WO2015135307A1 - Oled器件的封装体及其封装方法、发光装置 - Google Patents

Oled器件的封装体及其封装方法、发光装置 Download PDF

Info

Publication number
WO2015135307A1
WO2015135307A1 PCT/CN2014/085763 CN2014085763W WO2015135307A1 WO 2015135307 A1 WO2015135307 A1 WO 2015135307A1 CN 2014085763 W CN2014085763 W CN 2014085763W WO 2015135307 A1 WO2015135307 A1 WO 2015135307A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
buffer layer
package
film
oled device
Prior art date
Application number
PCT/CN2014/085763
Other languages
English (en)
French (fr)
Inventor
全威
王俊然
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/436,714 priority Critical patent/US20160293897A1/en
Publication of WO2015135307A1 publication Critical patent/WO2015135307A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present disclosure relates to a package of an OLED device, a method of packaging the same, and a light emitting device.
  • OLED Organic Light-Emitting Diode
  • the conventional packaging method includes two types: a substrate package and a thin film package.
  • the substrate package refers to filling a film between the device substrate and the package substrate on which the OLED device is formed, and forming a film between the device substrate and the package substrate after curing.
  • the sealed space is used to achieve the effect of packaging;
  • the thin film encapsulation refers to covering the surface of the OLED device with a thin film encapsulation layer composed of an inorganic thin film and an organic thin film, so that water oxygen is difficult to penetrate into the interior of the OLED device.
  • the film is usually an organic binder, a large amount of pores are generated after curing, so that water oxygen in the air can react with the OLED device through the pores; in the film package, although the inorganic film is dense Strong in nature, has a certain role of isolating water and oxygen.
  • defects such as pinholes and cracks will inevitably occur. These defects greatly reduce the ability of the inorganic thin film to isolate water and oxygen, and inorganic thin films.
  • the elasticity is low, the internal stress is large, cracks are easily generated by external force or peeled off from the OLED device, so it is required to be laminated with the organic film to form a composite film, but the organic film has poor barrier property against water and oxygen, and even some organic films.
  • the material itself has a strong water absorption, making it possible for moisture to pass through the defects of the adjacent inorganic film into the interior of the OLED device.
  • An embodiment of the present disclosure provides a package of an OLED device, including: a device substrate, a package substrate bonded to the device substrate, and a film between the device substrate and the package substrate, the device substrate
  • the substrate includes a OLED device on the substrate, wherein the package further includes: a buffer layer between the device substrate and the adhesive film; The side of the buffer layer that is in contact with the film is an uneven surface.
  • Another embodiment of the present disclosure provides a light emitting device comprising the package of any of the above.
  • Yet another embodiment of the present disclosure provides a packaging method of an OLED device, comprising: forming a buffer layer covering an OLED device on a device substrate; the device substrate including a substrate substrate and the OLED on the substrate substrate a device for surface-treating the buffer layer to have an uneven surface; forming a film on the buffer layer having the uneven surface, or forming a film on the package substrate; The device substrate is bonded to the package substrate.
  • FIG. 1 is a cross-sectional structural view of a package body of an OLED device according to an embodiment of the present disclosure
  • Figure 2 is an enlarged schematic view of a broken line portion of Figure 1;
  • FIG. 3 is a cross-sectional structural view of a package body of an OLED device according to an embodiment of the present disclosure
  • FIG. 4 is a partial optical path diagram of light emitted upward by an OLED device in a package of an OLED device according to an embodiment of the present disclosure
  • FIG. 5 is a partial structural diagram of a package body corresponding to the steps of the packaging method according to an embodiment of the present disclosure
  • FIG. 6 is a partial structural diagram of a package corresponding to the steps of the packaging method according to an embodiment of the present disclosure
  • FIG. 7 is a partial structural diagram of a package corresponding to the steps of the packaging method according to an embodiment of the present disclosure.
  • FIG. 8 is a partial structural diagram of a package corresponding to the steps of the packaging method according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a package body 01 of an OLED device.
  • the package body 01 includes a device substrate 10, a package substrate 20 bonded to the device substrate 10, and a substrate.
  • a film 30 between the device substrate 10 and the package substrate 20 the device substrate 10 includes a substrate substrate 101 and an OLED device 102 on the substrate substrate 101;
  • the package body 01 further includes: The buffer layer 40 between the device substrate 10 and the adhesive film 30; wherein a side of the buffer layer 40 that is in contact with the adhesive film 30 is formed as an uneven surface 401.
  • the buffer layer 40 since the side of the buffer layer 40 in contact with the film 30 is formed as an uneven surface 401, the buffer layer 40 has a larger surface area on the side and can be enlarged.
  • the wettability of the adhesive film 30 on the uneven surface 401 reduces the interfacial void between the adhesive film 30 and the surface of the buffer layer 40, so that the two are more tightly combined and the environment is lowered.
  • the buffer layer 40 may include at least one of an inorganic thin film or an organic thin film, which is not limited herein.
  • the inorganic thin film may be, for example, structurally dense silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, or the like
  • the organic thin film may be, for example, PET (polyethylene terephthalate) or PEN (polyethylene naphthalate). ), PI (polyimide), PVC (polyvinyl chloride), PTFE (polytetrafluoroethylene), etc.; and the buffer layer 40 may be a composite film in which the above inorganic thin film and organic thin film are alternately laminated.
  • the buffer layer 40 includes at least two layers of a film laminated to each other.
  • the uneven surface 401 is formed only on the side of the buffer layer 40 that is farthest from the OLED device 102 in contact with the film 30.
  • the uneven shape shown in FIG. 2 is only schematically represented by the uneven surface 401, and the microscopic topography of the uneven surface 401 and the uneven surface 401 of the embodiment of the present disclosure are
  • the uniform unevenness or the uneven unevenness is not limited as long as the unevenness can increase the surface roughness of the buffer layer 40 to have a larger surface area than the flat buffer layer.
  • the unevenness of the uneven surface 401 is too small, and the buffer layer 40 is increased.
  • the effect of the surface area is weak, and when the unevenness of the uneven surface 401 is excessively large, the surface of the buffer layer 40 may be damaged, thereby affecting the normal performance of the buffer layer 40. Therefore, the roughness of the uneven surface 401 should have a suitable range.
  • the roughness of the uneven surface 401 is 0.04 to 0.06 ⁇ m, so that the wettability of the surface of the buffer layer 40 and the film 30 can be increased as much as possible, and the buffer can be increased.
  • the uneven surface 401 has a roughness of 0.05 ⁇ m.
  • the above-mentioned roughness refers to the degree of contour relief of the uneven surface 401, that is, within a certain sampling length of the surface of the object, for example, within a sampling length of 200 ⁇ m, the highest peak line and the lowest valley line of the surface profile. The distance between them.
  • the buffer layer 40 has a thickness of 0.5 to 1.5 ⁇ m.
  • the uneven surface 401 of the buffer layer 40 is often obtained by a certain process, when the thickness of the buffer layer 40 is too small (for example, less than 0.5 ⁇ m), the bump is disadvantageous.
  • the buffer layer 40 has a thickness of 1.0 ⁇ m.
  • the projected area of the buffer layer 40 on the base substrate 101 is greater than or equal to the projected area on the base substrate 101 of the OLED device 102, and is smaller than the substrate substrate 101. area.
  • the adhesive film 30 completely covers the buffer layer 40 and a region of the base substrate 101 that is not covered by the buffer layer 40.
  • the buffer layer 40 in FIG. 3 can be compared to the case where the projected area on the base substrate 101 of the buffer layer 40 shown in FIG. 1 is equal to the area of the base substrate 101. It is more tightly combined with the adhesive film 30, thereby further improving the sealing effect of the package body 01.
  • the OLED device 102 when the OLED device 102 is a top emission type OLED, that is, with respect to the base substrate 101 (not shown), the top emission type OLED has an upward light emitting direction, or
  • the OLED device 102 is a double-sided emission type OLED, that is, the double-sided emission type OLED has two light-emitting directions upward and downward with respect to the base substrate 101 (not shown).
