18 2017-03-23 株式会社ピーシーエス 超微細気泡含有水製造方法、超微細気泡含有水製造装置及び飲食用成分の水抽出方法
JP2017217601A (ja) * 2016-06-07 2017-12-14 株式会社東芝 同位体分離方法及び同位体分離装置
CN108714596A (zh) * 2018-06-12 2018-10-30 金寨县金银山农业科技开发有限公司 一种具有除杂功能的种子清洗装置
CN109866356A (zh) * 2019-03-25 2019-06-11 刘庆彩 一种pet瓶片除废系统
US11344822B2 (en) * 2017-04-28 2022-05-31 Nano Gas Technologies Inc. Nanogas shear processing

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891269A (zh) * 2016-06-21 2016-08-24 天津师范大学 采用碳纳米材料调控草坪堆肥基质与生物可利用性的方法
CN106881068B (zh) * 2017-01-25 2019-02-01 南京航空航天大学 纳米普鲁士蓝修饰天然多孔吸附材料的原位辐照制备方法
JP6672192B2 (ja) * 2017-01-31 2020-03-25 三菱重工業株式会社 原子炉格納構造、気泡発生装置の操作方法
CN110095802B (zh) * 2018-01-31 2022-07-29 中国辐射防护研究院 一种模拟研究放射性固体废物处置过程中氢气产生的方法
KR102187627B1 (ko) * 2018-10-19 2020-12-07 한국산업기술시험원 가연성 폐기물 재활용 방법 및 이를 위한 장치
KR102179479B1 (ko) * 2019-04-23 2020-11-16 한국전력기술 주식회사 방사성세슘으로 오염된 폐액에서 세슘을 제거하는 폐액 처리 방법 및 이를 위한 장치
CN110068663A (zh) * 2019-04-25 2019-07-30 西南科技大学 一种海洋核污染程度的评估方法
JP2022539053A (ja) * 2019-07-04 2022-09-07 ダニエル トウネィア, 液体から廃棄物を除去するシステムおよび手法
JP7430563B2 (ja) 2020-04-02 2024-02-13 東京パワーテクノロジー株式会社 液中の放射性セシウム濃度の測定方法
CN111790741B (zh) * 2020-06-09 2022-12-20 中国检验检疫科学研究院 一种气液固多相流场强化清洗的方法
KR102440927B1 (ko) * 2020-10-06 2022-09-06 한밭대학교 산학협력단 하천 부유물 분리장치
CN112657336B (zh) * 2020-12-03 2023-10-17 郑州大学 一种稳定同位素浮游萃取精密分离的方法
CN113713891A (zh) * 2021-08-28 2021-11-30 李金雨 一种太阳能电池废料回收再制备处理工艺
CN113926324B (zh) * 2021-09-03 2023-08-22 郑州大学 一种利用二氧化碳液气相变制备微泡的方法及微泡的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162518A (ja) * 2009-01-19 2010-07-29 Sharp Corp 水処理装置および水処理方法
JP2011066389A (ja) * 2006-03-20 2011-03-31 Eiji Matsumura オゾン水処理方法及びオゾン水処理装置
JP2013140096A (ja) * 2012-01-05 2013-07-18 Sunstar Engineering Inc 放射性物質汚染物の汚染除去方法
JP2013180213A (ja) * 2012-02-29 2013-09-12 Chiyoda Kako Kensetsu Kk 随伴水の処理方法及び処理装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242503A (en) * 1990-12-17 1993-09-07 Westinghouse Electric Corp. Method of restoring contaminated solids using ion exchange powder contact
JP2544057B2 (ja) * 1992-01-31 1996-10-16 ジャパン・フィールド株式会社 被洗浄物の濯ぎ方法およびその装置
JP2910955B2 (ja) 1992-03-30 1999-06-23 マツダ株式会社 混濁物分離装置
US5376182A (en) * 1993-03-17 1994-12-27 Remsol (U.S.A.) Corporation Surfactant soil remediation
JP2001009446A (ja) * 1999-06-29 2001-01-16 Meidensha Corp 加圧浮上分離処理方法及びその装置
JP2004230367A (ja) * 2003-01-30 2004-08-19 Pcs:Kk 微細気泡発生を特徴とする加圧浮上処理装置
CN101421058B (zh) * 2006-04-11 2011-05-18 犹他州立大学研究基金会 用于除去环境样品中污染物的加压-降压循环
JP2008154656A (ja) * 2006-12-21 2008-07-10 Sanyo Electric Co Ltd 洗浄装置における水再利用方法及び洗濯機
JP4455631B2 (ja) * 2007-09-03 2010-04-21 株式会社東芝 固液分離装置
JP5127559B2 (ja) * 2008-05-13 2013-01-23 株式会社東芝 固液分離装置
JP2012242254A (ja) * 2011-05-20 2012-12-10 Taiheiyo Cement Corp 汚染土壌の原位置浄化方法
WO2012165488A1 (ja) * 2011-05-31 2012-12-06 東レ株式会社 混合材料の洗浄分別方法および洗浄分別装置
JP6032633B2 (ja) * 2011-07-05 2016-11-30 国立大学法人北海道大学 放射能汚染水中の放射性物質の除去方法及び装置
JP2013148569A (ja) * 2011-07-19 2013-08-01 Tomihisa Ota 特定元素除去方法
JP2013057575A (ja) * 2011-09-07 2013-03-28 Hokkaido Univ 放射性物質により汚染された土壌の除染方法
JP5438740B2 (ja) * 2011-10-05 2014-03-12 株式会社ピーシーエス 加圧水を用いた広域に拡散した放射能汚染物質の除去方法
WO2013075240A1 (en) * 2011-11-21 2013-05-30 Xogen Technologies Inc. Treatment of a waste stream through production and utilization of oxyhydrogen gas
JP4970627B1 (ja) * 2012-02-13 2012-07-11 株式会社フレスコーヴォ 汚染物質分離除去方法
JP2013178149A (ja) * 2012-02-28 2013-09-09 Hitachi Ltd 土壌含有放射性物質の分離方法
JP5986763B2 (ja) * 2012-03-16 2016-09-06 三菱重工業株式会社 汚染物質の処理装置及び処理方法
JP2013202452A (ja) * 2012-03-27 2013-10-07 Kurita Water Ind Ltd 水処理方法
JP5789835B2 (ja) * 2012-04-12 2015-10-07 ワイレックス・リウォーター株式会社 放射性物質の除去方法及び除去システム
JP2014016301A (ja) * 2012-07-11 2014-01-30 Binos Corp 放射性物質に汚染された被除染物の除染方法、および除染システム
JP2014085172A (ja) * 2012-10-22 2014-05-12 Ihi Corp 懸濁物分離装置および懸濁物分離方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066389A (ja) * 2006-03-20 2011-03-31 Eiji Matsumura オゾン水処理方法及びオゾン水処理装置
JP2010162518A (ja) * 2009-01-19 2010-07-29 Sharp Corp 水処理装置および水処理方法
JP2013140096A (ja) * 2012-01-05 2013-07-18 Sunstar Engineering Inc 放射性物質汚染物の汚染除去方法
JP2013180213A (ja) * 2012-02-29 2013-09-12 Chiyoda Kako Kensetsu Kk 随伴水の処理方法及び処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047796A1 (ja) * 2015-09-18 2017-03-23 株式会社ピーシーエス 超微細気泡含有水製造方法、超微細気泡含有水製造装置及び飲食用成分の水抽出方法
JP2017217601A (ja) * 2016-06-07 2017-12-14 株式会社東芝 同位体分離方法及び同位体分離装置
US11344822B2 (en) * 2017-04-28 2022-05-31 Nano Gas Technologies Inc. Nanogas shear processing
CN108714596A (zh) * 2018-06-12 2018-10-30 金寨县金银山农业科技开发有限公司 一种具有除杂功能的种子清洗装置
CN109866356A (zh) * 2019-03-25 2019-06-11 刘庆彩 一种pet瓶片除废系统
CN109866356B (zh) * 2019-03-25 2021-04-20 新沂市锡沂高新材料产业技术研究院有限公司 一种pet瓶片除废系统

