WO2015137204A1 - 恒温槽付水晶発振器 - Google Patents

恒温槽付水晶発振器 Download PDF

Info

Publication number
WO2015137204A1
WO2015137204A1 PCT/JP2015/056300 JP2015056300W WO2015137204A1 WO 2015137204 A1 WO2015137204 A1 WO 2015137204A1 JP 2015056300 W JP2015056300 W JP 2015056300W WO 2015137204 A1 WO2015137204 A1 WO 2015137204A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal oscillator
cover
substrate
metal cover
thermostat
Prior art date
Application number
PCT/JP2015/056300
Other languages
English (en)
French (fr)
Inventor
新井淳一
Original Assignee
日本電波工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電波工業株式会社 filed Critical 日本電波工業株式会社
Priority to US15/124,673 priority Critical patent/US10256825B2/en
Priority to CN201580012686.9A priority patent/CN106105025B/zh
Publication of WO2015137204A1 publication Critical patent/WO2015137204A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/028Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only of generators comprising piezoelectric resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/04Constructional details for maintaining temperature constant

Definitions

  • the present invention relates to a crystal oscillator with a thermostat, and more particularly, to a crystal oscillator with a thermostat capable of reducing the influence of heat from the outside and further stabilizing the output frequency.
  • a crystal oscillator with a thermostat has a thermostat that keeps the crystal oscillator at a constant temperature, and has high frequency stability.
  • the thermostat crystal oscillator is used in high-precision measuring instruments, mobile phone base stations, and the like.
  • FIG. 11 is a cross-sectional view showing a configuration of a conventional crystal oscillator with a thermostatic bath.
  • a conventional surface-mount type crystal oscillator with a thermostatic bath has an oscillation circuit 2 including a crystal resonator, a heater resistor 3 serving as a heat source, and a substrate 1 made of glass epoxy (Garaepo) or the like.
  • the power transistor 4 constituting the temperature control circuit is mounted.
  • the substrate 1 on which electronic components are mounted is fixed by solder in a state of being floated at a predetermined interval on a base 6 made of glass epoxy or the like by a plurality of pins (lead pins) 5, and the substrate 1 and the base 6 are electrically connected. It is connected to the.
  • a metal cover 7 is mounted and sealed on the base 6 so as to cover the substrate 1 and electronic components mounted thereon, and the base 6 and the cover 7 constitute a package.
  • the space forms a thermostat.
  • substrate 1 detects the temperature inside a thermostat, and the temperature control circuit containing the power transistor 4 is controlled to hold
  • OCXO keeps the inside at a high temperature, it becomes a heat-generating component for an apparatus equipped with OCXO, and it is necessary to consider exhaust heat. For example, it is conceivable to create a flow of air inside the apparatus using a fan or the like to exhaust heat.
  • Patent Document 1 discloses a piezoelectric device device including a first metal case that covers a piezoelectric vibrating piece, a second metal case that covers the first metal case, and a base plate to which the first metal case and the second metal case are joined. Is described. *
  • Patent Document 2 discloses a composite high-frequency component in which a piezoelectric crystal and a metal case covering the piezoelectric crystal are provided on a multilayer substrate in which dielectric layers are laminated, and a second metal case is further provided outside the metal case. Is described. *
  • Patent Document 3 in a crystal oscillator in which a metal cover is provided on a resin substrate, a concave portion is formed on the resin substrate, and a leg portion is formed on the metal cover so that the positional accuracy of the metal cover with respect to the resin substrate is improved. A configuration to enhance is described. *
  • Patent Document 4 describes a configuration in which a heat insulating material is provided inside a resin cover that covers a thermostatic bath.
  • the conventional crystal oscillator with a thermostatic bath is covered with a metal cover with good thermal conductivity on the outside, and when mounted on a device, the operation and environment of the mounted device are affected.
  • frequency fluctuations may occur due to minute current changes accompanying temperature control, which are easily affected by temperature changes caused by the temperature control.
  • Patent Documents 1 to 4 a resin cover is provided on the outside of the metal cover, or a double cover is provided by providing a metal cover on the outside of the resin cover. Is not described. *
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a crystal oscillator with a thermostatic chamber that can reduce the influence of heat from the outside and further stabilize the output frequency.
  • the present invention for solving the problems of the above-mentioned conventional example is a crystal oscillator with a thermostat, a crystal oscillator with a thermostat in which a substrate is mounted on a base, an oscillation circuit mounted on the substrate, A heater resistor, a temperature control circuit, a plurality of pins for fixing the substrate on the base at a predetermined interval, a first metal cover that covers the oscillation circuit, the heater circuit, and the temperature control circuit; A resin cover that covers the first metal cover is provided, and an air layer is formed between the first metal cover and the resin cover.
  • the present invention is characterized in that in the crystal oscillator with a thermostatic bath, the first metal cover and the resin cover are mounted on the base and are of surface mounting type.
  • the oscillation circuit, the heater resistor, the temperature control circuit, and the first metal cover are mounted on the upper surface of the substrate, and the resin cover is mounted on the base. It is characterized by being a pin type.
  • an electronic component and a second metal cover that covers the electronic component are mounted on the lower surface of the substrate, and the first metal cover and the second metal cover sandwich the substrate.
  • the upper and lower openings are formed so as to overlap each other.
  • the present invention for solving the problems of the above-mentioned conventional example is a crystal oscillator with a thermostat, a crystal oscillator with a thermostat in which a substrate is mounted on a base, an oscillation circuit mounted on the substrate, A heater resistor, a temperature control circuit, a plurality of pins for fixing the substrate on the base at predetermined intervals, a first resin cover that covers the oscillation circuit, the heater circuit, and the temperature control circuit, and mounted on the base, A metal cover that covers the first resin cover, and an air layer is formed between the first resin cover and the metal cover.
  • the present invention is characterized in that in the crystal oscillator with a thermostatic bath, the first resin cover and the metal cover are mounted on the base and are of surface mounting type.
  • the oscillation circuit, the heater resistor, the temperature control circuit, and the first resin cover are mounted on the upper surface of the substrate, and the metal cover is mounted on the base. It is characterized by being a pin type.
  • an electronic component and a second resin cover that covers the electronic component are mounted on the lower surface of the substrate, and the first resin cover and the second resin cover are mounted.
  • the cover is characterized in that the openings are formed so as to overlap with each other across the substrate.
  • the present invention is characterized in that the above-described crystal oscillator with a thermostatic bath includes a first resin cover that covers a plurality of pins in addition to the oscillation circuit, the heater resistance, and the temperature control circuit.
  • the present invention is characterized in that in the above-mentioned crystal oscillator with a thermostatic bath, a third resin cover for covering the metal cover is provided outside the metal cover.
  • a thermostatic chamber crystal oscillator having a substrate mounted on a base, the oscillation circuit mounted on the substrate, a heater resistor, a temperature control circuit, and the substrate on the base at predetermined intervals. A plurality of pins to be fixed; a first metal cover that covers the oscillation circuit, the heater circuit, and the temperature control circuit; and a resin cover that is mounted on the base and covers the first metal cover.
  • the first metal cover and the resin cover are mounted on the base, and the surface-mounted crystal oscillator with the thermostatic bath is used. There is an effect that a crystal oscillator with a thermostat can be provided at low cost.
  • the oscillation circuit, the heater resistor, the temperature control circuit, and the first metal cover are mounted on the upper surface of the substrate, the resin cover is mounted on the base, and the pin type is the above Since the crystal oscillator with a thermostat is used, there is an effect that a pin type crystal oscillator with a thermostat having high stability can be provided at low cost according to the application. *
  • the electronic component and the second metal cover that covers the electronic component are mounted on the lower surface of the substrate, and the first metal cover and the second metal cover include the substrate. Since the above-mentioned crystal oscillator with a thermostat is formed so that the openings overlap on the top and bottom, the entire space formed by the first metal cover and the second metal cover is used as a thermostat, There is an effect that the temperature control can be further stabilized and the output frequency can be further stabilized.