  • the uneven surface 401 can increase the bonding strength of the buffer layer 40 and the adhesive film 30, and can also improve the light emitted by the OLED device 102 from the uneven surface.
  • the degree of scattering at the time of 401 emission increases the light transmittance of the above-described top emission type OLED or the light transmittance of the above-described double-sided emission type OLED to the upper side.
  • the buffer layer 40, the adhesive film 30, and the package substrate 20 each have a high light transmissive transparent material. Therefore, the light emitted by the top emission type OLED or the light emitted from the upper side of the double-sided emission type OLED sequentially penetrates the buffer layer 40, the adhesive film 30, and the package substrate 20, thereby further Ejected from the package.
  • the bonding strength between the buffer layer 40 and the adhesive film 30 can be increased, and on the other hand, the top emission type OLED or the double side can be improved.
  • the light transmittance of the OLED on the upper side of the OLED can be flexibly adjusted according to the material, the size and the like of the buffer layer 40, and is not limited herein.
  • Embodiments of the present disclosure also provide a light emitting device including any of the packages 01 described above.
  • the light emitting device may be any one of an organic electroluminescent display, an organic transistor, an organic integrated circuit, an organic solar cell, an organic laser, and/or an organic sensor.
  • the organic electroluminescent display can be, for example, an OLED display panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, or the like, and any product or component having a display function.
  • An embodiment of the present disclosure further provides a packaging method of an OLED device, the method comprising the following steps:
  • a buffer layer 40 covering the OLED device 102 is formed on the device substrate 10.
  • the device substrate 10 includes a base substrate 101 and the OLED device 102 on the base substrate 101.
  • the buffer layer 40 is surface-treated to form a surface 401 of the buffer layer 40 away from the device substrate 10 to form an uneven surface.
  • the surface treatment may be, for example, bombarding the buffer layer 40 with respect to the outer side of the OLED device 102 by a plasma carrying a high energy, and finely etching the surface of the buffer layer 40 to obtain the above. Rugged surface 401.
  • a film 30 is formed on the buffer layer 40 having the uneven surface 401, or as shown in FIG. 8, a film 30 is formed on the package substrate 20.
  • the OLED device 102 in the package body 01 may include, for example, an anode layer, a cathode layer, and an organic material.
  • the functional layer; wherein the organic material functional layer may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the buffer layer 40 should be formed by a preparation method in which the film formation temperature is low or the substrate is heated to a small extent during the film formation process. For example, chemical vapor deposition or plasma enhanced chemistry can be selected.
  • the buffer layer 40 is formed by a vapor deposition method or a sputtering method.
  • the buffer layer 40 may be formed by plasma enhanced chemical vapor deposition (PECVD) having many advantages such as low film formation temperature, fast deposition rate, and controllable film formation stress.
  • PECVD plasma enhanced chemical vapor deposition
  • the surface treatment of the buffer layer 40 refers to the outermost side of the buffer layer 40, that is, the pair to be formed.
  • the side of the film 30 that is in contact with each other is subjected to surface treatment.
  • step S04 in the case where the adhesive film 30 is formed on the package substrate 20, after the device substrate 10 is bonded to the package substrate 20, the device substrate 10 and/or the Applying a certain uniform pressing force on the package substrate 20, so that the adhesive film 30 formed on the package substrate 20 can be in sufficient contact with the uneven surface 401 of the buffer layer 40, thereby improving both The strength of the bond.
  • the surface treatment of the buffer layer 40 includes: disposing the buffer layer away from the OLED device 102 One side is subjected to an inert gas plasma treatment.
  • the inert gas may include helium (He), or neon (Ne), or argon (Ar), Or at least one of helium (Kr), or xenon (Xe), or helium (Rn), that is, the inert gas may be any one of the above-mentioned single gases, or may be any of the above-mentioned inert gases.
  • the mixed gas mixed in any ratio is not limited herein.
  • the parameters such as the radio frequency power and the etching time involved in the inert gas plasma treatment can be flexibly adjusted according to the constituent materials, thickness, and area of the buffer layer 40.
  • the inert gas plasma treatment is also suitable for the patterning treatment of the thin film, that is, the high energy of the inert gas plasma is used to etch the thin film to obtain a patterned layer having a specific pattern, and is provided in the embodiment of the present disclosure.
  • the surface of the buffer layer 40 is only slightly etched by the inert gas plasma treatment to have the uneven surface 401.
  • the gas plasma treatment time is too long to cause the high-energy inert gas plasma particles to enter the inside of the OLED device 102 to cause damage to the functional layer of the organic material, and the radio frequency power of the plasma in the inert gas plasma treatment It can be appropriately reduced by 50%, for example, 7000 watts (value based on G6 equipment), and the etching time is controlled, for example, within 10 seconds.
  • the microscopic topography of the uneven surface 401 obtained by the inert gas plasma treatment of the buffer layer 40 can be observed by an atomic force microscope (AFM) to timely adjust the inert gas plasma treatment.
  • the process parameters such as the RF power and the etching time are involved, and the roughness of the uneven surface 401 formed is prevented from being too large or too small.
  • the above method further includes, for example, curing the adhesive film 30 between the device substrate 10 and the package substrate 20 by ultraviolet light irradiation or heating in the above step S04.
  • the adhesive film 30 when the adhesive film 30 is a UV curable adhesive, the adhesive film 30 is cured by ultraviolet light irradiation.
  • the film 30 can absorb the energy of the ultraviolet light under ultraviolet light irradiation to generate active radicals or cations, so that a series of chemical reactions occur inside the film 30 to be finally cured.
  • the adhesive film 30 is a thermosetting adhesive material (for example, a thermosetting phenolic resin material)
  • the adhesive film 30 may be cured by heating.
  • the film 30 is gradually hardened by chemical changes after heating, and does not soften again when heated.
  • the above heating method is employed to cure the adhesive film 30, since the OLED device 102 The temperature is relatively sensitive, and the heat of the heat source should be transferred to the inside of the film 30 through the package substrate 20 as much as possible, thereby avoiding the influence of high temperature on the functional layer of the organic material in the OLED device 102.
  • the package body 01 shown in FIG. 3 can be formed by the above-described packaging steps S01 to S04.
  • the side of the buffer layer 40 in contact with the film 30 is surface-treated to form an uneven surface 401, that is, the buffer layer 40 has a larger surface area and can be increased.
  • the wettability of the film 30 on the uneven surface 401 reduces the interfacial space between the film 30 and the surface of the buffer layer 40, so that the two are more closely combined, and the environment is reduced.
  • a package of an OLED device comprising: a device substrate, a package substrate bonded to the device substrate, and a film between the device substrate and the package substrate, the device substrate including a substrate a substrate and an OLED device on the substrate, wherein the package further comprises: a buffer layer between the device substrate and the adhesive film; and a buffer layer in contact with the adhesive film
  • the side is an uneven surface.
  • a projected area of the buffer layer on the base substrate is greater than or equal to that of the OLED device on the base substrate. a projected area that is smaller than an area of the base substrate; the adhesive film covers the buffer layer and all other regions on the base substrate that are not covered by the buffer layer.
  • a light-emitting device comprising the package according to any one of (1) to (5).
  • a method of packaging an OLED device comprising:
  • the device substrate includes a substrate substrate and the OLED device on the substrate substrate;
  • the device substrate is bonded to the package substrate.
  • An inert gas plasma treatment is performed on a side of the buffer layer remote from the OLED device.
  • the inert gas comprises at least one of helium gas, or helium gas, or argon gas, or helium gas, or helium gas or helium gas.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED器件的封装体(01)、封装方法及发光装置。该OLED器件的封装体(01),包括:器件基板(10)、与器件基板(10)接合的封装基板(20)、以及位于器件基板(10)与封装基板20之间的胶膜(30)。器件基板(10)包括衬底基板(101)和位于衬底基板(101)上的OLED器件。封装体(01)还包括:位于器件基板(10)与胶膜(30)之间的缓冲层(40);缓冲层(40)与胶膜(30)接触的一侧为凹凸不平的表面(401)。

