WO2015133388A1 - フィルム付き固体電解質膜およびその製造方法 - Google Patents

フィルム付き固体電解質膜およびその製造方法 Download PDF

Info

Publication number
WO2015133388A1
WO2015133388A1 PCT/JP2015/055787 JP2015055787W WO2015133388A1 WO 2015133388 A1 WO2015133388 A1 WO 2015133388A1 JP 2015055787 W JP2015055787 W JP 2015055787W WO 2015133388 A1 WO2015133388 A1 WO 2015133388A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte membrane
film
contact angle
release agent
Prior art date
Application number
PCT/JP2015/055787
Other languages
English (en)
French (fr)
Inventor
孝至 森岡
豪志 武藤
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020167026386A priority Critical patent/KR102277064B1/ko
Priority to CN201580011300.2A priority patent/CN106063018B/zh
Priority to US15/123,089 priority patent/US10122045B2/en
Priority to JP2016506452A priority patent/JP6557214B2/ja
Publication of WO2015133388A1 publication Critical patent/WO2015133388A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24485Error correction using other sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a solid electrolyte membrane with a film and a method for producing the same.
  • Secondary batteries are widely used as power sources for portable devices because of their high energy density and high voltage. In recent years, with the reduction in size, weight, and performance of portable devices, there has been an increasing demand for higher performance and improved safety of secondary batteries. Secondary batteries are also spreading to large-size applications such as electric vehicles and household power storage systems.
  • Patent Document 1 describes a method of obtaining a polymer solid electrolyte membrane by coating a polymer terephthalate (PET) film with a polymer solid electrolyte.
  • Patent Document 2 describes a method in which an electrolyte solution is applied directly on an electrode, and heated and dried.
  • Patent Document 3 describes a method of obtaining a film that is a solid electrolyte by heating and pressurizing after casting an electrolyte solution on a mold and drying it.
  • the conventional method has a problem in that the electrolyte solution repels on the PET film, and the shape, thickness, width, and the like of the solid electrolyte membrane vary and become non-uniform. Further, there is a problem that the solid electrolyte membrane cannot be easily peeled off from a film or a mold, and the solid electrolyte membrane is damaged.
  • An object of the present invention is to provide a solid electrolyte membrane with a film in which variation in the shape of the solid electrolyte membrane is suppressed and the film has good peelability and a method for producing the same.
  • the solid electrolyte membrane with a film includes a film having a surface having a contact angle with respect to acetonitrile of 35 ° to 75 ° and a contact angle with chloroform of 15 ° to 40 °, and the film And a solid electrolyte membrane in contact with the surface.
  • the solid electrolyte membrane with a film it is preferable that the solid electrolyte membrane includes a polymer compound having a mass average molecular weight of 10,000 or more and a metal salt.
  • the metal salt is preferably a lithium salt.
  • the contact angle with respect to acetonitrile is 35 degrees or more and 75 degrees or less, and the contact angle with respect to chloroform is 15 degrees or more and 40 degrees or less. It has the process of apply
  • the present invention it is possible to provide a solid electrolyte membrane with a film in which variation in the shape of the solid electrolyte membrane is suppressed and the film has good peelability. Further, when the solid electrolyte membrane is a solid electrolyte membrane with a film containing a polymer compound having a mass average molecular weight of 10,000 or more and a metal salt, the mechanical strength and flexibility are also excellent. In the case of a solid electrolyte membrane with a film in which the metal salt is a lithium salt, a solid electrolyte membrane with high energy density and excellent conductivity can be provided.
  • FIG. 1 is a cross-sectional view of a solid electrolyte membrane 1 with a film according to an embodiment of the present invention.
  • the solid electrolyte membrane with film 1 includes a film 11 and a solid electrolyte membrane 12 formed on one surface A of the film 11.
  • the film 11 has a contact angle with respect to acetonitrile of 35 ° to 75 ° and a contact angle with chloroform of 15 ° to 40 ° on the surface A in contact with the solid electrolyte membrane 12.
  • the contact angle with respect to acetonitrile on the surface A is preferably 55 degrees or more and 65 degrees or less.
  • the contact angle with respect to chloroform on the surface A is preferably 17 degrees or more and 37 degrees or less. If the contact angle of the surface A of the film 11 is outside the above contact angle range (exceeding the upper limit value), repelling occurs between the upper solid electrolyte membrane 12 and the shape (for example, thickness) of the solid electrolyte membrane 12 (Width and width) will vary.
  • the contact angle of the surface A of the film 11 is outside the range of the contact angle (below the lower limit value), the film 11 cannot be easily peeled from the solid electrolyte membrane 12 during use, and the solid The electrolyte membrane 12 is deformed.
  • the contact angle is the ⁇ / 2 method by dropping 2 ⁇ l of the solvent (acetonitrile or chloroform) on the surface A in contact with the solid electrolyte membrane of the film 11 and using an automatic contact angle meter at a temperature of 23 ⁇ 5 ° C. To obtain the static contact angle.
  • a surface treatment by an oxidation method or the like or a peeling treatment can be performed.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone treatment, and ultraviolet irradiation treatment.
  • These surface treatment methods are appropriately selected according to the type of the film, but in general, the corona discharge treatment method is preferably used from the viewpoint of the effect of improving the wet tension and the operability.
  • the film 11 is not particularly limited as long as the contact angle of the surface A is controlled within the above range.
  • an arbitrary film can be appropriately selected from conventionally known substrates and used as it is.
  • Examples of the material for the substrate include synthetic resin films, paper materials, nonwoven fabrics, wood, and metal foils.
  • Examples of the material of the synthetic resin film include polyester (for example, polyethylene terephthalate and polyethylene naphthalate), polyolefin (for example, polyethylene, polypropylene, and polymethylpentene), polycarbonate, polyvinyl acetate, polyvinyl chloride, acrylic, Examples include acrylonitrile, butadiene, styrene, polyimide, polyurethane, and polystyrene.
  • Examples of the paper material include fine paper, impregnated paper, glassine paper, and coated paper.
  • the substrate may be a single layer or a multilayer of two or more layers of the same or different types.
  • the substrate is preferably a synthetic resin film
  • the material of the synthetic resin film is preferably a polyester film, more preferably a polyethylene terephthalate film, and even more preferably a biaxially stretched polyethylene terephthalate film.
  • the polyethylene terephthalate film is less likely to generate dust and the like during processing and use, and can effectively prevent, for example, poor coating due to dust and the like.
  • the thickness of the film 11 can be appropriately designed according to the application.
  • the thickness of the film 11 should just be 10 micrometers or more and 300 micrometers or less normally, Preferably they are 15 micrometers or more and 200 micrometers or less, More preferably, they are 20 micrometers or more and 125 micrometers or less.
  • a film in which a release agent is applied to one surface of the substrate and a release agent layer is provided may be used as the film 11.
  • the film 11 has a release agent layer
  • the surface of the release agent layer has a contact angle in the above range, and the solid electrolyte membrane 12 is formed on the surface of the release agent layer.
  • the release agent used for the release agent layer of the film 11 is not particularly limited.
  • silicone resin release agents alkyd resin release agents, long-chain alkyl group-containing compound release agents, acrylic release agents, olefin release agents such as polyethylene, and rubber release agents such as isoprene resins Is mentioned.
  • silicone resin release agents include solvent-type release agents and solvent-free release agents. Since the solvent-type silicone resin is diluted with a solvent to form a coating solution, it can be widely used from a high molecular weight high viscosity polymer to a low viscosity low molecular weight polymer (oligomer). For this reason, the solvent-type silicone resin is easier to control in accordance with the required performance (quality) than the solvent-free type silicone resin, since the releasability can be easily controlled.
  • the silicone resin-based release agent include addition reaction type, condensation reaction type, ultraviolet curable type, and electron beam curable type release agents.
  • the addition reaction type silicone resin has high reactivity and excellent productivity, and has advantages such as a small change in peel strength after production and no curing shrinkage compared to the condensation reaction type silicone resin. Therefore, it is preferable to use an addition reaction type silicone resin as the release agent constituting the release agent layer.
  • the addition reaction type silicone resin is not particularly limited, and various silicone resins can be used.
  • a silicone resin commonly used as a conventional thermosetting addition reaction type silicone resin release agent can be used.
  • this addition reaction type silicone resin for example, a silicone resin having an alkenyl group such as a vinyl group and an electrophilic group such as a hydrosilyl group as a functional group in the molecule is an addition reaction type silicone that can be easily cured.
  • resin Polydimethylsiloxane having such a functional group, or a silicone resin in which a part or all of methyl groups of polydimethylsiloxane are substituted with an aromatic functional group such as a phenyl group can be used as an addition reaction type silicone resin. .
  • additives may be added to the silicone resin release agent as necessary.
  • examples of other additives include silica, silicone resin, antistatic agent, dye, and pigment.
  • the method of curing the coated silicone resin release agent coating is not particularly limited.
  • the method of heat-processing in the oven of a coating machine, the method of using ultraviolet irradiation together after heat-processing, etc. are mentioned.
  • the latter method is preferable in terms of prevention of wrinkles due to thermal contraction of the base material, curability of silicone, and adhesion of the release agent to the base material.
  • the photopolymerization initiator is not particularly limited, and an arbitrary photopolymerization initiator can be appropriately selected from photopolymerization initiators commonly used as photopolymerization initiators that generate radicals upon irradiation with ultraviolet rays or electron beams. Can be used.
  • photopolymerization initiator examples include benzoins, alkylphenones, benzophenones, acetophenones, ⁇ -hydroxyketones, ⁇ -aminoketones, ⁇ -diketones, ⁇ -diketone dialkylacetals, anthraquinones, thioxanthones Acylphosphine oxides, titanocenes, triazines, bisimidazoles, and oxime esters.
  • an alkyd resin having a crosslinked structure is used as the alkyd resin release agent.
  • the alkyd resin layer having a crosslinked structure can be formed by, for example, a method in which a layer made of a thermosetting resin composition containing an alkyd resin, a crosslinking agent, and a curing catalyst as required is heated and cured.
  • the alkyd resin may be a modified product such as a long-chain alkyl-modified alkyd resin and a silicone-modified alkyd resin.
  • Examples of the long-chain alkyl group-containing compound-based release agent include polyvinyl carbamate obtained by reacting a polyvinyl alcohol polymer with a long-chain alkyl isocyanate having 8 to 30 carbon atoms, and polyethyleneimine having 8 to 30 carbon atoms.
