WO2015133589A1 - タイヤ成型用金型、及びタイヤの製造方法 - Google Patents

タイヤ成型用金型、及びタイヤの製造方法 Download PDF

Info

Publication number
WO2015133589A1
WO2015133589A1 PCT/JP2015/056567 JP2015056567W WO2015133589A1 WO 2015133589 A1 WO2015133589 A1 WO 2015133589A1 JP 2015056567 W JP2015056567 W JP 2015056567W WO 2015133589 A1 WO2015133589 A1 WO 2015133589A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
vent hole
mold
penetrating
protrusion
Prior art date
Application number
PCT/JP2015/056567
Other languages
English (en)
French (fr)
Inventor
和哉 黒石
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP15759324.5A priority Critical patent/EP3115169B1/en
Priority to US15/123,344 priority patent/US10081145B2/en
Priority to JP2016506561A priority patent/JP6495239B2/ja
Priority to CN201580012605.5A priority patent/CN106103029B/zh
Priority to ES15759324.5T priority patent/ES2657749T3/es
Publication of WO2015133589A1 publication Critical patent/WO2015133589A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/10Moulds or cores; Details thereof or accessories therefor with incorporated venting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • B29D2030/0607Constructional features of the moulds
    • B29D2030/0612Means for forming recesses or protrusions in the tyres, e.g. grooves or ribs, to create the tread or sidewalls patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/72Side-walls
    • B29D2030/726Decorating or marking the sidewalls before tyre vulcanization