Description

OLED器件的封装体及其封装方法、发光装置 技术领域
本公开涉及OLED器件的封装体及其封装方法、发光装置。
背景技术
有机电致发光显示器(Organic Light-Emitting Diode,简称OLED)中的OLED器件极易与空气中的水汽、氧气等成分发生反应,因此需要与环境中的水氧严格分离开,以延长OLED器件的使用寿命。
传统的封装方法包括基板封装和薄膜封装两种类型,其中:基板封装是指在形成有OLED器件的器件基板与封装基板之间填充胶膜,胶膜固化后使器件基板与封装基板之间形成密闭的空间,从而达到封装的效果;薄膜封装是指在OLED器件表面覆盖由无机薄膜和有机薄膜组合的薄膜封装层,以使水氧难以渗入OLED器件内部。
在基板封装中,由于胶膜通常为有机粘结剂,经固化后会产生大量的孔隙,使空气中的水氧能够通过这些孔隙与OLED器件发生反应;在薄膜封装中,虽然无机薄膜的致密性较强,具有一定的隔离水氧作用,然而无机薄膜在制备过程中,不可避免地会出现如针孔、裂纹等缺陷,这些缺陷大大降低了无机薄膜的隔离水氧的能力,并且无机薄膜的弹性较低,内应力大,受外力作用容易产生裂缝或与OLED器件剥离,因此需要与有机薄膜层叠在一起形成复合薄膜,但是有机薄膜对水氧的阻隔能力较差,甚至某些有机薄膜的材料本身具有较强的吸水性,使得水气有机会穿过相邻的无机薄膜的缺陷进入OLED器件内部。
发明内容
本公开的实施例提供一种OLED器件的封装体,包括:器件基板、与所述器件基板接合的封装基板、以及位于所述器件基板与所述封装基板之间的胶膜,所述器件基板包括衬底基板和位于所述衬底基板上的OLED器件,其中,所述封装体还包括:位于所述器件基板与所述胶膜之间的缓冲层;所述 缓冲层与所述胶膜接触的一侧为凹凸不平的表面。
本公开的另一实施例提供一种发光装置,包括上述任一项的封装体。
本公开的又一实施例提供一种OLED器件的封装方法,包括:在器件基板上形成覆盖OLED器件的缓冲层;所述器件基板包括衬底基板和位于所述衬底基板上的所述OLED器件;对所述缓冲层进行表面处理,使所述缓冲层具有凹凸不平的表面;在具有所述凹凸不平的表面的所述缓冲层上形成胶膜,或在封装基板上形成胶膜;将所述器件基板与所述封装基板接合。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,并非对本公开的限制。
图1为本公开实施例提供的一种OLED器件的封装体的剖面结构示意图;
图2为图1中虚线部分的放大示意图;
图3为本公开实施例提供的一种OLED器件的封装体的剖面结构示意图;
图4为本公开实施例提供的一种OLED器件的封装体中OLED器件向上发射的光线的部分光路示意图;
图5为本公开实施例提供的封装方法的步骤对应的封装体的部分结构示意图;
图6为本公开实施例提供的封装方法的步骤对应的封装体的部分结构示意图;
图7为本公开实施例提供的封装方法的步骤对应的封装体的部分结构示意图;
图8为本公开实施例提供的封装方法的步骤对应的封装体的部分结构示意图。
具体实施方式
下面将结合附图,对本公开实施例中的技术方案进行清楚、完整地描述, 显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种OLED器件的封装体01,如图1~图3所示,所述封装体01包括:器件基板10、与所述器件基板10接合的封装基板20、以及位于所述器件基板10与所述封装基板20之间的胶膜30,所述器件基板10包括衬底基板101和位于所述衬底基板101上的OLED器件102;所述封装体01还包括:位于所述器件基板10与所述胶膜30之间的缓冲层40;其中,所述缓冲层40与所述胶膜30接触的一侧形成为凹凸不平的表面401。
在上述的封装体01中,由于所述缓冲层40与所述胶膜30接触的一侧形成为凹凸不平的表面401,因此所述缓冲层40在此侧具有更大的表面积,能够增大所述胶膜30在所述凹凸不平的表面401的浸润性,减小了所述胶膜30与所述缓冲层40表面的界面空隙,使得二者结合的更为紧密,降低了环境中的水氧渗入到界面后侵入到所述OLED器件102内部的机会,从而提高所述OLED器件102的封装效果,延长了其使用寿命。
这里,所述缓冲层40可以包括无机薄膜、或有机薄膜中的至少一种,在此不作限定。无机薄膜例如可以是结构致密的氮化硅、氧化硅、氮氧化硅、氧化铝等,有机薄膜例如可以是PET(聚对苯二甲酸乙二酯)、PEN(聚萘二甲酸乙二醇酯)、PI(聚酰亚胺)、PVC(聚氯乙烯)、PTFE(聚四氟乙烯)等;此外,所述缓冲层40也可以为上述的无机薄膜和有机薄膜交替层叠的复合薄膜。
在一个示例中,所述缓冲层40包括至少两层彼此层叠的薄膜。凹凸不平的表面401仅形成在所述缓冲层40的最远离OLED器件102的薄膜的与所述胶膜30接触的一侧上。
图2中示出的凹凸不平的形状仅是对所述凹凸不平的表面401示意性表示,本公开实施例对所述凹凸不平的表面401的微观形貌、以及所述凹凸不平的表面401是均匀的凹凸不平,或非均匀的凹凸不平均不做限定,只要该凹凸不平能够增大所述缓冲层40的表面粗糙度,使其相比于平坦的缓冲层具有更大的表面积即可。
所述凹凸不平的表面401的不平整程度过小时,对增大所述缓冲层40 的表面积的效果较微弱,当所述凹凸不平的表面401的不平整程度过大时,有可能造成所述缓冲层40表面的破损,从而影响所述缓冲层40的正常性能。因此,所述凹凸不平的表面401的粗糙度应具有一个合适的范围。
在一个示例中,所述凹凸不平的表面401的粗糙度为0.04~0.06μm,这样能够尽可能地提高所述缓冲层40的表面与所述胶膜30的浸润性,实现增大所述缓冲层40与所述胶膜30之间的结合强度的目的。例如,所述凹凸不平的表面401的粗糙度为0.05μm。