  • An alkyl urea derivative obtained by reacting a long-chain alkyl isocyanate is used.
  • the acrylic release agent for example, an acrylic resin having a crosslinked structure is used.
  • the acrylic resin may be a modified product such as a long-chain alkyl-modified acrylic resin and a silicone-modified acrylic resin.
  • a crystalline olefin resin is used as the olefin resin release agent.
  • this crystalline olefin resin for example, polyethylene and crystalline polypropylene resin are suitable.
  • polyethylene include high-density polyethylene, low-density polyethylene, and linear low-density polyethylene.
  • the crystalline polypropylene resin include propylene homopolymers and propylene- ⁇ -olefin copolymers having an isotactic structure or a syndiotactic structure. These crystalline olefin resins may be used alone or in combination of two or more.
  • the rubber release agent for example, natural rubber resin and synthetic rubber resin are used.
  • the synthetic rubber resin include butadiene rubber, isoprene rubber, styrene-butadiene rubber, methyl methacrylate-butadiene rubber, and acrylonitrile-butadiene rubber.
  • a silicone resin release agent is preferable from the viewpoint of easily controlling the contact angle with respect to acetonitrile and chloroform within the above range.
  • the thickness of the release agent layer is not particularly limited, but is preferably 0.01 ⁇ m or more and 1 ⁇ m or less, and more preferably 0.03 ⁇ m or more and 0.5 ⁇ m or less.
  • the shape of the film 11 is not particularly limited, for example, a rectangular shape such as a square and a rectangle, a polygonal shape such as a triangle, a pentagon, and a hexagon, a circular shape, an elliptical shape, an indefinite shape, and a long roll Various shapes may be selected depending on the use of the final product.
  • stacked on the elongate film 11 is illustrated.
  • the solid electrolyte membrane 12 is a polymer solid electrolyte membrane containing a polymer compound and a metal salt.
  • the solid electrolyte membrane 12 includes a polymer compound and a metal salt, and is a gel containing a polymer compound, a metal salt, and a solvent even in a solid state (solvent-free solid electrolyte membrane) that does not contain a solvent. (Polymer gel electrolyte membrane).
  • the content of the solvent in the polymer gel electrolyte membrane is usually 30% by mass or more and 99% by mass or less of the entire solid electrolyte membrane 12.
  • the content of the polymer compound in the solid electrolyte membrane 12 is preferably 5% by mass or more and 99% by mass or less of the entire solid electrolyte membrane 12. It is more preferable that the content be not less than 95% by mass.
  • the content of the polymer compound in the solid electrolyte membrane 12 is preferably 0.5% by mass or more and 65% by mass or less of the entire solid electrolyte membrane 12.
  • the polymer compound contained in the solid electrolyte membrane 12 preferably has a mass average molecular weight of 10,000 or more, more preferably a mass average molecular weight of 10,000 or more and 1,000,000 or less, and a mass average molecular weight of 20,000 or more. More preferably, it is 500,000 or less.
  • Specific examples of polymer compounds having a mass average molecular weight of 10,000 or more include polyethylene oxide, polyethylene carbonate, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyhexafluoropropylene, and polyethylene oxide. Illustrated. When the mass average molecular weight of the polymer compound is 10,000 or more, the shape stability of the solid electrolyte membrane 12 is excellent. Therefore, the solid electrolyte membrane with film 1 has good mechanical strength and excellent flexibility.
  • a well-known metal salt can be utilized according to the kind of nonaqueous electrolyte secondary battery, the kind of active material, etc.
  • alkali metal salts such as lithium salt and sodium salt
  • alkaline earth metal salts such as magnesium salt and calcium salt
  • lithium salt is more preferable because of its high energy density.
  • the metal salt can exist as a cation such as an alkali metal and a counter ion of the cation. If the metal salt is a lithium salt, lithium ions are transported through the polymer compound.
  • lithium salt LiClO 4, LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiCF 3 COO, LiNO 3, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) N, and Li [(CO 2 ) 2 ] 2 B Can do.
  • the concentration of the metal salt in the solid electrolyte membrane 12 is not particularly limited.
  • the ratio of the mass Ms of the metal salt to the mass Mp of the polymer compound in the solid electrolyte membrane 12 is preferably 0.01 or more and 10 or less, and 0.05 or more and 7 or less. Is more preferable.
  • the thickness of the solid electrolyte membrane 12 is preferably 1 ⁇ m or more and 300 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less, and further preferably 20 ⁇ m or more and 70 ⁇ m or less. If the thickness of the solid electrolyte membrane 12 is within the above range, a short circuit is not caused and the resistance can be kept low.
  • the solid electrolyte membrane 1 with a film may have a protective sheet 15 that covers the solid electrolyte membrane 12 (see FIG. 3).
  • the material of the protective sheet 15 is not particularly limited, but is preferably a material that can be easily peeled off from the solid electrolyte membrane 12.
  • the protective sheet 15 may have a release agent layer on the surface.
  • a release agent layer may be formed on the surface of the protective sheet 15 and the solid electrolyte membrane 12 may be covered so that the release agent layer is in contact therewith.
  • the same base material as the film 11 can also be used.
  • the release agent which comprises a release agent layer may be the same as the release agent which comprises the above-mentioned release agent layer.
  • the manufacturing apparatus 100 includes a first supply unit 20 for feeding out the film 11, a coating unit 30 for applying the composition for forming a solid electrolyte membrane, a drying unit 40 for curing the applied composition for forming a solid electrolyte membrane, The second supply means 60 for feeding out the protective sheet 15, the bonding part 70 for bonding the protective sheet 15 to the solid electrolyte membrane 1 with film, and the winding for winding the solid electrolyte membrane 1 with film to which the protective sheet 15 has been bonded. And taking means 80.
  • the first supply means 20 includes a rotation motor 21 as a driving device and a support roller 22 provided so as to be rotatable by the rotation motor 21.
  • the support roller 22 supports the long film 11 wound in a roll shape. The film 11 fed out from the support roller 22 is supplied to the coating means 30 while being guided in the conveyance direction by a guide roller.
  • the coating means 30 forms a solid electrolyte membrane on the surface A of the film 11 having a contact angle with respect to acetonitrile of 35 ° to 75 ° and a contact angle with chloroform of 15 ° to 40 °.
  • the coating composition is applied to form a coating film.
  • the coating means 30 include a gravure coater, a knife coater, a roll coater, a die coater, a dip coater, a bar coater, a comma coater, and a lip coater.
  • the composition for forming a solid electrolyte membrane includes a polymer compound, a metal salt, and a solvent.
  • the composition for forming a solid electrolyte membrane may further contain other components as desired.
  • This composition preferably contains the above-described polymer compound having a mass average molecular weight of 10,000 or more as the polymer compound. Moreover, it is preferable that this composition contains lithium salt as a metal salt.
  • the content of the polymer compound is preferably 5% by mass or more and 98% by mass or less, and more preferably 10% by mass or more and 94% by mass or less of the entire composition.
  • the content of the metal salt is preferably 1% by mass or more and 94% by mass or less, and more preferably 5% by mass or more and 89% by mass or less of the entire composition.
  • the content of the solvent is usually 99% by mass or less, preferably 94% by mass or less, more preferably 85% by mass or less of the entire composition.
  • the solvent may be any solvent that can dissolve the polymer compound and uniformly disperse the metal salt.
  • the solvent used for the slurry for nonaqueous electrolyte secondary battery electrodes can be used.
  • a solvent capable of exhibiting excellent ion conductivity because of low viscosity and high ion mobility, high dielectric constant and high effective carrier concentration, or both is preferable.
  • Examples of the solvent contained in the composition for forming a solid electrolyte membrane of the present embodiment include, for example, alkyl carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, butylene carbonate, and methyl ethyl carbonate, ⁇ -butyrolactone, and methyl formate.
  • Esters, ethers such as 1,2-dimethoxyethane, tetrahydrofuran, sulfolane, dimethyl sulfoxide, acetonitrile, chloroform and the like. These solvents may be used as a mixture of two or more.
  • the method for preparing the composition for forming a solid electrolyte membrane is not particularly limited.
  • the monomer may be polymerized to obtain the polymer compound and then the metal salt may be contained, or the monomer is polymerized in the presence of the metal salt. To form a polymer compound.
  • the drying unit 40 cures the coating film formed by the coating unit 30.
  • the solid electrolyte membrane 1 with a film is obtained by removing the solvent contained in the coating film by the drying means 40 and curing the coating film.
  • the drying means 40 may have a plurality of drying zones that can be set to different temperatures. Examples of the drying means 40 include a hot air circulation drying device and a far infrared drying device. What is necessary is just to set drying conditions (drying time, drying temperature, etc.) suitably.
  • the second supply means 60 includes a rotation motor 61 as a drive device, and a support roller 62 that is rotatably provided by the rotation motor 61.
  • the support roller 62 supports the long protective sheet 15 wound in a roll shape. The protective sheet 15 fed out from the support roller 62 is supplied to the bonding unit 70.
  • the bonding unit 70 includes a first bonding roller 71 on which the solid electrolyte membrane 1 with a film is laid and a second bonding roller 72 on which the protective sheet 15 is laid.
  • the film-attached solid electrolyte membrane 1 and the protective sheet 15 are bonded by passing between the first bonding roller 71 and the second bonding roller 72, and the protective sheet 15 is bonded thereto. 1
  • the solid electrolyte membrane with film 1 to which the protective sheet 15 is bonded is guided to the downstream side where the winding means 80 is disposed by the first bonding roller 71 and the second bonding roller 72.
  • the winding means 80 includes a rotation motor 81 as a drive device, and a support roller 82 that is rotatably provided by the rotation motor 81.
  • the support roller 82 supports the solid electrolyte membrane 1 with a film on which the protective sheet 15 is bonded by winding it in a roll shape.
  • the solid electrolyte membrane 1 with a film wound in a roll shape is cut into a predetermined shape and a predetermined dimension, and can be used as, for example, the solid electrolyte membrane 1 with a film to which a protective sheet 15 is bonded.
  • the contact angle of the surface A of the film 11 with which the solid electrolyte membrane 12 is in contact is within the predetermined range described above, so that repelling occurs between the film 11 and the solid electrolyte membrane 12. It is suppressed.
  • the variation in the shape of the solid electrolyte membrane 12 can be suppressed, and the film 11 can be easily peeled off.
  • the versatility of the solid electrolyte membrane 12 is high. For example, it is possible to use the solid electrolyte membrane 12 with the film 11 peeled off, and the electrode 11 can be used in various ways.