Definitions

  • the present invention relates to a tire molding die for molding a pneumatic tire having protrusions formed on the surface thereof, and a tire manufacturing method.
  • a tire molding die for manufacturing a pneumatic tire provided with, for example, a protrusion that generates turbulent flow on the surface of the tire has been proposed (for example, see Japanese Patent Application Laid-Open No. 2012-029377).
  • Protrusions for generating turbulent flow will not exhibit their original performance unless they are manufactured according to the shape (height, edge).
  • vent holes are provided in the mold to eliminate air and form protrusions.
  • the depression-forming depression A concave non-penetrating vent hole is provided in the recess for forming the projection.
  • conventionally used tire molding dies are provided with a plurality of through-type vent holes for discharging air in the mold to the outside of the mold in order to suppress the occurrence of air accumulation in the mold. ing.
  • the rubber flows out to the outside of the die through the short-type through-type vent hole and comes out of the through-type vent hole outside the die.
  • the rubber may harden as a lump.
  • spew rubber solidified in the vent hole
  • spew is cut at an unintended part when removing the tire from the mold, and the through-type vent hole A spew that remains in the interior of the mold remains, and it takes time to clean the mold, which hinders productivity.
  • an embodiment of the present invention aims to provide a mold for molding a tire and a method for manufacturing a tire that can improve the productivity of the tire by eliminating the trouble of cleaning the mold.
  • a tire molding die is provided with a mold having a surface forming portion that makes contact with the surface of a raw tire and molds the outer surface of the tire, and is provided in the mold to form protrusions on the outer surface of the tire.
  • the concave projection forming recess, the non-penetrating vent hole whose one end communicates with the projecting recess and the other end terminates in the mold, and has a larger volume than the non-penetrating vent hole.
  • the non-penetrating vent hole is formed at a different position of the protrusion forming recess, and has a penetrating vent hole having one end communicating with the protrusion forming recess and the other end communicating with the outside of the mold. .
  • the concave projection forming concave portion for forming the projection on the outer surface of the tire is provided in the mold, when the surface of the raw tire is pressed against the surface forming portion, The raw tire rubber enters the protrusion-forming recess.
  • the rubber of the raw tire enters the protrusion forming recess, first, most of the air in the protrusion forming recess is discharged outside the mold through the through-type vent hole. Thereafter, a part of the rubber of the green tire that has entered the protrusion forming recess enters the inside of the through-type vent hole.
  • the through-type vent hole has a larger volume than the non-through-type vent hole, so that it is possible to stop the entering rubber inside the through-type vent hole and enter the through-type vent hole. It is possible to suppress the rubber from protruding out of the mold.
  • the rubber that has entered the through-type vent hole becomes a spew after vulcanization, but the spew remains inside the through-type vent hole, so that it can be removed from the through-type vent hole without cutting the spew.
  • the through-type vent hole is thicker from the projection-forming recess to the outer surface of the mold than the non-through-type vent hole. It is formed in the part.
  • the through-type vent hole is formed in a thick part of the mold thickness from the protrusion forming recess to the outer surface of the mold as compared with the non-through-type vent hole.
  • the length of the mold-type vent hole can be easily made longer than the length of the non-through-type vent hole, whereby the volume of the through-type vent hole can be increased.
  • the protrusion-forming recess is provided in a portion of the surface forming portion that forms a tire side portion, and the tire Turbulence generating protrusions that generate turbulent flow during rotation are formed.
  • the protrusion forming recess is provided in the portion of the surface forming portion that forms the tire side portion, turbulence is generated during tire rotation to cool the tire.
  • a turbulent flow generation projection capable of performing the above can be formed on the side portion of the tire.
  • a tire molding die according to a fourth aspect is the tire molding die according to any one of the first to third aspects, wherein the depths of the non-penetrating vent hole and the penetrating vent hole are as follows. The direction coincides with the moving direction of the mold.
  • the spew formed by the non-penetrating vent hole and the penetrating vent hole is replaced with the non-penetrating vent hole and the penetrating vent hole. Since it moves in the depth direction, the spew can be smoothly taken out from the non-penetrating vent hole and the penetrating vent hole.
  • the tire manufacturing method includes a step of loading a raw tire inside the tire molding die according to any one of the first to fourth aspects, and loading into the tire molding die. Expanding the raw tire with a bladder, pressing the surface of the raw tire against the surface forming portion, and allowing unvulcanized rubber constituting the raw tire to enter the protrusion forming recess; and Heating and vulcanizing the green tire.
  • the step of loading the raw tire inside the tire molding mold according to any one of the first to fourth aspects the tire molding mold
  • the raw tire is inflated with a bladder, the surface of the raw tire is pressed against the surface forming portion, and the unvulcanized rubber constituting the raw tire is allowed to enter the protrusion forming recess, so that the first aspect It is possible to obtain the action described in 1.
  • the tire molding die according to the first aspect when removing the vulcanized tire, it can be easily removed without cutting the spew, and the tire outer surface is sticky. By suppressing, stickiness of the surface forming portion can be suppressed, so that it has an excellent effect that the labor of cleaning the mold can be saved.
  • the through-type vent hole is formed in the thick part of the mold thickness from the projection forming concave portion to the outer surface of the mold as compared with the non-through-type vent hole.
  • the turbulent flow generation protrusion can be easily formed on the side portion of the tire.
  • the tire molding die according to the fourth aspect it can be smoothly and smoothly taken out from the through-type vent hole and the non-through-type vent hole.
  • the tire manufacturing method of the fifth aspect when removing the vulcanized tire, it can be easily removed without cutting the spew, and surface formation can be suppressed by suppressing the occurrence of stickiness on the outer surface of the tire. Since the stickiness of the part is also suppressed, it has an excellent effect that the labor of cleaning the mold can be saved.
  • FIG. 1 is a perspective view, partly in section, showing a pneumatic tire molded using a tire molding die according to an embodiment of the present invention. It is a longitudinal cross-sectional view along the axis which shows the metal mold
  • FIG. 3B is a cross-sectional view taken along line 3B-3B in FIG. 3A. It is an enlarged view of the periphery of the protrusion forming recess showing a state where unvulcanized rubber has entered the protrusion forming recess.
  • FIG. 1 is a perspective view, partly in section, showing a pneumatic tire molded using a tire molding die according to an embodiment of the present invention. It is a longitudinal cross-sectional view along the axis which shows the metal mold
  • FIG. 4B is a sectional view taken along line 4B-4B of FIG. 4A.
  • FIG. 6 is an enlarged view of the periphery of the protrusion forming recess showing a state in which the unvulcanized rubber is completely filled in the protrusion forming recess.
  • FIG. 5B is a sectional view taken along line 5B-5B in FIG. 5A. It is sectional drawing which shows the vent hole formed in the metal mold
  • a tire molding die 10 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 5. (Composition of pneumatic tire) First, the configuration of a pneumatic tire 12 manufactured by the tire molding die 10 according to the present embodiment will be described with reference to FIG.
  • a pneumatic tire 12 of a vulcanized product shown in FIG. 1 includes a bead core 16 embedded in a bead portion 14, a carcass 18 including at least one carcass ply that winds up the bead core 16 from the tire inner side to the outer side, a carcass A belt 20 composed of at least one belt ply disposed on the outer side in the tire radial direction of the tire 18, a side rubber layer 24 disposed on the outer side in the tire width direction of the carcass 18 and forming the bead portion 14 and the sidewall portion 22, and the belt 20 It is a thing of the general structure provided with the tread rubber layer 28 which is arrange
  • a turbulent flow generation projection 30 is provided for generating turbulent flow during running to cool the bead portion 14.
  • the turbulent flow generation projection 30 of the present embodiment has a substantially rectangular parallelepiped shape and is elongated in the tire radial direction when viewed from the side of the tire.
  • the width dimension W of the turbulent flow generation protrusion 30 is 5 mm
  • the length (dimension in the tire radial direction) of the turbulent flow generation protrusion 30 is 20 mm.
  • interval, and a number it can set suitably according to the kind and application of a tire.
  • three turbulent flow generation projections 30 that are arranged alternately in the tire radial direction form a set, and the set turbulent flow generation projections 30 are spaced from each other in the tire circumferential direction to form a surface of the bead portion 14. Is arranged.
  • FIG. 2 is a cross-sectional view in the tire width direction of the tire molding die 10 in a state where the sector mold 32, the pair of upper and lower side molds 34, and the pair of ring molds 38 are combined with each other.
  • the unvulcanized raw tire 12A is accommodated in a space (referred to as a vulcanization space) formed between the sector mold 32, the pair of upper and lower side molds 34, the bladder 40, and the pair of upper and lower side molds 34.
  • the sector mold 32 has a tread pattern forming surface 32A on which irregularities (not shown) for forming a tread pattern are formed.
  • the side mold 34 includes a sidewall forming surface 34 ⁇ / b> A that molds the sidewall portion 22.
  • the ring mold 38 includes a bead portion forming surface 38 ⁇ / b> A for shaping the bead portion 14.
  • the sector mold 32 can be moved in the tire radial direction (arrow R direction) by a moving mechanism (not shown), and the side mold 34 and the ring mold 38 can be moved in the tire width direction (arrow A direction) by a moving mechanism (not shown). Has been.
  • the heated and pressurized fluid is blown into the bladder 40, so that the bladder 40 expands inside the unvulcanized raw tire 12A, and the unvulcanized raw tire 12A is expanded by the expanded bladder 40.
  • the tread pattern forming surface 32A of the sector mold 32, the sidewall forming surface 34A of the side mold 34, and the bead portion forming surface 38A of the ring mold 38 are pressed and molded.
  • the bead portion forming surface 38 ⁇ / b> A includes a protrusion forming recess 42 for forming the turbulent flow generation protrusion 30.
  • the protrusion forming recess 42 is a recess that is recessed from the bead portion forming surface 38A toward the outer surface 38B.
  • the diameter of the ring mold 38 at the bottom 42A of the projection forming recess 42 is shown.
  • a non-penetrating vent hole 44 extending toward the outer surface 38B on the outer side in the tire width direction and terminating in the ring mold and substantially perpendicular to the bottom 42A is formed in the vicinity of the inner end in the direction of the ring.