这里,上述的粗糙度是指所述凹凸不平的表面401的轮廓起伏程度,即在物体表面的一定取样长度内,例如,200μm的取样长度内,表面轮廓的最高峰顶线与最低谷底线之间的距离。
在一个示例中,所述缓冲层40的厚度为0.5~1.5μm。此处,由于所述缓冲层40具有的所述凹凸不平的表面401往往是通过一定的工艺处理得到的,当所述缓冲层40的厚度过小(例如小于0.5μm)时不利于所述凹凸不平的表面401的形成;由于所述封装体01往往是应用于显示装置等结构,当所述缓冲层40的厚度过大(例如大于1.5μm)时会造成所述封装体01的整体厚度过大,不利于显示装置轻薄化发展的需要。例如,所述缓冲层40的厚度为1.0μm。
在一个示例中,如图3所示,所述缓冲层40在衬底基板101上的投影面积大于等于所述OLED器件102衬底基板101上的投影面积,且小于所述衬底基板101的面积。所述胶膜30完全覆盖所述缓冲层40、以及所述衬底基板101上未被所述缓冲层40覆盖的区域。
这样一来,相比于图1中所示的所述缓冲层40的在衬底基板101上的投影面积等于所述衬底基板101的面积的情况,图3中的所述缓冲层40能够与所述胶膜30结合地更为紧密,从而进一步提高所述封装体01的密封效果。
如图4所示,当所述OLED器件102为顶发射型OLED,即,相对于所述衬底基板101(图中未标示出),所述顶发射型OLED具有向上的发光方向,或所述OLED器件102为双面发射型OLED,即,相对于所述衬底基板101(图中未标示出),所述双面发射型OLED具有向上和向下的两个发光方向。所述凹凸不平的表面401除了能够增大所述缓冲层40与所述胶膜30的结合强度,还可提高所述OLED器件102发出的光从所述凹凸不平的表面 401出射时的散射程度,从而增大了上述的顶发射型OLED的光透过率,或上述的双面发射型OLED的向上一侧的光透过率。
在一个示例中,所述缓冲层40、所述胶膜30、以及所述封装基板20均具有高的光透射性的透明材料。因此,所述顶发射型OLED发出的光,或所述双面发射型OLED向上一侧发出的光均依次穿透所述缓冲层40、所述胶膜30、以及所述封装基板20,进而从所述封装体射出。
需要说明的是,为了使得所述凹凸不平的表面401一方面能够增大所述缓冲层40与所述胶膜30的结合强度的基础上,另一方面又能够提高顶发射型OLED或双面发射型OLED向上一侧的光透射率,所述凹凸不平的表面401的粗糙度范围可根据所述缓冲层40的材料、尺寸等参数灵活调整,在此不作限定。
本公开实施例还提供了一种发光装置,所述发光装置包括上述的任一种所述封装体01。
此处,所述发光装置可以是应用于有机电致发光显示器、有机晶体管、有机集成电路、有机太阳能电池、有机激光器和/或有机传感器中的任一种发光装置。
其中,所述有机电致发光显示器例如可以为:OLED显示面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件等。
本公开实施例还提供了一种OLED器件的封装方法,所述方法包括以下步骤:
S01、如图5所示,在器件基板10上形成覆盖OLED器件102的缓冲层40。
其中,所述器件基板10包括衬底基板101和位于所述衬底基板101上的所述OLED器件102。
S02、如图6所示,对所述缓冲层40进行表面处理,使所述缓冲层40远离所述器件基板10的一侧形成为凹凸不平的表面401。
此处,所述表面处理例如可以是利用携带高能量的等离子体轰击所述缓冲层40相对于所述OLED器件102的外侧,对所述缓冲层40的表面进行细微的刻蚀,从而获得上述的凹凸不平的表面401。
S03、如图7所示,在具有凹凸不平的表面401的所述缓冲层40上形成胶膜30,或者,如图8所示,在封装基板20上形成胶膜30。
S04、结合如上形成的器件基板10与所述封装基板20,以形成如图3所示的所述封装体01。
在上述步骤S01中,当所述封装体01应用于有机电致发光显示器(OLED)中时,所述封装体01中的所述OLED器件102例如可包括:阳极层、阴极层、以及有机材料功能层;其中,所述有机材料功能层例如可包括:空穴注入层、空穴传输层、发光层、电子传输层、以及电子注入层。
此外,考虑到所述OLED器件102对温度较为敏感,当采用例如蒸镀法形成所述缓冲层40时,蒸镀工艺中的高温容易对所述OLED器件102的性能产生影响。因此,在步骤S01中应尽量选择成膜温度较低,或基板在成膜过程中升温幅度较小的制备方法形成所述缓冲层40,例如,可以选择化学气相沉积法、或等离子体增强化学气相沉积法、或溅射法形成所述缓冲层40。
例如,可采用具有成膜温度低、沉积速率快、成膜应力可控等诸多优点的等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,简称PECVD)形成所述缓冲层40。
在上述步骤S02中,当所述缓冲层40包括至少两层薄膜时,所述对所述缓冲层40进行表面处理是指对所述缓冲层40的最外侧的一面,即对与待形成的所述胶膜30相互接触的一面进行表面处理。
在上述步骤S04中,针对所述胶膜30形成于所述封装基板20上的情况,将所述器件基板10与所述封装基板20接合后,可以在所述器件基板10和/或所述封装基板20上施加一定的均匀的压合力,以使形成于所述封装基板20上的所述胶膜30能够与所述缓冲层40的所述凹凸不平的表面401充分接触,从而提高二者的结合强度。
进一步的,考虑到惰性气体具有较大的原子半径,当利用携带高能量的惰性气体等离子体粒子对所述缓冲层40的表面进行轰击处理时,能够使所述缓冲层40的表面发生一定程度的刻蚀,从而形成不平整的表面,因此,在一个示例中,在上述步骤S02中,所述对所述缓冲层40进行表面处理,包括:对所述缓冲层远离所述OLED器件102的一侧进行惰性气体等离子体处理。