  • the problem of repelling is remarkable when the concentration of the metal salt in the electrolyte solution is high and the concentration of the compound serving as the binder is low.
  • the solid electrolyte membrane with film 1 according to the embodiment even if the concentration of the metal salt in the solid electrolyte membrane 12 is high and the concentration of the polymer compound serving as the binder is low, repelling is suppressed, Variations in the shape of the solid electrolyte membrane 12 can be suppressed.
  • the solid electrolyte membrane 12 may have tackiness.
  • the film 11 is attached to the solid electrolyte membrane 12, it is excellent in handling property compared with the aspect which handles the solid electrolyte membrane 12 independently.
  • the solid electrolyte membrane 12 has tackiness, it is preferable that the solid electrolyte membrane 12 is covered with the protective sheet 15. Since the solid electrolyte membrane 12 is not exposed, handling properties are further improved.
  • the film 11 and the protective sheet 15 may be peeled sequentially.
  • a coating film is formed by applying the composition for forming a solid electrolyte membrane on the surface A having a contact angle within the predetermined range. Therefore, the repellency of the composition on the surface A is suppressed, and the repellency of the solid electrolyte membrane 12 obtained by drying the coating film is also suppressed. And according to the manufactured solid electrolyte membrane 1 with a film, the film 11 can be easily peeled from the solid electrolyte membrane 12.
  • the method for manufacturing a solid electrolyte membrane with a film according to the embodiment since the contact angle of the surface A of the film 11 is within the predetermined range described above, the solid electrolyte is continuously supplied while the long film 11 is continuously supplied. Even if the film-forming composition is applied and the coating film is dried and cured, repellency is suppressed. Therefore, according to the method for manufacturing a solid electrolyte membrane with a film according to the above-described embodiment, production by so-called Roll to Roll is possible, so that the production efficiency can be significantly improved. Conventionally, since the film was formed on a mold, there was a problem that the production efficiency of the solid electrolyte membrane was low.
  • the aspect of manufacturing by Roll to Roll has been described as an example, but the present invention is not limited to such an aspect.
  • the solid electrolyte membrane with a film may be produced by applying the composition for forming a solid electrolyte membrane to the film using a coating means such as a doctor blade and then drying in an oven.
  • a solid electrolyte membrane may be further formed on the second surface opposite to the surface A.
  • the second surface also preferably has a contact angle with respect to acetonitrile of 35 ° to 75 ° and a contact angle with chloroform of 15 ° to 40 °.
  • the entire one surface A of the film may not have a contact angle in the above range.
  • region where a solid electrolyte membrane is formed in the one side A of a film should just be a contact angle of the said range.
  • composition applied by the coating means 30 is not limited to the configuration described in the above embodiment.
  • the composition applied by the coating means 30 may be a composition containing a polymer compound and a metal salt and no solvent (solvent-free composition).
  • the composition applied by the coating means 30 may be configured to include a monomer, a polymerization initiator, a metal salt, and a solvent. If it is a composition by such a structure, a monomer can be polymerized by UV irradiation. Thus, when it is the aspect which superposes
  • the UV irradiation conditions (wavelength, intensity, irradiation time, etc.) may be set as appropriate.
  • the coating film may be cured by appropriately combining the drying means 40 and the UV irradiation means according to the composition of the composition to be applied.
  • the solid electrolyte membrane 12 When the solid electrolyte membrane 12 is formed using a composition containing a monomer, a polymerization initiator, a metal salt, and a solvent, the solid electrolyte membrane 12 has a mass average molecular weight of 10,000 to 1,000,000 in the polymer after monomer polymerization. It is preferable to be formed. If the mass average molecular weight after polymerization is 10,000 or more and 1,000,000 or less, the solid electrolyte membrane with film 1 is excellent in workability and moldability.
  • Examples of such monomers include 2- (2-ethoxyethoxy) ethyl acrylate, 2-cyanoethyl acrylate, methoxypolyethylene glycol methacrylate, methoxypolypropylene glycol methacrylate, ethoxypolyethylene glycol methacrylate, ethoxypolypropylene glycol methacrylate, and methoxypolyethylene glycol acrylate. , Methoxypolypropylene glycol acrylate, ethoxypolyethylene glycol acrylate, ethoxypolypropylene glycol acrylate, and mixtures thereof.
  • a crosslinking aid for the ultraviolet crosslinking reaction for example, ethylene glycol diacrylate, ethylene glycol dimethacrylate, oligoethylene glycol diacrylate, oligoethylene glycol dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, oligopropylene glycol Diacrylate, oligopropylene glycol dimethacrylate, 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylate, 1,3-glycerol dimethacrylate, 1,1,1-trimethylolpropane dimethacrylate, 1,1 , 1-Trimethylolethane diacrylate, pentaerythritol trimethacrylate, 1,2,6-hexanetriacrylate Sorbitol pentamethacrylate, methylene bisacrylamide, methylene bismethacrylamide divinylbenzene, vinyl methacrylate, vinyl crotonate, vinyl acrylate
  • the polymerization initiator, metal salt, and solvent are exemplified by the same photopolymerization initiator, metal salt, and solvent as those described above.
  • the composition to be applied may be a composition containing a monomer, a polymerization initiator, and a metal salt and not containing a solvent.
  • Example 1 100 parts by mass of polyethylene oxide (PEO) having a mass average molecular weight of 110,000 [Meisei Chemical Industry Co., Ltd. “Alcox L-11 (trade name)”], 10 parts by mass of lithium bistrifluoromethanesulfonylimide (LiTFSI), The composition for solid electrolyte membrane formation was prepared by mix
  • the film is coated on the layer side with a die coater, and dried for 10 minutes in a dryer with a temperature gradient set so that the first drying zone on the upstream side is 80 ° C. and the second drying zone on the downstream side is 120 ° C.
  • a solid electrolyte membrane was obtained.
  • Alcox is a registered trademark.
  • Example 2 100 parts by weight of polyethylene carbonate (PEC) having a weight average molecular weight of 120,000 [“QPAC-25 (trade name)” manufactured by EMPOWER MATERIALS]], 400 parts by weight of LiTFSI, and 500 parts by weight of chloroform are mixed and stirred well. Thereby, the composition for solid electrolyte membrane formation was prepared. Thereafter, a solid electrolyte membrane with a film was obtained in the same procedure as in Example 1. Each evaluation was performed in the same manner as in Example 1.
  • QPAC is a registered trademark.
  • Example 3 The film used was changed to “NF SP-PET3801 (trade name)” [film having a silicone resin release agent layer on one side of a 38 ⁇ m thick base material (polyethylene terephthalate film)] manufactured by Lintec Corporation. A solid electrolyte membrane with a film was obtained in the same manner as in Example 1 except that. Each evaluation was performed in the same manner as in Example 1.
  • Example 4 A solid electrolyte membrane with a film was obtained in the same manner as in Example 2 except that the used film was changed to “NF SP-PET3801 (trade name)” manufactured by Lintec Corporation. Each evaluation was performed in the same manner as in Example 1.
  • Example 5 The film used was changed to “NF SP-PET 381031C (trade name)” [film having a silicone resin release agent layer on one surface of a 38 ⁇ m thick base material (polyethylene terephthalate film)] manufactured by Lintec Corporation. A solid electrolyte membrane with a film was obtained in the same manner as in Example 1 except that. Each evaluation was performed in the same manner as in Example 1.
  • Example 6 A solid electrolyte membrane with a film was obtained in the same manner as in Example 2 except that the used film was changed to “NF SP-PET 381031C (trade name)” manufactured by Lintec Corporation. Each evaluation was performed in the same manner as in Example 1.
  • Example 7 The used film is changed to a 100 ⁇ m-thick Naflon sheet (manufactured by ASONE), and the surface of the film is treated with a corona treatment machine (“CORONA STATION” manufactured by Kasuga Electric Co., Ltd.) with a discharge amount of 20 W ⁇ min / m 2 .
  • a solid electrolyte membrane with a film was obtained in the same manner as in Example 1 except that it was applied. Each evaluation was performed in the same manner as in Example 1.
  • Example 8 The used film is changed to a 100 ⁇ m thick Naflon sheet (manufactured by ASONE), and the surface of the film is treated with a corona treatment machine (“CORONA STATION” manufactured by Kasuga Electric Co., Ltd.) with a discharge amount of 20 W ⁇ min / m 2
  • a corona treatment machine (“CORONA STATION” manufactured by Kasuga Electric Co., Ltd.) with a discharge amount of 20 W ⁇ min / m 2
  • CORONA STATION manufactured by Kasuga Electric Co., Ltd.
  • Example 1 A solid electrolyte membrane with a film was obtained in the same manner as in Example 1 except that the used film was changed to “PET38 T-100 (trade name)” manufactured by Mitsubishi Plastics. Each evaluation was performed in the same manner as in Example 1.
  • Example 2 A solid electrolyte membrane with a film was obtained in the same manner as in Example 2 except that the used film was changed to “PET38 T-100 (trade name)” manufactured by Mitsubishi Plastics. Each evaluation was performed in the same manner as in Example 1.
  • Example 3 A solid electrolyte membrane with a film was obtained in the same manner as in Example 1 except that the used film was changed to a 100 ⁇ m-thick Naflon sheet (manufactured by ASONE). Each evaluation was performed in the same manner as in Example 1. Naflon is a registered trademark.
  • Example 4 A solid electrolyte membrane with a film was obtained in the same manner as in Example 2 except that the used film was changed to a 100 ⁇ m-thick Naflon sheet (manufactured by ASONE). Each evaluation was performed in the same manner as in Example 1.
  • Example 5 A solid electrolyte membrane with a film was obtained in the same manner as in Example 1 except that the used film was changed to “PET38 AL-5 (trade name)” manufactured by Lintec Corporation. Each evaluation was performed in the same manner as in Example 1.
  • Example 6 A solid electrolyte membrane with a film was obtained in the same manner as in Example 2 except that the used film was changed to “PET38 AL-5 (trade name)” manufactured by Lintec Corporation. Each evaluation was performed in the same manner as in Example 1.
  • Example 7 The film used was changed to “NF SP-PET3801 (trade name)” manufactured by Lintec Corporation, and the surface of the silicone resin release agent layer of the film was subjected to a corona treatment machine (“CORONA STATION” manufactured by Kasuga Electric Co., Ltd.). A solid electrolyte membrane with a film was obtained in the same manner as in Example 1 except that a treatment with a discharge amount of 20 W ⁇ min / m 2 was performed. Each evaluation was performed in the same manner as in Example 1.
  • Example 8 The film used was changed to “NF SP-PET3801 (trade name)” manufactured by Lintec Corporation, and the surface of the silicone resin release agent layer of the film was subjected to a corona treatment machine (“CORONA STATION” manufactured by Kasuga Electric Co., Ltd.). A solid electrolyte membrane with a film was obtained in the same manner as in Example 2 except that a treatment with a discharge amount of 20 W ⁇ min / m 2 was performed. Each evaluation was performed in the same manner as in Example 1.
  • the solid electrolyte membrane with a film according to the present invention can be used as a solid electrolyte membrane by peeling the film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