Also Published As

Publication number Publication date
JPWO2015137483A1 (ja) 2017-04-06
JPWO2015137484A1 (ja) 2017-04-06
WO2015137483A1 (ja) 2015-09-17
JP6120427B2 (ja) 2017-05-10
JP6198165B2 (ja) 2017-09-20
US20170072408A1 (en) 2017-03-16
US20190060913A1 (en) 2019-02-28
US20200376526A1 (en) 2020-12-03
US11311921B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
JP6120427B2 (ja) 超微細気泡含有液体を用いる超微細気泡洗浄方法、その装置及び加圧浮上装置
US10421669B2 (en) Dissolved air flotation device
KR101758594B1 (ko) 복합 및 선택 운전이 가능한 부상침전통합형 오폐수 처리 시스템
KR100952752B1 (ko) 미세토양 세척장치 및 방법
JPS5884093A (ja) 固形分−液体分離装置
KR101782615B1 (ko) 복합 오염 토양의 정화 시스템 및 방법
CN202224253U (zh) 一种旋流器及气浮选装置
KR101278958B1 (ko) 폐수처리시스템
CN105330069B (zh) 气浮过滤处理装置
CN107522310A (zh) 不加药处理含油污水回注工艺
JP6170552B2 (ja) 海水淡水化装置及びその方法
JP6284156B2 (ja) 汚染物質分離減容化システム及び方法
JP6381412B2 (ja) 海水淡水化装置及びその方法
KR101297293B1 (ko) 스컴 농축 기능을 구비한 부상 분리 장치
KR101773379B1 (ko) 사이클론을 포함하는 수평형 유도가스 부상분리를 이용한 유수처리 장치 및 그 방법
KR101282596B1 (ko) 음식물 탈리액 유분 분리 장치
KR20150029938A (ko) 수처리 장치
DK162022B (da) Fremgangsmaade til koncentrering af en suspension af mikroskopiske partikler, apparat til udoevelse af denne fremgangsmaade samt anvendelser af fremgangsmaaden
KR101164660B1 (ko) 저수지 및 연못 수질정화를 위한 용존공기부상 처리시스템
KR101979767B1 (ko) 침전과 부상분리공정 일체형 고효율 침전부상 시스템 및 그의 구동 방법
KR20170136027A (ko) 희토류 추출 폐수 중 오일성분을 처리하는 오일 부상조
CN208218448U (zh) 一种喷涂废水气浮处理设备
CN106430707A (zh) 一种用于含油污水处理的撬装系统
CN105330074B (zh) 气浮设备
KR101565149B1 (ko) 다단형 멀티사이클론을 활용한 농업용수 공급방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760631

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016507844

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15125337

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15760631

Country of ref document: EP

Kind code of ref document: A1