其中,所述惰性气体可包括氦气(He)、或氖气(Ne)、或氩气(Ar)、 或氪气(Kr)、或氙气(Xe)、或氡气(Rn)中的至少一种,即所述惰性气体可以为上述的任一种单一气体,也可以为上述任一种惰性气体按任意比例混合的混合气体,在此不作限定。
这里,惰性气体等离子体处理中涉及的射频功率与刻蚀时间等参数可根据所述缓冲层40的组成材料及厚度、面积等参数灵活调整。
需要注意的是,惰性气体等离子体处理也适用于薄膜的图案化处理,即利用惰性气体等离子体的高能量对薄膜进行刻蚀,从而得到具有特定图形的图案层,而在本公开实施例提供的上述封装方法中,仅需通过所述惰性气体等离子体处理对所述缓冲层40的表面进行细微的刻蚀,以使其具有所述凹凸不平的表面401。
因此,相比于薄膜图案化处理的刻蚀工艺中所采用的等离子体处理,本公开实施例提供的所述封装方法中,为了避免由于所述惰性气体等离子体能量过高,或所述惰性气体等离子体处理时间过长而使携带高能量的惰性气体等离子体粒子进入到所述OLED器件102的内部,对有机材料功能层产生破坏,所述惰性气体等离子体处理中的等离子体的射频功率可适当降低50%,例如为7000瓦(数值基于G6设备),刻蚀时间例如控制在10秒以内。
此外,可通过原子力显微镜(Atomic Force Microscope,简称AFM)观察所述缓冲层40经过上述惰性气体等离子体处理后得到的所述凹凸不平的表面401的微观形貌,以便及时调整惰性气体等离子体处理中涉及的射频功率与刻蚀时间等工艺参数,避免形成的所述凹凸不平的表面401的粗糙度过大或过小。
上述方法例如还包括:在上述步骤S04中,通过紫外光照射或加热的方式,使位于所述器件基板10与所述封装基板20之间的所述胶膜30固化。
其中,当所述胶膜30为UV固化胶时,采用紫外光照射使所述胶膜30固化。所述胶膜30在紫外光照射下能够吸收紫外光的能量,产生活性自由基或阳离子,使得所述胶膜30内部发生一系列的化学反应最终固化。
当所述胶膜30为热固性胶材(例如热固性酚醛树脂材料)时,可采用加热使所述胶膜30固化。所述胶膜30经加热后产生化学变化逐渐硬化成型,再次受热也不发生软化。
此处,如果采用上述加热方式以固化胶膜30,由于所述OLED器件102 对温度较为敏感,应尽量使加热源的热量通过所述封装基板20传递至所述胶膜30内部,从而避免高温对OLED器件102中有机材料功能层的影响。
通过上述封装步骤S01~S04,便可形成如图3所示的所述封装体01。
由于在上述的封装体01中,所述缓冲层40与所述胶膜30接触的一侧经表面处理形成了凹凸不平的表面401,即,所述缓冲层40具有更大的表面积,能够增大所述胶膜30在所述凹凸不平的表面401的浸润性,减小所述胶膜30与所述缓冲层40表面的界面空隙,使得二者结合的更为紧密,降低了环境中的水氧渗入到界面后侵入到所述OLED器件102内部的机会,从而提高所述OLED器件102的封装效果,延长了所述OLED器件102的使用寿命。
需要说明的是,本公开所有附图是所述封装体01的简略的示意图,只为清楚描述本方案体现与本公开点相关的结构,对于未示出的其他的相关结构可采用现有的对应结构,在此不再赘述。
根据上述描述,根据本公开的实施例至少可以提供以下结构和方法:
(1)一种OLED器件的封装体,包括:器件基板、与所述器件基板接合的封装基板、以及位于所述器件基板与所述封装基板之间的胶膜,所述器件基板包括衬底基板和位于所述衬底基板上的OLED器件,其中,所述封装体还包括:位于所述器件基板与所述胶膜之间的缓冲层;所述缓冲层与所述胶膜接触的一侧为凹凸不平的表面。
(2)根据(1)所述的封装体,其中,所述凹凸不平的表面的粗糙度为0.04~0.06μm。
(3)根据(1)或(2)所述的封装体,其中,所述缓冲层的厚度为0.5~1.5μm。
(4)根据(1)至(3)任一项所述的封装体,其中,所述缓冲层在所述衬底基板上的投影面积大于等于所述OLED器件在所述衬底基板上的投影面积,且小于所述衬底基板的面积;所述胶膜覆盖所述缓冲层以及所述衬底基板上未被所述缓冲层覆盖的其他所有区域。
(5)根据(1)至(3)任一项所述的封装体,其中,所述OLED器件为顶发射型OLED或双面发射型OLED;所述缓冲层、所述胶膜、以及所述封装基板均为透明材料。
(6)一种发光装置,包括(1)至(5)任一项所述的封装体。
(7)一种OLED器件的封装方法,包括:
在器件基板上形成覆盖OLED器件的缓冲层;所述器件基板包括衬底基板和位于所述衬底基板上的所述OLED器件;
对所述缓冲层进行表面处理,使所述缓冲层具有凹凸不平的表面;
在具有所述凹凸不平的表面的所述缓冲层上形成胶膜,或在封装基板上形成胶膜;以及
将所述器件基板与所述封装基板接合。
(8)根据(7)所述的封装方法,其中,所述对所述缓冲层进行表面处理,包括:
对所述缓冲层远离所述OLED器件的一侧进行惰性气体等离子体处理。
(9)根据(8)所述的封装方法,其中,所述惰性气体包括氦气、或氖气、或氩气、或氪气、或氙气、或氡气中的至少一种。
(10)根据(7)至(9)任一项所述的封装方法,其中,将所述器件基板与所述封装基板接合后,所述方法还包括:通过紫外光照射或加热的方式,使位于所述器件基板与所述封装基板之间的所述胶膜固化。
虽然上文中已经用一般性说明及具体实施方式,对本公开作了详尽的描述,但在本公开基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。
本申请要求于2014年3月10日递交的中国专利申请第201410086385.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (10)