  • a thermostatic chamber crystal oscillator having a substrate mounted on a base, the oscillation circuit mounted on the substrate, a heater resistor, a temperature control circuit, and the substrate on the base with a predetermined A plurality of pins fixed at intervals, a first resin cover that covers the oscillation circuit, the heater circuit, and the temperature control circuit; a metal cover that is mounted on the base and covers the first resin cover; Since the crystal oscillator with a thermostatic chamber in which an air layer is formed between the resin cover 1 and the metal cover 1 is formed from the thermostatic chamber by forming the thermostatic chamber with a resin cover with low thermal conductivity. The heat radiation is reduced, and a shielding effect is obtained by the metal cover, and it works as a windshield and can stabilize the output frequency.
  • the first resin cover and the metal cover are mounted on the base, and the surface-mounted crystal oscillator with the thermostatic bath is used. There is an effect that a crystal oscillator with a thermostat can be provided at low cost.
  • the oscillation circuit, the heater resistor, the temperature control circuit, and the first resin cover are mounted on the upper surface of the substrate, the metal cover is mounted on the base, and the pin type is the above Since the crystal oscillator with a thermostat is used, there is an effect that a pin type crystal oscillator with a thermostat having high stability can be provided at low cost according to the application. *
  • the electronic component and the second resin cover that covers the electronic component are mounted on the lower surface of the substrate, and the first resin cover and the second resin cover include the substrate. Since the above-mentioned crystal oscillator with a thermostat is formed so that the openings overlap on the top and bottom, the entire space formed by the first resin cover and the second resin cover is used as a thermostat, There is an effect that the temperature control can be further stabilized and the output frequency can be further stabilized.
  • the above-mentioned crystal oscillator with a thermostat is provided with the first resin cover that covers the plurality of pins in addition to the oscillation circuit, the heater resistor, and the temperature control circuit, Thus, the heat remains, and the temperature can be controlled with a small amount of electric power.
  • the thermostat crystal oscillator is provided with the third resin cover that covers the metal cover outside the metal cover, the third resin cover allows heat conduction. There is an effect that the heat of the fan can be suppressed and the temperature control can be further stabilized by preventing the wind of the fan from hitting the metal cover having a high rate.
  • the crystal oscillator with a thermostatic bath includes an oscillation circuit, a heater resistor, and a temperature control circuit mounted on a substrate, and the substrate is fixed on the base at a predetermined interval by a plurality of pins.
  • a metal cover that covers the oscillation circuit, the heater circuit, and the temperature control circuit is provided, and a resin cover that covers the metal cover is mounted on the base, and there is an appropriate gap between the metal cover and the resin cover.
  • a space is formed and an air layer is formed, and the outer resin cover functions as a wind shield, prevents heat radiation from the inner metal cover, and can further stabilize the output frequency.
  • the crystal oscillator with a thermostatic bath includes an oscillation circuit, a heater resistor, and a temperature control circuit mounted on a substrate, and the substrate is fixed on the base at a predetermined interval by a plurality of pins.
  • a resin cover that covers the oscillation circuit, the heater circuit, and the temperature control circuit, and a metal cover that covers the resin cover is mounted on the base, and is disposed between the resin cover and the metal cover.
  • a constant-temperature bath crystal oscillator according to the first embodiment of the present invention will be described.
  • Each of the crystal oscillators with a thermostatic bath of each configuration according to the first embodiment is provided with a slightly larger resin cover outside the metal cover that covers the oscillation circuit, the heater resistor, and the temperature control circuit. Is a feature.
  • first to third crystal oscillators with a thermostat will be described.
  • FIG. 1 is a cross-sectional view showing a configuration of a first crystal oscillator with a thermostat according to a first embodiment of the present invention. As shown in FIG.
  • the first crystal oscillator with a thermostatic bath is a surface mount type (SMD) oscillator, and on a substrate 11 made of glass epoxy or the like, an oscillation circuit 12, a heater resistor 13, and The power transistor 14 is mounted, the substrate 11 is fixed by solder in a state of being floated on the base 16 by a plurality of pins 15 at a predetermined interval, and the substrate 11 and the base 16 are electrically connected.
  • the power transistor 14 corresponds to the temperature control circuit recited in the claims.
  • a metal cover 17 is mounted on the base 16 so as to cover the substrate 11, and the metal cover 17 is adhesively fixed on the base 11.
  • the metal cover 17 provides a shielding effect and can prevent external noise.
  • the first crystal oscillator with a thermostat As a feature of the first crystal oscillator with a thermostat, a resin cover 18 is further provided on the outside of the metal cover 17 and bonded and fixed on the base 11. That is, the first crystal oscillator with a thermostatic bath has a configuration in which the cover that covers the electronic components is doubled, the inner side is the metal cover 17, and the outer side is the resin cover 18. This configuration is common to the second and third thermostat crystal oscillators described later.
  • the resin cover 18 By providing the resin cover 18, even if wind is generated by a fan or the like in a device equipped with a quartz crystal oscillator with a thermostatic bath, the resin cover 18 functions as a windshield, and unnecessary heat dissipation from the metal cover 17. Is prevented, the current change due to frequent temperature control operation is suppressed, the influence on the electronic components in the metal cover 17 is reduced, and the output frequency is stabilized.
  • the resin cover 18 is formed of a thermoplastic resin such as a liquid crystal polymer or plastic, and has a lower thermal conductivity than that of a metal, making it less susceptible to external heat.
  • the thermal conductivity of brass which is a general metal cover material, is 106 Wm ⁇ 1 K ⁇ 1
  • the thermal conductivity of the resin is 0.1 to 0.5 Wm ⁇ 1.
  • K -1 which is considerably smaller than brass.
  • the resin cover 18 is formed to be slightly larger in both vertical and horizontal height than the metal cover 17, thereby forming a gap between the metal cover 17 and the resin cover 18. Air is normally enclosed in the gap, and this air layer improves the heat insulation effect. By appropriately setting the size of the resin cover 18, the heat insulation effect can be improved without increasing the size of the oscillator.
  • the resin is an insulator, there is no risk of short circuiting due to contact with the terminals when the resin cover 18 is mounted, and electrical considerations need not be made. Furthermore, the resin cover 18 can be bonded to the base 16 more easily than metal by a thermosetting or room temperature curable resin. By adopting such a configuration, a low-cost and highly stable crystal oscillator with a thermostat can be realized.
  • FIG. 2 is a cross-sectional view showing the configuration of the second thermostatic bath-equipped crystal oscillator.
  • the second crystal oscillator with a thermostatic bath is a pin type (lead type) oscillator, and an oscillation circuit 12, a heater resistor 13, and a power transistor 14 are mounted on a substrate 11 made of glass epoxy or the like.
  • a metal cover 17 covering the electronic component is mounted on the substrate 11 and the inside is sealed.
  • An electronic component such as the oscillation circuit 12 and a metal cover 17 may be provided on the lower surface of the substrate.
  • the substrate 11 is fixed to the metal base 19 by a plurality of pins 15 provided outside the metal cover 17.
  • the metal base 19 is provided with a through-hole through which the pin 15 passes, and the inside and the periphery of the through-hole are filled with an insulator so that the pin 15 and the metal base 19 are not short-circuited.
  • a substrate 11 on which electronic components are mounted, a metal cover 17, and a resin cover 18 that is slightly larger than the metal cover 17 are mounted so as to cover the tops of the pins 15. Sealed, air is sealed in a gap (space) between the resin cover 18 and the metal cover, and an air layer is formed.
  • the second crystal oscillator with a thermostat prevents the wind from the fan or the like from directly hitting the metal cover 17 as in the case of the first crystal oscillator with a thermostat, and the influence of heat from the outside on the electronic components. And the output frequency can be stabilized.
  • FIG. 3 is a cross-sectional view showing a configuration of a third crystal oscillator with a thermostat.
  • the third crystal oscillator with a thermostat is a pin type oscillator similar to the second crystal oscillator with a thermostat.
  • the oscillation circuit 12, the heater resistor 13, and the power transistor 14 are mounted on one surface (here, the upper surface) of the substrate 11, and another electronic component 20 is mounted on the lower surface of the substrate 11. Is installed.
  • the lower electronic component 20 is provided on the lower surface of the substrate 11.