フィルム付き固体電解質膜(1)は、アセトニトリルに対する接触角が35度以上75度以下であり、かつクロロホルムに対する接触角が15度以上40度以下である面を有するフィルム(11)と、フィルム(11)の前記面に接する固体電解質膜(12)と、を備えることを特徴とする。フィルム付き固体電解質膜の製造方法は、アセトニトリルに対する接触角が35度以上75度以下であり、かつクロロホルムに対する接触角が15度以上40度以下であるフィルムの面に、固体電解質膜形成用組成物を塗布する工程と、塗布された前記固体電解質膜形成用組成物を硬化させて固体電解質膜を形成する工程と、を有することを特徴とする。

Description

フィルム付き固体電解質膜およびその製造方法
 本発明は、フィルム付き固体電解質膜およびその製造方法に関する。
 二次電池は、エネルギー密度が高く、高電圧を有するという特徴から、携帯機器の電源として広く用いられている。近年、携帯機器の小型化、軽量化、および高性能化に伴い、二次電池の高性能化および安全性向上の要請が高まっている。また、二次電池は、電気自動車および家庭用蓄電システム等、大型サイズでの用途へも広がりを見せている。
 中でも、固体電解質を用いた二次電池は、安全性が高く長寿命であることから、開発が進められている。従来、固体電解質の製造方法に関し、例えば特許文献1には、ポリエチレンテレフタレート(PET)フィルム上に、高分子固体電解質をコーティングして高分子固体電解質の膜を得る方法が記載されている。また、特許文献2には、電極上に直接電解質溶液を塗布し、加熱および乾燥する方法が記載されている。さらに、特許文献3には、モールド上に電解質溶液をキャストして乾燥した後、加熱および加圧することで、固体電解質であるフィルムを得る方法が記載されている。
特開2001-319692号公報 特開2012-104263号公報 特開平10-204172号公報
 しかしながら、従来の方法では、PETフィルム上で電解質溶液のハジキが生じて、固体電解質膜の形、厚さ、および幅等の形状がばらついて不均一になるという問題がある。また、フィルムまたはモールド等から固体電解質膜を容易に剥離できず、固体電解質膜を損傷してしまうという問題もある。
 本発明の目的は、固体電解質膜の形状のばらつきが抑制され、かつ、フィルムの剥離性が良好なフィルム付き固体電解質膜およびその製造方法を提供することである。
 本発明の一態様に係るフィルム付き固体電解質膜は、アセトニトリルに対する接触角が35度以上75度以下であり、かつクロロホルムに対する接触角が15度以上40度以下である面を有するフィルムと、前記フィルムの前記面に接する固体電解質膜と、を備えることを特徴とする。
 本発明の一態様に係るフィルム付き固体電解質膜において、前記固体電解質膜が、質量平均分子量1万以上の高分子化合物と、金属塩とを含むことが好ましい。
 本発明の一態様に係るフィルム付き固体電解質膜において、前記金属塩が、リチウム塩であることが好ましい。
 本発明の一態様に係るフィルム付き固体電解質膜の製造方法は、アセトニトリルに対する接触角が35度以上75度以下であり、かつクロロホルムに対する接触角が15度以上40度以下であるフィルムの面に、固体電解質膜形成用組成物を塗布する工程と、塗布された前記固体電解質膜形成用組成物を硬化させて固体電解質膜を形成する工程と、を有することを特徴とする。
 前述の本発明の一態様によれば、固体電解質膜の形状のばらつきが抑制され、フィルムの剥離性が良好なフィルム付き固体電解質膜を提供できる。
 また、固体電解質膜が、質量平均分子量1万以上の高分子化合物と、金属塩とを含むフィルム付き固体電解質膜の場合、機械的強度および柔軟性にも優れる。
 また、金属塩がリチウム塩であるフィルム付き固体電解質膜の場合、エネルギー密度が高く、導電性に優れる固体電解質膜を提供することができる。
 また、前述の本発明の一態様によれば、固体電解質膜の形状のばらつきが抑制され、フィルムの剥離性が良好なフィルム付き固体電解質膜を製造するための製造方法を提供することができる。
本発明の一実施形態に係るフィルム付き固体電解質膜の断面図である。 本発明のフィルム付き固体電解質膜の製造方法を説明する概略図である。 本発明の別の一実施形態に係るフィルム付き固体電解質膜の断面図である。
 以下、図面を参照して、本発明の実施形態を説明する。
[フィルム付き固体電解質膜]
 図1は、本発明の一実施形態に係るフィルム付き固体電解質膜1の断面図である。
 フィルム付き固体電解質膜1は、フィルム11と、フィルム11の一方の面Aに形成された固体電解質膜12とを有する。
 本実施形態において、フィルム11は、固体電解質膜12と接する面Aにおける、アセトニトリルに対する接触角が35度以上75度以下、かつクロロホルムに対する接触角が15度以上40度以下である。面Aにおけるアセトニトリルに対する接触角は、好ましくは55度以上65度以下であることが好ましい。面Aにおけるクロロホルムに対する接触角は17度以上37度以下であることが好ましい。
 フィルム11の面Aの接触角が前記接触角の範囲外である(上限値を超える)と、上層の固体電解質膜12との間にハジキが生じて、固体電解質膜12の形状(例えば、厚さおよび幅等)がばらついてしまう。
 また、フィルム11の面Aの接触角が前記接触角の範囲外である(下限値を下回る)と、使用の際に、固体電解質膜12からフィルム11を容易に剥離することができず、固体電解質膜12が変形してしまう。
 なお、接触角は、フィルム11の固体電解質膜と接する面Aについて、前記溶媒(アセトニトリルまたはクロロホルム)2μリットルを滴下し、23±5℃の温度で自動接触角計を用いて、θ/2法により静的接触角を算出することにより得られる。
 フィルム11の面Aの接触角を前記範囲に制御する手段としては、酸化法等による表面処理、あるいは剥離処理を施すことができる。前記酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン処理、および紫外線照射処理等が挙げられる。これらの表面処理法は、フィルムの種類に応じて適宜選ばれるが、一般にコロナ放電処理法がぬれ張力を向上する効果および操作性の面から好ましく用いられる。
 フィルム11としては、面Aの接触角が前記範囲に制御されていれば特に限定されない。例えば、従来公知の基材の中から任意のフィルムを適宜選択してそのまま用いることができる。
 基材の材質としては、例えば、合成樹脂フィルム、紙材、不織布、木材、および金属箔等が挙げられる。合成樹脂フィルムの材質としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレートおよびポリエチレンナフタレート等)、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、およびポリメチルペンテン等)、ポリカーボネート、ポリ酢酸ビニル、ポリ塩化ビニル、アクリル、アクリロニトリル・ブタジエン・スチレン、ポリイミド、ポリウレタン、並びにポリスチレン等が挙げられる。紙材としては、例えば、上質紙、含浸紙、グラシン紙、およびコート紙等が挙げられる。
 基材は、単層であってもよいし、同種又は異種の2層以上の多層であってもよい。基材としては、合成樹脂フィルムであることが好ましく、合成樹脂フィルムの材質としては、ポリエステルフィルムが好ましく、ポリエチレンテレフタレートフィルムがより好ましく、二軸延伸ポリエチレンテレフタレートフィルムがさらに好ましい。ポリエチレンテレフタレートフィルムは、加工時および使用時等において、埃等が発生しにくいため、例えば、埃等による塗工不良等を効果的に防止することができる。
 フィルム11の厚さは、用途に応じて適宜設計することができる。フィルム11の厚さは、通常10μm以上300μm以下であればよく、好ましくは15μm以上200μm以下であり、より好ましくは20μm以上125μm以下である。
 また、本発明の他の実施形態として、前記基材の一方の面に、剥離剤を塗布して剥離剤層を設けたフィルムを、フィルム11として用いてもよい。なお、フィルム11が剥離剤層を有する場合、剥離剤層の表面が前記範囲の接触角を有し、固体電解質膜12は、剥離剤層の当該表面上に形成される。
 フィルム11の剥離剤層に使用される剥離剤としては、特に限定されない。例えば、シリコーン樹脂系剥離剤の他、アルキド樹脂系剥離剤、長鎖アルキル基含有化合物系剥離剤、アクリル系剥離剤、ポリエチレン等のオレフィン系剥離剤、およびイソプレン系樹脂等のゴム系剥離剤等が挙げられる。
 シリコーン樹脂系剥離剤としては、溶剤型の剥離剤および無溶剤型の剥離剤がある。溶剤型シリコーン樹脂は、溶剤希釈して塗工液とするため、高分子量で高粘度のポリマーから低粘度の低分子量ポリマー(オリゴマー)まで、幅広く使用することができる。そのため、溶剤型シリコーン樹脂は、無溶剤型シリコーン樹脂と比較して、剥離性の制御が容易であり、要求される性能(品質)に合わせて設計し易い。また、シリコーン樹脂系剥離剤としては、付加反応型、縮合反応型、紫外線硬化型、および電子線硬化型等の剥離剤がある。付加反応型シリコーン樹脂は、反応性が高く生産性に優れ、縮合反応型シリコーン樹脂と比較すると、製造後の剥離力の変化が小さいことおよび硬化収縮が無いこと等のメリットがある。そのため、剥離剤層を構成する剥離剤として、付加反応型シリコーン樹脂を使用することが好ましい。