  • a penetrating vent hole 46 that extends toward the outer surface 38B and communicates with the outer surface 38B and that is substantially perpendicular to the bottom 42A is formed in the vicinity of the radially outer end of the mold 38.
  • the penetrating vent hole 46 is formed and is not penetrating.
  • the mold vent hole 44 may take a form that is not formed.
  • the non-penetrating vent hole 44 is formed in a part of the ring mold 38 where the distance from the projection forming recess 42 to the outer surface 38B is relatively short, and the penetrating vent hole 46 is formed in the ring mold 38. 42 is formed in a portion where the distance from the outer surface 38B is relatively long (a portion where the distance from the outer surface 38B is longer than the position where the non-penetrating vent hole 44 is formed). The length is set longer than the length of the non-penetrating vent hole 44.
  • the cross-sectional shape perpendicular to the longitudinal direction of the non-penetrating vent hole 44 is circular, and the cross-sectional shape perpendicular to the longitudinal direction of the penetrating vent hole 46 is also circular.
  • the diameter d2 of the non-penetrating vent hole 44 and the diameter d1 of the penetrating vent hole 46 are set to the same diameter, but may be different.
  • the maximum diameter of the diameter dimension d2 of the non-through-type vent hole 44 and the diameter dimension d1 of the through-type vent hole 46 is preferably set to be equal to or less than the width dimension (dimension in the tire circumferential direction) W of the protrusion forming recess 42.
  • the minimum diameter is preferably 0.5 mm or more, more preferably 0.9 mm or more in consideration of workability.
  • the through-type vent hole 46 has a function of discharging air in the mold, if it is less than 0.5 mm, the resistance is large and it is difficult to discharge air. Note that the non-penetrating vent hole 44 and the penetrating vent hole 46 can be formed not only by drilling but also by electric discharge machining or the like.
  • the non-penetrating vent hole 44 is an area of 25% of the length L of the bottom 42A from the end 42E1 of the bottom 42A. It is preferable to form inside.
  • the through-type vent hole 46 is preferably formed in an area of 25% of the length L of the bottom 42A from the end 42E2 of the bottom 42A.
  • the air in the projection forming recess 42 is gradually discharged to the outside through the through-type vent hole 46, and the unvulcanized side rubber 24A further It enters toward the corner of the protrusion forming recess 42.
  • most of the air in the projection forming recess 42 is discharged to the outside through the through-type vent hole 46, and as shown in FIG. 5A and FIG. A part of the sulfur side rubber 24 ⁇ / b> A enters the non-penetrating vent hole 44 and the penetrating vent hole 46.
  • the penetrating vent hole 46 in which the air pushed by the unvulcanized rubber is disposed close to the corner is provided. Therefore, the unvulcanized rubber is filled in the corner of the projection forming recess 42 on the side where the through-type vent hole 46 is formed without causing air accumulation.
  • a small amount of air that has not been discharged to the outside through the penetrating vent hole 46 may remain at the corner portion of the protrusion forming recess 42 where the non-penetrating vent hole 44 is formed.
  • the remaining minute amount of air is pushed by the unvulcanized rubber entering the inside of the projection forming recess 42 and enters the non-penetrating vent hole 44 disposed close to the corner. For this reason, the unvulcanized rubber is filled in the corner of the projection forming recess 42 on the side where the non-penetrating vent hole 44 is formed without causing air accumulation.
  • the unvulcanized rubber is heated and vulcanized by a tire molding die 10 heated as before, and a product pneumatic tire 12 is completed.
  • a tire molding die 10 As described above, if the tire molding die 10 according to the present embodiment is used, no air pockets are formed in the corners of the projection forming recess 42 during vulcanization, and the unvulcanized side rubber 24A is used as the projection forming recess. Since 42 is filled to every corner, no depression (bear) is formed on the surface of the turbulent flow generation projection 30 of the pneumatic tire 12 after vulcanization molding.
  • the spew protrudes from the turbulent flow generation projection 30. This spew is cut as usual. Removed by grinding, etc.
  • the penetrating vent hole 46 is formed in a portion where the distance from the protrusion forming recess 42 to the outer surface 38B of the ring mold 38 is long, and the entire length is set long. For this reason, even if the unvulcanized side rubber 24A pressed by the bladder 40 enters the through-type vent hole 46, the tip of the entered unvulcanized side rubber 24A does not reach the outer surface 38B of the ring mold 38, It remains in the middle portion in the longitudinal direction of the through-type vent hole 46. Therefore, when the pneumatic tire 12 is taken out after vulcanization, the spew can be easily pulled out from the through-type vent hole 46 without being cut. Therefore, it is possible to save the trouble of cleaning work to remove the spew clogged in the hole.
  • the amount of air remaining at the corner on the side where the non-through-type vent hole 44 is formed is a very small amount, which is a capacity of about 0.3% of the volume of the protrusion forming recess 42. For this reason, a small amount of air that cannot be exhausted by the through-type vent hole 46 and remains in the corner is prevented from passing through the non-through type so as not to cause air accumulation in the corner on the side where the non-through type vent hole 44 is formed.
  • the volume of the non-penetrating vent hole 44 is preferably set to 0.3% or more, and is preferably set to 0.5% or more in consideration of variation in the air amount.
  • the length of the non-penetrating vent hole 44 may be a length that does not penetrate the ring mold 38.
  • the diameter d1 (see FIG. 3A) of the through-type vent hole 46 is larger than the width W of the protrusion-forming recess 42, the spew formed by the through-type vent hole 46 becomes too thick and the appearance quality is deteriorated. Further, since the rigidity of the spew is increased, it is difficult to remove the spew.
  • the width dimension W of the protrusion forming recess 42 is 5 mm, the upper limit value of the diameter dimension d1 of the through-type vent hole 46 only needs to be suppressed to 5 mm or less, for example, about 4.5 mm. .
  • the diameter d2 of the non-through vent hole 44 is preferably set similarly to the diameter d1 of the through vent hole 46.
  • the diameter d1 of the through-type vent hole 46 becomes too thin, the ability to discharge air in the protrusion forming recess 42 is reduced (insufficient) and the protrusion cannot be formed sufficiently. Further, due to a decrease in spew rigidity and a large pipe resistance, the rubber (spew) formed in the through-type vent hole 46 is cut when the tire is molded from the tire molding die 10, and the rubber remains in the through-type vent hole 46. End up. If the diameter dimension d1 of the through-type vent hole 46 becomes too large, the pipe resistance becomes small and rubber easily enters the through-type vent hole 46, so that the length of the through-type vent hole 46 needs to be increased. Increases in size. For this reason, in order not to increase the size of the entire mold, the diameter of the through-type vent hole 46 is preferably set so that the tip of the unvulcanized side rubber 24A that has entered enters the inside of the through-type vent hole 46.
  • non-through vent hole 44 volume (minimum value) is important for the sticking suppression effect of the turbulent flow generation projection 30 and is affected by the diameter d2 and the length of the non-through vent hole 44. There is nothing.
  • vent hole formed in the portion where the distance from the projection forming recess 42 to the outer surface 38B of the ring mold 38 is short is A
  • vent hole formed in a portion where the distance from the recess 42 to the outer side surface 38B of the ring mold 38 is long was designated as B.
  • the length of the vent hole was adjusted in order to adjust the ratio of the volume of the non-penetrating vent hole to the turbulent flow generation protrusion (protrusion forming recess).
  • the rubber filling rate of the turbulent flow generation protrusion As an evaluation method, after vulcanizing and molding a pneumatic tire, the rubber filling rate of the turbulent flow generation protrusion, the clogging of the mold rubber, and the occurrence of sticky rubber (with stickiness) on the surface of the turbulent flow generation protrusion The presence or absence was compared. In this test, the rubber filling rate of the turbulent flow generation projections is 100% (no bears are generated), there is no adhesion of the rubber on the mold, and there is no clogging. When no occurrence occurred, the determination was OK. In addition, when any of these is present, the determination is NG.
  • a through-type vent hole is formed in a portion where the distance from the protrusion forming recess to the outer surface of the mold is long, and the distance from the protrusion forming recess to the outer surface of the mold is not long.
  • Pneumatic tires manufactured using tire molding dies (Test Examples 6, 8, 9, and 10) in which through-type vent holes are formed have a turbulent flow projection filling rate of 100% (that is, bare There is no adhesion of rubber and clogging of the mold, and there is no sticky rubber (sticky) on the surface of the turbulent flow generation projection after vulcanization molding, and the effect of the present invention is achieved. Proven.
  • the upper limit of the volume of the non-penetrating vent hole is not particularly limited.
  • the diameter of the non-penetrating vent hole 44 of the above-described embodiment is constant over the entire length, but the diameter may be reduced toward the tip as shown in FIG.
  • non-penetrating vent hole 44 and the penetrating vent hole 46 of the above-described embodiment have a circular cross-sectional shape perpendicular to the longitudinal direction, but the present invention is not limited to this and is shown in FIG. Thus, other shapes other than a circle, such as a quadrangle, may be used.
  • one non-penetrating vent hole 44 and one penetrating vent hole 46 are provided for each of the protrusion forming recesses 42, but the non-penetrating vent hole is selected according to the size of the protrusion forming recess 42. 44 and the number of penetrating vent holes 46 may be increased.
  • the non-penetrating vent hole 44 and the penetrating vent hole 46 are formed in the projection forming recess 42 for forming the turbulent flow generating projection 30 of the bead portion 14. If it is a recessed part for forming the protrusion formed in an outer surface, it can be formed in all the recessed parts of a mold. For example, it can also be formed in a recess for forming a tread block or rib. Thereby, generation
  • the non-penetrating vent hole 44 and the penetrating vent hole 46 are substantially perpendicular to the bottom 42A of the projection forming recess 42, and the side mold 34 and the ring mold 38 are inclined with respect to the moving direction (tire width direction, arrow A direction).
  • a through-type vent hole 46 is formed in parallel to the movement direction (arrow A direction) of the side mold 34 and the ring mold 38.
  • the moving direction of the non-penetrating vent hole 44 and the penetrating vent hole 46 and the length of the spew formed by the non-penetrating vent hole 44 and the penetrating vent hole 46 Since the directions coincide with each other, the spew formed by the non-penetrating vent hole 44 and the penetrating vent hole 46 can be smoothly taken out from the non-penetrating vent hole 44 and the penetrating vent hole 46.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