  • Another metal cover (second metal cover) 17b for covering is provided.
  • the metal cover 17a that opens downward and the metal cover 17b that opens upward are formed so that the openings overlap vertically with the substrate 11 interposed therebetween, and are continuous vertically with the substrate 11 interposed therebetween. A space is formed.
  • the substrate 11 is provided with through holes for connecting electronic components and electrodes mounted on the upper and lower surfaces of the substrate, and heat from the heater resistor 13 and the like on the upper surface of the substrate 11 is provided on the lower surface side through the through holes. Conducts in space.
  • the metal covers 17a and 17b having good thermal conductivity and forming a closed space inside, heat exchange between the upper and lower spaces of the substrate 11 is facilitated, and the temperature inside the thermostatic chamber is increased. It is possible to improve the temperature control accuracy and stabilize the output frequency.
  • the oscillation circuit 12 and the heater resistor 13 are provided on the upper surface of the substrate 11, but may be provided on the lower surface.
  • the oscillation circuit 12, the heater resistor 13, and the power transistor 14 are mounted on the substrate 11, and the substrate 11 is formed by the plurality of pins 15 on the base 16.
  • the metal cover 17 and the resin cover 18 are provided. Since the crystal oscillator with a thermostatic bath in which an appropriate space (air layer) is formed between the resin cover 18 and the air cover, the resin cover 18 prevents the wind from the fan or the like from directly hitting the metal cover 17. There is an effect that the heat insulation effect can be enhanced, temperature control can be stabilized by suppressing wasteful heat radiation from the metal cover 17, and the output frequency can be stabilized.
  • the crystal oscillator with a thermostat since it can be applied to either a surface mount type or a pin type crystal oscillator with a thermostat, it is stable depending on the application. There is an effect that a crystal oscillator with a high temperature chamber can be realized at low cost.
  • the crystal oscillator with a thermostat in the pin type crystal oscillator with a thermostat, the oscillation circuit 12, the heater resistor 13, the power transistor 14, and the A metal cover 17a that covers them is mounted, and the electronic component 20 and a metal cover 17b that covers the electronic component 20 are mounted on the lower surface.
  • the entire space sandwiching the substrate 11 from above and below by the metal covers 17a and 17b is a constant temperature bath. The temperature control can be stabilized, and the output frequency can be further stabilized.
  • the crystal oscillator with a thermostatic bath according to the second embodiment is characterized in that a metal cover is provided outside the resin cover that covers the oscillation circuit and the like.
  • a metal cover is provided outside the resin cover that covers the oscillation circuit and the like.
  • FIG. 4 is a cross-sectional view showing the configuration of a fourth thermostatic bath-equipped crystal oscillator.
  • the substrate 11 on which the oscillation circuit 12, the heater resistor 13, and the power transistor 14 are mounted is held and fixed on a base 16 made of glass epoxy or the like by pins 15.
  • a resin cover 18 is mounted on the base 16 so as to cover the substrate 11 and the pins 15, and a metal cover 17 is mounted outside the resin cover 18.
  • the metal cover 17 is formed to be slightly larger than the resin cover 18, and an appropriate space (air layer) is formed between the resin cover 18 and the metal cover 17.
  • an air layer By providing an air layer, the heat insulation effect can be enhanced and the influence of heat from the outside can be reduced.
  • FIG. 5 is a cross-sectional view showing a configuration of a fifth constant temperature bath crystal oscillator.
  • the fifth crystal oscillator with a thermostat is a pin type crystal oscillator with a thermostat, and a resin cover 18 covering the oscillator 12, the heater resistor 13, and the power transistor 14 is provided on the substrate 11.
  • a metal cover 17 that covers the resin cover 18 is provided on a metal base 19 that is provided and to which the substrate 11 is fixed by pins 15.
  • FIG. 6 is a cross-sectional view showing the configuration of a sixth constant temperature bath crystal oscillator.
  • the sixth crystal oscillator with a thermostatic bath is of a pin type, and an inner resin cover 18 covers the upper portion of the pin 15.
  • the sixth crystal oscillator with a thermostat can obtain the same effect as the fourth crystal oscillator with a thermostat.
  • FIG. 7 is a cross-sectional view showing a configuration of a seventh constant temperature bath crystal oscillator.
  • the seventh crystal oscillator with a thermostatic bath is of a pin type, and the oscillation circuit 12 and the like are mounted on the upper surface of the substrate 11, and a resin cover (first resin cover) covering the oscillation circuit 12 and the like.
  • 18a is provided on the upper surface
  • a resin cover (second resin cover) 18b is provided on which the electronic component 20 is mounted on the lower surface and covers the electronic component 20 on the lower surface.
  • the substrate 11 on which components and the like are mounted by pins 15 is fixed on the metal base 19, and the metal cover 19 is provided with the resin covers 18 a and 18 b, the substrate 11, and the metal cover 17 that covers the top of the pins 15. It is a configuration.
  • the entire interior of the resin covers 18a and 18b becomes a constant temperature bath and stabilizes temperature control.
  • the output frequency can be further stabilized.
  • FIGS. 8 is a surface mount type
  • FIG. 9 is a pin type.
  • the eighth crystal oscillator with a thermostatic bath includes a metal cover 17 outside the first resin cover 18a that covers the oscillation circuit 12 and the like, and another resin cover (third resin cover) outside the metal cover 17. ) 18c.
  • An appropriate air layer is formed between the first resin cover 18a and the metal cover 17 and between the metal cover 17 and the third resin cover 18c.
  • another resin is provided outside the metal cover 17 of the seventh thermostatic bath crystal oscillator formed so that the openings of the resin covers 18a and 18b overlap each other with the substrate 11 in between. It is good also as a structure provided with the product-made cover (3rd resin-made covers) 18c. Even in this case, an appropriate air layer is formed between the first resin cover 18a or the second resin cover 18b and the metal cover 17, and between the metal cover 17 and the third resin cover 18c. Is formed.
  • the eighth crystal oscillator with a thermostatic chamber by providing the triple cover, the effect of blocking the wind of the external fan, realizing the shielding effect, and preventing the heat radiation from the thermostatic chamber can be further enhanced. It can be done.
  • the oscillation circuit 12, the heater resistor 13, and the power transistor 14 are mounted on the substrate 11, and the substrate 11 is formed with the base 16 by the plurality of pins 15.
  • the resin cover 18 and the metal cover 17 are provided. Since a crystal oscillator with a thermostatic bath in which an appropriate space (air layer) is formed between the heat and heat can be stored inside the resin cover 18 on the inside, the metal cover 17 has a shielding effect. It functions as a windshield, enhances the heat insulation effect by the air layer, suppresses wasteful heat dissipation from the resin cover 18, and stabilizes temperature control, There is an effect that it is possible to stabilize the number.
  • the crystal oscillator with a thermostat since it can be applied to either a surface-mounted crystal oscillator or a pin-type crystal oscillator with a thermostat, it is stable depending on the application. There is an effect that a crystal oscillator with a high temperature chamber can be realized at low cost.
  • the crystal oscillator with a thermostat in the pin type crystal oscillator with a thermostat, electronic components are mounted on both the upper surface and the lower surface of the substrate 11, and the upper surface of the substrate 11 is A resin cover 18a for covering and a resin cover 18b for covering the lower surface are provided, and the resin cover 18a and the resin cover 18b are mounted so that the openings overlap each other above and below the substrate 11, so that the resin cover 18a 18b, the entire space sandwiching the substrate 11 from above and below can be used as a thermostatic bath, the outside metal cover 17 can prevent wind, stabilize the temperature control, and further stabilize the output frequency. There is an effect that can be done. *
  • the first resin cover 18a that covers the oscillation circuit 12, the heater resistor 13, and the power transistor 14 and the outside of the first resin cover 18a.
  • a quartz crystal oscillator with a thermostatic bath comprising a metal cover 17 that covers the outer surface of the metal cover 17 and a third resin cover 18c that covers the outer side of the metal cover 17 and an air layer having an appropriate thickness formed between the covers. Therefore, heat is stored inside the first resin cover 18a, the metal cover 17 provides a shielding effect, and the third resin cover 18c causes the metal cover 17 having high thermal conductivity to be blown by the fan. In this case, it is possible to obtain a good output frequency signal by suppressing heat radiation and further stabilizing temperature control.
  • the present invention is suitable for a crystal oscillator with a thermostatic bath that can reduce the influence of heat from the outside and stabilize the output frequency.