 付加反応型シリコーン樹脂としては、特に制限はなく、様々なシリコーン樹脂を用いることができる。例えば、従来の熱硬化付加反応型シリコーン樹脂系剥離剤として慣用されているシリコーン樹脂を用いることができる。この付加反応型シリコーン樹脂としては、例えば、分子中に官能基として、ビニル基等のアルケニル基、およびヒドロシリル基等の求電子性基等を有するシリコーン樹脂が、熱硬化が容易な付加反応型シリコーン樹脂として挙げられる。このような官能基を有するポリジメチルシロキサン、またはポリジメチルシロキサンのメチル基の一部もしくは全部をフェニル基等の芳香族官能基に置換したシリコーン樹脂等を、付加反応型シリコーン樹脂として用いることができる。
 このシリコーン樹脂系剥離剤には、必要に応じて、その他の添加剤を添加してもよい。その他の添加剤としては、例えば、シリカ、シリコーンレジン、帯電防止剤、染料、および顔料等が挙げられる。
 塗工したシリコーン樹脂系剥離剤の塗膜を硬化させる方法は、特に限定されない。例えば、塗工機のオーブンで加熱処理する方法、および加熱処理した後に紫外線照射を併用する方法等が挙げられる。例えば、後者の方法であれば、基材の熱収縮による皺の発生防止、シリコーンの硬化性、および基材への剥離剤の密着性の点で好ましい。
 なお、塗膜の硬化に紫外線照射を併用する場合は、剥離剤に光重合開始剤を添加することが望ましい。光重合開始剤としては特に制限は無く、紫外線または電子線の照射によりラジカルを発生する光重合開始剤で慣用されている光重合開始剤の中から、任意の光重合開始剤を適宜選択して用いることができる。この光重合開始剤としては、例えば、ベンゾイン類、アルキルフェノン類、ベンゾフェノン類、アセトフェノン類、α-ヒドロキシケトン類、α-アミノケトン類、α-ジケトン、α-ジケトンジアルキルアセタール類、アントラキノン類、チオキサントン類、アシルフォスフィンオキサイド類、チタノセン類、トリアジン類、ビスイミダゾール類、およびオキシムエステル類等が挙げられる。
 アルキド樹脂系剥離剤としては、例えば、架橋構造を有するアルキド系樹脂が用いられる。架橋構造を有するアルキド系樹脂層の形成は、例えばアルキド系樹脂、架橋剤および所望により硬化触媒を含む熱硬化性樹脂組成物からなる層を加熱硬化させる方法を用いることができる。また、アルキド系樹脂は、例えば、長鎖アルキル変性アルキド樹脂、およびシリコーン変性アルキド樹脂等の変性物であってもよい。
 長鎖アルキル基含有化合物系剥離剤としては、例えば、ポリビニルアルコール系重合体に炭素数8~30の長鎖アルキルイソシアネートを反応させて得られたポリビニルカーバメート、およびポリエチレンイミンに炭素数8~30の長鎖アルキルイソシアネートを反応させて得られたアルキル尿素誘導体等が用いられる。
 アクリル系剥離剤としては、例えば、架橋構造を有するアクリル系樹脂が用いられる。アクリル系樹脂は、例えば、長鎖アルキル変性アクリル樹脂、およびシリコーン変性アクリル樹脂等の変性物であってもよい。
 オレフィン樹脂系剥離剤としては、例えば、結晶性オレフィン系樹脂が用いられる。この結晶性オレフィン系樹脂としては、例えば、ポリエチレンおよび結晶性ポリプロピレン系樹脂等が好適である。ポリエチレンとしては、例えば、高密度ポリエチレン、低密度ポリエチレン、および直鎖状低密度ポリエチレン等が挙げられる。結晶性ポリプロピレン系樹脂としては、例えば、アイソタクチック構造又はシンジオタクチック構造を有するプロピレン単独重合体、およびプロピレン-α-オレフィン共重合体等が挙げられる。これらの結晶性オレフィン系樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ゴム系剥離剤としては、例えば、天然ゴム系樹脂および合成ゴム系樹脂等が用いられる。合成ゴム系樹脂としては、例えば、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエンゴム、メチルメタクリレート-ブタジエンゴム、およびアクリロニトリル-ブタジエンゴム等が用いられる。
 これらの剥離剤の中でも、アセトニトリルおよびクロロホルムに対する接触角を、前記範囲に制御し易いという観点から、シリコーン樹脂系剥離剤が好ましい。
 剥離剤層の厚さは、特に限定されないが、0.01μm以上1μm以下であることが好ましく、0.03μm以上0.5μm以下であることがより好ましい。
 フィルム11の形状は特に限定されることはないが、例えば、正方形および長方形等の矩形状、三角形、五角形、および六角形等の多角形状、円形状、楕円形状、不定形状、並びに長尺のロール形状等、最終製品の用途により様々選択されればよい。本実施形態においては、長尺状のフィルム11に固体電解質膜12が積層された態様が例示される。
 本実施形態において、固体電解質膜12は、高分子化合物と金属塩とを含む高分子固体電解質膜である。固体電解質膜12は、高分子化合物と、金属塩とを含み、溶媒を含まない固体状(溶媒非含有固体電解質膜)であっても、高分子化合物と、金属塩と、さらに溶媒を含むゲル状(高分子ゲル電解質膜)であってもよい。固体電解質膜12が高分子ゲル電解質膜である場合、高分子ゲル電解質膜中の溶媒の含有量は、通常、固体電解質膜12全体の30質量%以上99質量%以下である。
 固体電解質膜12が溶媒非含有固体電解質膜である場合、固体電解質膜12中の高分子化合物の含有量は、固体電解質膜12全体の5質量%以上99質量%以下であることが好ましく、10質量%以上95質量%以下であることがより好ましい。
 固体電解質膜12が高分子ゲル電解質膜である場合、固体電解質膜12中の高分子化合物の含有量は、固体電解質膜12全体の0.5質量%以上65質量%以下であることが好ましい。
 固体電解質膜12に含有される高分子化合物は、質量平均分子量が1万以上であることが好ましく、質量平均分子量が1万以上100万以下であることがより好ましく、質量平均分子量が2万以上50万以下であることがさらに好ましい。
 質量平均分子量1万以上の高分子化合物として、具体的には、ポリエチレンオキシド、ポリエチレンカーボネート、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ポリヘキサフルオロプロピレン、およびポリエチレンオキサイド等のイオン伝導性ポリマーが例示される。
 高分子化合物の質量平均分子量が1万以上であれば、固体電解質膜12の形状安定性に優れる。そのため、フィルム付き固体電解質膜1は、機械的強度が良好で、柔軟性にも優れる。
 前記金属塩としては、非水電解質二次電池の種類および活物質の種類等に応じて公知の金属塩が利用できる。例えば、リチウム塩およびナトリウム塩等のアルカリ金属塩、並びにマグネシウム塩およびカルシウム塩等のアルカリ土類金属塩を挙げることができる。これらの中でも、エネルギー密度が高いことから、リチウム塩がより好ましい。
 固体電解質中で金属塩は、アルカリ金属等の陽イオンおよび当該陽イオンの対イオンとして存在し得る。金属塩がリチウム塩であれば、リチウムイオンが高分子化合物を介して輸送される。
 リチウム塩としては、例えば、LiClO、LiBF、LiI、LiPF、LiCFSO、LiCFCOO、LiNO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CFSON、Li(CSO)N、およびLi[(COB等を挙げることができる。
 本実施形態において、固体電解質膜12中の金属塩の濃度は、特に限定されない。例えば、固体電解質膜12中の高分子化合物の質量Mpに対する、金属塩の質量Msの比(Ms/Mp)の値は、0.01以上10以下であることが好ましく、0.05以上7以下がより好ましい。
 固体電解質膜12の厚さは、好ましくは1μm以上300μm以下であり、より好ましくは10μm以上100μm以下であり、さらに好ましくは20μm以上70μm以下である。
 固体電解質膜12の厚さが上記範囲内であれば、短絡することもなく、また、抵抗を低く抑えることができる。
 なお、フィルム付き固体電解質膜1は、固体電解質膜12を覆う保護シート15を有していてもよい(図3参照)。保護シート15の材質等は特に限定されないが、固体電解質膜12から容易に剥離できるような材質であることが好ましい。また、保護シート15は、表面に剥離剤層を有していてもよい。この場合、保護シート15の表面に剥離剤層を形成しておき、当該剥離剤層が接するように固体電解質膜12を覆ってもよい。なお、保護シート15として、フィルム11と同様の基材を用いることもできる。また、剥離剤層を構成する剥離剤は、前述の剥離剤層を構成する剥離剤と同様でもよい。
[製造方法]
 次に、本実施形態に係るフィルム付き固体電解質膜の製造方法について説明する。
 図2には、本実施形態に係るフィルム付き固体電解質膜の製造方法を説明する概略図が示されている。
 本実施形態では、製造装置100を用いて、フィルム付き固体電解質膜1を製造する。
 製造装置100は、フィルム11を繰り出す第一供給手段20と、固体電解質膜形成用組成物を塗布する塗工手段30と、塗布された固体電解質膜形成用組成物を硬化させる乾燥手段40と、保護シート15を繰り出す第二供給手段60と、フィルム付き固体電解質膜1に保護シート15を貼合する貼合部70と、保護シート15が貼合されたフィルム付き固体電解質膜1を巻き取る巻取手段80とを備える。
 第一供給手段20は、駆動機器としての回動モータ21と、回動モータ21により回転可能に設けられた支持ローラ22とを備える。支持ローラ22は、ロール状に巻回した長尺状のフィルム11を支持する。支持ローラ22から繰り出されたフィルム11は、途中、ガイドローラによって搬送方向を案内されながら、塗工手段30へ供給される。
(塗布工程)
 塗工手段30は、本実施形態では、アセトニトリルに対する接触角が35度以上75度以下であり、かつクロロホルムに対する接触角が15度以上40度以下であるフィルム11の面Aに、固体電解質膜形成用組成物を塗布して塗膜を形成する。