 モールドの突起形成用凹部(42)の一端側に非貫通型ベントホール(44)を設け、他端側に非貫通型ベントホール(44)よりも長い貫通型ベントホール(46)を設ける。生タイヤのゴムが突起形成用凹部(42)に進入すると内部の空気が貫通型ベントホール(46)から排出され、内部に残った微量の空気は非貫通型ベントホール(44)へ逃がされる。貫通型ベントホール(46)は容積が大きく設定されており、後にスピューとなるベントホール内に進入してくるゴムを内部に止まらせることができる。突起形成用凹部(42)の内部で行き場を失った空気の体積は微量であるため、非貫通型ベントホール(44)の中に逃がされた空気の体積も微量である。このため、非貫通型ベントホール(44)の空気と接触している部分のゴムが加硫後にベト付く現象を抑えることができる。

Description

タイヤ成型用金型、及びタイヤの製造方法
 本発明は、表面に突起が形成された空気入りタイヤを成型するタイヤ成型用金型、及びタイヤの製造方法に関する。
 タイヤの表面に、例えば、乱流を発生させる突起等を備えた空気入りタイヤを製造するためのタイヤ成型用金型が提案されている(例えば、特開2012―029377号公報参照)。
 乱流発生用の突起は、形状(高さ、エッジ)を狙い通りに製造しないと本来の性能が発揮されない。突起を成型する際、突起を形成するための突起形成用凹部の隅に空気が溜まってしまうと狙い通りの形状に突起を形成することが出来なくなる。このため、モールドにベントホールを設けて空気を排除し、突起を形成している。
 特開2012―029377号公報のタイヤ成型用金型では、加硫時に、突起を形成するための金型の窪み状の突起形成用凹部に生ずる空気溜まりの発生を抑制するため、突起形成用凹部の空気を入り込ませる凹状の非貫通型ベントホールを突起形成用凹部に設けている。
 また、従来、一般的に用いられているタイヤ成型用金型では、金型内の空気溜まりの発生を抑制するため、金型内の空気を金型外部へ排出する貫通型ベントホールを複数設けている。
 しかしながら、貫通型ベントホールのみを設けたタイヤ成型用金型では、長さの短い貫通型ベントホールを介して金型の外側までゴムが流出し、金型の外側で貫通型ベントホールから出たゴムが塊となって固まる場合がある。金型の外側で貫通型ベントホールから出たゴムが塊となって固まると、金型からタイヤを取り出す際にスピュー(ベントホール内で固まったゴム)が意図しない部位で切れ、貫通型ベントホールの内部に切れたスピューが残り、金型を清掃する手間がかかり生産性の阻害となる。
 一方、非貫通型ベントホールのみを設けたタイヤ成型用金型では、タイヤ加硫後、スピューの先端がベト付く現象が起き、加硫済みのタイヤ表面がベト付いたり、また、ベト付いたゴムがモールド表面に残る場合があり、改善の余地があった。
 発明者が、非貫通型ベントホールのみを設けたタイヤ成型用金型でタイヤを加硫成型した際に、突起に形成されたスピューの先端がベト付く原因を種々調査検討した結果、非貫通型ベントホールの内部に残った空気の量が多い場合に、空気と接触している部分がゴムの加硫後においてもベト付くことが分かった。
 本発明の一実施形態は上記事実を考慮し、金型の清掃作業の手間を省き、タイヤの生産性を向上可能なタイヤ成型用金型、及びタイヤの製造方法の提供を目的とする。
 第1の態様に係るタイヤ成型用金型は、生タイヤの表面に接触してタイヤ外面の型付けを行う表面形成部を備えたモールドと、前記モールドに設けられ、タイヤ外面に突起を形成するための凹状の突起形成用凹部と、一端部が前記突起形成用凹部に連通し、他端部がモールド内で終端する非貫通型ベントホールと、前記非貫通型ベントホールよりも容積が大きく設定され、前記非貫通型ベントホールとは前記突起形成用凹部の異なる位置に形成され、一端が前記突起形成用凹部と連通して他端がモールド外部と連通する貫通型ベントホールと、を備えている。
 第1の態様に係るタイヤ成型用金型では、タイヤ外面に突起を形成するための凹状の突起形成用凹部がモールドに設けられているため、生タイヤの表面が表面形成部に押し付けられると、生タイヤのゴムが突起形成用凹部に進入する。突起形成用凹部に生タイヤのゴムが進入すると、先ず最初に、突起形成用凹部内の空気は大部分が貫通型ベントホールを介してモールド外部へ排出される。その後、突起形成用凹部内に進入した生タイヤのゴムの一部は貫通型ベントホールの内部へ侵入する。ゴムが突起形成用凹部の大部分に入り込んだ状態では、貫通型ベントホールの近傍の空気は貫通型ベントホールから排出されるが、貫通型ベントホールから離れた部位では、突起形成用凹部に進入した生タイヤのゴムによって行き場を失った微量の空気が突起形成用凹部内に残る場合がある。しかしながら、突起形成用凹部の内部の微量の空気は更に進入してくる生タイヤのゴムによって更に押されて非貫通型ベントホールへ逃がされるので、最終的には、突起形成用凹部に生タイヤのゴムを隙間無く充填することができる。
 また、貫通型ベントホールは、非貫通型ベントホールよりも容積が大きく設定されているので、進入してくるゴムを貫通型ベントホールの内部に止まらせることができ、貫通型ベントホールに進入したゴムがモールド外へはみ出ることを抑制できる。貫通型ベントホールに進入したゴムは、加硫後にスピューとなるが、スピューは貫通型ベントホールの内部に止まっているので、スピューを切らずに貫通型ベントホールから抜くことができる。
 また、突起形成用凹部の内部で行き場を失った空気の体積は微量であるため、非貫通型ベントホールの中に逃がされた空気の体積も微量である。このため、非貫通型ベントホールの空気と接触している部分のゴムが加硫後にベト付く現象を抑えることができる。
 第2の態様は、第1の態様に係るタイヤ成型用金型において、前記貫通型ベントホールは、前記非貫通型ベントホールよりも、前記突起形成用凹部からモールド外面までのモールド厚さの厚い部分に形成されている。
 第2の態様に係るタイヤ成型用金型では、貫通型ベントホールが、非貫通型ベントホールよりも、突起形成用凹部からモールド外面までのモールド厚さの厚い部分に形成されているため、貫通型ベントホールの長さを非貫通型ベントホールの長さよりも容易に長くすることができ、これによって、貫通型ベントホールの容積を増やすことができる。
 第3の態様は、第1の態様または第2の態様に係るタイヤ成型用金型において、前記突起形成用凹部は、前記表面形成部のうち、タイヤ側部を形成する部分に設けられ、タイヤ回転時に乱流を発生させる乱流発生突起を形成する。
 第3の態様に係るタイヤ成型用金型では、突起形成用凹部が表面形成部のうちのタイヤ側部を形成する部分に設けられているため、タイヤ回転時に乱流を発生させてタイヤの冷却を行うことのできる乱流発生突起をタイヤの側部に形成することができる。
 第4の態様に係るタイヤ成型用金型は、第1の態様~第3の態様の何れか一つのタイヤ成型用金型において、前記非貫通型ベントホール、及び前記貫通型ベントホールの深さ方向は、前記モールドの移動方向と一致している。
 第4の態様に係るタイヤ成型用金型では、モールドを移動した際に、非貫通型ベントホール、及び貫通型ベントホールで形成されたスピューが、非貫通型ベントホール、及び貫通型ベントホールの深さ方向に移動するので、非貫通型ベントホール、及び貫通型ベントホールからスムーズにスピューを取り出すことができる。
 第5の態様に係るタイヤの製造方法は、第1の態様~第4の態様の何れか一つのタイヤ成型用金型の内部に生タイヤを装填する工程と、前記タイヤ成型用金型に装填された前記生タイヤをブラダーで膨張させ、前記生タイヤの表面を前記表面形成部に押圧させると共に、前記生タイヤを構成する未加硫のゴムを前記突起形成用凹部に進入させる工程と、
前記生タイヤを加熱加硫する工程と、を有する。
 第5の態様に係るタイヤの製造方法では、第1の態様~第4の態様の何れか一つのタイヤ成型用金型の内部に生タイヤを装填する工程、タイヤ成型用金型に装填された生タイヤをブラダーで膨張させ、生タイヤの表面を前記表面形成部に押圧させると共に、生タイヤを構成する未加硫のゴムを突起形成用凹部に進入させる工程を経ることで、第1の態様に記載した作用を得ることが出来る。
 以上説明したように第1の態様に係るタイヤ成型用金型によれば、加硫後のタイヤを取り外す際にスピューを切らずに簡単に抜くことができ、また、タイヤ外面のベト付きの発生が抑えることで表面形成部のベト付きも抑えられるので、金型の清掃作業の手間を省くことができる、という優れた効果を有する。
 第2の態様に係るタイヤ成型用金型によれば、貫通型ベントホールを非貫通型ベントホールよりも、突起形成用凹部からモールド外面までのモールド厚さの厚い部分に形成することで、ドリル等の簡単な直線状の加工により、貫通型ベントホールの長さを非貫通型ベントホールの長さよりも容易に長くすることができ、金型加工が容易になる。
 第3の態様に係るタイヤ成型用金型によれば、乱流発生突起をタイヤの側部に簡単に形成することができる。
 第4の態様に係るタイヤ成型用金型によれば、貫通型ベントホール、及び非貫通型ベントホールからスピューとスムーズに取り出すことができる。
 第5の態様に係るタイヤの製造方法によれば、加硫後のタイヤを取り外す際にスピューを切らずに簡単に抜くことができ、また、タイヤ外面のベト付きの発生が抑えることで表面形成部のベト付きも抑えられるので、金型の清掃作業の手間を省くことができる、という優れた効果を有する。