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

 外部からの熱の影響を低減して、出力周波数を一層安定させることができる恒温槽付水晶発振器を提供する。 基板11がベース16上に固定された恒温槽付水晶発振器であって、基板11に搭載された発振回路12と、ヒータ抵抗13と、パワートランジスタ14と、基板11をベース16上に所定の間隔で固定するピン15と、発振回路12、ヒータ抵抗13、パワートランジスタ14を覆う金属製カバー17と、金属製カバー17の外側を覆う樹脂製カバー18とを備え、金属製カバー17と樹脂製カバー18との間に空気層が形成されている恒温槽付水晶発振器としている。

Description

恒温槽付水晶発振器
 本発明は、恒温槽付水晶発振器に係り、特に外部からの熱の影響を低減して、出力周波数を一層安定させることができる恒温槽付水晶発振器に関する。
[先行技術の説明]
 恒温槽付水晶発振器(OCXO;Oven Controlled Crystal Oscillator)は、水晶振動子を一定の温度に保つ恒温槽を備えており、高い周波数安定度を備えている。
 恒温槽付水晶発振器は、高精度の測定器や携帯電話の基地局等に利用されている。 
[従来の恒温槽付水晶発振器:図11]
 従来の恒温槽付水晶発振器について図11を使って説明する。図11は、従来の恒温槽付水晶発振器の構成を示す断面図である。
 図11に示すように、従来の表面実装型の恒温槽付水晶発振器は、ガラスエポキシ(ガラエポ)等からなる基板1上に、水晶振動子を含む発振回路2と、熱源となるヒータ抵抗3と、温度制御回路を構成するパワートランジスタ4とが搭載されている。
 そして、電子部品が搭載された基板1が、複数のピン(リードピン)5によってガラエポ等から成るベース6上に所定の間隔で浮かせた状態で半田によって固定され、基板1とベース6とが電気的に接続されている。 
 更に、ベース6上に、基板1及びその上に搭載された電子部品を覆うように金属製のカバー7が搭載されて封止され、ベース6とカバー7とでパッケージを構成すると共に、パッケージ内部の空間が恒温槽を形成している。 
 そして、図示は省略するが、基板1に搭載された温度センサによって恒温槽内部の温度を検出し、パワートランジスタ4を含む温度制御回路が恒温槽内部の温度を一定に保持するよう制御している。
 ところで、OCXOは内部を高温に保持しているため、OCXOを搭載した装置にとっては発熱部品となり、排熱を考慮する必要がある。
 例えば、ファン等により装置内部に空気の流れを作り、排熱することが考えられる。 
 従って、装置に搭載されたOCXOの周囲では常に周囲に風が吹いている状態となり、OCXOの金属製のカバー7から熱が奪われることになる。
 この場合、内部の温度が低下するため、温度制御によってヒータ抵抗3やパワートランジスタ4に流れる電流が増大する。
 一方、装置が外気によって急に温められる場合には、金属カバー7を介して外から熱が伝わり、ヒータ抵抗3に流れる電流が減少したり、オフになることがある。
 高い安定度が要求されるOCXOでは、この微小な電流の変化による少しの周波数変動が無視できなくなる場合がある。 
[関連技術]
 尚、恒温槽付水晶発振器に関する技術としては、特開2010-56767号公報「圧電デバイス装置」(日本電波工業株式会社、特許文献1)、特開2003-37472号公報「複合高周波部品及びそれを用いた無線送受信装置」(日立金属株式会社、特許文献2)、特開平10-154763号公報「電子部品用容器及びこれを用いた水晶発振器」(日本電波工業株式会社、特許文献3)、実開昭62-114520号公報「圧電発振器」(日本電波工業株式会社、特許文献4)がある。 
 特許文献1には、圧電振動片を覆う第1金属ケースと、第1金属ケースを覆う第2金属ケースと、第1金属ケース及び第2金属ケースが接合されるベース板を備えた圧電デバイス装置が記載されている。 
 特許文献2には、誘電体層を積層した多層基板上に、圧電結晶体と、圧電結晶体を覆う金属ケースを備え、当該金属ケースの外側に更に第2の金属ケースを設けた複合高周波部品が記載されている。 
 特許文献3には、樹脂基板上に金属カバーを設けた水晶発振器において、樹脂基板に凹部を形成し、金属カバーに脚部を形成して嵌め合わせることにより、金属カバーの樹脂基板に対する位置精度を高める構成が記載されている。 
 特許文献4には、恒温槽を覆う樹脂カバーの内部に断熱材を設けた構成が記載されている。
特開2010-56767号公報 特開2003-37472号公報 特開平10-154763号公報 実開昭62-114520号公報
 上述したように、従来の恒温槽付水晶発振器は、外側を熱伝導性の良好な金属製のカバーで覆われており、装置に搭載された場合には、搭載された装置の動作や環境に起因する温度変化の影響を受け易く、温度制御に伴う微小な電流変化による周波数変動が発生することがあるという問題点があった。
 尚、特許文献1~特許文献4には、金属製カバーの外側に樹脂製カバーを設け、又は樹脂製カバーの外側に金属製カバーを設けて二重カバーとし、2つのカバーの間に空気層を形成することは記載されていない。 
 本発明は上記実状に鑑みて為されたもので、外部からの熱の影響を低減して、出力周波数を一層安定させることができる恒温槽付水晶発振器を提供することを目的とする。
 上記従来例の問題点を解決するための本発明は、恒温槽付水晶発振器であって、ベース上に基板が搭載される恒温槽付水晶発振器であって、基板に搭載された発振回路と、ヒータ抵抗と、温度制御回路と、基板をベース上に所定の間隔で固定する複数のピンと、発振回路とヒータ回路と温度制御回路とを覆う第1の金属製カバーと、ベース上に搭載され、第1の金属製カバーを覆う樹脂製カバーとを備え、第1の金属製カバーと樹脂製カバーとの間に空気層が形成されていることを特徴としている。 
 また、本発明は、上記恒温槽付水晶発振器において、第1の金属製カバー及び樹脂製カバーがベース上に搭載され、表面実装型であることを特徴としている。 
 また、本発明は、上記恒温槽付水晶発振器において、発振回路と、ヒータ抵抗と、温度制御回路と、第1の金属製カバーが基板の上面に搭載され、樹脂製カバーがベース上に搭載され、ピンタイプであることを特徴としている。
 また、本発明は、基板の下面に、電子部品と、電子部品を覆う第2の金属製カバーとが搭載され、第1の金属製カバーと第2の金属製カバーとは、基板を挟んで、上下で開口部が重なるように形成されていることを特徴としている。 
 上記従来例の問題点を解決するための本発明は、恒温槽付水晶発振器であって、ベース上に基板が搭載される恒温槽付水晶発振器であって、基板に搭載された発振回路と、ヒータ抵抗と、温度制御回路と、基板をベース上に所定の間隔で固定する複数のピンと、発振回路とヒータ回路と温度制御回路とを覆う第1の樹脂製カバーと、ベース上に搭載され、第1の樹脂製カバーを覆う金属製カバーとを備え、第1の樹脂製カバーと金属製カバーとの間に空気層が形成されていることを特徴としている。 
 また、本発明は、上記恒温槽付水晶発振器において、第1の樹脂製カバー及び金属製カバーがベース上に搭載され、表面実装型であることを特徴としている。 
 また、本発明は、上記恒温槽付水晶発振器において、発振回路と、ヒータ抵抗と、温度制御回路と、第1の樹脂製カバーが基板の上面に搭載され、金属製カバーがベース上に搭載され、ピンタイプであることを特徴としている。 
 また、本発明は、上記恒温槽付水晶発振器において、基板の下面に、電子部品と、電子部品を覆う第2の樹脂製カバーとが搭載され、第1の樹脂製カバーと第2の樹脂製カバーとは、基板を挟んで、上下で開口部が重なるように形成されていることを特徴としている。
 また、本発明は、上記恒温槽付水晶発振器において、発振回路と、ヒータ抵抗と、温度制御回路と、に加え、複数のピンを覆う第1の樹脂製カバーを備えることを特徴としている。
 また、本発明は、上記恒温槽付水晶発振器において、金属製カバーの外側に、当該金属製カバーを覆う第3の樹脂製カバーを設けたことを特徴としている。
 本発明によれば、ベース上に基板が搭載される恒温槽付水晶発振器であって、基板に搭載された発振回路と、ヒータ抵抗と、温度制御回路と、基板をベース上に所定の間隔で固定する複数のピンと、発振回路とヒータ回路と温度制御回路とを覆う第1の金属製カバーと、ベース上に搭載され、第1の金属製カバーを覆う樹脂製カバーとを備え、第1の金属製カバーと樹脂製カバーとの間に空気層が形成されている恒温槽付水晶発振器としているので、金属製カバーによってシールド効果が得られ、樹脂製カバーが風除けとなって金属製カバーからの無駄な放熱を抑えて温度制御を安定させ、出力周波数を安定化させることができる効果がある。 
 また、本発明によれば、第1の金属製カバー及び樹脂製カバーがベース上に搭載され、表面実装型である上記恒温槽付水晶発振器としているので、用途に応じて安定度の高い表面実装型の恒温槽付水晶発振器を低コストで提供できる効果がある。 
 また、本発明によれば、発振回路と、ヒータ抵抗と、温度制御回路と、第1の金属製カバーが基板の上面に搭載され、樹脂製カバーがベース上に搭載され、ピンタイプである上記恒温槽付水晶発振器としているので、用途に応じて安定度の高いピンタイプの恒温槽付水晶発振器を低コストで提供できる効果がある。 
 また、本発明によれば、基板の下面に、電子部品と、電子部品を覆う第2の金属製カバーとが搭載され、第1の金属製カバーと第2の金属製カバーとは、基板を挟んで、上下で開口部が重なるように形成されている上記恒温槽付水晶発振器としているので、第1の金属製カバーと第2の金属製カバーとで形成された空間全体を恒温槽として、温度制御を更に安定化させ、出力周波数を一層安定させることができる効果がある。
 また、本発明によれば、ベース上に基板が搭載される恒温槽付水晶発振器であって、基板に搭載された発振回路と、ヒータ抵抗と、温度制御回路と、基板をベース上に所定の間隔で固定する複数のピンと、発振回路とヒータ回路と温度制御回路とを覆う第1の樹脂製カバーと、ベース上に搭載され、第1の樹脂製カバーを覆う金属製カバーとを備え、第1の樹脂製カバーと金属製カバーとの間に空気層が形成されている恒温槽付水晶発振器としているので、熱伝導性の低い樹脂製カバーで恒温槽を形成することにより、恒温槽からの放熱を小さくし、また、金属製カバーによってシールド効果が得られると共に、風除けとして働き、出力周波数を安定化させることができる効果がある。