  1. 一种OLED器件的封装体,包括:器件基板、与所述器件基板接合的封装基板、以及位于所述器件基板与所述封装基板之间的胶膜,所述器件基板包括衬底基板和位于所述衬底基板上的OLED器件,其中,
    所述封装体还包括:位于所述器件基板与所述胶膜之间的缓冲层;所述缓冲层与所述胶膜接触的一侧为凹凸不平的表面。
  2. 根据权利要求1所述的封装体,其中,所述凹凸不平的表面的粗糙度为0.04~0.06μm。
  3. 根据权利要求1或2所述的封装体,其中,所述缓冲层的厚度为0.5~1.5μm。
  4. 根据权利要求1至3任一项所述的封装体,其中,所述缓冲层在所述衬底基板上的投影面积大于等于所述OLED器件在所述衬底基板上的投影面积,且小于所述衬底基板的面积;
    所述胶膜覆盖所述缓冲层以及所述衬底基板上未被所述缓冲层覆盖的其他所有区域。
  5. 根据权利要求1至3任一项所述的封装体,其中,所述OLED器件为顶发射型OLED或双面发射型OLED;
    所述缓冲层、所述胶膜、以及所述封装基板均为透明材料。
  6. 一种发光装置,其中,包括权利要求1至5任一项所述的封装体。
  7. 一种OLED器件的封装方法,包括:
    在器件基板上形成覆盖OLED器件的缓冲层;所述器件基板包括衬底基板和位于所述衬底基板上的所述OLED器件;
    对所述缓冲层进行表面处理,使所述缓冲层具有凹凸不平的表面;
    在具有所述凹凸不平的表面的所述缓冲层上形成胶膜,或在封装基板上形成胶膜;
    将所述器件基板与所述封装基板接合。
  8. 根据权利要求7所述的封装方法,其中,所述对所述缓冲层进行表面处理,包括:
    对所述缓冲层远离所述OLED器件的一侧进行惰性气体等离子体处理。
  9. 根据权利要求8所述的封装方法,其中,所述惰性气体包括氦气、或氖气、或氩气、或氪气、或氙气、或氡气中的至少一种。
  10. 根据权利要求7至9任一项所述的封装方法,其中,将所述器件基板与所述封装基板接合后,所述方法还包括:
    通过紫外光照射或加热的方式,使位于所述器件基板与所述封装基板之间的所述胶膜固化。
PCT/CN2014/085763 2014-03-10 2014-09-02 Oled器件的封装体及其封装方法、发光装置 WO2015135307A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/436,714 US20160293897A1 (en) 2014-03-10 2014-09-02 Oled device package and packaging method thereof, and light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410086385.8A CN103887446A (zh) 2014-03-10 2014-03-10 一种oled器件的封装结构及其封装方法、发光器件
CN201410086385.8 2014-03-10