 塗工手段30としては、例えば、グラビアコーター、ナイフコーター、ロールコーター、ダイコーター、ディップコーター、バーコーター、コンマコーター、およびリップコーター等を挙げることができる。
 本実施形態において、固体電解質膜形成用組成物は、高分子化合物、金属塩、および溶媒を含む。なお、固体電解質膜形成用組成物は、所望によりさらに他の成分を含んでいてもよい。
 この組成物は、高分子化合物として、前述の質量平均分子量1万以上の高分子化合物を含んでいることが好ましい。また、この組成物は、金属塩として、リチウム塩を含んでいることが好ましい。
 高分子化合物の含有量は、組成物全体の5質量%以上98質量%以下であることが好ましく、10質量%以上94質量%以下であることがより好ましい。
 金属塩の含有量は、組成物全体の1質量%以上94質量%以下であることが好ましく、5質量%以上89質量%以下であることがより好ましい。
 溶媒の含有量は、通常、組成物全体の99質量%以下、好ましくは94質量%以下、より好ましくは85質量%以下である。
 溶媒としては、前記高分子化合物を溶解し、前記金属塩を均一に分散し得る溶媒であればよい。通常、非水電解質二次電池電極用スラリーに用いられている溶媒が利用できる。その中でも、低粘度でイオン移動度が高いか、高誘電率で有効キャリアー濃度を高めることができるか、或いはその両方であるために優れたイオン伝導性を発現できる溶媒が好ましい。
 本実施形態の固体電解質膜形成用組成物に含まれる溶媒として、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ブチレンカーボネート、メチルエチルカーボネート等のアルキルカーボネート類、γ-ブチロラクトン、ギ酸メチル等のエステル類、1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類、スルホラン、ジメチルスルホキシド、アセトニトリル、クロロホルム等が挙げられる。これらの溶媒は二種以上を混合して用いてもよい。
 固体電解質膜形成用組成物を調製する方法は、特に限定されない。例えば、高分子化合物と金属塩とを含む組成物である場合には、モノマーを重合させて高分子化合物を得てから金属塩を含有させてもよいし、金属塩の存在下でモノマーを重合させて高分子化合物を形成させてもよい。
(固体電解質膜形成工程)
 乾燥手段40は、塗工手段30にて形成された塗膜を硬化させる。乾燥手段40により塗膜に含まれる溶媒を除去し、塗膜を硬化させることで、フィルム付き固体電解質膜1が得られる。
 乾燥手段40は、互いに異なる温度に設定できる複数の乾燥ゾーンを有していてもよい。
 乾燥手段40としては、例えば、熱風循環式乾燥装置、および遠赤外線式乾燥装置等を挙げることができる。
 乾燥条件(乾燥時間および乾燥温度等)は、適宜設定すればよい。
(保護シート貼合工程)
 第二供給手段60は、駆動機器としての回動モータ61と、回動モータ61により回転可能に設けられた支持ローラ62とを備える。支持ローラ62は、ロール状に巻回した長尺状の保護シート15を支持する。支持ローラ62から繰り出された保護シート15は、貼合部70へ供給される。
 貼合部70は、フィルム付き固体電解質膜1が架け回された第一貼合ローラ71と、保護シート15が架け回された第二貼合ローラ72とを備える。フィルム付き固体電解質膜1と保護シート15とは、第一貼合ローラ71および第二貼合ローラ72の間を通過することで貼り合わされて、保護シート15が貼合されたフィルム付き固体電解質膜1となる。保護シート15が貼合されたフィルム付き固体電解質膜1は、第一貼合ローラ71および第二貼合ローラ72によって、巻取手段80が配置された下流側へと案内される。
(巻取工程)
 巻取手段80は、駆動機器としての回動モータ81と、回動モータ81により回転可能に設けられた支持ローラ82とを備える。支持ローラ82は、保護シート15が貼合されたフィルム付き固体電解質膜1をロール状に巻回して支持する。
 ロール状に巻回されたフィルム付き固体電解質膜1は、所定形状および所定寸法に裁断されて、例えば保護シート15が貼合されたフィルム付き固体電解質膜1として利用できる。
 前記実施形態に係るフィルム付き固体電解質膜1では、固体電解質膜12が接するフィルム11の面Aの接触角が前述の所定範囲内であるため、フィルム11と固体電解質膜12との間でハジキが抑制される。その結果、前記実施形態に係るフィルム付き固体電解質膜1によれば、固体電解質膜12の形状のばらつきを抑制し、かつフィルム11を容易に剥離することができる。また、フィルム11を容易に剥離できるので、固体電解質膜12の汎用性が高い。例えば、フィルム11を剥離した固体電解質膜12を電極に貼り合わせる使い方も可能になる等、固体電解質膜12の使用態様が拡がる。
 特に、ハジキの問題は、電解質溶液中の金属塩の濃度が高く、バインダーとなる化合物濃度が低い場合に顕著である。しかしながら、前記実施形態に係るフィルム付き固体電解質膜1によれば、固体電解質膜12中の金属塩の濃度が高く、バインダーとなる高分子化合物濃度が低い場合であっても、ハジキを抑制し、固体電解質膜12の形状のばらつきを抑制することができる。
 固体電解質膜12に含まれる金属塩がリチウム塩であると、固体電解質膜12はタック性を有する場合がある。前記実施形態では、固体電解質膜12にフィルム11が付いているため、固体電解質膜12を単独で取り扱う態様に比べて、ハンドリング性に優れる。なお、固体電解質膜12がタック性を有する場合は、保護シート15で固体電解質膜12が覆われていることが好ましい。固体電解質膜12が露出していないため、ハンドリング性がさらに優れる。固体電解質膜12を使用する際は、フィルム11および保護シート15を順次、剥離すればよい。
 前記実施形態に係るフィルム付き固体電解質膜の製造方法では、前述の所定範囲内の接触角である面Aに、固体電解質膜形成用組成物を塗布して塗膜を形成する。そのため、面A上における組成物のハジキが抑制され、塗膜を乾燥させて得た固体電解質膜12のハジキも抑制される。そして、製造されたフィルム付き固体電解質膜1によれば、固体電解質膜12からフィルム11を容易に剥離することができる。
 前記実施形態に係るフィルム付き固体電解質膜の製造方法よれば、フィルム11の面Aの接触角が前述の所定範囲内であるため、長尺状のフィルム11を連続的に供給しながら、固体電解質膜形成用組成物の塗布、並びに塗膜の乾燥および硬化を行っても、ハジキが抑制される。そのため、前記実施形態に係るフィルム付き固体電解質膜の製造方法によれば、いわゆるRoll to Rollによる製造が可能であるため、生産効率を格段に向上させることができる。従来、モールド上で成膜していたため、固体電解質膜の生産効率が低いという問題もあった。
 なお、本発明は前記実施形態に限定されず、本発明の目的を達成できる範囲での変形および改良等は、本発明に含まれる。
 前記実施形態では、Roll to Rollで製造する態様を例に挙げて説明したが、本発明はこのような態様に限定されない。例えば、ドクターブレード等の塗工手段を用いてフィルムに固体電解質膜形成用組成物を塗布した後、オーブン中で乾燥させることにより、フィルム付き固体電解質膜を製造してもよい。
 前記実施形態では、フィルム11の一方の面Aに固体電解質膜が形成されている態様を例に挙げて説明したが、本発明はこのような態様に限定されない。
 例えば、面Aとは反対側の第二の面にさらに固体電解質膜が形成されていてもよい。この場合、当該第二の面も、アセトニトリルに対する接触角が35度以上75度以下であり、かつクロロホルムに対する接触角が15度以上40度以下であることが好ましい。
 また、例えば、フィルムの一方の面A全体が前記範囲の接触角を有していなくてもよい。フィルムの一方の面Aのうち少なくとも固体電解質膜が形成される領域が前記範囲の接触角であればよい。
 塗工手段30で塗布する組成物は、前記実施形態で説明した構成に限定されない。塗工手段30で塗布する組成物は、高分子化合物と、金属塩とを含み、溶媒を含まない組成物(溶媒非含有組成物)であってもよい。
 また例えば、塗工手段30で塗布する組成物は、モノマーと重合開始剤と金属塩と溶媒とを含む構成であってもよい。このような構成による組成物であれば、モノマーをUV照射により重合させることができる。このように、モノマーをUV照射により重合させる態様である場合、乾燥手段40の下流側にUV照射手段を配置させておくことが好ましい。UV照射条件(波長、強度、および照射時間等)は、適宜設定すればよい。固体電解質膜形成工程では、塗布する組成物の構成に応じて、乾燥手段40およびUV照射手段を適宜組み合わせて、塗膜を硬化させればよい。
 モノマーと重合開始剤と金属塩と溶媒とを含む組成物を用いて固体電解質膜12を形成する場合、固体電解質膜12は、モノマー重合後のポリマーの質量平均分子量が1万以上100万以下となるよう形成されることが好ましい。
 重合後の質量平均分子量が1万以上100万以下であれば、フィルム付き固体電解質膜1は、加工性および成形性に優れる。
 このようなモノマーとしては、例えば、アクリル酸2-(2-エトキシエトキシ)エチル、2-シアノエチルアクリレート、メトキシポリエチレングリコールメタクリレート、メトキシポリプロピレングリコールメタクリレート、エトキシポリエチレングリコールメタクリレート、エトキシポリプロピレングリコールメタクリレート、メトキシポリエチレングリコールアクリレート、メトキシポリプロピレングリコールアクリレート、エトキシポリエチレングリコールアクリレート、エトキシポリプロピレングリコールアクリレート、およびこれらの混合物等が挙げられる。