 また、本発明によれば、第1の樹脂製カバー及び金属製カバーがベース上に搭載され、表面実装型である上記恒温槽付水晶発振器としているので、用途に応じて安定度の高い表面実装型の恒温槽付水晶発振器を低コストで提供できる効果がある。 
 また、本発明によれば、発振回路と、ヒータ抵抗と、温度制御回路と、第1の樹脂製カバーが基板の上面に搭載され、金属製カバーがベース上に搭載され、ピンタイプである上記恒温槽付水晶発振器としているので、用途に応じて安定度の高いピンタイプの恒温槽付水晶発振器を低コストで提供できる効果がある。 
 また、本発明によれば、基板の下面に、電子部品と、電子部品を覆う第2の樹脂製カバーとが搭載され、第1の樹脂製カバーと第2の樹脂製カバーとは、基板を挟んで、上下で開口部が重なるように形成されている上記恒温槽付水晶発振器としているので、第1の樹脂製カバーと第2の樹脂製カバーとで形成された空間全体を恒温槽として、温度制御を更に安定化させ、出力周波数を一層安定させることができる効果がある。
 また、本発明によれば、発振回路と、ヒータ抵抗と、温度制御回路と、に加え、複数のピンを覆う第1の樹脂製カバーを備える上記恒温槽付水晶発振器としているので、恒温槽内部に熱が留まり、少ない電力で温度制御を行うことが可能となる。 
 また、本発明によれば、金属製カバーの外側に、当該金属製カバーを覆う第3の樹脂製カバーを設けた上記恒温槽付水晶発振器としているので、第3の樹脂製カバーによって、熱伝導率の高い金属製カバーにファンの風が当たらないようにして、放熱を抑え、温度制御を一層安定させることができる効果がある。
本発明の第1の実施の形態に係る第1の恒温槽付水晶発振器の構成を示す断面図である。 第2の恒温槽付水晶発振器の構成を示す断面図である。 第3の恒温槽付水晶発振器の構成を示す断面図である。 第4の恒温槽付水晶発振器の構成を示す断面図である。 第5の恒温槽付水晶発振器の構成を示す断面図である。 第6の恒温槽付水晶発振器の構成を示す断面図である。 第7の恒温槽付水晶発振器の構成を示す断面図である。 第8の恒温槽付水晶発振器(表面実装型)の構成を示す断面図である。 第8の恒温槽付水晶発振器(ピンタイプ)の構成を示す断面図である。 第8の恒温槽付水晶発振器(上下に重なる樹脂製カバーを有する)の構成を示す断面図である。 従来の恒温槽付水晶発振器の構成を示す断面図である。
 本発明の実施の形態について図面を参照しながら説明する。
[実施の形態の概要] 
 本発明の実施の形態に係る恒温槽付水晶発振器は、基板に発振回路と、ヒータ抵抗と、温度制御回路とが搭載され、基板が、複数のピンによってベース上に所定の間隔で固定され、発振回路と、ヒータ回路と、温度制御回路とを覆う金属製カバーを備え、更に、金属製カバーを覆う樹脂製カバーがベース上に搭載され、金属製カバーと樹脂製カバーとの間には適度な空間があって空気層が形成されているものであり、外側の樹脂製カバーが風除けとして働き、内側の金属製カバーからの放熱を防ぎ、出力周波数を一層安定させることができるものである。 
 また、本発明の実施の形態に係る恒温槽付水晶発振器は、基板に発振回路と、ヒータ抵抗と、温度制御回路とが搭載され、基板が、複数のピンによってベース上に所定の間隔で固定され、発振回路と、ヒータ回路と、温度制御回路とを覆う樹脂製カバーを備え、更に、樹脂製カバーを覆う金属製カバーがベース上に搭載され、樹脂製カバーと金属製カバーとの間には適度な空間があって空気層が形成されているものであり、外側の金属製カバーが風除けとして働き、内側の樹脂製カバーからの放熱を防ぎ、出力周波数を一層安定させることができるものである。 
[第1の実施の形態]
 本発明の第1の実施の形態に係る恒温槽付水晶発振器について説明する。
 第1の実施の形態に係る各構成の恒温槽付水晶発振器は、いずれも、発振回路及びヒータ抵抗及び温度制御回路を覆う金属製カバーの外側に、一回り大きい樹脂製のカバーを備えた点が特徴となっている。
 第1の実施の形態に係る恒温槽付水晶発振器の具体例として、第1~第3の恒温槽付水晶発振器について説明する。 
[第1の恒温槽付水晶発振器:図1]
 本発明の第1の実施の形態に係る恒温槽付水晶発振器として、第1の恒温槽付水晶発振器について図1を用いて説明する。図1は、本発明の第1の実施の形態に係る第1の恒温槽付水晶発振器の構成を示す断面図である。
 第1の恒温槽付水晶発振器は、図1に示すように、表面実装型(SMD;Surface Mounted Device)の発振器であり、ガラエポ等から成る基板11上に、発振回路12と、ヒータ抵抗13と、パワートランジスタ14とが搭載され、基板11が、複数のピン15によってベース16上に所定の間隔で浮かせた状態で半田によって固定され、基板11とベース16とが電気的に接続されている。尚、パワートランジスタ14は、請求項に記載した温度制御回路に相当している。 
 更に、ベース16の上に、基板11を覆うように金属製カバー17が搭載され、金属製カバー17はベース11上に接着固定されている。
 金属製カバー17によってシールド効果が得られ、外部からのノイズを防ぐことができるものである。 
 そして、第1の恒温槽付水晶発振器の特徴として、金属製カバー17の外側に、更に樹脂製カバー18が設けられており、ベース11上に接着固定されている。
 つまり、第1の恒温槽付水晶発振器は、電子部品を覆うカバーを二重とし、内側を金属製カバー17、外側を樹脂製カバー18とした構成である。この構成は、後述する第2、第3の恒温槽付水晶発振器でも共通となっている。 
 樹脂製カバー18を設けることにより、恒温槽付水晶発振器が搭載された装置内においてファン等による風が発生しても、樹脂製カバー18が風除けとして機能し、金属製カバー17からの不要な放熱を防ぎ、頻繁な温度制御動作による電流変化を抑えて、金属製カバー17内の電子部品への影響を低減し、出力周波数を安定させるものである。 
 更に、樹脂製カバー18は、液晶ポリマーやプラスチック等の熱可塑性樹脂で形成されており、金属製に比べて熱伝導性が低く、外部からの熱の影響を受けにくくするものである。
 具体的には、一般的な金属製カバーの材料である黄銅の熱伝導率は、106Wm-1K-1であるのに対し、樹脂の熱伝導率は、0.1~0.5Wm-1K-1であり、黄銅に比べてかなり小さい。 
 更にまた、樹脂製カバー18は、金属製カバー17より縦横高さ共に一回り大きく形成されており、これにより、金属製カバー17と樹脂製カバー18との間に隙間が形成されている。
 隙間には、通常、空気が封入されており、この空気層が断熱効果を向上させるものである。
 樹脂製カバー18の大きさを適切に設定することにより、発振器を大型化させること無く断熱効果を向上させることができる。 
 また、樹脂は絶縁体であるため、樹脂製カバー18を搭載する際に端子に接触して短絡するといった恐れが無く、電気的な配慮をしなくてよい。
 更に、樹脂製カバー18は、熱硬化型や常温硬化型の樹脂により、金属よりも容易にベース16に接着することができるものである。
 このような構成とすることにより、低コストで安定性の高い恒温槽付水晶発振器を実現できるものである。 
[第2の恒温槽付水晶発振器:図2]
 次に、第1の実施の形態に係る恒温槽付水晶発振器として、第2の恒温槽付水晶発振器について図2を用いて説明する。図2は、第2の恒温槽付水晶発振器の構成を示す断面図である。
 図2に示すように、第2の恒温槽付水晶発振器は、ピンタイプ(リードタイプ)の発振器であり、ガラエポ等から成る基板11上に、発振回路12、ヒータ抵抗13、パワートランジスタ14が搭載され、基板11上に、電子部品を覆う金属製カバー17が搭載され内部が封止されている。
 尚、発振回路12等の電子部品及び金属製カバー17を基板の下面に設けてもよい。 
 そして、基板11が金属製カバー17の外側に設けられた複数のピン15によって、金属ベース19に固定されている。
 金属ベース19には、ピン15を通す貫通孔が設けられ、貫通孔内部及び周囲は、ピン15と金属ベース19とが短絡しないよう絶縁物が充填されている。 
 そして、金属ベース19上には、電子部品が搭載された基板11と、金属製カバー17と、ピン15の上部を覆うように、金属製カバー17より一回り大きい樹脂製カバー18が搭載されて封止され、樹脂製カバー18と金属製カバーとの間の隙間(空間)に空気が封入され、空気層が形成された状態となっている。 
 これにより、第2の恒温槽付水晶発振器は、第1の恒温槽付水晶発振器と同様に、ファン等による風が直接金属製カバー17に当たるのを防ぎ、電子部品への外部からの熱の影響を抑えて、出力周波数を安定させることができるものである。 
[第3の恒温槽付水晶発振器:図3]
 次に、第1の実施の形態に係る恒温槽付水晶発振器として、第3の恒温槽付水晶発振器について図3を用いて説明する。図3は、第3の恒温槽付水晶発振器の構成を示す断面図である。
 図3に示すように、第3の恒温槽付水晶発振器は、第2の恒温槽付水晶発振器と同様にピンタイプの発振器である。
 第3の恒温槽付水晶発振器の特徴部分として、基板11の一面(ここでは上面)に発振回路12とヒータ抵抗13とパワートランジスタ14とが搭載され、基板11の下面には別の電子部品20が搭載されている。 
 更に、第3の恒温槽付水晶発振器では、基板11の上側の電子部品を覆う金属製カバー(第1の金属製カバー)17aに加えて、基板11の下面には、下面の電子部品20を覆う別の金属製カバー(第2の金属製カバー)17bが設けられている。
 ここで、下向きに開口した金属製カバー17aと上向きに開口した金属製カバー17bとは、基板11を挟んで上下で開口部が重なるように形成されており、基板11を挟んで上下で連続した空間が形成されている。 
 基板11には、基板の上下の面に搭載された電子部品や電極を接続するスルーホールが設けられており、基板11の上面のヒータ抵抗13等からの熱はスルーホールを介して下面側の空間にも伝導する。