本発明の一実施形態に係るタイヤ成型用金型を用いて成型した空気入りタイヤを示す一部を断面とした斜視図である。 生タイヤを装填してブラダーを膨張させた状態のタイヤ成型用金型を示す軸線に沿った縦断面図である。 図1に示す突起形成用凹部の周辺を示す拡大図である。 図3Aの3B-3B線断面図である。 突起形成用凹部に未加硫のゴムが進入した状態を示す突起形成用凹部周辺の拡大図である。 図4Aの4B-4B線断面図である。 突起形成用凹部に未加硫のゴムが完全に充填された状態を示す突起形成用凹部周辺の拡大図である。 図5Aの5B-5B線断面図である。 試験に用いたタイヤ成型用金型に形成したベントホールを示す断面図である。 他の実施形態に係る非貫通型ベントホール、及び貫通型ベントホールを示す斜視図である。 更に、他の実施形態に係る非貫通型ベントホール、及び貫通型ベントホールを示す斜視図である。 他の実施形態に係るタイヤ成型用金型の一部を示す断面図である。
 図1~図5を用いて、本開示の一実施形態に係るタイヤ成型用金型10について説明する。
(空気入りタイヤの構成)
 先ず、図1にしたがって、本実施形態に係るタイヤ成型用金型10によって製造される空気入りタイヤ12の構成について説明する。
 図1に示す加硫済みの製品の空気入りタイヤ12は、ビード部14に埋設されたビードコア16、端部がビードコア16をタイヤ内側から外側へ巻き上げる少なくとも1枚のカーカスプライからなるカーカス18、カーカス18のタイヤ径方向外側に配置される少なくとも1枚のベルトプライからなるベルト20、カーカス18のタイヤ幅方向外側に配置され、ビード部14、及びサイドウォール部22を形成するサイドゴム層24、ベルト20のタイヤ径方向外側に配置され、トレッド部26を形成するトレッドゴム層28を備えた一般的な構造のものである。
 ビード部14の表面には、走行時に乱流を発生させてビード部14を冷却するための乱流発生用突起30が設けられている。本実施形態の乱流発生用突起30は、略直方体形状を呈しており、タイヤ側面視で、タイヤ径方向に細長く形成されている。
 一例として、乱流発生用突起30の幅寸法Wは5mmであり、乱流発生用突起30の長さ(タイヤ径方向寸法)は、20mmである。なお、乱流発生用突起30の寸法、間隔、数については、タイヤの種類、用途に応じて適宜設定することができる。
 本実施形態では、タイヤ径方向に互い違いに配置した乱流発生用突起30を3個で一セットとして、セットとした乱流発生用突起30をタイヤ周方向に間隔を開けてビード部14の表面に配置している。
(タイヤ成型用金型の構成)
 空気入りタイヤ12を加硫成型するための本実施形態に係るタイヤ成型用金型10を図2にしたがって説明する。図2は、セクターモールド32、上下一対のサイドモールド34、及び一対のリングモールド38とが互いに組み合わされた状態におけるタイヤ成型用金型10のタイヤ幅方向の断面図である。
 未加硫の生タイヤ12Aは、セクターモールド32、上下一対のサイドモールド34、ブラダー40、上下一対のサイドモールド34の間に形成される空間(加硫空間という)の内部に収容される。
 セクターモールド32は、トレッドパターンを形成する凹凸(図示省略)が形成されるトレッドパターン形成面32Aを有する。サイドモールド34は、サイドウォール部22を型付けするサイドウォール形成面34Aを備えている。また、リングモールド38は、ビード部14を型付けするビード部形成面38Aを備えている。
 セクターモールド32は、図示しない移動機構によってタイヤ径方向(矢印R方向)に移動可能とされ、サイドモールド34、及びリングモールド38は図示しない移動機構によってタイヤ幅方向(矢印A方向)に移動可能とされている。
 加硫時には、加熱及び加圧された流体がブラダー40に吹き込まれることにより、未加硫の生タイヤ12Aの内側でブラダー40が膨張し、未加硫の生タイヤ12Aは、膨張したブラダー40によって、セクターモールド32のトレッドパターン形成面32A、サイドモールド34のサイドウォール形成面34A、及びリングモールド38のビード部形成面38Aに押圧され、型付けされる。
 ビード部形成面38Aは、乱流発生用突起30を形成するための突起形成用凹部42を備えている。突起形成用凹部42は、ビード部形成面38Aから、外側面38Bに向けて窪む凹部である。
 ここで、リングモールド38のタイヤ幅方向外側の外側面38Bに最も近い突起形成用凹部42においては、図3A及び図3Bに示すように、突起形成用凹部42の底部42Aのリングモールド38の径方向内側の端部付近に、タイヤ幅方向外側の外側面38Bに向けて延びてリングモールド内で終端すると共に、底部42Aに対して略垂直とされた非貫通型ベントホール44が形成され、リングモールド38の径方向外側の端部付近に、外側面38Bに向けて延びて外側面38Bに連通すると共に、底部42Aに対して略垂直とされた貫通型ベントホール46が形成されている。なお、図示は省略するが、リングモールド38のタイヤ幅方向外側の外側面38Bに最も近い突起形成用凹部42以外の突起形成用凹部42においては、貫通型ベントホール46のみが形成され、非貫通型ベントホール44は形成されない形態をとっても良い。
 なお、サイドモールド34の外側面38Bと接触する面には、貫通型ベントホール46と対向する位置に、貫通型ベントホール46から排出された空気を金型外部へ排出するための空気排出溝48が形成されている。
 非貫通型ベントホール44は、リングモールド38の中でも突起形成用凹部42から外側面38Bまでの距離が比較的短い部位に形成され、貫通型ベントホール46は、リングモールド38の中でも突起形成用凹部42から外側面38Bまでの距離が比較的長い部位(非貫通型ベントホール44の形成されている位置よりも外側面38Bまでの距離が長い部位)に形成されており、貫通型ベントホール46の長さは非貫通型ベントホール44の長さよりも長く設定されている。
 本実施形態では、非貫通型ベントホール44の長手方向に対して直角な断面形状は円形であり、貫通型ベントホール46の長手方向に対して直角な断面形状も円形である。本実施形態では、非貫通型ベントホール44の径d2、及び貫通型ベントホール46の径d1は同一径に設定されているが、異なっていても良い。
 非貫通型ベントホール44の径寸法d2、及び貫通型ベントホール46の径寸法d1は、最大径を突起形成用凹部42の幅寸法(タイヤ周方向の寸法)W以下とすることが好ましく、ドリル加工する場合には加工性を考慮して最小径は0.5mm以上とすることが好ましく、0.9mm以上とすることが更に好ましい。また、貫通型ベントホール46は、モールド内の空気を排出する役目を有しているため、0.5mm未満になると、抵抗が大きく、空気が排出し難くなる。
 なお、非貫通型ベントホール44、及び貫通型ベントホール46は、ドリル加工に限らず、放電加工等により形成することもできる。
 突起形成用凹部42の長手方向端部側の隅部に空気が溜まらない様にするため、非貫通型ベントホール44は、底部42Aの端部42E1から底部42Aの長さLの25%の領域内に形成することが好ましい。また、貫通型ベントホール46は底部42Aの端部42E2から底部42Aの長さLの25%の領域内に形成することが好ましい。
 次に、本実施形態のタイヤ成型用金型10の作用を説明する。
 図2に示すように、タイヤ成型用金型10の内部に未加硫の生タイヤ12Aを装填してブラダー40を膨張させると、タイヤ外面がモールド内面に押圧され、図4A及び図4Bに示すように、未加硫のサイドゴム24Aが突起形成用凹部42に入り込む。この時点では、底部42Aの周囲に空気が通過できる隙間Sがある。
 突起形成用凹部42に未加硫のサイドゴム24Aが入り込んで行くと、突起形成用凹部42内の空気が貫通型ベントホール46を介して徐々に外部へ排出され、未加硫のサイドゴム24Aは更に突起形成用凹部42の隅部へ向けて入り込む。最終的には、突起形成用凹部42内の空気は、殆どが貫通型ベントホール46を介して外部へ排出され、図5A及び図5Bに示すように、突起形成用凹部42に入り込んだ未加硫のサイドゴム24Aの一部は、非貫通型ベントホール44、及び貫通型ベントホール46の内部に入り込む。
 突起形成用凹部42の貫通型ベントホール46の形成されている側の隅部においては、未加硫のゴムに押された空気が該隅部に近接して配置された貫通型ベントホール46を介して外部へ排出されるため、未加硫のゴムは突起形成用凹部42の貫通型ベントホール46の形成されている側の隅部において、空気溜まりを生ずることなく充填される。
 一方、突起形成用凹部42の非貫通型ベントホール44の形成されている側の隅部においては、貫通型ベントホール46を介して外部へ排出されなかった空気が微量ながら残る場合があるが、残った微量の空気は、突起形成用凹部42の内部に進入する未加硫のゴムに押されて該隅部に近接して配置された非貫通型ベントホール44へ入り込む。このため、未加硫のゴムは突起形成用凹部42の非貫通型ベントホール44の形成されている側の隅部において、空気溜まりを生ずることなく充填される。