 またこの場合、紫外線架橋反応の架橋助剤として、例えば、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、オリゴエチレングリコールジアクリレート、オリゴエチレングリコールジメタクリレート、プロピレングリコールジアクリレート、プロピレングリコールジメタクリレート、オリゴプロピレングリコールジアクリレート、オリゴプロピレングリコールジメタクリレート、1,3-ブチレングリコールジアクリレート、1,4-ブチレングリコールジアクリレート、1,3-グリセロールジメタクリレート、1,1,1-トリメチロールプロパンジメタクリレート、1,1,1-トリメチロールエタンジアクリレート、ペンタエリスリトールトリメタクリレート、1,2,6-ヘキサントリアクリレート、ソルビトールペンタメタクリレート、メチレンビスアクリルアミド、メチレンビスメタクリルアミドジビニルベンゼン、ビニルメタクリレート、ビニルクロトネート、ビニルアクリレート、ビニルアセチレン、トリビニルベンゼン、トリアリルシアニルスルフィド、ジビニルエーテル、ジビニルスルホエーテル、ジアリルフタレート、グリセロールトリビニルエーテル、アリルメタリクレート、アリルアクレート、ジアリルマレート、ジアリルフマレート、ジアリルイタコネート、メチルメタクリレート、ブチルアクリレート、エチルアクリレート、2-エチルヘキシルアクリレート、ラウリルメタクリレート、エチレングリコールアクリレート、トリアリルイソシアヌレート、マレイミド、フェニルマレイミド、p-キノンジオキシム、無水マレイン酸、およびイタコン酸等を任意に用いることができる。
 なお、重合開始剤、金属塩、および溶媒は、上述と同様の光重合開始剤、金属塩、および溶媒が例示される。
 また、例えば、塗工手段で塗膜を形成することができるのであれば、塗布する組成物は、モノマーと重合開始剤と金属塩とを含み、溶媒を含まない組成物であってもよい。
 以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明は、これらの実施例に何ら限定されない。
(実施例1)
 質量平均分子量110,000であるポリエチレンオキシド(PEO)[明成化学工業株式会社「アルコックスL-11(商品名)」]100質量部と、リチウムビストリフルオロメタンスルホニルイミド(LiTFSI)10質量部と、アセトニトリル500質量部とを配合し、よく撹拌することで、固体電解質膜形成用組成物を調製した。得られた組成物を、リンテック株式会社製「PLS31T161(商品名)」[厚さ31μmの基材(ポリエチレンテレフタレートフィルム)の一方の面上に、シリコーン樹脂系剥離剤層を有するフィルム]の剥離剤層側に、ダイコーターにより塗布し、上流側の第1乾燥ゾーンは80℃、下流側の第2乾燥ゾーンは120℃となるように温度勾配を設定したドライヤー中で10分間乾燥させて、フィルム付き固体電解質膜を得た。アルコックスは、登録商標である。
[ハジキ]
 得られたフィルム付き固体電解質膜につき、ハジキの有無を目視にて観察した。結果を表1に示す。なお、評価は次に示す基準に基づいて行った。
   A:塗布幅に対して得られた固体電解質膜の幅の変動率が10%以内。
   B:塗布幅に対して得られた固体電解質膜の幅の変動率が10%超過
     またはハジキによる無塗布部分が発生。
[剥離性]
 得られたフィルム付き固体電解質膜を、露点-60℃以下に制御されたアルゴン雰囲気下に移動させた後に、フィルムから固体電解質膜を引き剥がし、剥離性の評価を行った。結果を表1に示す。なお、評価は次に示す基準に基づいて行った。
   C:容易にフィルムより剥離できた。
   D:容易に剥離できず、固体電解質膜が変形した。
(実施例2)
 質量平均分子量120,000であるポリエチレンカーボネート(PEC)[EMPOWER MATERIALS社製「QPAC-25(商品名)」]100質量部と、LiTFSI400質量部と、クロロホルム500質量部とを配合し、よく撹拌することで、固体電解質膜形成用組成物を調製した。その後、実施例1と同様の手順で、フィルム付き固体電解質膜を得た。各評価も、実施例1と同様にして行った。QPACは、登録商標である。
(実施例3)
 使用したフィルムを、リンテック株式会社製「NF SP-PET3801(商品名)」[厚さ38μmの基材(ポリエチレンテレフタレートフィルム)の一方の面上に、シリコーン樹脂系剥離剤層を有するフィルム]に変更した以外は、実施例1と同様にして、フィルム付き固体電解質膜を得た。各評価も、実施例1と同様にして行った。
(実施例4)
 使用したフィルムを、リンテック株式会社製「NF SP-PET3801(商品名)」に変更した以外は、実施例2と同様にして、フィルム付き固体電解質膜を得た。各評価は、実施例1と同様にして行った。
(実施例5)
 使用したフィルムを、リンテック株式会社製「NF SP-PET381031C(商品名)」[厚さ38μmの基材(ポリエチレンテレフタレートフィルム)の一方の面上に、シリコーン樹脂系剥離剤層を有するフィルム]に変更した以外は、実施例1と同様にして、フィルム付き固体電解質膜を得た。各評価も、実施例1と同様にして行った。
(実施例6)
 使用したフィルムを、リンテック株式会社製「NF SP-PET381031C(商品名)」に変更した以外は、実施例2と同様にして、フィルム付き固体電解質膜を得た。各評価は、実施例1と同様にして行った。
(実施例7)
 使用したフィルムを、厚み100μmのナフロンシート(アズワン社製)に変更し、当該フィルムの表面にコロナ処理機(春日電機株式会社製「CORONA STATION」)で放電量20W・min/mの処理を施した以外は、実施例1と同様にして、フィルム付き固体電解質膜を得た。各評価も、実施例1と同様にして行った。
(実施例8)
 使用したフィルムを、厚み100μmのナフロンシート(アズワン社製)に変更し、当該フィルムの表面にコロナ処理機(春日電機株式会社製「CORONA STATION」)で放電量20W・min/mの処理を施した以外は、実施例2と同様にして、フィルム付き固体電解質膜を得た。各評価は、実施例1と同様にして行った。
(比較例1)
 使用したフィルムを、三菱樹脂社製「PET38 T-100(商品名)」に変更した以外は、実施例1と同様にして、フィルム付き固体電解質膜を得た。各評価も、実施例1と同様にして行った。
(比較例2)
 使用したフィルムを、三菱樹脂社製「PET38 T-100(商品名)」に変更した以外は、実施例2と同様にして、フィルム付き固体電解質膜を得た。各評価は、実施例1と同様にして行った。
(比較例3)
 使用したフィルムを、厚み100μmのナフロンシート(アズワン社製)に変更した以外は、実施例1と同様にして、フィルム付き固体電解質膜を得た。各評価も、実施例1と同様にして行った。ナフロンは、登録商標である。
(比較例4)
 使用したフィルムを、厚み100μmのナフロンシート(アズワン社製)に変更した以外は、実施例2と同様にして、フィルム付き固体電解質膜を得た。各評価は、実施例1と同様にして行った。
(比較例5)
 使用したフィルムを、リンテック株式会社製「PET38 AL-5(商品名)」に変更した以外は、実施例1と同様にして、フィルム付き固体電解質膜を得た。各評価も、実施例1と同様にして行った。
(比較例6)
 使用したフィルムを、リンテック株式会社製「PET38 AL-5(商品名)」に変更した以外は、実施例2と同様にして、フィルム付き固体電解質膜を得た。各評価は、実施例1と同様にして行った。
(比較例7)
 使用したフィルムを、リンテック株式会社製「NF SP-PET3801(商品名)」に変更し、当該フィルムのシリコーン樹脂系剥離剤層の表面にコロナ処理機(春日電機株式会社製「CORONA STATION」)で放電量20W・min/mの処理を施した以外は、実施例1と同様にして、フィルム付き固体電解質膜を得た。各評価も、実施例1と同様にして行った。
(比較例8)
 使用したフィルムを、リンテック株式会社製「NF SP-PET3801(商品名)」に変更し、当該フィルムのシリコーン樹脂系剥離剤層の表面にコロナ処理機(春日電機株式会社製「CORONA STATION」)で放電量20W・min/mの処理を施した以外は、実施例2と同様にして、フィルム付き固体電解質膜を得た。各評価は、実施例1と同様にして行った。
 なお、実施例1~8および比較例1~8で用いたフィルムについて、固体電解質膜と接する面のアセトニトリルおよびクロロホルムそれぞれに対する接触角を、自動接触角計DSA100S(KRUUS社製)を用いて測定した。測定は、23℃、50%RHの雰囲気下で行い、アセトニトリルまたはクロロホルム2μリットルを滴下し、θ/2法により静的接触角を算出した。接触角の単位は、度である。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~実施例8では、フィルムと固体電解質膜との間のハジキによる、固体電解質膜の形状のばらつきが抑制され、固体電解質膜の幅の変動率が10%以内と良好であった。また、使用を想定したフィルムからの固体電解質膜の剥離では、容易に剥離することができた。
 一方、比較例1、比較例2、比較例5、比較例6、比較例7、および比較例8では、ハジキによる固体電解質膜の形状のばらつきはなかったが、剥離性が悪かった。また、比較例3および比較例4では、剥離性は良好であったが、ハジキによる固体電解質膜の形状のばらつきが見られた。
 本発明に係るフィルム付き固体電解質膜は、フィルムを剥離して固体電解質膜として利用できる。
 1…フィルム付き固体電解質膜、11…フィルム、12…固体電解質膜。