 熱伝導性のよい金属製カバー17a及び17bによって基板11の両面を覆い、内部に閉じた空間を形成することにより、基板11の上下の空間での熱交換が容易になり、恒温槽内部の温度の均一性を良好にして、温度制御の精度を向上させ、出力周波数を安定させることができるものである。
 尚、図3の例では、基板11の上面に発振回路12やヒータ抵抗13が設けられているが、下面に設けてもよい。 
 更に、金属製カバー17a,17bの外側に樹脂製カバー18を設けることにより、ファン等の風が直接金属製カバー17a,17bに当たるのを防ぎ、外部からの熱の影響を抑えて、一層出力周波数を安定化させることができるものである。 
[第1の実施の形態の効果]
 本発明の第1の実施の形態に係る恒温槽付水晶発振器によれば、基板11に発振回路12と、ヒータ抵抗13と、パワートランジスタ14が搭載され、基板11が複数のピン15によってベース16上に保持固定され、発振回路12、ヒータ抵抗13、パワートランジスタ14を覆う金属製カバー17と、金属製カバー17の外側を覆う樹脂製カバー18とを備え、金属製カバー17と樹脂製カバー18との間に適度な空間(空気層)が形成されている恒温槽付水晶発振器としているので、樹脂製カバー18が、ファン等による風が金属製カバー17に直接当たるのを防ぎ、空気層によって断熱効果を高め、金属製カバー17からの無駄な放熱を抑えて温度制御を安定させ、出力周波数を安定化させることができる効果がある。 
 また、本発明の第1の実施の形態に係る恒温槽付水晶発振器によれば、表面実装型又はピンタイプの恒温槽付水晶発振器のいずれにも適用可能としているので、用途に応じて、安定性の高い恒温槽付水晶発振器を低コストで実現することができる効果がある。 
 また、本発明の第1の実施の形態に係る恒温槽付水晶発振器によれば、ピンタイプの上記恒温槽付水晶発振器において、基板11の上面に発振回路12、ヒータ抵抗13、パワートランジスタ14及びそれらを覆う金属製カバー17aが搭載され、下面に電子部品20及びそれを覆う金属製カバー17bが搭載され、金属製カバー17aと金属製カバー17bとは、基板11の上下で開口部同士が重なるよう搭載されているので、外側の樹脂製カバー18によって風を防いで外部からの熱の影響を抑えるのに加えて、金属製カバー17a,17bによって上下から基板11を挟んだ空間全体を恒温槽とすることができ、温度制御を安定化させることができ、出力周波数を一層安定させることができる効果がある。
[第2の実施の形態]
 次に、本発明の第2の実施の形態に係る恒温槽付水晶発振器について説明する。
 第2の実施の形態に係る恒温槽付水晶発振器は、発振回路等を覆う樹脂製カバーの外側に、金属製カバーを備えている点が特徴となっている。
 第2の実施の形態に係る恒温槽付水晶発振器の具体例として、第4~第8の恒温槽付水晶発振器について説明する。
[第4の恒温槽付水晶発振器:図4]
 本発明の第2の実施の形態に係る恒温槽付水晶発振器として、第4の恒温槽付水晶発振器について図4を用いて説明する。図4は、第4の恒温槽付水晶発振器の構成を示す断面図である。
 図4に示すように、第4の恒温槽付水晶発振器は、発振回路12、ヒータ抵抗13、パワートランジスタ14が搭載された基板11が、ピン15によってガラエポ等から成るベース16上に保持固定され、基板11及びピン15を覆うように、ベース16上に樹脂製カバー18が搭載され、更に樹脂製カバー18の外側に金属製カバー17が搭載されている。 
 金属製カバー17は、樹脂製カバー18よりも一回り大きく形成されており、樹脂製カバー18と金属製カバー17との間に適度な空間(空気層)が形成されている。
 空気層を備えることにより、断熱効果を高め、外部からの熱の影響を低減することができるものである。 
 第2の実施の形態に係る恒温槽付水晶発振器では、内側に熱伝導率の低い樹脂製カバー18を設けることにより、恒温槽内部に熱が留まり、少ない電力で温度制御を行うことが可能となる。
 更に、樹脂製カバー18の外側に金属製カバー17を設けることにより、シールド効果が得られると共に、空気の流れを遮る風除けとなり、不要な放熱を防ぎ、消費電力を低減できるものである。 
[第5の恒温槽付水晶発振器:図5]
 次に、第2の実施の形態に係る恒温槽付水晶発振器として、第5の恒温槽付水晶発振器について図5を用いて説明する。図5は、第5の恒温槽付水晶発振器の構成を示す断面図である。
 図5に示すように、第5の恒温槽付水晶発振器は、ピンタイプの恒温槽付水晶発振器であり、基板11上に、発振器12、ヒータ抵抗13、パワートランジスタ14を覆う樹脂製カバー18が設けられ、基板11がピン15によって固定される金属ベース19上に、樹脂製カバー18を覆う金属カバー17を設けた構成である。
[第6の恒温槽付水晶発振器:図6]
 図6は、第6の恒温槽付水晶発振器の構成を示す断面図である。
 図6に示すように、第6の恒温槽付水晶発振器はピンタイプであり、内側の樹脂製カバー18が、ピン15の上部も覆う構成となっている。
 第6の恒温槽付水晶発振器も、第4の恒温槽付水晶発振器と同様の効果が得られるものである。 
[第7の恒温槽付水晶発振器:図7]
 次に、第2の実施の形態に係る恒温槽付水晶発振器として、第7の恒温槽付水晶発振器について図7を用いて説明する。図7は、第7の恒温槽付水晶発振器の構成を示す断面図である。
 図7に示すように、第7の恒温槽付水晶発振器はピンタイプであり、基板11の上面に発振回路12等を搭載し、発振回路12等を覆う樹脂製カバー(第1の樹脂カバー)18aを上面に設けると共に、下面に電子部品20を搭載して、下面の電子部品20を覆う樹脂製カバー(第2の樹脂製カバー)18bを設けている。
 更に、ピン15によって部品等が搭載された基板11を金属ベース19上に固定し、金属ベース19上に、樹脂製カバー18a,18b、基板11、ピン15の上部を覆う金属製カバー17を備えた構成である。
 そして、樹脂製カバー18aと18bの開口部同士が基板11を挟んで上下に重なるように形成されているので、樹脂製カバー18a,18bの内部全体が恒温槽となり、温度制御を安定化させることができ、出力周波数を一層安定させることができるものである。
[第8の恒温槽付水晶発振器]
 次に、第2の実施の形態に係る恒温槽付水晶発振器として、第8の恒温槽付水晶発振器について、図8及び図9を用いて説明する。図8は表面実装型であり、図9はピンタイプである。
 第8の恒温槽付水晶発振器は、発振回路12等を覆う第1の樹脂製カバー18aの外側に、金属製カバー17を備え、更にその外側に別の樹脂製カバー(第3の樹脂製カバー)18cを備えた構成である。
 そして、第1の樹脂製カバー18aと金属製カバー17との間、及び金属製カバー17と第3の樹脂製カバー18cとの間には適度な空気層が形成されている。
 また図10に示すように、樹脂製カバー18aと18bの開口部同士が基板11を挟んで上下に重なるように形成された第7の恒温槽付水晶発振器の金属カバー17の外側に別の樹脂製カバー(第3の樹脂製カバー)18cを備えた構成としてもよい。
 この場合でも、第1の樹脂製カバー18aもしくは第2の樹脂製カバー18bと金属製カバー17との間、及び金属製カバー17と第3の樹脂製カバー18cとの間には適度な空気層が形成されている。
 このように、第8の恒温槽付水晶発振器では、三重のカバーを備えることにより、外部ファンの風を遮り、シールド効果を実現し、恒温槽からの放熱を防ぐこと効果をより一層高めることができるものである。 
[第2の実施の形態の効果]
 本発明の第2の実施の形態に係る恒温槽付水晶発振器によれば、基板11に発振回路12と、ヒータ抵抗13と、パワートランジスタ14が搭載され、基板11が複数のピン15によってベース16上に保持固定され、発振回路12、ヒータ抵抗13、パワートランジスタ14を覆う樹脂製カバー18と、樹脂製カバー18の外側を覆う金属製カバー17とを備え、樹脂製カバー18と金属製カバー17との間に適度な空間(空気層)が形成されている恒温槽付水晶発振器としているので、内側の樹脂製カバー18内部に熱を蓄えることができ、金属製カバー17がシールド効果を備えると共に、風除けとして機能し、空気層によって断熱効果を高め、樹脂製カバー18からの無駄な放熱を抑えて温度制御を安定化させることができ、出力周波数を安定化させることができる効果がある。 
 また、本発明の第2の実施の形態に係る恒温槽付水晶発振器によれば、表面実装型又はピンタイプの恒温槽付水晶発振器のいずれにも適用可能としているので、用途に応じて、安定性の高い恒温槽付水晶発振器を低コストで実現することができる効果がある。 
 更に、第2の実施の形態に係る恒温槽付水晶発振器によれば、ピンタイプの上記恒温槽付水晶発振器において、基板11の上面と下面の両方に電子部品を搭載し、基板11の上面を覆う樹脂製カバー18aと、下面を覆う樹脂製カバー18bを備え、樹脂製カバー18aと樹脂製カバー18bとは、基板11の上下で開口部同士が重なるよう搭載されているので、樹脂製カバー18a,18bによって上下から基板11を挟んだ空間全体を恒温槽とすることができ、外側の金属製カバー17によって風を防いで、温度制御を安定化させることができ、出力周波数一層安定させることができる効果がある。 
 また、第2の実施の形態に係る恒温槽付水晶発振器によれば、発振回路12、ヒータ抵抗13、パワートランジスタ14を覆う第1の樹脂製カバー18aと、第1の樹脂製カバー18aの外側を覆う金属製カバー17と、更に金属製カバー17の外側を覆う第3の樹脂製カバー18cとを備え、各カバーの間に適度な厚さの空気層が形成されている恒温槽付水晶発振器としているので、第1の樹脂製カバー18aの内部に熱を蓄え、金属製カバー17によってシールド効果を備え、第3の樹脂製カバー18cによって、熱伝導率の高い金属製カバー17にファンの風が当たらないようにして、放熱を抑え、温度制御を一層安定させて良好な出力周波数信号を得ることができる効果がある。
 本発明は、外部からの熱の影響を低減して、出力周波数を一層安定させることができる恒温槽付水晶発振器に適している。
 1,11...基板、 2,12...発振回路、 3,13...ヒータ抵抗、 4,14...パワートランジスタ、 5,15...ピン、 6,16...ベース、 7...カバー、17...金属製カバー、 18...樹脂製カバー、 19...金属ベース、 20...電子部品