 なお、非貫通型ベントホール44の端部には、貫通型ベントホール46を介して外部へ排出されなかった微量の空気(例えば、突起形成用凹部42の容積の0.3%程度)が残る。
 その後、未加硫のゴムは、従来通り加熱されたタイヤ成型用金型10によって加熱加硫され、製品の空気入りタイヤ12が完成する。
 以上の様に、本実施形態のタイヤ成型用金型10を用いれば、加硫時に突起形成用凹部42の隅部に空気溜まりが生ずることは無く、未加硫のサイドゴム24Aが突起形成用凹部42の隅々まで充填されるので、加硫成形後の空気入りタイヤ12の乱流発生用突起30の表面に窪み(ベア)が形成されることは無い。
 非貫通型ベントホール44、及び貫通型ベントホール46に入り込んだ未加硫のサイドゴム24Aが加硫されると、乱流発生用突起30から突出したスピューとなるが、このスピューは、従来通り切断、研削等により取り除かれる。
 なお、非貫通型ベントホール44においては、若干の空気が残るが、空気の体積が極小であり、スピューの先端にベト付きは生じない。このため、製品の空気入りタイヤ12のトレッド表面がベト付くことが抑えられ、また、ベト付きがモールド内面(非貫通型ベントホール44等)に付着しないため、モールドの清掃作業の手間が省ける。
 なお、貫通型ベントホール46は、突起形成用凹部42からリングモールド38の外側面38Bまでの距離が長い部分に形成され、全長が長く設定されている。このため、ブラダー40に押圧された未加硫のサイドゴム24Aが貫通型ベントホール46に進入しても、進入した未加硫のサイドゴム24Aの先端はリングモールド38の外側面38Bには届かず、貫通型ベントホール46の長手方向中間部で留まる。したがって、加硫後に空気入りタイヤ12を取り出す際に、スピューは切れずに貫通型ベントホール46から容易に抜くことができる。したがって、ホール内に詰まったスピューを取り除く清掃作業の手間が省ける。
 なお、非貫通型ベントホール44の形成されている側の隅部において残る空気の量は微量であり、突起形成用凹部42の容積のおよそ0.3%程度の容量である。このため、非貫通型ベントホール44の形成されている側の隅部に空気溜まりが生じないように、貫通型ベントホール46で排出できずに該隅部に残った微量の空気を非貫通型ベントホール44へ逃がすためには、非貫通型ベントホール44の容積を0.3%以上とすることが好ましく、空気量のばらつきを考慮して0.5%以上とすることが好ましい。
 ここで、非貫通型ベントホール44の容積が突起形成用凹部42の容積の0.3%未満になると、突起形成用凹部42の内部に空気が残り、乱流発生用突起30の表面に窪み(ベア)が形成される虞がある。
 ブラダー40で押された未加硫のサイドゴム24Aの進入量が多くなるだけであり、進入する空気の体積が増えることは無いので、非貫通型ベントホール44の容積は0.3%を超えても問題無い。なお、非貫通型ベントホール44の長さは、リングモールド38を貫通しない長さであれば良い。
 貫通型ベントホール46の径寸法d1(図3A参照)が突起形成用凹部42の幅寸法Wよりも大きくなると、貫通型ベントホール46で形成されたスピューが太くなり過ぎて外観品質が低下し、また、スピューの剛性が高くなるためスピューを除去し難くなる。本実施形態では、突起形成用凹部42の幅寸法Wが5mmであるため、貫通型ベントホール46の径寸法d1の上限値は、5mm以下、例えば、4.5mm程度に抑えられていれば良い。同様に、非貫通型ベントホール44の径寸法d2も、貫通型ベントホール46の径寸法d1と同様に設定することが好ましい。
 また、貫通型ベントホール46の径寸法d1が細くなり過ぎると、突起形成用凹部42内の空気排出する能力の低下(不足)し突起形成が十分にできない。また、スピューの剛性低下、管抵抗大により、タイヤ成型用金型10から取り出す際に貫通型ベントホール46で形成されたゴム(スピュー)が切れてしまい、貫通型ベントホール46内にゴムが残ってしまう。貫通型ベントホール46の径寸法d1が大きくなりすぎると管抵抗が小さくなりゴムが貫通型ベントホール46に入り込みやすくなってしまい貫通型ベントホール46の長さを長くする必要があり、金型全体が大型化する。このため、金型全体を大型化させないために、貫通型ベントホール46の径も、進入した未加硫のサイドゴム24Aの先端が貫通型ベントホール46の内部に止まるように設定すると良い。
 なお、乱流発生用突起30のベタ付き抑制効果は、非貫通型ベントホール44の容積(最小値)が重要であり、非貫通型ベントホール44の径寸法d2、及び長さによって影響されることは無い。
[試験例]
 実施形態の効果を確かめるために、ベントホールの種類を変えた複数のタイヤ成型用金型(試験例1~10)を用いて加硫成型した空気入りタイヤの比較を行った。以下、表1、2において評価結果を示す。タイヤ成型用金型の構造は、前述した実施形態のタイヤ成型用金型10の構造と同じものである。
 図6の矢印Sで示すように、突起形成用凹部42からリングモールド38の外側面38Bまでの距離が短い部分に形成したベントホールをA、図6の矢印Lで示すように、突起形成用凹部42からリングモールド38の外側面38Bまでの距離が長い部分に形成したベントホールをBとした。試験では、乱流発生突起(突起形成用凹部)に対する非貫通型のベントホールの容積の割合を調整するため、ベントホールの長さを調整した。
 評価方法としては、空気入りタイヤを加硫成型した後、乱流発生用突起のゴムの充填率、モールドのゴムの詰まり、乱流発生用突起の表面における粘着性ゴム(ベト付き)の発生の有無を比較した。本試験では、乱流発生用突起のゴムの充填率が100%(ベアの発生無し)、モールドのゴムの付着、及び詰まりが無い、乱流発生用突起の表面における粘着性ゴム(ベト付き)の発生が無い場合に、判定をOKとした。また、これらの何れかがある場合に判定をNGとした。
 粘着性ゴム(ベト付き)の発生の有無の評価は、白紙をゴム表面に押し付け、白紙にゴムが付着した場合に粘着性ゴムが有りとし、付着しない場合に粘着性ゴムが無しとした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表1、2の試験結果に示すように、突起形成用凹部からモールド外面までの距離が長い部分に貫通型ベントホールを形成し、突起形成用凹部からモールド外面までの距離が短い部分に非貫通型ベントホールを形成したタイヤ成型用金型(試験例6,8,9,10)を用いて製造した空気入りタイヤは、何れも乱流発生突起の充填率が100%(即ち、ベアの発生無し)とされ、モールドのゴム付着、及びゴム詰まりが無く、さらに、加硫成型後の乱流発生突起の表面に粘着性ゴム(ベトつき)が発生しておらず、本発明の効果が実証された。なお、非貫通型ベントホールの容積が乱流発生突起(突起形成用凹部)に対して3%、8%、13%であっても、粘着性ゴムは発生しなかった。このため、非貫通型ベントホールの容積の上限は特に限定されない。
[その他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
 前述した実施形態の非貫通型ベントホール44は、全長に渡って径が一定であったが、図7に示すように、先端に向けて径が縮小しても良い。
 また、前述した実施形態の非貫通型ベントホール44、及び貫通型ベントホール46は、長手方向に対して直角な断面形状が円形であったが、本発明はこれに限らず、図8に示すように、四角形等、円形以外の他の形状であっても良い。
 前述した実施形態では、突起形成用凹部42に対して非貫通型ベントホール44、及び貫通型ベントホール46を各々1個設けたが、突起形成用凹部42のサイズに応じて非貫通型ベントホール44、及び貫通型ベントホール46の数を増加しても良い。
 上記実施形態では、非貫通型ベントホール44、及び貫通型ベントホール46を、ビード部14の乱流発生用突起30を形成するための突起形成用凹部42に形成したが、空気入りタイヤ12の外面に形成される突起を形成するための凹部であればモールドの全ての凹部に形成することができる。例えば、トレッドのブロックやリブを形成する凹部に形成することもできる。これにより、ブロックやリブのベタ付きの発生を抑えることができる。
 上記実施形態のタイヤ成型用金型10では、図3Aに示すように、非貫通型ベントホール44、及び貫通型ベントホール46が突起形成用凹部42の底部42Aに対して略垂直で、サイドモールド34、及びリングモールド38の移動方向(タイヤ幅方向、矢印A方向)に対して傾斜して形成されていたが、図9に示すタイヤ成型用金型10では、非貫通型ベントホール44、及び貫通型ベントホール46がサイドモールド34、及びリングモールド38の移動方向(矢印A方向)に対して平行に形成されている。
 図9に示すタイヤ成型用金型10では、非貫通型ベントホール44、及び貫通型ベントホール46の移動方向と、非貫通型ベントホール44、及び貫通型ベントホール46で形成されたスピューの長手方向とが一致するので、非貫通型ベントホール44、及び貫通型ベントホール46で形成されたスピューを非貫通型ベントホール44、及び貫通型ベントホール46からスムーズに取り出すことができる。
 2014年3月7日に出願された日本国特許出願2014-045638号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (5)