Publications (1)

Publication Number Publication Date
WO2015135307A1 true WO2015135307A1 (zh) 2015-09-17

Family

ID=50956254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085763 WO2015135307A1 (zh) 2014-03-10 2014-09-02 Oled器件的封装体及其封装方法、发光装置

Country Status (3)

Country Link
US (1) US20160293897A1 (zh)
CN (1) CN103887446A (zh)
WO (1) WO2015135307A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887446A (zh) * 2014-03-10 2014-06-25 京东方科技集团股份有限公司 一种oled器件的封装结构及其封装方法、发光器件
CN104393187B (zh) * 2014-11-17 2018-09-11 合肥鑫晟光电科技有限公司 一种封装基板及其制备方法、oled显示装置
CN104617230A (zh) * 2015-01-29 2015-05-13 合肥鑫晟光电科技有限公司 封装胶结构及其制造方法和显示基板的封装方法
CN105140417A (zh) 2015-08-20 2015-12-09 京东方科技集团股份有限公司 一种有机发光二极管器件及制作方法和显示装置
KR101818423B1 (ko) * 2015-09-23 2018-01-16 엘지디스플레이 주식회사 유기발광 표시장치
CN105206763B (zh) * 2015-10-21 2018-01-23 京东方科技集团股份有限公司 柔性显示器及其制造方法
CN105449121B (zh) * 2016-01-13 2017-08-25 京东方科技集团股份有限公司 Oled器件的封装方法、oled封装器件及显示装置
CN105717687B (zh) 2016-04-21 2019-07-12 上海天马有机发光显示技术有限公司 一种显示装置及封装方法
CN106057857B (zh) * 2016-07-26 2018-12-28 武汉华星光电技术有限公司 一种柔性有机发光二极管显示器及其制作方法
CN106356380B (zh) * 2016-11-11 2019-05-31 深圳市华星光电技术有限公司 柔性tft基板及其制作方法
CN106935633B (zh) * 2017-05-23 2020-04-21 上海天马微电子有限公司 显示面板和显示面板的制造方法
CN109817820A (zh) * 2017-11-20 2019-05-28 Tcl集团股份有限公司 封装薄膜及其封装方法和应用
CN108461388B (zh) * 2018-03-26 2020-11-06 云谷(固安)科技有限公司 一种衬底结构、加工方法和显示装置
CN108539057B (zh) * 2018-05-16 2019-07-02 深圳市华星光电技术有限公司 Oled封装方法及oled封装结构
CN108832028B (zh) * 2018-06-11 2020-08-04 武汉华星光电半导体显示技术有限公司 一种oled显示面板的制备方法及oled显示面板、显示装置
CN109192878B (zh) * 2018-08-30 2019-11-26 武汉华星光电半导体显示技术有限公司 柔性oled显示面板
CN109256481B (zh) * 2018-08-30 2020-09-11 云谷(固安)科技有限公司 显示面板和显示装置
CN109309171B (zh) * 2018-09-29 2020-07-07 广州国显科技有限公司 有机电致发光器件及其制备方法、柔性显示装置
CN109523922B (zh) * 2018-12-14 2021-08-17 云谷(固安)科技有限公司 一种柔性模组、显示面板和显示装置
CN109920930A (zh) * 2019-02-28 2019-06-21 武汉华星光电半导体显示技术有限公司 Oled封装结构、封装方法及电子器件
CN110176479B (zh) * 2019-05-30 2020-09-01 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN110874988B (zh) * 2019-11-29 2022-05-24 京东方科技集团股份有限公司 显示装置
CN113745429B (zh) * 2021-08-26 2024-04-30 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217828A (ja) * 2002-01-22 2003-07-31 Seiko Epson Corp 封止用基板及びその製造方法、表示装置並びに電子機器
CN1971940A (zh) * 2005-11-22 2007-05-30 精工爱普生株式会社 发光装置和电子设备
US20100019664A1 (en) * 2008-07-22 2010-01-28 Fujifilm Corporation Organic electroluminescence panel and a method for manufacturing the same
CN103887446A (zh) * 2014-03-10 2014-06-25 京东方科技集团股份有限公司 一种oled器件的封装结构及其封装方法、发光器件