Claims (4)

  1.  アセトニトリルに対する接触角が35度以上75度以下であり、かつクロロホルムに対する接触角が15度以上40度以下である面を有するフィルムと、
     前記フィルムの前記面に接する固体電解質膜と、を備える、
     フィルム付き固体電解質膜。
  2.  前記固体電解質膜が、質量平均分子量1万以上の高分子化合物と、金属塩とを含む、請求項1に記載のフィルム付き固体電解質膜。
  3.  前記金属塩が、リチウム塩である、請求項2に記載のフィルム付き固体電解質膜。
  4.  アセトニトリルに対する接触角が35度以上75度以下であり、かつクロロホルムに対する接触角が15度以上40度以下であるフィルムの面に、固体電解質膜形成用組成物を塗布する工程と、
     塗布された前記固体電解質膜形成用組成物を硬化させて固体電解質膜を形成する工程と、を有する、
     フィルム付き固体電解質膜の製造方法。
     
PCT/JP2015/055787 2014-03-06 2015-02-27 フィルム付き固体電解質膜およびその製造方法 WO2015133388A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167026386A KR102277064B1 (ko) 2014-03-06 2015-02-27 필름이 부착된 고체 전해질막 및 그 제조 방법
CN201580011300.2A CN106063018B (zh) 2014-03-06 2015-02-27 带薄膜的固体电解质膜及其制造方法
US15/123,089 US10122045B2 (en) 2014-03-06 2015-02-27 Solid electrolyte membrane with film and method for producing same
JP2016506452A JP6557214B2 (ja) 2014-03-06 2015-02-27 フィルム付き固体電解質膜およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-044223 2014-03-06
JP2014044223 2014-03-06

Publications (1)

Publication Number Publication Date
WO2015133388A1 true WO2015133388A1 (ja) 2015-09-11

Family

ID=54055196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055787 WO2015133388A1 (ja) 2014-03-06 2015-02-27 フィルム付き固体電解質膜およびその製造方法

Country Status (6)

Country Link
US (1) US10122045B2 (ja)
JP (1) JP6557214B2 (ja)
KR (1) KR102277064B1 (ja)
CN (1) CN106063018B (ja)
TW (1) TWI647100B (ja)
WO (1) WO2015133388A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017439A1 (ja) * 2018-07-19 2020-01-23 日立化成株式会社 電解質シートの製造方法及び二次電池の製造方法
JP7542817B2 (ja) 2020-05-29 2024-09-02 エンテックアジア株式会社 固体電解質含有繊維製品の製造方法及び固体電解質被覆繊維の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994807B1 (ko) * 2017-12-05 2019-06-28 한국에너지기술연구원 전해질막 및 이를 포함하는 전기변색 모듈의 제조방법과 그에 의한 전기변색 모듈
US10971708B2 (en) 2018-04-23 2021-04-06 International Business Machines Corporation Release layer for preparation of ion conducting membranes
US20220093958A1 (en) * 2020-09-24 2022-03-24 International Business Machines Corporation Ion-conducting membrane for batteries
US20230035720A1 (en) * 2021-07-30 2023-02-02 Solid Energies Inc. Large-dimension, flexible, ultrathin high-conductivity polymer-based composite solid-state electrolyte membrane
WO2023234707A1 (ko) * 2022-05-31 2023-12-07 주식회사 엘지에너지솔루션 고분자 고체 전해질 적층체 및 이의 제조방법
WO2024080807A1 (ko) * 2022-10-14 2024-04-18 주식회사 엘지에너지솔루션 복합 고체 전해질의 제조방법 및 이로부터 제조된 복합 고체 전해질
WO2024080808A1 (ko) * 2022-10-14 2024-04-18 주식회사 엘지에너지솔루션 고분자 고체 전해질의 제조방법
WO2024080805A1 (ko) * 2022-10-14 2024-04-18 주식회사 엘지에너지솔루션 복합 고체 전해질 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195333A (ja) * 1998-12-24 2000-07-14 Asahi Chem Ind Co Ltd 補強された固体電解質膜
JP2004296409A (ja) * 2003-03-28 2004-10-21 Sumitomo Chem Co Ltd 高分子電解質複合膜の製造方法
JP2008078128A (ja) * 2006-08-25 2008-04-03 Sumitomo Chemical Co Ltd 高分子電解質膜、その積層体、及びそれらの製造方法
JP2009026533A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 燃料電池用電解質膜、及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3282565B2 (ja) 1996-11-22 2002-05-13 ダイソー株式会社 架橋高分子固体電解質及びその用途
JP4559587B2 (ja) * 2000-05-08 2010-10-06 独立行政法人産業技術総合研究所 固体型リチウムポリマー電池
CA2520477A1 (en) 2003-03-28 2004-10-14 Sumitomo Chemical Company, Limited Process for continuously producing polymerelectrolyte membrane and producing apparatus therefor
US7326526B2 (en) * 2003-12-15 2008-02-05 Worcester Polytechnic Institute Films with photoresponsive wettability
EP2360762A1 (en) 2006-08-25 2011-08-24 Sumitomo Chemical Co., Ltd. Polymer electrolyte membrane, laminate thereof, and there production methods
JP5554503B2 (ja) 2008-03-18 2014-07-23 リンテック株式会社 再剥離性工程フィルム
KR101494244B1 (ko) 2010-03-31 2015-02-17 린텍 가부시키가이샤 다이싱 시트용 기재 필름 및 다이싱 시트
JP5517887B2 (ja) 2010-11-08 2014-06-11 一般財団法人電力中央研究所 非水電解質二次電池
JP2012129484A (ja) 2010-12-16 2012-07-05 Samsung Electro-Mechanics Co Ltd 複合固体電解質膜及びその製造方法、並びに複合固体電解質膜を含むリチウムイオンキャパシタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195333A (ja) * 1998-12-24 2000-07-14 Asahi Chem Ind Co Ltd 補強された固体電解質膜
JP2004296409A (ja) * 2003-03-28 2004-10-21 Sumitomo Chem Co Ltd 高分子電解質複合膜の製造方法
JP2008078128A (ja) * 2006-08-25 2008-04-03 Sumitomo Chemical Co Ltd 高分子電解質膜、その積層体、及びそれらの製造方法
JP2009026533A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 燃料電池用電解質膜、及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017439A1 (ja) * 2018-07-19 2020-01-23 日立化成株式会社 電解質シートの製造方法及び二次電池の製造方法
JP7542817B2 (ja) 2020-05-29 2024-09-02 エンテックアジア株式会社 固体電解質含有繊維製品の製造方法及び固体電解質被覆繊維の製造方法

Also Published As

Publication number Publication date
JPWO2015133388A1 (ja) 2017-04-06
CN106063018B (zh) 2018-09-28
US20170069933A1 (en) 2017-03-09
TW201542362A (zh) 2015-11-16
KR20160130782A (ko) 2016-11-14
US10122045B2 (en) 2018-11-06
TWI647100B (zh) 2019-01-11
CN106063018A (zh) 2016-10-26
JP6557214B2 (ja) 2019-08-07
KR102277064B1 (ko) 2021-07-13

Similar Documents

Publication Publication Date Title
JP6557214B2 (ja) フィルム付き固体電解質膜およびその製造方法
US10811651B2 (en) Polymer-bound ceramic particle battery separator coating
JP2020191292A (ja) セラミック粒子がuvまたはeb硬化ポリマー結合されたリチウム二次電池セパレーター、その生産方法
CN104064709B (zh) 陶瓷隔膜及其制备锂离子二次电池的方法及电池
KR102438015B1 (ko) 비수계 이차 전지 기능층용 조성물, 비수계 이차 전지용 기능층을 갖는 기재, 비수계 이차 전지용 적층체의 제조 방법 및 비수계 이차 전지
CN104078633B (zh) 一种隔膜、其制备方法及一种锂离子电池
JP2019145496A (ja) 自立性を備えた寸法安定性を呈する微多孔質ウェブ
Du et al. High–Speed electron beam curing of thick electrode for high energy density Li-ion batteries
KR102323286B1 (ko) 리튬 금속 복합전극 및 이의 제조방법
WO2017073788A1 (ja) フィルム製造方法、フィルム製造装置、およびフィルム
US20210376432A1 (en) Safety layer for battery cells
KR20130085828A (ko) 이차 전지용 전극판의 제조방법과 그의 제조방법에 사용되는 전극판의 제조장치
KR20140028754A (ko) 리튬 이차전지용 전극의 세라믹 코팅방법
Kim et al. Electron-beam-irradiated polyethylene membrane with improved electrochemical and thermal properties for lithium-ion batteries
JP5254671B2 (ja) 架橋高分子固体電解質およびその製造方法
WO2015060698A1 (ko) 분리막에 점착성 바인더를 도포하는 방법
JP2013069582A (ja) 非水系二次電池用セパレータ及び非水系二次電池
KR20170038717A (ko) 필름의 제조 방법, 전지용 세퍼레이터 필름, 비수 전해액 이차 전지용 세퍼레이터 및 비수 전해액 이차 전지
KR100236843B1 (ko) 가소화된 자외선 경화형 고분자 전해질 조성물 및 이를 이용한 전해질의 제조방법
JP2024526867A (ja) 電極製造装置およびそれを用いた電極製造方法
Çakmakçı et al. UV-Cured polypropylene mesh-reinforced composite polymer electrolyte membranes
Lee et al. Mass transport to generate the channels in cellulose polymers by vacuum-assisted process
WO2023175544A1 (en) Method of manufacturing laminate for battery, apparatus for manufacturing laminate for battery, method of manufacturing member for battery, and apparatus for manufacturing member for battery
JP2022163577A (ja) 蓄電デバイス用イオン伝導層

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506452

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15123089

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167026386

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15759283

Country of ref document: EP

Kind code of ref document: A1