  1.  生タイヤの表面に接触してタイヤ外面の型付けを行う表面形成部を備えたモールドと、
     前記モールドに設けられ、タイヤ外面に突起を形成するための凹状の突起形成用凹部と、
     一端部が前記突起形成用凹部に連通し、他端部がモールド内で終端する非貫通型ベントホールと、
     前記モールドに設けられ、前記非貫通型ベントホールよりも容積が大きく設定され、一端が前記突起形成用凹部と連通し他端がモールド外部と連通する貫通型ベントホールと、
     を備えたタイヤ成型用金型。
  2.  前記貫通型ベントホールは、前記非貫通型ベントホールよりも、前記突起形成用凹部からモールド外面までのモールド厚さの厚い部分に形成されている、請求項1に記載のタイヤ成型用金型。
  3.  前記突起形成用凹部は、前記表面形成部のうち、タイヤ側部を形成する部分に設けられ、タイヤ回転時に乱流を発生させる乱流発生突起を形成する、請求項1または請求項2に記載のタイヤ成型用金型。
  4.  前記非貫通型ベントホール、及び前記貫通型ベントホールの深さ方向は、前記モールドの移動方向と一致している、請求項1~請求項3の何れか1項に記載のタイヤ成型用金型。
  5.  請求項1~請求項4の何れか1項に記載のタイヤ成型用金型の内部に生タイヤを装填する工程と、
     前記タイヤ成型用金型に装填された前記生タイヤをブラダーで膨張させ、前記生タイヤの表面を前記表面形成部に押圧させると共に、前記生タイヤを構成する未加硫のゴムを前記突起形成用凹部に進入させる工程と、
     前記生タイヤを加熱加硫する工程と、
     を有するタイヤの製造方法。
PCT/JP2015/056567 2014-03-07 2015-03-05 タイヤ成型用金型、及びタイヤの製造方法 WO2015133589A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15759324.5A EP3115169B1 (en) 2014-03-07 2015-03-05 Tire mold and method for producing a tire
US15/123,344 US10081145B2 (en) 2014-03-07 2015-03-05 Tire forming-mold and tire manufacturing method
JP2016506561A JP6495239B2 (ja) 2014-03-07 2015-03-05 タイヤ成型用金型、及びタイヤの製造方法
CN201580012605.5A CN106103029B (zh) 2014-03-07 2015-03-05 轮胎成型用模具和轮胎的制造方法
ES15759324.5T ES2657749T3 (es) 2014-03-07 2015-03-05 Molde de neumático y método de fabricación de un neumático