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591351B2 (ja) * 1998-12-28 2004-11-17 双葉電子工業株式会社 有機el素子とその製造方法
JP2000277254A (ja) * 1999-03-26 2000-10-06 Tdk Corp 有機el素子
JP2001035659A (ja) * 1999-07-15 2001-02-09 Nec Corp 有機エレクトロルミネセント素子およびその製造方法
WO2003025078A1 (fr) * 2001-09-14 2003-03-27 Lintec Corporation Feuille adhesive facile a coller et son procede de production
CA2460154C (en) * 2001-09-14 2009-08-11 Lintec Corporation Easily applicable adhesive sheet comprising spherical protrusions and method for producing the same
US6835950B2 (en) * 2002-04-12 2004-12-28 Universal Display Corporation Organic electronic devices with pressure sensitive adhesive layer
JP2004111119A (ja) * 2002-09-17 2004-04-08 Sony Corp 表示装置およびその製造方法
KR100709746B1 (ko) * 2005-01-28 2007-04-19 주식회사 엘지화학 다단계 공기 배출 통로가 구비된 점착 시트
JP5208591B2 (ja) * 2007-06-28 2013-06-12 株式会社半導体エネルギー研究所 発光装置、及び照明装置
CN101582489A (zh) * 2009-05-26 2009-11-18 上海大学 有机电致发光器件的复合封装结构和方法
CN101794866A (zh) * 2009-12-24 2010-08-04 彩虹集团公司 一种封装盖板及用该盖板封装oled器件的方法
CN101866944B (zh) * 2010-02-26 2012-07-04 信利半导体有限公司 一种有机电致发光显示器
CN201946636U (zh) * 2011-01-17 2011-08-24 华映视讯(吴江)有限公司 封装结构
KR101873476B1 (ko) * 2011-04-11 2018-07-03 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
TWI557961B (zh) * 2011-11-14 2016-11-11 Lg化學股份有限公司 黏合膜
CN103151306B (zh) * 2013-03-08 2015-06-17 上海和辉光电有限公司 一种柔性电子器件的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217828A (ja) * 2002-01-22 2003-07-31 Seiko Epson Corp 封止用基板及びその製造方法、表示装置並びに電子機器
CN1971940A (zh) * 2005-11-22 2007-05-30 精工爱普生株式会社 发光装置和电子设备
US20100019664A1 (en) * 2008-07-22 2010-01-28 Fujifilm Corporation Organic electroluminescence panel and a method for manufacturing the same
CN103887446A (zh) * 2014-03-10 2014-06-25 京东方科技集团股份有限公司 一种oled器件的封装结构及其封装方法、发光器件

Also Published As

Publication number Publication date
CN103887446A (zh) 2014-06-25
US20160293897A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
WO2015135307A1 (zh) Oled器件的封装体及其封装方法、发光装置
WO2017215063A1 (zh) 柔性oled的制作方法及柔性oled
WO2017028412A1 (zh) 一种有机发光二极管器件及制作方法和显示装置
US9728746B2 (en) Encapsulation structures, encapsulation methods, and display devices of organic electroluminescent devices
TWI423723B (zh) 自發光面板之製造方法
WO2016115777A1 (zh) Oled的封装方法及oled封装结构
US9172057B2 (en) Encapsulation structure for an opto-electronic component
WO2016086538A1 (zh) Oled封装结构及oled封装方法
US20180241002A1 (en) Light emitting device and method of manufacturing a light emitting device
US9472777B2 (en) Packaging method and display device
US9876195B2 (en) Method for packaging organic light-emitting diode apparatus, organic light-emitting diode packaging apparatus and display device
WO2010001831A1 (ja) 有機elパネルおよび有機elパネルの製造方法
JP2011113967A (ja) 有機発光表示装置及びその製造方法
TW200906210A (en) Organic EL panel and method for producing the same
KR101658822B1 (ko) 광전자 컴포넌트를 위한 캡슐화 구조 및 광전자 컴포넌트를 캡슐화시키기 위한 방법
CN109830621B (zh) 柔性基板及其制造方法、柔性显示基板及其制造方法
TW201801371A (zh) 有機el顯示裝置及其製造方法
JP2007234318A (ja) パッシベーション膜及び有機el素子の製造方法
WO2019153903A1 (zh) 显示基板及其制备方法、显示装置
WO2015100797A1 (zh) 柔性oled面板的制作方法
US20200411794A1 (en) Organic light emitting diode display device and method of fabricating same
JP2010258037A (ja) 電子デバイスの製造方法
US10923677B2 (en) Film structure, display device and method for fabricating the film structure
WO2017221681A1 (ja) 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法
TWI653351B (zh) 沈積罩幕及其製造方法、有機el顯示裝置的製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14436714

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/02/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14885629

Country of ref document: EP

Kind code of ref document: A1