Claims (10)

  1.  ベース上に基板が搭載される恒温槽付水晶発振器であって、
     前記基板に搭載された発振回路と、ヒータ抵抗と、温度制御回路と、
     前記基板を前記ベース上に所定の間隔で固定する複数のピンと、
     前記発振回路と、前記ヒータ回路と、前記温度制御回路とを覆う第1の金属製カバーと、 前記ベース上に搭載され、前記第1の金属製カバーを覆う樹脂製カバーとを備え、
     前記第1の金属製カバーと前記樹脂製カバーとの間に空気層が形成されていることを特徴とする恒温槽付水晶発振器。
  2.  第1の金属製カバー及び樹脂製カバーがベース上に搭載され、表面実装型であることを特徴とする請求項1記載の恒温槽付水晶発振器。
  3.  発振回路と、ヒータ抵抗と、温度制御回路と、第1の金属製カバーが基板の上面に搭載され、
     樹脂製カバーがベース上に搭載され、ピンタイプであることを特徴とする請求項1記載の恒温槽付水晶発振器。
  4.  基板の下面に、電子部品と、前記電子部品を覆う第2の金属製カバーとが搭載され、
     第1の金属製カバーと前記第2の金属製カバーとは、前記基板を挟んで、上下で開口部が重なるように形成されていることを特徴とする請求項3記載の恒温槽付水晶発振器。
  5.  ベース上に基板が搭載される恒温槽付水晶発振器であって、
     前記基板に搭載された発振回路と、ヒータ抵抗と、温度制御回路と、
     前記基板を前記ベース上に所定の間隔で固定する複数のピンと、
     前記発振回路と、前記ヒータ回路と、前記温度制御回路とを覆う第1の樹脂製カバーと、 前記ベース上に搭載され、前記第1の樹脂製カバーを覆う金属製カバーとを備え、
     前記第1の樹脂製カバーと前記金属製カバーとの間に空気層が形成されていることを特徴とする恒温槽付水晶発振器。
  6.  第1の樹脂製カバー及び金属製カバーがベース上に搭載され、表面実装型であることを特徴とする請求項5記載の恒温槽付水晶発振器。
  7.  発振回路と、ヒータ抵抗と、温度制御回路と、第1の樹脂製カバーが基板の上面に搭載され、
     金属製カバーがベース上に搭載され、ピンタイプであることを特徴とする請求項5記載の恒温槽付水晶発振器。
  8.  基板の下面に、電子部品と、前記電子部品を覆う第2の樹脂製カバーとが搭載され、
     第1の樹脂製カバーと前記第2の樹脂製カバーとは、前記基板を挟んで、上下で開口部が重なるように形成されていることを特徴とする請求項7記載の恒温槽付水晶発振器。
  9.  発振回路と、ヒータ抵抗と、温度制御回路と、に加え、複数のピンを覆う第1の樹脂製カバーを備えることを特徴とする請求項7記載の恒温槽付水晶発振器。
  10.  金属製カバーの外側に、前記金属製カバーを覆う第3の樹脂製カバーを設けたことを特徴とする請求項5乃至8のいずれか記載の恒温槽付水晶発振器。
PCT/JP2015/056300 2014-03-11 2015-03-04 恒温槽付水晶発振器 WO2015137204A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/124,673 US10256825B2 (en) 2014-03-11 2015-03-04 Oven controlled crystal oscillator
CN201580012686.9A CN106105025B (zh) 2014-03-11 2015-03-04 带恒温槽的晶体振荡器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014047479A JP6448199B2 (ja) 2014-03-11 2014-03-11 恒温槽付水晶発振器
JP2014-047479 2014-03-11