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-045638 2014-03-07
JP2014045638 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133589A1 true WO2015133589A1 (ja) 2015-09-11

Family

ID=54055389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056567 WO2015133589A1 (ja) 2014-03-07 2015-03-05 タイヤ成型用金型、及びタイヤの製造方法

Country Status (6)

Country Link
US (1) US10081145B2 (ja)
EP (1) EP3115169B1 (ja)
JP (1) JP6495239B2 (ja)
CN (1) CN106103029B (ja)
ES (1) ES2657749T3 (ja)
WO (1) WO2015133589A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812281A (en) * 1987-12-14 1989-03-14 The Goodyear Tire & Rubber Company Pressurization of tire mold vents
JPH0724835A (ja) * 1993-07-14 1995-01-27 Sumitomo Rubber Ind Ltd タイヤ加硫成形用ブラダーおよびそれを製造するための金型
JP2010012666A (ja) * 2008-07-02 2010-01-21 Yokohama Rubber Co Ltd:The タイヤ成形用金型及びこれにより成形された空気入りタイヤ
WO2011142342A1 (ja) * 2010-05-10 2011-11-17 株式会社ブリヂストン タイヤ製造用金型
JP2013060181A (ja) * 2011-09-15 2013-04-04 Yokohama Rubber Co Ltd:The 空気入りタイヤ及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146787B1 (ja) * 1964-06-26 1976-12-10
CN1042116C (zh) 1992-10-12 1999-02-17 株式会社锦湖 带多孔材料透气元件的轮胎成型模
JP5473071B2 (ja) 2010-07-20 2014-04-16 本田技研工業株式会社 負荷制御装置
JP2012040769A (ja) * 2010-08-19 2012-03-01 Bridgestone Corp タイヤ成型用金型

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812281A (en) * 1987-12-14 1989-03-14 The Goodyear Tire & Rubber Company Pressurization of tire mold vents
JPH0724835A (ja) * 1993-07-14 1995-01-27 Sumitomo Rubber Ind Ltd タイヤ加硫成形用ブラダーおよびそれを製造するための金型
JP2010012666A (ja) * 2008-07-02 2010-01-21 Yokohama Rubber Co Ltd:The タイヤ成形用金型及びこれにより成形された空気入りタイヤ
WO2011142342A1 (ja) * 2010-05-10 2011-11-17 株式会社ブリヂストン タイヤ製造用金型
JP2013060181A (ja) * 2011-09-15 2013-04-04 Yokohama Rubber Co Ltd:The 空気入りタイヤ及びその製造方法

Also Published As

Publication number Publication date
US20170057186A1 (en) 2017-03-02
EP3115169A4 (en) 2017-03-01
EP3115169A1 (en) 2017-01-11
JP6495239B2 (ja) 2019-04-03
CN106103029B (zh) 2018-01-02
ES2657749T3 (es) 2018-03-06
EP3115169B1 (en) 2018-01-03
CN106103029A (zh) 2016-11-09
JPWO2015133589A1 (ja) 2017-04-06
US10081145B2 (en) 2018-09-25

Similar Documents

Publication Publication Date Title
JP4862684B2 (ja) タイヤ加硫用成形金型
JP4996288B2 (ja) 空気入りタイヤ、及び、それを製造する加硫成形装置
JP6826432B2 (ja) タイヤ加硫金型および空気入りタイヤ
JP4589563B2 (ja) 生タイヤと加硫金型との間に介在するエアーを抜く方法
JP2006175871A (ja) 金型に通気孔を設ける方法および装置
JP6487758B2 (ja) タイヤ加硫金型、それを用いた空気入りタイヤの製造方法、及び、空気入りタイヤ
JP6097193B2 (ja) タイヤ加硫金型及びタイヤの製造方法
WO2016199773A1 (ja) ゴム物品用モールド
JP2014073647A (ja) タイヤ加硫用金型及び空気入りタイヤ
JP6821953B2 (ja) タイヤの製造方法
JP5898990B2 (ja) 空気入りタイヤ
JP2012236301A (ja) タイヤ成形用金型およびタイヤの製造方法
JP2011255597A (ja) タイヤ加硫用ブラダー
JP6495239B2 (ja) タイヤ成型用金型、及びタイヤの製造方法
KR101415614B1 (ko) 가류 블래더
JP6199166B2 (ja) タイヤ加硫金型及びタイヤの製造方法
KR101385322B1 (ko) 타이어 성형용 몰드
JP6720700B2 (ja) タイヤの加硫金型及びこれを用いた空気入りタイヤの製造方法
JP2007030310A (ja) トレッド用ゴム部材の押し出し口金及び押出機
JP5614102B2 (ja) タイヤの製造方法、タイヤ成型用金型に用いるサイプ刃、およびタイヤ成型用金型
JP7192341B2 (ja) 加硫用モールドおよびタイヤの製造方法
JP2013132865A (ja) タイヤ加硫用金型
JP7210942B2 (ja) タイヤ加硫金型及びタイヤ
JP2008290672A (ja) 空気入りタイヤ
JP2014237284A (ja) 生タイヤの成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506561

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15123344

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015759324

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015759324

Country of ref document: EP