Publications (1)

Publication Number Publication Date
WO2015137204A1 true WO2015137204A1 (ja) 2015-09-17

Family

ID=54071651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056300 WO2015137204A1 (ja) 2014-03-11 2015-03-04 恒温槽付水晶発振器

Country Status (4)

Country Link
US (1) US10256825B2 (ja)
JP (1) JP6448199B2 (ja)
CN (1) CN106105025B (ja)
WO (1) WO2015137204A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110727A1 (ja) * 2015-12-25 2017-06-29 株式会社村田製作所 圧電発振器及び圧電発振デバイス
JP6662057B2 (ja) * 2016-01-22 2020-03-11 株式会社大真空 圧電発振器
US10470292B2 (en) * 2017-08-22 2019-11-05 Palo Alto Research Center Incorporated Thermal insulation and temperature control of components
US11480222B2 (en) * 2020-02-19 2022-10-25 Dana Automotive Systems Group, Llc Electric drive axle system with a self-indexing clutch and method for operation of said clutch
US11929709B2 (en) * 2020-03-30 2024-03-12 Daishinku Corporation Oven-controlled crystal oscillator
JP7396496B2 (ja) * 2020-07-31 2023-12-12 株式会社大真空 恒温槽型圧電発振器
CN116107186B (zh) * 2023-04-04 2023-09-01 成都量子时频科技有限公司 应用于微型化铷原子钟的一体化封闭式超薄铷光谱灯装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122704A (ja) * 1988-10-31 1990-05-10 Nippon Dempa Kogyo Co Ltd 圧電発振器
JP2000077940A (ja) * 1998-08-27 2000-03-14 Toyo Commun Equip Co Ltd 圧電発振器
JP2002314339A (ja) * 2001-02-09 2002-10-25 Toyo Commun Equip Co Ltd 高安定圧電発振器の構造
JP2003309432A (ja) * 2002-04-17 2003-10-31 Toyo Commun Equip Co Ltd 高安定圧電発振器
JP2007281913A (ja) * 2006-04-07 2007-10-25 Epson Toyocom Corp 高安定圧電発振器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114520A (ja) 1985-11-14 1987-05-26 東芝テック株式会社 電気掃除機
JP3494541B2 (ja) 1996-11-22 2004-02-09 日本電波工業株式会社 電子部品用容器及びこれを用いた水晶発振器
JP4737580B2 (ja) 2001-07-23 2011-08-03 日立金属株式会社 複合高周波部品及びそれを用いた無線送受信装置
JP4186732B2 (ja) * 2003-07-24 2008-11-26 株式会社村田製作所 電子機器
JP2006121147A (ja) 2004-10-19 2006-05-11 Alps Electric Co Ltd 携帯電話機用高周波モジュール
JP4270158B2 (ja) * 2005-04-11 2009-05-27 エプソントヨコム株式会社 高安定圧電発振器
JP4934559B2 (ja) 2007-09-27 2012-05-16 オンセミコンダクター・トレーディング・リミテッド 回路装置およびその製造方法
US8288074B2 (en) * 2008-07-18 2012-10-16 Rainbow Technology Systems Limited Photoimaging method and apparatus
JP5148411B2 (ja) 2008-08-27 2013-02-20 日本電波工業株式会社 圧電デバイス装置
JP4629760B2 (ja) 2008-09-02 2011-02-09 日本電波工業株式会社 恒温型の水晶発振器
JP4739387B2 (ja) 2008-10-08 2011-08-03 日本電波工業株式会社 恒温型の水晶発振器
JP4695175B2 (ja) * 2008-11-14 2011-06-08 日本電波工業株式会社 恒温型の水晶発振器
JP4885207B2 (ja) * 2008-12-25 2012-02-29 日本電波工業株式会社 多段型とした恒温型の水晶発振器
JP4955042B2 (ja) 2009-05-18 2012-06-20 日本電波工業株式会社 恒温型の水晶発振器
JP5020340B2 (ja) * 2010-02-05 2012-09-05 日本電波工業株式会社 表面実装用とした恒温型の水晶発振器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122704A (ja) * 1988-10-31 1990-05-10 Nippon Dempa Kogyo Co Ltd 圧電発振器
JP2000077940A (ja) * 1998-08-27 2000-03-14 Toyo Commun Equip Co Ltd 圧電発振器
JP2002314339A (ja) * 2001-02-09 2002-10-25 Toyo Commun Equip Co Ltd 高安定圧電発振器の構造
JP2003309432A (ja) * 2002-04-17 2003-10-31 Toyo Commun Equip Co Ltd 高安定圧電発振器
JP2007281913A (ja) * 2006-04-07 2007-10-25 Epson Toyocom Corp 高安定圧電発振器

Also Published As

Publication number Publication date
US10256825B2 (en) 2019-04-09
CN106105025A (zh) 2016-11-09
CN106105025B (zh) 2019-04-12
JP2015173309A (ja) 2015-10-01
US20170019109A1 (en) 2017-01-19
JP6448199B2 (ja) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6448199B2 (ja) 恒温槽付水晶発振器
JP4955042B2 (ja) 恒温型の水晶発振器
JP5188484B2 (ja) 恒温型の水晶発振器
US8013683B2 (en) Constant-temperature type crystal oscillator
JP2011166241A (ja) 表面実装用とした恒温型の水晶発振器
JP2006295570A (ja) 高安定圧電発振器
JP5159552B2 (ja) 水晶発振器
JP2014033431A (ja) 恒温槽付水晶発振器
US8212626B2 (en) Constant-temperature type crystal oscillator
JP2011091702A (ja) 圧電発振器、及び圧電発振器の周波数制御方法
JP4499478B2 (ja) 表面実装用の水晶振動子を用いた恒温型の水晶発振器
JP6662057B2 (ja) 圧電発振器
JP2009284372A (ja) 水晶振動子の恒温構造
US8203391B2 (en) Oscillating device
JP6058974B2 (ja) 恒温槽付水晶発振器
JP2010187060A (ja) 恒温型圧電発振器
JP5912566B2 (ja) 恒温槽付水晶発振器
JP2016103757A (ja) 圧電デバイス
JP2010183228A (ja) 恒温型圧電発振器
JP2017130862A (ja) 圧電発振器
JP2012085045A (ja) 恒温槽付水晶発振器
JP5135018B2 (ja) 恒温型の水晶発振器
JP2008283414A (ja) 表面実装用の水晶発振器
JP5613746B2 (ja) 恒温型の水晶発振器
JP2005143060A (ja) 圧電振動子及びこれを用いた圧電発振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15124673

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15760849

Country of ref document: EP

Kind code of ref document: A1